diff options
author | Pan Li <pan2.li@intel.com> | 2024-06-30 10:55:50 +0800 |
---|---|---|
committer | Pan Li <pan2.li@intel.com> | 2024-07-11 07:05:37 +0800 |
commit | 3918bea620e826b0df68a9c8492b791a67f294b5 (patch) | |
tree | 0c34a3a078b68f03a7eec1cc95d3092b7de5cf08 /gcc | |
parent | d8cd8521185436ea45ed48c5dd481277e9b8a98d (diff) | |
download | gcc-3918bea620e826b0df68a9c8492b791a67f294b5.zip gcc-3918bea620e826b0df68a9c8492b791a67f294b5.tar.gz gcc-3918bea620e826b0df68a9c8492b791a67f294b5.tar.bz2 |
Vect: Optimize truncation for .SAT_SUB operands
To get better vectorized code of .SAT_SUB, we would like to avoid the
truncated operation for the assignment. For example, as below.
unsigned int _1;
unsigned int _2;
unsigned short int _4;
_9 = (unsigned short int).SAT_SUB (_1, _2);
If we make sure that the _1 is in the range of unsigned short int. Such
as a def similar to:
_1 = (unsigned short int)_4;
Then we can do the distribute the truncation operation to:
_3 = (unsigned short int) MIN (65535, _2); // aka _3 = .SAT_TRUNC (_2);
_9 = .SAT_SUB (_4, _3);
Then, we can better vectorized code and avoid the unnecessary narrowing
stmt during vectorization with below stmt(s).
_3 = .SAT_TRUNC(_2); // SI => HI
_9 = .SAT_SUB (_4, _3);
Let's take RISC-V vector as example to tell the changes. For below
sample code:
__attribute__((noinline))
void test (uint16_t *x, unsigned b, unsigned n)
{
unsigned a = 0;
uint16_t *p = x;
do {
a = *--p;
*p = (uint16_t)(a >= b ? a - b : 0);
} while (--n);
}
Before this patch:
...
.L3:
vle16.v v1,0(a3)
vrsub.vx v5,v2,t1
mv t3,a4
addw a4,a4,t5
vrgather.vv v3,v1,v5
vsetvli zero,zero,e32,m1,ta,ma
vzext.vf2 v1,v3
vssubu.vx v1,v1,a1
vsetvli zero,zero,e16,mf2,ta,ma
vncvt.x.x.w v1,v1
vrgather.vv v3,v1,v5
vse16.v v3,0(a3)
sub a3,a3,t4
bgtu t6,a4,.L3
...
After this patch:
test:
...
.L3:
vle16.v v3,0(a3)
vrsub.vx v5,v2,a6
mv a7,a4
addw a4,a4,t3
vrgather.vv v1,v3,v5
vssubu.vv v1,v1,v6
vrgather.vv v3,v1,v5
vse16.v v3,0(a3)
sub a3,a3,t1
bgtu t4,a4,.L3
...
The below test suites are passed for this patch:
1. The rv64gcv fully regression tests.
2. The rv64gcv build with glibc.
3. The x86 bootstrap tests.
4. The x86 fully regression tests.
gcc/ChangeLog:
* tree-vect-patterns.cc (vect_recog_sat_sub_pattern_transform):
Add new func impl to perform the truncation distribution.
(vect_recog_sat_sub_pattern): Perform above optimize before
generate .SAT_SUB call.
Signed-off-by: Pan Li <pan2.li@intel.com>
Diffstat (limited to 'gcc')
-rw-r--r-- | gcc/tree-vect-patterns.cc | 65 |
1 files changed, 65 insertions, 0 deletions
diff --git a/gcc/tree-vect-patterns.cc b/gcc/tree-vect-patterns.cc index 86e893a..4570c25 100644 --- a/gcc/tree-vect-patterns.cc +++ b/gcc/tree-vect-patterns.cc @@ -4567,6 +4567,70 @@ vect_recog_sat_add_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, } /* + * Try to transform the truncation for .SAT_SUB pattern, mostly occurs in + * the benchmark zip. Aka: + * + * unsigned int _1; + * unsigned int _2; + * unsigned short int _4; + * _9 = (unsigned short int).SAT_SUB (_1, _2); + * + * if _1 is known to be in the range of unsigned short int. For example + * there is a def _1 = (unsigned short int)_4. Then we can transform the + * truncation to: + * + * _3 = (unsigned short int) MIN (65535, _2); // aka _3 = .SAT_TRUNC (_2); + * _9 = .SAT_SUB (_4, _3); + * + * Then, we can better vectorized code and avoid the unnecessary narrowing + * stmt during vectorization with below stmt(s). + * + * _3 = .SAT_TRUNC(_2); // SI => HI + * _9 = .SAT_SUB (_4, _3); + */ +static void +vect_recog_sat_sub_pattern_transform (vec_info *vinfo, + stmt_vec_info stmt_vinfo, + tree lhs, tree *ops) +{ + tree otype = TREE_TYPE (lhs); + tree itype = TREE_TYPE (ops[0]); + unsigned itype_prec = TYPE_PRECISION (itype); + unsigned otype_prec = TYPE_PRECISION (otype); + + if (types_compatible_p (otype, itype) || otype_prec >= itype_prec) + return; + + tree v_otype = get_vectype_for_scalar_type (vinfo, otype); + tree v_itype = get_vectype_for_scalar_type (vinfo, itype); + tree_pair v_pair = tree_pair (v_otype, v_itype); + + if (v_otype == NULL_TREE || v_itype == NULL_TREE + || !direct_internal_fn_supported_p (IFN_SAT_TRUNC, v_pair, + OPTIMIZE_FOR_BOTH)) + return; + + /* 1. Find the _4 and update ops[0] as above example. */ + vect_unpromoted_value unprom; + tree tmp = vect_look_through_possible_promotion (vinfo, ops[0], &unprom); + + if (tmp == NULL_TREE || TYPE_PRECISION (unprom.type) != otype_prec) + return; + + ops[0] = tmp; + + /* 2. Generate _3 = .SAT_TRUNC (_2) and update ops[1] as above example. */ + tree trunc_lhs_ssa = vect_recog_temp_ssa_var (otype, NULL); + gcall *call = gimple_build_call_internal (IFN_SAT_TRUNC, 1, ops[1]); + + gimple_call_set_lhs (call, trunc_lhs_ssa); + gimple_call_set_nothrow (call, /* nothrow_p */ false); + append_pattern_def_seq (vinfo, stmt_vinfo, call, v_otype); + + ops[1] = trunc_lhs_ssa; +} + +/* * Try to detect saturation sub pattern (SAT_ADD), aka below gimple: * _7 = _1 >= _2; * _8 = _1 - _2; @@ -4591,6 +4655,7 @@ vect_recog_sat_sub_pattern (vec_info *vinfo, stmt_vec_info stmt_vinfo, if (gimple_unsigned_integer_sat_sub (lhs, ops, NULL)) { + vect_recog_sat_sub_pattern_transform (vinfo, stmt_vinfo, lhs, ops); gimple *stmt = vect_recog_build_binary_gimple_stmt (vinfo, stmt_vinfo, IFN_SAT_SUB, type_out, lhs, ops[0], ops[1]); |