aboutsummaryrefslogtreecommitdiff
path: root/gcc
diff options
context:
space:
mode:
authorRichard Guenther <rguenther@suse.de>2012-08-10 14:19:09 +0000
committerRichard Biener <rguenth@gcc.gnu.org>2012-08-10 14:19:09 +0000
commit04f92ff4fcb0f1fd46b2cca65ea04f896ad783f2 (patch)
tree7000f8a8ed0b24b0c42339f1de301bd16d4340e1 /gcc
parent09e4850d7e5ab207bf04c389c80ff9bc548f8298 (diff)
downloadgcc-04f92ff4fcb0f1fd46b2cca65ea04f896ad783f2.zip
gcc-04f92ff4fcb0f1fd46b2cca65ea04f896ad783f2.tar.gz
gcc-04f92ff4fcb0f1fd46b2cca65ea04f896ad783f2.tar.bz2
Makefile.in (OBJS): Remove matrix-reorg.o.
2012-08-10 Richard Guenther <rguenther@suse.de> * Makefile.in (OBJS): Remove matrix-reorg.o. (matrix-reorg.o): Remove dependence rule. (GTFILES): Remove matrix-reorg.c. * matrix-reorg.c: Remove. * passes.c (init_optimization_passes): Do not schedule pass_ipa_matrix_reorg. * tree-pass.h (pass_ipa_matrix_reorg): Remove. * common.opt (fipa-matrix-reorg): Stub out. * doc/invoke.texi (fipa-matrix-reorg): Remove documentation. * gcc.dg/matrix/*.c: Adjust and move ... * gcc.dg/torture/: ... here. * gcc.dg/matrix: Remove directory. From-SVN: r190298
Diffstat (limited to 'gcc')
-rw-r--r--gcc/ChangeLog12
-rw-r--r--gcc/Makefile.in10
-rw-r--r--gcc/common.opt5
-rw-r--r--gcc/doc/invoke.texi14
-rw-r--r--gcc/matrix-reorg.c2384
-rw-r--r--gcc/passes.c1
-rw-r--r--gcc/testsuite/ChangeLog6
-rw-r--r--gcc/testsuite/gcc.dg/matrix/matrix.exp67
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-1.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-1.c)4
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-2.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-2.c)4
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-3.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-3.c)2
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-4.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-4.c)2
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-5.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-5.c)4
-rw-r--r--gcc/testsuite/gcc.dg/torture/matrix-6.c (renamed from gcc/testsuite/gcc.dg/matrix/matrix-6.c)8
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-1.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-1.c)7
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-2.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-2.c)5
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-3.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-3.c)6
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-4.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-4.c)6
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-5.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-5.c)6
-rw-r--r--gcc/testsuite/gcc.dg/torture/transpose-6.c (renamed from gcc/testsuite/gcc.dg/matrix/transpose-6.c)6
-rw-r--r--gcc/tree-pass.h1
21 files changed, 46 insertions, 2514 deletions
diff --git a/gcc/ChangeLog b/gcc/ChangeLog
index 914742e..0ba7d42 100644
--- a/gcc/ChangeLog
+++ b/gcc/ChangeLog
@@ -1,5 +1,17 @@
2012-08-10 Richard Guenther <rguenther@suse.de>
+ * Makefile.in (OBJS): Remove matrix-reorg.o.
+ (matrix-reorg.o): Remove dependence rule.
+ (GTFILES): Remove matrix-reorg.c.
+ * matrix-reorg.c: Remove.
+ * passes.c (init_optimization_passes): Do not schedule
+ pass_ipa_matrix_reorg.
+ * tree-pass.h (pass_ipa_matrix_reorg): Remove.
+ * common.opt (fipa-matrix-reorg): Stub out.
+ * doc/invoke.texi (fipa-matrix-reorg): Remove documentation.
+
+2012-08-10 Richard Guenther <rguenther@suse.de>
+
PR middle-end/54219
* fold-const.c (fold_ternary_loc): Do not reverse the mask
when canonicalizing it when folding VEC_PERM_EXPR.
diff --git a/gcc/Makefile.in b/gcc/Makefile.in
index bbd8cb1..ba0287f 100644
--- a/gcc/Makefile.in
+++ b/gcc/Makefile.in
@@ -1301,7 +1301,6 @@ OBJS = \
lto-symtab.o \
lto-opts.o \
lto-compress.o \
- matrix-reorg.o \
mcf.o \
mode-switching.o \
modulo-sched.o \
@@ -2893,13 +2892,6 @@ ipa-split.o : ipa-split.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
$(TREE_H) $(TARGET_H) $(CGRAPH_H) $(IPA_PROP_H) $(TREE_FLOW_H) \
$(TREE_PASS_H) $(FLAGS_H) $(DIAGNOSTIC_H) $(TREE_DUMP_H) \
$(TREE_INLINE_H) $(PARAMS_H) $(GIMPLE_PRETTY_PRINT_H) ipa-inline.h
-matrix-reorg.o : matrix-reorg.c $(CONFIG_H) $(SYSTEM_H) coretypes.h \
- $(TM_H) $(TREE_H) $(RTL_H) $(TREE_INLINE_H) $(TREE_FLOW_H) \
- tree-flow-inline.h langhooks.h $(HASHTAB_H) $(DIAGNOSTIC_CORE_H) $(FLAGS_H) $(GGC_H) \
- debug.h $(TARGET_H) $(CGRAPH_H) $(DIAGNOSTIC_CORE_H) \
- $(PARAMS_H) intl.h $(FUNCTION_H) $(BASIC_BLOCK_H) \
- $(CFGLOOP_H) tree-iterator.h $(TREE_PASS_H) $(OPTS_H) $(TREE_DATA_REF_H) \
- tree-ssa-sccvn.h
ipa-inline.o : ipa-inline.c $(CONFIG_H) $(SYSTEM_H) coretypes.h $(TM_H) \
$(TREE_H) langhooks.h $(TREE_INLINE_H) $(FLAGS_H) $(CGRAPH_H) intl.h \
$(DIAGNOSTIC_H) $(FIBHEAP_H) $(PARAMS_H) $(TREE_PASS_H) \
@@ -3657,7 +3649,7 @@ GTFILES = $(CPP_ID_DATA_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)/cselib.h $(srcdir)/basic-block.h $(srcdir)/ipa-ref.h $(srcdir)/cgraph.h \
$(srcdir)/reload.h $(srcdir)/caller-save.c $(srcdir)/symtab.c \
$(srcdir)/alias.c $(srcdir)/bitmap.c $(srcdir)/cselib.c $(srcdir)/cgraph.c \
- $(srcdir)/ipa-prop.c $(srcdir)/ipa-cp.c $(srcdir)/matrix-reorg.c \
+ $(srcdir)/ipa-prop.c $(srcdir)/ipa-cp.c \
$(srcdir)/dbxout.c \
$(srcdir)/dwarf2out.h \
$(srcdir)/dwarf2asm.c \
diff --git a/gcc/common.opt b/gcc/common.opt
index f415f14..deb89e3 100644
--- a/gcc/common.opt
+++ b/gcc/common.opt
@@ -1349,9 +1349,8 @@ Common Report Var(flag_ipa_reference) Init(0) Optimization
Discover readonly and non addressable static variables
fipa-matrix-reorg
-Common Report Var(flag_ipa_matrix_reorg) Optimization
-Perform matrix layout flattening and transposing based
-on profiling information.
+Common Ignore
+Does nothing. Preserved for backward compatibility.
fipa-struct-reorg
Common Ignore
diff --git a/gcc/doc/invoke.texi b/gcc/doc/invoke.texi
index 379761c..f0d8a4a 100644
--- a/gcc/doc/invoke.texi
+++ b/gcc/doc/invoke.texi
@@ -367,7 +367,7 @@ Objective-C and Objective-C++ Dialects}.
-fgcse-sm -fhoist-adjacent-loads -fif-conversion @gol
-fif-conversion2 -findirect-inlining @gol
-finline-functions -finline-functions-called-once -finline-limit=@var{n} @gol
--finline-small-functions -fipa-cp -fipa-cp-clone -fipa-matrix-reorg @gol
+-finline-small-functions -fipa-cp -fipa-cp-clone @gol
-fipa-pta -fipa-profile -fipa-pure-const -fipa-reference @gol
-fira-algorithm=@var{algorithm} @gol
-fira-region=@var{region} @gol
@@ -7195,18 +7195,6 @@ it may significantly increase code size
(see @option{--param ipcp-unit-growth=@var{value}}).
This flag is enabled by default at @option{-O3}.
-@item -fipa-matrix-reorg
-@opindex fipa-matrix-reorg
-Perform matrix flattening and transposing.
-Matrix flattening tries to replace an @math{m}-dimensional matrix
-with its equivalent @math{n}-dimensional matrix, where @math{n < m}.
-This reduces the level of indirection needed for accessing the elements
-of the matrix. The second optimization is matrix transposing, which
-attempts to change the order of the matrix's dimensions in order to
-improve cache locality.
-Both optimizations need the @option{-fwhole-program} flag.
-Transposing is enabled only if profiling information is available.
-
@item -ftree-sink
@opindex ftree-sink
Perform forward store motion on trees. This flag is
diff --git a/gcc/matrix-reorg.c b/gcc/matrix-reorg.c
deleted file mode 100644
index 6fe5613..0000000
--- a/gcc/matrix-reorg.c
+++ /dev/null
@@ -1,2384 +0,0 @@
-/* Matrix layout transformations.
- Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
- Contributed by Razya Ladelsky <razya@il.ibm.com>
- Originally written by Revital Eres and Mustafa Hagog.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/*
- Matrix flattening optimization tries to replace a N-dimensional
- matrix with its equivalent M-dimensional matrix, where M < N.
- This first implementation focuses on global matrices defined dynamically.
-
- When N==1, we actually flatten the whole matrix.
- For instance consider a two-dimensional array a [dim1] [dim2].
- The code for allocating space for it usually looks like:
-
- a = (int **) malloc(dim1 * sizeof(int *));
- for (i=0; i<dim1; i++)
- a[i] = (int *) malloc (dim2 * sizeof(int));
-
- If the array "a" is found suitable for this optimization,
- its allocation is replaced by:
-
- a = (int *) malloc (dim1 * dim2 *sizeof(int));
-
- and all the references to a[i][j] are replaced by a[i * dim2 + j].
-
- The two main phases of the optimization are the analysis
- and transformation.
- The driver of the optimization is matrix_reorg ().
-
-
-
- Analysis phase:
- ===============
-
- We'll number the dimensions outside-in, meaning the most external
- is 0, then 1, and so on.
- The analysis part of the optimization determines K, the escape
- level of a N-dimensional matrix (K <= N), that allows flattening of
- the external dimensions 0,1,..., K-1. Escape level 0 means that the
- whole matrix escapes and no flattening is possible.
-
- The analysis part is implemented in analyze_matrix_allocation_site()
- and analyze_matrix_accesses().
-
- Transformation phase:
- =====================
- In this phase we define the new flattened matrices that replace the
- original matrices in the code.
- Implemented in transform_allocation_sites(),
- transform_access_sites().
-
- Matrix Transposing
- ==================
- The idea of Matrix Transposing is organizing the matrix in a different
- layout such that the dimensions are reordered.
- This could produce better cache behavior in some cases.
-
- For example, lets look at the matrix accesses in the following loop:
-
- for (i=0; i<N; i++)
- for (j=0; j<M; j++)
- access to a[i][j]
-
- This loop can produce good cache behavior because the elements of
- the inner dimension are accessed sequentially.
-
- However, if the accesses of the matrix were of the following form:
-
- for (i=0; i<N; i++)
- for (j=0; j<M; j++)
- access to a[j][i]
-
- In this loop we iterate the columns and not the rows.
- Therefore, replacing the rows and columns
- would have had an organization with better (cache) locality.
- Replacing the dimensions of the matrix is called matrix transposing.
-
- This example, of course, could be enhanced to multiple dimensions matrices
- as well.
-
- Since a program could include all kind of accesses, there is a decision
- mechanism, implemented in analyze_transpose(), which implements a
- heuristic that tries to determine whether to transpose the matrix or not,
- according to the form of the more dominant accesses.
- This decision is transferred to the flattening mechanism, and whether
- the matrix was transposed or not, the matrix is flattened (if possible).
-
- This decision making is based on profiling information and loop information.
- If profiling information is available, decision making mechanism will be
- operated, otherwise the matrix will only be flattened (if possible).
-
- Both optimizations are described in the paper "Matrix flattening and
- transposing in GCC" which was presented in GCC summit 2006.
- http://www.gccsummit.org/2006/2006-GCC-Summit-Proceedings.pdf. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "tree.h"
-#include "rtl.h"
-#include "tree-inline.h"
-#include "tree-flow.h"
-#include "tree-flow-inline.h"
-#include "langhooks.h"
-#include "hashtab.h"
-#include "flags.h"
-#include "ggc.h"
-#include "debug.h"
-#include "target.h"
-#include "cgraph.h"
-#include "diagnostic-core.h"
-#include "params.h"
-#include "intl.h"
-#include "function.h"
-#include "basic-block.h"
-#include "cfgloop.h"
-#include "tree-iterator.h"
-#include "tree-pass.h"
-#include "opts.h"
-#include "tree-data-ref.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "tree-ssa-sccvn.h"
-
-/* We need to collect a lot of data from the original malloc,
- particularly as the gimplifier has converted:
-
- orig_var = (struct_type *) malloc (x * sizeof (struct_type *));
-
- into
-
- T3 = <constant> ; ** <constant> is amount to malloc; precomputed **
- T4 = malloc (T3);
- T5 = (struct_type *) T4;
- orig_var = T5;
-
- The following struct fields allow us to collect all the necessary data from
- the gimplified program. The comments in the struct below are all based
- on the gimple example above. */
-
-struct malloc_call_data
-{
- gimple call_stmt; /* Tree for "T4 = malloc (T3);" */
- tree size_var; /* Var decl for T3. */
- tree malloc_size; /* Tree for "<constant>", the rhs assigned to T3. */
-};
-
-static tree can_calculate_expr_before_stmt (tree, sbitmap);
-static tree can_calculate_stmt_before_stmt (gimple, sbitmap);
-
-/* The front end of the compiler, when parsing statements of the form:
-
- var = (type_cast) malloc (sizeof (type));
-
- always converts this single statement into the following statements
- (GIMPLE form):
-
- T.1 = sizeof (type);
- T.2 = malloc (T.1);
- T.3 = (type_cast) T.2;
- var = T.3;
-
- Since we need to create new malloc statements and modify the original
- statements somewhat, we need to find all four of the above statements.
- Currently record_call_1 (called for building cgraph edges) finds and
- records the statements containing the actual call to malloc, but we
- need to find the rest of the variables/statements on our own. That
- is what the following function does. */
-static void
-collect_data_for_malloc_call (gimple stmt, struct malloc_call_data *m_data)
-{
- tree size_var = NULL;
- tree malloc_fn_decl;
- tree arg1;
-
- gcc_assert (is_gimple_call (stmt));
-
- malloc_fn_decl = gimple_call_fndecl (stmt);
- if (malloc_fn_decl == NULL
- || DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
- return;
-
- arg1 = gimple_call_arg (stmt, 0);
- size_var = arg1;
-
- m_data->call_stmt = stmt;
- m_data->size_var = size_var;
- if (TREE_CODE (size_var) != VAR_DECL)
- m_data->malloc_size = size_var;
- else
- m_data->malloc_size = NULL_TREE;
-}
-
-/* Information about matrix access site.
- For example: if an access site of matrix arr is arr[i][j]
- the ACCESS_SITE_INFO structure will have the address
- of arr as its stmt. The INDEX_INFO will hold information about the
- initial address and index of each dimension. */
-struct access_site_info
-{
- /* The statement (MEM_REF or POINTER_PLUS_EXPR). */
- gimple stmt;
-
- /* In case of POINTER_PLUS_EXPR, what is the offset. */
- tree offset;
-
- /* The index which created the offset. */
- tree index;
-
- /* The indirection level of this statement. */
- int level;
-
- /* TRUE for allocation site FALSE for access site. */
- bool is_alloc;
-
- /* The function containing the access site. */
- tree function_decl;
-
- /* This access is iterated in the inner most loop */
- bool iterated_by_inner_most_loop_p;
-};
-
-typedef struct access_site_info *access_site_info_p;
-DEF_VEC_P (access_site_info_p);
-DEF_VEC_ALLOC_P (access_site_info_p, heap);
-
-/* Calls to free when flattening a matrix. */
-
-struct free_info
-{
- gimple stmt;
- tree func;
-};
-
-/* Information about matrix to flatten. */
-struct matrix_info
-{
- /* Decl tree of this matrix. */
- tree decl;
- /* Number of dimensions; number
- of "*" in the type declaration. */
- int num_dims;
-
- /* Minimum indirection level that escapes, 0 means that
- the whole matrix escapes, k means that dimensions
- 0 to ACTUAL_DIM - k escapes. */
- int min_indirect_level_escape;
-
- gimple min_indirect_level_escape_stmt;
-
- /* Hold the allocation site for each level (dimension).
- We can use NUM_DIMS as the upper bound and allocate the array
- once with this number of elements and no need to use realloc and
- MAX_MALLOCED_LEVEL. */
- gimple *malloc_for_level;
-
- int max_malloced_level;
-
- /* Is the matrix transposed. */
- bool is_transposed_p;
-
- /* The location of the allocation sites (they must be in one
- function). */
- tree allocation_function_decl;
-
- /* The calls to free for each level of indirection. */
- struct free_info *free_stmts;
-
- /* An array which holds for each dimension its size. where
- dimension 0 is the outer most (one that contains all the others).
- */
- tree *dimension_size;
-
- /* An array which holds for each dimension it's original size
- (before transposing and flattening take place). */
- tree *dimension_size_orig;
-
- /* An array which holds for each dimension the size of the type of
- of elements accessed in that level (in bytes). */
- HOST_WIDE_INT *dimension_type_size;
-
- int dimension_type_size_len;
-
- /* An array collecting the count of accesses for each dimension. */
- gcov_type *dim_hot_level;
-
- /* An array of the accesses to be flattened.
- elements are of type "struct access_site_info *". */
- VEC (access_site_info_p, heap) * access_l;
-
- /* A map of how the dimensions will be organized at the end of
- the analyses. */
- int *dim_map;
-};
-
-/* In each phi node we want to record the indirection level we have when we
- get to the phi node. Usually we will have phi nodes with more than two
- arguments, then we must assure that all of them get to the phi node with
- the same indirection level, otherwise it's not safe to do the flattening.
- So we record the information regarding the indirection level each time we
- get to the phi node in this hash table. */
-
-struct matrix_access_phi_node
-{
- gimple phi;
- int indirection_level;
-};
-
-/* We use this structure to find if the SSA variable is accessed inside the
- tree and record the tree containing it. */
-
-struct ssa_acc_in_tree
-{
- /* The variable whose accesses in the tree we are looking for. */
- tree ssa_var;
- /* The tree and code inside it the ssa_var is accessed, currently
- it could be an MEM_REF or CALL_EXPR. */
- enum tree_code t_code;
- tree t_tree;
- /* The place in the containing tree. */
- tree *tp;
- tree second_op;
- bool var_found;
-};
-
-static void analyze_matrix_accesses (struct matrix_info *, tree, int, bool,
- sbitmap, bool);
-static int transform_allocation_sites (void **, void *);
-static int transform_access_sites (void **, void *);
-static int analyze_transpose (void **, void *);
-static int dump_matrix_reorg_analysis (void **, void *);
-
-static bool check_transpose_p;
-
-/* Hash function used for the phi nodes. */
-
-static hashval_t
-mat_acc_phi_hash (const void *p)
-{
- const struct matrix_access_phi_node *const ma_phi =
- (const struct matrix_access_phi_node *) p;
-
- return htab_hash_pointer (ma_phi->phi);
-}
-
-/* Equality means phi node pointers are the same. */
-
-static int
-mat_acc_phi_eq (const void *p1, const void *p2)
-{
- const struct matrix_access_phi_node *const phi1 =
- (const struct matrix_access_phi_node *) p1;
- const struct matrix_access_phi_node *const phi2 =
- (const struct matrix_access_phi_node *) p2;
-
- if (phi1->phi == phi2->phi)
- return 1;
-
- return 0;
-}
-
-/* Hold the PHI nodes we visit during the traversal for escaping
- analysis. */
-static htab_t htab_mat_acc_phi_nodes = NULL;
-
-/* This hash-table holds the information about the matrices we are
- going to handle. */
-static htab_t matrices_to_reorg = NULL;
-
-/* Return a hash for MTT, which is really a "matrix_info *". */
-static hashval_t
-mtt_info_hash (const void *mtt)
-{
- return htab_hash_pointer (((const struct matrix_info *) mtt)->decl);
-}
-
-/* Return true if MTT1 and MTT2 (which are really both of type
- "matrix_info *") refer to the same decl. */
-static int
-mtt_info_eq (const void *mtt1, const void *mtt2)
-{
- const struct matrix_info *const i1 = (const struct matrix_info *) mtt1;
- const struct matrix_info *const i2 = (const struct matrix_info *) mtt2;
-
- if (i1->decl == i2->decl)
- return true;
-
- return false;
-}
-
-/* Return false if STMT may contain a vector expression.
- In this situation, all matrices should not be flattened. */
-static bool
-may_flatten_matrices_1 (gimple stmt)
-{
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- case GIMPLE_CALL:
- if (!gimple_has_lhs (stmt))
- return true;
- if (TREE_CODE (TREE_TYPE (gimple_get_lhs (stmt))) == VECTOR_TYPE)
- {
- if (dump_file)
- fprintf (dump_file,
- "Found vector type, don't flatten matrix\n");
- return false;
- }
- break;
- case GIMPLE_ASM:
- /* Asm code could contain vector operations. */
- return false;
- break;
- default:
- break;
- }
- return true;
-}
-
-/* Return false if there are hand-written vectors in the program.
- We disable the flattening in such a case. */
-static bool
-may_flatten_matrices (struct cgraph_node *node)
-{
- tree decl;
- struct function *func;
- basic_block bb;
- gimple_stmt_iterator gsi;
-
- decl = node->symbol.decl;
- if (node->analyzed)
- {
- func = DECL_STRUCT_FUNCTION (decl);
- FOR_EACH_BB_FN (bb, func)
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- if (!may_flatten_matrices_1 (gsi_stmt (gsi)))
- return false;
- }
- return true;
-}
-
-/* Given a VAR_DECL, check its type to determine whether it is
- a definition of a dynamic allocated matrix and therefore is
- a suitable candidate for the matrix flattening optimization.
- Return NULL if VAR_DECL is not such decl. Otherwise, allocate
- a MATRIX_INFO structure, fill it with the relevant information
- and return a pointer to it.
- TODO: handle also statically defined arrays. */
-static struct matrix_info *
-analyze_matrix_decl (tree var_decl)
-{
- struct matrix_info *m_node, tmpmi, *mi;
- tree var_type;
- int dim_num = 0;
-
- gcc_assert (matrices_to_reorg);
-
- if (TREE_CODE (var_decl) == PARM_DECL)
- var_type = DECL_ARG_TYPE (var_decl);
- else if (TREE_CODE (var_decl) == VAR_DECL)
- var_type = TREE_TYPE (var_decl);
- else
- return NULL;
-
- if (!POINTER_TYPE_P (var_type))
- return NULL;
-
- while (POINTER_TYPE_P (var_type))
- {
- var_type = TREE_TYPE (var_type);
- dim_num++;
- }
-
- if (dim_num <= 1)
- return NULL;
-
- if (!COMPLETE_TYPE_P (var_type)
- || TREE_CODE (TYPE_SIZE_UNIT (var_type)) != INTEGER_CST)
- return NULL;
-
- /* Check to see if this pointer is already in there. */
- tmpmi.decl = var_decl;
- mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi);
-
- if (mi)
- return NULL;
-
- /* Record the matrix. */
-
- m_node = (struct matrix_info *) xcalloc (1, sizeof (struct matrix_info));
- m_node->decl = var_decl;
- m_node->num_dims = dim_num;
- m_node->free_stmts
- = (struct free_info *) xcalloc (dim_num, sizeof (struct free_info));
-
- /* Init min_indirect_level_escape to -1 to indicate that no escape
- analysis has been done yet. */
- m_node->min_indirect_level_escape = -1;
- m_node->is_transposed_p = false;
-
- return m_node;
-}
-
-/* Free matrix E. */
-static void
-mat_free (void *e)
-{
- struct matrix_info *mat = (struct matrix_info *) e;
-
- if (!mat)
- return;
-
- free (mat->free_stmts);
- free (mat->dim_hot_level);
- free (mat->malloc_for_level);
-}
-
-/* Find all potential matrices.
- TODO: currently we handle only multidimensional
- dynamically allocated arrays. */
-static void
-find_matrices_decl (void)
-{
- struct matrix_info *tmp;
- PTR *slot;
- struct varpool_node *vnode;
-
- gcc_assert (matrices_to_reorg);
-
- /* For every global variable in the program:
- Check to see if it's of a candidate type and record it. */
- FOR_EACH_DEFINED_VARIABLE (vnode)
- {
- tree var_decl = vnode->symbol.decl;
-
- if (!var_decl || TREE_CODE (var_decl) != VAR_DECL)
- continue;
-
- if (matrices_to_reorg)
- if ((tmp = analyze_matrix_decl (var_decl)))
- {
- if (!TREE_ADDRESSABLE (var_decl))
- {
- slot = htab_find_slot (matrices_to_reorg, tmp, INSERT);
- *slot = tmp;
- }
- }
- }
- return;
-}
-
-/* Mark that the matrix MI escapes at level L. */
-static void
-mark_min_matrix_escape_level (struct matrix_info *mi, int l, gimple s)
-{
- if (mi->min_indirect_level_escape == -1
- || (mi->min_indirect_level_escape > l))
- {
- mi->min_indirect_level_escape = l;
- mi->min_indirect_level_escape_stmt = s;
- }
-}
-
-/* Find if the SSA variable is accessed inside the
- tree and record the tree containing it.
- The only relevant uses are the case of SSA_NAME, or SSA inside
- MEM_REF, PLUS_EXPR, POINTER_PLUS_EXPR, MULT_EXPR. */
-static void
-ssa_accessed_in_tree (tree t, struct ssa_acc_in_tree *a)
-{
- a->t_code = TREE_CODE (t);
- switch (a->t_code)
- {
- case SSA_NAME:
- if (t == a->ssa_var)
- a->var_found = true;
- break;
- case MEM_REF:
- if (SSA_VAR_P (TREE_OPERAND (t, 0))
- && TREE_OPERAND (t, 0) == a->ssa_var)
- a->var_found = true;
- break;
- default:
- break;
- }
-}
-
-/* Find if the SSA variable is accessed on the right hand side of
- gimple call STMT. */
-
-static void
-ssa_accessed_in_call_rhs (gimple stmt, struct ssa_acc_in_tree *a)
-{
- tree decl;
- tree arg;
- size_t i;
-
- a->t_code = CALL_EXPR;
- for (i = 0; i < gimple_call_num_args (stmt); i++)
- {
- arg = gimple_call_arg (stmt, i);
- if (arg == a->ssa_var)
- {
- a->var_found = true;
- decl = gimple_call_fndecl (stmt);
- a->t_tree = decl;
- break;
- }
- }
-}
-
-/* Find if the SSA variable is accessed on the right hand side of
- gimple assign STMT. */
-
-static void
-ssa_accessed_in_assign_rhs (gimple stmt, struct ssa_acc_in_tree *a)
-{
-
- a->t_code = gimple_assign_rhs_code (stmt);
- switch (a->t_code)
- {
- tree op1, op2;
-
- case SSA_NAME:
- case MEM_REF:
- CASE_CONVERT:
- case VIEW_CONVERT_EXPR:
- ssa_accessed_in_tree (gimple_assign_rhs1 (stmt), a);
- break;
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MULT_EXPR:
- op1 = gimple_assign_rhs1 (stmt);
- op2 = gimple_assign_rhs2 (stmt);
-
- if (op1 == a->ssa_var)
- {
- a->var_found = true;
- a->second_op = op2;
- }
- else if (op2 == a->ssa_var)
- {
- a->var_found = true;
- a->second_op = op1;
- }
- break;
- default:
- break;
- }
-}
-
-/* Record the access/allocation site information for matrix MI so we can
- handle it later in transformation. */
-static void
-record_access_alloc_site_info (struct matrix_info *mi, gimple stmt, tree offset,
- tree index, int level, bool is_alloc)
-{
- struct access_site_info *acc_info;
-
- if (!mi->access_l)
- mi->access_l = VEC_alloc (access_site_info_p, heap, 100);
-
- acc_info
- = (struct access_site_info *)
- xcalloc (1, sizeof (struct access_site_info));
- acc_info->stmt = stmt;
- acc_info->offset = offset;
- acc_info->index = index;
- acc_info->function_decl = current_function_decl;
- acc_info->level = level;
- acc_info->is_alloc = is_alloc;
-
- VEC_safe_push (access_site_info_p, heap, mi->access_l, acc_info);
-
-}
-
-/* Record the malloc as the allocation site of the given LEVEL. But
- first we Make sure that all the size parameters passed to malloc in
- all the allocation sites could be pre-calculated before the call to
- the malloc of level 0 (the main malloc call). */
-static void
-add_allocation_site (struct matrix_info *mi, gimple stmt, int level)
-{
- struct malloc_call_data mcd;
-
- /* Make sure that the allocation sites are in the same function. */
- if (!mi->allocation_function_decl)
- mi->allocation_function_decl = current_function_decl;
- else if (mi->allocation_function_decl != current_function_decl)
- {
- int min_malloc_level;
-
- gcc_assert (mi->malloc_for_level);
-
- /* Find the minimum malloc level that already has been seen;
- we known its allocation function must be
- MI->allocation_function_decl since it's different than
- CURRENT_FUNCTION_DECL then the escaping level should be
- MIN (LEVEL, MIN_MALLOC_LEVEL) - 1 , and the allocation function
- must be set accordingly. */
- for (min_malloc_level = 0;
- min_malloc_level < mi->max_malloced_level
- && mi->malloc_for_level[min_malloc_level]; min_malloc_level++)
- ;
- if (level < min_malloc_level)
- {
- mi->allocation_function_decl = current_function_decl;
- mark_min_matrix_escape_level (mi, min_malloc_level, stmt);
- }
- else
- {
- mark_min_matrix_escape_level (mi, level, stmt);
- /* cannot be that (level == min_malloc_level)
- we would have returned earlier. */
- return;
- }
- }
-
- /* Find the correct malloc information. */
- collect_data_for_malloc_call (stmt, &mcd);
-
- /* We accept only calls to malloc function; we do not accept
- calls like calloc and realloc. */
- if (!mi->malloc_for_level)
- {
- mi->malloc_for_level = XCNEWVEC (gimple, level + 1);
- mi->max_malloced_level = level + 1;
- }
- else if (mi->max_malloced_level <= level)
- {
- mi->malloc_for_level
- = XRESIZEVEC (gimple, mi->malloc_for_level, level + 1);
-
- /* Zero the newly allocated items. */
- memset (&(mi->malloc_for_level[mi->max_malloced_level + 1]),
- 0, (level - mi->max_malloced_level) * sizeof (tree));
-
- mi->max_malloced_level = level + 1;
- }
- mi->malloc_for_level[level] = stmt;
-}
-
-/* Given an assignment statement STMT that we know that its
- left-hand-side is the matrix MI variable, we traverse the immediate
- uses backwards until we get to a malloc site. We make sure that
- there is one and only one malloc site that sets this variable. When
- we are performing the flattening we generate a new variable that
- will hold the size for each dimension; each malloc that allocates a
- dimension has the size parameter; we use that parameter to
- initialize the dimension size variable so we can use it later in
- the address calculations. LEVEL is the dimension we're inspecting.
- Return if STMT is related to an allocation site. */
-
-static void
-analyze_matrix_allocation_site (struct matrix_info *mi, gimple stmt,
- int level, sbitmap visited)
-{
- if (gimple_assign_copy_p (stmt) || gimple_assign_cast_p (stmt))
- {
- tree rhs = gimple_assign_rhs1 (stmt);
-
- if (TREE_CODE (rhs) == SSA_NAME)
- {
- gimple def = SSA_NAME_DEF_STMT (rhs);
-
- analyze_matrix_allocation_site (mi, def, level, visited);
- return;
- }
- /* If we are back to the original matrix variable then we
- are sure that this is analyzed as an access site. */
- else if (rhs == mi->decl)
- return;
- }
- /* A result of call to malloc. */
- else if (is_gimple_call (stmt))
- {
- int call_flags = gimple_call_flags (stmt);
-
- if (!(call_flags & ECF_MALLOC))
- {
- mark_min_matrix_escape_level (mi, level, stmt);
- return;
- }
- else
- {
- tree malloc_fn_decl;
-
- malloc_fn_decl = gimple_call_fndecl (stmt);
- if (malloc_fn_decl == NULL_TREE)
- {
- mark_min_matrix_escape_level (mi, level, stmt);
- return;
- }
- if (DECL_FUNCTION_CODE (malloc_fn_decl) != BUILT_IN_MALLOC)
- {
- if (dump_file)
- fprintf (dump_file,
- "Matrix %s is an argument to function %s\n",
- get_name (mi->decl), get_name (malloc_fn_decl));
- mark_min_matrix_escape_level (mi, level, stmt);
- return;
- }
- }
- /* This is a call to malloc of level 'level'.
- mi->max_malloced_level-1 == level means that we've
- seen a malloc statement of level 'level' before.
- If the statement is not the same one that we've
- seen before, then there's another malloc statement
- for the same level, which means that we need to mark
- it escaping. */
- if (mi->malloc_for_level
- && mi->max_malloced_level-1 == level
- && mi->malloc_for_level[level] != stmt)
- {
- mark_min_matrix_escape_level (mi, level, stmt);
- return;
- }
- else
- add_allocation_site (mi, stmt, level);
- return;
- }
- /* Looks like we don't know what is happening in this
- statement so be in the safe side and mark it as escaping. */
- mark_min_matrix_escape_level (mi, level, stmt);
-}
-
-/* The transposing decision making.
- In order to calculate the profitability of transposing, we collect two
- types of information regarding the accesses:
- 1. profiling information used to express the hotness of an access, that
- is how often the matrix is accessed by this access site (count of the
- access site).
- 2. which dimension in the access site is iterated by the inner
- most loop containing this access.
-
- The matrix will have a calculated value of weighted hotness for each
- dimension.
- Intuitively the hotness level of a dimension is a function of how
- many times it was the most frequently accessed dimension in the
- highly executed access sites of this matrix.
-
- As computed by following equation:
- m n
- __ __
- \ \ dim_hot_level[i] +=
- /_ /_
- j i
- acc[j]->dim[i]->iter_by_inner_loop * count(j)
-
- Where n is the number of dims and m is the number of the matrix
- access sites. acc[j]->dim[i]->iter_by_inner_loop is 1 if acc[j]
- iterates over dim[i] in innermost loop, and is 0 otherwise.
-
- The organization of the new matrix should be according to the
- hotness of each dimension. The hotness of the dimension implies
- the locality of the elements.*/
-static int
-analyze_transpose (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- struct matrix_info *mi = (struct matrix_info *) *slot;
- int min_escape_l = mi->min_indirect_level_escape;
- struct loop *loop;
- affine_iv iv;
- struct access_site_info *acc_info;
- int i;
-
- if (min_escape_l < 2 || !mi->access_l)
- {
- if (mi->access_l)
- {
- FOR_EACH_VEC_ELT (access_site_info_p, mi->access_l, i, acc_info)
- free (acc_info);
- VEC_free (access_site_info_p, heap, mi->access_l);
-
- }
- return 1;
- }
- if (!mi->dim_hot_level)
- mi->dim_hot_level =
- (gcov_type *) xcalloc (min_escape_l, sizeof (gcov_type));
-
-
- for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
- i++)
- {
- if (gimple_assign_rhs_code (acc_info->stmt) == POINTER_PLUS_EXPR
- && acc_info->level < min_escape_l)
- {
- loop = loop_containing_stmt (acc_info->stmt);
- if (!loop || loop->inner)
- {
- free (acc_info);
- continue;
- }
- if (simple_iv (loop, loop, acc_info->offset, &iv, true))
- {
- if (iv.step != NULL)
- {
- HOST_WIDE_INT istep;
-
- istep = int_cst_value (iv.step);
- if (istep != 0)
- {
- acc_info->iterated_by_inner_most_loop_p = 1;
- mi->dim_hot_level[acc_info->level] +=
- gimple_bb (acc_info->stmt)->count;
- }
-
- }
- }
- }
- free (acc_info);
- }
- VEC_free (access_site_info_p, heap, mi->access_l);
-
- return 1;
-}
-
-/* Find the index which defines the OFFSET from base.
- We walk from use to def until we find how the offset was defined. */
-static tree
-get_index_from_offset (tree offset, gimple def_stmt)
-{
- tree op1, op2, index;
-
- if (gimple_code (def_stmt) == GIMPLE_PHI)
- return NULL;
- if ((gimple_assign_copy_p (def_stmt) || gimple_assign_cast_p (def_stmt))
- && TREE_CODE (gimple_assign_rhs1 (def_stmt)) == SSA_NAME)
- return get_index_from_offset (offset,
- SSA_NAME_DEF_STMT (gimple_assign_rhs1 (def_stmt)));
- else if (is_gimple_assign (def_stmt)
- && gimple_assign_rhs_code (def_stmt) == MULT_EXPR)
- {
- op1 = gimple_assign_rhs1 (def_stmt);
- op2 = gimple_assign_rhs2 (def_stmt);
- if (TREE_CODE (op1) != INTEGER_CST && TREE_CODE (op2) != INTEGER_CST)
- return NULL;
- index = (TREE_CODE (op1) == INTEGER_CST) ? op2 : op1;
- return index;
- }
- else
- return NULL_TREE;
-}
-
-/* update MI->dimension_type_size[CURRENT_INDIRECT_LEVEL] with the size
- of the type related to the SSA_VAR, or the type related to the
- lhs of STMT, in the case that it is an MEM_REF. */
-static void
-update_type_size (struct matrix_info *mi, gimple stmt, tree ssa_var,
- int current_indirect_level)
-{
- tree lhs;
- HOST_WIDE_INT type_size;
-
- /* Update type according to the type of the MEM_REF expr. */
- if (is_gimple_assign (stmt)
- && TREE_CODE (gimple_assign_lhs (stmt)) == MEM_REF)
- {
- lhs = gimple_assign_lhs (stmt);
- gcc_assert (POINTER_TYPE_P
- (TREE_TYPE (TREE_OPERAND (lhs, 0))));
- type_size =
- int_size_in_bytes (TREE_TYPE
- (TREE_TYPE (TREE_OPERAND (lhs, 0))));
- }
- else
- type_size = int_size_in_bytes (TREE_TYPE (ssa_var));
-
- /* Record the size of elements accessed (as a whole)
- in the current indirection level (dimension). If the size of
- elements is not known at compile time, mark it as escaping. */
- if (type_size <= 0)
- mark_min_matrix_escape_level (mi, current_indirect_level, stmt);
- else
- {
- int l = current_indirect_level;
-
- if (!mi->dimension_type_size)
- {
- mi->dimension_type_size
- = (HOST_WIDE_INT *) xcalloc (l + 1, sizeof (HOST_WIDE_INT));
- mi->dimension_type_size_len = l + 1;
- }
- else if (mi->dimension_type_size_len < l + 1)
- {
- mi->dimension_type_size
- = (HOST_WIDE_INT *) xrealloc (mi->dimension_type_size,
- (l + 1) * sizeof (HOST_WIDE_INT));
- memset (&mi->dimension_type_size[mi->dimension_type_size_len],
- 0, (l + 1 - mi->dimension_type_size_len)
- * sizeof (HOST_WIDE_INT));
- mi->dimension_type_size_len = l + 1;
- }
- /* Make sure all the accesses in the same level have the same size
- of the type. */
- if (!mi->dimension_type_size[l])
- mi->dimension_type_size[l] = type_size;
- else if (mi->dimension_type_size[l] != type_size)
- mark_min_matrix_escape_level (mi, l, stmt);
- }
-}
-
-/* USE_STMT represents a GIMPLE_CALL, where one of the arguments is the
- ssa var that we want to check because it came from some use of matrix
- MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so
- far. */
-
-static int
-analyze_accesses_for_call_stmt (struct matrix_info *mi, tree ssa_var,
- gimple use_stmt, int current_indirect_level)
-{
- tree fndecl = gimple_call_fndecl (use_stmt);
-
- if (gimple_call_lhs (use_stmt))
- {
- tree lhs = gimple_call_lhs (use_stmt);
- struct ssa_acc_in_tree lhs_acc, rhs_acc;
-
- memset (&lhs_acc, 0, sizeof (lhs_acc));
- memset (&rhs_acc, 0, sizeof (rhs_acc));
-
- lhs_acc.ssa_var = ssa_var;
- lhs_acc.t_code = ERROR_MARK;
- ssa_accessed_in_tree (lhs, &lhs_acc);
- rhs_acc.ssa_var = ssa_var;
- rhs_acc.t_code = ERROR_MARK;
- ssa_accessed_in_call_rhs (use_stmt, &rhs_acc);
-
- /* The SSA must be either in the left side or in the right side,
- to understand what is happening.
- In case the SSA_NAME is found in both sides we should be escaping
- at this level because in this case we cannot calculate the
- address correctly. */
- if ((lhs_acc.var_found && rhs_acc.var_found
- && lhs_acc.t_code == MEM_REF)
- || (!rhs_acc.var_found && !lhs_acc.var_found))
- {
- mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
- return current_indirect_level;
- }
- gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
-
- /* If we are storing to the matrix at some level, then mark it as
- escaping at that level. */
- if (lhs_acc.var_found)
- {
- int l = current_indirect_level + 1;
-
- gcc_assert (lhs_acc.t_code == MEM_REF);
- mark_min_matrix_escape_level (mi, l, use_stmt);
- return current_indirect_level;
- }
- }
-
- if (fndecl)
- {
- if (DECL_FUNCTION_CODE (fndecl) != BUILT_IN_FREE)
- {
- if (dump_file)
- fprintf (dump_file,
- "Matrix %s: Function call %s, level %d escapes.\n",
- get_name (mi->decl), get_name (fndecl),
- current_indirect_level);
- mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
- }
- else if (mi->free_stmts[current_indirect_level].stmt != NULL
- && mi->free_stmts[current_indirect_level].stmt != use_stmt)
- mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
- else
- {
- /*Record the free statements so we can delete them
- later. */
- int l = current_indirect_level;
-
- mi->free_stmts[l].stmt = use_stmt;
- mi->free_stmts[l].func = current_function_decl;
- }
- }
- return current_indirect_level;
-}
-
-/* USE_STMT represents a phi node of the ssa var that we want to
- check because it came from some use of matrix
- MI.
- We check all the escaping levels that get to the PHI node
- and make sure they are all the same escaping;
- if not (which is rare) we let the escaping level be the
- minimum level that gets into that PHI because starting from
- that level we cannot expect the behavior of the indirections.
- CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
-
-static void
-analyze_accesses_for_phi_node (struct matrix_info *mi, gimple use_stmt,
- int current_indirect_level, sbitmap visited,
- bool record_accesses)
-{
-
- struct matrix_access_phi_node tmp_maphi, *maphi, **pmaphi;
-
- tmp_maphi.phi = use_stmt;
- if ((maphi = (struct matrix_access_phi_node *)
- htab_find (htab_mat_acc_phi_nodes, &tmp_maphi)))
- {
- if (maphi->indirection_level == current_indirect_level)
- return;
- else
- {
- int level = MIN (maphi->indirection_level,
- current_indirect_level);
- size_t j;
- gimple stmt = NULL;
-
- maphi->indirection_level = level;
- for (j = 0; j < gimple_phi_num_args (use_stmt); j++)
- {
- tree def = PHI_ARG_DEF (use_stmt, j);
-
- if (gimple_code (SSA_NAME_DEF_STMT (def)) != GIMPLE_PHI)
- stmt = SSA_NAME_DEF_STMT (def);
- }
- mark_min_matrix_escape_level (mi, level, stmt);
- }
- return;
- }
- maphi = (struct matrix_access_phi_node *)
- xcalloc (1, sizeof (struct matrix_access_phi_node));
- maphi->phi = use_stmt;
- maphi->indirection_level = current_indirect_level;
-
- /* Insert to hash table. */
- pmaphi = (struct matrix_access_phi_node **)
- htab_find_slot (htab_mat_acc_phi_nodes, maphi, INSERT);
- gcc_assert (pmaphi);
- *pmaphi = maphi;
-
- if (!TEST_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt))))
- {
- SET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
- analyze_matrix_accesses (mi, PHI_RESULT (use_stmt),
- current_indirect_level, false, visited,
- record_accesses);
- RESET_BIT (visited, SSA_NAME_VERSION (PHI_RESULT (use_stmt)));
- }
-}
-
-/* USE_STMT represents an assign statement (the rhs or lhs include
- the ssa var that we want to check because it came from some use of matrix
- MI. CURRENT_INDIRECT_LEVEL is the indirection level we reached so far. */
-
-static int
-analyze_accesses_for_assign_stmt (struct matrix_info *mi, tree ssa_var,
- gimple use_stmt, int current_indirect_level,
- bool last_op, sbitmap visited,
- bool record_accesses)
-{
- tree lhs = gimple_get_lhs (use_stmt);
- struct ssa_acc_in_tree lhs_acc, rhs_acc;
-
- memset (&lhs_acc, 0, sizeof (lhs_acc));
- memset (&rhs_acc, 0, sizeof (rhs_acc));
-
- lhs_acc.ssa_var = ssa_var;
- lhs_acc.t_code = ERROR_MARK;
- ssa_accessed_in_tree (lhs, &lhs_acc);
- rhs_acc.ssa_var = ssa_var;
- rhs_acc.t_code = ERROR_MARK;
- ssa_accessed_in_assign_rhs (use_stmt, &rhs_acc);
-
- /* The SSA must be either in the left side or in the right side,
- to understand what is happening.
- In case the SSA_NAME is found in both sides we should be escaping
- at this level because in this case we cannot calculate the
- address correctly. */
- if ((lhs_acc.var_found && rhs_acc.var_found
- && lhs_acc.t_code == MEM_REF)
- || (!rhs_acc.var_found && !lhs_acc.var_found))
- {
- mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
- return current_indirect_level;
- }
- gcc_assert (!rhs_acc.var_found || !lhs_acc.var_found);
-
- /* If we are storing to the matrix at some level, then mark it as
- escaping at that level. */
- if (lhs_acc.var_found)
- {
- int l = current_indirect_level + 1;
-
- gcc_assert (lhs_acc.t_code == MEM_REF);
-
- if (!(gimple_assign_copy_p (use_stmt)
- || gimple_assign_cast_p (use_stmt))
- || (TREE_CODE (gimple_assign_rhs1 (use_stmt)) != SSA_NAME))
- mark_min_matrix_escape_level (mi, l, use_stmt);
- else
- {
- gimple def_stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (use_stmt));
- analyze_matrix_allocation_site (mi, def_stmt, l, visited);
- if (record_accesses)
- record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
- NULL_TREE, l, true);
- update_type_size (mi, use_stmt, NULL, l);
- }
- return current_indirect_level;
- }
- /* Now, check the right-hand-side, to see how the SSA variable
- is used. */
- if (rhs_acc.var_found)
- {
- if (rhs_acc.t_code != MEM_REF
- && rhs_acc.t_code != POINTER_PLUS_EXPR && rhs_acc.t_code != SSA_NAME)
- {
- mark_min_matrix_escape_level (mi, current_indirect_level, use_stmt);
- return current_indirect_level;
- }
- /* If the access in the RHS has an indirection increase the
- indirection level. */
- if (rhs_acc.t_code == MEM_REF)
- {
- if (record_accesses)
- record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
- NULL_TREE,
- current_indirect_level, true);
- current_indirect_level += 1;
- }
- else if (rhs_acc.t_code == POINTER_PLUS_EXPR)
- {
- gcc_assert (rhs_acc.second_op);
- if (last_op)
- /* Currently we support only one PLUS expression on the
- SSA_NAME that holds the base address of the current
- indirection level; to support more general case there
- is a need to hold a stack of expressions and regenerate
- the calculation later. */
- mark_min_matrix_escape_level (mi, current_indirect_level,
- use_stmt);
- else
- {
- tree index;
- tree op1, op2;
-
- op1 = gimple_assign_rhs1 (use_stmt);
- op2 = gimple_assign_rhs2 (use_stmt);
-
- op2 = (op1 == ssa_var) ? op2 : op1;
- if (TREE_CODE (op2) == INTEGER_CST)
- index =
- build_int_cst (TREE_TYPE (op1),
- TREE_INT_CST_LOW (op2) /
- int_size_in_bytes (TREE_TYPE (op1)));
- else
- {
- index =
- get_index_from_offset (op2, SSA_NAME_DEF_STMT (op2));
- if (index == NULL_TREE)
- {
- mark_min_matrix_escape_level (mi,
- current_indirect_level,
- use_stmt);
- return current_indirect_level;
- }
- }
- if (record_accesses)
- record_access_alloc_site_info (mi, use_stmt, op2,
- index,
- current_indirect_level, false);
- }
- }
- /* If we are storing this level of indirection mark it as
- escaping. */
- if (lhs_acc.t_code == MEM_REF || TREE_CODE (lhs) != SSA_NAME)
- {
- int l = current_indirect_level;
-
- /* One exception is when we are storing to the matrix
- variable itself; this is the case of malloc, we must make
- sure that it's the one and only one call to malloc so
- we call analyze_matrix_allocation_site to check
- this out. */
- if (TREE_CODE (lhs) != VAR_DECL || lhs != mi->decl)
- mark_min_matrix_escape_level (mi, current_indirect_level,
- use_stmt);
- else
- {
- /* Also update the escaping level. */
- analyze_matrix_allocation_site (mi, use_stmt, l, visited);
- if (record_accesses)
- record_access_alloc_site_info (mi, use_stmt, NULL_TREE,
- NULL_TREE, l, true);
- }
- }
- else
- {
- /* We are placing it in an SSA, follow that SSA. */
- analyze_matrix_accesses (mi, lhs,
- current_indirect_level,
- rhs_acc.t_code == POINTER_PLUS_EXPR,
- visited, record_accesses);
- }
- }
- return current_indirect_level;
-}
-
-/* Given a SSA_VAR (coming from a use statement of the matrix MI),
- follow its uses and level of indirection and find out the minimum
- indirection level it escapes in (the highest dimension) and the maximum
- level it is accessed in (this will be the actual dimension of the
- matrix). The information is accumulated in MI.
- We look at the immediate uses, if one escapes we finish; if not,
- we make a recursive call for each one of the immediate uses of the
- resulting SSA name. */
-static void
-analyze_matrix_accesses (struct matrix_info *mi, tree ssa_var,
- int current_indirect_level, bool last_op,
- sbitmap visited, bool record_accesses)
-{
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- update_type_size (mi, SSA_NAME_DEF_STMT (ssa_var), ssa_var,
- current_indirect_level);
-
- /* We don't go beyond the escaping level when we are performing the
- flattening. NOTE: we keep the last indirection level that doesn't
- escape. */
- if (mi->min_indirect_level_escape > -1
- && mi->min_indirect_level_escape <= current_indirect_level)
- return;
-
-/* Now go over the uses of the SSA_NAME and check how it is used in
- each one of them. We are mainly looking for the pattern MEM_REF,
- then a POINTER_PLUS_EXPR, then MEM_REF etc. while in between there could
- be any number of copies and casts. */
- gcc_assert (TREE_CODE (ssa_var) == SSA_NAME);
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, ssa_var)
- {
- gimple use_stmt = USE_STMT (use_p);
- if (gimple_code (use_stmt) == GIMPLE_PHI)
- /* We check all the escaping levels that get to the PHI node
- and make sure they are all the same escaping;
- if not (which is rare) we let the escaping level be the
- minimum level that gets into that PHI because starting from
- that level we cannot expect the behavior of the indirections. */
-
- analyze_accesses_for_phi_node (mi, use_stmt, current_indirect_level,
- visited, record_accesses);
-
- else if (is_gimple_call (use_stmt))
- analyze_accesses_for_call_stmt (mi, ssa_var, use_stmt,
- current_indirect_level);
- else if (is_gimple_assign (use_stmt))
- current_indirect_level =
- analyze_accesses_for_assign_stmt (mi, ssa_var, use_stmt,
- current_indirect_level, last_op,
- visited, record_accesses);
- }
-}
-
-typedef struct
-{
- tree fn;
- gimple stmt;
-} check_var_data;
-
-/* A walk_tree function to go over the VAR_DECL, PARM_DECL nodes of
- the malloc size expression and check that those aren't changed
- over the function. */
-static tree
-check_var_notmodified_p (tree * tp, int *walk_subtrees, void *data)
-{
- basic_block bb;
- tree t = *tp;
- check_var_data *callback_data = (check_var_data*) data;
- tree fn = callback_data->fn;
- gimple_stmt_iterator gsi;
- gimple stmt;
-
- if (TREE_CODE (t) != VAR_DECL && TREE_CODE (t) != PARM_DECL)
- return NULL_TREE;
-
- FOR_EACH_BB_FN (bb, DECL_STRUCT_FUNCTION (fn))
- {
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
- if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
- continue;
- if (gimple_get_lhs (stmt) == t)
- {
- callback_data->stmt = stmt;
- return t;
- }
- }
- }
- *walk_subtrees = 1;
- return NULL_TREE;
-}
-
-/* Go backwards in the use-def chains and find out the expression
- represented by the possible SSA name in STMT, until it is composed
- of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
- we make sure that all the arguments represent the same subexpression,
- otherwise we fail. */
-
-static tree
-can_calculate_stmt_before_stmt (gimple stmt, sbitmap visited)
-{
- tree op1, op2, res;
- enum tree_code code;
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_ASSIGN:
- code = gimple_assign_rhs_code (stmt);
- op1 = gimple_assign_rhs1 (stmt);
-
- switch (code)
- {
- case POINTER_PLUS_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- case MULT_EXPR:
-
- op2 = gimple_assign_rhs2 (stmt);
- op1 = can_calculate_expr_before_stmt (op1, visited);
- if (!op1)
- return NULL_TREE;
- op2 = can_calculate_expr_before_stmt (op2, visited);
- if (op2)
- return fold_build2 (code, gimple_expr_type (stmt), op1, op2);
- return NULL_TREE;
-
- CASE_CONVERT:
- res = can_calculate_expr_before_stmt (op1, visited);
- if (res != NULL_TREE)
- return build1 (code, gimple_expr_type (stmt), res);
- else
- return NULL_TREE;
-
- default:
- if (gimple_assign_single_p (stmt))
- return can_calculate_expr_before_stmt (op1, visited);
- else
- return NULL_TREE;
- }
-
- case GIMPLE_PHI:
- {
- size_t j;
-
- res = NULL_TREE;
- /* Make sure all the arguments represent the same value. */
- for (j = 0; j < gimple_phi_num_args (stmt); j++)
- {
- tree new_res;
- tree def = PHI_ARG_DEF (stmt, j);
-
- new_res = can_calculate_expr_before_stmt (def, visited);
- if (res == NULL_TREE)
- res = new_res;
- else if (!new_res || !expressions_equal_p (res, new_res))
- return NULL_TREE;
- }
- return res;
- }
-
- default:
- return NULL_TREE;
- }
-}
-
-/* Go backwards in the use-def chains and find out the expression
- represented by the possible SSA name in EXPR, until it is composed
- of only VAR_DECL, PARM_DECL and INT_CST. In case of phi nodes
- we make sure that all the arguments represent the same subexpression,
- otherwise we fail. */
-static tree
-can_calculate_expr_before_stmt (tree expr, sbitmap visited)
-{
- gimple def_stmt;
- tree res;
-
- switch (TREE_CODE (expr))
- {
- case SSA_NAME:
- /* Case of loop, we don't know to represent this expression. */
- if (TEST_BIT (visited, SSA_NAME_VERSION (expr)))
- return NULL_TREE;
-
- SET_BIT (visited, SSA_NAME_VERSION (expr));
- def_stmt = SSA_NAME_DEF_STMT (expr);
- res = can_calculate_stmt_before_stmt (def_stmt, visited);
- RESET_BIT (visited, SSA_NAME_VERSION (expr));
- return res;
- case VAR_DECL:
- case PARM_DECL:
- case INTEGER_CST:
- return expr;
-
- default:
- return NULL_TREE;
- }
-}
-
-/* There should be only one allocation function for the dimensions
- that don't escape. Here we check the allocation sites in this
- function. We must make sure that all the dimensions are allocated
- using malloc and that the malloc size parameter expression could be
- pre-calculated before the call to the malloc of dimension 0.
-
- Given a candidate matrix for flattening -- MI -- check if it's
- appropriate for flattening -- we analyze the allocation
- sites that we recorded in the previous analysis. The result of the
- analysis is a level of indirection (matrix dimension) in which the
- flattening is safe. We check the following conditions:
- 1. There is only one allocation site for each dimension.
- 2. The allocation sites of all the dimensions are in the same
- function.
- (The above two are being taken care of during the analysis when
- we check the allocation site).
- 3. All the dimensions that we flatten are allocated at once; thus
- the total size must be known before the allocation of the
- dimension 0 (top level) -- we must make sure we represent the
- size of the allocation as an expression of global parameters or
- constants and that those doesn't change over the function. */
-
-static int
-check_allocation_function (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- int level;
- struct matrix_info *mi = (struct matrix_info *) *slot;
- sbitmap visited;
-
- if (!mi->malloc_for_level)
- return 1;
-
- visited = sbitmap_alloc (num_ssa_names);
-
- /* Do nothing if the current function is not the allocation
- function of MI. */
- if (mi->allocation_function_decl != current_function_decl
- /* We aren't in the main allocation function yet. */
- || !mi->malloc_for_level[0])
- return 1;
-
- for (level = 1; level < mi->max_malloced_level; level++)
- if (!mi->malloc_for_level[level])
- break;
-
- mark_min_matrix_escape_level (mi, level, NULL);
-
- /* Check if the expression of the size passed to malloc could be
- pre-calculated before the malloc of level 0. */
- for (level = 1; level < mi->min_indirect_level_escape; level++)
- {
- gimple call_stmt;
- tree size;
- struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
-
- call_stmt = mi->malloc_for_level[level];
-
- /* Find the correct malloc information. */
- collect_data_for_malloc_call (call_stmt, &mcd);
-
- /* No need to check anticipation for constants. */
- if (TREE_CODE (mcd.size_var) == INTEGER_CST)
- {
- if (!mi->dimension_size)
- {
- mi->dimension_size =
- (tree *) xcalloc (mi->min_indirect_level_escape,
- sizeof (tree));
- mi->dimension_size_orig =
- (tree *) xcalloc (mi->min_indirect_level_escape,
- sizeof (tree));
- }
- mi->dimension_size[level] = mcd.size_var;
- mi->dimension_size_orig[level] = mcd.size_var;
- continue;
- }
- /* ??? Here we should also add the way to calculate the size
- expression not only know that it is anticipated. */
- sbitmap_zero (visited);
- size = can_calculate_expr_before_stmt (mcd.size_var, visited);
- if (size == NULL_TREE)
- {
- mark_min_matrix_escape_level (mi, level, call_stmt);
- if (dump_file)
- fprintf (dump_file,
- "Matrix %s: Cannot calculate the size of allocation, escaping at level %d\n",
- get_name (mi->decl), level);
- break;
- }
- if (!mi->dimension_size)
- {
- mi->dimension_size =
- (tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
- mi->dimension_size_orig =
- (tree *) xcalloc (mi->min_indirect_level_escape, sizeof (tree));
- }
- mi->dimension_size[level] = size;
- mi->dimension_size_orig[level] = size;
- }
-
- /* We don't need those anymore. */
- for (level = mi->min_indirect_level_escape;
- level < mi->max_malloced_level; level++)
- mi->malloc_for_level[level] = NULL;
- return 1;
-}
-
-/* Track all access and allocation sites. */
-static void
-find_sites_in_func (bool record)
-{
- sbitmap visited_stmts_1;
-
- gimple_stmt_iterator gsi;
- gimple stmt;
- basic_block bb;
- struct matrix_info tmpmi, *mi;
-
- visited_stmts_1 = sbitmap_alloc (num_ssa_names);
-
- FOR_EACH_BB (bb)
- {
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- tree lhs;
-
- stmt = gsi_stmt (gsi);
- lhs = gimple_get_lhs (stmt);
- if (lhs != NULL_TREE
- && TREE_CODE (lhs) == VAR_DECL)
- {
- tmpmi.decl = lhs;
- if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
- &tmpmi)))
- {
- sbitmap_zero (visited_stmts_1);
- analyze_matrix_allocation_site (mi, stmt, 0, visited_stmts_1);
- }
- }
- if (is_gimple_assign (stmt)
- && gimple_assign_single_p (stmt)
- && TREE_CODE (lhs) == SSA_NAME
- && TREE_CODE (gimple_assign_rhs1 (stmt)) == VAR_DECL)
- {
- tmpmi.decl = gimple_assign_rhs1 (stmt);
- if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg,
- &tmpmi)))
- {
- sbitmap_zero (visited_stmts_1);
- analyze_matrix_accesses (mi, lhs, 0,
- false, visited_stmts_1, record);
- }
- }
- }
- }
- sbitmap_free (visited_stmts_1);
-}
-
-/* Traverse the use-def chains to see if there are matrices that
- are passed through pointers and we cannot know how they are accessed.
- For each SSA-name defined by a global variable of our interest,
- we traverse the use-def chains of the SSA and follow the indirections,
- and record in what level of indirection the use of the variable
- escapes. A use of a pointer escapes when it is passed to a function,
- stored into memory or assigned (except in malloc and free calls). */
-
-static void
-record_all_accesses_in_func (void)
-{
- unsigned i;
- sbitmap visited_stmts_1;
-
- visited_stmts_1 = sbitmap_alloc (num_ssa_names);
-
- for (i = 0; i < num_ssa_names; i++)
- {
- struct matrix_info tmpmi, *mi;
- tree ssa_var = ssa_name (i);
- tree rhs, lhs;
-
- if (!ssa_var
- || !is_gimple_assign (SSA_NAME_DEF_STMT (ssa_var))
- || !gimple_assign_single_p (SSA_NAME_DEF_STMT (ssa_var)))
- continue;
- rhs = gimple_assign_rhs1 (SSA_NAME_DEF_STMT (ssa_var));
- lhs = gimple_assign_lhs (SSA_NAME_DEF_STMT (ssa_var));
- if (TREE_CODE (rhs) != VAR_DECL && TREE_CODE (lhs) != VAR_DECL)
- continue;
-
- /* If the RHS is a matrix that we want to analyze, follow the def-use
- chain for this SSA_VAR and check for escapes or apply the
- flattening. */
- tmpmi.decl = rhs;
- if ((mi = (struct matrix_info *) htab_find (matrices_to_reorg, &tmpmi)))
- {
- /* This variable will track the visited PHI nodes, so we can limit
- its size to the maximum number of SSA names. */
- sbitmap_zero (visited_stmts_1);
- analyze_matrix_accesses (mi, ssa_var,
- 0, false, visited_stmts_1, true);
-
- }
- }
- sbitmap_free (visited_stmts_1);
-}
-
-/* Used when we want to convert the expression: RESULT = something *
- ORIG to RESULT = something * NEW_VAL. If ORIG and NEW_VAL are power
- of 2, shift operations can be done, else division and
- multiplication. */
-
-static tree
-compute_offset (HOST_WIDE_INT orig, HOST_WIDE_INT new_val, tree result)
-{
-
- int x, y;
- tree result1, ratio, log, orig_tree, new_tree;
-
- x = exact_log2 (orig);
- y = exact_log2 (new_val);
-
- if (x != -1 && y != -1)
- {
- if (x == y)
- return result;
- else if (x > y)
- {
- log = build_int_cst (TREE_TYPE (result), x - y);
- result1 =
- fold_build2 (LSHIFT_EXPR, TREE_TYPE (result), result, log);
- return result1;
- }
- log = build_int_cst (TREE_TYPE (result), y - x);
- result1 = fold_build2 (RSHIFT_EXPR, TREE_TYPE (result), result, log);
-
- return result1;
- }
- orig_tree = build_int_cst (TREE_TYPE (result), orig);
- new_tree = build_int_cst (TREE_TYPE (result), new_val);
- ratio = fold_build2 (TRUNC_DIV_EXPR, TREE_TYPE (result), result, orig_tree);
- result1 = fold_build2 (MULT_EXPR, TREE_TYPE (result), ratio, new_tree);
-
- return result1;
-}
-
-
-/* We know that we are allowed to perform matrix flattening (according to the
- escape analysis), so we traverse the use-def chains of the SSA vars
- defined by the global variables pointing to the matrices of our interest.
- in each use of the SSA we calculate the offset from the base address
- according to the following equation:
-
- a[I1][I2]...[Ik] , where D1..Dk is the length of each dimension and the
- escaping level is m <= k, and a' is the new allocated matrix,
- will be translated to :
-
- b[I(m+1)]...[Ik]
-
- where
- b = a' + I1*D2...*Dm + I2*D3...Dm + ... + Im
- */
-
-static int
-transform_access_sites (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- gimple_stmt_iterator gsi;
- struct matrix_info *mi = (struct matrix_info *) *slot;
- int min_escape_l = mi->min_indirect_level_escape;
- struct access_site_info *acc_info;
- enum tree_code code;
- int i;
-
- if (min_escape_l < 2 || !mi->access_l)
- return 1;
- for (i = 0; VEC_iterate (access_site_info_p, mi->access_l, i, acc_info);
- i++)
- {
- /* This is possible because we collect the access sites before
- we determine the final minimum indirection level. */
- if (acc_info->level >= min_escape_l)
- {
- free (acc_info);
- continue;
- }
- if (acc_info->is_alloc)
- {
- if (acc_info->level >= 0 && gimple_bb (acc_info->stmt))
- {
- gimple stmt = acc_info->stmt;
- tree lhs;
-
- gsi = gsi_for_stmt (stmt);
- gcc_assert (is_gimple_assign (acc_info->stmt));
- lhs = gimple_assign_lhs (acc_info->stmt);
- if (TREE_CODE (lhs) == SSA_NAME
- && acc_info->level < min_escape_l - 1)
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- gimple use_stmt;
-
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- {
- tree rhs, tmp;
- gimple new_stmt;
-
- gcc_assert (gimple_assign_rhs_code (acc_info->stmt)
- == MEM_REF);
- /* Emit convert statement to convert to type of use. */
- tmp = create_tmp_var (TREE_TYPE (lhs), "new");
- rhs = gimple_assign_rhs1 (acc_info->stmt);
- rhs = fold_convert (TREE_TYPE (tmp),
- TREE_OPERAND (rhs, 0));
- new_stmt = gimple_build_assign (tmp, rhs);
- tmp = make_ssa_name (tmp, new_stmt);
- gimple_assign_set_lhs (new_stmt, tmp);
- gsi = gsi_for_stmt (acc_info->stmt);
- gsi_insert_after (&gsi, new_stmt, GSI_SAME_STMT);
- SET_USE (use_p, tmp);
- }
- }
- if (acc_info->level < min_escape_l - 1)
- gsi_remove (&gsi, true);
- }
- free (acc_info);
- continue;
- }
- code = gimple_assign_rhs_code (acc_info->stmt);
- if (code == MEM_REF
- && acc_info->level < min_escape_l - 1)
- {
- /* Replace the MEM_REF with NOP (cast) usually we are casting
- from "pointer to type" to "type". */
- tree t =
- build1 (NOP_EXPR, TREE_TYPE (gimple_assign_rhs1 (acc_info->stmt)),
- TREE_OPERAND (gimple_assign_rhs1 (acc_info->stmt), 0));
- gimple_assign_set_rhs_code (acc_info->stmt, NOP_EXPR);
- gimple_assign_set_rhs1 (acc_info->stmt, t);
- }
- else if (code == POINTER_PLUS_EXPR
- && acc_info->level < (min_escape_l))
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- tree offset;
- int k = acc_info->level;
- tree num_elements, total_elements;
- tree tmp1;
- tree d_size = mi->dimension_size[k];
-
- /* We already make sure in the analysis that the first operand
- is the base and the second is the offset. */
- offset = acc_info->offset;
- if (mi->dim_map[k] == min_escape_l - 1)
- {
- if (!check_transpose_p || mi->is_transposed_p == false)
- tmp1 = offset;
- else
- {
- tree new_offset;
-
- new_offset =
- compute_offset (mi->dimension_type_size[min_escape_l],
- mi->dimension_type_size[k + 1], offset);
-
- total_elements = new_offset;
- if (new_offset != offset)
- {
- gsi = gsi_for_stmt (acc_info->stmt);
- tmp1 = force_gimple_operand_gsi (&gsi, total_elements,
- true, NULL,
- true, GSI_SAME_STMT);
- }
- else
- tmp1 = offset;
- }
- }
- else
- {
- d_size = mi->dimension_size[mi->dim_map[k] + 1];
- num_elements =
- fold_build2 (MULT_EXPR, sizetype, fold_convert (sizetype, acc_info->index),
- fold_convert (sizetype, d_size));
- gsi = gsi_for_stmt (acc_info->stmt);
- tmp1 = force_gimple_operand_gsi (&gsi, num_elements, true,
- NULL, true, GSI_SAME_STMT);
- }
- /* Replace the offset if needed. */
- if (tmp1 != offset)
- {
- if (TREE_CODE (offset) == SSA_NAME)
- {
- gimple use_stmt;
-
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, offset)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- if (use_stmt == acc_info->stmt)
- SET_USE (use_p, tmp1);
- }
- else
- {
- gcc_assert (TREE_CODE (offset) == INTEGER_CST);
- gimple_assign_set_rhs2 (acc_info->stmt, tmp1);
- update_stmt (acc_info->stmt);
- }
- }
- }
- /* ??? meanwhile this happens because we record the same access
- site more than once; we should be using a hash table to
- avoid this and insert the STMT of the access site only
- once.
- else
- gcc_unreachable (); */
- free (acc_info);
- }
- VEC_free (access_site_info_p, heap, mi->access_l);
-
- update_ssa (TODO_update_ssa);
-#ifdef ENABLE_CHECKING
- verify_ssa (true);
-#endif
- return 1;
-}
-
-/* Sort A array of counts. Arrange DIM_MAP to reflect the new order. */
-
-static void
-sort_dim_hot_level (gcov_type * a, int *dim_map, int n)
-{
- int i, j, tmp1;
- gcov_type tmp;
-
- for (i = 0; i < n - 1; i++)
- {
- for (j = 0; j < n - 1 - i; j++)
- {
- if (a[j + 1] < a[j])
- {
- tmp = a[j]; /* swap a[j] and a[j+1] */
- a[j] = a[j + 1];
- a[j + 1] = tmp;
- tmp1 = dim_map[j];
- dim_map[j] = dim_map[j + 1];
- dim_map[j + 1] = tmp1;
- }
- }
- }
-}
-
-/* Replace multiple mallocs (one for each dimension) to one malloc
- with the size of DIM1*DIM2*...*DIMN*size_of_element
- Make sure that we hold the size in the malloc site inside a
- new global variable; this way we ensure that the size doesn't
- change and it is accessible from all the other functions that
- uses the matrix. Also, the original calls to free are deleted,
- and replaced by a new call to free the flattened matrix. */
-
-static int
-transform_allocation_sites (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- int i;
- struct matrix_info *mi;
- tree type, oldfn, prev_dim_size;
- gimple call_stmt_0, use_stmt;
- struct cgraph_node *c_node;
- struct cgraph_edge *e;
- gimple_stmt_iterator gsi;
- struct malloc_call_data mcd = {NULL, NULL_TREE, NULL_TREE};
- HOST_WIDE_INT element_size;
-
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- tree old_size_0, tmp;
- int min_escape_l;
- int id;
-
- mi = (struct matrix_info *) *slot;
-
- min_escape_l = mi->min_indirect_level_escape;
-
- if (!mi->malloc_for_level)
- mi->min_indirect_level_escape = 0;
-
- if (mi->min_indirect_level_escape < 2)
- return 1;
-
- mi->dim_map = (int *) xcalloc (mi->min_indirect_level_escape, sizeof (int));
- for (i = 0; i < mi->min_indirect_level_escape; i++)
- mi->dim_map[i] = i;
- if (check_transpose_p)
- {
- int i;
-
- if (dump_file)
- {
- fprintf (dump_file, "Matrix %s:\n", get_name (mi->decl));
- for (i = 0; i < min_escape_l; i++)
- {
- fprintf (dump_file, "dim %d before sort ", i);
- if (mi->dim_hot_level)
- fprintf (dump_file,
- "count is " HOST_WIDEST_INT_PRINT_DEC " \n",
- mi->dim_hot_level[i]);
- }
- }
- sort_dim_hot_level (mi->dim_hot_level, mi->dim_map,
- mi->min_indirect_level_escape);
- if (dump_file)
- for (i = 0; i < min_escape_l; i++)
- {
- fprintf (dump_file, "dim %d after sort\n", i);
- if (mi->dim_hot_level)
- fprintf (dump_file, "count is " HOST_WIDE_INT_PRINT_DEC
- " \n", (HOST_WIDE_INT) mi->dim_hot_level[i]);
- }
- for (i = 0; i < mi->min_indirect_level_escape; i++)
- {
- if (dump_file)
- fprintf (dump_file, "dim_map[%d] after sort %d\n", i,
- mi->dim_map[i]);
- if (mi->dim_map[i] != i)
- {
- if (dump_file)
- fprintf (dump_file,
- "Transposed dimensions: dim %d is now dim %d\n",
- mi->dim_map[i], i);
- mi->is_transposed_p = true;
- }
- }
- }
- else
- {
- for (i = 0; i < mi->min_indirect_level_escape; i++)
- mi->dim_map[i] = i;
- }
- /* Call statement of allocation site of level 0. */
- call_stmt_0 = mi->malloc_for_level[0];
-
- /* Finds the correct malloc information. */
- collect_data_for_malloc_call (call_stmt_0, &mcd);
-
- mi->dimension_size[0] = mcd.size_var;
- mi->dimension_size_orig[0] = mcd.size_var;
- /* Make sure that the variables in the size expression for
- all the dimensions (above level 0) aren't modified in
- the allocation function. */
- for (i = 1; i < mi->min_indirect_level_escape; i++)
- {
- tree t;
- check_var_data data;
-
- /* mi->dimension_size must contain the expression of the size calculated
- in check_allocation_function. */
- gcc_assert (mi->dimension_size[i]);
-
- data.fn = mi->allocation_function_decl;
- data.stmt = NULL;
- t = walk_tree_without_duplicates (&(mi->dimension_size[i]),
- check_var_notmodified_p,
- &data);
- if (t != NULL_TREE)
- {
- mark_min_matrix_escape_level (mi, i, data.stmt);
- break;
- }
- }
-
- if (mi->min_indirect_level_escape < 2)
- return 1;
-
- /* Since we should make sure that the size expression is available
- before the call to malloc of level 0. */
- gsi = gsi_for_stmt (call_stmt_0);
-
- /* Find out the size of each dimension by looking at the malloc
- sites and create a global variable to hold it.
- We add the assignment to the global before the malloc of level 0. */
-
- /* To be able to produce gimple temporaries. */
- oldfn = current_function_decl;
- current_function_decl = mi->allocation_function_decl;
- push_cfun (DECL_STRUCT_FUNCTION (mi->allocation_function_decl));
-
- /* Set the dimension sizes as follows:
- DIM_SIZE[i] = DIM_SIZE[n] * ... * DIM_SIZE[i]
- where n is the maximum non escaping level. */
- element_size = mi->dimension_type_size[mi->min_indirect_level_escape];
- prev_dim_size = NULL_TREE;
-
- for (i = mi->min_indirect_level_escape - 1; i >= 0; i--)
- {
- tree dim_size, dim_var;
- gimple stmt;
- tree d_type_size;
-
- /* Now put the size expression in a global variable and initialize it to
- the size expression before the malloc of level 0. */
- dim_var =
- add_new_static_var (TREE_TYPE
- (mi->dimension_size_orig[mi->dim_map[i]]));
- type = TREE_TYPE (mi->dimension_size_orig[mi->dim_map[i]]);
-
- /* DIM_SIZE = MALLOC_SIZE_PARAM / TYPE_SIZE. */
- /* Find which dim ID becomes dim I. */
- for (id = 0; id < mi->min_indirect_level_escape; id++)
- if (mi->dim_map[id] == i)
- break;
- d_type_size =
- build_int_cst (type, mi->dimension_type_size[id + 1]);
- if (!prev_dim_size)
- prev_dim_size = build_int_cst (type, element_size);
- if (!check_transpose_p && i == mi->min_indirect_level_escape - 1)
- {
- dim_size = mi->dimension_size_orig[id];
- }
- else
- {
- dim_size =
- fold_build2 (TRUNC_DIV_EXPR, type, mi->dimension_size_orig[id],
- d_type_size);
-
- dim_size = fold_build2 (MULT_EXPR, type, dim_size, prev_dim_size);
- }
- dim_size = force_gimple_operand_gsi (&gsi, dim_size, true, NULL,
- true, GSI_SAME_STMT);
- /* GLOBAL_HOLDING_THE_SIZE = DIM_SIZE. */
- stmt = gimple_build_assign (dim_var, dim_size);
- gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
-
- prev_dim_size = mi->dimension_size[i] = dim_var;
- }
- update_ssa (TODO_update_ssa);
- /* Replace the malloc size argument in the malloc of level 0 to be
- the size of all the dimensions. */
- c_node = cgraph_get_node (mi->allocation_function_decl);
- gcc_checking_assert (c_node);
- old_size_0 = gimple_call_arg (call_stmt_0, 0);
- tmp = force_gimple_operand_gsi (&gsi, mi->dimension_size[0], true,
- NULL, true, GSI_SAME_STMT);
- if (TREE_CODE (old_size_0) == SSA_NAME)
- {
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, old_size_0)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- if (use_stmt == call_stmt_0)
- SET_USE (use_p, tmp);
- }
- /* When deleting the calls to malloc we need also to remove the edge from
- the call graph to keep it consistent. Notice that cgraph_edge may
- create a new node in the call graph if there is no node for the given
- declaration; this shouldn't be the case but currently there is no way to
- check this outside of "cgraph.c". */
- for (i = 1; i < mi->min_indirect_level_escape; i++)
- {
- gimple_stmt_iterator gsi;
-
- gimple call_stmt = mi->malloc_for_level[i];
- gcc_assert (is_gimple_call (call_stmt));
- e = cgraph_edge (c_node, call_stmt);
- gcc_assert (e);
- cgraph_remove_edge (e);
- gsi = gsi_for_stmt (call_stmt);
- /* Remove the call stmt. */
- gsi_remove (&gsi, true);
- /* Remove the assignment of the allocated area. */
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter,
- gimple_call_lhs (call_stmt))
- {
- gsi = gsi_for_stmt (use_stmt);
- gsi_remove (&gsi, true);
- }
- }
- update_ssa (TODO_update_ssa);
-#ifdef ENABLE_CHECKING
- verify_ssa (true);
-#endif
- /* Delete the calls to free. */
- for (i = 1; i < mi->min_indirect_level_escape; i++)
- {
- gimple_stmt_iterator gsi;
-
- /* ??? wonder why this case is possible but we failed on it once. */
- if (!mi->free_stmts[i].stmt)
- continue;
-
- c_node = cgraph_get_node (mi->free_stmts[i].func);
- gcc_checking_assert (c_node);
- gcc_assert (is_gimple_call (mi->free_stmts[i].stmt));
- e = cgraph_edge (c_node, mi->free_stmts[i].stmt);
- gcc_assert (e);
- cgraph_remove_edge (e);
- current_function_decl = mi->free_stmts[i].func;
- set_cfun (DECL_STRUCT_FUNCTION (mi->free_stmts[i].func));
- gsi = gsi_for_stmt (mi->free_stmts[i].stmt);
- gsi_remove (&gsi, true);
- }
- /* Return to the previous situation. */
- current_function_decl = oldfn;
- pop_cfun ();
- return 1;
-
-}
-
-
-/* Print out the results of the escape analysis. */
-static int
-dump_matrix_reorg_analysis (void **slot, void *data ATTRIBUTE_UNUSED)
-{
- struct matrix_info *mi = (struct matrix_info *) *slot;
-
- if (!dump_file)
- return 1;
- fprintf (dump_file, "Matrix \"%s\"; Escaping Level: %d, Num Dims: %d,",
- get_name (mi->decl), mi->min_indirect_level_escape, mi->num_dims);
- fprintf (dump_file, " Malloc Dims: %d, ", mi->max_malloced_level);
- fprintf (dump_file, "\n");
- if (mi->min_indirect_level_escape >= 2)
- fprintf (dump_file, "Flattened %d dimensions \n",
- mi->min_indirect_level_escape);
- return 1;
-}
-
-/* Perform matrix flattening. */
-
-static unsigned int
-matrix_reorg (void)
-{
- struct cgraph_node *node;
-
- if (profile_info)
- check_transpose_p = true;
- else
- check_transpose_p = false;
- /* If there are hand written vectors, we skip this optimization. */
- FOR_EACH_FUNCTION (node)
- if (!may_flatten_matrices (node))
- return 0;
- matrices_to_reorg = htab_create (37, mtt_info_hash, mtt_info_eq, mat_free);
- /* Find and record all potential matrices in the program. */
- find_matrices_decl ();
- /* Analyze the accesses of the matrices (escaping analysis). */
- FOR_EACH_DEFINED_FUNCTION (node)
- {
- tree temp_fn;
-
- temp_fn = current_function_decl;
- current_function_decl = node->symbol.decl;
- push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
- bitmap_obstack_initialize (NULL);
- gimple_register_cfg_hooks ();
-
- if (!gimple_in_ssa_p (cfun))
- {
- free_dominance_info (CDI_DOMINATORS);
- free_dominance_info (CDI_POST_DOMINATORS);
- pop_cfun ();
- current_function_decl = temp_fn;
- bitmap_obstack_release (NULL);
-
- return 0;
- }
-
-#ifdef ENABLE_CHECKING
- verify_flow_info ();
-#endif
-
- if (!matrices_to_reorg)
- {
- free_dominance_info (CDI_DOMINATORS);
- free_dominance_info (CDI_POST_DOMINATORS);
- pop_cfun ();
- current_function_decl = temp_fn;
- bitmap_obstack_release (NULL);
-
- return 0;
- }
-
- /* Create htap for phi nodes. */
- htab_mat_acc_phi_nodes = htab_create (37, mat_acc_phi_hash,
- mat_acc_phi_eq, free);
- if (!check_transpose_p)
- find_sites_in_func (false);
- else
- {
- find_sites_in_func (true);
- loop_optimizer_init (LOOPS_NORMAL);
- if (current_loops)
- scev_initialize ();
- htab_traverse (matrices_to_reorg, analyze_transpose, NULL);
- if (current_loops)
- {
- scev_finalize ();
- loop_optimizer_finalize ();
- current_loops = NULL;
- }
- }
- /* If the current function is the allocation function for any of
- the matrices we check its allocation and the escaping level. */
- htab_traverse (matrices_to_reorg, check_allocation_function, NULL);
- free_dominance_info (CDI_DOMINATORS);
- free_dominance_info (CDI_POST_DOMINATORS);
- pop_cfun ();
- current_function_decl = temp_fn;
- bitmap_obstack_release (NULL);
- }
- htab_traverse (matrices_to_reorg, transform_allocation_sites, NULL);
- /* Now transform the accesses. */
- FOR_EACH_DEFINED_FUNCTION (node)
- {
- /* Remember that allocation sites have been handled. */
- tree temp_fn;
-
- temp_fn = current_function_decl;
- current_function_decl = node->symbol.decl;
- push_cfun (DECL_STRUCT_FUNCTION (node->symbol.decl));
- bitmap_obstack_initialize (NULL);
- gimple_register_cfg_hooks ();
- record_all_accesses_in_func ();
- htab_traverse (matrices_to_reorg, transform_access_sites, NULL);
- cgraph_rebuild_references ();
- free_dominance_info (CDI_DOMINATORS);
- free_dominance_info (CDI_POST_DOMINATORS);
- pop_cfun ();
- current_function_decl = temp_fn;
- bitmap_obstack_release (NULL);
- }
- htab_traverse (matrices_to_reorg, dump_matrix_reorg_analysis, NULL);
-
- current_function_decl = NULL;
- set_cfun (NULL);
- matrices_to_reorg = NULL;
- return 0;
-}
-
-
-/* The condition for matrix flattening to be performed. */
-static bool
-gate_matrix_reorg (void)
-{
- return flag_ipa_matrix_reorg && flag_whole_program;
-}
-
-struct simple_ipa_opt_pass pass_ipa_matrix_reorg =
-{
- {
- SIMPLE_IPA_PASS,
- "matrix-reorg", /* name */
- gate_matrix_reorg, /* gate */
- matrix_reorg, /* execute */
- NULL, /* sub */
- NULL, /* next */
- 0, /* static_pass_number */
- TV_NONE, /* tv_id */
- 0, /* properties_required */
- 0, /* properties_provided */
- 0, /* properties_destroyed */
- 0, /* todo_flags_start */
- TODO_dump_symtab /* todo_flags_finish */
- }
-};
diff --git a/gcc/passes.c b/gcc/passes.c
index 31e1f25..876aa5c 100644
--- a/gcc/passes.c
+++ b/gcc/passes.c
@@ -1330,7 +1330,6 @@ init_optimization_passes (void)
NEXT_PASS (pass_feedback_split_functions);
}
NEXT_PASS (pass_ipa_increase_alignment);
- NEXT_PASS (pass_ipa_matrix_reorg);
NEXT_PASS (pass_ipa_tm);
NEXT_PASS (pass_ipa_lower_emutls);
*p = NULL;
diff --git a/gcc/testsuite/ChangeLog b/gcc/testsuite/ChangeLog
index bc85735..0602c04 100644
--- a/gcc/testsuite/ChangeLog
+++ b/gcc/testsuite/ChangeLog
@@ -1,5 +1,11 @@
2012-08-10 Richard Guenther <rguenther@suse.de>
+ * gcc.dg/matrix/*.c: Adjust and move ...
+ * gcc.dg/torture/: ... here.
+ * gcc.dg/matrix: Remove directory.
+
+2012-08-10 Richard Guenther <rguenther@suse.de>
+
PR middle-end/54219
* gcc.dg/torture/vector-shuffle1.c: New testcase.
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix.exp b/gcc/testsuite/gcc.dg/matrix/matrix.exp
deleted file mode 100644
index d2e1344..0000000
--- a/gcc/testsuite/gcc.dg/matrix/matrix.exp
+++ /dev/null
@@ -1,67 +0,0 @@
-# Copyright (C) 2001, 2002, 2004, 2005, 2007, 2010, 2011
-# Free Software Foundation, Inc.
-
-# This program is free software; you can redistribute it and/or modify
-# it under the terms of the GNU General Public License as published by
-# the Free Software Foundation; either version 3 of the License, or
-# (at your option) any later version.
-#
-# This program is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-# GNU General Public License for more details.
-#
-# You should have received a copy of the GNU General Public License
-# along with GCC; see the file COPYING3. If not see
-# <http://www.gnu.org/licenses/>.
-
-# Test the functionality of programs compiled with profile-directed block
-# ordering using -fprofile-generate followed by -fbranch-use.
-load_lib gcc-dg.exp
-load_lib target-supports.exp
-
-set DEFAULT_MATCFLAGS "-O3 -fipa-matrix-reorg -fdump-ipa-matrix-reorg -fwhole-program -fno-tree-fre"
-
-# Initialize `dg'.
-dg-init
-
-dg-runtest [lsort [glob -nocomplain $srcdir/$subdir/matrix-\[1-6\].\[cS\]]] \
- "" $DEFAULT_MATCFLAGS
-
-dg-final
-
-# Some targets don't support tree profiling.
-if { ![check_profiling_available "-fprofile-generate"] } {
- return
-}
-
-# The procedures in profopt.exp need these parameters.
-set tool gcc
-set prof_ext "gcda"
-
-if $tracelevel then {
- strace $tracelevel
-}
-
-# Load support procs.
-load_lib profopt.exp
-
-# Save and override the default list defined in profopt.exp.
-set matrix_save_profopt_options $PROFOPT_OPTIONS
-set PROFOPT_OPTIONS [list {}]
-
-# These are globals used by profopt-execute. The first is options
-# needed to generate profile data, the second is options to use the
-# profile data.
-set profile_option "-fprofile-generate -O3 -fno-tree-fre"
-set feedback_option "-fprofile-use -fipa-matrix-reorg -fdump-ipa-matrix-reorg -O3 -fwhole-program -fno-tree-fre"
-
-foreach src [lsort [glob -nocomplain $srcdir/$subdir/transpose-*.c]] {
- # If we're only testing specific files and this isn't one of them, skip it.
- if ![runtest_file_p $runtests $src] then {
- continue
- }
- profopt-execute $src
-}
-
-set PROFOPT_OPTIONS $matrix_save_profopt_options
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-1.c b/gcc/testsuite/gcc.dg/torture/matrix-1.c
index 12df172..1b88599 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-1.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-1.c
@@ -1,5 +1,5 @@
-/* { dg-do compile } */
/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
#include <stdio.h>
#include <stdlib.h>
@@ -88,5 +88,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-2.c b/gcc/testsuite/gcc.dg/torture/matrix-2.c
index 318faa5..5013671 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-2.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-2.c
@@ -1,5 +1,5 @@
-/* { dg-do compile } */
/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
#include <stdio.h>
@@ -111,5 +111,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened 2 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-3.c b/gcc/testsuite/gcc.dg/torture/matrix-3.c
index 28a5a16..c646899 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-3.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-3.c
@@ -95,5 +95,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened 2 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-4.c b/gcc/testsuite/gcc.dg/torture/matrix-4.c
index d741b46..586443c 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-4.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-4.c
@@ -93,5 +93,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened" 0 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-5.c b/gcc/testsuite/gcc.dg/torture/matrix-5.c
index 1398c5b..9b17567 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-5.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-5.c
@@ -1,5 +1,5 @@
-/* { dg-do compile } */
/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
#include <stdio.h>
@@ -94,5 +94,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened" 0 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/matrix-6.c b/gcc/testsuite/gcc.dg/torture/matrix-6.c
index 536afb5..cad63dd 100644
--- a/gcc/testsuite/gcc.dg/matrix/matrix-6.c
+++ b/gcc/testsuite/gcc.dg/torture/matrix-6.c
@@ -1,4 +1,5 @@
-/* { dg-do compile } */
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
#include <stdio.h>
@@ -40,7 +41,8 @@ main (int argc, char **argv)
}
for (i = 0; i < ARCHnodes; i++)
for (j = 0; j < 3; j++)
- free (vel[i][j]);
+ if (!(i == 1 && j == 0))
+ free (vel[i][j]);
for (i = 0; i < ARCHnodes; i++)
free (vel[i]);
@@ -93,5 +95,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final { scan-ipa-dump-times "Flattened 2 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-1.c b/gcc/testsuite/gcc.dg/torture/transpose-1.c
index 8969ecb..188f3b5 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-1.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-1.c
@@ -1,3 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
+
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
@@ -92,7 +95,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 3 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
-
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-2.c b/gcc/testsuite/gcc.dg/torture/transpose-2.c
index 5943781..bff6a3a 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-2.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-2.c
@@ -1,3 +1,5 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
#include <stdio.h>
#include <stdlib.h>
@@ -90,6 +92,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 0 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-3.c b/gcc/testsuite/gcc.dg/torture/transpose-3.c
index 5defdb8..da7e887 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-3.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-3.c
@@ -1,3 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
+
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
@@ -96,6 +99,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 2 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 2 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-4.c b/gcc/testsuite/gcc.dg/torture/transpose-4.c
index f6eb465..5a96a51 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-4.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-4.c
@@ -1,3 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
+
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
@@ -95,6 +98,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 2 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-5.c b/gcc/testsuite/gcc.dg/torture/transpose-5.c
index 27e8476..049d7b0 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-5.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-5.c
@@ -1,3 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
+
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
@@ -91,6 +94,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 0 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/testsuite/gcc.dg/matrix/transpose-6.c b/gcc/testsuite/gcc.dg/torture/transpose-6.c
index f7c6a8a..9b3329b 100644
--- a/gcc/testsuite/gcc.dg/matrix/transpose-6.c
+++ b/gcc/testsuite/gcc.dg/torture/transpose-6.c
@@ -1,3 +1,6 @@
+/* { dg-do run } */
+/* { dg-options "-fwhole-program" } */
+
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
@@ -91,6 +94,3 @@ mem_init (void)
}
/*--------------------------------------------------------------------------*/
-/* { dg-final-use { scan-ipa-dump-times "Flattened 3 dimensions" 1 "matrix-reorg" } } */
-/* { dg-final-use { scan-ipa-dump-times "Transposed" 0 "matrix-reorg" } } */
-/* { dg-final-use { cleanup-ipa-dump "matrix-reorg" } } */
diff --git a/gcc/tree-pass.h b/gcc/tree-pass.h
index 4be92f4..66319c7 100644
--- a/gcc/tree-pass.h
+++ b/gcc/tree-pass.h
@@ -372,7 +372,6 @@ extern struct simple_ipa_opt_pass pass_early_local_passes;
extern struct ipa_opt_pass_d pass_ipa_whole_program_visibility;
extern struct ipa_opt_pass_d pass_ipa_lto_gimple_out;
extern struct simple_ipa_opt_pass pass_ipa_increase_alignment;
-extern struct simple_ipa_opt_pass pass_ipa_matrix_reorg;
extern struct ipa_opt_pass_d pass_ipa_inline;
extern struct simple_ipa_opt_pass pass_ipa_free_lang_data;
extern struct simple_ipa_opt_pass pass_ipa_free_inline_summary;