aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-transform.c
diff options
context:
space:
mode:
authorIra Rosen <irar@il.ibm.com>2009-03-30 07:22:04 +0000
committerIra Rosen <irar@gcc.gnu.org>2009-03-30 07:22:04 +0000
commitebfd146af752ce6aa298f866e36f9a7e66e32ec5 (patch)
treeeb1de264e27b52e72961ef1403214ca950263b68 /gcc/tree-vect-transform.c
parent40a1cfba7818100adbde7144be9f6515b9a6ed86 (diff)
downloadgcc-ebfd146af752ce6aa298f866e36f9a7e66e32ec5.zip
gcc-ebfd146af752ce6aa298f866e36f9a7e66e32ec5.tar.gz
gcc-ebfd146af752ce6aa298f866e36f9a7e66e32ec5.tar.bz2
tree-vect-loop-manip.c: New file.
* tree-vect-loop-manip.c: New file. * tree-vectorizer.c: Update documentation and included files. (vect_loop_location): Make extern. (rename_use_op): Move to tree-vect-loop-manip.c (rename_variables_in_bb, rename_variables_in_loop, slpeel_update_phis_for_duplicate_loop, slpeel_update_phi_nodes_for_guard1, slpeel_update_phi_nodes_for_guard2, slpeel_make_loop_iterate_ntimes, slpeel_tree_duplicate_loop_to_edge_cfg, slpeel_add_loop_guard, slpeel_can_duplicate_loop_p, slpeel_verify_cfg_after_peeling, set_prologue_iterations, slpeel_tree_peel_loop_to_edge, find_loop_location): Likewise. (new_stmt_vec_info): Move to tree-vect-stmts.c. (init_stmt_vec_info_vec, free_stmt_vec_info_vec, free_stmt_vec_info, get_vectype_for_scalar_type, vect_is_simple_use, supportable_widening_operation, supportable_narrowing_operation): Likewise. (bb_in_loop_p): Move to tree-vect-loop.c. (new_loop_vec_info, destroy_loop_vec_info, reduction_code_for_scalar_code, report_vect_op, vect_is_simple_reduction, vect_is_simple_iv_evolution): Likewise. (vect_can_force_dr_alignment_p): Move to tree-vect-data-refs.c. (vect_supportable_dr_alignment): Likewise. * tree-vectorizer.h (tree-data-ref.h): Include. (vect_loop_location): Declare. Reorganize function declarations according to the new file structure. * tree-vect-loop.c: New file. * tree-vect-analyze.c: Remove. Move functions to tree-vect-data-refs.c, tree-vect-stmts.c, tree-vect-slp.c, tree-vect-loop.c. * tree-vect-data-refs.c: New file. * tree-vect-patterns.c (timevar.h): Don't include. * tree-vect-stmts.c: New file. * tree-vect-transform.c: Remove. Move functions to tree-vect-stmts.c, tree-vect-slp.c, tree-vect-loop.c. * Makefile.in (OBJS-common): Remove tree-vect-analyze.o and tree-vect-transform.o. Add tree-vect-data-refs.o, tree-vect-stmts.o, tree-vect-loop.o, tree-vect-loop-manip.o, tree-vect-slp.o. (tree-vect-analyze.o): Remove. (tree-vect-transform.o): Likewise. (tree-vect-data-refs.o): Add rule. (tree-vect-stmts.o, tree-vect-loop.o, tree-vect-loop-manip.o, tree-vect-slp.o): Likewise. (tree-vect-patterns.o): Remove redundant dependencies. (tree-vectorizer.o): Likewise. * tree-vect-slp.c: New file. From-SVN: r145280
Diffstat (limited to 'gcc/tree-vect-transform.c')
-rw-r--r--gcc/tree-vect-transform.c8524
1 files changed, 0 insertions, 8524 deletions
diff --git a/gcc/tree-vect-transform.c b/gcc/tree-vect-transform.c
deleted file mode 100644
index a048342d..0000000
--- a/gcc/tree-vect-transform.c
+++ /dev/null
@@ -1,8524 +0,0 @@
-/* Transformation Utilities for Loop Vectorization.
- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
- Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tm.h"
-#include "ggc.h"
-#include "tree.h"
-#include "target.h"
-#include "rtl.h"
-#include "basic-block.h"
-#include "diagnostic.h"
-#include "tree-flow.h"
-#include "tree-dump.h"
-#include "timevar.h"
-#include "cfgloop.h"
-#include "expr.h"
-#include "optabs.h"
-#include "params.h"
-#include "recog.h"
-#include "tree-data-ref.h"
-#include "tree-chrec.h"
-#include "tree-scalar-evolution.h"
-#include "tree-vectorizer.h"
-#include "langhooks.h"
-#include "tree-pass.h"
-#include "toplev.h"
-#include "real.h"
-
-/* Utility functions for the code transformation. */
-static bool vect_transform_stmt (gimple, gimple_stmt_iterator *, bool *,
- slp_tree, slp_instance);
-static tree vect_create_destination_var (tree, tree);
-static tree vect_create_data_ref_ptr
- (gimple, struct loop*, tree, tree *, gimple *, bool, bool *, tree);
-static tree vect_create_addr_base_for_vector_ref
- (gimple, gimple_seq *, tree, struct loop *);
-static tree vect_get_new_vect_var (tree, enum vect_var_kind, const char *);
-static tree vect_get_vec_def_for_operand (tree, gimple, tree *);
-static tree vect_init_vector (gimple, tree, tree, gimple_stmt_iterator *);
-static void vect_finish_stmt_generation
- (gimple stmt, gimple vec_stmt, gimple_stmt_iterator *);
-static bool vect_is_simple_cond (tree, loop_vec_info);
-static void vect_create_epilog_for_reduction
- (tree, gimple, int, enum tree_code, gimple);
-static tree get_initial_def_for_reduction (gimple, tree, tree *);
-
-/* Utility function dealing with loop peeling (not peeling itself). */
-static void vect_generate_tmps_on_preheader
- (loop_vec_info, tree *, tree *, tree *);
-static tree vect_build_loop_niters (loop_vec_info);
-static void vect_update_ivs_after_vectorizer (loop_vec_info, tree, edge);
-static tree vect_gen_niters_for_prolog_loop (loop_vec_info, tree);
-static void vect_update_init_of_dr (struct data_reference *, tree niters);
-static void vect_update_inits_of_drs (loop_vec_info, tree);
-static int vect_min_worthwhile_factor (enum tree_code);
-
-
-static int
-cost_for_stmt (gimple stmt)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- switch (STMT_VINFO_TYPE (stmt_info))
- {
- case load_vec_info_type:
- return TARG_SCALAR_LOAD_COST;
- case store_vec_info_type:
- return TARG_SCALAR_STORE_COST;
- case op_vec_info_type:
- case condition_vec_info_type:
- case assignment_vec_info_type:
- case reduc_vec_info_type:
- case induc_vec_info_type:
- case type_promotion_vec_info_type:
- case type_demotion_vec_info_type:
- case type_conversion_vec_info_type:
- case call_vec_info_type:
- return TARG_SCALAR_STMT_COST;
- case undef_vec_info_type:
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Function vect_estimate_min_profitable_iters
-
- Return the number of iterations required for the vector version of the
- loop to be profitable relative to the cost of the scalar version of the
- loop.
-
- TODO: Take profile info into account before making vectorization
- decisions, if available. */
-
-int
-vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
-{
- int i;
- int min_profitable_iters;
- int peel_iters_prologue;
- int peel_iters_epilogue;
- int vec_inside_cost = 0;
- int vec_outside_cost = 0;
- int scalar_single_iter_cost = 0;
- int scalar_outside_cost = 0;
- int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
- int peel_guard_costs = 0;
- int innerloop_iters = 0, factor;
- VEC (slp_instance, heap) *slp_instances;
- slp_instance instance;
-
- /* Cost model disabled. */
- if (!flag_vect_cost_model)
- {
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model disabled.");
- return 0;
- }
-
- /* Requires loop versioning tests to handle misalignment. */
- if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
- {
- /* FIXME: Make cost depend on complexity of individual check. */
- vec_outside_cost +=
- VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: Adding cost of checks for loop "
- "versioning to treat misalignment.\n");
- }
-
- if (VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- {
- /* FIXME: Make cost depend on complexity of individual check. */
- vec_outside_cost +=
- VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: Adding cost of checks for loop "
- "versioning aliasing.\n");
- }
-
- if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- || VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- {
- vec_outside_cost += TARG_COND_TAKEN_BRANCH_COST;
- }
-
- /* Count statements in scalar loop. Using this as scalar cost for a single
- iteration for now.
-
- TODO: Add outer loop support.
-
- TODO: Consider assigning different costs to different scalar
- statements. */
-
- /* FORNOW. */
- if (loop->inner)
- innerloop_iters = 50; /* FIXME */
-
- for (i = 0; i < nbbs; i++)
- {
- gimple_stmt_iterator si;
- basic_block bb = bbs[i];
-
- if (bb->loop_father == loop->inner)
- factor = innerloop_iters;
- else
- factor = 1;
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple stmt = gsi_stmt (si);
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- /* Skip stmts that are not vectorized inside the loop. */
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && (!STMT_VINFO_LIVE_P (stmt_info)
- || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
- continue;
- scalar_single_iter_cost += cost_for_stmt (stmt) * factor;
- vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
- /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
- some of the "outside" costs are generated inside the outer-loop. */
- vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
- }
- }
-
- /* Add additional cost for the peeled instructions in prologue and epilogue
- loop.
-
- FORNOW: If we don't know the value of peel_iters for prologue or epilogue
- at compile-time - we assume it's vf/2 (the worst would be vf-1).
-
- TODO: Build an expression that represents peel_iters for prologue and
- epilogue to be used in a run-time test. */
-
- if (byte_misalign < 0)
- {
- peel_iters_prologue = vf/2;
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: "
- "prologue peel iters set to vf/2.");
-
- /* If peeling for alignment is unknown, loop bound of main loop becomes
- unknown. */
- peel_iters_epilogue = vf/2;
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: "
- "epilogue peel iters set to vf/2 because "
- "peeling for alignment is unknown .");
-
- /* If peeled iterations are unknown, count a taken branch and a not taken
- branch per peeled loop. Even if scalar loop iterations are known,
- vector iterations are not known since peeled prologue iterations are
- not known. Hence guards remain the same. */
- peel_guard_costs += 2 * (TARG_COND_TAKEN_BRANCH_COST
- + TARG_COND_NOT_TAKEN_BRANCH_COST);
- }
- else
- {
- if (byte_misalign)
- {
- struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
- int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
- tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
- int nelements = TYPE_VECTOR_SUBPARTS (vectype);
-
- peel_iters_prologue = nelements - (byte_misalign / element_size);
- }
- else
- peel_iters_prologue = 0;
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
- {
- peel_iters_epilogue = vf/2;
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: "
- "epilogue peel iters set to vf/2 because "
- "loop iterations are unknown .");
-
- /* If peeled iterations are known but number of scalar loop
- iterations are unknown, count a taken branch per peeled loop. */
- peel_guard_costs += 2 * TARG_COND_TAKEN_BRANCH_COST;
-
- }
- else
- {
- int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
- peel_iters_prologue = niters < peel_iters_prologue ?
- niters : peel_iters_prologue;
- peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
- }
- }
-
- vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
- + (peel_iters_epilogue * scalar_single_iter_cost)
- + peel_guard_costs;
-
- /* FORNOW: The scalar outside cost is incremented in one of the
- following ways:
-
- 1. The vectorizer checks for alignment and aliasing and generates
- a condition that allows dynamic vectorization. A cost model
- check is ANDED with the versioning condition. Hence scalar code
- path now has the added cost of the versioning check.
-
- if (cost > th & versioning_check)
- jmp to vector code
-
- Hence run-time scalar is incremented by not-taken branch cost.
-
- 2. The vectorizer then checks if a prologue is required. If the
- cost model check was not done before during versioning, it has to
- be done before the prologue check.
-
- if (cost <= th)
- prologue = scalar_iters
- if (prologue == 0)
- jmp to vector code
- else
- execute prologue
- if (prologue == num_iters)
- go to exit
-
- Hence the run-time scalar cost is incremented by a taken branch,
- plus a not-taken branch, plus a taken branch cost.
-
- 3. The vectorizer then checks if an epilogue is required. If the
- cost model check was not done before during prologue check, it
- has to be done with the epilogue check.
-
- if (prologue == 0)
- jmp to vector code
- else
- execute prologue
- if (prologue == num_iters)
- go to exit
- vector code:
- if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
- jmp to epilogue
-
- Hence the run-time scalar cost should be incremented by 2 taken
- branches.
-
- TODO: The back end may reorder the BBS's differently and reverse
- conditions/branch directions. Change the estimates below to
- something more reasonable. */
-
- /* If the number of iterations is known and we do not do versioning, we can
- decide whether to vectorize at compile time. Hence the scalar version
- do not carry cost model guard costs. */
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- || VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- || VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- {
- /* Cost model check occurs at versioning. */
- if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- || VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- scalar_outside_cost += TARG_COND_NOT_TAKEN_BRANCH_COST;
- else
- {
- /* Cost model check occurs at prologue generation. */
- if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
- scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST
- + TARG_COND_NOT_TAKEN_BRANCH_COST;
- /* Cost model check occurs at epilogue generation. */
- else
- scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST;
- }
- }
-
- /* Add SLP costs. */
- slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
- for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
- {
- vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
- vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
- }
-
- /* Calculate number of iterations required to make the vector version
- profitable, relative to the loop bodies only. The following condition
- must hold true:
- SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
- where
- SIC = scalar iteration cost, VIC = vector iteration cost,
- VOC = vector outside cost, VF = vectorization factor,
- PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
- SOC = scalar outside cost for run time cost model check. */
-
- if ((scalar_single_iter_cost * vf) > vec_inside_cost)
- {
- if (vec_outside_cost <= 0)
- min_profitable_iters = 1;
- else
- {
- min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
- - vec_inside_cost * peel_iters_prologue
- - vec_inside_cost * peel_iters_epilogue)
- / ((scalar_single_iter_cost * vf)
- - vec_inside_cost);
-
- if ((scalar_single_iter_cost * vf * min_profitable_iters)
- <= ((vec_inside_cost * min_profitable_iters)
- + ((vec_outside_cost - scalar_outside_cost) * vf)))
- min_profitable_iters++;
- }
- }
- /* vector version will never be profitable. */
- else
- {
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "cost model: vector iteration cost = %d "
- "is divisible by scalar iteration cost = %d by a factor "
- "greater than or equal to the vectorization factor = %d .",
- vec_inside_cost, scalar_single_iter_cost, vf);
- return -1;
- }
-
- if (vect_print_dump_info (REPORT_COST))
- {
- fprintf (vect_dump, "Cost model analysis: \n");
- fprintf (vect_dump, " Vector inside of loop cost: %d\n",
- vec_inside_cost);
- fprintf (vect_dump, " Vector outside of loop cost: %d\n",
- vec_outside_cost);
- fprintf (vect_dump, " Scalar iteration cost: %d\n",
- scalar_single_iter_cost);
- fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
- fprintf (vect_dump, " prologue iterations: %d\n",
- peel_iters_prologue);
- fprintf (vect_dump, " epilogue iterations: %d\n",
- peel_iters_epilogue);
- fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
- min_profitable_iters);
- }
-
- min_profitable_iters =
- min_profitable_iters < vf ? vf : min_profitable_iters;
-
- /* Because the condition we create is:
- if (niters <= min_profitable_iters)
- then skip the vectorized loop. */
- min_profitable_iters--;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, " Profitability threshold = %d\n",
- min_profitable_iters);
-
- return min_profitable_iters;
-}
-
-
-/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
- functions. Design better to avoid maintenance issues. */
-
-/* Function vect_model_reduction_cost.
-
- Models cost for a reduction operation, including the vector ops
- generated within the strip-mine loop, the initial definition before
- the loop, and the epilogue code that must be generated. */
-
-static bool
-vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
- int ncopies)
-{
- int outer_cost = 0;
- enum tree_code code;
- optab optab;
- tree vectype;
- gimple stmt, orig_stmt;
- tree reduction_op;
- enum machine_mode mode;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
-
- /* Cost of reduction op inside loop. */
- STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) += ncopies * TARG_VEC_STMT_COST;
-
- stmt = STMT_VINFO_STMT (stmt_info);
-
- switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
- {
- case GIMPLE_SINGLE_RHS:
- gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
- reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
- break;
- case GIMPLE_UNARY_RHS:
- reduction_op = gimple_assign_rhs1 (stmt);
- break;
- case GIMPLE_BINARY_RHS:
- reduction_op = gimple_assign_rhs2 (stmt);
- break;
- default:
- gcc_unreachable ();
- }
-
- vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
- if (!vectype)
- {
- if (vect_print_dump_info (REPORT_COST))
- {
- fprintf (vect_dump, "unsupported data-type ");
- print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
- }
- return false;
- }
-
- mode = TYPE_MODE (vectype);
- orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
-
- if (!orig_stmt)
- orig_stmt = STMT_VINFO_STMT (stmt_info);
-
- code = gimple_assign_rhs_code (orig_stmt);
-
- /* Add in cost for initial definition. */
- outer_cost += TARG_SCALAR_TO_VEC_COST;
-
- /* Determine cost of epilogue code.
-
- We have a reduction operator that will reduce the vector in one statement.
- Also requires scalar extract. */
-
- if (!nested_in_vect_loop_p (loop, orig_stmt))
- {
- if (reduc_code < NUM_TREE_CODES)
- outer_cost += TARG_VEC_STMT_COST + TARG_VEC_TO_SCALAR_COST;
- else
- {
- int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
- tree bitsize =
- TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
- int element_bitsize = tree_low_cst (bitsize, 1);
- int nelements = vec_size_in_bits / element_bitsize;
-
- optab = optab_for_tree_code (code, vectype, optab_default);
-
- /* We have a whole vector shift available. */
- if (VECTOR_MODE_P (mode)
- && optab_handler (optab, mode)->insn_code != CODE_FOR_nothing
- && optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
- /* Final reduction via vector shifts and the reduction operator. Also
- requires scalar extract. */
- outer_cost += ((exact_log2(nelements) * 2) * TARG_VEC_STMT_COST
- + TARG_VEC_TO_SCALAR_COST);
- else
- /* Use extracts and reduction op for final reduction. For N elements,
- we have N extracts and N-1 reduction ops. */
- outer_cost += ((nelements + nelements - 1) * TARG_VEC_STMT_COST);
- }
- }
-
- STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
- "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
- STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
-
- return true;
-}
-
-
-/* Function vect_model_induction_cost.
-
- Models cost for induction operations. */
-
-static void
-vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
-{
- /* loop cost for vec_loop. */
- STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = ncopies * TARG_VEC_STMT_COST;
- /* prologue cost for vec_init and vec_step. */
- STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = 2 * TARG_SCALAR_TO_VEC_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
- "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
- STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
-}
-
-
-/* Function vect_model_simple_cost.
-
- Models cost for simple operations, i.e. those that only emit ncopies of a
- single op. Right now, this does not account for multiple insns that could
- be generated for the single vector op. We will handle that shortly. */
-
-void
-vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
- enum vect_def_type *dt, slp_tree slp_node)
-{
- int i;
- int inside_cost = 0, outside_cost = 0;
-
- /* The SLP costs were already calculated during SLP tree build. */
- if (PURE_SLP_STMT (stmt_info))
- return;
-
- inside_cost = ncopies * TARG_VEC_STMT_COST;
-
- /* FORNOW: Assuming maximum 2 args per stmts. */
- for (i = 0; i < 2; i++)
- {
- if (dt[i] == vect_constant_def || dt[i] == vect_invariant_def)
- outside_cost += TARG_SCALAR_TO_VEC_COST;
- }
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
- "outside_cost = %d .", inside_cost, outside_cost);
-
- /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
- stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
- stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
-}
-
-
-/* Function vect_cost_strided_group_size
-
- For strided load or store, return the group_size only if it is the first
- load or store of a group, else return 1. This ensures that group size is
- only returned once per group. */
-
-static int
-vect_cost_strided_group_size (stmt_vec_info stmt_info)
-{
- gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
-
- if (first_stmt == STMT_VINFO_STMT (stmt_info))
- return DR_GROUP_SIZE (stmt_info);
-
- return 1;
-}
-
-
-/* Function vect_model_store_cost
-
- Models cost for stores. In the case of strided accesses, one access
- has the overhead of the strided access attributed to it. */
-
-void
-vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
- enum vect_def_type dt, slp_tree slp_node)
-{
- int group_size;
- int inside_cost = 0, outside_cost = 0;
-
- /* The SLP costs were already calculated during SLP tree build. */
- if (PURE_SLP_STMT (stmt_info))
- return;
-
- if (dt == vect_constant_def || dt == vect_invariant_def)
- outside_cost = TARG_SCALAR_TO_VEC_COST;
-
- /* Strided access? */
- if (DR_GROUP_FIRST_DR (stmt_info) && !slp_node)
- group_size = vect_cost_strided_group_size (stmt_info);
- /* Not a strided access. */
- else
- group_size = 1;
-
- /* Is this an access in a group of stores, which provide strided access?
- If so, add in the cost of the permutes. */
- if (group_size > 1)
- {
- /* Uses a high and low interleave operation for each needed permute. */
- inside_cost = ncopies * exact_log2(group_size) * group_size
- * TARG_VEC_STMT_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
- group_size);
-
- }
-
- /* Costs of the stores. */
- inside_cost += ncopies * TARG_VEC_STORE_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
- "outside_cost = %d .", inside_cost, outside_cost);
-
- /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
- stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
- stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
-}
-
-
-/* Function vect_model_load_cost
-
- Models cost for loads. In the case of strided accesses, the last access
- has the overhead of the strided access attributed to it. Since unaligned
- accesses are supported for loads, we also account for the costs of the
- access scheme chosen. */
-
-void
-vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node)
-
-{
- int group_size;
- int alignment_support_cheme;
- gimple first_stmt;
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
- int inside_cost = 0, outside_cost = 0;
-
- /* The SLP costs were already calculated during SLP tree build. */
- if (PURE_SLP_STMT (stmt_info))
- return;
-
- /* Strided accesses? */
- first_stmt = DR_GROUP_FIRST_DR (stmt_info);
- if (first_stmt && !slp_node)
- {
- group_size = vect_cost_strided_group_size (stmt_info);
- first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
- }
- /* Not a strided access. */
- else
- {
- group_size = 1;
- first_dr = dr;
- }
-
- alignment_support_cheme = vect_supportable_dr_alignment (first_dr);
-
- /* Is this an access in a group of loads providing strided access?
- If so, add in the cost of the permutes. */
- if (group_size > 1)
- {
- /* Uses an even and odd extract operations for each needed permute. */
- inside_cost = ncopies * exact_log2(group_size) * group_size
- * TARG_VEC_STMT_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
- group_size);
-
- }
-
- /* The loads themselves. */
- switch (alignment_support_cheme)
- {
- case dr_aligned:
- {
- inside_cost += ncopies * TARG_VEC_LOAD_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_load_cost: aligned.");
-
- break;
- }
- case dr_unaligned_supported:
- {
- /* Here, we assign an additional cost for the unaligned load. */
- inside_cost += ncopies * TARG_VEC_UNALIGNED_LOAD_COST;
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
- "hardware.");
-
- break;
- }
- case dr_explicit_realign:
- {
- inside_cost += ncopies * (2*TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
-
- /* FIXME: If the misalignment remains fixed across the iterations of
- the containing loop, the following cost should be added to the
- outside costs. */
- if (targetm.vectorize.builtin_mask_for_load)
- inside_cost += TARG_VEC_STMT_COST;
-
- break;
- }
- case dr_explicit_realign_optimized:
- {
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_load_cost: unaligned software "
- "pipelined.");
-
- /* Unaligned software pipeline has a load of an address, an initial
- load, and possibly a mask operation to "prime" the loop. However,
- if this is an access in a group of loads, which provide strided
- access, then the above cost should only be considered for one
- access in the group. Inside the loop, there is a load op
- and a realignment op. */
-
- if ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node)
- {
- outside_cost = 2*TARG_VEC_STMT_COST;
- if (targetm.vectorize.builtin_mask_for_load)
- outside_cost += TARG_VEC_STMT_COST;
- }
-
- inside_cost += ncopies * (TARG_VEC_LOAD_COST + TARG_VEC_STMT_COST);
-
- break;
- }
-
- default:
- gcc_unreachable ();
- }
-
- if (vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
- "outside_cost = %d .", inside_cost, outside_cost);
-
- /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
- stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
- stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
-}
-
-
-/* Function vect_get_new_vect_var.
-
- Returns a name for a new variable. The current naming scheme appends the
- prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
- the name of vectorizer generated variables, and appends that to NAME if
- provided. */
-
-static tree
-vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
-{
- const char *prefix;
- tree new_vect_var;
-
- switch (var_kind)
- {
- case vect_simple_var:
- prefix = "vect_";
- break;
- case vect_scalar_var:
- prefix = "stmp_";
- break;
- case vect_pointer_var:
- prefix = "vect_p";
- break;
- default:
- gcc_unreachable ();
- }
-
- if (name)
- {
- char* tmp = concat (prefix, name, NULL);
- new_vect_var = create_tmp_var (type, tmp);
- free (tmp);
- }
- else
- new_vect_var = create_tmp_var (type, prefix);
-
- /* Mark vector typed variable as a gimple register variable. */
- if (TREE_CODE (type) == VECTOR_TYPE)
- DECL_GIMPLE_REG_P (new_vect_var) = true;
-
- return new_vect_var;
-}
-
-
-/* Function vect_create_addr_base_for_vector_ref.
-
- Create an expression that computes the address of the first memory location
- that will be accessed for a data reference.
-
- Input:
- STMT: The statement containing the data reference.
- NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
- OFFSET: Optional. If supplied, it is be added to the initial address.
- LOOP: Specify relative to which loop-nest should the address be computed.
- For example, when the dataref is in an inner-loop nested in an
- outer-loop that is now being vectorized, LOOP can be either the
- outer-loop, or the inner-loop. The first memory location accessed
- by the following dataref ('in' points to short):
-
- for (i=0; i<N; i++)
- for (j=0; j<M; j++)
- s += in[i+j]
-
- is as follows:
- if LOOP=i_loop: &in (relative to i_loop)
- if LOOP=j_loop: &in+i*2B (relative to j_loop)
-
- Output:
- 1. Return an SSA_NAME whose value is the address of the memory location of
- the first vector of the data reference.
- 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
- these statement(s) which define the returned SSA_NAME.
-
- FORNOW: We are only handling array accesses with step 1. */
-
-static tree
-vect_create_addr_base_for_vector_ref (gimple stmt,
- gimple_seq *new_stmt_list,
- tree offset,
- struct loop *loop)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
- tree data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
- tree base_name;
- tree data_ref_base_var;
- tree vec_stmt;
- tree addr_base, addr_expr;
- tree dest;
- gimple_seq seq = NULL;
- tree base_offset = unshare_expr (DR_OFFSET (dr));
- tree init = unshare_expr (DR_INIT (dr));
- tree vect_ptr_type, addr_expr2;
- tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
-
- gcc_assert (loop);
- if (loop != containing_loop)
- {
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- gcc_assert (nested_in_vect_loop_p (loop, stmt));
-
- data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
- base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
- init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
- }
-
- /* Create data_ref_base */
- base_name = build_fold_indirect_ref (data_ref_base);
- data_ref_base_var = create_tmp_var (TREE_TYPE (data_ref_base), "batmp");
- add_referenced_var (data_ref_base_var);
- data_ref_base = force_gimple_operand (data_ref_base, &seq, true,
- data_ref_base_var);
- gimple_seq_add_seq (new_stmt_list, seq);
-
- /* Create base_offset */
- base_offset = size_binop (PLUS_EXPR,
- fold_convert (sizetype, base_offset),
- fold_convert (sizetype, init));
- dest = create_tmp_var (sizetype, "base_off");
- add_referenced_var (dest);
- base_offset = force_gimple_operand (base_offset, &seq, true, dest);
- gimple_seq_add_seq (new_stmt_list, seq);
-
- if (offset)
- {
- tree tmp = create_tmp_var (sizetype, "offset");
-
- add_referenced_var (tmp);
- offset = fold_build2 (MULT_EXPR, sizetype,
- fold_convert (sizetype, offset), step);
- base_offset = fold_build2 (PLUS_EXPR, sizetype,
- base_offset, offset);
- base_offset = force_gimple_operand (base_offset, &seq, false, tmp);
- gimple_seq_add_seq (new_stmt_list, seq);
- }
-
- /* base + base_offset */
- addr_base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (data_ref_base),
- data_ref_base, base_offset);
-
- vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
-
- /* addr_expr = addr_base */
- addr_expr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
- get_name (base_name));
- add_referenced_var (addr_expr);
- vec_stmt = fold_convert (vect_ptr_type, addr_base);
- addr_expr2 = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
- get_name (base_name));
- add_referenced_var (addr_expr2);
- vec_stmt = force_gimple_operand (vec_stmt, &seq, false, addr_expr2);
- gimple_seq_add_seq (new_stmt_list, seq);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "created ");
- print_generic_expr (vect_dump, vec_stmt, TDF_SLIM);
- }
- return vec_stmt;
-}
-
-
-/* Function vect_create_data_ref_ptr.
-
- Create a new pointer to vector type (vp), that points to the first location
- accessed in the loop by STMT, along with the def-use update chain to
- appropriately advance the pointer through the loop iterations. Also set
- aliasing information for the pointer. This vector pointer is used by the
- callers to this function to create a memory reference expression for vector
- load/store access.
-
- Input:
- 1. STMT: a stmt that references memory. Expected to be of the form
- GIMPLE_ASSIGN <name, data-ref> or
- GIMPLE_ASSIGN <data-ref, name>.
- 2. AT_LOOP: the loop where the vector memref is to be created.
- 3. OFFSET (optional): an offset to be added to the initial address accessed
- by the data-ref in STMT.
- 4. ONLY_INIT: indicate if vp is to be updated in the loop, or remain
- pointing to the initial address.
- 5. TYPE: if not NULL indicates the required type of the data-ref.
-
- Output:
- 1. Declare a new ptr to vector_type, and have it point to the base of the
- data reference (initial addressed accessed by the data reference).
- For example, for vector of type V8HI, the following code is generated:
-
- v8hi *vp;
- vp = (v8hi *)initial_address;
-
- if OFFSET is not supplied:
- initial_address = &a[init];
- if OFFSET is supplied:
- initial_address = &a[init + OFFSET];
-
- Return the initial_address in INITIAL_ADDRESS.
-
- 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
- update the pointer in each iteration of the loop.
-
- Return the increment stmt that updates the pointer in PTR_INCR.
-
- 3. Set INV_P to true if the access pattern of the data reference in the
- vectorized loop is invariant. Set it to false otherwise.
-
- 4. Return the pointer. */
-
-static tree
-vect_create_data_ref_ptr (gimple stmt, struct loop *at_loop,
- tree offset, tree *initial_address, gimple *ptr_incr,
- bool only_init, bool *inv_p, tree type)
-{
- tree base_name;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
- struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree vect_ptr_type;
- tree vect_ptr;
- tree tag;
- tree new_temp;
- gimple vec_stmt;
- gimple_seq new_stmt_list = NULL;
- edge pe;
- basic_block new_bb;
- tree vect_ptr_init;
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- tree vptr;
- gimple_stmt_iterator incr_gsi;
- bool insert_after;
- tree indx_before_incr, indx_after_incr;
- gimple incr;
- tree step;
-
- /* Check the step (evolution) of the load in LOOP, and record
- whether it's invariant. */
- if (nested_in_vect_loop)
- step = STMT_VINFO_DR_STEP (stmt_info);
- else
- step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
-
- if (tree_int_cst_compare (step, size_zero_node) == 0)
- *inv_p = true;
- else
- *inv_p = false;
-
- /* Create an expression for the first address accessed by this load
- in LOOP. */
- base_name = build_fold_indirect_ref (unshare_expr (DR_BASE_ADDRESS (dr)));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- tree data_ref_base = base_name;
- fprintf (vect_dump, "create vector-pointer variable to type: ");
- print_generic_expr (vect_dump, vectype, TDF_SLIM);
- if (TREE_CODE (data_ref_base) == VAR_DECL)
- fprintf (vect_dump, " vectorizing a one dimensional array ref: ");
- else if (TREE_CODE (data_ref_base) == ARRAY_REF)
- fprintf (vect_dump, " vectorizing a multidimensional array ref: ");
- else if (TREE_CODE (data_ref_base) == COMPONENT_REF)
- fprintf (vect_dump, " vectorizing a record based array ref: ");
- else if (TREE_CODE (data_ref_base) == SSA_NAME)
- fprintf (vect_dump, " vectorizing a pointer ref: ");
- print_generic_expr (vect_dump, base_name, TDF_SLIM);
- }
-
- /** (1) Create the new vector-pointer variable: **/
- if (type)
- vect_ptr_type = build_pointer_type (type);
- else
- vect_ptr_type = build_pointer_type (vectype);
-
- if (TREE_CODE (DR_BASE_ADDRESS (dr)) == SSA_NAME
- && TYPE_RESTRICT (TREE_TYPE (DR_BASE_ADDRESS (dr))))
- vect_ptr_type = build_qualified_type (vect_ptr_type, TYPE_QUAL_RESTRICT);
- vect_ptr = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var,
- get_name (base_name));
- if (TREE_CODE (DR_BASE_ADDRESS (dr)) == SSA_NAME
- && TYPE_RESTRICT (TREE_TYPE (DR_BASE_ADDRESS (dr))))
- {
- get_alias_set (base_name);
- DECL_POINTER_ALIAS_SET (vect_ptr)
- = DECL_POINTER_ALIAS_SET (SSA_NAME_VAR (DR_BASE_ADDRESS (dr)));
- }
-
- add_referenced_var (vect_ptr);
-
- /** (2) Add aliasing information to the new vector-pointer:
- (The points-to info (DR_PTR_INFO) may be defined later.) **/
-
- tag = DR_SYMBOL_TAG (dr);
- gcc_assert (tag);
-
- /* If tag is a variable (and NOT_A_TAG) than a new symbol memory
- tag must be created with tag added to its may alias list. */
- if (!MTAG_P (tag))
- new_type_alias (vect_ptr, tag, DR_REF (dr));
- else
- {
- set_symbol_mem_tag (vect_ptr, tag);
- mark_sym_for_renaming (tag);
- }
-
- /** Note: If the dataref is in an inner-loop nested in LOOP, and we are
- vectorizing LOOP (i.e. outer-loop vectorization), we need to create two
- def-use update cycles for the pointer: One relative to the outer-loop
- (LOOP), which is what steps (3) and (4) below do. The other is relative
- to the inner-loop (which is the inner-most loop containing the dataref),
- and this is done be step (5) below.
-
- When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
- inner-most loop, and so steps (3),(4) work the same, and step (5) is
- redundant. Steps (3),(4) create the following:
-
- vp0 = &base_addr;
- LOOP: vp1 = phi(vp0,vp2)
- ...
- ...
- vp2 = vp1 + step
- goto LOOP
-
- If there is an inner-loop nested in loop, then step (5) will also be
- applied, and an additional update in the inner-loop will be created:
-
- vp0 = &base_addr;
- LOOP: vp1 = phi(vp0,vp2)
- ...
- inner: vp3 = phi(vp1,vp4)
- vp4 = vp3 + inner_step
- if () goto inner
- ...
- vp2 = vp1 + step
- if () goto LOOP */
-
- /** (3) Calculate the initial address the vector-pointer, and set
- the vector-pointer to point to it before the loop: **/
-
- /* Create: (&(base[init_val+offset]) in the loop preheader. */
-
- new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
- offset, loop);
- pe = loop_preheader_edge (loop);
- if (new_stmt_list)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
- gcc_assert (!new_bb);
- }
-
- *initial_address = new_temp;
-
- /* Create: p = (vectype *) initial_base */
- vec_stmt = gimple_build_assign (vect_ptr,
- fold_convert (vect_ptr_type, new_temp));
- vect_ptr_init = make_ssa_name (vect_ptr, vec_stmt);
- gimple_assign_set_lhs (vec_stmt, vect_ptr_init);
- new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
- gcc_assert (!new_bb);
-
-
- /** (4) Handle the updating of the vector-pointer inside the loop.
- This is needed when ONLY_INIT is false, and also when AT_LOOP
- is the inner-loop nested in LOOP (during outer-loop vectorization).
- **/
-
- if (only_init && at_loop == loop) /* No update in loop is required. */
- {
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- duplicate_ssa_name_ptr_info (vect_ptr_init, DR_PTR_INFO (dr));
- vptr = vect_ptr_init;
- }
- else
- {
- /* The step of the vector pointer is the Vector Size. */
- tree step = TYPE_SIZE_UNIT (vectype);
- /* One exception to the above is when the scalar step of the load in
- LOOP is zero. In this case the step here is also zero. */
- if (*inv_p)
- step = size_zero_node;
-
- standard_iv_increment_position (loop, &incr_gsi, &insert_after);
-
- create_iv (vect_ptr_init,
- fold_convert (vect_ptr_type, step),
- vect_ptr, loop, &incr_gsi, insert_after,
- &indx_before_incr, &indx_after_incr);
- incr = gsi_stmt (incr_gsi);
- set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
-
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- {
- duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
- duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
- }
- merge_alias_info (vect_ptr_init, indx_before_incr);
- merge_alias_info (vect_ptr_init, indx_after_incr);
- if (ptr_incr)
- *ptr_incr = incr;
-
- vptr = indx_before_incr;
- }
-
- if (!nested_in_vect_loop || only_init)
- return vptr;
-
-
- /** (5) Handle the updating of the vector-pointer inside the inner-loop
- nested in LOOP, if exists: **/
-
- gcc_assert (nested_in_vect_loop);
- if (!only_init)
- {
- standard_iv_increment_position (containing_loop, &incr_gsi,
- &insert_after);
- create_iv (vptr, fold_convert (vect_ptr_type, DR_STEP (dr)), vect_ptr,
- containing_loop, &incr_gsi, insert_after, &indx_before_incr,
- &indx_after_incr);
- incr = gsi_stmt (incr_gsi);
- set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
-
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- {
- duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
- duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
- }
- merge_alias_info (vect_ptr_init, indx_before_incr);
- merge_alias_info (vect_ptr_init, indx_after_incr);
- if (ptr_incr)
- *ptr_incr = incr;
-
- return indx_before_incr;
- }
- else
- gcc_unreachable ();
-}
-
-
-/* Function bump_vector_ptr
-
- Increment a pointer (to a vector type) by vector-size. If requested,
- i.e. if PTR-INCR is given, then also connect the new increment stmt
- to the existing def-use update-chain of the pointer, by modifying
- the PTR_INCR as illustrated below:
-
- The pointer def-use update-chain before this function:
- DATAREF_PTR = phi (p_0, p_2)
- ....
- PTR_INCR: p_2 = DATAREF_PTR + step
-
- The pointer def-use update-chain after this function:
- DATAREF_PTR = phi (p_0, p_2)
- ....
- NEW_DATAREF_PTR = DATAREF_PTR + BUMP
- ....
- PTR_INCR: p_2 = NEW_DATAREF_PTR + step
-
- Input:
- DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
- in the loop.
- PTR_INCR - optional. The stmt that updates the pointer in each iteration of
- the loop. The increment amount across iterations is expected
- to be vector_size.
- BSI - location where the new update stmt is to be placed.
- STMT - the original scalar memory-access stmt that is being vectorized.
- BUMP - optional. The offset by which to bump the pointer. If not given,
- the offset is assumed to be vector_size.
-
- Output: Return NEW_DATAREF_PTR as illustrated above.
-
-*/
-
-static tree
-bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
- gimple stmt, tree bump)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree ptr_var = SSA_NAME_VAR (dataref_ptr);
- tree update = TYPE_SIZE_UNIT (vectype);
- gimple incr_stmt;
- ssa_op_iter iter;
- use_operand_p use_p;
- tree new_dataref_ptr;
-
- if (bump)
- update = bump;
-
- incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, ptr_var,
- dataref_ptr, update);
- new_dataref_ptr = make_ssa_name (ptr_var, incr_stmt);
- gimple_assign_set_lhs (incr_stmt, new_dataref_ptr);
- vect_finish_stmt_generation (stmt, incr_stmt, gsi);
-
- /* Copy the points-to information if it exists. */
- if (DR_PTR_INFO (dr))
- duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
- merge_alias_info (new_dataref_ptr, dataref_ptr);
-
- if (!ptr_incr)
- return new_dataref_ptr;
-
- /* Update the vector-pointer's cross-iteration increment. */
- FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
- {
- tree use = USE_FROM_PTR (use_p);
-
- if (use == dataref_ptr)
- SET_USE (use_p, new_dataref_ptr);
- else
- gcc_assert (tree_int_cst_compare (use, update) == 0);
- }
-
- return new_dataref_ptr;
-}
-
-
-/* Function vect_create_destination_var.
-
- Create a new temporary of type VECTYPE. */
-
-static tree
-vect_create_destination_var (tree scalar_dest, tree vectype)
-{
- tree vec_dest;
- const char *new_name;
- tree type;
- enum vect_var_kind kind;
-
- kind = vectype ? vect_simple_var : vect_scalar_var;
- type = vectype ? vectype : TREE_TYPE (scalar_dest);
-
- gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
-
- new_name = get_name (scalar_dest);
- if (!new_name)
- new_name = "var_";
- vec_dest = vect_get_new_vect_var (type, kind, new_name);
- add_referenced_var (vec_dest);
-
- return vec_dest;
-}
-
-
-/* Function vect_init_vector.
-
- Insert a new stmt (INIT_STMT) that initializes a new vector variable with
- the vector elements of VECTOR_VAR. Place the initialization at BSI if it
- is not NULL. Otherwise, place the initialization at the loop preheader.
- Return the DEF of INIT_STMT.
- It will be used in the vectorization of STMT. */
-
-static tree
-vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
- gimple_stmt_iterator *gsi)
-{
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- tree new_var;
- gimple init_stmt;
- tree vec_oprnd;
- edge pe;
- tree new_temp;
- basic_block new_bb;
-
- new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
- add_referenced_var (new_var);
- init_stmt = gimple_build_assign (new_var, vector_var);
- new_temp = make_ssa_name (new_var, init_stmt);
- gimple_assign_set_lhs (init_stmt, new_temp);
-
- if (gsi)
- vect_finish_stmt_generation (stmt, init_stmt, gsi);
- else
- {
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- if (nested_in_vect_loop_p (loop, stmt))
- loop = loop->inner;
- pe = loop_preheader_edge (loop);
- new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
- gcc_assert (!new_bb);
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "created new init_stmt: ");
- print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
- }
-
- vec_oprnd = gimple_assign_lhs (init_stmt);
- return vec_oprnd;
-}
-
-
-/* For constant and loop invariant defs of SLP_NODE this function returns
- (vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.
- OP_NUM determines if we gather defs for operand 0 or operand 1 of the scalar
- stmts. NUMBER_OF_VECTORS is the number of vector defs to create. */
-
-static void
-vect_get_constant_vectors (slp_tree slp_node, VEC(tree,heap) **vec_oprnds,
- unsigned int op_num, unsigned int number_of_vectors)
-{
- VEC (gimple, heap) *stmts = SLP_TREE_SCALAR_STMTS (slp_node);
- gimple stmt = VEC_index (gimple, stmts, 0);
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- int nunits;
- tree vec_cst;
- tree t = NULL_TREE;
- int j, number_of_places_left_in_vector;
- tree vector_type;
- tree op, vop;
- int group_size = VEC_length (gimple, stmts);
- unsigned int vec_num, i;
- int number_of_copies = 1;
- VEC (tree, heap) *voprnds = VEC_alloc (tree, heap, number_of_vectors);
- bool constant_p, is_store;
-
- if (STMT_VINFO_DATA_REF (stmt_vinfo))
- {
- is_store = true;
- op = gimple_assign_rhs1 (stmt);
- }
- else
- {
- is_store = false;
- op = gimple_op (stmt, op_num + 1);
- }
-
- if (CONSTANT_CLASS_P (op))
- {
- vector_type = vectype;
- constant_p = true;
- }
- else
- {
- vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
- gcc_assert (vector_type);
- constant_p = false;
- }
-
- nunits = TYPE_VECTOR_SUBPARTS (vector_type);
-
- /* NUMBER_OF_COPIES is the number of times we need to use the same values in
- created vectors. It is greater than 1 if unrolling is performed.
-
- For example, we have two scalar operands, s1 and s2 (e.g., group of
- strided accesses of size two), while NUNITS is four (i.e., four scalars
- of this type can be packed in a vector). The output vector will contain
- two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
- will be 2).
-
- If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
- containing the operands.
-
- For example, NUNITS is four as before, and the group size is 8
- (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
- {s5, s6, s7, s8}. */
-
- number_of_copies = least_common_multiple (nunits, group_size) / group_size;
-
- number_of_places_left_in_vector = nunits;
- for (j = 0; j < number_of_copies; j++)
- {
- for (i = group_size - 1; VEC_iterate (gimple, stmts, i, stmt); i--)
- {
- if (is_store)
- op = gimple_assign_rhs1 (stmt);
- else
- op = gimple_op (stmt, op_num + 1);
-
- /* Create 'vect_ = {op0,op1,...,opn}'. */
- t = tree_cons (NULL_TREE, op, t);
-
- number_of_places_left_in_vector--;
-
- if (number_of_places_left_in_vector == 0)
- {
- number_of_places_left_in_vector = nunits;
-
- if (constant_p)
- vec_cst = build_vector (vector_type, t);
- else
- vec_cst = build_constructor_from_list (vector_type, t);
- VEC_quick_push (tree, voprnds,
- vect_init_vector (stmt, vec_cst, vector_type, NULL));
- t = NULL_TREE;
- }
- }
- }
-
- /* Since the vectors are created in the reverse order, we should invert
- them. */
- vec_num = VEC_length (tree, voprnds);
- for (j = vec_num - 1; j >= 0; j--)
- {
- vop = VEC_index (tree, voprnds, j);
- VEC_quick_push (tree, *vec_oprnds, vop);
- }
-
- VEC_free (tree, heap, voprnds);
-
- /* In case that VF is greater than the unrolling factor needed for the SLP
- group of stmts, NUMBER_OF_VECTORS to be created is greater than
- NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
- to replicate the vectors. */
- while (number_of_vectors > VEC_length (tree, *vec_oprnds))
- {
- for (i = 0; VEC_iterate (tree, *vec_oprnds, i, vop) && i < vec_num; i++)
- VEC_quick_push (tree, *vec_oprnds, vop);
- }
-}
-
-
-/* Get vectorized definitions from SLP_NODE that contains corresponding
- vectorized def-stmts. */
-
-static void
-vect_get_slp_vect_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds)
-{
- tree vec_oprnd;
- gimple vec_def_stmt;
- unsigned int i;
-
- gcc_assert (SLP_TREE_VEC_STMTS (slp_node));
-
- for (i = 0;
- VEC_iterate (gimple, SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt);
- i++)
- {
- gcc_assert (vec_def_stmt);
- vec_oprnd = gimple_get_lhs (vec_def_stmt);
- VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
- }
-}
-
-
-/* Get vectorized definitions for SLP_NODE.
- If the scalar definitions are loop invariants or constants, collect them and
- call vect_get_constant_vectors() to create vector stmts.
- Otherwise, the def-stmts must be already vectorized and the vectorized stmts
- must be stored in the LEFT/RIGHT node of SLP_NODE, and we call
- vect_get_slp_vect_defs() to retrieve them.
- If VEC_OPRNDS1 is NULL, don't get vector defs for the second operand (from
- the right node. This is used when the second operand must remain scalar. */
-
-static void
-vect_get_slp_defs (slp_tree slp_node, VEC (tree,heap) **vec_oprnds0,
- VEC (tree,heap) **vec_oprnds1)
-{
- gimple first_stmt;
- enum tree_code code;
- int number_of_vects;
- HOST_WIDE_INT lhs_size_unit, rhs_size_unit;
-
- first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
- /* The number of vector defs is determined by the number of vector statements
- in the node from which we get those statements. */
- if (SLP_TREE_LEFT (slp_node))
- number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_LEFT (slp_node));
- else
- {
- number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- /* Number of vector stmts was calculated according to LHS in
- vect_schedule_slp_instance(), fix it by replacing LHS with RHS, if
- necessary. See vect_get_smallest_scalar_type() for details. */
- vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
- &rhs_size_unit);
- if (rhs_size_unit != lhs_size_unit)
- {
- number_of_vects *= rhs_size_unit;
- number_of_vects /= lhs_size_unit;
- }
- }
-
- /* Allocate memory for vectorized defs. */
- *vec_oprnds0 = VEC_alloc (tree, heap, number_of_vects);
-
- /* SLP_NODE corresponds either to a group of stores or to a group of
- unary/binary operations. We don't call this function for loads. */
- if (SLP_TREE_LEFT (slp_node))
- /* The defs are already vectorized. */
- vect_get_slp_vect_defs (SLP_TREE_LEFT (slp_node), vec_oprnds0);
- else
- /* Build vectors from scalar defs. */
- vect_get_constant_vectors (slp_node, vec_oprnds0, 0, number_of_vects);
-
- if (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt)))
- /* Since we don't call this function with loads, this is a group of
- stores. */
- return;
-
- code = gimple_assign_rhs_code (first_stmt);
- if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS || !vec_oprnds1)
- return;
-
- /* The number of vector defs is determined by the number of vector statements
- in the node from which we get those statements. */
- if (SLP_TREE_RIGHT (slp_node))
- number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (SLP_TREE_RIGHT (slp_node));
- else
- number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
-
- *vec_oprnds1 = VEC_alloc (tree, heap, number_of_vects);
-
- if (SLP_TREE_RIGHT (slp_node))
- /* The defs are already vectorized. */
- vect_get_slp_vect_defs (SLP_TREE_RIGHT (slp_node), vec_oprnds1);
- else
- /* Build vectors from scalar defs. */
- vect_get_constant_vectors (slp_node, vec_oprnds1, 1, number_of_vects);
-}
-
-
-/* Function get_initial_def_for_induction
-
- Input:
- STMT - a stmt that performs an induction operation in the loop.
- IV_PHI - the initial value of the induction variable
-
- Output:
- Return a vector variable, initialized with the first VF values of
- the induction variable. E.g., for an iv with IV_PHI='X' and
- evolution S, for a vector of 4 units, we want to return:
- [X, X + S, X + 2*S, X + 3*S]. */
-
-static tree
-get_initial_def_for_induction (gimple iv_phi)
-{
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree scalar_type = TREE_TYPE (gimple_phi_result (iv_phi));
- tree vectype;
- int nunits;
- edge pe = loop_preheader_edge (loop);
- struct loop *iv_loop;
- basic_block new_bb;
- tree vec, vec_init, vec_step, t;
- tree access_fn;
- tree new_var;
- tree new_name;
- gimple init_stmt, induction_phi, new_stmt;
- tree induc_def, vec_def, vec_dest;
- tree init_expr, step_expr;
- int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- int i;
- bool ok;
- int ncopies;
- tree expr;
- stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
- bool nested_in_vect_loop = false;
- gimple_seq stmts = NULL;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- gimple exit_phi;
- edge latch_e;
- tree loop_arg;
- gimple_stmt_iterator si;
- basic_block bb = gimple_bb (iv_phi);
-
- vectype = get_vectype_for_scalar_type (scalar_type);
- gcc_assert (vectype);
- nunits = TYPE_VECTOR_SUBPARTS (vectype);
- ncopies = vf / nunits;
-
- gcc_assert (phi_info);
- gcc_assert (ncopies >= 1);
-
- /* Find the first insertion point in the BB. */
- si = gsi_after_labels (bb);
-
- if (INTEGRAL_TYPE_P (scalar_type) || POINTER_TYPE_P (scalar_type))
- step_expr = build_int_cst (scalar_type, 0);
- else
- step_expr = build_real (scalar_type, dconst0);
-
- /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
- if (nested_in_vect_loop_p (loop, iv_phi))
- {
- nested_in_vect_loop = true;
- iv_loop = loop->inner;
- }
- else
- iv_loop = loop;
- gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
-
- latch_e = loop_latch_edge (iv_loop);
- loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
-
- access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
- gcc_assert (access_fn);
- ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
- &init_expr, &step_expr);
- gcc_assert (ok);
- pe = loop_preheader_edge (iv_loop);
-
- /* Create the vector that holds the initial_value of the induction. */
- if (nested_in_vect_loop)
- {
- /* iv_loop is nested in the loop to be vectorized. init_expr had already
- been created during vectorization of previous stmts; We obtain it from
- the STMT_VINFO_VEC_STMT of the defining stmt. */
- tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi, loop_preheader_edge (iv_loop));
- vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
- }
- else
- {
- /* iv_loop is the loop to be vectorized. Create:
- vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
- new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
- add_referenced_var (new_var);
-
- new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
- if (stmts)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- t = NULL_TREE;
- t = tree_cons (NULL_TREE, init_expr, t);
- for (i = 1; i < nunits; i++)
- {
- /* Create: new_name_i = new_name + step_expr */
- enum tree_code code = POINTER_TYPE_P (scalar_type)
- ? POINTER_PLUS_EXPR : PLUS_EXPR;
- init_stmt = gimple_build_assign_with_ops (code, new_var,
- new_name, step_expr);
- new_name = make_ssa_name (new_var, init_stmt);
- gimple_assign_set_lhs (init_stmt, new_name);
-
- new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
- gcc_assert (!new_bb);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "created new init_stmt: ");
- print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
- }
- t = tree_cons (NULL_TREE, new_name, t);
- }
- /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
- vec = build_constructor_from_list (vectype, nreverse (t));
- vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
- }
-
-
- /* Create the vector that holds the step of the induction. */
- if (nested_in_vect_loop)
- /* iv_loop is nested in the loop to be vectorized. Generate:
- vec_step = [S, S, S, S] */
- new_name = step_expr;
- else
- {
- /* iv_loop is the loop to be vectorized. Generate:
- vec_step = [VF*S, VF*S, VF*S, VF*S] */
- expr = build_int_cst (scalar_type, vf);
- new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
- }
-
- t = NULL_TREE;
- for (i = 0; i < nunits; i++)
- t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
- gcc_assert (CONSTANT_CLASS_P (new_name));
- vec = build_vector (vectype, t);
- vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
-
-
- /* Create the following def-use cycle:
- loop prolog:
- vec_init = ...
- vec_step = ...
- loop:
- vec_iv = PHI <vec_init, vec_loop>
- ...
- STMT
- ...
- vec_loop = vec_iv + vec_step; */
-
- /* Create the induction-phi that defines the induction-operand. */
- vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
- add_referenced_var (vec_dest);
- induction_phi = create_phi_node (vec_dest, iv_loop->header);
- set_vinfo_for_stmt (induction_phi,
- new_stmt_vec_info (induction_phi, loop_vinfo));
- induc_def = PHI_RESULT (induction_phi);
-
- /* Create the iv update inside the loop */
- new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
- induc_def, vec_step);
- vec_def = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, vec_def);
- gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
- set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
-
- /* Set the arguments of the phi node: */
- add_phi_arg (induction_phi, vec_init, pe);
- add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop));
-
-
- /* In case that vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. For more details see documentation
- in vectorizable_operation. */
-
- if (ncopies > 1)
- {
- stmt_vec_info prev_stmt_vinfo;
- /* FORNOW. This restriction should be relaxed. */
- gcc_assert (!nested_in_vect_loop);
-
- /* Create the vector that holds the step of the induction. */
- expr = build_int_cst (scalar_type, nunits);
- new_name = fold_build2 (MULT_EXPR, scalar_type, expr, step_expr);
- t = NULL_TREE;
- for (i = 0; i < nunits; i++)
- t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
- gcc_assert (CONSTANT_CLASS_P (new_name));
- vec = build_vector (vectype, t);
- vec_step = vect_init_vector (iv_phi, vec, vectype, NULL);
-
- vec_def = induc_def;
- prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
- for (i = 1; i < ncopies; i++)
- {
- /* vec_i = vec_prev + vec_step */
- new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
- vec_def, vec_step);
- vec_def = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, vec_def);
-
- gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
- set_vinfo_for_stmt (new_stmt,
- new_stmt_vec_info (new_stmt, loop_vinfo));
- STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
- prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
- }
- }
-
- if (nested_in_vect_loop)
- {
- /* Find the loop-closed exit-phi of the induction, and record
- the final vector of induction results: */
- exit_phi = NULL;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
- {
- if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
- {
- exit_phi = USE_STMT (use_p);
- break;
- }
- }
- if (exit_phi)
- {
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
- /* FORNOW. Currently not supporting the case that an inner-loop induction
- is not used in the outer-loop (i.e. only outside the outer-loop). */
- gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
- && !STMT_VINFO_LIVE_P (stmt_vinfo));
-
- STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vector of inductions after inner-loop:");
- print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
- }
- }
- }
-
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "transform induction: created def-use cycle: ");
- print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
- fprintf (vect_dump, "\n");
- print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
- }
-
- STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
- return induc_def;
-}
-
-
-/* Function vect_get_vec_def_for_operand.
-
- OP is an operand in STMT. This function returns a (vector) def that will be
- used in the vectorized stmt for STMT.
-
- In the case that OP is an SSA_NAME which is defined in the loop, then
- STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
-
- In case OP is an invariant or constant, a new stmt that creates a vector def
- needs to be introduced. */
-
-static tree
-vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
-{
- tree vec_oprnd;
- gimple vec_stmt;
- gimple def_stmt;
- stmt_vec_info def_stmt_info = NULL;
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- tree vec_inv;
- tree vec_cst;
- tree t = NULL_TREE;
- tree def;
- int i;
- enum vect_def_type dt;
- bool is_simple_use;
- tree vector_type;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
- print_generic_expr (vect_dump, op, TDF_SLIM);
- }
-
- is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
- gcc_assert (is_simple_use);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- if (def)
- {
- fprintf (vect_dump, "def = ");
- print_generic_expr (vect_dump, def, TDF_SLIM);
- }
- if (def_stmt)
- {
- fprintf (vect_dump, " def_stmt = ");
- print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
- }
- }
-
- switch (dt)
- {
- /* Case 1: operand is a constant. */
- case vect_constant_def:
- {
- if (scalar_def)
- *scalar_def = op;
-
- /* Create 'vect_cst_ = {cst,cst,...,cst}' */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
-
- for (i = nunits - 1; i >= 0; --i)
- {
- t = tree_cons (NULL_TREE, op, t);
- }
- vec_cst = build_vector (vectype, t);
- return vect_init_vector (stmt, vec_cst, vectype, NULL);
- }
-
- /* Case 2: operand is defined outside the loop - loop invariant. */
- case vect_invariant_def:
- {
- vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
- gcc_assert (vector_type);
- nunits = TYPE_VECTOR_SUBPARTS (vector_type);
-
- if (scalar_def)
- *scalar_def = def;
-
- /* Create 'vec_inv = {inv,inv,..,inv}' */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Create vector_inv.");
-
- for (i = nunits - 1; i >= 0; --i)
- {
- t = tree_cons (NULL_TREE, def, t);
- }
-
- /* FIXME: use build_constructor directly. */
- vec_inv = build_constructor_from_list (vector_type, t);
- return vect_init_vector (stmt, vec_inv, vector_type, NULL);
- }
-
- /* Case 3: operand is defined inside the loop. */
- case vect_loop_def:
- {
- if (scalar_def)
- *scalar_def = NULL/* FIXME tuples: def_stmt*/;
-
- /* Get the def from the vectorized stmt. */
- def_stmt_info = vinfo_for_stmt (def_stmt);
- vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
- gcc_assert (vec_stmt);
- if (gimple_code (vec_stmt) == GIMPLE_PHI)
- vec_oprnd = PHI_RESULT (vec_stmt);
- else if (is_gimple_call (vec_stmt))
- vec_oprnd = gimple_call_lhs (vec_stmt);
- else
- vec_oprnd = gimple_assign_lhs (vec_stmt);
- return vec_oprnd;
- }
-
- /* Case 4: operand is defined by a loop header phi - reduction */
- case vect_reduction_def:
- {
- struct loop *loop;
-
- gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
- loop = (gimple_bb (def_stmt))->loop_father;
-
- /* Get the def before the loop */
- op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
- return get_initial_def_for_reduction (stmt, op, scalar_def);
- }
-
- /* Case 5: operand is defined by loop-header phi - induction. */
- case vect_induction_def:
- {
- gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
-
- /* Get the def from the vectorized stmt. */
- def_stmt_info = vinfo_for_stmt (def_stmt);
- vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
- gcc_assert (vec_stmt && gimple_code (vec_stmt) == GIMPLE_PHI);
- vec_oprnd = PHI_RESULT (vec_stmt);
- return vec_oprnd;
- }
-
- default:
- gcc_unreachable ();
- }
-}
-
-
-/* Function vect_get_vec_def_for_stmt_copy
-
- Return a vector-def for an operand. This function is used when the
- vectorized stmt to be created (by the caller to this function) is a "copy"
- created in case the vectorized result cannot fit in one vector, and several
- copies of the vector-stmt are required. In this case the vector-def is
- retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
- of the stmt that defines VEC_OPRND.
- DT is the type of the vector def VEC_OPRND.
-
- Context:
- In case the vectorization factor (VF) is bigger than the number
- of elements that can fit in a vectype (nunits), we have to generate
- more than one vector stmt to vectorize the scalar stmt. This situation
- arises when there are multiple data-types operated upon in the loop; the
- smallest data-type determines the VF, and as a result, when vectorizing
- stmts operating on wider types we need to create 'VF/nunits' "copies" of the
- vector stmt (each computing a vector of 'nunits' results, and together
- computing 'VF' results in each iteration). This function is called when
- vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
- which VF=16 and nunits=4, so the number of copies required is 4):
-
- scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
-
- S1: x = load VS1.0: vx.0 = memref0 VS1.1
- VS1.1: vx.1 = memref1 VS1.2
- VS1.2: vx.2 = memref2 VS1.3
- VS1.3: vx.3 = memref3
-
- S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
- VSnew.1: vz1 = vx.1 + ... VSnew.2
- VSnew.2: vz2 = vx.2 + ... VSnew.3
- VSnew.3: vz3 = vx.3 + ...
-
- The vectorization of S1 is explained in vectorizable_load.
- The vectorization of S2:
- To create the first vector-stmt out of the 4 copies - VSnew.0 -
- the function 'vect_get_vec_def_for_operand' is called to
- get the relevant vector-def for each operand of S2. For operand x it
- returns the vector-def 'vx.0'.
-
- To create the remaining copies of the vector-stmt (VSnew.j), this
- function is called to get the relevant vector-def for each operand. It is
- obtained from the respective VS1.j stmt, which is recorded in the
- STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
-
- For example, to obtain the vector-def 'vx.1' in order to create the
- vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
- Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
- STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
- and return its def ('vx.1').
- Overall, to create the above sequence this function will be called 3 times:
- vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
- vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
- vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
-
-static tree
-vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
-{
- gimple vec_stmt_for_operand;
- stmt_vec_info def_stmt_info;
-
- /* Do nothing; can reuse same def. */
- if (dt == vect_invariant_def || dt == vect_constant_def )
- return vec_oprnd;
-
- vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
- def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
- gcc_assert (def_stmt_info);
- vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
- gcc_assert (vec_stmt_for_operand);
- vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
- if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
- vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
- else
- vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
- return vec_oprnd;
-}
-
-
-/* Get vectorized definitions for the operands to create a copy of an original
- stmt. See vect_get_vec_def_for_stmt_copy() for details. */
-
-static void
-vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
- VEC(tree,heap) **vec_oprnds0,
- VEC(tree,heap) **vec_oprnds1)
-{
- tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
-
- vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
- VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
-
- if (vec_oprnds1 && *vec_oprnds1)
- {
- vec_oprnd = VEC_pop (tree, *vec_oprnds1);
- vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
- VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
- }
-}
-
-
-/* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not NULL. */
-
-static void
-vect_get_vec_defs (tree op0, tree op1, gimple stmt,
- VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
- slp_tree slp_node)
-{
- if (slp_node)
- vect_get_slp_defs (slp_node, vec_oprnds0, vec_oprnds1);
- else
- {
- tree vec_oprnd;
-
- *vec_oprnds0 = VEC_alloc (tree, heap, 1);
- vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
- VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
-
- if (op1)
- {
- *vec_oprnds1 = VEC_alloc (tree, heap, 1);
- vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
- VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
- }
- }
-}
-
-
-/* Function vect_finish_stmt_generation.
-
- Insert a new stmt. */
-
-static void
-vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
- gimple_stmt_iterator *gsi)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
-
- gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
-
- gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
-
- set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "add new stmt: ");
- print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
- }
-
- gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi)));
-}
-
-
-/* Function get_initial_def_for_reduction
-
- Input:
- STMT - a stmt that performs a reduction operation in the loop.
- INIT_VAL - the initial value of the reduction variable
-
- Output:
- ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
- of the reduction (used for adjusting the epilog - see below).
- Return a vector variable, initialized according to the operation that STMT
- performs. This vector will be used as the initial value of the
- vector of partial results.
-
- Option1 (adjust in epilog): Initialize the vector as follows:
- add: [0,0,...,0,0]
- mult: [1,1,...,1,1]
- min/max: [init_val,init_val,..,init_val,init_val]
- bit and/or: [init_val,init_val,..,init_val,init_val]
- and when necessary (e.g. add/mult case) let the caller know
- that it needs to adjust the result by init_val.
-
- Option2: Initialize the vector as follows:
- add: [0,0,...,0,init_val]
- mult: [1,1,...,1,init_val]
- min/max: [init_val,init_val,...,init_val]
- bit and/or: [init_val,init_val,...,init_val]
- and no adjustments are needed.
-
- For example, for the following code:
-
- s = init_val;
- for (i=0;i<n;i++)
- s = s + a[i];
-
- STMT is 's = s + a[i]', and the reduction variable is 's'.
- For a vector of 4 units, we want to return either [0,0,0,init_val],
- or [0,0,0,0] and let the caller know that it needs to adjust
- the result at the end by 'init_val'.
-
- FORNOW, we are using the 'adjust in epilog' scheme, because this way the
- initialization vector is simpler (same element in all entries).
- A cost model should help decide between these two schemes. */
-
-static tree
-get_initial_def_for_reduction (gimple stmt, tree init_val, tree *adjustment_def)
-{
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- tree scalar_type = TREE_TYPE (vectype);
- enum tree_code code = gimple_assign_rhs_code (stmt);
- tree type = TREE_TYPE (init_val);
- tree vecdef;
- tree def_for_init;
- tree init_def;
- tree t = NULL_TREE;
- int i;
- bool nested_in_vect_loop = false;
-
- gcc_assert (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type) || SCALAR_FLOAT_TYPE_P (type));
- if (nested_in_vect_loop_p (loop, stmt))
- nested_in_vect_loop = true;
- else
- gcc_assert (loop == (gimple_bb (stmt))->loop_father);
-
- vecdef = vect_get_vec_def_for_operand (init_val, stmt, NULL);
-
- switch (code)
- {
- case WIDEN_SUM_EXPR:
- case DOT_PROD_EXPR:
- case PLUS_EXPR:
- if (nested_in_vect_loop)
- *adjustment_def = vecdef;
- else
- *adjustment_def = init_val;
- /* Create a vector of zeros for init_def. */
- if (SCALAR_FLOAT_TYPE_P (scalar_type))
- def_for_init = build_real (scalar_type, dconst0);
- else
- def_for_init = build_int_cst (scalar_type, 0);
-
- for (i = nunits - 1; i >= 0; --i)
- t = tree_cons (NULL_TREE, def_for_init, t);
- init_def = build_vector (vectype, t);
- break;
-
- case MIN_EXPR:
- case MAX_EXPR:
- *adjustment_def = NULL_TREE;
- init_def = vecdef;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- return init_def;
-}
-
-
-/* Function vect_create_epilog_for_reduction
-
- Create code at the loop-epilog to finalize the result of a reduction
- computation.
-
- VECT_DEF is a vector of partial results.
- REDUC_CODE is the tree-code for the epilog reduction.
- NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
- number of elements that we can fit in a vectype (nunits). In this case
- we have to generate more than one vector stmt - i.e - we need to "unroll"
- the vector stmt by a factor VF/nunits. For more details see documentation
- in vectorizable_operation.
- STMT is the scalar reduction stmt that is being vectorized.
- REDUCTION_PHI is the phi-node that carries the reduction computation.
-
- This function:
- 1. Creates the reduction def-use cycle: sets the arguments for
- REDUCTION_PHI:
- The loop-entry argument is the vectorized initial-value of the reduction.
- The loop-latch argument is VECT_DEF - the vector of partial sums.
- 2. "Reduces" the vector of partial results VECT_DEF into a single result,
- by applying the operation specified by REDUC_CODE if available, or by
- other means (whole-vector shifts or a scalar loop).
- The function also creates a new phi node at the loop exit to preserve
- loop-closed form, as illustrated below.
-
- The flow at the entry to this function:
-
- loop:
- vec_def = phi <null, null> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT
- s_loop = scalar_stmt # (scalar) STMT
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- use <s_out0>
- use <s_out0>
-
- The above is transformed by this function into:
-
- loop:
- vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT
- s_loop = scalar_stmt # (scalar) STMT
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1>
- s_out3 = extract_field <v_out2, 0>
- s_out4 = adjust_result <s_out3>
- use <s_out4>
- use <s_out4>
-*/
-
-static void
-vect_create_epilog_for_reduction (tree vect_def, gimple stmt,
- int ncopies,
- enum tree_code reduc_code,
- gimple reduction_phi)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- stmt_vec_info prev_phi_info;
- tree vectype;
- enum machine_mode mode;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb;
- tree scalar_dest;
- tree scalar_type;
- gimple new_phi = NULL, phi;
- gimple_stmt_iterator exit_gsi;
- tree vec_dest;
- tree new_temp = NULL_TREE;
- tree new_name;
- gimple epilog_stmt = NULL;
- tree new_scalar_dest, new_dest;
- gimple exit_phi;
- tree bitsize, bitpos, bytesize;
- enum tree_code code = gimple_assign_rhs_code (stmt);
- tree adjustment_def;
- tree vec_initial_def, def;
- tree orig_name;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- bool extract_scalar_result = false;
- tree reduction_op, expr;
- gimple orig_stmt;
- gimple use_stmt;
- bool nested_in_vect_loop = false;
- VEC(gimple,heap) *phis = NULL;
- enum vect_def_type dt = vect_unknown_def_type;
- int j, i;
-
- if (nested_in_vect_loop_p (loop, stmt))
- {
- loop = loop->inner;
- nested_in_vect_loop = true;
- }
-
- switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
- {
- case GIMPLE_SINGLE_RHS:
- gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
- reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
- break;
- case GIMPLE_UNARY_RHS:
- reduction_op = gimple_assign_rhs1 (stmt);
- break;
- case GIMPLE_BINARY_RHS:
- reduction_op = gimple_assign_rhs2 (stmt);
- break;
- default:
- gcc_unreachable ();
- }
-
- vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
- gcc_assert (vectype);
- mode = TYPE_MODE (vectype);
-
- /*** 1. Create the reduction def-use cycle ***/
-
- /* For the case of reduction, vect_get_vec_def_for_operand returns
- the scalar def before the loop, that defines the initial value
- of the reduction variable. */
- vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
- &adjustment_def);
-
- phi = reduction_phi;
- def = vect_def;
- for (j = 0; j < ncopies; j++)
- {
- /* 1.1 set the loop-entry arg of the reduction-phi: */
- add_phi_arg (phi, vec_initial_def, loop_preheader_edge (loop));
-
- /* 1.2 set the loop-latch arg for the reduction-phi: */
- if (j > 0)
- def = vect_get_vec_def_for_stmt_copy (dt, def);
- add_phi_arg (phi, def, loop_latch_edge (loop));
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "transform reduction: created def-use cycle: ");
- print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
- fprintf (vect_dump, "\n");
- print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0, TDF_SLIM);
- }
-
- phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
- }
-
- /*** 2. Create epilog code
- The reduction epilog code operates across the elements of the vector
- of partial results computed by the vectorized loop.
- The reduction epilog code consists of:
- step 1: compute the scalar result in a vector (v_out2)
- step 2: extract the scalar result (s_out3) from the vector (v_out2)
- step 3: adjust the scalar result (s_out3) if needed.
-
- Step 1 can be accomplished using one the following three schemes:
- (scheme 1) using reduc_code, if available.
- (scheme 2) using whole-vector shifts, if available.
- (scheme 3) using a scalar loop. In this case steps 1+2 above are
- combined.
-
- The overall epilog code looks like this:
-
- s_out0 = phi <s_loop> # original EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1> # step 1
- s_out3 = extract_field <v_out2, 0> # step 2
- s_out4 = adjust_result <s_out3> # step 3
-
- (step 3 is optional, and steps 1 and 2 may be combined).
- Lastly, the uses of s_out0 are replaced by s_out4.
-
- ***/
-
- /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
- v_out1 = phi <v_loop> */
-
- exit_bb = single_exit (loop)->dest;
- def = vect_def;
- prev_phi_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
- set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo));
- if (j == 0)
- new_phi = phi;
- else
- {
- def = vect_get_vec_def_for_stmt_copy (dt, def);
- STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
- }
- SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
- prev_phi_info = vinfo_for_stmt (phi);
- }
- exit_gsi = gsi_after_labels (exit_bb);
-
- /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
- (i.e. when reduc_code is not available) and in the final adjustment
- code (if needed). Also get the original scalar reduction variable as
- defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
- represents a reduction pattern), the tree-code and scalar-def are
- taken from the original stmt that the pattern-stmt (STMT) replaces.
- Otherwise (it is a regular reduction) - the tree-code and scalar-def
- are taken from STMT. */
-
- orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (!orig_stmt)
- {
- /* Regular reduction */
- orig_stmt = stmt;
- }
- else
- {
- /* Reduction pattern */
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
- gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
- gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
- }
- code = gimple_assign_rhs_code (orig_stmt);
- scalar_dest = gimple_assign_lhs (orig_stmt);
- scalar_type = TREE_TYPE (scalar_dest);
- new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
- bitsize = TYPE_SIZE (scalar_type);
- bytesize = TYPE_SIZE_UNIT (scalar_type);
-
-
- /* In case this is a reduction in an inner-loop while vectorizing an outer
- loop - we don't need to extract a single scalar result at the end of the
- inner-loop. The final vector of partial results will be used in the
- vectorized outer-loop, or reduced to a scalar result at the end of the
- outer-loop. */
- if (nested_in_vect_loop)
- goto vect_finalize_reduction;
-
- /* FORNOW */
- gcc_assert (ncopies == 1);
-
- /* 2.3 Create the reduction code, using one of the three schemes described
- above. */
-
- if (reduc_code < NUM_TREE_CODES)
- {
- tree tmp;
-
- /*** Case 1: Create:
- v_out2 = reduc_expr <v_out1> */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using direct vector reduction.");
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
- epilog_stmt = gimple_build_assign (vec_dest, tmp);
- new_temp = make_ssa_name (vec_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
-
- extract_scalar_result = true;
- }
- else
- {
- enum tree_code shift_code = 0;
- bool have_whole_vector_shift = true;
- int bit_offset;
- int element_bitsize = tree_low_cst (bitsize, 1);
- int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
- tree vec_temp;
-
- if (optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
- shift_code = VEC_RSHIFT_EXPR;
- else
- have_whole_vector_shift = false;
-
- /* Regardless of whether we have a whole vector shift, if we're
- emulating the operation via tree-vect-generic, we don't want
- to use it. Only the first round of the reduction is likely
- to still be profitable via emulation. */
- /* ??? It might be better to emit a reduction tree code here, so that
- tree-vect-generic can expand the first round via bit tricks. */
- if (!VECTOR_MODE_P (mode))
- have_whole_vector_shift = false;
- else
- {
- optab optab = optab_for_tree_code (code, vectype, optab_default);
- if (optab_handler (optab, mode)->insn_code == CODE_FOR_nothing)
- have_whole_vector_shift = false;
- }
-
- if (have_whole_vector_shift)
- {
- /*** Case 2: Create:
- for (offset = VS/2; offset >= element_size; offset/=2)
- {
- Create: va' = vec_shift <va, offset>
- Create: va = vop <va, va'>
- } */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using vector shifts");
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- new_temp = PHI_RESULT (new_phi);
-
- for (bit_offset = vec_size_in_bits/2;
- bit_offset >= element_bitsize;
- bit_offset /= 2)
- {
- tree bitpos = size_int (bit_offset);
- epilog_stmt = gimple_build_assign_with_ops (shift_code, vec_dest,
- new_temp, bitpos);
- new_name = make_ssa_name (vec_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_name);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
-
- epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
- new_name, new_temp);
- new_temp = make_ssa_name (vec_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- }
-
- extract_scalar_result = true;
- }
- else
- {
- tree rhs;
-
- /*** Case 3: Create:
- s = extract_field <v_out2, 0>
- for (offset = element_size;
- offset < vector_size;
- offset += element_size;)
- {
- Create: s' = extract_field <v_out2, offset>
- Create: s = op <s, s'>
- } */
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Reduce using scalar code. ");
-
- vec_temp = PHI_RESULT (new_phi);
- vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
- rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
- bitsize_zero_node);
- epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
-
- for (bit_offset = element_bitsize;
- bit_offset < vec_size_in_bits;
- bit_offset += element_bitsize)
- {
- tree bitpos = bitsize_int (bit_offset);
- tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
- bitpos);
-
- epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
- new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_name);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
-
- epilog_stmt = gimple_build_assign_with_ops (code,
- new_scalar_dest,
- new_name, new_temp);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- }
-
- extract_scalar_result = false;
- }
- }
-
- /* 2.4 Extract the final scalar result. Create:
- s_out3 = extract_field <v_out2, bitpos> */
-
- if (extract_scalar_result)
- {
- tree rhs;
-
- gcc_assert (!nested_in_vect_loop);
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "extract scalar result");
-
- if (BYTES_BIG_ENDIAN)
- bitpos = size_binop (MULT_EXPR,
- bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
- TYPE_SIZE (scalar_type));
- else
- bitpos = bitsize_zero_node;
-
- rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
- epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- }
-
-vect_finalize_reduction:
-
- /* 2.5 Adjust the final result by the initial value of the reduction
- variable. (When such adjustment is not needed, then
- 'adjustment_def' is zero). For example, if code is PLUS we create:
- new_temp = loop_exit_def + adjustment_def */
-
- if (adjustment_def)
- {
- if (nested_in_vect_loop)
- {
- gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
- expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
- new_dest = vect_create_destination_var (scalar_dest, vectype);
- }
- else
- {
- gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
- expr = build2 (code, scalar_type, new_temp, adjustment_def);
- new_dest = vect_create_destination_var (scalar_dest, scalar_type);
- }
- epilog_stmt = gimple_build_assign (new_dest, expr);
- new_temp = make_ssa_name (new_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- }
-
-
- /* 2.6 Handle the loop-exit phi */
-
- /* Replace uses of s_out0 with uses of s_out3:
- Find the loop-closed-use at the loop exit of the original scalar result.
- (The reduction result is expected to have two immediate uses - one at the
- latch block, and one at the loop exit). */
- phis = VEC_alloc (gimple, heap, 10);
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
- {
- if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
- {
- exit_phi = USE_STMT (use_p);
- VEC_quick_push (gimple, phis, exit_phi);
- }
- }
- /* We expect to have found an exit_phi because of loop-closed-ssa form. */
- gcc_assert (!VEC_empty (gimple, phis));
-
- for (i = 0; VEC_iterate (gimple, phis, i, exit_phi); i++)
- {
- if (nested_in_vect_loop)
- {
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
-
- /* FORNOW. Currently not supporting the case that an inner-loop
- reduction is not used in the outer-loop (but only outside the
- outer-loop). */
- gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
- && !STMT_VINFO_LIVE_P (stmt_vinfo));
-
- epilog_stmt = adjustment_def ? epilog_stmt : new_phi;
- STMT_VINFO_VEC_STMT (stmt_vinfo) = epilog_stmt;
- set_vinfo_for_stmt (epilog_stmt,
- new_stmt_vec_info (epilog_stmt, loop_vinfo));
- if (adjustment_def)
- STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
- STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
- continue;
- }
-
- /* Replace the uses: */
- orig_name = PHI_RESULT (exit_phi);
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_temp);
- }
- VEC_free (gimple, heap, phis);
-}
-
-
-/* Function vectorizable_reduction.
-
- Check if STMT performs a reduction operation that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise.
-
- This function also handles reduction idioms (patterns) that have been
- recognized in advance during vect_pattern_recog. In this case, STMT may be
- of this form:
- X = pattern_expr (arg0, arg1, ..., X)
- and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
- sequence that had been detected and replaced by the pattern-stmt (STMT).
-
- In some cases of reduction patterns, the type of the reduction variable X is
- different than the type of the other arguments of STMT.
- In such cases, the vectype that is used when transforming STMT into a vector
- stmt is different than the vectype that is used to determine the
- vectorization factor, because it consists of a different number of elements
- than the actual number of elements that are being operated upon in parallel.
-
- For example, consider an accumulation of shorts into an int accumulator.
- On some targets it's possible to vectorize this pattern operating on 8
- shorts at a time (hence, the vectype for purposes of determining the
- vectorization factor should be V8HI); on the other hand, the vectype that
- is used to create the vector form is actually V4SI (the type of the result).
-
- Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
- indicates what is the actual level of parallelism (V8HI in the example), so
- that the right vectorization factor would be derived. This vectype
- corresponds to the type of arguments to the reduction stmt, and should *NOT*
- be used to create the vectorized stmt. The right vectype for the vectorized
- stmt is obtained from the type of the result X:
- get_vectype_for_scalar_type (TREE_TYPE (X))
-
- This means that, contrary to "regular" reductions (or "regular" stmts in
- general), the following equation:
- STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
- does *NOT* necessarily hold for reduction patterns. */
-
-bool
-vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt)
-{
- tree vec_dest;
- tree scalar_dest;
- tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- enum tree_code code, orig_code, epilog_reduc_code = 0;
- enum machine_mode vec_mode;
- int op_type;
- optab optab, reduc_optab;
- tree new_temp = NULL_TREE;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt;
- gimple new_phi = NULL;
- tree scalar_type;
- bool is_simple_use;
- gimple orig_stmt;
- stmt_vec_info orig_stmt_info;
- tree expr = NULL_TREE;
- int i;
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
- int epilog_copies;
- stmt_vec_info prev_stmt_info, prev_phi_info;
- gimple first_phi = NULL;
- bool single_defuse_cycle = false;
- tree reduc_def;
- gimple new_stmt = NULL;
- int j;
- tree ops[3];
-
- if (nested_in_vect_loop_p (loop, stmt))
- loop = loop->inner;
-
- gcc_assert (ncopies >= 1);
-
- /* FORNOW: SLP not supported. */
- if (STMT_SLP_TYPE (stmt_info))
- return false;
-
- /* 1. Is vectorizable reduction? */
-
- /* Not supportable if the reduction variable is used in the loop. */
- if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
- return false;
-
- /* Reductions that are not used even in an enclosing outer-loop,
- are expected to be "live" (used out of the loop). */
- if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_loop
- && !STMT_VINFO_LIVE_P (stmt_info))
- return false;
-
- /* Make sure it was already recognized as a reduction computation. */
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def)
- return false;
-
- /* 2. Has this been recognized as a reduction pattern?
-
- Check if STMT represents a pattern that has been recognized
- in earlier analysis stages. For stmts that represent a pattern,
- the STMT_VINFO_RELATED_STMT field records the last stmt in
- the original sequence that constitutes the pattern. */
-
- orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt)
- {
- orig_stmt_info = vinfo_for_stmt (orig_stmt);
- gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
- gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
- gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
- }
-
- /* 3. Check the operands of the operation. The first operands are defined
- inside the loop body. The last operand is the reduction variable,
- which is defined by the loop-header-phi. */
-
- gcc_assert (is_gimple_assign (stmt));
-
- /* Flatten RHS */
- switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
- {
- case GIMPLE_SINGLE_RHS:
- op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
- if (op_type == ternary_op)
- {
- tree rhs = gimple_assign_rhs1 (stmt);
- ops[0] = TREE_OPERAND (rhs, 0);
- ops[1] = TREE_OPERAND (rhs, 1);
- ops[2] = TREE_OPERAND (rhs, 2);
- code = TREE_CODE (rhs);
- }
- else
- return false;
- break;
-
- case GIMPLE_BINARY_RHS:
- code = gimple_assign_rhs_code (stmt);
- op_type = TREE_CODE_LENGTH (code);
- gcc_assert (op_type == binary_op);
- ops[0] = gimple_assign_rhs1 (stmt);
- ops[1] = gimple_assign_rhs2 (stmt);
- break;
-
- case GIMPLE_UNARY_RHS:
- return false;
-
- default:
- gcc_unreachable ();
- }
-
- scalar_dest = gimple_assign_lhs (stmt);
- scalar_type = TREE_TYPE (scalar_dest);
- if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
- && !SCALAR_FLOAT_TYPE_P (scalar_type))
- return false;
-
- /* All uses but the last are expected to be defined in the loop.
- The last use is the reduction variable. */
- for (i = 0; i < op_type-1; i++)
- {
- is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, &def_stmt,
- &def, &dt);
- gcc_assert (is_simple_use);
- if (dt != vect_loop_def
- && dt != vect_invariant_def
- && dt != vect_constant_def
- && dt != vect_induction_def)
- return false;
- }
-
- is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, &def_stmt, &def, &dt);
- gcc_assert (is_simple_use);
- gcc_assert (dt == vect_reduction_def);
- gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
- if (orig_stmt)
- gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
- else
- gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, def_stmt));
-
- if (STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
- return false;
-
- /* 4. Supportable by target? */
-
- /* 4.1. check support for the operation in the loop */
- optab = optab_for_tree_code (code, vectype, optab_default);
- if (!optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab.");
- return false;
- }
- vec_mode = TYPE_MODE (vectype);
- if (optab_handler (optab, vec_mode)->insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "op not supported by target.");
- if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
- || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- return false;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "proceeding using word mode.");
- }
-
- /* Worthwhile without SIMD support? */
- if (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not worthwhile without SIMD support.");
- return false;
- }
-
- /* 4.2. Check support for the epilog operation.
-
- If STMT represents a reduction pattern, then the type of the
- reduction variable may be different than the type of the rest
- of the arguments. For example, consider the case of accumulation
- of shorts into an int accumulator; The original code:
- S1: int_a = (int) short_a;
- orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
-
- was replaced with:
- STMT: int_acc = widen_sum <short_a, int_acc>
-
- This means that:
- 1. The tree-code that is used to create the vector operation in the
- epilog code (that reduces the partial results) is not the
- tree-code of STMT, but is rather the tree-code of the original
- stmt from the pattern that STMT is replacing. I.e, in the example
- above we want to use 'widen_sum' in the loop, but 'plus' in the
- epilog.
- 2. The type (mode) we use to check available target support
- for the vector operation to be created in the *epilog*, is
- determined by the type of the reduction variable (in the example
- above we'd check this: plus_optab[vect_int_mode]).
- However the type (mode) we use to check available target support
- for the vector operation to be created *inside the loop*, is
- determined by the type of the other arguments to STMT (in the
- example we'd check this: widen_sum_optab[vect_short_mode]).
-
- This is contrary to "regular" reductions, in which the types of all
- the arguments are the same as the type of the reduction variable.
- For "regular" reductions we can therefore use the same vector type
- (and also the same tree-code) when generating the epilog code and
- when generating the code inside the loop. */
-
- if (orig_stmt)
- {
- /* This is a reduction pattern: get the vectype from the type of the
- reduction variable, and get the tree-code from orig_stmt. */
- orig_code = gimple_assign_rhs_code (orig_stmt);
- vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
- if (!vectype)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "unsupported data-type ");
- print_generic_expr (vect_dump, TREE_TYPE (def), TDF_SLIM);
- }
- return false;
- }
-
- vec_mode = TYPE_MODE (vectype);
- }
- else
- {
- /* Regular reduction: use the same vectype and tree-code as used for
- the vector code inside the loop can be used for the epilog code. */
- orig_code = code;
- }
-
- if (!reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
- return false;
- reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype, optab_default);
- if (!reduc_optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab for reduction.");
- epilog_reduc_code = NUM_TREE_CODES;
- }
- if (optab_handler (reduc_optab, vec_mode)->insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduc op not supported by target.");
- epilog_reduc_code = NUM_TREE_CODES;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
- if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
- return false;
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform reduction.");
-
- /* Create the destination vector */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. For more details see documentation
- in vectorizable_operation. */
-
- /* If the reduction is used in an outer loop we need to generate
- VF intermediate results, like so (e.g. for ncopies=2):
- r0 = phi (init, r0)
- r1 = phi (init, r1)
- r0 = x0 + r0;
- r1 = x1 + r1;
- (i.e. we generate VF results in 2 registers).
- In this case we have a separate def-use cycle for each copy, and therefore
- for each copy we get the vector def for the reduction variable from the
- respective phi node created for this copy.
-
- Otherwise (the reduction is unused in the loop nest), we can combine
- together intermediate results, like so (e.g. for ncopies=2):
- r = phi (init, r)
- r = x0 + r;
- r = x1 + r;
- (i.e. we generate VF/2 results in a single register).
- In this case for each copy we get the vector def for the reduction variable
- from the vectorized reduction operation generated in the previous iteration.
- */
-
- if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_loop)
- {
- single_defuse_cycle = true;
- epilog_copies = 1;
- }
- else
- epilog_copies = ncopies;
-
- prev_stmt_info = NULL;
- prev_phi_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- if (j == 0 || !single_defuse_cycle)
- {
- /* Create the reduction-phi that defines the reduction-operand. */
- new_phi = create_phi_node (vec_dest, loop->header);
- set_vinfo_for_stmt (new_phi, new_stmt_vec_info (new_phi, loop_vinfo));
- }
-
- /* Handle uses. */
- if (j == 0)
- {
- loop_vec_def0 = vect_get_vec_def_for_operand (ops[0], stmt, NULL);
- if (op_type == ternary_op)
- {
- loop_vec_def1 = vect_get_vec_def_for_operand (ops[1], stmt, NULL);
- }
-
- /* Get the vector def for the reduction variable from the phi node */
- reduc_def = PHI_RESULT (new_phi);
- first_phi = new_phi;
- }
- else
- {
- enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
- loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
- if (op_type == ternary_op)
- loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def1);
-
- if (single_defuse_cycle)
- reduc_def = gimple_assign_lhs (new_stmt);
- else
- reduc_def = PHI_RESULT (new_phi);
-
- STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
- }
-
- /* Arguments are ready. create the new vector stmt. */
- if (op_type == binary_op)
- expr = build2 (code, vectype, loop_vec_def0, reduc_def);
- else
- expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
- reduc_def);
- new_stmt = gimple_build_assign (vec_dest, expr);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- prev_phi_info = vinfo_for_stmt (new_phi);
- }
-
- /* Finalize the reduction-phi (set its arguments) and create the
- epilog reduction code. */
- if (!single_defuse_cycle)
- new_temp = gimple_assign_lhs (*vec_stmt);
- vect_create_epilog_for_reduction (new_temp, stmt, epilog_copies,
- epilog_reduc_code, first_phi);
- return true;
-}
-
-/* Checks if CALL can be vectorized in type VECTYPE. Returns
- a function declaration if the target has a vectorized version
- of the function, or NULL_TREE if the function cannot be vectorized. */
-
-tree
-vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
-{
- tree fndecl = gimple_call_fndecl (call);
- enum built_in_function code;
-
- /* We only handle functions that do not read or clobber memory -- i.e.
- const or novops ones. */
- if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
- return NULL_TREE;
-
- if (!fndecl
- || TREE_CODE (fndecl) != FUNCTION_DECL
- || !DECL_BUILT_IN (fndecl))
- return NULL_TREE;
-
- code = DECL_FUNCTION_CODE (fndecl);
- return targetm.vectorize.builtin_vectorized_function (code, vectype_out,
- vectype_in);
-}
-
-/* Function vectorizable_call.
-
- Check if STMT performs a function call that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op, type;
- tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
- tree vectype_out, vectype_in;
- int nunits_in;
- int nunits_out;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- tree fndecl, new_temp, def, rhs_type, lhs_type;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- gimple new_stmt;
- int ncopies, j;
- VEC(tree, heap) *vargs = NULL;
- enum { NARROW, NONE, WIDEN } modifier;
- size_t i, nargs;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* FORNOW: SLP not supported. */
- if (STMT_SLP_TYPE (stmt_info))
- return false;
-
- /* Is STMT a vectorizable call? */
- if (!is_gimple_call (stmt))
- return false;
-
- if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
- return false;
-
- /* Process function arguments. */
- rhs_type = NULL_TREE;
- nargs = gimple_call_num_args (stmt);
-
- /* Bail out if the function has more than two arguments, we
- do not have interesting builtin functions to vectorize with
- more than two arguments. No arguments is also not good. */
- if (nargs == 0 || nargs > 2)
- return false;
-
- for (i = 0; i < nargs; i++)
- {
- op = gimple_call_arg (stmt, i);
-
- /* We can only handle calls with arguments of the same type. */
- if (rhs_type
- && rhs_type != TREE_TYPE (op))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "argument types differ.");
- return false;
- }
- rhs_type = TREE_TYPE (op);
-
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt[i]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
- }
-
- vectype_in = get_vectype_for_scalar_type (rhs_type);
- if (!vectype_in)
- return false;
- nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
-
- lhs_type = TREE_TYPE (gimple_call_lhs (stmt));
- vectype_out = get_vectype_for_scalar_type (lhs_type);
- if (!vectype_out)
- return false;
- nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
-
- /* FORNOW */
- if (nunits_in == nunits_out / 2)
- modifier = NARROW;
- else if (nunits_out == nunits_in)
- modifier = NONE;
- else if (nunits_out == nunits_in / 2)
- modifier = WIDEN;
- else
- return false;
-
- /* For now, we only vectorize functions if a target specific builtin
- is available. TODO -- in some cases, it might be profitable to
- insert the calls for pieces of the vector, in order to be able
- to vectorize other operations in the loop. */
- fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
- if (fndecl == NULL_TREE)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "function is not vectorizable.");
-
- return false;
- }
-
- gcc_assert (ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS));
-
- if (modifier == NARROW)
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
-
- /* Sanity check: make sure that at least one copy of the vectorized stmt
- needs to be generated. */
- gcc_assert (ncopies >= 1);
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_call ===");
- vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform operation.");
-
- /* Handle def. */
- scalar_dest = gimple_call_lhs (stmt);
- vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
-
- prev_stmt_info = NULL;
- switch (modifier)
- {
- case NONE:
- for (j = 0; j < ncopies; ++j)
- {
- /* Build argument list for the vectorized call. */
- if (j == 0)
- vargs = VEC_alloc (tree, heap, nargs);
- else
- VEC_truncate (tree, vargs, 0);
-
- for (i = 0; i < nargs; i++)
- {
- op = gimple_call_arg (stmt, i);
- if (j == 0)
- vec_oprnd0
- = vect_get_vec_def_for_operand (op, stmt, NULL);
- else
- vec_oprnd0
- = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
-
- VEC_quick_push (tree, vargs, vec_oprnd0);
- }
-
- new_stmt = gimple_build_call_vec (fndecl, vargs);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_call_set_lhs (new_stmt, new_temp);
-
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
-
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
-
- break;
-
- case NARROW:
- for (j = 0; j < ncopies; ++j)
- {
- /* Build argument list for the vectorized call. */
- if (j == 0)
- vargs = VEC_alloc (tree, heap, nargs * 2);
- else
- VEC_truncate (tree, vargs, 0);
-
- for (i = 0; i < nargs; i++)
- {
- op = gimple_call_arg (stmt, i);
- if (j == 0)
- {
- vec_oprnd0
- = vect_get_vec_def_for_operand (op, stmt, NULL);
- vec_oprnd1
- = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
- }
- else
- {
- vec_oprnd0
- = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd1);
- vec_oprnd1
- = vect_get_vec_def_for_stmt_copy (dt[nargs], vec_oprnd0);
- }
-
- VEC_quick_push (tree, vargs, vec_oprnd0);
- VEC_quick_push (tree, vargs, vec_oprnd1);
- }
-
- new_stmt = gimple_build_call_vec (fndecl, vargs);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_call_set_lhs (new_stmt, new_temp);
-
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
-
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
-
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
-
- break;
-
- case WIDEN:
- /* No current target implements this case. */
- return false;
- }
-
- VEC_free (tree, heap, vargs);
-
- /* Update the exception handling table with the vector stmt if necessary. */
- if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
- gimple_purge_dead_eh_edges (gimple_bb (stmt));
-
- /* The call in STMT might prevent it from being removed in dce.
- We however cannot remove it here, due to the way the ssa name
- it defines is mapped to the new definition. So just replace
- rhs of the statement with something harmless. */
-
- type = TREE_TYPE (scalar_dest);
- new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
- fold_convert (type, integer_zero_node));
- set_vinfo_for_stmt (new_stmt, stmt_info);
- set_vinfo_for_stmt (stmt, NULL);
- STMT_VINFO_STMT (stmt_info) = new_stmt;
- gsi_replace (gsi, new_stmt, false);
- SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
-
- return true;
-}
-
-
-/* Function vect_gen_widened_results_half
-
- Create a vector stmt whose code, type, number of arguments, and result
- variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
- VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
- In the case that CODE is a CALL_EXPR, this means that a call to DECL
- needs to be created (DECL is a function-decl of a target-builtin).
- STMT is the original scalar stmt that we are vectorizing. */
-
-static gimple
-vect_gen_widened_results_half (enum tree_code code,
- tree decl,
- tree vec_oprnd0, tree vec_oprnd1, int op_type,
- tree vec_dest, gimple_stmt_iterator *gsi,
- gimple stmt)
-{
- gimple new_stmt;
- tree new_temp;
- tree sym;
- ssa_op_iter iter;
-
- /* Generate half of the widened result: */
- if (code == CALL_EXPR)
- {
- /* Target specific support */
- if (op_type == binary_op)
- new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
- else
- new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_call_set_lhs (new_stmt, new_temp);
- }
- else
- {
- /* Generic support */
- gcc_assert (op_type == TREE_CODE_LENGTH (code));
- if (op_type != binary_op)
- vec_oprnd1 = NULL;
- new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
- vec_oprnd1);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- }
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (code == CALL_EXPR)
- {
- FOR_EACH_SSA_TREE_OPERAND (sym, new_stmt, iter, SSA_OP_ALL_VIRTUALS)
- {
- if (TREE_CODE (sym) == SSA_NAME)
- sym = SSA_NAME_VAR (sym);
- mark_sym_for_renaming (sym);
- }
- }
-
- return new_stmt;
-}
-
-
-/* Check if STMT performs a conversion operation, that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt, slp_tree slp_node)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op0;
- tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
- tree decl1 = NULL_TREE, decl2 = NULL_TREE;
- tree new_temp;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- gimple new_stmt = NULL;
- stmt_vec_info prev_stmt_info;
- int nunits_in;
- int nunits_out;
- tree vectype_out, vectype_in;
- int ncopies, j;
- tree expr;
- tree rhs_type, lhs_type;
- tree builtin_decl;
- enum { NARROW, NONE, WIDEN } modifier;
- int i;
- VEC(tree,heap) *vec_oprnds0 = NULL;
- tree vop0;
- tree integral_type;
- VEC(tree,heap) *dummy = NULL;
- int dummy_int;
-
- /* Is STMT a vectorizable conversion? */
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- if (!is_gimple_assign (stmt))
- return false;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
- return false;
-
- /* Check types of lhs and rhs. */
- op0 = gimple_assign_rhs1 (stmt);
- rhs_type = TREE_TYPE (op0);
- vectype_in = get_vectype_for_scalar_type (rhs_type);
- if (!vectype_in)
- return false;
- nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
-
- scalar_dest = gimple_assign_lhs (stmt);
- lhs_type = TREE_TYPE (scalar_dest);
- vectype_out = get_vectype_for_scalar_type (lhs_type);
- if (!vectype_out)
- return false;
- nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
-
- /* FORNOW */
- if (nunits_in == nunits_out / 2)
- modifier = NARROW;
- else if (nunits_out == nunits_in)
- modifier = NONE;
- else if (nunits_out == nunits_in / 2)
- modifier = WIDEN;
- else
- return false;
-
- if (modifier == NONE)
- gcc_assert (STMT_VINFO_VECTYPE (stmt_info) == vectype_out);
-
- /* Bail out if the types are both integral or non-integral. */
- if ((INTEGRAL_TYPE_P (rhs_type) && INTEGRAL_TYPE_P (lhs_type))
- || (!INTEGRAL_TYPE_P (rhs_type) && !INTEGRAL_TYPE_P (lhs_type)))
- return false;
-
- integral_type = INTEGRAL_TYPE_P (rhs_type) ? vectype_in : vectype_out;
-
- if (modifier == NARROW)
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
-
- /* FORNOW: SLP with multiple types is not supported. The SLP analysis verifies
- this, so we can safely override NCOPIES with 1 here. */
- if (slp_node)
- ncopies = 1;
-
- /* Sanity check: make sure that at least one copy of the vectorized stmt
- needs to be generated. */
- gcc_assert (ncopies >= 1);
-
- /* Check the operands of the operation. */
- if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- /* Supportable by target? */
- if ((modifier == NONE
- && !targetm.vectorize.builtin_conversion (code, integral_type))
- || (modifier == WIDEN
- && !supportable_widening_operation (code, stmt, vectype_in,
- &decl1, &decl2,
- &code1, &code2,
- &dummy_int, &dummy))
- || (modifier == NARROW
- && !supportable_narrowing_operation (code, stmt, vectype_in,
- &code1, &dummy_int, &dummy)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "conversion not supported by target.");
- return false;
- }
-
- if (modifier != NONE)
- {
- STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
- /* FORNOW: SLP not supported. */
- if (STMT_SLP_TYPE (stmt_info))
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
- return true;
- }
-
- /** Transform. **/
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform conversion.");
-
- /* Handle def. */
- vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
-
- if (modifier == NONE && !slp_node)
- vec_oprnds0 = VEC_alloc (tree, heap, 1);
-
- prev_stmt_info = NULL;
- switch (modifier)
- {
- case NONE:
- for (j = 0; j < ncopies; j++)
- {
- tree sym;
- ssa_op_iter iter;
-
- if (j == 0)
- vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
- else
- vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
-
- builtin_decl =
- targetm.vectorize.builtin_conversion (code, integral_type);
- for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
- {
- /* Arguments are ready. create the new vector stmt. */
- new_stmt = gimple_build_call (builtin_decl, 1, vop0);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_call_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
- FOR_EACH_SSA_TREE_OPERAND (sym, new_stmt, iter,
- SSA_OP_ALL_VIRTUALS)
- {
- if (TREE_CODE (sym) == SSA_NAME)
- sym = SSA_NAME_VAR (sym);
- mark_sym_for_renaming (sym);
- }
- if (slp_node)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
- }
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
- break;
-
- case WIDEN:
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to
- generate more than one vector stmt - i.e - we need to "unroll"
- the vector stmt by a factor VF/nunits. */
- for (j = 0; j < ncopies; j++)
- {
- if (j == 0)
- vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
- else
- vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
-
- STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
-
- /* Generate first half of the widened result: */
- new_stmt
- = vect_gen_widened_results_half (code1, decl1,
- vec_oprnd0, vec_oprnd1,
- unary_op, vec_dest, gsi, stmt);
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
-
- /* Generate second half of the widened result: */
- new_stmt
- = vect_gen_widened_results_half (code2, decl2,
- vec_oprnd0, vec_oprnd1,
- unary_op, vec_dest, gsi, stmt);
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
- break;
-
- case NARROW:
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to
- generate more than one vector stmt - i.e - we need to "unroll"
- the vector stmt by a factor VF/nunits. */
- for (j = 0; j < ncopies; j++)
- {
- /* Handle uses. */
- if (j == 0)
- {
- vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
- vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
- }
- else
- {
- vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
- vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
- }
-
- /* Arguments are ready. Create the new vector stmt. */
- expr = build2 (code1, vectype_out, vec_oprnd0, vec_oprnd1);
- new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
- vec_oprnd1);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
-
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
-
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
- }
-
- if (vec_oprnds0)
- VEC_free (tree, heap, vec_oprnds0);
-
- return true;
-}
-
-
-/* Function vectorizable_assignment.
-
- Check if STMT performs an assignment (copy) that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt, slp_tree slp_node)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- tree new_temp;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies;
- int i;
- VEC(tree,heap) *vec_oprnds = NULL;
- tree vop;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp_node)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
-
- gcc_assert (ncopies >= 1);
- if (ncopies > 1)
- return false; /* FORNOW */
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is vectorizable assignment? */
- if (!is_gimple_assign (stmt))
- return false;
-
- scalar_dest = gimple_assign_lhs (stmt);
- if (TREE_CODE (scalar_dest) != SSA_NAME)
- return false;
-
- if (gimple_assign_single_p (stmt)
- || gimple_assign_rhs_code (stmt) == PAREN_EXPR)
- op = gimple_assign_rhs1 (stmt);
- else
- return false;
-
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt[0]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_assignment ===");
- vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform assignment.");
-
- /* Handle def. */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Handle use. */
- vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
-
- /* Arguments are ready. create the new vector stmt. */
- for (i = 0; VEC_iterate (tree, vec_oprnds, i, vop); i++)
- {
- *vec_stmt = gimple_build_assign (vec_dest, vop);
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- gimple_assign_set_lhs (*vec_stmt, new_temp);
- vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt;
-
- if (slp_node)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), *vec_stmt);
- }
-
- VEC_free (tree, heap, vec_oprnds);
- return true;
-}
-
-
-/* Function vect_min_worthwhile_factor.
-
- For a loop where we could vectorize the operation indicated by CODE,
- return the minimum vectorization factor that makes it worthwhile
- to use generic vectors. */
-static int
-vect_min_worthwhile_factor (enum tree_code code)
-{
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- case NEGATE_EXPR:
- return 4;
-
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- case BIT_NOT_EXPR:
- return 2;
-
- default:
- return INT_MAX;
- }
-}
-
-
-/* Function vectorizable_induction
-
- Check if PHI performs an induction computation that can be vectorized.
- If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
- phi to replace it, put it in VEC_STMT, and add it to the same basic block.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
- gimple *vec_stmt)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (phi);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
- tree vec_def;
-
- gcc_assert (ncopies >= 1);
- /* FORNOW. This restriction should be relaxed. */
- if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "multiple types in nested loop.");
- return false;
- }
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- /* FORNOW: SLP not supported. */
- if (STMT_SLP_TYPE (stmt_info))
- return false;
-
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
-
- if (gimple_code (phi) != GIMPLE_PHI)
- return false;
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_induction ===");
- vect_model_induction_cost (stmt_info, ncopies);
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform induction phi.");
-
- vec_def = get_initial_def_for_induction (phi);
- *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
- return true;
-}
-
-
-/* Function vectorizable_operation.
-
- Check if STMT performs a binary or unary operation that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt, slp_tree slp_node)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op0, op1 = NULL;
- tree vec_oprnd1 = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum tree_code code;
- enum machine_mode vec_mode;
- tree new_temp;
- int op_type;
- optab optab;
- int icode;
- enum machine_mode optab_op2_mode;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- gimple new_stmt = NULL;
- stmt_vec_info prev_stmt_info;
- int nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
- int nunits_out;
- tree vectype_out;
- int ncopies;
- int j, i;
- VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
- tree vop0, vop1;
- unsigned int k;
- bool shift_p = false;
- bool scalar_shift_arg = false;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp_node)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
-
- gcc_assert (ncopies >= 1);
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is STMT a vectorizable binary/unary operation? */
- if (!is_gimple_assign (stmt))
- return false;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return false;
-
- scalar_dest = gimple_assign_lhs (stmt);
- vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
- if (!vectype_out)
- return false;
- nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
- if (nunits_out != nunits_in)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
-
- /* For pointer addition, we should use the normal plus for
- the vector addition. */
- if (code == POINTER_PLUS_EXPR)
- code = PLUS_EXPR;
-
- /* Support only unary or binary operations. */
- op_type = TREE_CODE_LENGTH (code);
- if (op_type != unary_op && op_type != binary_op)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
- return false;
- }
-
- op0 = gimple_assign_rhs1 (stmt);
- if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- if (op_type == binary_op)
- {
- op1 = gimple_assign_rhs2 (stmt);
- if (!vect_is_simple_use (op1, loop_vinfo, &def_stmt, &def, &dt[1]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
- }
-
- /* If this is a shift/rotate, determine whether the shift amount is a vector,
- or scalar. If the shift/rotate amount is a vector, use the vector/vector
- shift optabs. */
- if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
- || code == RROTATE_EXPR)
- {
- shift_p = true;
-
- /* vector shifted by vector */
- if (dt[1] == vect_loop_def)
- {
- optab = optab_for_tree_code (code, vectype, optab_vector);
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vector/vector shift/rotate found.");
- }
-
- /* See if the machine has a vector shifted by scalar insn and if not
- then see if it has a vector shifted by vector insn */
- else if (dt[1] == vect_constant_def || dt[1] == vect_invariant_def)
- {
- optab = optab_for_tree_code (code, vectype, optab_scalar);
- if (optab
- && (optab_handler (optab, TYPE_MODE (vectype))->insn_code
- != CODE_FOR_nothing))
- {
- scalar_shift_arg = true;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "vector/scalar shift/rotate found.");
- }
- else
- {
- optab = optab_for_tree_code (code, vectype, optab_vector);
- if (vect_print_dump_info (REPORT_DETAILS)
- && optab
- && (optab_handler (optab, TYPE_MODE (vectype))->insn_code
- != CODE_FOR_nothing))
- fprintf (vect_dump, "vector/vector shift/rotate found.");
- }
- }
-
- else
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "operand mode requires invariant argument.");
- return false;
- }
- }
- else
- optab = optab_for_tree_code (code, vectype, optab_default);
-
- /* Supportable by target? */
- if (!optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab.");
- return false;
- }
- vec_mode = TYPE_MODE (vectype);
- icode = (int) optab_handler (optab, vec_mode)->insn_code;
- if (icode == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "op not supported by target.");
- /* Check only during analysis. */
- if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
- || (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code)
- && !vec_stmt))
- return false;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "proceeding using word mode.");
- }
-
- /* Worthwhile without SIMD support? Check only during analysis. */
- if (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- < vect_min_worthwhile_factor (code)
- && !vec_stmt)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "not worthwhile without SIMD support.");
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_operation ===");
- vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform binary/unary operation.");
-
- /* Handle def. */
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Allocate VECs for vector operands. In case of SLP, vector operands are
- created in the previous stages of the recursion, so no allocation is
- needed, except for the case of shift with scalar shift argument. In that
- case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
- be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
- In case of loop-based vectorization we allocate VECs of size 1. We
- allocate VEC_OPRNDS1 only in case of binary operation. */
- if (!slp_node)
- {
- vec_oprnds0 = VEC_alloc (tree, heap, 1);
- if (op_type == binary_op)
- vec_oprnds1 = VEC_alloc (tree, heap, 1);
- }
- else if (scalar_shift_arg)
- vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. In doing so, we record a pointer
- from one copy of the vector stmt to the next, in the field
- STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
- stages to find the correct vector defs to be used when vectorizing
- stmts that use the defs of the current stmt. The example below illustrates
- the vectorization process when VF=16 and nunits=4 (i.e - we need to create
- 4 vectorized stmts):
-
- before vectorization:
- RELATED_STMT VEC_STMT
- S1: x = memref - -
- S2: z = x + 1 - -
-
- step 1: vectorize stmt S1 (done in vectorizable_load. See more details
- there):
- RELATED_STMT VEC_STMT
- VS1_0: vx0 = memref0 VS1_1 -
- VS1_1: vx1 = memref1 VS1_2 -
- VS1_2: vx2 = memref2 VS1_3 -
- VS1_3: vx3 = memref3 - -
- S1: x = load - VS1_0
- S2: z = x + 1 - -
-
- step2: vectorize stmt S2 (done here):
- To vectorize stmt S2 we first need to find the relevant vector
- def for the first operand 'x'. This is, as usual, obtained from
- the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
- that defines 'x' (S1). This way we find the stmt VS1_0, and the
- relevant vector def 'vx0'. Having found 'vx0' we can generate
- the vector stmt VS2_0, and as usual, record it in the
- STMT_VINFO_VEC_STMT of stmt S2.
- When creating the second copy (VS2_1), we obtain the relevant vector
- def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
- stmt VS1_0. This way we find the stmt VS1_1 and the relevant
- vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
- pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
- Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
- chain of stmts and pointers:
- RELATED_STMT VEC_STMT
- VS1_0: vx0 = memref0 VS1_1 -
- VS1_1: vx1 = memref1 VS1_2 -
- VS1_2: vx2 = memref2 VS1_3 -
- VS1_3: vx3 = memref3 - -
- S1: x = load - VS1_0
- VS2_0: vz0 = vx0 + v1 VS2_1 -
- VS2_1: vz1 = vx1 + v1 VS2_2 -
- VS2_2: vz2 = vx2 + v1 VS2_3 -
- VS2_3: vz3 = vx3 + v1 - -
- S2: z = x + 1 - VS2_0 */
-
- prev_stmt_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- /* Handle uses. */
- if (j == 0)
- {
- if (op_type == binary_op && scalar_shift_arg)
- {
- /* Vector shl and shr insn patterns can be defined with scalar
- operand 2 (shift operand). In this case, use constant or loop
- invariant op1 directly, without extending it to vector mode
- first. */
- optab_op2_mode = insn_data[icode].operand[2].mode;
- if (!VECTOR_MODE_P (optab_op2_mode))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "operand 1 using scalar mode.");
- vec_oprnd1 = op1;
- VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
- if (slp_node)
- {
- /* Store vec_oprnd1 for every vector stmt to be created
- for SLP_NODE. We check during the analysis that all the
- shift arguments are the same.
- TODO: Allow different constants for different vector
- stmts generated for an SLP instance. */
- for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
- VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
- }
- }
- }
-
- /* vec_oprnd1 is available if operand 1 should be of a scalar-type
- (a special case for certain kind of vector shifts); otherwise,
- operand 1 should be of a vector type (the usual case). */
- if (op_type == binary_op && !vec_oprnd1)
- vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
- slp_node);
- else
- vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
- slp_node);
- }
- else
- vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
-
- /* Arguments are ready. Create the new vector stmt. */
- for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
- {
- vop1 = ((op_type == binary_op)
- ? VEC_index (tree, vec_oprnds1, i) : NULL);
- new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
- if (slp_node)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
- }
-
- if (slp_node)
- continue;
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
-
- VEC_free (tree, heap, vec_oprnds0);
- if (vec_oprnds1)
- VEC_free (tree, heap, vec_oprnds1);
-
- return true;
-}
-
-
-/* Get vectorized definitions for loop-based vectorization. For the first
- operand we call vect_get_vec_def_for_operand() (with OPRND containing
- scalar operand), and for the rest we get a copy with
- vect_get_vec_def_for_stmt_copy() using the previous vector definition
- (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
- The vectors are collected into VEC_OPRNDS. */
-
-static void
-vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
- VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
-{
- tree vec_oprnd;
-
- /* Get first vector operand. */
- /* All the vector operands except the very first one (that is scalar oprnd)
- are stmt copies. */
- if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
- vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
- else
- vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
-
- VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
-
- /* Get second vector operand. */
- vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
- VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
-
- *oprnd = vec_oprnd;
-
- /* For conversion in multiple steps, continue to get operands
- recursively. */
- if (multi_step_cvt)
- vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
-}
-
-
-/* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
- For multi-step conversions store the resulting vectors and call the function
- recursively. */
-
-static void
-vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
- int multi_step_cvt, gimple stmt,
- VEC (tree, heap) *vec_dsts,
- gimple_stmt_iterator *gsi,
- slp_tree slp_node, enum tree_code code,
- stmt_vec_info *prev_stmt_info)
-{
- unsigned int i;
- tree vop0, vop1, new_tmp, vec_dest;
- gimple new_stmt;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
-
- vec_dest = VEC_pop (tree, vec_dsts);
-
- for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
- {
- /* Create demotion operation. */
- vop0 = VEC_index (tree, *vec_oprnds, i);
- vop1 = VEC_index (tree, *vec_oprnds, i + 1);
- new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
- new_tmp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_tmp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (multi_step_cvt)
- /* Store the resulting vector for next recursive call. */
- VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
- else
- {
- /* This is the last step of the conversion sequence. Store the
- vectors in SLP_NODE or in vector info of the scalar statement
- (or in STMT_VINFO_RELATED_STMT chain). */
- if (slp_node)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
- else
- {
- if (!*prev_stmt_info)
- STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
-
- *prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
- }
- }
-
- /* For multi-step demotion operations we first generate demotion operations
- from the source type to the intermediate types, and then combine the
- results (stored in VEC_OPRNDS) in demotion operation to the destination
- type. */
- if (multi_step_cvt)
- {
- /* At each level of recursion we have have of the operands we had at the
- previous level. */
- VEC_truncate (tree, *vec_oprnds, (i+1)/2);
- vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
- stmt, vec_dsts, gsi, slp_node,
- code, prev_stmt_info);
- }
-}
-
-
-/* Function vectorizable_type_demotion
-
- Check if STMT performs a binary or unary operation that involves
- type demotion, and if it can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt, slp_tree slp_node)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op0;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum tree_code code, code1 = ERROR_MARK;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- stmt_vec_info prev_stmt_info;
- int nunits_in;
- int nunits_out;
- tree vectype_out;
- int ncopies;
- int j, i;
- tree vectype_in;
- int multi_step_cvt = 0;
- VEC (tree, heap) *vec_oprnds0 = NULL;
- VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
- tree last_oprnd, intermediate_type;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is STMT a vectorizable type-demotion operation? */
- if (!is_gimple_assign (stmt))
- return false;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- if (!CONVERT_EXPR_CODE_P (code))
- return false;
-
- op0 = gimple_assign_rhs1 (stmt);
- vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
- if (!vectype_in)
- return false;
- nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
-
- scalar_dest = gimple_assign_lhs (stmt);
- vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
- if (!vectype_out)
- return false;
- nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
- if (nunits_in >= nunits_out)
- return false;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp_node)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
-
- gcc_assert (ncopies >= 1);
-
- if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
- && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
- || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
- && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
- && CONVERT_EXPR_CODE_P (code))))
- return false;
-
- /* Check the operands of the operation. */
- if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- /* Supportable by target? */
- if (!supportable_narrowing_operation (code, stmt, vectype_in, &code1,
- &multi_step_cvt, &interm_types))
- return false;
-
- STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_demotion ===");
- vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
- ncopies);
-
- /* In case of multi-step demotion, we first generate demotion operations to
- the intermediate types, and then from that types to the final one.
- We create vector destinations for the intermediate type (TYPES) received
- from supportable_narrowing_operation, and store them in the correct order
- for future use in vect_create_vectorized_demotion_stmts(). */
- if (multi_step_cvt)
- vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
- else
- vec_dsts = VEC_alloc (tree, heap, 1);
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
- VEC_quick_push (tree, vec_dsts, vec_dest);
-
- if (multi_step_cvt)
- {
- for (i = VEC_length (tree, interm_types) - 1;
- VEC_iterate (tree, interm_types, i, intermediate_type); i--)
- {
- vec_dest = vect_create_destination_var (scalar_dest,
- intermediate_type);
- VEC_quick_push (tree, vec_dsts, vec_dest);
- }
- }
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. */
- last_oprnd = op0;
- prev_stmt_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- /* Handle uses. */
- if (slp_node)
- vect_get_slp_defs (slp_node, &vec_oprnds0, NULL);
- else
- {
- VEC_free (tree, heap, vec_oprnds0);
- vec_oprnds0 = VEC_alloc (tree, heap,
- (multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
- vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
- vect_pow2 (multi_step_cvt) - 1);
- }
-
- /* Arguments are ready. Create the new vector stmts. */
- tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
- vect_create_vectorized_demotion_stmts (&vec_oprnds0,
- multi_step_cvt, stmt, tmp_vec_dsts,
- gsi, slp_node, code1,
- &prev_stmt_info);
- }
-
- VEC_free (tree, heap, vec_oprnds0);
- VEC_free (tree, heap, vec_dsts);
- VEC_free (tree, heap, tmp_vec_dsts);
- VEC_free (tree, heap, interm_types);
-
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
- return true;
-}
-
-
-/* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
- and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
- the resulting vectors and call the function recursively. */
-
-static void
-vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
- VEC (tree, heap) **vec_oprnds1,
- int multi_step_cvt, gimple stmt,
- VEC (tree, heap) *vec_dsts,
- gimple_stmt_iterator *gsi,
- slp_tree slp_node, enum tree_code code1,
- enum tree_code code2, tree decl1,
- tree decl2, int op_type,
- stmt_vec_info *prev_stmt_info)
-{
- int i;
- tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
- gimple new_stmt1, new_stmt2;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- VEC (tree, heap) *vec_tmp;
-
- vec_dest = VEC_pop (tree, vec_dsts);
- vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
-
- for (i = 0; VEC_iterate (tree, *vec_oprnds0, i, vop0); i++)
- {
- if (op_type == binary_op)
- vop1 = VEC_index (tree, *vec_oprnds1, i);
- else
- vop1 = NULL_TREE;
-
- /* Generate the two halves of promotion operation. */
- new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
- op_type, vec_dest, gsi, stmt);
- new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
- op_type, vec_dest, gsi, stmt);
- if (is_gimple_call (new_stmt1))
- {
- new_tmp1 = gimple_call_lhs (new_stmt1);
- new_tmp2 = gimple_call_lhs (new_stmt2);
- }
- else
- {
- new_tmp1 = gimple_assign_lhs (new_stmt1);
- new_tmp2 = gimple_assign_lhs (new_stmt2);
- }
-
- if (multi_step_cvt)
- {
- /* Store the results for the recursive call. */
- VEC_quick_push (tree, vec_tmp, new_tmp1);
- VEC_quick_push (tree, vec_tmp, new_tmp2);
- }
- else
- {
- /* Last step of promotion sequience - store the results. */
- if (slp_node)
- {
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
- }
- else
- {
- if (!*prev_stmt_info)
- STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
- else
- STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;
-
- *prev_stmt_info = vinfo_for_stmt (new_stmt1);
- STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
- *prev_stmt_info = vinfo_for_stmt (new_stmt2);
- }
- }
- }
-
- if (multi_step_cvt)
- {
- /* For multi-step promotion operation we first generate we call the
- function recurcively for every stage. We start from the input type,
- create promotion operations to the intermediate types, and then
- create promotions to the output type. */
- *vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
- VEC_free (tree, heap, vec_tmp);
- vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
- multi_step_cvt - 1, stmt,
- vec_dsts, gsi, slp_node, code1,
- code2, decl2, decl2, op_type,
- prev_stmt_info);
- }
-}
-
-
-/* Function vectorizable_type_promotion
-
- Check if STMT performs a binary or unary operation that involves
- type promotion, and if it can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt, slp_tree slp_node)
-{
- tree vec_dest;
- tree scalar_dest;
- tree op0, op1 = NULL;
- tree vec_oprnd0=NULL, vec_oprnd1=NULL;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
- tree decl1 = NULL_TREE, decl2 = NULL_TREE;
- int op_type;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
- stmt_vec_info prev_stmt_info;
- int nunits_in;
- int nunits_out;
- tree vectype_out;
- int ncopies;
- int j, i;
- tree vectype_in;
- tree intermediate_type = NULL_TREE;
- int multi_step_cvt = 0;
- VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
- VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is STMT a vectorizable type-promotion operation? */
- if (!is_gimple_assign (stmt))
- return false;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- if (!CONVERT_EXPR_CODE_P (code)
- && code != WIDEN_MULT_EXPR)
- return false;
-
- op0 = gimple_assign_rhs1 (stmt);
- vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op0));
- if (!vectype_in)
- return false;
- nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
-
- scalar_dest = gimple_assign_lhs (stmt);
- vectype_out = get_vectype_for_scalar_type (TREE_TYPE (scalar_dest));
- if (!vectype_out)
- return false;
- nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
- if (nunits_in <= nunits_out)
- return false;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp_node)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
-
- gcc_assert (ncopies >= 1);
-
- if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
- && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
- || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
- && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
- && CONVERT_EXPR_CODE_P (code))))
- return false;
-
- /* Check the operands of the operation. */
- if (!vect_is_simple_use (op0, loop_vinfo, &def_stmt, &def, &dt[0]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- op_type = TREE_CODE_LENGTH (code);
- if (op_type == binary_op)
- {
- op1 = gimple_assign_rhs2 (stmt);
- if (!vect_is_simple_use (op1, loop_vinfo, &def_stmt, &def, &dt[1]))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
- }
-
- /* Supportable by target? */
- if (!supportable_widening_operation (code, stmt, vectype_in,
- &decl1, &decl2, &code1, &code2,
- &multi_step_cvt, &interm_types))
- return false;
-
- /* Binary widening operation can only be supported directly by the
- architecture. */
- gcc_assert (!(multi_step_cvt && op_type == binary_op));
-
- STMT_VINFO_VECTYPE (stmt_info) = vectype_in;
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vectorizable_promotion ===");
- vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
- ncopies);
-
- /* Handle def. */
- /* In case of multi-step promotion, we first generate promotion operations
- to the intermediate types, and then from that types to the final one.
- We store vector destination in VEC_DSTS in the correct order for
- recursive creation of promotion operations in
- vect_create_vectorized_promotion_stmts(). Vector destinations are created
- according to TYPES recieved from supportable_widening_operation(). */
- if (multi_step_cvt)
- vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
- else
- vec_dsts = VEC_alloc (tree, heap, 1);
-
- vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
- VEC_quick_push (tree, vec_dsts, vec_dest);
-
- if (multi_step_cvt)
- {
- for (i = VEC_length (tree, interm_types) - 1;
- VEC_iterate (tree, interm_types, i, intermediate_type); i--)
- {
- vec_dest = vect_create_destination_var (scalar_dest,
- intermediate_type);
- VEC_quick_push (tree, vec_dsts, vec_dest);
- }
- }
-
- if (!slp_node)
- {
- vec_oprnds0 = VEC_alloc (tree, heap,
- (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
- if (op_type == binary_op)
- vec_oprnds1 = VEC_alloc (tree, heap, 1);
- }
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. */
-
- prev_stmt_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- /* Handle uses. */
- if (j == 0)
- {
- if (slp_node)
- vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1);
- else
- {
- vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
- VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
- if (op_type == binary_op)
- {
- vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
- VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
- }
- }
- }
- else
- {
- vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
- VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
- if (op_type == binary_op)
- {
- vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
- VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
- }
- }
-
- /* Arguments are ready. Create the new vector stmts. */
- tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
- vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
- multi_step_cvt, stmt,
- tmp_vec_dsts,
- gsi, slp_node, code1, code2,
- decl1, decl2, op_type,
- &prev_stmt_info);
- }
-
- VEC_free (tree, heap, vec_dsts);
- VEC_free (tree, heap, tmp_vec_dsts);
- VEC_free (tree, heap, interm_types);
- VEC_free (tree, heap, vec_oprnds0);
- VEC_free (tree, heap, vec_oprnds1);
-
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
- return true;
-}
-
-
-/* Function vect_strided_store_supported.
-
- Returns TRUE is INTERLEAVE_HIGH and INTERLEAVE_LOW operations are supported,
- and FALSE otherwise. */
-
-static bool
-vect_strided_store_supported (tree vectype)
-{
- optab interleave_high_optab, interleave_low_optab;
- int mode;
-
- mode = (int) TYPE_MODE (vectype);
-
- /* Check that the operation is supported. */
- interleave_high_optab = optab_for_tree_code (VEC_INTERLEAVE_HIGH_EXPR,
- vectype, optab_default);
- interleave_low_optab = optab_for_tree_code (VEC_INTERLEAVE_LOW_EXPR,
- vectype, optab_default);
- if (!interleave_high_optab || !interleave_low_optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab for interleave.");
- return false;
- }
-
- if (optab_handler (interleave_high_optab, mode)->insn_code
- == CODE_FOR_nothing
- || optab_handler (interleave_low_optab, mode)->insn_code
- == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "interleave op not supported by target.");
- return false;
- }
-
- return true;
-}
-
-
-/* Function vect_permute_store_chain.
-
- Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
- a power of 2, generate interleave_high/low stmts to reorder the data
- correctly for the stores. Return the final references for stores in
- RESULT_CHAIN.
-
- E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
- The input is 4 vectors each containing 8 elements. We assign a number to each
- element, the input sequence is:
-
- 1st vec: 0 1 2 3 4 5 6 7
- 2nd vec: 8 9 10 11 12 13 14 15
- 3rd vec: 16 17 18 19 20 21 22 23
- 4th vec: 24 25 26 27 28 29 30 31
-
- The output sequence should be:
-
- 1st vec: 0 8 16 24 1 9 17 25
- 2nd vec: 2 10 18 26 3 11 19 27
- 3rd vec: 4 12 20 28 5 13 21 30
- 4th vec: 6 14 22 30 7 15 23 31
-
- i.e., we interleave the contents of the four vectors in their order.
-
- We use interleave_high/low instructions to create such output. The input of
- each interleave_high/low operation is two vectors:
- 1st vec 2nd vec
- 0 1 2 3 4 5 6 7
- the even elements of the result vector are obtained left-to-right from the
- high/low elements of the first vector. The odd elements of the result are
- obtained left-to-right from the high/low elements of the second vector.
- The output of interleave_high will be: 0 4 1 5
- and of interleave_low: 2 6 3 7
-
-
- The permutation is done in log LENGTH stages. In each stage interleave_high
- and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
- where the first argument is taken from the first half of DR_CHAIN and the
- second argument from it's second half.
- In our example,
-
- I1: interleave_high (1st vec, 3rd vec)
- I2: interleave_low (1st vec, 3rd vec)
- I3: interleave_high (2nd vec, 4th vec)
- I4: interleave_low (2nd vec, 4th vec)
-
- The output for the first stage is:
-
- I1: 0 16 1 17 2 18 3 19
- I2: 4 20 5 21 6 22 7 23
- I3: 8 24 9 25 10 26 11 27
- I4: 12 28 13 29 14 30 15 31
-
- The output of the second stage, i.e. the final result is:
-
- I1: 0 8 16 24 1 9 17 25
- I2: 2 10 18 26 3 11 19 27
- I3: 4 12 20 28 5 13 21 30
- I4: 6 14 22 30 7 15 23 31. */
-
-static bool
-vect_permute_store_chain (VEC(tree,heap) *dr_chain,
- unsigned int length,
- gimple stmt,
- gimple_stmt_iterator *gsi,
- VEC(tree,heap) **result_chain)
-{
- tree perm_dest, vect1, vect2, high, low;
- gimple perm_stmt;
- tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
- tree scalar_dest;
- int i;
- unsigned int j;
- enum tree_code high_code, low_code;
-
- scalar_dest = gimple_assign_lhs (stmt);
-
- /* Check that the operation is supported. */
- if (!vect_strided_store_supported (vectype))
- return false;
-
- *result_chain = VEC_copy (tree, heap, dr_chain);
-
- for (i = 0; i < exact_log2 (length); i++)
- {
- for (j = 0; j < length/2; j++)
- {
- vect1 = VEC_index (tree, dr_chain, j);
- vect2 = VEC_index (tree, dr_chain, j+length/2);
-
- /* Create interleaving stmt:
- in the case of big endian:
- high = interleave_high (vect1, vect2)
- and in the case of little endian:
- high = interleave_low (vect1, vect2). */
- perm_dest = create_tmp_var (vectype, "vect_inter_high");
- DECL_GIMPLE_REG_P (perm_dest) = 1;
- add_referenced_var (perm_dest);
- if (BYTES_BIG_ENDIAN)
- {
- high_code = VEC_INTERLEAVE_HIGH_EXPR;
- low_code = VEC_INTERLEAVE_LOW_EXPR;
- }
- else
- {
- low_code = VEC_INTERLEAVE_HIGH_EXPR;
- high_code = VEC_INTERLEAVE_LOW_EXPR;
- }
- perm_stmt = gimple_build_assign_with_ops (high_code, perm_dest,
- vect1, vect2);
- high = make_ssa_name (perm_dest, perm_stmt);
- gimple_assign_set_lhs (perm_stmt, high);
- vect_finish_stmt_generation (stmt, perm_stmt, gsi);
- VEC_replace (tree, *result_chain, 2*j, high);
-
- /* Create interleaving stmt:
- in the case of big endian:
- low = interleave_low (vect1, vect2)
- and in the case of little endian:
- low = interleave_high (vect1, vect2). */
- perm_dest = create_tmp_var (vectype, "vect_inter_low");
- DECL_GIMPLE_REG_P (perm_dest) = 1;
- add_referenced_var (perm_dest);
- perm_stmt = gimple_build_assign_with_ops (low_code, perm_dest,
- vect1, vect2);
- low = make_ssa_name (perm_dest, perm_stmt);
- gimple_assign_set_lhs (perm_stmt, low);
- vect_finish_stmt_generation (stmt, perm_stmt, gsi);
- VEC_replace (tree, *result_chain, 2*j+1, low);
- }
- dr_chain = VEC_copy (tree, heap, *result_chain);
- }
- return true;
-}
-
-
-/* Function vectorizable_store.
-
- Check if STMT defines a non scalar data-ref (array/pointer/structure) that
- can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
- slp_tree slp_node)
-{
- tree scalar_dest;
- tree data_ref;
- tree op;
- tree vec_oprnd = NULL_TREE;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- enum machine_mode vec_mode;
- tree dummy;
- enum dr_alignment_support alignment_support_scheme;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt;
- stmt_vec_info prev_stmt_info = NULL;
- tree dataref_ptr = NULL_TREE;
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies;
- int j;
- gimple next_stmt, first_stmt = NULL;
- bool strided_store = false;
- unsigned int group_size, i;
- VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
- bool inv_p;
- VEC(tree,heap) *vec_oprnds = NULL;
- bool slp = (slp_node != NULL);
- stmt_vec_info first_stmt_vinfo;
- unsigned int vec_num;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
-
- gcc_assert (ncopies >= 1);
-
- /* FORNOW. This restriction should be relaxed. */
- if (nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "multiple types in nested loop.");
- return false;
- }
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is vectorizable store? */
-
- if (!is_gimple_assign (stmt))
- return false;
-
- scalar_dest = gimple_assign_lhs (stmt);
- if (TREE_CODE (scalar_dest) != ARRAY_REF
- && TREE_CODE (scalar_dest) != INDIRECT_REF
- && !STMT_VINFO_STRIDED_ACCESS (stmt_info))
- return false;
-
- gcc_assert (gimple_assign_single_p (stmt));
- op = gimple_assign_rhs1 (stmt);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- /* The scalar rhs type needs to be trivially convertible to the vector
- component type. This should always be the case. */
- if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "??? operands of different types");
- return false;
- }
-
- vec_mode = TYPE_MODE (vectype);
- /* FORNOW. In some cases can vectorize even if data-type not supported
- (e.g. - array initialization with 0). */
- if (optab_handler (mov_optab, (int)vec_mode)->insn_code == CODE_FOR_nothing)
- return false;
-
- if (!STMT_VINFO_DATA_REF (stmt_info))
- return false;
-
- if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
- {
- strided_store = true;
- first_stmt = DR_GROUP_FIRST_DR (stmt_info);
- if (!vect_strided_store_supported (vectype)
- && !PURE_SLP_STMT (stmt_info) && !slp)
- return false;
-
- if (first_stmt == stmt)
- {
- /* STMT is the leader of the group. Check the operands of all the
- stmts of the group. */
- next_stmt = DR_GROUP_NEXT_DR (stmt_info);
- while (next_stmt)
- {
- gcc_assert (gimple_assign_single_p (next_stmt));
- op = gimple_assign_rhs1 (next_stmt);
- if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
- next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
- }
- }
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
- vect_model_store_cost (stmt_info, ncopies, dt, NULL);
- return true;
- }
-
- /** Transform. **/
-
- if (strided_store)
- {
- first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
- group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
-
- DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
-
- /* FORNOW */
- gcc_assert (!nested_in_vect_loop_p (loop, stmt));
-
- /* We vectorize all the stmts of the interleaving group when we
- reach the last stmt in the group. */
- if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
- < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt))
- && !slp)
- {
- *vec_stmt = NULL;
- return true;
- }
-
- if (slp)
- strided_store = false;
-
- /* VEC_NUM is the number of vect stmts to be created for this group. */
- if (slp)
- vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- else
- vec_num = group_size;
- }
- else
- {
- first_stmt = stmt;
- first_dr = dr;
- group_size = vec_num = 1;
- first_stmt_vinfo = stmt_info;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
-
- dr_chain = VEC_alloc (tree, heap, group_size);
- oprnds = VEC_alloc (tree, heap, group_size);
-
- alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
- gcc_assert (alignment_support_scheme);
- gcc_assert (alignment_support_scheme == dr_aligned); /* FORNOW */
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. For more details see documentation in
- vect_get_vec_def_for_copy_stmt. */
-
- /* In case of interleaving (non-unit strided access):
-
- S1: &base + 2 = x2
- S2: &base = x0
- S3: &base + 1 = x1
- S4: &base + 3 = x3
-
- We create vectorized stores starting from base address (the access of the
- first stmt in the chain (S2 in the above example), when the last store stmt
- of the chain (S4) is reached:
-
- VS1: &base = vx2
- VS2: &base + vec_size*1 = vx0
- VS3: &base + vec_size*2 = vx1
- VS4: &base + vec_size*3 = vx3
-
- Then permutation statements are generated:
-
- VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
- VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
- ...
-
- And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
- (the order of the data-refs in the output of vect_permute_store_chain
- corresponds to the order of scalar stmts in the interleaving chain - see
- the documentation of vect_permute_store_chain()).
-
- In case of both multiple types and interleaving, above vector stores and
- permutation stmts are created for every copy. The result vector stmts are
- put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
- STMT_VINFO_RELATED_STMT for the next copies.
- */
-
- prev_stmt_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- gimple new_stmt;
- gimple ptr_incr;
-
- if (j == 0)
- {
- if (slp)
- {
- /* Get vectorized arguments for SLP_NODE. */
- vect_get_slp_defs (slp_node, &vec_oprnds, NULL);
-
- vec_oprnd = VEC_index (tree, vec_oprnds, 0);
- }
- else
- {
- /* For interleaved stores we collect vectorized defs for all the
- stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
- used as an input to vect_permute_store_chain(), and OPRNDS as
- an input to vect_get_vec_def_for_stmt_copy() for the next copy.
-
- If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
- OPRNDS are of size 1. */
- next_stmt = first_stmt;
- for (i = 0; i < group_size; i++)
- {
- /* Since gaps are not supported for interleaved stores,
- GROUP_SIZE is the exact number of stmts in the chain.
- Therefore, NEXT_STMT can't be NULL_TREE. In case that
- there is no interleaving, GROUP_SIZE is 1, and only one
- iteration of the loop will be executed. */
- gcc_assert (next_stmt
- && gimple_assign_single_p (next_stmt));
- op = gimple_assign_rhs1 (next_stmt);
-
- vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
- NULL);
- VEC_quick_push(tree, dr_chain, vec_oprnd);
- VEC_quick_push(tree, oprnds, vec_oprnd);
- next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
- }
- }
-
- /* We should have catched mismatched types earlier. */
- gcc_assert (useless_type_conversion_p (vectype,
- TREE_TYPE (vec_oprnd)));
- dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE,
- &dummy, &ptr_incr, false,
- &inv_p, NULL);
- gcc_assert (!inv_p);
- }
- else
- {
- /* For interleaved stores we created vectorized defs for all the
- defs stored in OPRNDS in the previous iteration (previous copy).
- DR_CHAIN is then used as an input to vect_permute_store_chain(),
- and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
- next copy.
- If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
- OPRNDS are of size 1. */
- for (i = 0; i < group_size; i++)
- {
- op = VEC_index (tree, oprnds, i);
- vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt);
- vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
- VEC_replace(tree, dr_chain, i, vec_oprnd);
- VEC_replace(tree, oprnds, i, vec_oprnd);
- }
- dataref_ptr =
- bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
- }
-
- if (strided_store)
- {
- result_chain = VEC_alloc (tree, heap, group_size);
- /* Permute. */
- if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
- &result_chain))
- return false;
- }
-
- next_stmt = first_stmt;
- for (i = 0; i < vec_num; i++)
- {
- if (i > 0)
- /* Bump the vector pointer. */
- dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
- NULL_TREE);
-
- if (slp)
- vec_oprnd = VEC_index (tree, vec_oprnds, i);
- else if (strided_store)
- /* For strided stores vectorized defs are interleaved in
- vect_permute_store_chain(). */
- vec_oprnd = VEC_index (tree, result_chain, i);
-
- data_ref = build_fold_indirect_ref (dataref_ptr);
-
- /* Arguments are ready. Create the new vector stmt. */
- new_stmt = gimple_build_assign (data_ref, vec_oprnd);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
- mark_symbols_for_renaming (new_stmt);
-
- if (slp)
- continue;
-
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
-
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
- if (!next_stmt)
- break;
- }
- }
-
- VEC_free (tree, heap, dr_chain);
- VEC_free (tree, heap, oprnds);
- if (result_chain)
- VEC_free (tree, heap, result_chain);
-
- return true;
-}
-
-
-/* Function vect_setup_realignment
-
- This function is called when vectorizing an unaligned load using
- the dr_explicit_realign[_optimized] scheme.
- This function generates the following code at the loop prolog:
-
- p = initial_addr;
- x msq_init = *(floor(p)); # prolog load
- realignment_token = call target_builtin;
- loop:
- x msq = phi (msq_init, ---)
-
- The stmts marked with x are generated only for the case of
- dr_explicit_realign_optimized.
-
- The code above sets up a new (vector) pointer, pointing to the first
- location accessed by STMT, and a "floor-aligned" load using that pointer.
- It also generates code to compute the "realignment-token" (if the relevant
- target hook was defined), and creates a phi-node at the loop-header bb
- whose arguments are the result of the prolog-load (created by this
- function) and the result of a load that takes place in the loop (to be
- created by the caller to this function).
-
- For the case of dr_explicit_realign_optimized:
- The caller to this function uses the phi-result (msq) to create the
- realignment code inside the loop, and sets up the missing phi argument,
- as follows:
- loop:
- msq = phi (msq_init, lsq)
- lsq = *(floor(p')); # load in loop
- result = realign_load (msq, lsq, realignment_token);
-
- For the case of dr_explicit_realign:
- loop:
- msq = *(floor(p)); # load in loop
- p' = p + (VS-1);
- lsq = *(floor(p')); # load in loop
- result = realign_load (msq, lsq, realignment_token);
-
- Input:
- STMT - (scalar) load stmt to be vectorized. This load accesses
- a memory location that may be unaligned.
- BSI - place where new code is to be inserted.
- ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
- is used.
-
- Output:
- REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
- target hook, if defined.
- Return value - the result of the loop-header phi node. */
-
-static tree
-vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
- tree *realignment_token,
- enum dr_alignment_support alignment_support_scheme,
- tree init_addr,
- struct loop **at_loop)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- edge pe;
- tree scalar_dest = gimple_assign_lhs (stmt);
- tree vec_dest;
- gimple inc;
- tree ptr;
- tree data_ref;
- gimple new_stmt;
- basic_block new_bb;
- tree msq_init = NULL_TREE;
- tree new_temp;
- gimple phi_stmt;
- tree msq = NULL_TREE;
- gimple_seq stmts = NULL;
- bool inv_p;
- bool compute_in_loop = false;
- bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
- struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
- struct loop *loop_for_initial_load;
-
- gcc_assert (alignment_support_scheme == dr_explicit_realign
- || alignment_support_scheme == dr_explicit_realign_optimized);
-
- /* We need to generate three things:
- 1. the misalignment computation
- 2. the extra vector load (for the optimized realignment scheme).
- 3. the phi node for the two vectors from which the realignment is
- done (for the optimized realignment scheme).
- */
-
- /* 1. Determine where to generate the misalignment computation.
-
- If INIT_ADDR is NULL_TREE, this indicates that the misalignment
- calculation will be generated by this function, outside the loop (in the
- preheader). Otherwise, INIT_ADDR had already been computed for us by the
- caller, inside the loop.
-
- Background: If the misalignment remains fixed throughout the iterations of
- the loop, then both realignment schemes are applicable, and also the
- misalignment computation can be done outside LOOP. This is because we are
- vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
- are a multiple of VS (the Vector Size), and therefore the misalignment in
- different vectorized LOOP iterations is always the same.
- The problem arises only if the memory access is in an inner-loop nested
- inside LOOP, which is now being vectorized using outer-loop vectorization.
- This is the only case when the misalignment of the memory access may not
- remain fixed throughout the iterations of the inner-loop (as explained in
- detail in vect_supportable_dr_alignment). In this case, not only is the
- optimized realignment scheme not applicable, but also the misalignment
- computation (and generation of the realignment token that is passed to
- REALIGN_LOAD) have to be done inside the loop.
-
- In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
- or not, which in turn determines if the misalignment is computed inside
- the inner-loop, or outside LOOP. */
-
- if (init_addr != NULL_TREE)
- {
- compute_in_loop = true;
- gcc_assert (alignment_support_scheme == dr_explicit_realign);
- }
-
-
- /* 2. Determine where to generate the extra vector load.
-
- For the optimized realignment scheme, instead of generating two vector
- loads in each iteration, we generate a single extra vector load in the
- preheader of the loop, and in each iteration reuse the result of the
- vector load from the previous iteration. In case the memory access is in
- an inner-loop nested inside LOOP, which is now being vectorized using
- outer-loop vectorization, we need to determine whether this initial vector
- load should be generated at the preheader of the inner-loop, or can be
- generated at the preheader of LOOP. If the memory access has no evolution
- in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
- to be generated inside LOOP (in the preheader of the inner-loop). */
-
- if (nested_in_vect_loop)
- {
- tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
- bool invariant_in_outerloop =
- (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
- loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
- }
- else
- loop_for_initial_load = loop;
- if (at_loop)
- *at_loop = loop_for_initial_load;
-
- /* 3. For the case of the optimized realignment, create the first vector
- load at the loop preheader. */
-
- if (alignment_support_scheme == dr_explicit_realign_optimized)
- {
- /* Create msq_init = *(floor(p1)) in the loop preheader */
-
- gcc_assert (!compute_in_loop);
- pe = loop_preheader_edge (loop_for_initial_load);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- ptr = vect_create_data_ref_ptr (stmt, loop_for_initial_load, NULL_TREE,
- &init_addr, &inc, true, &inv_p, NULL_TREE);
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
- new_stmt = gimple_build_assign (vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- mark_symbols_for_renaming (new_stmt);
- new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
- gcc_assert (!new_bb);
- msq_init = gimple_assign_lhs (new_stmt);
- }
-
- /* 4. Create realignment token using a target builtin, if available.
- It is done either inside the containing loop, or before LOOP (as
- determined above). */
-
- if (targetm.vectorize.builtin_mask_for_load)
- {
- tree builtin_decl;
-
- /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
- if (compute_in_loop)
- gcc_assert (init_addr); /* already computed by the caller. */
- else
- {
- /* Generate the INIT_ADDR computation outside LOOP. */
- init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
- NULL_TREE, loop);
- pe = loop_preheader_edge (loop);
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- builtin_decl = targetm.vectorize.builtin_mask_for_load ();
- new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
- vec_dest =
- vect_create_destination_var (scalar_dest,
- gimple_call_return_type (new_stmt));
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_call_set_lhs (new_stmt, new_temp);
-
- if (compute_in_loop)
- gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
- else
- {
- /* Generate the misalignment computation outside LOOP. */
- pe = loop_preheader_edge (loop);
- new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
- gcc_assert (!new_bb);
- }
-
- *realignment_token = gimple_call_lhs (new_stmt);
-
- /* The result of the CALL_EXPR to this builtin is determined from
- the value of the parameter and no global variables are touched
- which makes the builtin a "const" function. Requiring the
- builtin to have the "const" attribute makes it unnecessary
- to call mark_call_clobbered. */
- gcc_assert (TREE_READONLY (builtin_decl));
- }
-
- if (alignment_support_scheme == dr_explicit_realign)
- return msq;
-
- gcc_assert (!compute_in_loop);
- gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
-
-
- /* 5. Create msq = phi <msq_init, lsq> in loop */
-
- pe = loop_preheader_edge (containing_loop);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- msq = make_ssa_name (vec_dest, NULL);
- phi_stmt = create_phi_node (msq, containing_loop->header);
- SSA_NAME_DEF_STMT (msq) = phi_stmt;
- add_phi_arg (phi_stmt, msq_init, pe);
-
- return msq;
-}
-
-
-/* Function vect_strided_load_supported.
-
- Returns TRUE is EXTRACT_EVEN and EXTRACT_ODD operations are supported,
- and FALSE otherwise. */
-
-static bool
-vect_strided_load_supported (tree vectype)
-{
- optab perm_even_optab, perm_odd_optab;
- int mode;
-
- mode = (int) TYPE_MODE (vectype);
-
- perm_even_optab = optab_for_tree_code (VEC_EXTRACT_EVEN_EXPR, vectype,
- optab_default);
- if (!perm_even_optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab for perm_even.");
- return false;
- }
-
- if (optab_handler (perm_even_optab, mode)->insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "perm_even op not supported by target.");
- return false;
- }
-
- perm_odd_optab = optab_for_tree_code (VEC_EXTRACT_ODD_EXPR, vectype,
- optab_default);
- if (!perm_odd_optab)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "no optab for perm_odd.");
- return false;
- }
-
- if (optab_handler (perm_odd_optab, mode)->insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "perm_odd op not supported by target.");
- return false;
- }
- return true;
-}
-
-
-/* Function vect_permute_load_chain.
-
- Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
- a power of 2, generate extract_even/odd stmts to reorder the input data
- correctly. Return the final references for loads in RESULT_CHAIN.
-
- E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
- The input is 4 vectors each containing 8 elements. We assign a number to each
- element, the input sequence is:
-
- 1st vec: 0 1 2 3 4 5 6 7
- 2nd vec: 8 9 10 11 12 13 14 15
- 3rd vec: 16 17 18 19 20 21 22 23
- 4th vec: 24 25 26 27 28 29 30 31
-
- The output sequence should be:
-
- 1st vec: 0 4 8 12 16 20 24 28
- 2nd vec: 1 5 9 13 17 21 25 29
- 3rd vec: 2 6 10 14 18 22 26 30
- 4th vec: 3 7 11 15 19 23 27 31
-
- i.e., the first output vector should contain the first elements of each
- interleaving group, etc.
-
- We use extract_even/odd instructions to create such output. The input of each
- extract_even/odd operation is two vectors
- 1st vec 2nd vec
- 0 1 2 3 4 5 6 7
-
- and the output is the vector of extracted even/odd elements. The output of
- extract_even will be: 0 2 4 6
- and of extract_odd: 1 3 5 7
-
-
- The permutation is done in log LENGTH stages. In each stage extract_even and
- extract_odd stmts are created for each pair of vectors in DR_CHAIN in their
- order. In our example,
-
- E1: extract_even (1st vec, 2nd vec)
- E2: extract_odd (1st vec, 2nd vec)
- E3: extract_even (3rd vec, 4th vec)
- E4: extract_odd (3rd vec, 4th vec)
-
- The output for the first stage will be:
-
- E1: 0 2 4 6 8 10 12 14
- E2: 1 3 5 7 9 11 13 15
- E3: 16 18 20 22 24 26 28 30
- E4: 17 19 21 23 25 27 29 31
-
- In order to proceed and create the correct sequence for the next stage (or
- for the correct output, if the second stage is the last one, as in our
- example), we first put the output of extract_even operation and then the
- output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
- The input for the second stage is:
-
- 1st vec (E1): 0 2 4 6 8 10 12 14
- 2nd vec (E3): 16 18 20 22 24 26 28 30
- 3rd vec (E2): 1 3 5 7 9 11 13 15
- 4th vec (E4): 17 19 21 23 25 27 29 31
-
- The output of the second stage:
-
- E1: 0 4 8 12 16 20 24 28
- E2: 2 6 10 14 18 22 26 30
- E3: 1 5 9 13 17 21 25 29
- E4: 3 7 11 15 19 23 27 31
-
- And RESULT_CHAIN after reordering:
-
- 1st vec (E1): 0 4 8 12 16 20 24 28
- 2nd vec (E3): 1 5 9 13 17 21 25 29
- 3rd vec (E2): 2 6 10 14 18 22 26 30
- 4th vec (E4): 3 7 11 15 19 23 27 31. */
-
-static bool
-vect_permute_load_chain (VEC(tree,heap) *dr_chain,
- unsigned int length,
- gimple stmt,
- gimple_stmt_iterator *gsi,
- VEC(tree,heap) **result_chain)
-{
- tree perm_dest, data_ref, first_vect, second_vect;
- gimple perm_stmt;
- tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
- int i;
- unsigned int j;
-
- /* Check that the operation is supported. */
- if (!vect_strided_load_supported (vectype))
- return false;
-
- *result_chain = VEC_copy (tree, heap, dr_chain);
- for (i = 0; i < exact_log2 (length); i++)
- {
- for (j = 0; j < length; j +=2)
- {
- first_vect = VEC_index (tree, dr_chain, j);
- second_vect = VEC_index (tree, dr_chain, j+1);
-
- /* data_ref = permute_even (first_data_ref, second_data_ref); */
- perm_dest = create_tmp_var (vectype, "vect_perm_even");
- DECL_GIMPLE_REG_P (perm_dest) = 1;
- add_referenced_var (perm_dest);
-
- perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_EVEN_EXPR,
- perm_dest, first_vect,
- second_vect);
-
- data_ref = make_ssa_name (perm_dest, perm_stmt);
- gimple_assign_set_lhs (perm_stmt, data_ref);
- vect_finish_stmt_generation (stmt, perm_stmt, gsi);
- mark_symbols_for_renaming (perm_stmt);
-
- VEC_replace (tree, *result_chain, j/2, data_ref);
-
- /* data_ref = permute_odd (first_data_ref, second_data_ref); */
- perm_dest = create_tmp_var (vectype, "vect_perm_odd");
- DECL_GIMPLE_REG_P (perm_dest) = 1;
- add_referenced_var (perm_dest);
-
- perm_stmt = gimple_build_assign_with_ops (VEC_EXTRACT_ODD_EXPR,
- perm_dest, first_vect,
- second_vect);
- data_ref = make_ssa_name (perm_dest, perm_stmt);
- gimple_assign_set_lhs (perm_stmt, data_ref);
- vect_finish_stmt_generation (stmt, perm_stmt, gsi);
- mark_symbols_for_renaming (perm_stmt);
-
- VEC_replace (tree, *result_chain, j/2+length/2, data_ref);
- }
- dr_chain = VEC_copy (tree, heap, *result_chain);
- }
- return true;
-}
-
-
-/* Function vect_transform_strided_load.
-
- Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
- to perform their permutation and ascribe the result vectorized statements to
- the scalar statements.
-*/
-
-static bool
-vect_transform_strided_load (gimple stmt, VEC(tree,heap) *dr_chain, int size,
- gimple_stmt_iterator *gsi)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
- gimple next_stmt, new_stmt;
- VEC(tree,heap) *result_chain = NULL;
- unsigned int i, gap_count;
- tree tmp_data_ref;
-
- /* DR_CHAIN contains input data-refs that are a part of the interleaving.
- RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
- vectors, that are ready for vector computation. */
- result_chain = VEC_alloc (tree, heap, size);
- /* Permute. */
- if (!vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain))
- return false;
-
- /* Put a permuted data-ref in the VECTORIZED_STMT field.
- Since we scan the chain starting from it's first node, their order
- corresponds the order of data-refs in RESULT_CHAIN. */
- next_stmt = first_stmt;
- gap_count = 1;
- for (i = 0; VEC_iterate (tree, result_chain, i, tmp_data_ref); i++)
- {
- if (!next_stmt)
- break;
-
- /* Skip the gaps. Loads created for the gaps will be removed by dead
- code elimination pass later. No need to check for the first stmt in
- the group, since it always exists.
- DR_GROUP_GAP is the number of steps in elements from the previous
- access (if there is no gap DR_GROUP_GAP is 1). We skip loads that
- correspond to the gaps.
- */
- if (next_stmt != first_stmt
- && gap_count < DR_GROUP_GAP (vinfo_for_stmt (next_stmt)))
- {
- gap_count++;
- continue;
- }
-
- while (next_stmt)
- {
- new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
- /* We assume that if VEC_STMT is not NULL, this is a case of multiple
- copies, and we put the new vector statement in the first available
- RELATED_STMT. */
- if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
- STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
- else
- {
- if (!DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
- {
- gimple prev_stmt =
- STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
- gimple rel_stmt =
- STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
- while (rel_stmt)
- {
- prev_stmt = rel_stmt;
- rel_stmt =
- STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
- }
-
- STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
- new_stmt;
- }
- }
-
- next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
- gap_count = 1;
- /* If NEXT_STMT accesses the same DR as the previous statement,
- put the same TMP_DATA_REF as its vectorized statement; otherwise
- get the next data-ref from RESULT_CHAIN. */
- if (!next_stmt || !DR_GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
- break;
- }
- }
-
- VEC_free (tree, heap, result_chain);
- return true;
-}
-
-
-/* Create NCOPIES permutation statements using the mask MASK_BYTES (by
- building a vector of type MASK_TYPE from it) and two input vectors placed in
- DR_CHAIN at FIRST_VEC_INDX and SECOND_VEC_INDX for the first copy and
- shifting by STRIDE elements of DR_CHAIN for every copy.
- (STRIDE is the number of vectorized stmts for NODE divided by the number of
- copies).
- VECT_STMTS_COUNTER specifies the index in the vectorized stmts of NODE, where
- the created stmts must be inserted. */
-
-static inline void
-vect_create_mask_and_perm (gimple stmt, gimple next_scalar_stmt,
- int *mask_array, int mask_nunits,
- tree mask_element_type, tree mask_type,
- int first_vec_indx, int second_vec_indx,
- gimple_stmt_iterator *gsi, slp_tree node,
- tree builtin_decl, tree vectype,
- VEC(tree,heap) *dr_chain,
- int ncopies, int vect_stmts_counter)
-{
- tree t = NULL_TREE, mask_vec, mask, perm_dest;
- gimple perm_stmt = NULL;
- stmt_vec_info next_stmt_info;
- int i, group_size, stride, dr_chain_size;
- tree first_vec, second_vec, data_ref;
- tree sym;
- ssa_op_iter iter;
- VEC (tree, heap) *params = NULL;
-
- /* Create a vector mask. */
- for (i = mask_nunits - 1; i >= 0; --i)
- t = tree_cons (NULL_TREE, build_int_cst (mask_element_type, mask_array[i]),
- t);
- mask_vec = build_vector (mask_type, t);
- mask = vect_init_vector (stmt, mask_vec, mask_type, NULL);
-
- group_size = VEC_length (gimple, SLP_TREE_SCALAR_STMTS (node));
- stride = SLP_TREE_NUMBER_OF_VEC_STMTS (node) / ncopies;
- dr_chain_size = VEC_length (tree, dr_chain);
-
- /* Initialize the vect stmts of NODE to properly insert the generated
- stmts later. */
- for (i = VEC_length (gimple, SLP_TREE_VEC_STMTS (node));
- i < (int) SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (node), NULL);
-
- perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
- for (i = 0; i < ncopies; i++)
- {
- first_vec = VEC_index (tree, dr_chain, first_vec_indx);
- second_vec = VEC_index (tree, dr_chain, second_vec_indx);
-
- /* Build argument list for the vectorized call. */
- VEC_free (tree, heap, params);
- params = VEC_alloc (tree, heap, 3);
- VEC_quick_push (tree, params, first_vec);
- VEC_quick_push (tree, params, second_vec);
- VEC_quick_push (tree, params, mask);
-
- /* Generate the permute statement. */
- perm_stmt = gimple_build_call_vec (builtin_decl, params);
- data_ref = make_ssa_name (perm_dest, perm_stmt);
- gimple_call_set_lhs (perm_stmt, data_ref);
- vect_finish_stmt_generation (stmt, perm_stmt, gsi);
- FOR_EACH_SSA_TREE_OPERAND (sym, perm_stmt, iter, SSA_OP_ALL_VIRTUALS)
- {
- if (TREE_CODE (sym) == SSA_NAME)
- sym = SSA_NAME_VAR (sym);
- mark_sym_for_renaming (sym);
- }
-
- /* Store the vector statement in NODE. */
- VEC_replace (gimple, SLP_TREE_VEC_STMTS (node),
- stride * i + vect_stmts_counter, perm_stmt);
-
- first_vec_indx += stride;
- second_vec_indx += stride;
- }
-
- /* Mark the scalar stmt as vectorized. */
- next_stmt_info = vinfo_for_stmt (next_scalar_stmt);
- STMT_VINFO_VEC_STMT (next_stmt_info) = perm_stmt;
-}
-
-
-/* Given FIRST_MASK_ELEMENT - the mask element in element representation,
- return in CURRENT_MASK_ELEMENT its equivalent in target specific
- representation. Check that the mask is valid and return FALSE if not.
- Return TRUE in NEED_NEXT_VECTOR if the permutation requires to move to
- the next vector, i.e., the current first vector is not needed. */
-
-static bool
-vect_get_mask_element (gimple stmt, int first_mask_element, int m,
- int mask_nunits, bool only_one_vec, int index,
- int *mask, int *current_mask_element,
- bool *need_next_vector)
-{
- int i;
- static int number_of_mask_fixes = 1;
- static bool mask_fixed = false;
- static bool needs_first_vector = false;
-
- /* Convert to target specific representation. */
- *current_mask_element = first_mask_element + m;
- /* Adjust the value in case it's a mask for second and third vectors. */
- *current_mask_element -= mask_nunits * (number_of_mask_fixes - 1);
-
- if (*current_mask_element < mask_nunits)
- needs_first_vector = true;
-
- /* We have only one input vector to permute but the mask accesses values in
- the next vector as well. */
- if (only_one_vec && *current_mask_element >= mask_nunits)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "permutation requires at least two vectors ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- return false;
- }
-
- /* The mask requires the next vector. */
- if (*current_mask_element >= mask_nunits * 2)
- {
- if (needs_first_vector || mask_fixed)
- {
- /* We either need the first vector too or have already moved to the
- next vector. In both cases, this permutation needs three
- vectors. */
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "permutation requires at "
- "least three vectors ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- return false;
- }
-
- /* We move to the next vector, dropping the first one and working with
- the second and the third - we need to adjust the values of the mask
- accordingly. */
- *current_mask_element -= mask_nunits * number_of_mask_fixes;
-
- for (i = 0; i < index; i++)
- mask[i] -= mask_nunits * number_of_mask_fixes;
-
- (number_of_mask_fixes)++;
- mask_fixed = true;
- }
-
- *need_next_vector = mask_fixed;
-
- /* This was the last element of this mask. Start a new one. */
- if (index == mask_nunits - 1)
- {
- number_of_mask_fixes = 1;
- mask_fixed = false;
- needs_first_vector = false;
- }
-
- return true;
-}
-
-
-/* Generate vector permute statements from a list of loads in DR_CHAIN.
- If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
- permute statements for SLP_NODE_INSTANCE. */
-bool
-vect_transform_slp_perm_load (gimple stmt, VEC (tree, heap) *dr_chain,
- gimple_stmt_iterator *gsi, int vf,
- slp_instance slp_node_instance, bool analyze_only)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree mask_element_type = NULL_TREE, mask_type;
- int i, j, k, m, scale, mask_nunits, nunits, vec_index = 0, scalar_index;
- slp_tree node;
- tree vectype = STMT_VINFO_VECTYPE (stmt_info), builtin_decl;
- gimple next_scalar_stmt;
- int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
- int first_mask_element;
- int index, unroll_factor, *mask, current_mask_element, ncopies;
- bool only_one_vec = false, need_next_vector = false;
- int first_vec_index, second_vec_index, orig_vec_stmts_num, vect_stmts_counter;
-
- if (!targetm.vectorize.builtin_vec_perm)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "no builtin for vect permute for ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- return false;
- }
-
- builtin_decl = targetm.vectorize.builtin_vec_perm (vectype,
- &mask_element_type);
- if (!builtin_decl || !mask_element_type)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "no builtin for vect permute for ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- return false;
- }
-
- mask_type = get_vectype_for_scalar_type (mask_element_type);
- mask_nunits = TYPE_VECTOR_SUBPARTS (mask_type);
- mask = (int *) xmalloc (sizeof (int) * mask_nunits);
- nunits = TYPE_VECTOR_SUBPARTS (vectype);
- scale = mask_nunits / nunits;
- unroll_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
-
- /* The number of vector stmts to generate based only on SLP_NODE_INSTANCE
- unrolling factor. */
- orig_vec_stmts_num = group_size *
- SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance) / nunits;
- if (orig_vec_stmts_num == 1)
- only_one_vec = true;
-
- /* Number of copies is determined by the final vectorization factor
- relatively to SLP_NODE_INSTANCE unrolling factor. */
- ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
-
- /* Generate permutation masks for every NODE. Number of masks for each NODE
- is equal to GROUP_SIZE.
- E.g., we have a group of three nodes with three loads from the same
- location in each node, and the vector size is 4. I.e., we have a
- a0b0c0a1b1c1... sequence and we need to create the following vectors:
- for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
- for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
- ...
-
- The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9} (in target
- scpecific type, e.g., in bytes for Altivec.
- The last mask is illegal since we assume two operands for permute
- operation, and the mask element values can't be outside that range. Hence,
- the last mask must be converted into {2,5,5,5}.
- For the first two permutations we need the first and the second input
- vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
- we need the second and the third vectors: {b1,c1,a2,b2} and
- {c2,a3,b3,c3}. */
-
- for (i = 0;
- VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (slp_node_instance),
- i, node);
- i++)
- {
- scalar_index = 0;
- index = 0;
- vect_stmts_counter = 0;
- vec_index = 0;
- first_vec_index = vec_index++;
- if (only_one_vec)
- second_vec_index = first_vec_index;
- else
- second_vec_index = vec_index++;
-
- for (j = 0; j < unroll_factor; j++)
- {
- for (k = 0; k < group_size; k++)
- {
- first_mask_element = (i + j * group_size) * scale;
- for (m = 0; m < scale; m++)
- {
- if (!vect_get_mask_element (stmt, first_mask_element, m,
- mask_nunits, only_one_vec, index, mask,
- &current_mask_element, &need_next_vector))
- return false;
-
- mask[index++] = current_mask_element;
- }
-
- if (index == mask_nunits)
- {
- index = 0;
- if (!analyze_only)
- {
- if (need_next_vector)
- {
- first_vec_index = second_vec_index;
- second_vec_index = vec_index;
- }
-
- next_scalar_stmt = VEC_index (gimple,
- SLP_TREE_SCALAR_STMTS (node), scalar_index++);
-
- vect_create_mask_and_perm (stmt, next_scalar_stmt,
- mask, mask_nunits, mask_element_type, mask_type,
- first_vec_index, second_vec_index, gsi, node,
- builtin_decl, vectype, dr_chain, ncopies,
- vect_stmts_counter++);
- }
- }
- }
- }
- }
-
- free (mask);
- return true;
-}
-
-/* vectorizable_load.
-
- Check if STMT reads a non scalar data-ref (array/pointer/structure) that
- can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at BSI.
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
- slp_tree slp_node, slp_instance slp_node_instance)
-{
- tree scalar_dest;
- tree vec_dest = NULL;
- tree data_ref = NULL;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- stmt_vec_info prev_stmt_info;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
- bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
- struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree new_temp;
- int mode;
- gimple new_stmt = NULL;
- tree dummy;
- enum dr_alignment_support alignment_support_scheme;
- tree dataref_ptr = NULL_TREE;
- gimple ptr_incr;
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies;
- int i, j, group_size;
- tree msq = NULL_TREE, lsq;
- tree offset = NULL_TREE;
- tree realignment_token = NULL_TREE;
- gimple phi = NULL;
- VEC(tree,heap) *dr_chain = NULL;
- bool strided_load = false;
- gimple first_stmt;
- tree scalar_type;
- bool inv_p;
- bool compute_in_loop = false;
- struct loop *at_loop;
- int vec_num;
- bool slp = (slp_node != NULL);
- bool slp_perm = false;
- enum tree_code code;
-
- /* Multiple types in SLP are handled by creating the appropriate number of
- vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
- case of SLP. */
- if (slp)
- ncopies = 1;
- else
- ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
-
- gcc_assert (ncopies >= 1);
-
- /* FORNOW. This restriction should be relaxed. */
- if (nested_in_vect_loop && ncopies > 1)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "multiple types in nested loop.");
- return false;
- }
-
- if (slp && SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
- slp_perm = true;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* Is vectorizable load? */
- if (!is_gimple_assign (stmt))
- return false;
-
- scalar_dest = gimple_assign_lhs (stmt);
- if (TREE_CODE (scalar_dest) != SSA_NAME)
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- if (code != ARRAY_REF
- && code != INDIRECT_REF
- && !STMT_VINFO_STRIDED_ACCESS (stmt_info))
- return false;
-
- if (!STMT_VINFO_DATA_REF (stmt_info))
- return false;
-
- scalar_type = TREE_TYPE (DR_REF (dr));
- mode = (int) TYPE_MODE (vectype);
-
- /* FORNOW. In some cases can vectorize even if data-type not supported
- (e.g. - data copies). */
- if (optab_handler (mov_optab, mode)->insn_code == CODE_FOR_nothing)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Aligned load, but unsupported type.");
- return false;
- }
-
- /* The vector component type needs to be trivially convertible to the
- scalar lhs. This should always be the case. */
- if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype)))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "??? operands of different types");
- return false;
- }
-
- /* Check if the load is a part of an interleaving chain. */
- if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
- {
- strided_load = true;
- /* FORNOW */
- gcc_assert (! nested_in_vect_loop);
-
- /* Check if interleaving is supported. */
- if (!vect_strided_load_supported (vectype)
- && !PURE_SLP_STMT (stmt_info) && !slp)
- return false;
- }
-
- if (!vec_stmt) /* transformation not required. */
- {
- STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
- vect_model_load_cost (stmt_info, ncopies, NULL);
- return true;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform load.");
-
- /** Transform. **/
-
- if (strided_load)
- {
- first_stmt = DR_GROUP_FIRST_DR (stmt_info);
- /* Check if the chain of loads is already vectorized. */
- if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
- {
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
- return true;
- }
- first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
- group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
-
- /* VEC_NUM is the number of vect stmts to be created for this group. */
- if (slp)
- {
- strided_load = false;
- vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- }
- else
- vec_num = group_size;
-
- dr_chain = VEC_alloc (tree, heap, vec_num);
- }
- else
- {
- first_stmt = stmt;
- first_dr = dr;
- group_size = vec_num = 1;
- }
-
- alignment_support_scheme = vect_supportable_dr_alignment (first_dr);
- gcc_assert (alignment_support_scheme);
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. In doing so, we record a pointer
- from one copy of the vector stmt to the next, in the field
- STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
- stages to find the correct vector defs to be used when vectorizing
- stmts that use the defs of the current stmt. The example below illustrates
- the vectorization process when VF=16 and nunits=4 (i.e - we need to create
- 4 vectorized stmts):
-
- before vectorization:
- RELATED_STMT VEC_STMT
- S1: x = memref - -
- S2: z = x + 1 - -
-
- step 1: vectorize stmt S1:
- We first create the vector stmt VS1_0, and, as usual, record a
- pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
- Next, we create the vector stmt VS1_1, and record a pointer to
- it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
- Similarly, for VS1_2 and VS1_3. This is the resulting chain of
- stmts and pointers:
- RELATED_STMT VEC_STMT
- VS1_0: vx0 = memref0 VS1_1 -
- VS1_1: vx1 = memref1 VS1_2 -
- VS1_2: vx2 = memref2 VS1_3 -
- VS1_3: vx3 = memref3 - -
- S1: x = load - VS1_0
- S2: z = x + 1 - -
-
- See in documentation in vect_get_vec_def_for_stmt_copy for how the
- information we recorded in RELATED_STMT field is used to vectorize
- stmt S2. */
-
- /* In case of interleaving (non-unit strided access):
-
- S1: x2 = &base + 2
- S2: x0 = &base
- S3: x1 = &base + 1
- S4: x3 = &base + 3
-
- Vectorized loads are created in the order of memory accesses
- starting from the access of the first stmt of the chain:
-
- VS1: vx0 = &base
- VS2: vx1 = &base + vec_size*1
- VS3: vx3 = &base + vec_size*2
- VS4: vx4 = &base + vec_size*3
-
- Then permutation statements are generated:
-
- VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
- VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
- ...
-
- And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
- (the order of the data-refs in the output of vect_permute_load_chain
- corresponds to the order of scalar stmts in the interleaving chain - see
- the documentation of vect_permute_load_chain()).
- The generation of permutation stmts and recording them in
- STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
-
- In case of both multiple types and interleaving, the vector loads and
- permutation stmts above are created for every copy. The result vector stmts
- are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
- STMT_VINFO_RELATED_STMT for the next copies. */
-
- /* If the data reference is aligned (dr_aligned) or potentially unaligned
- on a target that supports unaligned accesses (dr_unaligned_supported)
- we generate the following code:
- p = initial_addr;
- indx = 0;
- loop {
- p = p + indx * vectype_size;
- vec_dest = *(p);
- indx = indx + 1;
- }
-
- Otherwise, the data reference is potentially unaligned on a target that
- does not support unaligned accesses (dr_explicit_realign_optimized) -
- then generate the following code, in which the data in each iteration is
- obtained by two vector loads, one from the previous iteration, and one
- from the current iteration:
- p1 = initial_addr;
- msq_init = *(floor(p1))
- p2 = initial_addr + VS - 1;
- realignment_token = call target_builtin;
- indx = 0;
- loop {
- p2 = p2 + indx * vectype_size
- lsq = *(floor(p2))
- vec_dest = realign_load (msq, lsq, realignment_token)
- indx = indx + 1;
- msq = lsq;
- } */
-
- /* If the misalignment remains the same throughout the execution of the
- loop, we can create the init_addr and permutation mask at the loop
- preheader. Otherwise, it needs to be created inside the loop.
- This can only occur when vectorizing memory accesses in the inner-loop
- nested within an outer-loop that is being vectorized. */
-
- if (nested_in_vect_loop_p (loop, stmt)
- && (TREE_INT_CST_LOW (DR_STEP (dr))
- % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
- {
- gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
- compute_in_loop = true;
- }
-
- if ((alignment_support_scheme == dr_explicit_realign_optimized
- || alignment_support_scheme == dr_explicit_realign)
- && !compute_in_loop)
- {
- msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
- alignment_support_scheme, NULL_TREE,
- &at_loop);
- if (alignment_support_scheme == dr_explicit_realign_optimized)
- {
- phi = SSA_NAME_DEF_STMT (msq);
- offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
- }
- }
- else
- at_loop = loop;
-
- prev_stmt_info = NULL;
- for (j = 0; j < ncopies; j++)
- {
- /* 1. Create the vector pointer update chain. */
- if (j == 0)
- dataref_ptr = vect_create_data_ref_ptr (first_stmt,
- at_loop, offset,
- &dummy, &ptr_incr, false,
- &inv_p, NULL_TREE);
- else
- dataref_ptr =
- bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
-
- for (i = 0; i < vec_num; i++)
- {
- if (i > 0)
- dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
- NULL_TREE);
-
- /* 2. Create the vector-load in the loop. */
- switch (alignment_support_scheme)
- {
- case dr_aligned:
- gcc_assert (aligned_access_p (first_dr));
- data_ref = build_fold_indirect_ref (dataref_ptr);
- break;
- case dr_unaligned_supported:
- {
- int mis = DR_MISALIGNMENT (first_dr);
- tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
-
- tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
- data_ref =
- build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
- break;
- }
- case dr_explicit_realign:
- {
- tree ptr, bump;
- tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
-
- if (compute_in_loop)
- msq = vect_setup_realignment (first_stmt, gsi,
- &realignment_token,
- dr_explicit_realign,
- dataref_ptr, NULL);
-
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- new_stmt = gimple_build_assign (vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
- copy_virtual_operands (new_stmt, stmt);
- mark_symbols_for_renaming (new_stmt);
- msq = new_temp;
-
- bump = size_binop (MULT_EXPR, vs_minus_1,
- TYPE_SIZE_UNIT (scalar_type));
- ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, ptr);
- break;
- }
- case dr_explicit_realign_optimized:
- data_ref = build1 (ALIGN_INDIRECT_REF, vectype, dataref_ptr);
- break;
- default:
- gcc_unreachable ();
- }
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- new_stmt = gimple_build_assign (vec_dest, data_ref);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
- mark_symbols_for_renaming (new_stmt);
-
- /* 3. Handle explicit realignment if necessary/supported. Create in
- loop: vec_dest = realign_load (msq, lsq, realignment_token) */
- if (alignment_support_scheme == dr_explicit_realign_optimized
- || alignment_support_scheme == dr_explicit_realign)
- {
- tree tmp;
-
- lsq = gimple_assign_lhs (new_stmt);
- if (!realignment_token)
- realignment_token = dataref_ptr;
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
- tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq,
- realignment_token);
- new_stmt = gimple_build_assign (vec_dest, tmp);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- if (alignment_support_scheme == dr_explicit_realign_optimized)
- {
- gcc_assert (phi);
- if (i == vec_num - 1 && j == ncopies - 1)
- add_phi_arg (phi, lsq, loop_latch_edge (containing_loop));
- msq = lsq;
- }
- }
-
- /* 4. Handle invariant-load. */
- if (inv_p)
- {
- gcc_assert (!strided_load);
- gcc_assert (nested_in_vect_loop_p (loop, stmt));
- if (j == 0)
- {
- int k;
- tree t = NULL_TREE;
- tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);
-
- /* CHECKME: bitpos depends on endianess? */
- bitpos = bitsize_zero_node;
- vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp,
- bitsize, bitpos);
- vec_dest =
- vect_create_destination_var (scalar_dest, NULL_TREE);
- new_stmt = gimple_build_assign (vec_dest, vec_inv);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (stmt, new_stmt, gsi);
-
- for (k = nunits - 1; k >= 0; --k)
- t = tree_cons (NULL_TREE, new_temp, t);
- /* FIXME: use build_constructor directly. */
- vec_inv = build_constructor_from_list (vectype, t);
- new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
- new_stmt = SSA_NAME_DEF_STMT (new_temp);
- }
- else
- gcc_unreachable (); /* FORNOW. */
- }
-
- /* Collect vector loads and later create their permutation in
- vect_transform_strided_load (). */
- if (strided_load || slp_perm)
- VEC_quick_push (tree, dr_chain, new_temp);
-
- /* Store vector loads in the corresponding SLP_NODE. */
- if (slp && !slp_perm)
- VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
- }
-
- if (slp && !slp_perm)
- continue;
-
- if (slp_perm)
- {
- if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi,
- LOOP_VINFO_VECT_FACTOR (loop_vinfo),
- slp_node_instance, false))
- {
- VEC_free (tree, heap, dr_chain);
- return false;
- }
- }
- else
- {
- if (strided_load)
- {
- if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi))
- return false;
-
- *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
- VEC_free (tree, heap, dr_chain);
- dr_chain = VEC_alloc (tree, heap, group_size);
- }
- else
- {
- if (j == 0)
- STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
- else
- STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
- prev_stmt_info = vinfo_for_stmt (new_stmt);
- }
- }
- }
-
- if (dr_chain)
- VEC_free (tree, heap, dr_chain);
-
- return true;
-}
-
-
-/* Function vectorizable_live_operation.
-
- STMT computes a value that is used outside the loop. Check if
- it can be supported. */
-
-bool
-vectorizable_live_operation (gimple stmt,
- gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
- gimple *vec_stmt ATTRIBUTE_UNUSED)
-{
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- int i;
- int op_type;
- tree op;
- tree def;
- gimple def_stmt;
- enum vect_def_type dt;
- enum tree_code code;
- enum gimple_rhs_class rhs_class;
-
- gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
- return false;
-
- if (!is_gimple_assign (stmt))
- return false;
-
- if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
- return false;
-
- /* FORNOW. CHECKME. */
- if (nested_in_vect_loop_p (loop, stmt))
- return false;
-
- code = gimple_assign_rhs_code (stmt);
- op_type = TREE_CODE_LENGTH (code);
- rhs_class = get_gimple_rhs_class (code);
- gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
- gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
-
- /* FORNOW: support only if all uses are invariant. This means
- that the scalar operations can remain in place, unvectorized.
- The original last scalar value that they compute will be used. */
-
- for (i = 0; i < op_type; i++)
- {
- if (rhs_class == GIMPLE_SINGLE_RHS)
- op = TREE_OPERAND (gimple_op (stmt, 1), i);
- else
- op = gimple_op (stmt, i + 1);
- if (op && !vect_is_simple_use (op, loop_vinfo, &def_stmt, &def, &dt))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "use not simple.");
- return false;
- }
-
- if (dt != vect_invariant_def && dt != vect_constant_def)
- return false;
- }
-
- /* No transformation is required for the cases we currently support. */
- return true;
-}
-
-
-/* Function vect_is_simple_cond.
-
- Input:
- LOOP - the loop that is being vectorized.
- COND - Condition that is checked for simple use.
-
- Returns whether a COND can be vectorized. Checks whether
- condition operands are supportable using vec_is_simple_use. */
-
-static bool
-vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
-{
- tree lhs, rhs;
- tree def;
- enum vect_def_type dt;
-
- if (!COMPARISON_CLASS_P (cond))
- return false;
-
- lhs = TREE_OPERAND (cond, 0);
- rhs = TREE_OPERAND (cond, 1);
-
- if (TREE_CODE (lhs) == SSA_NAME)
- {
- gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
- if (!vect_is_simple_use (lhs, loop_vinfo, &lhs_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
- && TREE_CODE (lhs) != FIXED_CST)
- return false;
-
- if (TREE_CODE (rhs) == SSA_NAME)
- {
- gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
- if (!vect_is_simple_use (rhs, loop_vinfo, &rhs_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
- && TREE_CODE (rhs) != FIXED_CST)
- return false;
-
- return true;
-}
-
-/* vectorizable_condition.
-
- Check if STMT is conditional modify expression that can be vectorized.
- If VEC_STMT is also passed, vectorize the STMT: create a vectorized
- stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
- at BSI.
-
- Return FALSE if not a vectorizable STMT, TRUE otherwise. */
-
-bool
-vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
- gimple *vec_stmt)
-{
- tree scalar_dest = NULL_TREE;
- tree vec_dest = NULL_TREE;
- tree op = NULL_TREE;
- tree cond_expr, then_clause, else_clause;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
- tree vec_compare, vec_cond_expr;
- tree new_temp;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- enum machine_mode vec_mode;
- tree def;
- enum vect_def_type dt;
- int nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
- enum tree_code code;
-
- gcc_assert (ncopies >= 1);
- if (ncopies > 1)
- return false; /* FORNOW */
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_loop_def)
- return false;
-
- /* FORNOW: SLP not supported. */
- if (STMT_SLP_TYPE (stmt_info))
- return false;
-
- /* FORNOW: not yet supported. */
- if (STMT_VINFO_LIVE_P (stmt_info))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "value used after loop.");
- return false;
- }
-
- /* Is vectorizable conditional operation? */
- if (!is_gimple_assign (stmt))
- return false;
-
- code = gimple_assign_rhs_code (stmt);
-
- if (code != COND_EXPR)
- return false;
-
- gcc_assert (gimple_assign_single_p (stmt));
- op = gimple_assign_rhs1 (stmt);
- cond_expr = TREE_OPERAND (op, 0);
- then_clause = TREE_OPERAND (op, 1);
- else_clause = TREE_OPERAND (op, 2);
-
- if (!vect_is_simple_cond (cond_expr, loop_vinfo))
- return false;
-
- /* We do not handle two different vector types for the condition
- and the values. */
- if (TREE_TYPE (TREE_OPERAND (cond_expr, 0)) != TREE_TYPE (vectype))
- return false;
-
- if (TREE_CODE (then_clause) == SSA_NAME)
- {
- gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
- if (!vect_is_simple_use (then_clause, loop_vinfo,
- &then_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (then_clause) != INTEGER_CST
- && TREE_CODE (then_clause) != REAL_CST
- && TREE_CODE (then_clause) != FIXED_CST)
- return false;
-
- if (TREE_CODE (else_clause) == SSA_NAME)
- {
- gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
- if (!vect_is_simple_use (else_clause, loop_vinfo,
- &else_def_stmt, &def, &dt))
- return false;
- }
- else if (TREE_CODE (else_clause) != INTEGER_CST
- && TREE_CODE (else_clause) != REAL_CST
- && TREE_CODE (else_clause) != FIXED_CST)
- return false;
-
-
- vec_mode = TYPE_MODE (vectype);
-
- if (!vec_stmt)
- {
- STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
- return expand_vec_cond_expr_p (op, vec_mode);
- }
-
- /* Transform */
-
- /* Handle def. */
- scalar_dest = gimple_assign_lhs (stmt);
- vec_dest = vect_create_destination_var (scalar_dest, vectype);
-
- /* Handle cond expr. */
- vec_cond_lhs =
- vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
- vec_cond_rhs =
- vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
- vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
- vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
-
- /* Arguments are ready. Create the new vector stmt. */
- vec_compare = build2 (TREE_CODE (cond_expr), vectype,
- vec_cond_lhs, vec_cond_rhs);
- vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
- vec_compare, vec_then_clause, vec_else_clause);
-
- *vec_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
- new_temp = make_ssa_name (vec_dest, *vec_stmt);
- gimple_assign_set_lhs (*vec_stmt, new_temp);
- vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
-
- return true;
-}
-
-
-/* Function vect_transform_stmt.
-
- Create a vectorized stmt to replace STMT, and insert it at BSI. */
-
-static bool
-vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
- bool *strided_store, slp_tree slp_node,
- slp_instance slp_node_instance)
-{
- bool is_store = false;
- gimple vec_stmt = NULL;
- stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
- gimple orig_stmt_in_pattern;
- bool done;
- loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- switch (STMT_VINFO_TYPE (stmt_info))
- {
- case type_demotion_vec_info_type:
- done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- break;
-
- case type_promotion_vec_info_type:
- done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- break;
-
- case type_conversion_vec_info_type:
- done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- break;
-
- case induc_vec_info_type:
- gcc_assert (!slp_node);
- done = vectorizable_induction (stmt, gsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- case op_vec_info_type:
- done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- break;
-
- case assignment_vec_info_type:
- done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- break;
-
- case load_vec_info_type:
- done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
- slp_node_instance);
- gcc_assert (done);
- break;
-
- case store_vec_info_type:
- done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
- gcc_assert (done);
- if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
- {
- /* In case of interleaving, the whole chain is vectorized when the
- last store in the chain is reached. Store stmts before the last
- one are skipped, and there vec_stmt_info shouldn't be freed
- meanwhile. */
- *strided_store = true;
- if (STMT_VINFO_VEC_STMT (stmt_info))
- is_store = true;
- }
- else
- is_store = true;
- break;
-
- case condition_vec_info_type:
- gcc_assert (!slp_node);
- done = vectorizable_condition (stmt, gsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- case call_vec_info_type:
- gcc_assert (!slp_node);
- done = vectorizable_call (stmt, gsi, &vec_stmt);
- break;
-
- case reduc_vec_info_type:
- gcc_assert (!slp_node);
- done = vectorizable_reduction (stmt, gsi, &vec_stmt);
- gcc_assert (done);
- break;
-
- default:
- if (!STMT_VINFO_LIVE_P (stmt_info))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "stmt not supported.");
- gcc_unreachable ();
- }
- }
-
- /* Handle inner-loop stmts whose DEF is used in the loop-nest that
- is being vectorized, but outside the immediately enclosing loop. */
- if (vec_stmt
- && nested_in_vect_loop_p (loop, stmt)
- && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
- && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
- || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer_by_reduction))
- {
- struct loop *innerloop = loop->inner;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- tree scalar_dest;
- gimple exit_phi;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
-
- /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
- (to be used when vectorizing outer-loop stmts that use the DEF of
- STMT). */
- if (gimple_code (stmt) == GIMPLE_PHI)
- scalar_dest = PHI_RESULT (stmt);
- else
- scalar_dest = gimple_assign_lhs (stmt);
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
- {
- if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
- {
- exit_phi = USE_STMT (use_p);
- STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
- }
- }
- }
-
- /* Handle stmts whose DEF is used outside the loop-nest that is
- being vectorized. */
- if (STMT_VINFO_LIVE_P (stmt_info)
- && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
- {
- done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
- gcc_assert (done);
- }
-
- if (vec_stmt)
- {
- STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
- orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt_in_pattern)
- {
- stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
- /* STMT was inserted by the vectorizer to replace a computation idiom.
- ORIG_STMT_IN_PATTERN is a stmt in the original sequence that
- computed this idiom. We need to record a pointer to VEC_STMT in
- the stmt_info of ORIG_STMT_IN_PATTERN. See more details in the
- documentation of vect_pattern_recog. */
- if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
- {
- gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
- STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
- }
- }
- }
-
- return is_store;
-}
-
-
-/* This function builds ni_name = number of iterations loop executes
- on the loop preheader. */
-
-static tree
-vect_build_loop_niters (loop_vec_info loop_vinfo)
-{
- tree ni_name, var;
- gimple_seq stmts = NULL;
- edge pe;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
-
- var = create_tmp_var (TREE_TYPE (ni), "niters");
- add_referenced_var (var);
- ni_name = force_gimple_operand (ni, &stmts, false, var);
-
- pe = loop_preheader_edge (loop);
- if (stmts)
- {
- basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- return ni_name;
-}
-
-
-/* This function generates the following statements:
-
- ni_name = number of iterations loop executes
- ratio = ni_name / vf
- ratio_mult_vf_name = ratio * vf
-
- and places them at the loop preheader edge. */
-
-static void
-vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
- tree *ni_name_ptr,
- tree *ratio_mult_vf_name_ptr,
- tree *ratio_name_ptr)
-{
-
- edge pe;
- basic_block new_bb;
- gimple_seq stmts;
- tree ni_name;
- tree var;
- tree ratio_name;
- tree ratio_mult_vf_name;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree ni = LOOP_VINFO_NITERS (loop_vinfo);
- int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- tree log_vf;
-
- pe = loop_preheader_edge (loop);
-
- /* Generate temporary variable that contains
- number of iterations loop executes. */
-
- ni_name = vect_build_loop_niters (loop_vinfo);
- log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
-
- /* Create: ratio = ni >> log2(vf) */
-
- ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
- if (!is_gimple_val (ratio_name))
- {
- var = create_tmp_var (TREE_TYPE (ni), "bnd");
- add_referenced_var (var);
-
- stmts = NULL;
- ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
- pe = loop_preheader_edge (loop);
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- /* Create: ratio_mult_vf = ratio << log2 (vf). */
-
- ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
- ratio_name, log_vf);
- if (!is_gimple_val (ratio_mult_vf_name))
- {
- var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
- add_referenced_var (var);
-
- stmts = NULL;
- ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
- true, var);
- pe = loop_preheader_edge (loop);
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- *ni_name_ptr = ni_name;
- *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
- *ratio_name_ptr = ratio_name;
-
- return;
-}
-
-
-/* Function vect_update_ivs_after_vectorizer.
-
- "Advance" the induction variables of LOOP to the value they should take
- after the execution of LOOP. This is currently necessary because the
- vectorizer does not handle induction variables that are used after the
- loop. Such a situation occurs when the last iterations of LOOP are
- peeled, because:
- 1. We introduced new uses after LOOP for IVs that were not originally used
- after LOOP: the IVs of LOOP are now used by an epilog loop.
- 2. LOOP is going to be vectorized; this means that it will iterate N/VF
- times, whereas the loop IVs should be bumped N times.
-
- Input:
- - LOOP - a loop that is going to be vectorized. The last few iterations
- of LOOP were peeled.
- - NITERS - the number of iterations that LOOP executes (before it is
- vectorized). i.e, the number of times the ivs should be bumped.
- - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
- coming out from LOOP on which there are uses of the LOOP ivs
- (this is the path from LOOP->exit to epilog_loop->preheader).
-
- The new definitions of the ivs are placed in LOOP->exit.
- The phi args associated with the edge UPDATE_E in the bb
- UPDATE_E->dest are updated accordingly.
-
- Assumption 1: Like the rest of the vectorizer, this function assumes
- a single loop exit that has a single predecessor.
-
- Assumption 2: The phi nodes in the LOOP header and in update_bb are
- organized in the same order.
-
- Assumption 3: The access function of the ivs is simple enough (see
- vect_can_advance_ivs_p). This assumption will be relaxed in the future.
-
- Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
- coming out of LOOP on which the ivs of LOOP are used (this is the path
- that leads to the epilog loop; other paths skip the epilog loop). This
- path starts with the edge UPDATE_E, and its destination (denoted update_bb)
- needs to have its phis updated.
- */
-
-static void
-vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
- edge update_e)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb = single_exit (loop)->dest;
- gimple phi, phi1;
- gimple_stmt_iterator gsi, gsi1;
- basic_block update_bb = update_e->dest;
-
- /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
-
- /* Make sure there exists a single-predecessor exit bb: */
- gcc_assert (single_pred_p (exit_bb));
-
- for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
- !gsi_end_p (gsi) && !gsi_end_p (gsi1);
- gsi_next (&gsi), gsi_next (&gsi1))
- {
- tree access_fn = NULL;
- tree evolution_part;
- tree init_expr;
- tree step_expr;
- tree var, ni, ni_name;
- gimple_stmt_iterator last_gsi;
-
- phi = gsi_stmt (gsi);
- phi1 = gsi_stmt (gsi1);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
- print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
- }
-
- /* Skip virtual phi's. */
- if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "virtual phi. skip.");
- continue;
- }
-
- /* Skip reduction phis. */
- if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "reduc phi. skip.");
- continue;
- }
-
- access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
- gcc_assert (access_fn);
- STRIP_NOPS (access_fn);
- evolution_part =
- unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
- gcc_assert (evolution_part != NULL_TREE);
-
- /* FORNOW: We do not support IVs whose evolution function is a polynomial
- of degree >= 2 or exponential. */
- gcc_assert (!tree_is_chrec (evolution_part));
-
- step_expr = evolution_part;
- init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
- loop->num));
-
- if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
- ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
- init_expr,
- fold_convert (sizetype,
- fold_build2 (MULT_EXPR, TREE_TYPE (niters),
- niters, step_expr)));
- else
- ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
- fold_build2 (MULT_EXPR, TREE_TYPE (init_expr),
- fold_convert (TREE_TYPE (init_expr),
- niters),
- step_expr),
- init_expr);
-
-
-
- var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
- add_referenced_var (var);
-
- last_gsi = gsi_last_bb (exit_bb);
- ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
- true, GSI_SAME_STMT);
-
- /* Fix phi expressions in the successor bb. */
- SET_PHI_ARG_DEF (phi1, update_e->dest_idx, ni_name);
- }
-}
-
-/* Return the more conservative threshold between the
- min_profitable_iters returned by the cost model and the user
- specified threshold, if provided. */
-
-static unsigned int
-conservative_cost_threshold (loop_vec_info loop_vinfo,
- int min_profitable_iters)
-{
- unsigned int th;
- int min_scalar_loop_bound;
-
- min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
- * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
-
- /* Use the cost model only if it is more conservative than user specified
- threshold. */
- th = (unsigned) min_scalar_loop_bound;
- if (min_profitable_iters
- && (!min_scalar_loop_bound
- || min_profitable_iters > min_scalar_loop_bound))
- th = (unsigned) min_profitable_iters;
-
- if (th && vect_print_dump_info (REPORT_COST))
- fprintf (vect_dump, "Vectorization may not be profitable.");
-
- return th;
-}
-
-/* Function vect_do_peeling_for_loop_bound
-
- Peel the last iterations of the loop represented by LOOP_VINFO.
- The peeled iterations form a new epilog loop. Given that the loop now
- iterates NITERS times, the new epilog loop iterates
- NITERS % VECTORIZATION_FACTOR times.
-
- The original loop will later be made to iterate
- NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO). */
-
-static void
-vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio)
-{
- tree ni_name, ratio_mult_vf_name;
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *new_loop;
- edge update_e;
- basic_block preheader;
- int loop_num;
- bool check_profitability = false;
- unsigned int th = 0;
- int min_profitable_iters;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
-
- initialize_original_copy_tables ();
-
- /* Generate the following variables on the preheader of original loop:
-
- ni_name = number of iteration the original loop executes
- ratio = ni_name / vf
- ratio_mult_vf_name = ratio * vf */
- vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
- &ratio_mult_vf_name, ratio);
-
- loop_num = loop->num;
-
- /* If cost model check not done during versioning and
- peeling for alignment. */
- if (!VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- && !VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo))
- && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
- {
- check_profitability = true;
-
- /* Get profitability threshold for vectorized loop. */
- min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
-
- th = conservative_cost_threshold (loop_vinfo,
- min_profitable_iters);
- }
-
- new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
- ratio_mult_vf_name, ni_name, false,
- th, check_profitability);
- gcc_assert (new_loop);
- gcc_assert (loop_num == loop->num);
-#ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (loop, new_loop);
-#endif
-
- /* A guard that controls whether the new_loop is to be executed or skipped
- is placed in LOOP->exit. LOOP->exit therefore has two successors - one
- is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
- is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
- is on the path where the LOOP IVs are used and need to be updated. */
-
- preheader = loop_preheader_edge (new_loop)->src;
- if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
- update_e = EDGE_PRED (preheader, 0);
- else
- update_e = EDGE_PRED (preheader, 1);
-
- /* Update IVs of original loop as if they were advanced
- by ratio_mult_vf_name steps. */
- vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
-
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
-
- free_original_copy_tables ();
-}
-
-
-/* Function vect_gen_niters_for_prolog_loop
-
- Set the number of iterations for the loop represented by LOOP_VINFO
- to the minimum between LOOP_NITERS (the original iteration count of the loop)
- and the misalignment of DR - the data reference recorded in
- LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
- this loop, the data reference DR will refer to an aligned location.
-
- The following computation is generated:
-
- If the misalignment of DR is known at compile time:
- addr_mis = int mis = DR_MISALIGNMENT (dr);
- Else, compute address misalignment in bytes:
- addr_mis = addr & (vectype_size - 1)
-
- prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
-
- (elem_size = element type size; an element is the scalar element whose type
- is the inner type of the vectype)
-
- When the step of the data-ref in the loop is not 1 (as in interleaved data
- and SLP), the number of iterations of the prolog must be divided by the step
- (which is equal to the size of interleaved group).
-
- The above formulas assume that VF == number of elements in the vector. This
- may not hold when there are multiple-types in the loop.
- In this case, for some data-references in the loop the VF does not represent
- the number of elements that fit in the vector. Therefore, instead of VF we
- use TYPE_VECTOR_SUBPARTS. */
-
-static tree
-vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
-{
- struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree var;
- gimple_seq stmts;
- tree iters, iters_name;
- edge pe;
- basic_block new_bb;
- gimple dr_stmt = DR_STMT (dr);
- stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
- tree niters_type = TREE_TYPE (loop_niters);
- int step = 1;
- int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
- int nelements = TYPE_VECTOR_SUBPARTS (vectype);
-
- if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
- step = DR_GROUP_SIZE (vinfo_for_stmt (DR_GROUP_FIRST_DR (stmt_info)));
-
- pe = loop_preheader_edge (loop);
-
- if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
- {
- int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
- int elem_misalign = byte_misalign / element_size;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "known alignment = %d.", byte_misalign);
-
- iters = build_int_cst (niters_type,
- (((nelements - elem_misalign) & (nelements - 1)) / step));
- }
- else
- {
- gimple_seq new_stmts = NULL;
- tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
- &new_stmts, NULL_TREE, loop);
- tree ptr_type = TREE_TYPE (start_addr);
- tree size = TYPE_SIZE (ptr_type);
- tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
- tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
- tree elem_size_log =
- build_int_cst (type, exact_log2 (vectype_align/nelements));
- tree nelements_minus_1 = build_int_cst (type, nelements - 1);
- tree nelements_tree = build_int_cst (type, nelements);
- tree byte_misalign;
- tree elem_misalign;
-
- new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
- gcc_assert (!new_bb);
-
- /* Create: byte_misalign = addr & (vectype_size - 1) */
- byte_misalign =
- fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr), vectype_size_minus_1);
-
- /* Create: elem_misalign = byte_misalign / element_size */
- elem_misalign =
- fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
-
- /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
- iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
- iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
- iters = fold_convert (niters_type, iters);
- }
-
- /* Create: prolog_loop_niters = min (iters, loop_niters) */
- /* If the loop bound is known at compile time we already verified that it is
- greater than vf; since the misalignment ('iters') is at most vf, there's
- no need to generate the MIN_EXPR in this case. */
- if (TREE_CODE (loop_niters) != INTEGER_CST)
- iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "niters for prolog loop: ");
- print_generic_expr (vect_dump, iters, TDF_SLIM);
- }
-
- var = create_tmp_var (niters_type, "prolog_loop_niters");
- add_referenced_var (var);
- stmts = NULL;
- iters_name = force_gimple_operand (iters, &stmts, false, var);
-
- /* Insert stmt on loop preheader edge. */
- if (stmts)
- {
- basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- return iters_name;
-}
-
-
-/* Function vect_update_init_of_dr
-
- NITERS iterations were peeled from LOOP. DR represents a data reference
- in LOOP. This function updates the information recorded in DR to
- account for the fact that the first NITERS iterations had already been
- executed. Specifically, it updates the OFFSET field of DR. */
-
-static void
-vect_update_init_of_dr (struct data_reference *dr, tree niters)
-{
- tree offset = DR_OFFSET (dr);
-
- niters = fold_build2 (MULT_EXPR, sizetype,
- fold_convert (sizetype, niters),
- fold_convert (sizetype, DR_STEP (dr)));
- offset = fold_build2 (PLUS_EXPR, sizetype, offset, niters);
- DR_OFFSET (dr) = offset;
-}
-
-
-/* Function vect_update_inits_of_drs
-
- NITERS iterations were peeled from the loop represented by LOOP_VINFO.
- This function updates the information recorded for the data references in
- the loop to account for the fact that the first NITERS iterations had
- already been executed. Specifically, it updates the initial_condition of
- the access_function of all the data_references in the loop. */
-
-static void
-vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
-{
- unsigned int i;
- VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- struct data_reference *dr;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
-
- for (i = 0; VEC_iterate (data_reference_p, datarefs, i, dr); i++)
- vect_update_init_of_dr (dr, niters);
-}
-
-
-/* Function vect_do_peeling_for_alignment
-
- Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
- 'niters' is set to the misalignment of one of the data references in the
- loop, thereby forcing it to refer to an aligned location at the beginning
- of the execution of this loop. The data reference for which we are
- peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
-
-static void
-vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree niters_of_prolog_loop, ni_name;
- tree n_iters;
- struct loop *new_loop;
- bool check_profitability = false;
- unsigned int th = 0;
- int min_profitable_iters;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
-
- initialize_original_copy_tables ();
-
- ni_name = vect_build_loop_niters (loop_vinfo);
- niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name);
-
-
- /* If cost model check not done during versioning. */
- if (!VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- && !VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- {
- check_profitability = true;
-
- /* Get profitability threshold for vectorized loop. */
- min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
-
- th = conservative_cost_threshold (loop_vinfo,
- min_profitable_iters);
- }
-
- /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
- new_loop =
- slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
- niters_of_prolog_loop, ni_name, true,
- th, check_profitability);
-
- gcc_assert (new_loop);
-#ifdef ENABLE_CHECKING
- slpeel_verify_cfg_after_peeling (new_loop, loop);
-#endif
-
- /* Update number of times loop executes. */
- n_iters = LOOP_VINFO_NITERS (loop_vinfo);
- LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
- TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
-
- /* Update the init conditions of the access functions of all data refs. */
- vect_update_inits_of_drs (loop_vinfo, niters_of_prolog_loop);
-
- /* After peeling we have to reset scalar evolution analyzer. */
- scev_reset ();
-
- free_original_copy_tables ();
-}
-
-
-/* Function vect_create_cond_for_align_checks.
-
- Create a conditional expression that represents the alignment checks for
- all of data references (array element references) whose alignment must be
- checked at runtime.
-
- Input:
- COND_EXPR - input conditional expression. New conditions will be chained
- with logical AND operation.
- LOOP_VINFO - two fields of the loop information are used.
- LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
- LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
-
- Output:
- COND_EXPR_STMT_LIST - statements needed to construct the conditional
- expression.
- The returned value is the conditional expression to be used in the if
- statement that controls which version of the loop gets executed at runtime.
-
- The algorithm makes two assumptions:
- 1) The number of bytes "n" in a vector is a power of 2.
- 2) An address "a" is aligned if a%n is zero and that this
- test can be done as a&(n-1) == 0. For example, for 16
- byte vectors the test is a&0xf == 0. */
-
-static void
-vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
- tree *cond_expr,
- gimple_seq *cond_expr_stmt_list)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- VEC(gimple,heap) *may_misalign_stmts
- = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
- gimple ref_stmt;
- int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
- tree mask_cst;
- unsigned int i;
- tree psize;
- tree int_ptrsize_type;
- char tmp_name[20];
- tree or_tmp_name = NULL_TREE;
- tree and_tmp, and_tmp_name;
- gimple and_stmt;
- tree ptrsize_zero;
- tree part_cond_expr;
-
- /* Check that mask is one less than a power of 2, i.e., mask is
- all zeros followed by all ones. */
- gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
-
- /* CHECKME: what is the best integer or unsigned type to use to hold a
- cast from a pointer value? */
- psize = TYPE_SIZE (ptr_type_node);
- int_ptrsize_type
- = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
-
- /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
- of the first vector of the i'th data reference. */
-
- for (i = 0; VEC_iterate (gimple, may_misalign_stmts, i, ref_stmt); i++)
- {
- gimple_seq new_stmt_list = NULL;
- tree addr_base;
- tree addr_tmp, addr_tmp_name;
- tree or_tmp, new_or_tmp_name;
- gimple addr_stmt, or_stmt;
-
- /* create: addr_tmp = (int)(address_of_first_vector) */
- addr_base =
- vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
- NULL_TREE, loop);
- if (new_stmt_list != NULL)
- gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
-
- sprintf (tmp_name, "%s%d", "addr2int", i);
- addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
- add_referenced_var (addr_tmp);
- addr_tmp_name = make_ssa_name (addr_tmp, NULL);
- addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
- addr_base, NULL_TREE);
- SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
- gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
-
- /* The addresses are OR together. */
-
- if (or_tmp_name != NULL_TREE)
- {
- /* create: or_tmp = or_tmp | addr_tmp */
- sprintf (tmp_name, "%s%d", "orptrs", i);
- or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
- add_referenced_var (or_tmp);
- new_or_tmp_name = make_ssa_name (or_tmp, NULL);
- or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
- new_or_tmp_name,
- or_tmp_name, addr_tmp_name);
- SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
- gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
- or_tmp_name = new_or_tmp_name;
- }
- else
- or_tmp_name = addr_tmp_name;
-
- } /* end for i */
-
- mask_cst = build_int_cst (int_ptrsize_type, mask);
-
- /* create: and_tmp = or_tmp & mask */
- and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
- add_referenced_var (and_tmp);
- and_tmp_name = make_ssa_name (and_tmp, NULL);
-
- and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
- or_tmp_name, mask_cst);
- SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
- gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
-
- /* Make and_tmp the left operand of the conditional test against zero.
- if and_tmp has a nonzero bit then some address is unaligned. */
- ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
- part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
- and_tmp_name, ptrsize_zero);
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
-}
-
-/* Function vect_vfa_segment_size.
-
- Create an expression that computes the size of segment
- that will be accessed for a data reference. The functions takes into
- account that realignment loads may access one more vector.
-
- Input:
- DR: The data reference.
- VECT_FACTOR: vectorization factor.
-
- Return an expression whose value is the size of segment which will be
- accessed by DR. */
-
-static tree
-vect_vfa_segment_size (struct data_reference *dr, tree vect_factor)
-{
- tree segment_length = fold_build2 (MULT_EXPR, integer_type_node,
- DR_STEP (dr), vect_factor);
-
- if (vect_supportable_dr_alignment (dr) == dr_explicit_realign_optimized)
- {
- tree vector_size = TYPE_SIZE_UNIT
- (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
-
- segment_length = fold_build2 (PLUS_EXPR, integer_type_node,
- segment_length, vector_size);
- }
- return fold_convert (sizetype, segment_length);
-}
-
-/* Function vect_create_cond_for_alias_checks.
-
- Create a conditional expression that represents the run-time checks for
- overlapping of address ranges represented by a list of data references
- relations passed as input.
-
- Input:
- COND_EXPR - input conditional expression. New conditions will be chained
- with logical AND operation.
- LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
- to be checked.
-
- Output:
- COND_EXPR - conditional expression.
- COND_EXPR_STMT_LIST - statements needed to construct the conditional
- expression.
-
-
- The returned value is the conditional expression to be used in the if
- statement that controls which version of the loop gets executed at runtime.
-*/
-
-static void
-vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
- tree * cond_expr,
- gimple_seq * cond_expr_stmt_list)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- VEC (ddr_p, heap) * may_alias_ddrs =
- LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
- tree vect_factor =
- build_int_cst (integer_type_node, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
-
- ddr_p ddr;
- unsigned int i;
- tree part_cond_expr;
-
- /* Create expression
- ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
- || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
- &&
- ...
- &&
- ((store_ptr_n + store_segment_length_n) < load_ptr_n)
- || (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
-
- if (VEC_empty (ddr_p, may_alias_ddrs))
- return;
-
- for (i = 0; VEC_iterate (ddr_p, may_alias_ddrs, i, ddr); i++)
- {
- struct data_reference *dr_a, *dr_b;
- gimple dr_group_first_a, dr_group_first_b;
- tree addr_base_a, addr_base_b;
- tree segment_length_a, segment_length_b;
- gimple stmt_a, stmt_b;
-
- dr_a = DDR_A (ddr);
- stmt_a = DR_STMT (DDR_A (ddr));
- dr_group_first_a = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a));
- if (dr_group_first_a)
- {
- stmt_a = dr_group_first_a;
- dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
- }
-
- dr_b = DDR_B (ddr);
- stmt_b = DR_STMT (DDR_B (ddr));
- dr_group_first_b = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b));
- if (dr_group_first_b)
- {
- stmt_b = dr_group_first_b;
- dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
- }
-
- addr_base_a =
- vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
- NULL_TREE, loop);
- addr_base_b =
- vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
- NULL_TREE, loop);
-
- segment_length_a = vect_vfa_segment_size (dr_a, vect_factor);
- segment_length_b = vect_vfa_segment_size (dr_b, vect_factor);
-
- if (vect_print_dump_info (REPORT_DR_DETAILS))
- {
- fprintf (vect_dump,
- "create runtime check for data references ");
- print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
- fprintf (vect_dump, " and ");
- print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
- }
-
-
- part_cond_expr =
- fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- fold_build2 (LT_EXPR, boolean_type_node,
- fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
- addr_base_a,
- segment_length_a),
- addr_base_b),
- fold_build2 (LT_EXPR, boolean_type_node,
- fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
- addr_base_b,
- segment_length_b),
- addr_base_a));
-
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
- }
- if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
- fprintf (vect_dump, "created %u versioning for alias checks.\n",
- VEC_length (ddr_p, may_alias_ddrs));
-
-}
-
-/* Function vect_loop_versioning.
-
- If the loop has data references that may or may not be aligned or/and
- has data reference relations whose independence was not proven then
- two versions of the loop need to be generated, one which is vectorized
- and one which isn't. A test is then generated to control which of the
- loops is executed. The test checks for the alignment of all of the
- data references that may or may not be aligned. An additional
- sequence of runtime tests is generated for each pairs of DDRs whose
- independence was not proven. The vectorized version of loop is
- executed only if both alias and alignment tests are passed.
-
- The test generated to check which version of loop is executed
- is modified to also check for profitability as indicated by the
- cost model initially. */
-
-static void
-vect_loop_versioning (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- struct loop *nloop;
- tree cond_expr = NULL_TREE;
- gimple_seq cond_expr_stmt_list = NULL;
- basic_block condition_bb;
- gimple_stmt_iterator gsi, cond_exp_gsi;
- basic_block merge_bb;
- basic_block new_exit_bb;
- edge new_exit_e, e;
- gimple orig_phi, new_phi;
- tree arg;
- unsigned prob = 4 * REG_BR_PROB_BASE / 5;
- gimple_seq gimplify_stmt_list = NULL;
- tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
- int min_profitable_iters = 0;
- unsigned int th;
-
- /* Get profitability threshold for vectorized loop. */
- min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
-
- th = conservative_cost_threshold (loop_vinfo,
- min_profitable_iters);
-
- cond_expr =
- fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
- build_int_cst (TREE_TYPE (scalar_loop_iters), th));
-
- cond_expr = force_gimple_operand (cond_expr, &cond_expr_stmt_list,
- false, NULL_TREE);
-
- if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo)))
- vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
- &cond_expr_stmt_list);
-
- if (VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr,
- &cond_expr_stmt_list);
-
- cond_expr =
- fold_build2 (NE_EXPR, boolean_type_node, cond_expr, integer_zero_node);
- cond_expr =
- force_gimple_operand (cond_expr, &gimplify_stmt_list, true, NULL_TREE);
- gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
-
- initialize_original_copy_tables ();
- nloop = loop_version (loop, cond_expr, &condition_bb,
- prob, prob, REG_BR_PROB_BASE - prob, true);
- free_original_copy_tables();
-
- /* Loop versioning violates an assumption we try to maintain during
- vectorization - that the loop exit block has a single predecessor.
- After versioning, the exit block of both loop versions is the same
- basic block (i.e. it has two predecessors). Just in order to simplify
- following transformations in the vectorizer, we fix this situation
- here by adding a new (empty) block on the exit-edge of the loop,
- with the proper loop-exit phis to maintain loop-closed-form. */
-
- merge_bb = single_exit (loop)->dest;
- gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
- new_exit_bb = split_edge (single_exit (loop));
- new_exit_e = single_exit (loop);
- e = EDGE_SUCC (new_exit_bb, 0);
-
- for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- orig_phi = gsi_stmt (gsi);
- new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
- new_exit_bb);
- arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
- add_phi_arg (new_phi, arg, new_exit_e);
- SET_PHI_ARG_DEF (orig_phi, e->dest_idx, PHI_RESULT (new_phi));
- }
-
- /* End loop-exit-fixes after versioning. */
-
- update_ssa (TODO_update_ssa);
- if (cond_expr_stmt_list)
- {
- cond_exp_gsi = gsi_last_bb (condition_bb);
- gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list, GSI_SAME_STMT);
- }
-}
-
-/* Remove a group of stores (for SLP or interleaving), free their
- stmt_vec_info. */
-
-static void
-vect_remove_stores (gimple first_stmt)
-{
- gimple next = first_stmt;
- gimple tmp;
- gimple_stmt_iterator next_si;
-
- while (next)
- {
- /* Free the attached stmt_vec_info and remove the stmt. */
- next_si = gsi_for_stmt (next);
- gsi_remove (&next_si, true);
- tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
- free_stmt_vec_info (next);
- next = tmp;
- }
-}
-
-
-/* Vectorize SLP instance tree in postorder. */
-
-static bool
-vect_schedule_slp_instance (slp_tree node, slp_instance instance,
- unsigned int vectorization_factor)
-{
- gimple stmt;
- bool strided_store, is_store;
- gimple_stmt_iterator si;
- stmt_vec_info stmt_info;
- unsigned int vec_stmts_size, nunits, group_size;
- tree vectype;
- int i;
- slp_tree loads_node;
-
- if (!node)
- return false;
-
- vect_schedule_slp_instance (SLP_TREE_LEFT (node), instance,
- vectorization_factor);
- vect_schedule_slp_instance (SLP_TREE_RIGHT (node), instance,
- vectorization_factor);
-
- stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (node), 0);
- stmt_info = vinfo_for_stmt (stmt);
-
- /* VECTYPE is the type of the destination. */
- vectype = get_vectype_for_scalar_type (TREE_TYPE (gimple_assign_lhs (stmt)));
- nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (vectype);
- group_size = SLP_INSTANCE_GROUP_SIZE (instance);
-
- /* For each SLP instance calculate number of vector stmts to be created
- for the scalar stmts in each node of the SLP tree. Number of vector
- elements in one vector iteration is the number of scalar elements in
- one scalar iteration (GROUP_SIZE) multiplied by VF divided by vector
- size. */
- vec_stmts_size = (vectorization_factor * group_size) / nunits;
-
- /* In case of load permutation we have to allocate vectorized statements for
- all the nodes that participate in that permutation. */
- if (SLP_INSTANCE_LOAD_PERMUTATION (instance))
- {
- for (i = 0;
- VEC_iterate (slp_tree, SLP_INSTANCE_LOADS (instance), i, loads_node);
- i++)
- {
- if (!SLP_TREE_VEC_STMTS (loads_node))
- {
- SLP_TREE_VEC_STMTS (loads_node) = VEC_alloc (gimple, heap,
- vec_stmts_size);
- SLP_TREE_NUMBER_OF_VEC_STMTS (loads_node) = vec_stmts_size;
- }
- }
- }
-
- if (!SLP_TREE_VEC_STMTS (node))
- {
- SLP_TREE_VEC_STMTS (node) = VEC_alloc (gimple, heap, vec_stmts_size);
- SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vec_stmts_size;
- }
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "------>vectorizing SLP node starting from: ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- /* Loads should be inserted before the first load. */
- if (SLP_INSTANCE_FIRST_LOAD_STMT (instance)
- && STMT_VINFO_STRIDED_ACCESS (stmt_info)
- && !REFERENCE_CLASS_P (gimple_get_lhs (stmt)))
- si = gsi_for_stmt (SLP_INSTANCE_FIRST_LOAD_STMT (instance));
- else
- si = gsi_for_stmt (stmt);
-
- is_store = vect_transform_stmt (stmt, &si, &strided_store, node, instance);
- if (is_store)
- {
- if (DR_GROUP_FIRST_DR (stmt_info))
- /* If IS_STORE is TRUE, the vectorization of the
- interleaving chain was completed - free all the stores in
- the chain. */
- vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
- else
- /* FORNOW: SLP originates only from strided stores. */
- gcc_unreachable ();
-
- return true;
- }
-
- /* FORNOW: SLP originates only from strided stores. */
- return false;
-}
-
-
-static bool
-vect_schedule_slp (loop_vec_info loop_vinfo)
-{
- VEC (slp_instance, heap) *slp_instances =
- LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
- slp_instance instance;
- unsigned int i;
- bool is_store = false;
-
- for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
- {
- /* Schedule the tree of INSTANCE. */
- is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
- instance, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
-
- if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS)
- || vect_print_dump_info (REPORT_UNVECTORIZED_LOOPS))
- fprintf (vect_dump, "vectorizing stmts using SLP.");
- }
-
- return is_store;
-}
-
-/* Function vect_transform_loop.
-
- The analysis phase has determined that the loop is vectorizable.
- Vectorize the loop - created vectorized stmts to replace the scalar
- stmts in the loop, and update the loop exit condition. */
-
-void
-vect_transform_loop (loop_vec_info loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- gimple_stmt_iterator si;
- int i;
- tree ratio = NULL;
- int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- bool strided_store;
- bool slp_scheduled = false;
- unsigned int nunits;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== vec_transform_loop ===");
-
- if (VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo))
- || VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo)))
- vect_loop_versioning (loop_vinfo);
-
- /* CHECKME: we wouldn't need this if we called update_ssa once
- for all loops. */
- bitmap_zero (vect_memsyms_to_rename);
-
- /* Peel the loop if there are data refs with unknown alignment.
- Only one data ref with unknown store is allowed. */
-
- if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
- vect_do_peeling_for_alignment (loop_vinfo);
-
- /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
- compile time constant), or it is a constant that doesn't divide by the
- vectorization factor, then an epilog loop needs to be created.
- We therefore duplicate the loop: the original loop will be vectorized,
- and will compute the first (n/VF) iterations. The second copy of the loop
- will remain scalar and will compute the remaining (n%VF) iterations.
- (VF is the vectorization factor). */
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0))
- vect_do_peeling_for_loop_bound (loop_vinfo, &ratio);
- else
- ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
- LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
-
- /* 1) Make sure the loop header has exactly two entries
- 2) Make sure we have a preheader basic block. */
-
- gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
-
- split_edge (loop_preheader_edge (loop));
-
- /* FORNOW: the vectorizer supports only loops which body consist
- of one basic block (header + empty latch). When the vectorizer will
- support more involved loop forms, the order by which the BBs are
- traversed need to be reconsidered. */
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
- stmt_vec_info stmt_info;
- gimple phi;
-
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- phi = gsi_stmt (si);
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "------>vectorizing phi: ");
- print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
- }
- stmt_info = vinfo_for_stmt (phi);
- if (!stmt_info)
- continue;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- continue;
-
- if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
- != (unsigned HOST_WIDE_INT) vectorization_factor)
- && vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "multiple-types.");
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
- {
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform phi.");
- vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
- }
- }
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si);)
- {
- gimple stmt = gsi_stmt (si);
- bool is_store;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- {
- fprintf (vect_dump, "------>vectorizing statement: ");
- print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
- }
-
- stmt_info = vinfo_for_stmt (stmt);
-
- /* vector stmts created in the outer-loop during vectorization of
- stmts in an inner-loop may not have a stmt_info, and do not
- need to be vectorized. */
- if (!stmt_info)
- {
- gsi_next (&si);
- continue;
- }
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- {
- gsi_next (&si);
- continue;
- }
-
- gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
- nunits =
- (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
- if (!STMT_SLP_TYPE (stmt_info)
- && nunits != (unsigned int) vectorization_factor
- && vect_print_dump_info (REPORT_DETAILS))
- /* For SLP VF is set according to unrolling factor, and not to
- vector size, hence for SLP this print is not valid. */
- fprintf (vect_dump, "multiple-types.");
-
- /* SLP. Schedule all the SLP instances when the first SLP stmt is
- reached. */
- if (STMT_SLP_TYPE (stmt_info))
- {
- if (!slp_scheduled)
- {
- slp_scheduled = true;
-
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "=== scheduling SLP instances ===");
-
- is_store = vect_schedule_slp (loop_vinfo);
-
- /* IS_STORE is true if STMT is a store. Stores cannot be of
- hybrid SLP type. They are removed in
- vect_schedule_slp_instance and their vinfo is destroyed. */
- if (is_store)
- {
- gsi_next (&si);
- continue;
- }
- }
-
- /* Hybrid SLP stmts must be vectorized in addition to SLP. */
- if (PURE_SLP_STMT (stmt_info))
- {
- gsi_next (&si);
- continue;
- }
- }
-
- /* -------- vectorize statement ------------ */
- if (vect_print_dump_info (REPORT_DETAILS))
- fprintf (vect_dump, "transform statement.");
-
- strided_store = false;
- is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
- if (is_store)
- {
- if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
- {
- /* Interleaving. If IS_STORE is TRUE, the vectorization of the
- interleaving chain was completed - free all the stores in
- the chain. */
- vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
- gsi_remove (&si, true);
- continue;
- }
- else
- {
- /* Free the attached stmt_vec_info and remove the stmt. */
- free_stmt_vec_info (stmt);
- gsi_remove (&si, true);
- continue;
- }
- }
- gsi_next (&si);
- } /* stmts in BB */
- } /* BBs in loop */
-
- slpeel_make_loop_iterate_ntimes (loop, ratio);
-
- mark_set_for_renaming (vect_memsyms_to_rename);
-
- /* The memory tags and pointers in vectorized statements need to
- have their SSA forms updated. FIXME, why can't this be delayed
- until all the loops have been transformed? */
- update_ssa (TODO_update_ssa);
-
- if (vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
- fprintf (vect_dump, "LOOP VECTORIZED.");
- if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOOPS))
- fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
-}