aboutsummaryrefslogtreecommitdiff
path: root/gcc
diff options
context:
space:
mode:
authorFrancois-Xavier Coudert <coudert@clipper.ens.fr>2005-04-03 19:46:07 +0200
committerFrançois-Xavier Coudert <fxcoudert@gcc.gnu.org>2005-04-03 17:46:07 +0000
commitf7cdcbf1c569761c07a3f27bd25b831e56067f28 (patch)
tree9232aa076e25cf382507c8da73019b42da823004 /gcc
parent1ac3e311ac63e79bc0772f6c40c25a0d46f8d59f (diff)
downloadgcc-f7cdcbf1c569761c07a3f27bd25b831e56067f28.zip
gcc-f7cdcbf1c569761c07a3f27bd25b831e56067f28.tar.gz
gcc-f7cdcbf1c569761c07a3f27bd25b831e56067f28.tar.bz2
intrinsic.texi: Document BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN, ATAN, COSH, ERF, ERC, SINH, TANH.
* intrinsic.texi: Document BESJ0, BESJ1, BESJN, BESY0, BESY1, BESYN, ATAN, COSH, ERF, ERC, SINH, TANH. From-SVN: r97495
Diffstat (limited to 'gcc')
-rw-r--r--gcc/fortran/ChangeLog5
-rw-r--r--gcc/fortran/intrinsic.texi589
2 files changed, 555 insertions, 39 deletions
diff --git a/gcc/fortran/ChangeLog b/gcc/fortran/ChangeLog
index a3ecacd..37d803f 100644
--- a/gcc/fortran/ChangeLog
+++ b/gcc/fortran/ChangeLog
@@ -1,3 +1,8 @@
+2005-04-03 Francois-Xavier Coudert <coudert@clipper.ens.fr>
+
+ * intrinsic.texi: Document BESJ0, BESJ1, BESJN, BESY0, BESY1,
+ BESYN, ATAN, COSH, ERF, ERC, SINH, TANH.
+
2005-04-02 Steven G. Kargl <kargls@comcast.net>
* intrinsic.texi: Document ALLOCATED, ANINT, ANY, ASIN; fix typos
diff --git a/gcc/fortran/intrinsic.texi b/gcc/fortran/intrinsic.texi
index ed7911e..d37dc1e 100644
--- a/gcc/fortran/intrinsic.texi
+++ b/gcc/fortran/intrinsic.texi
@@ -46,6 +46,18 @@ and editing. All contributions and corrections are strongly encouraged.
* @code{ANINT}: ANINT, Nearest whole number
* @code{ANY}: ANY, Determine if any values are true
* @code{ASIN}: ASIN, Arcsine function
+* @code{ATAN}: ATAN, Arctangent function
+* @code{BESJ0}: BESJ0, Bessel function of the first kind of order 0
+* @code{BESJ1}: BESJ1, Bessel function of the first kind of order 1
+* @code{BESJN}: BESJN, Bessel function of the first kind
+* @code{BESY0}: BESY0, Bessel function of the first kind of order 0
+* @code{BESY1}: BESY1, Bessel function of the first kind of order 1
+* @code{BESYN}: BESYN, Bessel function of the first kind
+* @code{COSH}: COSH, Hyperbolic cosine function
+* @code{ERF}: ERF, Error function
+* @code{ERFC}: ERFC, Complementary error function
+* @code{SINH}: SINH, Hyperbolic sine function
+* @code{TANH}: TANH, Hyperbolic tangent function
@end menu
@node Introduction
@@ -722,35 +734,551 @@ end program test_asin
@end table
+@node ATAN
+@section @code{ATAN} --- Arctangent function
+@findex @code{ATAN} intrinsic
+@findex @code{DATAN} intrinsic
+@cindex arctangent
+
+@table @asis
+@item @emph{Description}:
+@code{ATAN(X)} computes the arctangent of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = ATAN(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{ - \pi / 2 \leq \arcsin (x) \leq \pi / 2}.
+
+@item @emph{Example}:
+@smallexample
+program test_atan
+ real(8) :: x = 2.866_8
+ x = atan(x)
+end program test_atan
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DATAN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESJ0
+@section @code{BESJ0} --- Bessel function of the first kind of order 0
+@findex @code{BESJ0} intrinsic
+@findex @code{DBESJ0} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESJ0(X)} computes the Bessel function of the first kind of order 0
+of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = BESJ0(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{ - 0.4027... \leq Bessel (0,x) \leq 1}.
+
+@item @emph{Example}:
+@smallexample
+program test_besj0
+ real(8) :: x = 0.0_8
+ x = besj0(x)
+end program test_besj0
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESJ0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESJ1
+@section @code{BESJ1} --- Bessel function of the first kind of order 1
+@findex @code{BESJ1} intrinsic
+@findex @code{DBESJ1} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESJ1(X)} computes the Bessel function of the first kind of order 1
+of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = BESJ1(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it lies in the
+range @math{ - 0.5818... \leq Bessel (0,x) \leq 0.5818 }.
+
+@item @emph{Example}:
+@smallexample
+program test_besj1
+ real(8) :: x = 1.0_8
+ x = besj1(x)
+end program test_besj1
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESJ1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESJN
+@section @code{BESJN} --- Bessel function of the first kind
+@findex @code{BESJN} intrinsic
+@findex @code{DBESJN} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESJN(N, X)} computes the Bessel function of the first kind of order
+@var{N} of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{Y = BESJN(N, X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{N} @tab The type shall be an @code{INTEGER(*)}.
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_besjn
+ real(8) :: x = 1.0_8
+ x = besjn(5,x)
+end program test_besjn
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESJN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESY0
+@section @code{BESY0} --- Bessel function of the second kind of order 0
+@findex @code{BESY0} intrinsic
+@findex @code{DBESY0} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESY0(X)} computes the Bessel function of the second kind of order 0
+of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = BESY0(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_besy0
+ real(8) :: x = 0.0_8
+ x = besy0(x)
+end program test_besy0
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESY0(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESY1
+@section @code{BESY1} --- Bessel function of the second kind of order 1
+@findex @code{BESY1} intrinsic
+@findex @code{DBESY1} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESY1(X)} computes the Bessel function of the second kind of order 1
+of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = BESY1(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_besy1
+ real(8) :: x = 1.0_8
+ x = besy1(x)
+end program test_besy1
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESY1(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node BESYN
+@section @code{BESYN} --- Bessel function of the second kind
+@findex @code{BESYN} intrinsic
+@findex @code{DBESYN} intrinsic
+@cindex Bessel
+
+@table @asis
+@item @emph{Description}:
+@code{BESYN(N, X)} computes the Bessel function of the second kind of order
+@var{N} of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{Y = BESYN(N, X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{N} @tab The type shall be an @code{INTEGER(*)}.
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_besyn
+ real(8) :: x = 1.0_8
+ x = besyn(5,x)
+end program test_besyn
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DBESYN(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node COSH
+@section @code{COSH} --- Hyperbolic cosine function
+@findex @code{COSH} intrinsic
+@findex @code{DCOSH} intrinsic
+@cindex hyperbolic cosine
+
+@table @asis
+@item @emph{Description}:
+@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = COSH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it is positive
+(@math{ \cosh (x) \geq 0 }.
+
+@item @emph{Example}:
+@smallexample
+program test_cosh
+ real(8) :: x = 1.0_8
+ x = cosh(x)
+end program test_cosh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DCOSH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+@node ERF
+@section @code{ERF} --- Error function
+@findex @code{ERF} intrinsic
+@cindex error
+
+@table @asis
+@item @emph{Description}:
+@code{ERF(X)} computes the error function of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = ERF(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it is positive
+(@math{ - 1 \leq erf (x) \leq 1 }.
+
+@item @emph{Example}:
+@smallexample
+program test_erf
+ real(8) :: x = 0.17_8
+ x = erf(x)
+end program test_erf
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DERF(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node ERFC
+@section @code{ERFC} --- Error function
+@findex @code{ERFC} intrinsic
+@cindex error
+
+@table @asis
+@item @emph{Description}:
+@code{ERFC(X)} computes the complementary error function of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = ERFC(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and it is positive
+(@math{ 0 \leq erfc (x) \leq 2 }.
+
+@item @emph{Example}:
+@smallexample
+program test_erfc
+ real(8) :: x = 0.17_8
+ x = erfc(x)
+end program test_erfc
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DERFC(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node SINH
+@section @code{SINH} --- Hyperbolic sine function
+@findex @code{SINH} intrinsic
+@findex @code{DSINH} intrinsic
+@cindex hyperbolic sine
+
+@table @asis
+@item @emph{Description}:
+@code{SINH(X)} computes the hyperbolic sine of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = SINH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)}.
+
+@item @emph{Example}:
+@smallexample
+program test_sinh
+ real(8) :: x = - 1.0_8
+ x = sinh(x)
+end program test_sinh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DSINH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
+
+
+
+@node TANH
+@section @code{TANH} --- Hyperbolic tangent function
+@findex @code{TANH} intrinsic
+@findex @code{DTANH} intrinsic
+@cindex hyperbolic tangent
+
+@table @asis
+@item @emph{Description}:
+@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
+
+@item @emph{Option}:
+f95, gnu
+
+@item @emph{Type}:
+elemental function
+
+@item @emph{Syntax}:
+@code{X = TANH(X)}
+
+@item @emph{Arguments}:
+@multitable @columnfractions .15 .80
+@item @var{X} @tab The type shall be an @code{REAL(*)}.
+@end multitable
+
+@item @emph{Return value}:
+The return value is of type @code{REAL(*)} and lies in the range
+@math{ - 1 \leq tanh(x) \leq 1 }.
+
+@item @emph{Example}:
+@smallexample
+program test_tanh
+ real(8) :: x = 2.1_8
+ x = tanh(x)
+end program test_tanh
+@end smallexample
+
+@item @emph{Specific names}:
+@multitable @columnfractions .24 .24 .24 .24
+@item Name @tab Argument @tab Return type @tab Option
+@item @code{DTANH(X)} @tab @code{REAL(8) X} @tab @code{REAL(8)} @tab f95, gnu
+@end multitable
+@end table
@comment gen associated
@comment
-@comment gen atan
-@comment datan
-@comment
@comment gen atan2
@comment datan2
@comment
-@comment gen besj0
-@comment dbesj0
-@comment
-@comment gen besj1
-@comment dbesj1
-@comment
-@comment gen besjn
-@comment dbesjn
-@comment
-@comment gen besy0
-@comment dbesy0
-@comment
-@comment gen besy1
-@comment dbesy1
-@comment
-@comment gen besyn
-@comment dbesyn
-@comment
@comment gen bit_size
@comment
@comment gen btest
@@ -771,9 +1299,6 @@ end program test_asin
@comment ccos
@comment zcos,cdcos
@comment
-@comment gen cosh
-@comment dcosh
-@comment
@comment gen count
@comment
@comment sub cpu_time
@@ -805,12 +1330,6 @@ end program test_asin
@comment
@comment gen epsilon
@comment
-@comment gen erf
-@comment derf
-@comment
-@comment gen erfc
-@comment derfc
-@comment
@comment gen etime
@comment sub etime
@comment
@@ -925,7 +1444,7 @@ end program test_asin
@comment gen maxexponent
@comment
@comment gen maxloc
-@comment
+@comment
@comment gen maxval
@comment
@comment gen merge
@@ -1013,9 +1532,6 @@ end program test_asin
@comment csin
@comment zsin,cdsin
@comment
-@comment gen sinh
-@comment dsinh
-@comment
@comment gen size
@comment
@comment gen spacing
@@ -1042,9 +1558,6 @@ end program test_asin
@comment gen tan
@comment dtan
@comment
-@comment gen tanh
-@comment dtanh
-@comment
@comment gen tiny
@comment
@comment gen transfer
@@ -1065,5 +1578,3 @@ end program test_asin
@comment
@comment gen verify
-
-