diff options
author | Feng Xue <fxue@os.amperecomputing.com> | 2024-05-29 17:28:14 +0800 |
---|---|---|
committer | Feng Xue <fxue@os.amperecomputing.com> | 2024-07-17 21:54:06 +0800 |
commit | db3c8c9726d0bafbb9f85b6d7027fe83602643e7 (patch) | |
tree | 8acb3e367d203bfb78eb13aeae7a125ad9eda411 /gcc/tree-vectorizer.h | |
parent | 178cc419512f7e358f88dfe2336625aa99cd7438 (diff) | |
download | gcc-db3c8c9726d0bafbb9f85b6d7027fe83602643e7.zip gcc-db3c8c9726d0bafbb9f85b6d7027fe83602643e7.tar.gz gcc-db3c8c9726d0bafbb9f85b6d7027fe83602643e7.tar.bz2 |
vect: Optimize order of lane-reducing operations in loop def-use cycles
When transforming multiple lane-reducing operations in a loop reduction chain,
originally, corresponding vectorized statements are generated into def-use
cycles starting from 0. The def-use cycle with smaller index, would contain
more statements, which means more instruction dependency. For example:
int sum = 1;
for (i)
{
sum += d0[i] * d1[i]; // dot-prod <vector(16) char>
sum += w[i]; // widen-sum <vector(16) char>
sum += abs(s0[i] - s1[i]); // sad <vector(8) short>
sum += n[i]; // normal <vector(4) int>
}
Original transformation result:
for (i / 16)
{
sum_v0 = DOT_PROD (d0_v0[i: 0 ~ 15], d1_v0[i: 0 ~ 15], sum_v0);
sum_v1 = sum_v1; // copy
sum_v2 = sum_v2; // copy
sum_v3 = sum_v3; // copy
sum_v0 = WIDEN_SUM (w_v0[i: 0 ~ 15], sum_v0);
sum_v1 = sum_v1; // copy
sum_v2 = sum_v2; // copy
sum_v3 = sum_v3; // copy
sum_v0 = SAD (s0_v0[i: 0 ~ 7 ], s1_v0[i: 0 ~ 7 ], sum_v0);
sum_v1 = SAD (s0_v1[i: 8 ~ 15], s1_v1[i: 8 ~ 15], sum_v1);
sum_v2 = sum_v2; // copy
sum_v3 = sum_v3; // copy
...
}
For a higher instruction parallelism in final vectorized loop, an optimal
means is to make those effective vector lane-reducing ops be distributed
evenly among all def-use cycles. Transformed as the below, DOT_PROD,
WIDEN_SUM and SADs are generated into disparate cycles, instruction
dependency among them could be eliminated.
for (i / 16)
{
sum_v0 = DOT_PROD (d0_v0[i: 0 ~ 15], d1_v0[i: 0 ~ 15], sum_v0);
sum_v1 = sum_v1; // copy
sum_v2 = sum_v2; // copy
sum_v3 = sum_v3; // copy
sum_v0 = sum_v0; // copy
sum_v1 = WIDEN_SUM (w_v1[i: 0 ~ 15], sum_v1);
sum_v2 = sum_v2; // copy
sum_v3 = sum_v3; // copy
sum_v0 = sum_v0; // copy
sum_v1 = sum_v1; // copy
sum_v2 = SAD (s0_v2[i: 0 ~ 7 ], s1_v2[i: 0 ~ 7 ], sum_v2);
sum_v3 = SAD (s0_v3[i: 8 ~ 15], s1_v3[i: 8 ~ 15], sum_v3);
...
}
2024-03-22 Feng Xue <fxue@os.amperecomputing.com>
gcc/
PR tree-optimization/114440
* tree-vectorizer.h (struct _stmt_vec_info): Add a new field
reduc_result_pos.
* tree-vect-loop.cc (vect_transform_reduction): Generate lane-reducing
statements in an optimized order.
Diffstat (limited to 'gcc/tree-vectorizer.h')
-rw-r--r-- | gcc/tree-vectorizer.h | 6 |
1 files changed, 6 insertions, 0 deletions
diff --git a/gcc/tree-vectorizer.h b/gcc/tree-vectorizer.h index d8be89c..df6c8ad 100644 --- a/gcc/tree-vectorizer.h +++ b/gcc/tree-vectorizer.h @@ -1402,6 +1402,12 @@ public: /* The vector type for performing the actual reduction. */ tree reduc_vectype; + /* For loop reduction with multiple vectorized results (ncopies > 1), a + lane-reducing operation participating in it may not use all of those + results, this field specifies result index starting from which any + following land-reducing operation would be assigned to. */ + unsigned int reduc_result_pos; + /* If IS_REDUC_INFO is true and if the vector code is performing N scalar reductions in parallel, this variable gives the initial scalar values of those N reductions. */ |