aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-vect-loop.c
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2022-01-14 16:56:44 +0100
committerMartin Liska <mliska@suse.cz>2022-01-17 22:12:04 +0100
commit5c69acb32329d49e58c26fa41ae74229a52b9106 (patch)
treeddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/tree-vect-loop.c
parent490e23032baaece71f2ec09fa1805064b150fbc2 (diff)
downloadgcc-5c69acb32329d49e58c26fa41ae74229a52b9106.zip
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.bz2
Rename .c files to .cc files.
gcc/ada/ChangeLog: * adadecode.c: Moved to... * adadecode.cc: ...here. * affinity.c: Moved to... * affinity.cc: ...here. * argv-lynxos178-raven-cert.c: Moved to... * argv-lynxos178-raven-cert.cc: ...here. * argv.c: Moved to... * argv.cc: ...here. * aux-io.c: Moved to... * aux-io.cc: ...here. * cio.c: Moved to... * cio.cc: ...here. * cstreams.c: Moved to... * cstreams.cc: ...here. * env.c: Moved to... * env.cc: ...here. * exit.c: Moved to... * exit.cc: ...here. * expect.c: Moved to... * expect.cc: ...here. * final.c: Moved to... * final.cc: ...here. * gcc-interface/cuintp.c: Moved to... * gcc-interface/cuintp.cc: ...here. * gcc-interface/decl.c: Moved to... * gcc-interface/decl.cc: ...here. * gcc-interface/misc.c: Moved to... * gcc-interface/misc.cc: ...here. * gcc-interface/targtyps.c: Moved to... * gcc-interface/targtyps.cc: ...here. * gcc-interface/trans.c: Moved to... * gcc-interface/trans.cc: ...here. * gcc-interface/utils.c: Moved to... * gcc-interface/utils.cc: ...here. * gcc-interface/utils2.c: Moved to... * gcc-interface/utils2.cc: ...here. * init.c: Moved to... * init.cc: ...here. * initialize.c: Moved to... * initialize.cc: ...here. * libgnarl/thread.c: Moved to... * libgnarl/thread.cc: ...here. * link.c: Moved to... * link.cc: ...here. * locales.c: Moved to... * locales.cc: ...here. * mkdir.c: Moved to... * mkdir.cc: ...here. * raise.c: Moved to... * raise.cc: ...here. * rtfinal.c: Moved to... * rtfinal.cc: ...here. * rtinit.c: Moved to... * rtinit.cc: ...here. * seh_init.c: Moved to... * seh_init.cc: ...here. * sigtramp-armdroid.c: Moved to... * sigtramp-armdroid.cc: ...here. * sigtramp-ios.c: Moved to... * sigtramp-ios.cc: ...here. * sigtramp-qnx.c: Moved to... * sigtramp-qnx.cc: ...here. * sigtramp-vxworks.c: Moved to... * sigtramp-vxworks.cc: ...here. * socket.c: Moved to... * socket.cc: ...here. * tracebak.c: Moved to... * tracebak.cc: ...here. * version.c: Moved to... * version.cc: ...here. * vx_stack_info.c: Moved to... * vx_stack_info.cc: ...here. gcc/ChangeLog: * adjust-alignment.c: Moved to... * adjust-alignment.cc: ...here. * alias.c: Moved to... * alias.cc: ...here. * alloc-pool.c: Moved to... * alloc-pool.cc: ...here. * asan.c: Moved to... * asan.cc: ...here. * attribs.c: Moved to... * attribs.cc: ...here. * auto-inc-dec.c: Moved to... * auto-inc-dec.cc: ...here. * auto-profile.c: Moved to... * auto-profile.cc: ...here. * bb-reorder.c: Moved to... * bb-reorder.cc: ...here. * bitmap.c: Moved to... * bitmap.cc: ...here. * btfout.c: Moved to... * btfout.cc: ...here. * builtins.c: Moved to... * builtins.cc: ...here. * caller-save.c: Moved to... * caller-save.cc: ...here. * calls.c: Moved to... * calls.cc: ...here. * ccmp.c: Moved to... * ccmp.cc: ...here. * cfg.c: Moved to... * cfg.cc: ...here. * cfganal.c: Moved to... * cfganal.cc: ...here. * cfgbuild.c: Moved to... * cfgbuild.cc: ...here. * cfgcleanup.c: Moved to... * cfgcleanup.cc: ...here. * cfgexpand.c: Moved to... * cfgexpand.cc: ...here. * cfghooks.c: Moved to... * cfghooks.cc: ...here. * cfgloop.c: Moved to... * cfgloop.cc: ...here. * cfgloopanal.c: Moved to... * cfgloopanal.cc: ...here. * cfgloopmanip.c: Moved to... * cfgloopmanip.cc: ...here. * cfgrtl.c: Moved to... * cfgrtl.cc: ...here. * cgraph.c: Moved to... * cgraph.cc: ...here. * cgraphbuild.c: Moved to... * cgraphbuild.cc: ...here. * cgraphclones.c: Moved to... * cgraphclones.cc: ...here. * cgraphunit.c: Moved to... * cgraphunit.cc: ...here. * collect-utils.c: Moved to... * collect-utils.cc: ...here. * collect2-aix.c: Moved to... * collect2-aix.cc: ...here. * collect2.c: Moved to... * collect2.cc: ...here. * combine-stack-adj.c: Moved to... * combine-stack-adj.cc: ...here. * combine.c: Moved to... * combine.cc: ...here. * common/common-targhooks.c: Moved to... * common/common-targhooks.cc: ...here. * common/config/aarch64/aarch64-common.c: Moved to... * common/config/aarch64/aarch64-common.cc: ...here. * common/config/alpha/alpha-common.c: Moved to... * common/config/alpha/alpha-common.cc: ...here. * common/config/arc/arc-common.c: Moved to... * common/config/arc/arc-common.cc: ...here. * common/config/arm/arm-common.c: Moved to... * common/config/arm/arm-common.cc: ...here. * common/config/avr/avr-common.c: Moved to... * common/config/avr/avr-common.cc: ...here. * common/config/bfin/bfin-common.c: Moved to... * common/config/bfin/bfin-common.cc: ...here. * common/config/bpf/bpf-common.c: Moved to... * common/config/bpf/bpf-common.cc: ...here. * common/config/c6x/c6x-common.c: Moved to... * common/config/c6x/c6x-common.cc: ...here. * common/config/cr16/cr16-common.c: Moved to... * common/config/cr16/cr16-common.cc: ...here. * common/config/cris/cris-common.c: Moved to... * common/config/cris/cris-common.cc: ...here. * common/config/csky/csky-common.c: Moved to... * common/config/csky/csky-common.cc: ...here. * common/config/default-common.c: Moved to... * common/config/default-common.cc: ...here. * common/config/epiphany/epiphany-common.c: Moved to... * common/config/epiphany/epiphany-common.cc: ...here. * common/config/fr30/fr30-common.c: Moved to... * common/config/fr30/fr30-common.cc: ...here. * common/config/frv/frv-common.c: Moved to... * common/config/frv/frv-common.cc: ...here. * common/config/gcn/gcn-common.c: Moved to... * common/config/gcn/gcn-common.cc: ...here. * common/config/h8300/h8300-common.c: Moved to... * common/config/h8300/h8300-common.cc: ...here. * common/config/i386/i386-common.c: Moved to... * common/config/i386/i386-common.cc: ...here. * common/config/ia64/ia64-common.c: Moved to... * common/config/ia64/ia64-common.cc: ...here. * common/config/iq2000/iq2000-common.c: Moved to... * common/config/iq2000/iq2000-common.cc: ...here. * common/config/lm32/lm32-common.c: Moved to... * common/config/lm32/lm32-common.cc: ...here. * common/config/m32r/m32r-common.c: Moved to... * common/config/m32r/m32r-common.cc: ...here. * common/config/m68k/m68k-common.c: Moved to... * common/config/m68k/m68k-common.cc: ...here. * common/config/mcore/mcore-common.c: Moved to... * common/config/mcore/mcore-common.cc: ...here. * common/config/microblaze/microblaze-common.c: Moved to... * common/config/microblaze/microblaze-common.cc: ...here. * common/config/mips/mips-common.c: Moved to... * common/config/mips/mips-common.cc: ...here. * common/config/mmix/mmix-common.c: Moved to... * common/config/mmix/mmix-common.cc: ...here. * common/config/mn10300/mn10300-common.c: Moved to... * common/config/mn10300/mn10300-common.cc: ...here. * common/config/msp430/msp430-common.c: Moved to... * common/config/msp430/msp430-common.cc: ...here. * common/config/nds32/nds32-common.c: Moved to... * common/config/nds32/nds32-common.cc: ...here. * common/config/nios2/nios2-common.c: Moved to... * common/config/nios2/nios2-common.cc: ...here. * common/config/nvptx/nvptx-common.c: Moved to... * common/config/nvptx/nvptx-common.cc: ...here. * common/config/or1k/or1k-common.c: Moved to... * common/config/or1k/or1k-common.cc: ...here. * common/config/pa/pa-common.c: Moved to... * common/config/pa/pa-common.cc: ...here. * common/config/pdp11/pdp11-common.c: Moved to... * common/config/pdp11/pdp11-common.cc: ...here. * common/config/pru/pru-common.c: Moved to... * common/config/pru/pru-common.cc: ...here. * common/config/riscv/riscv-common.c: Moved to... * common/config/riscv/riscv-common.cc: ...here. * common/config/rs6000/rs6000-common.c: Moved to... * common/config/rs6000/rs6000-common.cc: ...here. * common/config/rx/rx-common.c: Moved to... * common/config/rx/rx-common.cc: ...here. * common/config/s390/s390-common.c: Moved to... * common/config/s390/s390-common.cc: ...here. * common/config/sh/sh-common.c: Moved to... * common/config/sh/sh-common.cc: ...here. * common/config/sparc/sparc-common.c: Moved to... * common/config/sparc/sparc-common.cc: ...here. * common/config/tilegx/tilegx-common.c: Moved to... * common/config/tilegx/tilegx-common.cc: ...here. * common/config/tilepro/tilepro-common.c: Moved to... * common/config/tilepro/tilepro-common.cc: ...here. * common/config/v850/v850-common.c: Moved to... * common/config/v850/v850-common.cc: ...here. * common/config/vax/vax-common.c: Moved to... * common/config/vax/vax-common.cc: ...here. * common/config/visium/visium-common.c: Moved to... * common/config/visium/visium-common.cc: ...here. * common/config/xstormy16/xstormy16-common.c: Moved to... * common/config/xstormy16/xstormy16-common.cc: ...here. * common/config/xtensa/xtensa-common.c: Moved to... * common/config/xtensa/xtensa-common.cc: ...here. * compare-elim.c: Moved to... * compare-elim.cc: ...here. * config/aarch64/aarch64-bti-insert.c: Moved to... * config/aarch64/aarch64-bti-insert.cc: ...here. * config/aarch64/aarch64-builtins.c: Moved to... * config/aarch64/aarch64-builtins.cc: ...here. * config/aarch64/aarch64-c.c: Moved to... * config/aarch64/aarch64-c.cc: ...here. * config/aarch64/aarch64-d.c: Moved to... * config/aarch64/aarch64-d.cc: ...here. * config/aarch64/aarch64.c: Moved to... * config/aarch64/aarch64.cc: ...here. * config/aarch64/cortex-a57-fma-steering.c: Moved to... * config/aarch64/cortex-a57-fma-steering.cc: ...here. * config/aarch64/driver-aarch64.c: Moved to... * config/aarch64/driver-aarch64.cc: ...here. * config/aarch64/falkor-tag-collision-avoidance.c: Moved to... * config/aarch64/falkor-tag-collision-avoidance.cc: ...here. * config/aarch64/host-aarch64-darwin.c: Moved to... * config/aarch64/host-aarch64-darwin.cc: ...here. * config/alpha/alpha.c: Moved to... * config/alpha/alpha.cc: ...here. * config/alpha/driver-alpha.c: Moved to... * config/alpha/driver-alpha.cc: ...here. * config/arc/arc-c.c: Moved to... * config/arc/arc-c.cc: ...here. * config/arc/arc.c: Moved to... * config/arc/arc.cc: ...here. * config/arc/driver-arc.c: Moved to... * config/arc/driver-arc.cc: ...here. * config/arm/aarch-common.c: Moved to... * config/arm/aarch-common.cc: ...here. * config/arm/arm-builtins.c: Moved to... * config/arm/arm-builtins.cc: ...here. * config/arm/arm-c.c: Moved to... * config/arm/arm-c.cc: ...here. * config/arm/arm-d.c: Moved to... * config/arm/arm-d.cc: ...here. * config/arm/arm.c: Moved to... * config/arm/arm.cc: ...here. * config/arm/driver-arm.c: Moved to... * config/arm/driver-arm.cc: ...here. * config/avr/avr-c.c: Moved to... * config/avr/avr-c.cc: ...here. * config/avr/avr-devices.c: Moved to... * config/avr/avr-devices.cc: ...here. * config/avr/avr-log.c: Moved to... * config/avr/avr-log.cc: ...here. * config/avr/avr.c: Moved to... * config/avr/avr.cc: ...here. * config/avr/driver-avr.c: Moved to... * config/avr/driver-avr.cc: ...here. * config/avr/gen-avr-mmcu-specs.c: Moved to... * config/avr/gen-avr-mmcu-specs.cc: ...here. * config/avr/gen-avr-mmcu-texi.c: Moved to... * config/avr/gen-avr-mmcu-texi.cc: ...here. * config/bfin/bfin.c: Moved to... * config/bfin/bfin.cc: ...here. * config/bpf/bpf.c: Moved to... * config/bpf/bpf.cc: ...here. * config/bpf/coreout.c: Moved to... * config/bpf/coreout.cc: ...here. * config/c6x/c6x.c: Moved to... * config/c6x/c6x.cc: ...here. * config/cr16/cr16.c: Moved to... * config/cr16/cr16.cc: ...here. * config/cris/cris.c: Moved to... * config/cris/cris.cc: ...here. * config/csky/csky.c: Moved to... * config/csky/csky.cc: ...here. * config/darwin-c.c: Moved to... * config/darwin-c.cc: ...here. * config/darwin-d.c: Moved to... * config/darwin-d.cc: ...here. * config/darwin-driver.c: Moved to... * config/darwin-driver.cc: ...here. * config/darwin-f.c: Moved to... * config/darwin-f.cc: ...here. * config/darwin.c: Moved to... * config/darwin.cc: ...here. * config/default-c.c: Moved to... * config/default-c.cc: ...here. * config/default-d.c: Moved to... * config/default-d.cc: ...here. * config/dragonfly-d.c: Moved to... * config/dragonfly-d.cc: ...here. * config/epiphany/epiphany.c: Moved to... * config/epiphany/epiphany.cc: ...here. * config/epiphany/mode-switch-use.c: Moved to... * config/epiphany/mode-switch-use.cc: ...here. * config/epiphany/resolve-sw-modes.c: Moved to... * config/epiphany/resolve-sw-modes.cc: ...here. * config/fr30/fr30.c: Moved to... * config/fr30/fr30.cc: ...here. * config/freebsd-d.c: Moved to... * config/freebsd-d.cc: ...here. * config/frv/frv.c: Moved to... * config/frv/frv.cc: ...here. * config/ft32/ft32.c: Moved to... * config/ft32/ft32.cc: ...here. * config/gcn/driver-gcn.c: Moved to... * config/gcn/driver-gcn.cc: ...here. * config/gcn/gcn-run.c: Moved to... * config/gcn/gcn-run.cc: ...here. * config/gcn/gcn-tree.c: Moved to... * config/gcn/gcn-tree.cc: ...here. * config/gcn/gcn.c: Moved to... * config/gcn/gcn.cc: ...here. * config/gcn/mkoffload.c: Moved to... * config/gcn/mkoffload.cc: ...here. * config/glibc-c.c: Moved to... * config/glibc-c.cc: ...here. * config/glibc-d.c: Moved to... * config/glibc-d.cc: ...here. * config/h8300/h8300.c: Moved to... * config/h8300/h8300.cc: ...here. * config/host-darwin.c: Moved to... * config/host-darwin.cc: ...here. * config/host-hpux.c: Moved to... * config/host-hpux.cc: ...here. * config/host-linux.c: Moved to... * config/host-linux.cc: ...here. * config/host-netbsd.c: Moved to... * config/host-netbsd.cc: ...here. * config/host-openbsd.c: Moved to... * config/host-openbsd.cc: ...here. * config/host-solaris.c: Moved to... * config/host-solaris.cc: ...here. * config/i386/djgpp.c: Moved to... * config/i386/djgpp.cc: ...here. * config/i386/driver-i386.c: Moved to... * config/i386/driver-i386.cc: ...here. * config/i386/driver-mingw32.c: Moved to... * config/i386/driver-mingw32.cc: ...here. * config/i386/gnu-property.c: Moved to... * config/i386/gnu-property.cc: ...here. * config/i386/host-cygwin.c: Moved to... * config/i386/host-cygwin.cc: ...here. * config/i386/host-i386-darwin.c: Moved to... * config/i386/host-i386-darwin.cc: ...here. * config/i386/host-mingw32.c: Moved to... * config/i386/host-mingw32.cc: ...here. * config/i386/i386-builtins.c: Moved to... * config/i386/i386-builtins.cc: ...here. * config/i386/i386-c.c: Moved to... * config/i386/i386-c.cc: ...here. * config/i386/i386-d.c: Moved to... * config/i386/i386-d.cc: ...here. * config/i386/i386-expand.c: Moved to... * config/i386/i386-expand.cc: ...here. * config/i386/i386-features.c: Moved to... * config/i386/i386-features.cc: ...here. * config/i386/i386-options.c: Moved to... * config/i386/i386-options.cc: ...here. * config/i386/i386.c: Moved to... * config/i386/i386.cc: ...here. * config/i386/intelmic-mkoffload.c: Moved to... * config/i386/intelmic-mkoffload.cc: ...here. * config/i386/msformat-c.c: Moved to... * config/i386/msformat-c.cc: ...here. * config/i386/winnt-cxx.c: Moved to... * config/i386/winnt-cxx.cc: ...here. * config/i386/winnt-d.c: Moved to... * config/i386/winnt-d.cc: ...here. * config/i386/winnt-stubs.c: Moved to... * config/i386/winnt-stubs.cc: ...here. * config/i386/winnt.c: Moved to... * config/i386/winnt.cc: ...here. * config/i386/x86-tune-sched-atom.c: Moved to... * config/i386/x86-tune-sched-atom.cc: ...here. * config/i386/x86-tune-sched-bd.c: Moved to... * config/i386/x86-tune-sched-bd.cc: ...here. * config/i386/x86-tune-sched-core.c: Moved to... * config/i386/x86-tune-sched-core.cc: ...here. * config/i386/x86-tune-sched.c: Moved to... * config/i386/x86-tune-sched.cc: ...here. * config/ia64/ia64-c.c: Moved to... * config/ia64/ia64-c.cc: ...here. * config/ia64/ia64.c: Moved to... * config/ia64/ia64.cc: ...here. * config/iq2000/iq2000.c: Moved to... * config/iq2000/iq2000.cc: ...here. * config/linux.c: Moved to... * config/linux.cc: ...here. * config/lm32/lm32.c: Moved to... * config/lm32/lm32.cc: ...here. * config/m32c/m32c-pragma.c: Moved to... * config/m32c/m32c-pragma.cc: ...here. * config/m32c/m32c.c: Moved to... * config/m32c/m32c.cc: ...here. * config/m32r/m32r.c: Moved to... * config/m32r/m32r.cc: ...here. * config/m68k/m68k.c: Moved to... * config/m68k/m68k.cc: ...here. * config/mcore/mcore.c: Moved to... * config/mcore/mcore.cc: ...here. * config/microblaze/microblaze-c.c: Moved to... * config/microblaze/microblaze-c.cc: ...here. * config/microblaze/microblaze.c: Moved to... * config/microblaze/microblaze.cc: ...here. * config/mips/driver-native.c: Moved to... * config/mips/driver-native.cc: ...here. * config/mips/frame-header-opt.c: Moved to... * config/mips/frame-header-opt.cc: ...here. * config/mips/mips-d.c: Moved to... * config/mips/mips-d.cc: ...here. * config/mips/mips.c: Moved to... * config/mips/mips.cc: ...here. * config/mmix/mmix.c: Moved to... * config/mmix/mmix.cc: ...here. * config/mn10300/mn10300.c: Moved to... * config/mn10300/mn10300.cc: ...here. * config/moxie/moxie.c: Moved to... * config/moxie/moxie.cc: ...here. * config/msp430/driver-msp430.c: Moved to... * config/msp430/driver-msp430.cc: ...here. * config/msp430/msp430-c.c: Moved to... * config/msp430/msp430-c.cc: ...here. * config/msp430/msp430-devices.c: Moved to... * config/msp430/msp430-devices.cc: ...here. * config/msp430/msp430.c: Moved to... * config/msp430/msp430.cc: ...here. * config/nds32/nds32-cost.c: Moved to... * config/nds32/nds32-cost.cc: ...here. * config/nds32/nds32-fp-as-gp.c: Moved to... * config/nds32/nds32-fp-as-gp.cc: ...here. * config/nds32/nds32-intrinsic.c: Moved to... * config/nds32/nds32-intrinsic.cc: ...here. * config/nds32/nds32-isr.c: Moved to... * config/nds32/nds32-isr.cc: ...here. * config/nds32/nds32-md-auxiliary.c: Moved to... * config/nds32/nds32-md-auxiliary.cc: ...here. * config/nds32/nds32-memory-manipulation.c: Moved to... * config/nds32/nds32-memory-manipulation.cc: ...here. * config/nds32/nds32-pipelines-auxiliary.c: Moved to... * config/nds32/nds32-pipelines-auxiliary.cc: ...here. * config/nds32/nds32-predicates.c: Moved to... * config/nds32/nds32-predicates.cc: ...here. * config/nds32/nds32-relax-opt.c: Moved to... * config/nds32/nds32-relax-opt.cc: ...here. * config/nds32/nds32-utils.c: Moved to... * config/nds32/nds32-utils.cc: ...here. * config/nds32/nds32.c: Moved to... * config/nds32/nds32.cc: ...here. * config/netbsd-d.c: Moved to... * config/netbsd-d.cc: ...here. * config/netbsd.c: Moved to... * config/netbsd.cc: ...here. * config/nios2/nios2.c: Moved to... * config/nios2/nios2.cc: ...here. * config/nvptx/mkoffload.c: Moved to... * config/nvptx/mkoffload.cc: ...here. * config/nvptx/nvptx-c.c: Moved to... * config/nvptx/nvptx-c.cc: ...here. * config/nvptx/nvptx.c: Moved to... * config/nvptx/nvptx.cc: ...here. * config/openbsd-d.c: Moved to... * config/openbsd-d.cc: ...here. * config/or1k/or1k.c: Moved to... * config/or1k/or1k.cc: ...here. * config/pa/pa-d.c: Moved to... * config/pa/pa-d.cc: ...here. * config/pa/pa.c: Moved to... * config/pa/pa.cc: ...here. * config/pdp11/pdp11.c: Moved to... * config/pdp11/pdp11.cc: ...here. * config/pru/pru-passes.c: Moved to... * config/pru/pru-passes.cc: ...here. * config/pru/pru-pragma.c: Moved to... * config/pru/pru-pragma.cc: ...here. * config/pru/pru.c: Moved to... * config/pru/pru.cc: ...here. * config/riscv/riscv-builtins.c: Moved to... * config/riscv/riscv-builtins.cc: ...here. * config/riscv/riscv-c.c: Moved to... * config/riscv/riscv-c.cc: ...here. * config/riscv/riscv-d.c: Moved to... * config/riscv/riscv-d.cc: ...here. * config/riscv/riscv-shorten-memrefs.c: Moved to... * config/riscv/riscv-shorten-memrefs.cc: ...here. * config/riscv/riscv-sr.c: Moved to... * config/riscv/riscv-sr.cc: ...here. * config/riscv/riscv.c: Moved to... * config/riscv/riscv.cc: ...here. * config/rl78/rl78-c.c: Moved to... * config/rl78/rl78-c.cc: ...here. * config/rl78/rl78.c: Moved to... * config/rl78/rl78.cc: ...here. * config/rs6000/driver-rs6000.c: Moved to... * config/rs6000/driver-rs6000.cc: ...here. * config/rs6000/host-darwin.c: Moved to... * config/rs6000/host-darwin.cc: ...here. * config/rs6000/host-ppc64-darwin.c: Moved to... * config/rs6000/host-ppc64-darwin.cc: ...here. * config/rs6000/rbtree.c: Moved to... * config/rs6000/rbtree.cc: ...here. * config/rs6000/rs6000-c.c: Moved to... * config/rs6000/rs6000-c.cc: ...here. * config/rs6000/rs6000-call.c: Moved to... * config/rs6000/rs6000-call.cc: ...here. * config/rs6000/rs6000-d.c: Moved to... * config/rs6000/rs6000-d.cc: ...here. * config/rs6000/rs6000-gen-builtins.c: Moved to... * config/rs6000/rs6000-gen-builtins.cc: ...here. * config/rs6000/rs6000-linux.c: Moved to... * config/rs6000/rs6000-linux.cc: ...here. * config/rs6000/rs6000-logue.c: Moved to... * config/rs6000/rs6000-logue.cc: ...here. * config/rs6000/rs6000-p8swap.c: Moved to... * config/rs6000/rs6000-p8swap.cc: ...here. * config/rs6000/rs6000-pcrel-opt.c: Moved to... * config/rs6000/rs6000-pcrel-opt.cc: ...here. * config/rs6000/rs6000-string.c: Moved to... * config/rs6000/rs6000-string.cc: ...here. * config/rs6000/rs6000.c: Moved to... * config/rs6000/rs6000.cc: ...here. * config/rx/rx.c: Moved to... * config/rx/rx.cc: ...here. * config/s390/driver-native.c: Moved to... * config/s390/driver-native.cc: ...here. * config/s390/s390-c.c: Moved to... * config/s390/s390-c.cc: ...here. * config/s390/s390-d.c: Moved to... * config/s390/s390-d.cc: ...here. * config/s390/s390.c: Moved to... * config/s390/s390.cc: ...here. * config/sh/divtab-sh4-300.c: Moved to... * config/sh/divtab-sh4-300.cc: ...here. * config/sh/divtab-sh4.c: Moved to... * config/sh/divtab-sh4.cc: ...here. * config/sh/divtab.c: Moved to... * config/sh/divtab.cc: ...here. * config/sh/sh-c.c: Moved to... * config/sh/sh-c.cc: ...here. * config/sh/sh.c: Moved to... * config/sh/sh.cc: ...here. * config/sol2-c.c: Moved to... * config/sol2-c.cc: ...here. * config/sol2-cxx.c: Moved to... * config/sol2-cxx.cc: ...here. * config/sol2-d.c: Moved to... * config/sol2-d.cc: ...here. * config/sol2-stubs.c: Moved to... * config/sol2-stubs.cc: ...here. * config/sol2.c: Moved to... * config/sol2.cc: ...here. * config/sparc/driver-sparc.c: Moved to... * config/sparc/driver-sparc.cc: ...here. * config/sparc/sparc-c.c: Moved to... * config/sparc/sparc-c.cc: ...here. * config/sparc/sparc-d.c: Moved to... * config/sparc/sparc-d.cc: ...here. * config/sparc/sparc.c: Moved to... * config/sparc/sparc.cc: ...here. * config/stormy16/stormy16.c: Moved to... * config/stormy16/stormy16.cc: ...here. * config/tilegx/mul-tables.c: Moved to... * config/tilegx/mul-tables.cc: ...here. * config/tilegx/tilegx-c.c: Moved to... * config/tilegx/tilegx-c.cc: ...here. * config/tilegx/tilegx.c: Moved to... * config/tilegx/tilegx.cc: ...here. * config/tilepro/mul-tables.c: Moved to... * config/tilepro/mul-tables.cc: ...here. * config/tilepro/tilepro-c.c: Moved to... * config/tilepro/tilepro-c.cc: ...here. * config/tilepro/tilepro.c: Moved to... * config/tilepro/tilepro.cc: ...here. * config/v850/v850-c.c: Moved to... * config/v850/v850-c.cc: ...here. * config/v850/v850.c: Moved to... * config/v850/v850.cc: ...here. * config/vax/vax.c: Moved to... * config/vax/vax.cc: ...here. * config/visium/visium.c: Moved to... * config/visium/visium.cc: ...here. * config/vms/vms-c.c: Moved to... * config/vms/vms-c.cc: ...here. * config/vms/vms-f.c: Moved to... * config/vms/vms-f.cc: ...here. * config/vms/vms.c: Moved to... * config/vms/vms.cc: ...here. * config/vxworks-c.c: Moved to... * config/vxworks-c.cc: ...here. * config/vxworks.c: Moved to... * config/vxworks.cc: ...here. * config/winnt-c.c: Moved to... * config/winnt-c.cc: ...here. * config/xtensa/xtensa.c: Moved to... * config/xtensa/xtensa.cc: ...here. * context.c: Moved to... * context.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * coverage.c: Moved to... * coverage.cc: ...here. * cppbuiltin.c: Moved to... * cppbuiltin.cc: ...here. * cppdefault.c: Moved to... * cppdefault.cc: ...here. * cprop.c: Moved to... * cprop.cc: ...here. * cse.c: Moved to... * cse.cc: ...here. * cselib.c: Moved to... * cselib.cc: ...here. * ctfc.c: Moved to... * ctfc.cc: ...here. * ctfout.c: Moved to... * ctfout.cc: ...here. * data-streamer-in.c: Moved to... * data-streamer-in.cc: ...here. * data-streamer-out.c: Moved to... * data-streamer-out.cc: ...here. * data-streamer.c: Moved to... * data-streamer.cc: ...here. * dbgcnt.c: Moved to... * dbgcnt.cc: ...here. * dbxout.c: Moved to... * dbxout.cc: ...here. * dce.c: Moved to... * dce.cc: ...here. * ddg.c: Moved to... * ddg.cc: ...here. * debug.c: Moved to... * debug.cc: ...here. * df-core.c: Moved to... * df-core.cc: ...here. * df-problems.c: Moved to... * df-problems.cc: ...here. * df-scan.c: Moved to... * df-scan.cc: ...here. * dfp.c: Moved to... * dfp.cc: ...here. * diagnostic-color.c: Moved to... * diagnostic-color.cc: ...here. * diagnostic-show-locus.c: Moved to... * diagnostic-show-locus.cc: ...here. * diagnostic-spec.c: Moved to... * diagnostic-spec.cc: ...here. * diagnostic.c: Moved to... * diagnostic.cc: ...here. * dojump.c: Moved to... * dojump.cc: ...here. * dominance.c: Moved to... * dominance.cc: ...here. * domwalk.c: Moved to... * domwalk.cc: ...here. * double-int.c: Moved to... * double-int.cc: ...here. * dse.c: Moved to... * dse.cc: ...here. * dumpfile.c: Moved to... * dumpfile.cc: ...here. * dwarf2asm.c: Moved to... * dwarf2asm.cc: ...here. * dwarf2cfi.c: Moved to... * dwarf2cfi.cc: ...here. * dwarf2ctf.c: Moved to... * dwarf2ctf.cc: ...here. * dwarf2out.c: Moved to... * dwarf2out.cc: ...here. * early-remat.c: Moved to... * early-remat.cc: ...here. * edit-context.c: Moved to... * edit-context.cc: ...here. * emit-rtl.c: Moved to... * emit-rtl.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * et-forest.c: Moved to... * et-forest.cc: ...here. * except.c: Moved to... * except.cc: ...here. * explow.c: Moved to... * explow.cc: ...here. * expmed.c: Moved to... * expmed.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * fibonacci_heap.c: Moved to... * fibonacci_heap.cc: ...here. * file-find.c: Moved to... * file-find.cc: ...here. * file-prefix-map.c: Moved to... * file-prefix-map.cc: ...here. * final.c: Moved to... * final.cc: ...here. * fixed-value.c: Moved to... * fixed-value.cc: ...here. * fold-const-call.c: Moved to... * fold-const-call.cc: ...here. * fold-const.c: Moved to... * fold-const.cc: ...here. * fp-test.c: Moved to... * fp-test.cc: ...here. * function-tests.c: Moved to... * function-tests.cc: ...here. * function.c: Moved to... * function.cc: ...here. * fwprop.c: Moved to... * fwprop.cc: ...here. * gcc-ar.c: Moved to... * gcc-ar.cc: ...here. * gcc-main.c: Moved to... * gcc-main.cc: ...here. * gcc-rich-location.c: Moved to... * gcc-rich-location.cc: ...here. * gcc.c: Moved to... * gcc.cc: ...here. * gcov-dump.c: Moved to... * gcov-dump.cc: ...here. * gcov-io.c: Moved to... * gcov-io.cc: ...here. * gcov-tool.c: Moved to... * gcov-tool.cc: ...here. * gcov.c: Moved to... * gcov.cc: ...here. * gcse-common.c: Moved to... * gcse-common.cc: ...here. * gcse.c: Moved to... * gcse.cc: ...here. * genattr-common.c: Moved to... * genattr-common.cc: ...here. * genattr.c: Moved to... * genattr.cc: ...here. * genattrtab.c: Moved to... * genattrtab.cc: ...here. * genautomata.c: Moved to... * genautomata.cc: ...here. * gencfn-macros.c: Moved to... * gencfn-macros.cc: ...here. * gencheck.c: Moved to... * gencheck.cc: ...here. * genchecksum.c: Moved to... * genchecksum.cc: ...here. * gencodes.c: Moved to... * gencodes.cc: ...here. * genconditions.c: Moved to... * genconditions.cc: ...here. * genconfig.c: Moved to... * genconfig.cc: ...here. * genconstants.c: Moved to... * genconstants.cc: ...here. * genemit.c: Moved to... * genemit.cc: ...here. * genenums.c: Moved to... * genenums.cc: ...here. * generic-match-head.c: Moved to... * generic-match-head.cc: ...here. * genextract.c: Moved to... * genextract.cc: ...here. * genflags.c: Moved to... * genflags.cc: ...here. * gengenrtl.c: Moved to... * gengenrtl.cc: ...here. * gengtype-parse.c: Moved to... * gengtype-parse.cc: ...here. * gengtype-state.c: Moved to... * gengtype-state.cc: ...here. * gengtype.c: Moved to... * gengtype.cc: ...here. * genhooks.c: Moved to... * genhooks.cc: ...here. * genmatch.c: Moved to... * genmatch.cc: ...here. * genmddeps.c: Moved to... * genmddeps.cc: ...here. * genmddump.c: Moved to... * genmddump.cc: ...here. * genmodes.c: Moved to... * genmodes.cc: ...here. * genopinit.c: Moved to... * genopinit.cc: ...here. * genoutput.c: Moved to... * genoutput.cc: ...here. * genpeep.c: Moved to... * genpeep.cc: ...here. * genpreds.c: Moved to... * genpreds.cc: ...here. * genrecog.c: Moved to... * genrecog.cc: ...here. * gensupport.c: Moved to... * gensupport.cc: ...here. * gentarget-def.c: Moved to... * gentarget-def.cc: ...here. * genversion.c: Moved to... * genversion.cc: ...here. * ggc-common.c: Moved to... * ggc-common.cc: ...here. * ggc-none.c: Moved to... * ggc-none.cc: ...here. * ggc-page.c: Moved to... * ggc-page.cc: ...here. * ggc-tests.c: Moved to... * ggc-tests.cc: ...here. * gimple-builder.c: Moved to... * gimple-builder.cc: ...here. * gimple-expr.c: Moved to... * gimple-expr.cc: ...here. * gimple-fold.c: Moved to... * gimple-fold.cc: ...here. * gimple-iterator.c: Moved to... * gimple-iterator.cc: ...here. * gimple-laddress.c: Moved to... * gimple-laddress.cc: ...here. * gimple-loop-jam.c: Moved to... * gimple-loop-jam.cc: ...here. * gimple-low.c: Moved to... * gimple-low.cc: ...here. * gimple-match-head.c: Moved to... * gimple-match-head.cc: ...here. * gimple-pretty-print.c: Moved to... * gimple-pretty-print.cc: ...here. * gimple-ssa-backprop.c: Moved to... * gimple-ssa-backprop.cc: ...here. * gimple-ssa-evrp-analyze.c: Moved to... * gimple-ssa-evrp-analyze.cc: ...here. * gimple-ssa-evrp.c: Moved to... * gimple-ssa-evrp.cc: ...here. * gimple-ssa-isolate-paths.c: Moved to... * gimple-ssa-isolate-paths.cc: ...here. * gimple-ssa-nonnull-compare.c: Moved to... * gimple-ssa-nonnull-compare.cc: ...here. * gimple-ssa-split-paths.c: Moved to... * gimple-ssa-split-paths.cc: ...here. * gimple-ssa-sprintf.c: Moved to... * gimple-ssa-sprintf.cc: ...here. * gimple-ssa-store-merging.c: Moved to... * gimple-ssa-store-merging.cc: ...here. * gimple-ssa-strength-reduction.c: Moved to... * gimple-ssa-strength-reduction.cc: ...here. * gimple-ssa-warn-alloca.c: Moved to... * gimple-ssa-warn-alloca.cc: ...here. * gimple-ssa-warn-restrict.c: Moved to... * gimple-ssa-warn-restrict.cc: ...here. * gimple-streamer-in.c: Moved to... * gimple-streamer-in.cc: ...here. * gimple-streamer-out.c: Moved to... * gimple-streamer-out.cc: ...here. * gimple-walk.c: Moved to... * gimple-walk.cc: ...here. * gimple-warn-recursion.c: Moved to... * gimple-warn-recursion.cc: ...here. * gimple.c: Moved to... * gimple.cc: ...here. * gimplify-me.c: Moved to... * gimplify-me.cc: ...here. * gimplify.c: Moved to... * gimplify.cc: ...here. * godump.c: Moved to... * godump.cc: ...here. * graph.c: Moved to... * graph.cc: ...here. * graphds.c: Moved to... * graphds.cc: ...here. * graphite-dependences.c: Moved to... * graphite-dependences.cc: ...here. * graphite-isl-ast-to-gimple.c: Moved to... * graphite-isl-ast-to-gimple.cc: ...here. * graphite-optimize-isl.c: Moved to... * graphite-optimize-isl.cc: ...here. * graphite-poly.c: Moved to... * graphite-poly.cc: ...here. * graphite-scop-detection.c: Moved to... * graphite-scop-detection.cc: ...here. * graphite-sese-to-poly.c: Moved to... * graphite-sese-to-poly.cc: ...here. * graphite.c: Moved to... * graphite.cc: ...here. * haifa-sched.c: Moved to... * haifa-sched.cc: ...here. * hash-map-tests.c: Moved to... * hash-map-tests.cc: ...here. * hash-set-tests.c: Moved to... * hash-set-tests.cc: ...here. * hash-table.c: Moved to... * hash-table.cc: ...here. * hooks.c: Moved to... * hooks.cc: ...here. * host-default.c: Moved to... * host-default.cc: ...here. * hw-doloop.c: Moved to... * hw-doloop.cc: ...here. * hwint.c: Moved to... * hwint.cc: ...here. * ifcvt.c: Moved to... * ifcvt.cc: ...here. * inchash.c: Moved to... * inchash.cc: ...here. * incpath.c: Moved to... * incpath.cc: ...here. * init-regs.c: Moved to... * init-regs.cc: ...here. * input.c: Moved to... * input.cc: ...here. * internal-fn.c: Moved to... * internal-fn.cc: ...here. * intl.c: Moved to... * intl.cc: ...here. * ipa-comdats.c: Moved to... * ipa-comdats.cc: ...here. * ipa-cp.c: Moved to... * ipa-cp.cc: ...here. * ipa-devirt.c: Moved to... * ipa-devirt.cc: ...here. * ipa-fnsummary.c: Moved to... * ipa-fnsummary.cc: ...here. * ipa-icf-gimple.c: Moved to... * ipa-icf-gimple.cc: ...here. * ipa-icf.c: Moved to... * ipa-icf.cc: ...here. * ipa-inline-analysis.c: Moved to... * ipa-inline-analysis.cc: ...here. * ipa-inline-transform.c: Moved to... * ipa-inline-transform.cc: ...here. * ipa-inline.c: Moved to... * ipa-inline.cc: ...here. * ipa-modref-tree.c: Moved to... * ipa-modref-tree.cc: ...here. * ipa-modref.c: Moved to... * ipa-modref.cc: ...here. * ipa-param-manipulation.c: Moved to... * ipa-param-manipulation.cc: ...here. * ipa-polymorphic-call.c: Moved to... * ipa-polymorphic-call.cc: ...here. * ipa-predicate.c: Moved to... * ipa-predicate.cc: ...here. * ipa-profile.c: Moved to... * ipa-profile.cc: ...here. * ipa-prop.c: Moved to... * ipa-prop.cc: ...here. * ipa-pure-const.c: Moved to... * ipa-pure-const.cc: ...here. * ipa-ref.c: Moved to... * ipa-ref.cc: ...here. * ipa-reference.c: Moved to... * ipa-reference.cc: ...here. * ipa-split.c: Moved to... * ipa-split.cc: ...here. * ipa-sra.c: Moved to... * ipa-sra.cc: ...here. * ipa-utils.c: Moved to... * ipa-utils.cc: ...here. * ipa-visibility.c: Moved to... * ipa-visibility.cc: ...here. * ipa.c: Moved to... * ipa.cc: ...here. * ira-build.c: Moved to... * ira-build.cc: ...here. * ira-color.c: Moved to... * ira-color.cc: ...here. * ira-conflicts.c: Moved to... * ira-conflicts.cc: ...here. * ira-costs.c: Moved to... * ira-costs.cc: ...here. * ira-emit.c: Moved to... * ira-emit.cc: ...here. * ira-lives.c: Moved to... * ira-lives.cc: ...here. * ira.c: Moved to... * ira.cc: ...here. * jump.c: Moved to... * jump.cc: ...here. * langhooks.c: Moved to... * langhooks.cc: ...here. * lcm.c: Moved to... * lcm.cc: ...here. * lists.c: Moved to... * lists.cc: ...here. * loop-doloop.c: Moved to... * loop-doloop.cc: ...here. * loop-init.c: Moved to... * loop-init.cc: ...here. * loop-invariant.c: Moved to... * loop-invariant.cc: ...here. * loop-iv.c: Moved to... * loop-iv.cc: ...here. * loop-unroll.c: Moved to... * loop-unroll.cc: ...here. * lower-subreg.c: Moved to... * lower-subreg.cc: ...here. * lra-assigns.c: Moved to... * lra-assigns.cc: ...here. * lra-coalesce.c: Moved to... * lra-coalesce.cc: ...here. * lra-constraints.c: Moved to... * lra-constraints.cc: ...here. * lra-eliminations.c: Moved to... * lra-eliminations.cc: ...here. * lra-lives.c: Moved to... * lra-lives.cc: ...here. * lra-remat.c: Moved to... * lra-remat.cc: ...here. * lra-spills.c: Moved to... * lra-spills.cc: ...here. * lra.c: Moved to... * lra.cc: ...here. * lto-cgraph.c: Moved to... * lto-cgraph.cc: ...here. * lto-compress.c: Moved to... * lto-compress.cc: ...here. * lto-opts.c: Moved to... * lto-opts.cc: ...here. * lto-section-in.c: Moved to... * lto-section-in.cc: ...here. * lto-section-out.c: Moved to... * lto-section-out.cc: ...here. * lto-streamer-in.c: Moved to... * lto-streamer-in.cc: ...here. * lto-streamer-out.c: Moved to... * lto-streamer-out.cc: ...here. * lto-streamer.c: Moved to... * lto-streamer.cc: ...here. * lto-wrapper.c: Moved to... * lto-wrapper.cc: ...here. * main.c: Moved to... * main.cc: ...here. * mcf.c: Moved to... * mcf.cc: ...here. * mode-switching.c: Moved to... * mode-switching.cc: ...here. * modulo-sched.c: Moved to... * modulo-sched.cc: ...here. * multiple_target.c: Moved to... * multiple_target.cc: ...here. * omp-expand.c: Moved to... * omp-expand.cc: ...here. * omp-general.c: Moved to... * omp-general.cc: ...here. * omp-low.c: Moved to... * omp-low.cc: ...here. * omp-offload.c: Moved to... * omp-offload.cc: ...here. * omp-simd-clone.c: Moved to... * omp-simd-clone.cc: ...here. * opt-suggestions.c: Moved to... * opt-suggestions.cc: ...here. * optabs-libfuncs.c: Moved to... * optabs-libfuncs.cc: ...here. * optabs-query.c: Moved to... * optabs-query.cc: ...here. * optabs-tree.c: Moved to... * optabs-tree.cc: ...here. * optabs.c: Moved to... * optabs.cc: ...here. * opts-common.c: Moved to... * opts-common.cc: ...here. * opts-global.c: Moved to... * opts-global.cc: ...here. * opts.c: Moved to... * opts.cc: ...here. * passes.c: Moved to... * passes.cc: ...here. * plugin.c: Moved to... * plugin.cc: ...here. * postreload-gcse.c: Moved to... * postreload-gcse.cc: ...here. * postreload.c: Moved to... * postreload.cc: ...here. * predict.c: Moved to... * predict.cc: ...here. * prefix.c: Moved to... * prefix.cc: ...here. * pretty-print.c: Moved to... * pretty-print.cc: ...here. * print-rtl-function.c: Moved to... * print-rtl-function.cc: ...here. * print-rtl.c: Moved to... * print-rtl.cc: ...here. * print-tree.c: Moved to... * print-tree.cc: ...here. * profile-count.c: Moved to... * profile-count.cc: ...here. * profile.c: Moved to... * profile.cc: ...here. * read-md.c: Moved to... * read-md.cc: ...here. * read-rtl-function.c: Moved to... * read-rtl-function.cc: ...here. * read-rtl.c: Moved to... * read-rtl.cc: ...here. * real.c: Moved to... * real.cc: ...here. * realmpfr.c: Moved to... * realmpfr.cc: ...here. * recog.c: Moved to... * recog.cc: ...here. * ree.c: Moved to... * ree.cc: ...here. * reg-stack.c: Moved to... * reg-stack.cc: ...here. * regcprop.c: Moved to... * regcprop.cc: ...here. * reginfo.c: Moved to... * reginfo.cc: ...here. * regrename.c: Moved to... * regrename.cc: ...here. * regstat.c: Moved to... * regstat.cc: ...here. * reload.c: Moved to... * reload.cc: ...here. * reload1.c: Moved to... * reload1.cc: ...here. * reorg.c: Moved to... * reorg.cc: ...here. * resource.c: Moved to... * resource.cc: ...here. * rtl-error.c: Moved to... * rtl-error.cc: ...here. * rtl-tests.c: Moved to... * rtl-tests.cc: ...here. * rtl.c: Moved to... * rtl.cc: ...here. * rtlanal.c: Moved to... * rtlanal.cc: ...here. * rtlhash.c: Moved to... * rtlhash.cc: ...here. * rtlhooks.c: Moved to... * rtlhooks.cc: ...here. * rtx-vector-builder.c: Moved to... * rtx-vector-builder.cc: ...here. * run-rtl-passes.c: Moved to... * run-rtl-passes.cc: ...here. * sancov.c: Moved to... * sancov.cc: ...here. * sanopt.c: Moved to... * sanopt.cc: ...here. * sbitmap.c: Moved to... * sbitmap.cc: ...here. * sched-deps.c: Moved to... * sched-deps.cc: ...here. * sched-ebb.c: Moved to... * sched-ebb.cc: ...here. * sched-rgn.c: Moved to... * sched-rgn.cc: ...here. * sel-sched-dump.c: Moved to... * sel-sched-dump.cc: ...here. * sel-sched-ir.c: Moved to... * sel-sched-ir.cc: ...here. * sel-sched.c: Moved to... * sel-sched.cc: ...here. * selftest-diagnostic.c: Moved to... * selftest-diagnostic.cc: ...here. * selftest-rtl.c: Moved to... * selftest-rtl.cc: ...here. * selftest-run-tests.c: Moved to... * selftest-run-tests.cc: ...here. * selftest.c: Moved to... * selftest.cc: ...here. * sese.c: Moved to... * sese.cc: ...here. * shrink-wrap.c: Moved to... * shrink-wrap.cc: ...here. * simplify-rtx.c: Moved to... * simplify-rtx.cc: ...here. * sparseset.c: Moved to... * sparseset.cc: ...here. * spellcheck-tree.c: Moved to... * spellcheck-tree.cc: ...here. * spellcheck.c: Moved to... * spellcheck.cc: ...here. * sreal.c: Moved to... * sreal.cc: ...here. * stack-ptr-mod.c: Moved to... * stack-ptr-mod.cc: ...here. * statistics.c: Moved to... * statistics.cc: ...here. * stmt.c: Moved to... * stmt.cc: ...here. * stor-layout.c: Moved to... * stor-layout.cc: ...here. * store-motion.c: Moved to... * store-motion.cc: ...here. * streamer-hooks.c: Moved to... * streamer-hooks.cc: ...here. * stringpool.c: Moved to... * stringpool.cc: ...here. * substring-locations.c: Moved to... * substring-locations.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * target-globals.c: Moved to... * target-globals.cc: ...here. * targhooks.c: Moved to... * targhooks.cc: ...here. * timevar.c: Moved to... * timevar.cc: ...here. * toplev.c: Moved to... * toplev.cc: ...here. * tracer.c: Moved to... * tracer.cc: ...here. * trans-mem.c: Moved to... * trans-mem.cc: ...here. * tree-affine.c: Moved to... * tree-affine.cc: ...here. * tree-call-cdce.c: Moved to... * tree-call-cdce.cc: ...here. * tree-cfg.c: Moved to... * tree-cfg.cc: ...here. * tree-cfgcleanup.c: Moved to... * tree-cfgcleanup.cc: ...here. * tree-chrec.c: Moved to... * tree-chrec.cc: ...here. * tree-complex.c: Moved to... * tree-complex.cc: ...here. * tree-data-ref.c: Moved to... * tree-data-ref.cc: ...here. * tree-dfa.c: Moved to... * tree-dfa.cc: ...here. * tree-diagnostic.c: Moved to... * tree-diagnostic.cc: ...here. * tree-dump.c: Moved to... * tree-dump.cc: ...here. * tree-eh.c: Moved to... * tree-eh.cc: ...here. * tree-emutls.c: Moved to... * tree-emutls.cc: ...here. * tree-if-conv.c: Moved to... * tree-if-conv.cc: ...here. * tree-inline.c: Moved to... * tree-inline.cc: ...here. * tree-into-ssa.c: Moved to... * tree-into-ssa.cc: ...here. * tree-iterator.c: Moved to... * tree-iterator.cc: ...here. * tree-loop-distribution.c: Moved to... * tree-loop-distribution.cc: ...here. * tree-nested.c: Moved to... * tree-nested.cc: ...here. * tree-nrv.c: Moved to... * tree-nrv.cc: ...here. * tree-object-size.c: Moved to... * tree-object-size.cc: ...here. * tree-outof-ssa.c: Moved to... * tree-outof-ssa.cc: ...here. * tree-parloops.c: Moved to... * tree-parloops.cc: ...here. * tree-phinodes.c: Moved to... * tree-phinodes.cc: ...here. * tree-predcom.c: Moved to... * tree-predcom.cc: ...here. * tree-pretty-print.c: Moved to... * tree-pretty-print.cc: ...here. * tree-profile.c: Moved to... * tree-profile.cc: ...here. * tree-scalar-evolution.c: Moved to... * tree-scalar-evolution.cc: ...here. * tree-sra.c: Moved to... * tree-sra.cc: ...here. * tree-ssa-address.c: Moved to... * tree-ssa-address.cc: ...here. * tree-ssa-alias.c: Moved to... * tree-ssa-alias.cc: ...here. * tree-ssa-ccp.c: Moved to... * tree-ssa-ccp.cc: ...here. * tree-ssa-coalesce.c: Moved to... * tree-ssa-coalesce.cc: ...here. * tree-ssa-copy.c: Moved to... * tree-ssa-copy.cc: ...here. * tree-ssa-dce.c: Moved to... * tree-ssa-dce.cc: ...here. * tree-ssa-dom.c: Moved to... * tree-ssa-dom.cc: ...here. * tree-ssa-dse.c: Moved to... * tree-ssa-dse.cc: ...here. * tree-ssa-forwprop.c: Moved to... * tree-ssa-forwprop.cc: ...here. * tree-ssa-ifcombine.c: Moved to... * tree-ssa-ifcombine.cc: ...here. * tree-ssa-live.c: Moved to... * tree-ssa-live.cc: ...here. * tree-ssa-loop-ch.c: Moved to... * tree-ssa-loop-ch.cc: ...here. * tree-ssa-loop-im.c: Moved to... * tree-ssa-loop-im.cc: ...here. * tree-ssa-loop-ivcanon.c: Moved to... * tree-ssa-loop-ivcanon.cc: ...here. * tree-ssa-loop-ivopts.c: Moved to... * tree-ssa-loop-ivopts.cc: ...here. * tree-ssa-loop-manip.c: Moved to... * tree-ssa-loop-manip.cc: ...here. * tree-ssa-loop-niter.c: Moved to... * tree-ssa-loop-niter.cc: ...here. * tree-ssa-loop-prefetch.c: Moved to... * tree-ssa-loop-prefetch.cc: ...here. * tree-ssa-loop-split.c: Moved to... * tree-ssa-loop-split.cc: ...here. * tree-ssa-loop-unswitch.c: Moved to... * tree-ssa-loop-unswitch.cc: ...here. * tree-ssa-loop.c: Moved to... * tree-ssa-loop.cc: ...here. * tree-ssa-math-opts.c: Moved to... * tree-ssa-math-opts.cc: ...here. * tree-ssa-operands.c: Moved to... * tree-ssa-operands.cc: ...here. * tree-ssa-phiopt.c: Moved to... * tree-ssa-phiopt.cc: ...here. * tree-ssa-phiprop.c: Moved to... * tree-ssa-phiprop.cc: ...here. * tree-ssa-pre.c: Moved to... * tree-ssa-pre.cc: ...here. * tree-ssa-propagate.c: Moved to... * tree-ssa-propagate.cc: ...here. * tree-ssa-reassoc.c: Moved to... * tree-ssa-reassoc.cc: ...here. * tree-ssa-sccvn.c: Moved to... * tree-ssa-sccvn.cc: ...here. * tree-ssa-scopedtables.c: Moved to... * tree-ssa-scopedtables.cc: ...here. * tree-ssa-sink.c: Moved to... * tree-ssa-sink.cc: ...here. * tree-ssa-strlen.c: Moved to... * tree-ssa-strlen.cc: ...here. * tree-ssa-structalias.c: Moved to... * tree-ssa-structalias.cc: ...here. * tree-ssa-tail-merge.c: Moved to... * tree-ssa-tail-merge.cc: ...here. * tree-ssa-ter.c: Moved to... * tree-ssa-ter.cc: ...here. * tree-ssa-threadbackward.c: Moved to... * tree-ssa-threadbackward.cc: ...here. * tree-ssa-threadedge.c: Moved to... * tree-ssa-threadedge.cc: ...here. * tree-ssa-threadupdate.c: Moved to... * tree-ssa-threadupdate.cc: ...here. * tree-ssa-uncprop.c: Moved to... * tree-ssa-uncprop.cc: ...here. * tree-ssa-uninit.c: Moved to... * tree-ssa-uninit.cc: ...here. * tree-ssa.c: Moved to... * tree-ssa.cc: ...here. * tree-ssanames.c: Moved to... * tree-ssanames.cc: ...here. * tree-stdarg.c: Moved to... * tree-stdarg.cc: ...here. * tree-streamer-in.c: Moved to... * tree-streamer-in.cc: ...here. * tree-streamer-out.c: Moved to... * tree-streamer-out.cc: ...here. * tree-streamer.c: Moved to... * tree-streamer.cc: ...here. * tree-switch-conversion.c: Moved to... * tree-switch-conversion.cc: ...here. * tree-tailcall.c: Moved to... * tree-tailcall.cc: ...here. * tree-vect-data-refs.c: Moved to... * tree-vect-data-refs.cc: ...here. * tree-vect-generic.c: Moved to... * tree-vect-generic.cc: ...here. * tree-vect-loop-manip.c: Moved to... * tree-vect-loop-manip.cc: ...here. * tree-vect-loop.c: Moved to... * tree-vect-loop.cc: ...here. * tree-vect-patterns.c: Moved to... * tree-vect-patterns.cc: ...here. * tree-vect-slp-patterns.c: Moved to... * tree-vect-slp-patterns.cc: ...here. * tree-vect-slp.c: Moved to... * tree-vect-slp.cc: ...here. * tree-vect-stmts.c: Moved to... * tree-vect-stmts.cc: ...here. * tree-vector-builder.c: Moved to... * tree-vector-builder.cc: ...here. * tree-vectorizer.c: Moved to... * tree-vectorizer.cc: ...here. * tree-vrp.c: Moved to... * tree-vrp.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * tsan.c: Moved to... * tsan.cc: ...here. * typed-splay-tree.c: Moved to... * typed-splay-tree.cc: ...here. * ubsan.c: Moved to... * ubsan.cc: ...here. * valtrack.c: Moved to... * valtrack.cc: ...here. * value-prof.c: Moved to... * value-prof.cc: ...here. * var-tracking.c: Moved to... * var-tracking.cc: ...here. * varasm.c: Moved to... * varasm.cc: ...here. * varpool.c: Moved to... * varpool.cc: ...here. * vec-perm-indices.c: Moved to... * vec-perm-indices.cc: ...here. * vec.c: Moved to... * vec.cc: ...here. * vmsdbgout.c: Moved to... * vmsdbgout.cc: ...here. * vr-values.c: Moved to... * vr-values.cc: ...here. * vtable-verify.c: Moved to... * vtable-verify.cc: ...here. * web.c: Moved to... * web.cc: ...here. * xcoffout.c: Moved to... * xcoffout.cc: ...here. gcc/c-family/ChangeLog: * c-ada-spec.c: Moved to... * c-ada-spec.cc: ...here. * c-attribs.c: Moved to... * c-attribs.cc: ...here. * c-common.c: Moved to... * c-common.cc: ...here. * c-cppbuiltin.c: Moved to... * c-cppbuiltin.cc: ...here. * c-dump.c: Moved to... * c-dump.cc: ...here. * c-format.c: Moved to... * c-format.cc: ...here. * c-gimplify.c: Moved to... * c-gimplify.cc: ...here. * c-indentation.c: Moved to... * c-indentation.cc: ...here. * c-lex.c: Moved to... * c-lex.cc: ...here. * c-omp.c: Moved to... * c-omp.cc: ...here. * c-opts.c: Moved to... * c-opts.cc: ...here. * c-pch.c: Moved to... * c-pch.cc: ...here. * c-ppoutput.c: Moved to... * c-ppoutput.cc: ...here. * c-pragma.c: Moved to... * c-pragma.cc: ...here. * c-pretty-print.c: Moved to... * c-pretty-print.cc: ...here. * c-semantics.c: Moved to... * c-semantics.cc: ...here. * c-ubsan.c: Moved to... * c-ubsan.cc: ...here. * c-warn.c: Moved to... * c-warn.cc: ...here. * cppspec.c: Moved to... * cppspec.cc: ...here. * stub-objc.c: Moved to... * stub-objc.cc: ...here. gcc/c/ChangeLog: * c-aux-info.c: Moved to... * c-aux-info.cc: ...here. * c-convert.c: Moved to... * c-convert.cc: ...here. * c-decl.c: Moved to... * c-decl.cc: ...here. * c-errors.c: Moved to... * c-errors.cc: ...here. * c-fold.c: Moved to... * c-fold.cc: ...here. * c-lang.c: Moved to... * c-lang.cc: ...here. * c-objc-common.c: Moved to... * c-objc-common.cc: ...here. * c-parser.c: Moved to... * c-parser.cc: ...here. * c-typeck.c: Moved to... * c-typeck.cc: ...here. * gccspec.c: Moved to... * gccspec.cc: ...here. * gimple-parser.c: Moved to... * gimple-parser.cc: ...here. gcc/cp/ChangeLog: * call.c: Moved to... * call.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constexpr.c: Moved to... * constexpr.cc: ...here. * cp-gimplify.c: Moved to... * cp-gimplify.cc: ...here. * cp-lang.c: Moved to... * cp-lang.cc: ...here. * cp-objcp-common.c: Moved to... * cp-objcp-common.cc: ...here. * cp-ubsan.c: Moved to... * cp-ubsan.cc: ...here. * cvt.c: Moved to... * cvt.cc: ...here. * cxx-pretty-print.c: Moved to... * cxx-pretty-print.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * decl2.c: Moved to... * decl2.cc: ...here. * dump.c: Moved to... * dump.cc: ...here. * error.c: Moved to... * error.cc: ...here. * except.c: Moved to... * except.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * friend.c: Moved to... * friend.cc: ...here. * g++spec.c: Moved to... * g++spec.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lambda.c: Moved to... * lambda.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * mangle.c: Moved to... * mangle.cc: ...here. * method.c: Moved to... * method.cc: ...here. * name-lookup.c: Moved to... * name-lookup.cc: ...here. * optimize.c: Moved to... * optimize.cc: ...here. * parser.c: Moved to... * parser.cc: ...here. * pt.c: Moved to... * pt.cc: ...here. * ptree.c: Moved to... * ptree.cc: ...here. * rtti.c: Moved to... * rtti.cc: ...here. * search.c: Moved to... * search.cc: ...here. * semantics.c: Moved to... * semantics.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * typeck.c: Moved to... * typeck.cc: ...here. * typeck2.c: Moved to... * typeck2.cc: ...here. * vtable-class-hierarchy.c: Moved to... * vtable-class-hierarchy.cc: ...here. gcc/fortran/ChangeLog: * arith.c: Moved to... * arith.cc: ...here. * array.c: Moved to... * array.cc: ...here. * bbt.c: Moved to... * bbt.cc: ...here. * check.c: Moved to... * check.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constructor.c: Moved to... * constructor.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * cpp.c: Moved to... * cpp.cc: ...here. * data.c: Moved to... * data.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * dependency.c: Moved to... * dependency.cc: ...here. * dump-parse-tree.c: Moved to... * dump-parse-tree.cc: ...here. * error.c: Moved to... * error.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * f95-lang.c: Moved to... * f95-lang.cc: ...here. * frontend-passes.c: Moved to... * frontend-passes.cc: ...here. * gfortranspec.c: Moved to... * gfortranspec.cc: ...here. * interface.c: Moved to... * interface.cc: ...here. * intrinsic.c: Moved to... * intrinsic.cc: ...here. * io.c: Moved to... * io.cc: ...here. * iresolve.c: Moved to... * iresolve.cc: ...here. * match.c: Moved to... * match.cc: ...here. * matchexp.c: Moved to... * matchexp.cc: ...here. * misc.c: Moved to... * misc.cc: ...here. * module.c: Moved to... * module.cc: ...here. * openmp.c: Moved to... * openmp.cc: ...here. * options.c: Moved to... * options.cc: ...here. * parse.c: Moved to... * parse.cc: ...here. * primary.c: Moved to... * primary.cc: ...here. * resolve.c: Moved to... * resolve.cc: ...here. * scanner.c: Moved to... * scanner.cc: ...here. * simplify.c: Moved to... * simplify.cc: ...here. * st.c: Moved to... * st.cc: ...here. * symbol.c: Moved to... * symbol.cc: ...here. * target-memory.c: Moved to... * target-memory.cc: ...here. * trans-array.c: Moved to... * trans-array.cc: ...here. * trans-common.c: Moved to... * trans-common.cc: ...here. * trans-const.c: Moved to... * trans-const.cc: ...here. * trans-decl.c: Moved to... * trans-decl.cc: ...here. * trans-expr.c: Moved to... * trans-expr.cc: ...here. * trans-intrinsic.c: Moved to... * trans-intrinsic.cc: ...here. * trans-io.c: Moved to... * trans-io.cc: ...here. * trans-openmp.c: Moved to... * trans-openmp.cc: ...here. * trans-stmt.c: Moved to... * trans-stmt.cc: ...here. * trans-types.c: Moved to... * trans-types.cc: ...here. * trans.c: Moved to... * trans.cc: ...here. gcc/go/ChangeLog: * go-backend.c: Moved to... * go-backend.cc: ...here. * go-lang.c: Moved to... * go-lang.cc: ...here. * gospec.c: Moved to... * gospec.cc: ...here. gcc/jit/ChangeLog: * dummy-frontend.c: Moved to... * dummy-frontend.cc: ...here. * jit-builtins.c: Moved to... * jit-builtins.cc: ...here. * jit-logging.c: Moved to... * jit-logging.cc: ...here. * jit-playback.c: Moved to... * jit-playback.cc: ...here. * jit-recording.c: Moved to... * jit-recording.cc: ...here. * jit-result.c: Moved to... * jit-result.cc: ...here. * jit-spec.c: Moved to... * jit-spec.cc: ...here. * jit-tempdir.c: Moved to... * jit-tempdir.cc: ...here. * jit-w32.c: Moved to... * jit-w32.cc: ...here. * libgccjit.c: Moved to... * libgccjit.cc: ...here. gcc/lto/ChangeLog: * common.c: Moved to... * common.cc: ...here. * lto-common.c: Moved to... * lto-common.cc: ...here. * lto-dump.c: Moved to... * lto-dump.cc: ...here. * lto-lang.c: Moved to... * lto-lang.cc: ...here. * lto-object.c: Moved to... * lto-object.cc: ...here. * lto-partition.c: Moved to... * lto-partition.cc: ...here. * lto-symtab.c: Moved to... * lto-symtab.cc: ...here. * lto.c: Moved to... * lto.cc: ...here. gcc/objc/ChangeLog: * objc-act.c: Moved to... * objc-act.cc: ...here. * objc-encoding.c: Moved to... * objc-encoding.cc: ...here. * objc-gnu-runtime-abi-01.c: Moved to... * objc-gnu-runtime-abi-01.cc: ...here. * objc-lang.c: Moved to... * objc-lang.cc: ...here. * objc-map.c: Moved to... * objc-map.cc: ...here. * objc-next-runtime-abi-01.c: Moved to... * objc-next-runtime-abi-01.cc: ...here. * objc-next-runtime-abi-02.c: Moved to... * objc-next-runtime-abi-02.cc: ...here. * objc-runtime-shared-support.c: Moved to... * objc-runtime-shared-support.cc: ...here. gcc/objcp/ChangeLog: * objcp-decl.c: Moved to... * objcp-decl.cc: ...here. * objcp-lang.c: Moved to... * objcp-lang.cc: ...here. libcpp/ChangeLog: * charset.c: Moved to... * charset.cc: ...here. * directives.c: Moved to... * directives.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * files.c: Moved to... * files.cc: ...here. * identifiers.c: Moved to... * identifiers.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * line-map.c: Moved to... * line-map.cc: ...here. * macro.c: Moved to... * macro.cc: ...here. * makeucnid.c: Moved to... * makeucnid.cc: ...here. * mkdeps.c: Moved to... * mkdeps.cc: ...here. * pch.c: Moved to... * pch.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * traditional.c: Moved to... * traditional.cc: ...here.
Diffstat (limited to 'gcc/tree-vect-loop.c')
-rw-r--r--gcc/tree-vect-loop.c10233
1 files changed, 0 insertions, 10233 deletions
diff --git a/gcc/tree-vect-loop.c b/gcc/tree-vect-loop.c
deleted file mode 100644
index f1410b0..0000000
--- a/gcc/tree-vect-loop.c
+++ /dev/null
@@ -1,10233 +0,0 @@
-/* Loop Vectorization
- Copyright (C) 2003-2022 Free Software Foundation, Inc.
- Contributed by Dorit Naishlos <dorit@il.ibm.com> and
- Ira Rosen <irar@il.ibm.com>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#define INCLUDE_ALGORITHM
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "target.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "cfghooks.h"
-#include "tree-pass.h"
-#include "ssa.h"
-#include "optabs-tree.h"
-#include "diagnostic-core.h"
-#include "fold-const.h"
-#include "stor-layout.h"
-#include "cfganal.h"
-#include "gimplify.h"
-#include "gimple-iterator.h"
-#include "gimplify-me.h"
-#include "tree-ssa-loop-ivopts.h"
-#include "tree-ssa-loop-manip.h"
-#include "tree-ssa-loop-niter.h"
-#include "tree-ssa-loop.h"
-#include "cfgloop.h"
-#include "tree-scalar-evolution.h"
-#include "tree-vectorizer.h"
-#include "gimple-fold.h"
-#include "cgraph.h"
-#include "tree-cfg.h"
-#include "tree-if-conv.h"
-#include "internal-fn.h"
-#include "tree-vector-builder.h"
-#include "vec-perm-indices.h"
-#include "tree-eh.h"
-#include "case-cfn-macros.h"
-
-/* Loop Vectorization Pass.
-
- This pass tries to vectorize loops.
-
- For example, the vectorizer transforms the following simple loop:
-
- short a[N]; short b[N]; short c[N]; int i;
-
- for (i=0; i<N; i++){
- a[i] = b[i] + c[i];
- }
-
- as if it was manually vectorized by rewriting the source code into:
-
- typedef int __attribute__((mode(V8HI))) v8hi;
- short a[N]; short b[N]; short c[N]; int i;
- v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
- v8hi va, vb, vc;
-
- for (i=0; i<N/8; i++){
- vb = pb[i];
- vc = pc[i];
- va = vb + vc;
- pa[i] = va;
- }
-
- The main entry to this pass is vectorize_loops(), in which
- the vectorizer applies a set of analyses on a given set of loops,
- followed by the actual vectorization transformation for the loops that
- had successfully passed the analysis phase.
- Throughout this pass we make a distinction between two types of
- data: scalars (which are represented by SSA_NAMES), and memory references
- ("data-refs"). These two types of data require different handling both
- during analysis and transformation. The types of data-refs that the
- vectorizer currently supports are ARRAY_REFS which base is an array DECL
- (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
- accesses are required to have a simple (consecutive) access pattern.
-
- Analysis phase:
- ===============
- The driver for the analysis phase is vect_analyze_loop().
- It applies a set of analyses, some of which rely on the scalar evolution
- analyzer (scev) developed by Sebastian Pop.
-
- During the analysis phase the vectorizer records some information
- per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
- loop, as well as general information about the loop as a whole, which is
- recorded in a "loop_vec_info" struct attached to each loop.
-
- Transformation phase:
- =====================
- The loop transformation phase scans all the stmts in the loop, and
- creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
- the loop that needs to be vectorized. It inserts the vector code sequence
- just before the scalar stmt S, and records a pointer to the vector code
- in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
- attached to S). This pointer will be used for the vectorization of following
- stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
- otherwise, we rely on dead code elimination for removing it.
-
- For example, say stmt S1 was vectorized into stmt VS1:
-
- VS1: vb = px[i];
- S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
- S2: a = b;
-
- To vectorize stmt S2, the vectorizer first finds the stmt that defines
- the operand 'b' (S1), and gets the relevant vector def 'vb' from the
- vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
- resulting sequence would be:
-
- VS1: vb = px[i];
- S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
- VS2: va = vb;
- S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
-
- Operands that are not SSA_NAMEs, are data-refs that appear in
- load/store operations (like 'x[i]' in S1), and are handled differently.
-
- Target modeling:
- =================
- Currently the only target specific information that is used is the
- size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
- Targets that can support different sizes of vectors, for now will need
- to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
- flexibility will be added in the future.
-
- Since we only vectorize operations which vector form can be
- expressed using existing tree codes, to verify that an operation is
- supported, the vectorizer checks the relevant optab at the relevant
- machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
- the value found is CODE_FOR_nothing, then there's no target support, and
- we can't vectorize the stmt.
-
- For additional information on this project see:
- http://gcc.gnu.org/projects/tree-ssa/vectorization.html
-*/
-
-static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
-static stmt_vec_info vect_is_simple_reduction (loop_vec_info, stmt_vec_info,
- bool *, bool *);
-
-/* Subroutine of vect_determine_vf_for_stmt that handles only one
- statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
- may already be set for general statements (not just data refs). */
-
-static opt_result
-vect_determine_vf_for_stmt_1 (vec_info *vinfo, stmt_vec_info stmt_info,
- bool vectype_maybe_set_p,
- poly_uint64 *vf)
-{
- gimple *stmt = stmt_info->stmt;
-
- if ((!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- || gimple_clobber_p (stmt))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
- return opt_result::success ();
- }
-
- tree stmt_vectype, nunits_vectype;
- opt_result res = vect_get_vector_types_for_stmt (vinfo, stmt_info,
- &stmt_vectype,
- &nunits_vectype);
- if (!res)
- return res;
-
- if (stmt_vectype)
- {
- if (STMT_VINFO_VECTYPE (stmt_info))
- /* The only case when a vectype had been already set is for stmts
- that contain a data ref, or for "pattern-stmts" (stmts generated
- by the vectorizer to represent/replace a certain idiom). */
- gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
- || vectype_maybe_set_p)
- && STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
- else
- STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
- }
-
- if (nunits_vectype)
- vect_update_max_nunits (vf, nunits_vectype);
-
- return opt_result::success ();
-}
-
-/* Subroutine of vect_determine_vectorization_factor. Set the vector
- types of STMT_INFO and all attached pattern statements and update
- the vectorization factor VF accordingly. Return true on success
- or false if something prevented vectorization. */
-
-static opt_result
-vect_determine_vf_for_stmt (vec_info *vinfo,
- stmt_vec_info stmt_info, poly_uint64 *vf)
-{
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: %G",
- stmt_info->stmt);
- opt_result res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, false, vf);
- if (!res)
- return res;
-
- if (STMT_VINFO_IN_PATTERN_P (stmt_info)
- && STMT_VINFO_RELATED_STMT (stmt_info))
- {
- gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
- stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
-
- /* If a pattern statement has def stmts, analyze them too. */
- for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
- !gsi_end_p (si); gsi_next (&si))
- {
- stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "==> examining pattern def stmt: %G",
- def_stmt_info->stmt);
- res = vect_determine_vf_for_stmt_1 (vinfo, def_stmt_info, true, vf);
- if (!res)
- return res;
- }
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "==> examining pattern statement: %G",
- stmt_info->stmt);
- res = vect_determine_vf_for_stmt_1 (vinfo, stmt_info, true, vf);
- if (!res)
- return res;
- }
-
- return opt_result::success ();
-}
-
-/* Function vect_determine_vectorization_factor
-
- Determine the vectorization factor (VF). VF is the number of data elements
- that are operated upon in parallel in a single iteration of the vectorized
- loop. For example, when vectorizing a loop that operates on 4byte elements,
- on a target with vector size (VS) 16byte, the VF is set to 4, since 4
- elements can fit in a single vector register.
-
- We currently support vectorization of loops in which all types operated upon
- are of the same size. Therefore this function currently sets VF according to
- the size of the types operated upon, and fails if there are multiple sizes
- in the loop.
-
- VF is also the factor by which the loop iterations are strip-mined, e.g.:
- original loop:
- for (i=0; i<N; i++){
- a[i] = b[i] + c[i];
- }
-
- vectorized loop:
- for (i=0; i<N; i+=VF){
- a[i:VF] = b[i:VF] + c[i:VF];
- }
-*/
-
-static opt_result
-vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- unsigned nbbs = loop->num_nodes;
- poly_uint64 vectorization_factor = 1;
- tree scalar_type = NULL_TREE;
- gphi *phi;
- tree vectype;
- stmt_vec_info stmt_info;
- unsigned i;
-
- DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
-
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- phi = si.phi ();
- stmt_info = loop_vinfo->lookup_stmt (phi);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: %G",
- phi);
-
- gcc_assert (stmt_info);
-
- if (STMT_VINFO_RELEVANT_P (stmt_info)
- || STMT_VINFO_LIVE_P (stmt_info))
- {
- gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
- scalar_type = TREE_TYPE (PHI_RESULT (phi));
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "get vectype for scalar type: %T\n",
- scalar_type);
-
- vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
- if (!vectype)
- return opt_result::failure_at (phi,
- "not vectorized: unsupported "
- "data-type %T\n",
- scalar_type);
- STMT_VINFO_VECTYPE (stmt_info) = vectype;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "vectype: %T\n",
- vectype);
-
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
- dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
- dump_printf (MSG_NOTE, "\n");
- }
-
- vect_update_max_nunits (&vectorization_factor, vectype);
- }
- }
-
- for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- if (is_gimple_debug (gsi_stmt (si)))
- continue;
- stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
- opt_result res
- = vect_determine_vf_for_stmt (loop_vinfo,
- stmt_info, &vectorization_factor);
- if (!res)
- return res;
- }
- }
-
- /* TODO: Analyze cost. Decide if worth while to vectorize. */
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
- dump_dec (MSG_NOTE, vectorization_factor);
- dump_printf (MSG_NOTE, "\n");
- }
-
- if (known_le (vectorization_factor, 1U))
- return opt_result::failure_at (vect_location,
- "not vectorized: unsupported data-type\n");
- LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
- return opt_result::success ();
-}
-
-
-/* Function vect_is_simple_iv_evolution.
-
- FORNOW: A simple evolution of an induction variables in the loop is
- considered a polynomial evolution. */
-
-static bool
-vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
- tree * step)
-{
- tree init_expr;
- tree step_expr;
- tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
- basic_block bb;
-
- /* When there is no evolution in this loop, the evolution function
- is not "simple". */
- if (evolution_part == NULL_TREE)
- return false;
-
- /* When the evolution is a polynomial of degree >= 2
- the evolution function is not "simple". */
- if (tree_is_chrec (evolution_part))
- return false;
-
- step_expr = evolution_part;
- init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "step: %T, init: %T\n",
- step_expr, init_expr);
-
- *init = init_expr;
- *step = step_expr;
-
- if (TREE_CODE (step_expr) != INTEGER_CST
- && (TREE_CODE (step_expr) != SSA_NAME
- || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
- && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
- || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
- && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
- || !flag_associative_math)))
- && (TREE_CODE (step_expr) != REAL_CST
- || !flag_associative_math))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "step unknown.\n");
- return false;
- }
-
- return true;
-}
-
-/* Return true if PHI, described by STMT_INFO, is the inner PHI in
- what we are assuming is a double reduction. For example, given
- a structure like this:
-
- outer1:
- x_1 = PHI <x_4(outer2), ...>;
- ...
-
- inner:
- x_2 = PHI <x_1(outer1), ...>;
- ...
- x_3 = ...;
- ...
-
- outer2:
- x_4 = PHI <x_3(inner)>;
- ...
-
- outer loop analysis would treat x_1 as a double reduction phi and
- this function would then return true for x_2. */
-
-static bool
-vect_inner_phi_in_double_reduction_p (loop_vec_info loop_vinfo, gphi *phi)
-{
- use_operand_p use_p;
- ssa_op_iter op_iter;
- FOR_EACH_PHI_ARG (use_p, phi, op_iter, SSA_OP_USE)
- if (stmt_vec_info def_info = loop_vinfo->lookup_def (USE_FROM_PTR (use_p)))
- if (STMT_VINFO_DEF_TYPE (def_info) == vect_double_reduction_def)
- return true;
- return false;
-}
-
-/* Function vect_analyze_scalar_cycles_1.
-
- Examine the cross iteration def-use cycles of scalar variables
- in LOOP. LOOP_VINFO represents the loop that is now being
- considered for vectorization (can be LOOP, or an outer-loop
- enclosing LOOP). */
-
-static void
-vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, class loop *loop)
-{
- basic_block bb = loop->header;
- tree init, step;
- auto_vec<stmt_vec_info, 64> worklist;
- gphi_iterator gsi;
- bool double_reduc, reduc_chain;
-
- DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
-
- /* First - identify all inductions. Reduction detection assumes that all the
- inductions have been identified, therefore, this order must not be
- changed. */
- for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gphi *phi = gsi.phi ();
- tree access_fn = NULL;
- tree def = PHI_RESULT (phi);
- stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
-
- /* Skip virtual phi's. The data dependences that are associated with
- virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
- if (virtual_operand_p (def))
- continue;
-
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
-
- /* Analyze the evolution function. */
- access_fn = analyze_scalar_evolution (loop, def);
- if (access_fn)
- {
- STRIP_NOPS (access_fn);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Access function of PHI: %T\n", access_fn);
- STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
- = initial_condition_in_loop_num (access_fn, loop->num);
- STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
- = evolution_part_in_loop_num (access_fn, loop->num);
- }
-
- if (!access_fn
- || vect_inner_phi_in_double_reduction_p (loop_vinfo, phi)
- || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
- || (LOOP_VINFO_LOOP (loop_vinfo) != loop
- && TREE_CODE (step) != INTEGER_CST))
- {
- worklist.safe_push (stmt_vinfo);
- continue;
- }
-
- gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
- != NULL_TREE);
- gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
- }
-
-
- /* Second - identify all reductions and nested cycles. */
- while (worklist.length () > 0)
- {
- stmt_vec_info stmt_vinfo = worklist.pop ();
- gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
- tree def = PHI_RESULT (phi);
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: %G", phi);
-
- gcc_assert (!virtual_operand_p (def)
- && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
-
- stmt_vec_info reduc_stmt_info
- = vect_is_simple_reduction (loop_vinfo, stmt_vinfo, &double_reduc,
- &reduc_chain);
- if (reduc_stmt_info)
- {
- STMT_VINFO_REDUC_DEF (stmt_vinfo) = reduc_stmt_info;
- STMT_VINFO_REDUC_DEF (reduc_stmt_info) = stmt_vinfo;
- if (double_reduc)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Detected double reduction.\n");
-
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
- STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_double_reduction_def;
- }
- else
- {
- if (loop != LOOP_VINFO_LOOP (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Detected vectorizable nested cycle.\n");
-
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
- }
- else
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Detected reduction.\n");
-
- STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
- STMT_VINFO_DEF_TYPE (reduc_stmt_info) = vect_reduction_def;
- /* Store the reduction cycles for possible vectorization in
- loop-aware SLP if it was not detected as reduction
- chain. */
- if (! reduc_chain)
- LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push
- (reduc_stmt_info);
- }
- }
- }
- else
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "Unknown def-use cycle pattern.\n");
- }
-}
-
-
-/* Function vect_analyze_scalar_cycles.
-
- Examine the cross iteration def-use cycles of scalar variables, by
- analyzing the loop-header PHIs of scalar variables. Classify each
- cycle as one of the following: invariant, induction, reduction, unknown.
- We do that for the loop represented by LOOP_VINFO, and also to its
- inner-loop, if exists.
- Examples for scalar cycles:
-
- Example1: reduction:
-
- loop1:
- for (i=0; i<N; i++)
- sum += a[i];
-
- Example2: induction:
-
- loop2:
- for (i=0; i<N; i++)
- a[i] = i; */
-
-static void
-vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
-
- /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
- Reductions in such inner-loop therefore have different properties than
- the reductions in the nest that gets vectorized:
- 1. When vectorized, they are executed in the same order as in the original
- scalar loop, so we can't change the order of computation when
- vectorizing them.
- 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
- current checks are too strict. */
-
- if (loop->inner)
- vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
-}
-
-/* Transfer group and reduction information from STMT_INFO to its
- pattern stmt. */
-
-static void
-vect_fixup_reduc_chain (stmt_vec_info stmt_info)
-{
- stmt_vec_info firstp = STMT_VINFO_RELATED_STMT (stmt_info);
- stmt_vec_info stmtp;
- gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (firstp)
- && REDUC_GROUP_FIRST_ELEMENT (stmt_info));
- REDUC_GROUP_SIZE (firstp) = REDUC_GROUP_SIZE (stmt_info);
- do
- {
- stmtp = STMT_VINFO_RELATED_STMT (stmt_info);
- gcc_checking_assert (STMT_VINFO_DEF_TYPE (stmtp)
- == STMT_VINFO_DEF_TYPE (stmt_info));
- REDUC_GROUP_FIRST_ELEMENT (stmtp) = firstp;
- stmt_info = REDUC_GROUP_NEXT_ELEMENT (stmt_info);
- if (stmt_info)
- REDUC_GROUP_NEXT_ELEMENT (stmtp)
- = STMT_VINFO_RELATED_STMT (stmt_info);
- }
- while (stmt_info);
-}
-
-/* Fixup scalar cycles that now have their stmts detected as patterns. */
-
-static void
-vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
-{
- stmt_vec_info first;
- unsigned i;
-
- FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
- {
- stmt_vec_info next = REDUC_GROUP_NEXT_ELEMENT (first);
- while (next)
- {
- if ((STMT_VINFO_IN_PATTERN_P (next)
- != STMT_VINFO_IN_PATTERN_P (first))
- || STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (next)) == -1)
- break;
- next = REDUC_GROUP_NEXT_ELEMENT (next);
- }
- /* If all reduction chain members are well-formed patterns adjust
- the group to group the pattern stmts instead. */
- if (! next
- && STMT_VINFO_REDUC_IDX (vect_stmt_to_vectorize (first)) != -1)
- {
- if (STMT_VINFO_IN_PATTERN_P (first))
- {
- vect_fixup_reduc_chain (first);
- LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
- = STMT_VINFO_RELATED_STMT (first);
- }
- }
- /* If not all stmt in the chain are patterns or if we failed
- to update STMT_VINFO_REDUC_IDX dissolve the chain and handle
- it as regular reduction instead. */
- else
- {
- stmt_vec_info vinfo = first;
- stmt_vec_info last = NULL;
- while (vinfo)
- {
- next = REDUC_GROUP_NEXT_ELEMENT (vinfo);
- REDUC_GROUP_FIRST_ELEMENT (vinfo) = NULL;
- REDUC_GROUP_NEXT_ELEMENT (vinfo) = NULL;
- last = vinfo;
- vinfo = next;
- }
- STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize (first))
- = vect_internal_def;
- loop_vinfo->reductions.safe_push (vect_stmt_to_vectorize (last));
- LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).unordered_remove (i);
- --i;
- }
- }
-}
-
-/* Function vect_get_loop_niters.
-
- Determine how many iterations the loop is executed and place it
- in NUMBER_OF_ITERATIONS. Place the number of latch iterations
- in NUMBER_OF_ITERATIONSM1. Place the condition under which the
- niter information holds in ASSUMPTIONS.
-
- Return the loop exit condition. */
-
-
-static gcond *
-vect_get_loop_niters (class loop *loop, tree *assumptions,
- tree *number_of_iterations, tree *number_of_iterationsm1)
-{
- edge exit = single_exit (loop);
- class tree_niter_desc niter_desc;
- tree niter_assumptions, niter, may_be_zero;
- gcond *cond = get_loop_exit_condition (loop);
-
- *assumptions = boolean_true_node;
- *number_of_iterationsm1 = chrec_dont_know;
- *number_of_iterations = chrec_dont_know;
- DUMP_VECT_SCOPE ("get_loop_niters");
-
- if (!exit)
- return cond;
-
- may_be_zero = NULL_TREE;
- if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
- || chrec_contains_undetermined (niter_desc.niter))
- return cond;
-
- niter_assumptions = niter_desc.assumptions;
- may_be_zero = niter_desc.may_be_zero;
- niter = niter_desc.niter;
-
- if (may_be_zero && integer_zerop (may_be_zero))
- may_be_zero = NULL_TREE;
-
- if (may_be_zero)
- {
- if (COMPARISON_CLASS_P (may_be_zero))
- {
- /* Try to combine may_be_zero with assumptions, this can simplify
- computation of niter expression. */
- if (niter_assumptions && !integer_nonzerop (niter_assumptions))
- niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- niter_assumptions,
- fold_build1 (TRUTH_NOT_EXPR,
- boolean_type_node,
- may_be_zero));
- else
- niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
- build_int_cst (TREE_TYPE (niter), 0),
- rewrite_to_non_trapping_overflow (niter));
-
- may_be_zero = NULL_TREE;
- }
- else if (integer_nonzerop (may_be_zero))
- {
- *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
- *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
- return cond;
- }
- else
- return cond;
- }
-
- *assumptions = niter_assumptions;
- *number_of_iterationsm1 = niter;
-
- /* We want the number of loop header executions which is the number
- of latch executions plus one.
- ??? For UINT_MAX latch executions this number overflows to zero
- for loops like do { n++; } while (n != 0); */
- if (niter && !chrec_contains_undetermined (niter))
- niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
- build_int_cst (TREE_TYPE (niter), 1));
- *number_of_iterations = niter;
-
- return cond;
-}
-
-/* Function bb_in_loop_p
-
- Used as predicate for dfs order traversal of the loop bbs. */
-
-static bool
-bb_in_loop_p (const_basic_block bb, const void *data)
-{
- const class loop *const loop = (const class loop *)data;
- if (flow_bb_inside_loop_p (loop, bb))
- return true;
- return false;
-}
-
-
-/* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
- stmt_vec_info structs for all the stmts in LOOP_IN. */
-
-_loop_vec_info::_loop_vec_info (class loop *loop_in, vec_info_shared *shared)
- : vec_info (vec_info::loop, shared),
- loop (loop_in),
- bbs (XCNEWVEC (basic_block, loop->num_nodes)),
- num_itersm1 (NULL_TREE),
- num_iters (NULL_TREE),
- num_iters_unchanged (NULL_TREE),
- num_iters_assumptions (NULL_TREE),
- vector_costs (nullptr),
- scalar_costs (nullptr),
- th (0),
- versioning_threshold (0),
- vectorization_factor (0),
- main_loop_edge (nullptr),
- skip_main_loop_edge (nullptr),
- skip_this_loop_edge (nullptr),
- reusable_accumulators (),
- max_vectorization_factor (0),
- mask_skip_niters (NULL_TREE),
- rgroup_compare_type (NULL_TREE),
- simd_if_cond (NULL_TREE),
- unaligned_dr (NULL),
- peeling_for_alignment (0),
- ptr_mask (0),
- ivexpr_map (NULL),
- scan_map (NULL),
- slp_unrolling_factor (1),
- inner_loop_cost_factor (param_vect_inner_loop_cost_factor),
- vectorizable (false),
- can_use_partial_vectors_p (param_vect_partial_vector_usage != 0),
- using_partial_vectors_p (false),
- epil_using_partial_vectors_p (false),
- partial_load_store_bias (0),
- peeling_for_gaps (false),
- peeling_for_niter (false),
- no_data_dependencies (false),
- has_mask_store (false),
- scalar_loop_scaling (profile_probability::uninitialized ()),
- scalar_loop (NULL),
- orig_loop_info (NULL)
-{
- /* CHECKME: We want to visit all BBs before their successors (except for
- latch blocks, for which this assertion wouldn't hold). In the simple
- case of the loop forms we allow, a dfs order of the BBs would the same
- as reversed postorder traversal, so we are safe. */
-
- unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
- bbs, loop->num_nodes, loop);
- gcc_assert (nbbs == loop->num_nodes);
-
- for (unsigned int i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
- gimple_stmt_iterator si;
-
- for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple *phi = gsi_stmt (si);
- gimple_set_uid (phi, 0);
- add_stmt (phi);
- }
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple *stmt = gsi_stmt (si);
- gimple_set_uid (stmt, 0);
- if (is_gimple_debug (stmt))
- continue;
- add_stmt (stmt);
- /* If .GOMP_SIMD_LANE call for the current loop has 3 arguments, the
- third argument is the #pragma omp simd if (x) condition, when 0,
- loop shouldn't be vectorized, when non-zero constant, it should
- be vectorized normally, otherwise versioned with vectorized loop
- done if the condition is non-zero at runtime. */
- if (loop_in->simduid
- && is_gimple_call (stmt)
- && gimple_call_internal_p (stmt)
- && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
- && gimple_call_num_args (stmt) >= 3
- && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
- && (loop_in->simduid
- == SSA_NAME_VAR (gimple_call_arg (stmt, 0))))
- {
- tree arg = gimple_call_arg (stmt, 2);
- if (integer_zerop (arg) || TREE_CODE (arg) == SSA_NAME)
- simd_if_cond = arg;
- else
- gcc_assert (integer_nonzerop (arg));
- }
- }
- }
-
- epilogue_vinfos.create (6);
-}
-
-/* Free all levels of rgroup CONTROLS. */
-
-void
-release_vec_loop_controls (vec<rgroup_controls> *controls)
-{
- rgroup_controls *rgc;
- unsigned int i;
- FOR_EACH_VEC_ELT (*controls, i, rgc)
- rgc->controls.release ();
- controls->release ();
-}
-
-/* Free all memory used by the _loop_vec_info, as well as all the
- stmt_vec_info structs of all the stmts in the loop. */
-
-_loop_vec_info::~_loop_vec_info ()
-{
- free (bbs);
-
- release_vec_loop_controls (&masks);
- release_vec_loop_controls (&lens);
- delete ivexpr_map;
- delete scan_map;
- epilogue_vinfos.release ();
- delete scalar_costs;
- delete vector_costs;
-
- /* When we release an epiloge vinfo that we do not intend to use
- avoid clearing AUX of the main loop which should continue to
- point to the main loop vinfo since otherwise we'll leak that. */
- if (loop->aux == this)
- loop->aux = NULL;
-}
-
-/* Return an invariant or register for EXPR and emit necessary
- computations in the LOOP_VINFO loop preheader. */
-
-tree
-cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
-{
- if (is_gimple_reg (expr)
- || is_gimple_min_invariant (expr))
- return expr;
-
- if (! loop_vinfo->ivexpr_map)
- loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
- tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
- if (! cached)
- {
- gimple_seq stmts = NULL;
- cached = force_gimple_operand (unshare_expr (expr),
- &stmts, true, NULL_TREE);
- if (stmts)
- {
- edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
- gsi_insert_seq_on_edge_immediate (e, stmts);
- }
- }
- return cached;
-}
-
-/* Return true if we can use CMP_TYPE as the comparison type to produce
- all masks required to mask LOOP_VINFO. */
-
-static bool
-can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
-{
- rgroup_controls *rgm;
- unsigned int i;
- FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
- if (rgm->type != NULL_TREE
- && !direct_internal_fn_supported_p (IFN_WHILE_ULT,
- cmp_type, rgm->type,
- OPTIMIZE_FOR_SPEED))
- return false;
- return true;
-}
-
-/* Calculate the maximum number of scalars per iteration for every
- rgroup in LOOP_VINFO. */
-
-static unsigned int
-vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
-{
- unsigned int res = 1;
- unsigned int i;
- rgroup_controls *rgm;
- FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
- res = MAX (res, rgm->max_nscalars_per_iter);
- return res;
-}
-
-/* Calculate the minimum precision necessary to represent:
-
- MAX_NITERS * FACTOR
-
- as an unsigned integer, where MAX_NITERS is the maximum number of
- loop header iterations for the original scalar form of LOOP_VINFO. */
-
-static unsigned
-vect_min_prec_for_max_niters (loop_vec_info loop_vinfo, unsigned int factor)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- /* Get the maximum number of iterations that is representable
- in the counter type. */
- tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
- widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
-
- /* Get a more refined estimate for the number of iterations. */
- widest_int max_back_edges;
- if (max_loop_iterations (loop, &max_back_edges))
- max_ni = wi::smin (max_ni, max_back_edges + 1);
-
- /* Work out how many bits we need to represent the limit. */
- return wi::min_precision (max_ni * factor, UNSIGNED);
-}
-
-/* True if the loop needs peeling or partial vectors when vectorized. */
-
-static bool
-vect_need_peeling_or_partial_vectors_p (loop_vec_info loop_vinfo)
-{
- unsigned HOST_WIDE_INT const_vf;
- HOST_WIDE_INT max_niter
- = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
-
- unsigned th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
- if (!th && LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo))
- th = LOOP_VINFO_COST_MODEL_THRESHOLD (LOOP_VINFO_ORIG_LOOP_INFO
- (loop_vinfo));
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0)
- {
- /* Work out the (constant) number of iterations that need to be
- peeled for reasons other than niters. */
- unsigned int peel_niter = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
- peel_niter += 1;
- if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo) - peel_niter,
- LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
- return true;
- }
- else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
- /* ??? When peeling for gaps but not alignment, we could
- try to check whether the (variable) niters is known to be
- VF * N + 1. That's something of a niche case though. */
- || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
- || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
- || ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
- < (unsigned) exact_log2 (const_vf))
- /* In case of versioning, check if the maximum number of
- iterations is greater than th. If they are identical,
- the epilogue is unnecessary. */
- && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
- || ((unsigned HOST_WIDE_INT) max_niter
- > (th / const_vf) * const_vf))))
- return true;
-
- return false;
-}
-
-/* Each statement in LOOP_VINFO can be masked where necessary. Check
- whether we can actually generate the masks required. Return true if so,
- storing the type of the scalar IV in LOOP_VINFO_RGROUP_COMPARE_TYPE. */
-
-static bool
-vect_verify_full_masking (loop_vec_info loop_vinfo)
-{
- unsigned int min_ni_width;
- unsigned int max_nscalars_per_iter
- = vect_get_max_nscalars_per_iter (loop_vinfo);
-
- /* Use a normal loop if there are no statements that need masking.
- This only happens in rare degenerate cases: it means that the loop
- has no loads, no stores, and no live-out values. */
- if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
- return false;
-
- /* Work out how many bits we need to represent the limit. */
- min_ni_width
- = vect_min_prec_for_max_niters (loop_vinfo, max_nscalars_per_iter);
-
- /* Find a scalar mode for which WHILE_ULT is supported. */
- opt_scalar_int_mode cmp_mode_iter;
- tree cmp_type = NULL_TREE;
- tree iv_type = NULL_TREE;
- widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
- unsigned int iv_precision = UINT_MAX;
-
- if (iv_limit != -1)
- iv_precision = wi::min_precision (iv_limit * max_nscalars_per_iter,
- UNSIGNED);
-
- FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
- {
- unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
- if (cmp_bits >= min_ni_width
- && targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
- {
- tree this_type = build_nonstandard_integer_type (cmp_bits, true);
- if (this_type
- && can_produce_all_loop_masks_p (loop_vinfo, this_type))
- {
- /* Although we could stop as soon as we find a valid mode,
- there are at least two reasons why that's not always the
- best choice:
-
- - An IV that's Pmode or wider is more likely to be reusable
- in address calculations than an IV that's narrower than
- Pmode.
-
- - Doing the comparison in IV_PRECISION or wider allows
- a natural 0-based IV, whereas using a narrower comparison
- type requires mitigations against wrap-around.
-
- Conversely, if the IV limit is variable, doing the comparison
- in a wider type than the original type can introduce
- unnecessary extensions, so picking the widest valid mode
- is not always a good choice either.
-
- Here we prefer the first IV type that's Pmode or wider,
- and the first comparison type that's IV_PRECISION or wider.
- (The comparison type must be no wider than the IV type,
- to avoid extensions in the vector loop.)
-
- ??? We might want to try continuing beyond Pmode for ILP32
- targets if CMP_BITS < IV_PRECISION. */
- iv_type = this_type;
- if (!cmp_type || iv_precision > TYPE_PRECISION (cmp_type))
- cmp_type = this_type;
- if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
- break;
- }
- }
- }
-
- if (!cmp_type)
- return false;
-
- LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = cmp_type;
- LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
- return true;
-}
-
-/* Check whether we can use vector access with length based on precison
- comparison. So far, to keep it simple, we only allow the case that the
- precision of the target supported length is larger than the precision
- required by loop niters. */
-
-static bool
-vect_verify_loop_lens (loop_vec_info loop_vinfo)
-{
- if (LOOP_VINFO_LENS (loop_vinfo).is_empty ())
- return false;
-
- machine_mode len_load_mode = get_len_load_store_mode
- (loop_vinfo->vector_mode, true).require ();
- machine_mode len_store_mode = get_len_load_store_mode
- (loop_vinfo->vector_mode, false).require ();
-
- signed char partial_load_bias = internal_len_load_store_bias
- (IFN_LEN_LOAD, len_load_mode);
-
- signed char partial_store_bias = internal_len_load_store_bias
- (IFN_LEN_STORE, len_store_mode);
-
- gcc_assert (partial_load_bias == partial_store_bias);
-
- if (partial_load_bias == VECT_PARTIAL_BIAS_UNSUPPORTED)
- return false;
-
- /* If the backend requires a bias of -1 for LEN_LOAD, we must not emit
- len_loads with a length of zero. In order to avoid that we prohibit
- more than one loop length here. */
- if (partial_load_bias == -1
- && LOOP_VINFO_LENS (loop_vinfo).length () > 1)
- return false;
-
- LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) = partial_load_bias;
-
- unsigned int max_nitems_per_iter = 1;
- unsigned int i;
- rgroup_controls *rgl;
- /* Find the maximum number of items per iteration for every rgroup. */
- FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), i, rgl)
- {
- unsigned nitems_per_iter = rgl->max_nscalars_per_iter * rgl->factor;
- max_nitems_per_iter = MAX (max_nitems_per_iter, nitems_per_iter);
- }
-
- /* Work out how many bits we need to represent the length limit. */
- unsigned int min_ni_prec
- = vect_min_prec_for_max_niters (loop_vinfo, max_nitems_per_iter);
-
- /* Now use the maximum of below precisions for one suitable IV type:
- - the IV's natural precision
- - the precision needed to hold: the maximum number of scalar
- iterations multiplied by the scale factor (min_ni_prec above)
- - the Pmode precision
-
- If min_ni_prec is less than the precision of the current niters,
- we perfer to still use the niters type. Prefer to use Pmode and
- wider IV to avoid narrow conversions. */
-
- unsigned int ni_prec
- = TYPE_PRECISION (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)));
- min_ni_prec = MAX (min_ni_prec, ni_prec);
- min_ni_prec = MAX (min_ni_prec, GET_MODE_BITSIZE (Pmode));
-
- tree iv_type = NULL_TREE;
- opt_scalar_int_mode tmode_iter;
- FOR_EACH_MODE_IN_CLASS (tmode_iter, MODE_INT)
- {
- scalar_mode tmode = tmode_iter.require ();
- unsigned int tbits = GET_MODE_BITSIZE (tmode);
-
- /* ??? Do we really want to construct one IV whose precision exceeds
- BITS_PER_WORD? */
- if (tbits > BITS_PER_WORD)
- break;
-
- /* Find the first available standard integral type. */
- if (tbits >= min_ni_prec && targetm.scalar_mode_supported_p (tmode))
- {
- iv_type = build_nonstandard_integer_type (tbits, true);
- break;
- }
- }
-
- if (!iv_type)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't vectorize with length-based partial vectors"
- " because there is no suitable iv type.\n");
- return false;
- }
-
- LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo) = iv_type;
- LOOP_VINFO_RGROUP_IV_TYPE (loop_vinfo) = iv_type;
-
- return true;
-}
-
-/* Calculate the cost of one scalar iteration of the loop. */
-static void
-vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes, factor;
- int innerloop_iters, i;
-
- DUMP_VECT_SCOPE ("vect_compute_single_scalar_iteration_cost");
-
- /* Gather costs for statements in the scalar loop. */
-
- /* FORNOW. */
- innerloop_iters = 1;
- if (loop->inner)
- innerloop_iters = LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo);
-
- for (i = 0; i < nbbs; i++)
- {
- gimple_stmt_iterator si;
- basic_block bb = bbs[i];
-
- if (bb->loop_father == loop->inner)
- factor = innerloop_iters;
- else
- factor = 1;
-
- for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
- {
- gimple *stmt = gsi_stmt (si);
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
-
- if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
- continue;
-
- /* Skip stmts that are not vectorized inside the loop. */
- stmt_vec_info vstmt_info = vect_stmt_to_vectorize (stmt_info);
- if (!STMT_VINFO_RELEVANT_P (vstmt_info)
- && (!STMT_VINFO_LIVE_P (vstmt_info)
- || !VECTORIZABLE_CYCLE_DEF
- (STMT_VINFO_DEF_TYPE (vstmt_info))))
- continue;
-
- vect_cost_for_stmt kind;
- if (STMT_VINFO_DATA_REF (stmt_info))
- {
- if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
- kind = scalar_load;
- else
- kind = scalar_store;
- }
- else if (vect_nop_conversion_p (stmt_info))
- continue;
- else
- kind = scalar_stmt;
-
- /* We are using vect_prologue here to avoid scaling twice
- by the inner loop factor. */
- record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
- factor, kind, stmt_info, 0, vect_prologue);
- }
- }
-
- /* Now accumulate cost. */
- loop_vinfo->scalar_costs = init_cost (loop_vinfo, true);
- stmt_info_for_cost *si;
- int j;
- FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
- j, si)
- (void) add_stmt_cost (loop_vinfo->scalar_costs, si->count,
- si->kind, si->stmt_info, si->vectype,
- si->misalign, si->where);
- loop_vinfo->scalar_costs->finish_cost (nullptr);
-}
-
-
-/* Function vect_analyze_loop_form.
-
- Verify that certain CFG restrictions hold, including:
- - the loop has a pre-header
- - the loop has a single entry and exit
- - the loop exit condition is simple enough
- - the number of iterations can be analyzed, i.e, a countable loop. The
- niter could be analyzed under some assumptions. */
-
-opt_result
-vect_analyze_loop_form (class loop *loop, vect_loop_form_info *info)
-{
- DUMP_VECT_SCOPE ("vect_analyze_loop_form");
-
- /* Different restrictions apply when we are considering an inner-most loop,
- vs. an outer (nested) loop.
- (FORNOW. May want to relax some of these restrictions in the future). */
-
- info->inner_loop_cond = NULL;
- if (!loop->inner)
- {
- /* Inner-most loop. We currently require that the number of BBs is
- exactly 2 (the header and latch). Vectorizable inner-most loops
- look like this:
-
- (pre-header)
- |
- header <--------+
- | | |
- | +--> latch --+
- |
- (exit-bb) */
-
- if (loop->num_nodes != 2)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " control flow in loop.\n");
-
- if (empty_block_p (loop->header))
- return opt_result::failure_at (vect_location,
- "not vectorized: empty loop.\n");
- }
- else
- {
- class loop *innerloop = loop->inner;
- edge entryedge;
-
- /* Nested loop. We currently require that the loop is doubly-nested,
- contains a single inner loop, and the number of BBs is exactly 5.
- Vectorizable outer-loops look like this:
-
- (pre-header)
- |
- header <---+
- | |
- inner-loop |
- | |
- tail ------+
- |
- (exit-bb)
-
- The inner-loop has the properties expected of inner-most loops
- as described above. */
-
- if ((loop->inner)->inner || (loop->inner)->next)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " multiple nested loops.\n");
-
- if (loop->num_nodes != 5)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " control flow in loop.\n");
-
- entryedge = loop_preheader_edge (innerloop);
- if (entryedge->src != loop->header
- || !single_exit (innerloop)
- || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " unsupported outerloop form.\n");
-
- /* Analyze the inner-loop. */
- vect_loop_form_info inner;
- opt_result res = vect_analyze_loop_form (loop->inner, &inner);
- if (!res)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: Bad inner loop.\n");
- return res;
- }
-
- /* Don't support analyzing niter under assumptions for inner
- loop. */
- if (!integer_onep (inner.assumptions))
- return opt_result::failure_at (vect_location,
- "not vectorized: Bad inner loop.\n");
-
- if (!expr_invariant_in_loop_p (loop, inner.number_of_iterations))
- return opt_result::failure_at (vect_location,
- "not vectorized: inner-loop count not"
- " invariant.\n");
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Considering outer-loop vectorization.\n");
- info->inner_loop_cond = inner.loop_cond;
- }
-
- if (!single_exit (loop))
- return opt_result::failure_at (vect_location,
- "not vectorized: multiple exits.\n");
- if (EDGE_COUNT (loop->header->preds) != 2)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " too many incoming edges.\n");
-
- /* We assume that the loop exit condition is at the end of the loop. i.e,
- that the loop is represented as a do-while (with a proper if-guard
- before the loop if needed), where the loop header contains all the
- executable statements, and the latch is empty. */
- if (!empty_block_p (loop->latch)
- || !gimple_seq_empty_p (phi_nodes (loop->latch)))
- return opt_result::failure_at (vect_location,
- "not vectorized: latch block not empty.\n");
-
- /* Make sure the exit is not abnormal. */
- edge e = single_exit (loop);
- if (e->flags & EDGE_ABNORMAL)
- return opt_result::failure_at (vect_location,
- "not vectorized:"
- " abnormal loop exit edge.\n");
-
- info->loop_cond
- = vect_get_loop_niters (loop, &info->assumptions,
- &info->number_of_iterations,
- &info->number_of_iterationsm1);
- if (!info->loop_cond)
- return opt_result::failure_at
- (vect_location,
- "not vectorized: complicated exit condition.\n");
-
- if (integer_zerop (info->assumptions)
- || !info->number_of_iterations
- || chrec_contains_undetermined (info->number_of_iterations))
- return opt_result::failure_at
- (info->loop_cond,
- "not vectorized: number of iterations cannot be computed.\n");
-
- if (integer_zerop (info->number_of_iterations))
- return opt_result::failure_at
- (info->loop_cond,
- "not vectorized: number of iterations = 0.\n");
-
- if (!(tree_fits_shwi_p (info->number_of_iterations)
- && tree_to_shwi (info->number_of_iterations) > 0))
- {
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "Symbolic number of iterations is ");
- dump_generic_expr (MSG_NOTE, TDF_DETAILS, info->number_of_iterations);
- dump_printf (MSG_NOTE, "\n");
- }
- }
-
- return opt_result::success ();
-}
-
-/* Create a loop_vec_info for LOOP with SHARED and the
- vect_analyze_loop_form result. */
-
-loop_vec_info
-vect_create_loop_vinfo (class loop *loop, vec_info_shared *shared,
- const vect_loop_form_info *info,
- loop_vec_info main_loop_info)
-{
- loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
- LOOP_VINFO_NITERSM1 (loop_vinfo) = info->number_of_iterationsm1;
- LOOP_VINFO_NITERS (loop_vinfo) = info->number_of_iterations;
- LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = info->number_of_iterations;
- LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = main_loop_info;
- /* Also record the assumptions for versioning. */
- if (!integer_onep (info->assumptions) && !main_loop_info)
- LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = info->assumptions;
-
- stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (info->loop_cond);
- STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
- if (info->inner_loop_cond)
- {
- stmt_vec_info inner_loop_cond_info
- = loop_vinfo->lookup_stmt (info->inner_loop_cond);
- STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
- /* If we have an estimate on the number of iterations of the inner
- loop use that to limit the scale for costing, otherwise use
- --param vect-inner-loop-cost-factor literally. */
- widest_int nit;
- if (estimated_stmt_executions (loop->inner, &nit))
- LOOP_VINFO_INNER_LOOP_COST_FACTOR (loop_vinfo)
- = wi::smin (nit, param_vect_inner_loop_cost_factor).to_uhwi ();
- }
-
- return loop_vinfo;
-}
-
-
-
-/* Scan the loop stmts and dependent on whether there are any (non-)SLP
- statements update the vectorization factor. */
-
-static void
-vect_update_vf_for_slp (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- poly_uint64 vectorization_factor;
- int i;
-
- DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
-
- vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- gcc_assert (known_ne (vectorization_factor, 0U));
-
- /* If all the stmts in the loop can be SLPed, we perform only SLP, and
- vectorization factor of the loop is the unrolling factor required by
- the SLP instances. If that unrolling factor is 1, we say, that we
- perform pure SLP on loop - cross iteration parallelism is not
- exploited. */
- bool only_slp_in_loop = true;
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (si.phi ());
- if (!stmt_info)
- continue;
- if ((STMT_VINFO_RELEVANT_P (stmt_info)
- || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
- && !PURE_SLP_STMT (stmt_info))
- /* STMT needs both SLP and loop-based vectorization. */
- only_slp_in_loop = false;
- }
- for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- if (is_gimple_debug (gsi_stmt (si)))
- continue;
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
- stmt_info = vect_stmt_to_vectorize (stmt_info);
- if ((STMT_VINFO_RELEVANT_P (stmt_info)
- || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
- && !PURE_SLP_STMT (stmt_info))
- /* STMT needs both SLP and loop-based vectorization. */
- only_slp_in_loop = false;
- }
- }
-
- if (only_slp_in_loop)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Loop contains only SLP stmts\n");
- vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
- }
- else
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Loop contains SLP and non-SLP stmts\n");
- /* Both the vectorization factor and unroll factor have the form
- GET_MODE_SIZE (loop_vinfo->vector_mode) * X for some rational X,
- so they must have a common multiple. */
- vectorization_factor
- = force_common_multiple (vectorization_factor,
- LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
- }
-
- LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "Updating vectorization factor to ");
- dump_dec (MSG_NOTE, vectorization_factor);
- dump_printf (MSG_NOTE, ".\n");
- }
-}
-
-/* Return true if STMT_INFO describes a double reduction phi and if
- the other phi in the reduction is also relevant for vectorization.
- This rejects cases such as:
-
- outer1:
- x_1 = PHI <x_3(outer2), ...>;
- ...
-
- inner:
- x_2 = ...;
- ...
-
- outer2:
- x_3 = PHI <x_2(inner)>;
-
- if nothing in x_2 or elsewhere makes x_1 relevant. */
-
-static bool
-vect_active_double_reduction_p (stmt_vec_info stmt_info)
-{
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
- return false;
-
- return STMT_VINFO_RELEVANT_P (STMT_VINFO_REDUC_DEF (stmt_info));
-}
-
-/* Function vect_analyze_loop_operations.
-
- Scan the loop stmts and make sure they are all vectorizable. */
-
-static opt_result
-vect_analyze_loop_operations (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- int i;
- stmt_vec_info stmt_info;
- bool need_to_vectorize = false;
- bool ok;
-
- DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
-
- auto_vec<stmt_info_for_cost> cost_vec;
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
-
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gphi *phi = si.phi ();
- ok = true;
-
- stmt_info = loop_vinfo->lookup_stmt (phi);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "examining phi: %G", phi);
- if (virtual_operand_p (gimple_phi_result (phi)))
- continue;
-
- /* Inner-loop loop-closed exit phi in outer-loop vectorization
- (i.e., a phi in the tail of the outer-loop). */
- if (! is_loop_header_bb_p (bb))
- {
- /* FORNOW: we currently don't support the case that these phis
- are not used in the outerloop (unless it is double reduction,
- i.e., this phi is vect_reduction_def), cause this case
- requires to actually do something here. */
- if (STMT_VINFO_LIVE_P (stmt_info)
- && !vect_active_double_reduction_p (stmt_info))
- return opt_result::failure_at (phi,
- "Unsupported loop-closed phi"
- " in outer-loop.\n");
-
- /* If PHI is used in the outer loop, we check that its operand
- is defined in the inner loop. */
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- {
- tree phi_op;
-
- if (gimple_phi_num_args (phi) != 1)
- return opt_result::failure_at (phi, "unsupported phi");
-
- phi_op = PHI_ARG_DEF (phi, 0);
- stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
- if (!op_def_info)
- return opt_result::failure_at (phi, "unsupported phi\n");
-
- if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
- && (STMT_VINFO_RELEVANT (op_def_info)
- != vect_used_in_outer_by_reduction))
- return opt_result::failure_at (phi, "unsupported phi\n");
-
- if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def
- || (STMT_VINFO_DEF_TYPE (stmt_info)
- == vect_double_reduction_def))
- && !vectorizable_lc_phi (loop_vinfo,
- stmt_info, NULL, NULL))
- return opt_result::failure_at (phi, "unsupported phi\n");
- }
-
- continue;
- }
-
- gcc_assert (stmt_info);
-
- if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
- || STMT_VINFO_LIVE_P (stmt_info))
- && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
- /* A scalar-dependence cycle that we don't support. */
- return opt_result::failure_at (phi,
- "not vectorized:"
- " scalar dependence cycle.\n");
-
- if (STMT_VINFO_RELEVANT_P (stmt_info))
- {
- need_to_vectorize = true;
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
- && ! PURE_SLP_STMT (stmt_info))
- ok = vectorizable_induction (loop_vinfo,
- stmt_info, NULL, NULL,
- &cost_vec);
- else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
- || (STMT_VINFO_DEF_TYPE (stmt_info)
- == vect_double_reduction_def)
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
- && ! PURE_SLP_STMT (stmt_info))
- ok = vectorizable_reduction (loop_vinfo,
- stmt_info, NULL, NULL, &cost_vec);
- }
-
- /* SLP PHIs are tested by vect_slp_analyze_node_operations. */
- if (ok
- && STMT_VINFO_LIVE_P (stmt_info)
- && !PURE_SLP_STMT (stmt_info))
- ok = vectorizable_live_operation (loop_vinfo,
- stmt_info, NULL, NULL, NULL,
- -1, false, &cost_vec);
-
- if (!ok)
- return opt_result::failure_at (phi,
- "not vectorized: relevant phi not "
- "supported: %G",
- static_cast <gimple *> (phi));
- }
-
- for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gimple *stmt = gsi_stmt (si);
- if (!gimple_clobber_p (stmt)
- && !is_gimple_debug (stmt))
- {
- opt_result res
- = vect_analyze_stmt (loop_vinfo,
- loop_vinfo->lookup_stmt (stmt),
- &need_to_vectorize,
- NULL, NULL, &cost_vec);
- if (!res)
- return res;
- }
- }
- } /* bbs */
-
- add_stmt_costs (loop_vinfo->vector_costs, &cost_vec);
-
- /* All operations in the loop are either irrelevant (deal with loop
- control, or dead), or only used outside the loop and can be moved
- out of the loop (e.g. invariants, inductions). The loop can be
- optimized away by scalar optimizations. We're better off not
- touching this loop. */
- if (!need_to_vectorize)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "All the computation can be taken out of the loop.\n");
- return opt_result::failure_at
- (vect_location,
- "not vectorized: redundant loop. no profit to vectorize.\n");
- }
-
- return opt_result::success ();
-}
-
-/* Return true if we know that the iteration count is smaller than the
- vectorization factor. Return false if it isn't, or if we can't be sure
- either way. */
-
-static bool
-vect_known_niters_smaller_than_vf (loop_vec_info loop_vinfo)
-{
- unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
-
- HOST_WIDE_INT max_niter;
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
- max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
- else
- max_niter = max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
-
- if (max_niter != -1 && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
- return true;
-
- return false;
-}
-
-/* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
- is worthwhile to vectorize. Return 1 if definitely yes, 0 if
- definitely no, or -1 if it's worth retrying. */
-
-static int
-vect_analyze_loop_costing (loop_vec_info loop_vinfo)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
-
- /* Only loops that can handle partially-populated vectors can have iteration
- counts less than the vectorization factor. */
- if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- if (vect_known_niters_smaller_than_vf (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: iteration count smaller than "
- "vectorization factor.\n");
- return 0;
- }
- }
-
- /* If using the "very cheap" model. reject cases in which we'd keep
- a copy of the scalar code (even if we might be able to vectorize it). */
- if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
- && (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
- || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
- || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "some scalar iterations would need to be peeled\n");
- return 0;
- }
-
- int min_profitable_iters, min_profitable_estimate;
- vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
- &min_profitable_estimate);
-
- if (min_profitable_iters < 0)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: vectorization not profitable.\n");
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: vector version will never be "
- "profitable.\n");
- return -1;
- }
-
- int min_scalar_loop_bound = (param_min_vect_loop_bound
- * assumed_vf);
-
- /* Use the cost model only if it is more conservative than user specified
- threshold. */
- unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
- min_profitable_iters);
-
- LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: vectorization not profitable.\n");
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "not vectorized: iteration count smaller than user "
- "specified loop bound parameter or minimum profitable "
- "iterations (whichever is more conservative).\n");
- return 0;
- }
-
- /* The static profitablity threshold min_profitable_estimate includes
- the cost of having to check at runtime whether the scalar loop
- should be used instead. If it turns out that we don't need or want
- such a check, the threshold we should use for the static estimate
- is simply the point at which the vector loop becomes more profitable
- than the scalar loop. */
- if (min_profitable_estimate > min_profitable_iters
- && !LOOP_REQUIRES_VERSIONING (loop_vinfo)
- && !LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
- && !LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
- && !vect_apply_runtime_profitability_check_p (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "no need for a runtime"
- " choice between the scalar and vector loops\n");
- min_profitable_estimate = min_profitable_iters;
- }
-
- /* If the vector loop needs multiple iterations to be beneficial then
- things are probably too close to call, and the conservative thing
- would be to stick with the scalar code. */
- if (loop_cost_model (loop) == VECT_COST_MODEL_VERY_CHEAP
- && min_profitable_estimate > (int) vect_vf_for_cost (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "one iteration of the vector loop would be"
- " more expensive than the equivalent number of"
- " iterations of the scalar loop\n");
- return 0;
- }
-
- HOST_WIDE_INT estimated_niter;
-
- /* If we are vectorizing an epilogue then we know the maximum number of
- scalar iterations it will cover is at least one lower than the
- vectorization factor of the main loop. */
- if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
- estimated_niter
- = vect_vf_for_cost (LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo)) - 1;
- else
- {
- estimated_niter = estimated_stmt_executions_int (loop);
- if (estimated_niter == -1)
- estimated_niter = likely_max_stmt_executions_int (loop);
- }
- if (estimated_niter != -1
- && ((unsigned HOST_WIDE_INT) estimated_niter
- < MAX (th, (unsigned) min_profitable_estimate)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: estimated iteration count too "
- "small.\n");
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "not vectorized: estimated iteration count smaller "
- "than specified loop bound parameter or minimum "
- "profitable iterations (whichever is more "
- "conservative).\n");
- return -1;
- }
-
- return 1;
-}
-
-static opt_result
-vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
- vec<data_reference_p> *datarefs,
- unsigned int *n_stmts)
-{
- *n_stmts = 0;
- for (unsigned i = 0; i < loop->num_nodes; i++)
- for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
- !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple *stmt = gsi_stmt (gsi);
- if (is_gimple_debug (stmt))
- continue;
- ++(*n_stmts);
- opt_result res = vect_find_stmt_data_reference (loop, stmt, datarefs,
- NULL, 0);
- if (!res)
- {
- if (is_gimple_call (stmt) && loop->safelen)
- {
- tree fndecl = gimple_call_fndecl (stmt), op;
- if (fndecl != NULL_TREE)
- {
- cgraph_node *node = cgraph_node::get (fndecl);
- if (node != NULL && node->simd_clones != NULL)
- {
- unsigned int j, n = gimple_call_num_args (stmt);
- for (j = 0; j < n; j++)
- {
- op = gimple_call_arg (stmt, j);
- if (DECL_P (op)
- || (REFERENCE_CLASS_P (op)
- && get_base_address (op)))
- break;
- }
- op = gimple_call_lhs (stmt);
- /* Ignore #pragma omp declare simd functions
- if they don't have data references in the
- call stmt itself. */
- if (j == n
- && !(op
- && (DECL_P (op)
- || (REFERENCE_CLASS_P (op)
- && get_base_address (op)))))
- continue;
- }
- }
- }
- return res;
- }
- /* If dependence analysis will give up due to the limit on the
- number of datarefs stop here and fail fatally. */
- if (datarefs->length ()
- > (unsigned)param_loop_max_datarefs_for_datadeps)
- return opt_result::failure_at (stmt, "exceeded param "
- "loop-max-datarefs-for-datadeps\n");
- }
- return opt_result::success ();
-}
-
-/* Look for SLP-only access groups and turn each individual access into its own
- group. */
-static void
-vect_dissolve_slp_only_groups (loop_vec_info loop_vinfo)
-{
- unsigned int i;
- struct data_reference *dr;
-
- DUMP_VECT_SCOPE ("vect_dissolve_slp_only_groups");
-
- vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
- FOR_EACH_VEC_ELT (datarefs, i, dr)
- {
- gcc_assert (DR_REF (dr));
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (DR_STMT (dr));
-
- /* Check if the load is a part of an interleaving chain. */
- if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
- {
- stmt_vec_info first_element = DR_GROUP_FIRST_ELEMENT (stmt_info);
- dr_vec_info *dr_info = STMT_VINFO_DR_INFO (first_element);
- unsigned int group_size = DR_GROUP_SIZE (first_element);
-
- /* Check if SLP-only groups. */
- if (!STMT_SLP_TYPE (stmt_info)
- && STMT_VINFO_SLP_VECT_ONLY (first_element))
- {
- /* Dissolve the group. */
- STMT_VINFO_SLP_VECT_ONLY (first_element) = false;
-
- stmt_vec_info vinfo = first_element;
- while (vinfo)
- {
- stmt_vec_info next = DR_GROUP_NEXT_ELEMENT (vinfo);
- DR_GROUP_FIRST_ELEMENT (vinfo) = vinfo;
- DR_GROUP_NEXT_ELEMENT (vinfo) = NULL;
- DR_GROUP_SIZE (vinfo) = 1;
- if (STMT_VINFO_STRIDED_P (first_element))
- DR_GROUP_GAP (vinfo) = 0;
- else
- DR_GROUP_GAP (vinfo) = group_size - 1;
- /* Duplicate and adjust alignment info, it needs to
- be present on each group leader, see dr_misalignment. */
- if (vinfo != first_element)
- {
- dr_vec_info *dr_info2 = STMT_VINFO_DR_INFO (vinfo);
- dr_info2->target_alignment = dr_info->target_alignment;
- int misalignment = dr_info->misalignment;
- if (misalignment != DR_MISALIGNMENT_UNKNOWN)
- {
- HOST_WIDE_INT diff
- = (TREE_INT_CST_LOW (DR_INIT (dr_info2->dr))
- - TREE_INT_CST_LOW (DR_INIT (dr_info->dr)));
- unsigned HOST_WIDE_INT align_c
- = dr_info->target_alignment.to_constant ();
- misalignment = (misalignment + diff) % align_c;
- }
- dr_info2->misalignment = misalignment;
- }
- vinfo = next;
- }
- }
- }
- }
-}
-
-/* Determine if operating on full vectors for LOOP_VINFO might leave
- some scalar iterations still to do. If so, decide how we should
- handle those scalar iterations. The possibilities are:
-
- (1) Make LOOP_VINFO operate on partial vectors instead of full vectors.
- In this case:
-
- LOOP_VINFO_USING_PARTIAL_VECTORS_P == true
- LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
- LOOP_VINFO_PEELING_FOR_NITER == false
-
- (2) Make LOOP_VINFO operate on full vectors and use an epilogue loop
- to handle the remaining scalar iterations. In this case:
-
- LOOP_VINFO_USING_PARTIAL_VECTORS_P == false
- LOOP_VINFO_PEELING_FOR_NITER == true
-
- There are two choices:
-
- (2a) Consider vectorizing the epilogue loop at the same VF as the
- main loop, but using partial vectors instead of full vectors.
- In this case:
-
- LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == true
-
- (2b) Consider vectorizing the epilogue loop at lower VFs only.
- In this case:
-
- LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P == false
-
- When FOR_EPILOGUE_P is true, make this determination based on the
- assumption that LOOP_VINFO is an epilogue loop, otherwise make it
- based on the assumption that LOOP_VINFO is the main loop. The caller
- has made sure that the number of iterations is set appropriately for
- this value of FOR_EPILOGUE_P. */
-
-opt_result
-vect_determine_partial_vectors_and_peeling (loop_vec_info loop_vinfo,
- bool for_epilogue_p)
-{
- /* Determine whether there would be any scalar iterations left over. */
- bool need_peeling_or_partial_vectors_p
- = vect_need_peeling_or_partial_vectors_p (loop_vinfo);
-
- /* Decide whether to vectorize the loop with partial vectors. */
- LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
- LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = false;
- if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
- && need_peeling_or_partial_vectors_p)
- {
- /* For partial-vector-usage=1, try to push the handling of partial
- vectors to the epilogue, with the main loop continuing to operate
- on full vectors.
-
- ??? We could then end up failing to use partial vectors if we
- decide to peel iterations into a prologue, and if the main loop
- then ends up processing fewer than VF iterations. */
- if (param_vect_partial_vector_usage == 1
- && !LOOP_VINFO_EPILOGUE_P (loop_vinfo)
- && !vect_known_niters_smaller_than_vf (loop_vinfo))
- LOOP_VINFO_EPIL_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
- else
- LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo) = true;
- }
-
- if (dump_enabled_p ())
- {
- if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- dump_printf_loc (MSG_NOTE, vect_location,
- "operating on partial vectors%s.\n",
- for_epilogue_p ? " for epilogue loop" : "");
- else
- dump_printf_loc (MSG_NOTE, vect_location,
- "operating only on full vectors%s.\n",
- for_epilogue_p ? " for epilogue loop" : "");
- }
-
- if (for_epilogue_p)
- {
- loop_vec_info orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
- gcc_assert (orig_loop_vinfo);
- if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- gcc_assert (known_lt (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
- LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)));
- }
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- /* Check that the loop processes at least one full vector. */
- poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- tree scalar_niters = LOOP_VINFO_NITERS (loop_vinfo);
- if (known_lt (wi::to_widest (scalar_niters), vf))
- return opt_result::failure_at (vect_location,
- "loop does not have enough iterations"
- " to support vectorization.\n");
-
- /* If we need to peel an extra epilogue iteration to handle data
- accesses with gaps, check that there are enough scalar iterations
- available.
-
- The check above is redundant with this one when peeling for gaps,
- but the distinction is useful for diagnostics. */
- tree scalar_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
- && known_lt (wi::to_widest (scalar_nitersm1), vf))
- return opt_result::failure_at (vect_location,
- "loop does not have enough iterations"
- " to support peeling for gaps.\n");
- }
-
- LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
- = (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
- && need_peeling_or_partial_vectors_p);
-
- return opt_result::success ();
-}
-
-/* Function vect_analyze_loop_2.
-
- Apply a set of analyses on LOOP, and create a loop_vec_info struct
- for it. The different analyses will record information in the
- loop_vec_info struct. */
-static opt_result
-vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal)
-{
- opt_result ok = opt_result::success ();
- int res;
- unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
- poly_uint64 min_vf = 2;
- loop_vec_info orig_loop_vinfo = NULL;
-
- /* If we are dealing with an epilogue then orig_loop_vinfo points to the
- loop_vec_info of the first vectorized loop. */
- if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
- orig_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
- else
- orig_loop_vinfo = loop_vinfo;
- gcc_assert (orig_loop_vinfo);
-
- /* The first group of checks is independent of the vector size. */
- fatal = true;
-
- if (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)
- && integer_zerop (LOOP_VINFO_SIMD_IF_COND (loop_vinfo)))
- return opt_result::failure_at (vect_location,
- "not vectorized: simd if(0)\n");
-
- /* Find all data references in the loop (which correspond to vdefs/vuses)
- and analyze their evolution in the loop. */
-
- loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- /* Gather the data references and count stmts in the loop. */
- if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
- {
- opt_result res
- = vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
- &LOOP_VINFO_DATAREFS (loop_vinfo),
- &LOOP_VINFO_N_STMTS (loop_vinfo));
- if (!res)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "not vectorized: loop contains function "
- "calls or data references that cannot "
- "be analyzed\n");
- return res;
- }
- loop_vinfo->shared->save_datarefs ();
- }
- else
- loop_vinfo->shared->check_datarefs ();
-
- /* Analyze the data references and also adjust the minimal
- vectorization factor according to the loads and stores. */
-
- ok = vect_analyze_data_refs (loop_vinfo, &min_vf, &fatal);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad data references.\n");
- return ok;
- }
-
- /* Classify all cross-iteration scalar data-flow cycles.
- Cross-iteration cycles caused by virtual phis are analyzed separately. */
- vect_analyze_scalar_cycles (loop_vinfo);
-
- vect_pattern_recog (loop_vinfo);
-
- vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
-
- /* Analyze the access patterns of the data-refs in the loop (consecutive,
- complex, etc.). FORNOW: Only handle consecutive access pattern. */
-
- ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad data access.\n");
- return ok;
- }
-
- /* Data-flow analysis to detect stmts that do not need to be vectorized. */
-
- ok = vect_mark_stmts_to_be_vectorized (loop_vinfo, &fatal);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "unexpected pattern.\n");
- return ok;
- }
-
- /* While the rest of the analysis below depends on it in some way. */
- fatal = false;
-
- /* Analyze data dependences between the data-refs in the loop
- and adjust the maximum vectorization factor according to
- the dependences.
- FORNOW: fail at the first data dependence that we encounter. */
-
- ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad data dependence.\n");
- return ok;
- }
- if (max_vf != MAX_VECTORIZATION_FACTOR
- && maybe_lt (max_vf, min_vf))
- return opt_result::failure_at (vect_location, "bad data dependence.\n");
- LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
-
- ok = vect_determine_vectorization_factor (loop_vinfo);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't determine vectorization factor.\n");
- return ok;
- }
- if (max_vf != MAX_VECTORIZATION_FACTOR
- && maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
- return opt_result::failure_at (vect_location, "bad data dependence.\n");
-
- /* Compute the scalar iteration cost. */
- vect_compute_single_scalar_iteration_cost (loop_vinfo);
-
- poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
-
- /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
- ok = vect_analyze_slp (loop_vinfo, LOOP_VINFO_N_STMTS (loop_vinfo));
- if (!ok)
- return ok;
-
- /* If there are any SLP instances mark them as pure_slp. */
- bool slp = vect_make_slp_decision (loop_vinfo);
- if (slp)
- {
- /* Find stmts that need to be both vectorized and SLPed. */
- vect_detect_hybrid_slp (loop_vinfo);
-
- /* Update the vectorization factor based on the SLP decision. */
- vect_update_vf_for_slp (loop_vinfo);
-
- /* Optimize the SLP graph with the vectorization factor fixed. */
- vect_optimize_slp (loop_vinfo);
-
- /* Gather the loads reachable from the SLP graph entries. */
- vect_gather_slp_loads (loop_vinfo);
- }
-
- bool saved_can_use_partial_vectors_p
- = LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo);
-
- /* We don't expect to have to roll back to anything other than an empty
- set of rgroups. */
- gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
-
- /* This is the point where we can re-start analysis with SLP forced off. */
-start_over:
-
- /* Now the vectorization factor is final. */
- poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- gcc_assert (known_ne (vectorization_factor, 0U));
-
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "vectorization_factor = ");
- dump_dec (MSG_NOTE, vectorization_factor);
- dump_printf (MSG_NOTE, ", niters = %wd\n",
- LOOP_VINFO_INT_NITERS (loop_vinfo));
- }
-
- loop_vinfo->vector_costs = init_cost (loop_vinfo, false);
-
- /* Analyze the alignment of the data-refs in the loop.
- Fail if a data reference is found that cannot be vectorized. */
-
- ok = vect_analyze_data_refs_alignment (loop_vinfo);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad data alignment.\n");
- return ok;
- }
-
- /* Prune the list of ddrs to be tested at run-time by versioning for alias.
- It is important to call pruning after vect_analyze_data_ref_accesses,
- since we use grouping information gathered by interleaving analysis. */
- ok = vect_prune_runtime_alias_test_list (loop_vinfo);
- if (!ok)
- return ok;
-
- /* Do not invoke vect_enhance_data_refs_alignment for epilogue
- vectorization, since we do not want to add extra peeling or
- add versioning for alignment. */
- if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
- /* This pass will decide on using loop versioning and/or loop peeling in
- order to enhance the alignment of data references in the loop. */
- ok = vect_enhance_data_refs_alignment (loop_vinfo);
- if (!ok)
- return ok;
-
- if (slp)
- {
- /* Analyze operations in the SLP instances. Note this may
- remove unsupported SLP instances which makes the above
- SLP kind detection invalid. */
- unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
- vect_slp_analyze_operations (loop_vinfo);
- if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
- {
- ok = opt_result::failure_at (vect_location,
- "unsupported SLP instances\n");
- goto again;
- }
-
- /* Check whether any load in ALL SLP instances is possibly permuted. */
- slp_tree load_node, slp_root;
- unsigned i, x;
- slp_instance instance;
- bool can_use_lanes = true;
- FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), x, instance)
- {
- slp_root = SLP_INSTANCE_TREE (instance);
- int group_size = SLP_TREE_LANES (slp_root);
- tree vectype = SLP_TREE_VECTYPE (slp_root);
- bool loads_permuted = false;
- FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
- {
- if (!SLP_TREE_LOAD_PERMUTATION (load_node).exists ())
- continue;
- unsigned j;
- stmt_vec_info load_info;
- FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load_info)
- if (SLP_TREE_LOAD_PERMUTATION (load_node)[j] != j)
- {
- loads_permuted = true;
- break;
- }
- }
-
- /* If the loads and stores can be handled with load/store-lane
- instructions record it and move on to the next instance. */
- if (loads_permuted
- && SLP_INSTANCE_KIND (instance) == slp_inst_kind_store
- && vect_store_lanes_supported (vectype, group_size, false))
- {
- FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
- {
- stmt_vec_info stmt_vinfo = DR_GROUP_FIRST_ELEMENT
- (SLP_TREE_SCALAR_STMTS (load_node)[0]);
- /* Use SLP for strided accesses (or if we can't
- load-lanes). */
- if (STMT_VINFO_STRIDED_P (stmt_vinfo)
- || ! vect_load_lanes_supported
- (STMT_VINFO_VECTYPE (stmt_vinfo),
- DR_GROUP_SIZE (stmt_vinfo), false))
- break;
- }
-
- can_use_lanes
- = can_use_lanes && i == SLP_INSTANCE_LOADS (instance).length ();
-
- if (can_use_lanes && dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "SLP instance %p can use load/store-lanes\n",
- instance);
- }
- else
- {
- can_use_lanes = false;
- break;
- }
- }
-
- /* If all SLP instances can use load/store-lanes abort SLP and try again
- with SLP disabled. */
- if (can_use_lanes)
- {
- ok = opt_result::failure_at (vect_location,
- "Built SLP cancelled: can use "
- "load/store-lanes\n");
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "Built SLP cancelled: all SLP instances support "
- "load/store-lanes\n");
- goto again;
- }
- }
-
- /* Dissolve SLP-only groups. */
- vect_dissolve_slp_only_groups (loop_vinfo);
-
- /* Scan all the remaining operations in the loop that are not subject
- to SLP and make sure they are vectorizable. */
- ok = vect_analyze_loop_operations (loop_vinfo);
- if (!ok)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad operation or unsupported loop bound.\n");
- return ok;
- }
-
- /* For now, we don't expect to mix both masking and length approaches for one
- loop, disable it if both are recorded. */
- if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
- && !LOOP_VINFO_MASKS (loop_vinfo).is_empty ()
- && !LOOP_VINFO_LENS (loop_vinfo).is_empty ())
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't vectorize a loop with partial vectors"
- " because we don't expect to mix different"
- " approaches with partial vectors for the"
- " same loop.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
-
- /* If we still have the option of using partial vectors,
- check whether we can generate the necessary loop controls. */
- if (LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
- && !vect_verify_full_masking (loop_vinfo)
- && !vect_verify_loop_lens (loop_vinfo))
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
-
- /* If we're vectorizing an epilogue loop, the vectorized loop either needs
- to be able to handle fewer than VF scalars, or needs to have a lower VF
- than the main loop. */
- if (LOOP_VINFO_EPILOGUE_P (loop_vinfo)
- && !LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
- && maybe_ge (LOOP_VINFO_VECT_FACTOR (loop_vinfo),
- LOOP_VINFO_VECT_FACTOR (orig_loop_vinfo)))
- return opt_result::failure_at (vect_location,
- "Vectorization factor too high for"
- " epilogue loop.\n");
-
- /* Decide whether this loop_vinfo should use partial vectors or peeling,
- assuming that the loop will be used as a main loop. We will redo
- this analysis later if we instead decide to use the loop as an
- epilogue loop. */
- ok = vect_determine_partial_vectors_and_peeling (loop_vinfo, false);
- if (!ok)
- return ok;
-
- /* Check the costings of the loop make vectorizing worthwhile. */
- res = vect_analyze_loop_costing (loop_vinfo);
- if (res < 0)
- {
- ok = opt_result::failure_at (vect_location,
- "Loop costings may not be worthwhile.\n");
- goto again;
- }
- if (!res)
- return opt_result::failure_at (vect_location,
- "Loop costings not worthwhile.\n");
-
- /* If an epilogue loop is required make sure we can create one. */
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
- || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
- if (!vect_can_advance_ivs_p (loop_vinfo)
- || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
- single_exit (LOOP_VINFO_LOOP
- (loop_vinfo))))
- {
- ok = opt_result::failure_at (vect_location,
- "not vectorized: can't create required "
- "epilog loop\n");
- goto again;
- }
- }
-
- /* During peeling, we need to check if number of loop iterations is
- enough for both peeled prolog loop and vector loop. This check
- can be merged along with threshold check of loop versioning, so
- increase threshold for this case if necessary.
-
- If we are analyzing an epilogue we still want to check what its
- versioning threshold would be. If we decide to vectorize the epilogues we
- will want to use the lowest versioning threshold of all epilogues and main
- loop. This will enable us to enter a vectorized epilogue even when
- versioning the loop. We can't simply check whether the epilogue requires
- versioning though since we may have skipped some versioning checks when
- analyzing the epilogue. For instance, checks for alias versioning will be
- skipped when dealing with epilogues as we assume we already checked them
- for the main loop. So instead we always check the 'orig_loop_vinfo'. */
- if (LOOP_REQUIRES_VERSIONING (orig_loop_vinfo))
- {
- poly_uint64 niters_th = 0;
- unsigned int th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
-
- if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
- {
- /* Niters for peeled prolog loop. */
- if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
- {
- dr_vec_info *dr_info = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
- tree vectype = STMT_VINFO_VECTYPE (dr_info->stmt);
- niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
- }
- else
- niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- }
-
- /* Niters for at least one iteration of vectorized loop. */
- if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- /* One additional iteration because of peeling for gap. */
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
- niters_th += 1;
-
- /* Use the same condition as vect_transform_loop to decide when to use
- the cost to determine a versioning threshold. */
- if (vect_apply_runtime_profitability_check_p (loop_vinfo)
- && ordered_p (th, niters_th))
- niters_th = ordered_max (poly_uint64 (th), niters_th);
-
- LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
- }
-
- gcc_assert (known_eq (vectorization_factor,
- LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
-
- /* Ok to vectorize! */
- LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
- return opt_result::success ();
-
-again:
- /* Ensure that "ok" is false (with an opt_problem if dumping is enabled). */
- gcc_assert (!ok);
-
- /* Try again with SLP forced off but if we didn't do any SLP there is
- no point in re-trying. */
- if (!slp)
- return ok;
-
- /* If there are reduction chains re-trying will fail anyway. */
- if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
- return ok;
-
- /* Likewise if the grouped loads or stores in the SLP cannot be handled
- via interleaving or lane instructions. */
- slp_instance instance;
- slp_tree node;
- unsigned i, j;
- FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
- {
- stmt_vec_info vinfo;
- vinfo = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
- if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
- continue;
- vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
- unsigned int size = DR_GROUP_SIZE (vinfo);
- tree vectype = STMT_VINFO_VECTYPE (vinfo);
- if (! vect_store_lanes_supported (vectype, size, false)
- && ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
- && ! vect_grouped_store_supported (vectype, size))
- return opt_result::failure_at (vinfo->stmt,
- "unsupported grouped store\n");
- FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
- {
- vinfo = SLP_TREE_SCALAR_STMTS (node)[0];
- vinfo = DR_GROUP_FIRST_ELEMENT (vinfo);
- bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
- size = DR_GROUP_SIZE (vinfo);
- vectype = STMT_VINFO_VECTYPE (vinfo);
- if (! vect_load_lanes_supported (vectype, size, false)
- && ! vect_grouped_load_supported (vectype, single_element_p,
- size))
- return opt_result::failure_at (vinfo->stmt,
- "unsupported grouped load\n");
- }
- }
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "re-trying with SLP disabled\n");
-
- /* Roll back state appropriately. No SLP this time. */
- slp = false;
- /* Restore vectorization factor as it were without SLP. */
- LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
- /* Free the SLP instances. */
- FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
- vect_free_slp_instance (instance);
- LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
- /* Reset SLP type to loop_vect on all stmts. */
- for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
- {
- basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
- for (gimple_stmt_iterator si = gsi_start_phis (bb);
- !gsi_end_p (si); gsi_next (&si))
- {
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
- STMT_SLP_TYPE (stmt_info) = loop_vect;
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
- {
- /* vectorizable_reduction adjusts reduction stmt def-types,
- restore them to that of the PHI. */
- STMT_VINFO_DEF_TYPE (STMT_VINFO_REDUC_DEF (stmt_info))
- = STMT_VINFO_DEF_TYPE (stmt_info);
- STMT_VINFO_DEF_TYPE (vect_stmt_to_vectorize
- (STMT_VINFO_REDUC_DEF (stmt_info)))
- = STMT_VINFO_DEF_TYPE (stmt_info);
- }
- }
- for (gimple_stmt_iterator si = gsi_start_bb (bb);
- !gsi_end_p (si); gsi_next (&si))
- {
- if (is_gimple_debug (gsi_stmt (si)))
- continue;
- stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
- STMT_SLP_TYPE (stmt_info) = loop_vect;
- if (STMT_VINFO_IN_PATTERN_P (stmt_info))
- {
- stmt_vec_info pattern_stmt_info
- = STMT_VINFO_RELATED_STMT (stmt_info);
- if (STMT_VINFO_SLP_VECT_ONLY_PATTERN (pattern_stmt_info))
- STMT_VINFO_IN_PATTERN_P (stmt_info) = false;
-
- gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
- STMT_SLP_TYPE (pattern_stmt_info) = loop_vect;
- for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
- !gsi_end_p (pi); gsi_next (&pi))
- STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
- = loop_vect;
- }
- }
- }
- /* Free optimized alias test DDRS. */
- LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
- LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
- LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
- /* Reset target cost data. */
- delete loop_vinfo->vector_costs;
- loop_vinfo->vector_costs = nullptr;
- /* Reset accumulated rgroup information. */
- release_vec_loop_controls (&LOOP_VINFO_MASKS (loop_vinfo));
- release_vec_loop_controls (&LOOP_VINFO_LENS (loop_vinfo));
- /* Reset assorted flags. */
- LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
- LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
- LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
- LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo)
- = saved_can_use_partial_vectors_p;
-
- goto start_over;
-}
-
-/* Return true if vectorizing a loop using NEW_LOOP_VINFO appears
- to be better than vectorizing it using OLD_LOOP_VINFO. Assume that
- OLD_LOOP_VINFO is better unless something specifically indicates
- otherwise.
-
- Note that this deliberately isn't a partial order. */
-
-static bool
-vect_better_loop_vinfo_p (loop_vec_info new_loop_vinfo,
- loop_vec_info old_loop_vinfo)
-{
- struct loop *loop = LOOP_VINFO_LOOP (new_loop_vinfo);
- gcc_assert (LOOP_VINFO_LOOP (old_loop_vinfo) == loop);
-
- poly_int64 new_vf = LOOP_VINFO_VECT_FACTOR (new_loop_vinfo);
- poly_int64 old_vf = LOOP_VINFO_VECT_FACTOR (old_loop_vinfo);
-
- /* Always prefer a VF of loop->simdlen over any other VF. */
- if (loop->simdlen)
- {
- bool new_simdlen_p = known_eq (new_vf, loop->simdlen);
- bool old_simdlen_p = known_eq (old_vf, loop->simdlen);
- if (new_simdlen_p != old_simdlen_p)
- return new_simdlen_p;
- }
-
- const auto *old_costs = old_loop_vinfo->vector_costs;
- const auto *new_costs = new_loop_vinfo->vector_costs;
- if (loop_vec_info main_loop = LOOP_VINFO_ORIG_LOOP_INFO (old_loop_vinfo))
- return new_costs->better_epilogue_loop_than_p (old_costs, main_loop);
-
- return new_costs->better_main_loop_than_p (old_costs);
-}
-
-/* Decide whether to replace OLD_LOOP_VINFO with NEW_LOOP_VINFO. Return
- true if we should. */
-
-static bool
-vect_joust_loop_vinfos (loop_vec_info new_loop_vinfo,
- loop_vec_info old_loop_vinfo)
-{
- if (!vect_better_loop_vinfo_p (new_loop_vinfo, old_loop_vinfo))
- return false;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Preferring vector mode %s to vector mode %s\n",
- GET_MODE_NAME (new_loop_vinfo->vector_mode),
- GET_MODE_NAME (old_loop_vinfo->vector_mode));
- return true;
-}
-
-/* Analyze LOOP with VECTOR_MODES[MODE_I] and as epilogue if MAIN_LOOP_VINFO is
- not NULL. Set AUTODETECTED_VECTOR_MODE if VOIDmode and advance
- MODE_I to the next mode useful to analyze.
- Return the loop_vinfo on success and wrapped null on failure. */
-
-static opt_loop_vec_info
-vect_analyze_loop_1 (class loop *loop, vec_info_shared *shared,
- const vect_loop_form_info *loop_form_info,
- loop_vec_info main_loop_vinfo,
- const vector_modes &vector_modes, unsigned &mode_i,
- machine_mode &autodetected_vector_mode,
- bool &fatal)
-{
- loop_vec_info loop_vinfo
- = vect_create_loop_vinfo (loop, shared, loop_form_info, main_loop_vinfo);
-
- machine_mode vector_mode = vector_modes[mode_i];
- loop_vinfo->vector_mode = vector_mode;
-
- /* Run the main analysis. */
- opt_result res = vect_analyze_loop_2 (loop_vinfo, fatal);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Analysis %s with vector mode %s\n",
- res ? "succeeded" : " failed",
- GET_MODE_NAME (loop_vinfo->vector_mode));
-
- /* Remember the autodetected vector mode. */
- if (vector_mode == VOIDmode)
- autodetected_vector_mode = loop_vinfo->vector_mode;
-
- /* Advance mode_i, first skipping modes that would result in the
- same analysis result. */
- while (mode_i + 1 < vector_modes.length ()
- && vect_chooses_same_modes_p (loop_vinfo,
- vector_modes[mode_i + 1]))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** The result for vector mode %s would"
- " be the same\n",
- GET_MODE_NAME (vector_modes[mode_i + 1]));
- mode_i += 1;
- }
- if (mode_i + 1 < vector_modes.length ()
- && VECTOR_MODE_P (autodetected_vector_mode)
- && (related_vector_mode (vector_modes[mode_i + 1],
- GET_MODE_INNER (autodetected_vector_mode))
- == autodetected_vector_mode)
- && (related_vector_mode (autodetected_vector_mode,
- GET_MODE_INNER (vector_modes[mode_i + 1]))
- == vector_modes[mode_i + 1]))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Skipping vector mode %s, which would"
- " repeat the analysis for %s\n",
- GET_MODE_NAME (vector_modes[mode_i + 1]),
- GET_MODE_NAME (autodetected_vector_mode));
- mode_i += 1;
- }
- mode_i++;
-
- if (!res)
- {
- delete loop_vinfo;
- if (fatal)
- gcc_checking_assert (main_loop_vinfo == NULL);
- return opt_loop_vec_info::propagate_failure (res);
- }
-
- return opt_loop_vec_info::success (loop_vinfo);
-}
-
-/* Function vect_analyze_loop.
-
- Apply a set of analyses on LOOP, and create a loop_vec_info struct
- for it. The different analyses will record information in the
- loop_vec_info struct. */
-opt_loop_vec_info
-vect_analyze_loop (class loop *loop, vec_info_shared *shared)
-{
- DUMP_VECT_SCOPE ("analyze_loop_nest");
-
- if (loop_outer (loop)
- && loop_vec_info_for_loop (loop_outer (loop))
- && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
- return opt_loop_vec_info::failure_at (vect_location,
- "outer-loop already vectorized.\n");
-
- if (!find_loop_nest (loop, &shared->loop_nest))
- return opt_loop_vec_info::failure_at
- (vect_location,
- "not vectorized: loop nest containing two or more consecutive inner"
- " loops cannot be vectorized\n");
-
- /* Analyze the loop form. */
- vect_loop_form_info loop_form_info;
- opt_result res = vect_analyze_loop_form (loop, &loop_form_info);
- if (!res)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "bad loop form.\n");
- return opt_loop_vec_info::propagate_failure (res);
- }
- if (!integer_onep (loop_form_info.assumptions))
- {
- /* We consider to vectorize this loop by versioning it under
- some assumptions. In order to do this, we need to clear
- existing information computed by scev and niter analyzer. */
- scev_reset_htab ();
- free_numbers_of_iterations_estimates (loop);
- /* Also set flag for this loop so that following scev and niter
- analysis are done under the assumptions. */
- loop_constraint_set (loop, LOOP_C_FINITE);
- }
-
- auto_vector_modes vector_modes;
- /* Autodetect first vector size we try. */
- vector_modes.safe_push (VOIDmode);
- unsigned int autovec_flags
- = targetm.vectorize.autovectorize_vector_modes (&vector_modes,
- loop->simdlen != 0);
- bool pick_lowest_cost_p = ((autovec_flags & VECT_COMPARE_COSTS)
- && !unlimited_cost_model (loop));
- machine_mode autodetected_vector_mode = VOIDmode;
- opt_loop_vec_info first_loop_vinfo = opt_loop_vec_info::success (NULL);
- unsigned int mode_i = 0;
- unsigned HOST_WIDE_INT simdlen = loop->simdlen;
-
- /* First determine the main loop vectorization mode, either the first
- one that works, starting with auto-detecting the vector mode and then
- following the targets order of preference, or the one with the
- lowest cost if pick_lowest_cost_p. */
- while (1)
- {
- bool fatal;
- opt_loop_vec_info loop_vinfo
- = vect_analyze_loop_1 (loop, shared, &loop_form_info,
- NULL, vector_modes, mode_i,
- autodetected_vector_mode, fatal);
- if (fatal)
- break;
-
- if (loop_vinfo)
- {
- /* Once we hit the desired simdlen for the first time,
- discard any previous attempts. */
- if (simdlen
- && known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), simdlen))
- {
- delete first_loop_vinfo;
- first_loop_vinfo = opt_loop_vec_info::success (NULL);
- simdlen = 0;
- }
- else if (pick_lowest_cost_p
- && first_loop_vinfo
- && vect_joust_loop_vinfos (loop_vinfo, first_loop_vinfo))
- {
- /* Pick loop_vinfo over first_loop_vinfo. */
- delete first_loop_vinfo;
- first_loop_vinfo = opt_loop_vec_info::success (NULL);
- }
- if (first_loop_vinfo == NULL)
- first_loop_vinfo = loop_vinfo;
- else
- {
- delete loop_vinfo;
- loop_vinfo = opt_loop_vec_info::success (NULL);
- }
-
- /* Commit to first_loop_vinfo if we have no reason to try
- alternatives. */
- if (!simdlen && !pick_lowest_cost_p)
- break;
- }
- if (mode_i == vector_modes.length ()
- || autodetected_vector_mode == VOIDmode)
- break;
-
- /* Try the next biggest vector size. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Re-trying analysis with vector mode %s\n",
- GET_MODE_NAME (vector_modes[mode_i]));
- }
- if (!first_loop_vinfo)
- return opt_loop_vec_info::propagate_failure (res);
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Choosing vector mode %s\n",
- GET_MODE_NAME (first_loop_vinfo->vector_mode));
-
- /* Only vectorize epilogues if PARAM_VECT_EPILOGUES_NOMASK is
- enabled, SIMDUID is not set, it is the innermost loop and we have
- either already found the loop's SIMDLEN or there was no SIMDLEN to
- begin with.
- TODO: Enable epilogue vectorization for loops with SIMDUID set. */
- bool vect_epilogues = (!simdlen
- && loop->inner == NULL
- && param_vect_epilogues_nomask
- && LOOP_VINFO_PEELING_FOR_NITER (first_loop_vinfo)
- && !loop->simduid);
- if (!vect_epilogues)
- return first_loop_vinfo;
-
- /* Now analyze first_loop_vinfo for epilogue vectorization. */
- poly_uint64 lowest_th = LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo);
-
- /* For epilogues start the analysis from the first mode. The motivation
- behind starting from the beginning comes from cases where the VECTOR_MODES
- array may contain length-agnostic and length-specific modes. Their
- ordering is not guaranteed, so we could end up picking a mode for the main
- loop that is after the epilogue's optimal mode. */
- vector_modes[0] = autodetected_vector_mode;
- mode_i = 0;
-
- bool supports_partial_vectors =
- partial_vectors_supported_p () && param_vect_partial_vector_usage != 0;
- poly_uint64 first_vinfo_vf = LOOP_VINFO_VECT_FACTOR (first_loop_vinfo);
-
- while (1)
- {
- /* If the target does not support partial vectors we can shorten the
- number of modes to analyze for the epilogue as we know we can't pick a
- mode that has at least as many NUNITS as the main loop's vectorization
- factor, since that would imply the epilogue's vectorization factor
- would be at least as high as the main loop's and we would be
- vectorizing for more scalar iterations than there would be left. */
- if (!supports_partial_vectors
- && maybe_ge (GET_MODE_NUNITS (vector_modes[mode_i]), first_vinfo_vf))
- {
- mode_i++;
- if (mode_i == vector_modes.length ())
- break;
- continue;
- }
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Re-trying epilogue analysis with vector "
- "mode %s\n", GET_MODE_NAME (vector_modes[mode_i]));
-
- bool fatal;
- opt_loop_vec_info loop_vinfo
- = vect_analyze_loop_1 (loop, shared, &loop_form_info,
- first_loop_vinfo,
- vector_modes, mode_i,
- autodetected_vector_mode, fatal);
- if (fatal)
- break;
-
- if (loop_vinfo)
- {
- if (pick_lowest_cost_p)
- {
- /* Keep trying to roll back vectorization attempts while the
- loop_vec_infos they produced were worse than this one. */
- vec<loop_vec_info> &vinfos = first_loop_vinfo->epilogue_vinfos;
- while (!vinfos.is_empty ()
- && vect_joust_loop_vinfos (loop_vinfo, vinfos.last ()))
- {
- gcc_assert (vect_epilogues);
- delete vinfos.pop ();
- }
- }
- /* For now only allow one epilogue loop. */
- if (first_loop_vinfo->epilogue_vinfos.is_empty ())
- {
- first_loop_vinfo->epilogue_vinfos.safe_push (loop_vinfo);
- poly_uint64 th = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
- gcc_assert (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
- || maybe_ne (lowest_th, 0U));
- /* Keep track of the known smallest versioning
- threshold. */
- if (ordered_p (lowest_th, th))
- lowest_th = ordered_min (lowest_th, th);
- }
- else
- {
- delete loop_vinfo;
- loop_vinfo = opt_loop_vec_info::success (NULL);
- }
-
- /* For now only allow one epilogue loop, but allow
- pick_lowest_cost_p to replace it, so commit to the
- first epilogue if we have no reason to try alternatives. */
- if (!pick_lowest_cost_p)
- break;
- }
-
- if (mode_i == vector_modes.length ())
- break;
-
- }
-
- if (!first_loop_vinfo->epilogue_vinfos.is_empty ())
- {
- LOOP_VINFO_VERSIONING_THRESHOLD (first_loop_vinfo) = lowest_th;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "***** Choosing epilogue vector mode %s\n",
- GET_MODE_NAME
- (first_loop_vinfo->epilogue_vinfos[0]->vector_mode));
- }
-
- return first_loop_vinfo;
-}
-
-/* Return true if there is an in-order reduction function for CODE, storing
- it in *REDUC_FN if so. */
-
-static bool
-fold_left_reduction_fn (code_helper code, internal_fn *reduc_fn)
-{
- if (code == PLUS_EXPR)
- {
- *reduc_fn = IFN_FOLD_LEFT_PLUS;
- return true;
- }
- return false;
-}
-
-/* Function reduction_fn_for_scalar_code
-
- Input:
- CODE - tree_code of a reduction operations.
-
- Output:
- REDUC_FN - the corresponding internal function to be used to reduce the
- vector of partial results into a single scalar result, or IFN_LAST
- if the operation is a supported reduction operation, but does not have
- such an internal function.
-
- Return FALSE if CODE currently cannot be vectorized as reduction. */
-
-bool
-reduction_fn_for_scalar_code (code_helper code, internal_fn *reduc_fn)
-{
- if (code.is_tree_code ())
- switch (tree_code (code))
- {
- case MAX_EXPR:
- *reduc_fn = IFN_REDUC_MAX;
- return true;
-
- case MIN_EXPR:
- *reduc_fn = IFN_REDUC_MIN;
- return true;
-
- case PLUS_EXPR:
- *reduc_fn = IFN_REDUC_PLUS;
- return true;
-
- case BIT_AND_EXPR:
- *reduc_fn = IFN_REDUC_AND;
- return true;
-
- case BIT_IOR_EXPR:
- *reduc_fn = IFN_REDUC_IOR;
- return true;
-
- case BIT_XOR_EXPR:
- *reduc_fn = IFN_REDUC_XOR;
- return true;
-
- case MULT_EXPR:
- case MINUS_EXPR:
- *reduc_fn = IFN_LAST;
- return true;
-
- default:
- return false;
- }
- else
- switch (combined_fn (code))
- {
- CASE_CFN_FMAX:
- *reduc_fn = IFN_REDUC_FMAX;
- return true;
-
- CASE_CFN_FMIN:
- *reduc_fn = IFN_REDUC_FMIN;
- return true;
-
- default:
- return false;
- }
-}
-
-/* If there is a neutral value X such that a reduction would not be affected
- by the introduction of additional X elements, return that X, otherwise
- return null. CODE is the code of the reduction and SCALAR_TYPE is type
- of the scalar elements. If the reduction has just a single initial value
- then INITIAL_VALUE is that value, otherwise it is null. */
-
-tree
-neutral_op_for_reduction (tree scalar_type, code_helper code,
- tree initial_value)
-{
- if (code.is_tree_code ())
- switch (tree_code (code))
- {
- case WIDEN_SUM_EXPR:
- case DOT_PROD_EXPR:
- case SAD_EXPR:
- case PLUS_EXPR:
- case MINUS_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- return build_zero_cst (scalar_type);
-
- case MULT_EXPR:
- return build_one_cst (scalar_type);
-
- case BIT_AND_EXPR:
- return build_all_ones_cst (scalar_type);
-
- case MAX_EXPR:
- case MIN_EXPR:
- return initial_value;
-
- default:
- return NULL_TREE;
- }
- else
- switch (combined_fn (code))
- {
- CASE_CFN_FMIN:
- CASE_CFN_FMAX:
- return initial_value;
-
- default:
- return NULL_TREE;
- }
-}
-
-/* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
- STMT is printed with a message MSG. */
-
-static void
-report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
-{
- dump_printf_loc (msg_type, vect_location, "%s%G", msg, stmt);
-}
-
-/* Return true if we need an in-order reduction for operation CODE
- on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
- overflow must wrap. */
-
-bool
-needs_fold_left_reduction_p (tree type, code_helper code)
-{
- /* CHECKME: check for !flag_finite_math_only too? */
- if (SCALAR_FLOAT_TYPE_P (type))
- {
- if (code.is_tree_code ())
- switch (tree_code (code))
- {
- case MIN_EXPR:
- case MAX_EXPR:
- return false;
-
- default:
- return !flag_associative_math;
- }
- else
- switch (combined_fn (code))
- {
- CASE_CFN_FMIN:
- CASE_CFN_FMAX:
- return false;
-
- default:
- return !flag_associative_math;
- }
- }
-
- if (INTEGRAL_TYPE_P (type))
- return (!code.is_tree_code ()
- || !operation_no_trapping_overflow (type, tree_code (code)));
-
- if (SAT_FIXED_POINT_TYPE_P (type))
- return true;
-
- return false;
-}
-
-/* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
- has a handled computation expression. Store the main reduction
- operation in *CODE. */
-
-static bool
-check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
- tree loop_arg, code_helper *code,
- vec<std::pair<ssa_op_iter, use_operand_p> > &path)
-{
- auto_bitmap visited;
- tree lookfor = PHI_RESULT (phi);
- ssa_op_iter curri;
- use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
- while (USE_FROM_PTR (curr) != loop_arg)
- curr = op_iter_next_use (&curri);
- curri.i = curri.numops;
- do
- {
- path.safe_push (std::make_pair (curri, curr));
- tree use = USE_FROM_PTR (curr);
- if (use == lookfor)
- break;
- gimple *def = SSA_NAME_DEF_STMT (use);
- if (gimple_nop_p (def)
- || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
- {
-pop:
- do
- {
- std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
- curri = x.first;
- curr = x.second;
- do
- curr = op_iter_next_use (&curri);
- /* Skip already visited or non-SSA operands (from iterating
- over PHI args). */
- while (curr != NULL_USE_OPERAND_P
- && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
- || ! bitmap_set_bit (visited,
- SSA_NAME_VERSION
- (USE_FROM_PTR (curr)))));
- }
- while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
- if (curr == NULL_USE_OPERAND_P)
- break;
- }
- else
- {
- if (gimple_code (def) == GIMPLE_PHI)
- curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
- else
- curr = op_iter_init_use (&curri, def, SSA_OP_USE);
- while (curr != NULL_USE_OPERAND_P
- && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
- || ! bitmap_set_bit (visited,
- SSA_NAME_VERSION
- (USE_FROM_PTR (curr)))))
- curr = op_iter_next_use (&curri);
- if (curr == NULL_USE_OPERAND_P)
- goto pop;
- }
- }
- while (1);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
- unsigned i;
- std::pair<ssa_op_iter, use_operand_p> *x;
- FOR_EACH_VEC_ELT (path, i, x)
- dump_printf (MSG_NOTE, "%T ", USE_FROM_PTR (x->second));
- dump_printf (MSG_NOTE, "\n");
- }
-
- /* Check whether the reduction path detected is valid. */
- bool fail = path.length () == 0;
- bool neg = false;
- int sign = -1;
- *code = ERROR_MARK;
- for (unsigned i = 1; i < path.length (); ++i)
- {
- gimple *use_stmt = USE_STMT (path[i].second);
- gimple_match_op op;
- if (!gimple_extract_op (use_stmt, &op))
- {
- fail = true;
- break;
- }
- unsigned int opi = op.num_ops;
- if (gassign *assign = dyn_cast<gassign *> (use_stmt))
- {
- /* The following make sure we can compute the operand index
- easily plus it mostly disallows chaining via COND_EXPR condition
- operands. */
- for (opi = 0; opi < op.num_ops; ++opi)
- if (gimple_assign_rhs1_ptr (assign) + opi == path[i].second->use)
- break;
- }
- else if (gcall *call = dyn_cast<gcall *> (use_stmt))
- {
- for (opi = 0; opi < op.num_ops; ++opi)
- if (gimple_call_arg_ptr (call, opi) == path[i].second->use)
- break;
- }
- if (opi == op.num_ops)
- {
- fail = true;
- break;
- }
- op.code = canonicalize_code (op.code, op.type);
- if (op.code == MINUS_EXPR)
- {
- op.code = PLUS_EXPR;
- /* Track whether we negate the reduction value each iteration. */
- if (op.ops[1] == op.ops[opi])
- neg = ! neg;
- }
- if (CONVERT_EXPR_CODE_P (op.code)
- && tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
- ;
- else if (*code == ERROR_MARK)
- {
- *code = op.code;
- sign = TYPE_SIGN (op.type);
- }
- else if (op.code != *code)
- {
- fail = true;
- break;
- }
- else if ((op.code == MIN_EXPR
- || op.code == MAX_EXPR)
- && sign != TYPE_SIGN (op.type))
- {
- fail = true;
- break;
- }
- /* Check there's only a single stmt the op is used on. For the
- not value-changing tail and the last stmt allow out-of-loop uses.
- ??? We could relax this and handle arbitrary live stmts by
- forcing a scalar epilogue for example. */
- imm_use_iterator imm_iter;
- gimple *op_use_stmt;
- unsigned cnt = 0;
- FOR_EACH_IMM_USE_STMT (op_use_stmt, imm_iter, op.ops[opi])
- if (!is_gimple_debug (op_use_stmt)
- && (*code != ERROR_MARK
- || flow_bb_inside_loop_p (loop, gimple_bb (op_use_stmt))))
- {
- /* We want to allow x + x but not x < 1 ? x : 2. */
- if (is_gimple_assign (op_use_stmt)
- && gimple_assign_rhs_code (op_use_stmt) == COND_EXPR)
- {
- use_operand_p use_p;
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- cnt++;
- }
- else
- cnt++;
- }
- if (cnt != 1)
- {
- fail = true;
- break;
- }
- }
- return ! fail && ! neg && *code != ERROR_MARK;
-}
-
-bool
-check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
- tree loop_arg, enum tree_code code)
-{
- auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
- code_helper code_;
- return (check_reduction_path (loc, loop, phi, loop_arg, &code_, path)
- && code_ == code);
-}
-
-
-
-/* Function vect_is_simple_reduction
-
- (1) Detect a cross-iteration def-use cycle that represents a simple
- reduction computation. We look for the following pattern:
-
- loop_header:
- a1 = phi < a0, a2 >
- a3 = ...
- a2 = operation (a3, a1)
-
- or
-
- a3 = ...
- loop_header:
- a1 = phi < a0, a2 >
- a2 = operation (a3, a1)
-
- such that:
- 1. operation is commutative and associative and it is safe to
- change the order of the computation
- 2. no uses for a2 in the loop (a2 is used out of the loop)
- 3. no uses of a1 in the loop besides the reduction operation
- 4. no uses of a1 outside the loop.
-
- Conditions 1,4 are tested here.
- Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
-
- (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
- nested cycles.
-
- (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
- reductions:
-
- a1 = phi < a0, a2 >
- inner loop (def of a3)
- a2 = phi < a3 >
-
- (4) Detect condition expressions, ie:
- for (int i = 0; i < N; i++)
- if (a[i] < val)
- ret_val = a[i];
-
-*/
-
-static stmt_vec_info
-vect_is_simple_reduction (loop_vec_info loop_info, stmt_vec_info phi_info,
- bool *double_reduc, bool *reduc_chain_p)
-{
- gphi *phi = as_a <gphi *> (phi_info->stmt);
- gimple *phi_use_stmt = NULL;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- *double_reduc = false;
- *reduc_chain_p = false;
- STMT_VINFO_REDUC_TYPE (phi_info) = TREE_CODE_REDUCTION;
-
- tree phi_name = PHI_RESULT (phi);
- /* ??? If there are no uses of the PHI result the inner loop reduction
- won't be detected as possibly double-reduction by vectorizable_reduction
- because that tries to walk the PHI arg from the preheader edge which
- can be constant. See PR60382. */
- if (has_zero_uses (phi_name))
- return NULL;
- class loop *loop = (gimple_bb (phi))->loop_father;
- unsigned nphi_def_loop_uses = 0;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
- {
- gimple *use_stmt = USE_STMT (use_p);
- if (is_gimple_debug (use_stmt))
- continue;
-
- if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "intermediate value used outside loop.\n");
-
- return NULL;
- }
-
- nphi_def_loop_uses++;
- phi_use_stmt = use_stmt;
- }
-
- tree latch_def = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop));
- if (TREE_CODE (latch_def) != SSA_NAME)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction: not ssa_name: %T\n", latch_def);
- return NULL;
- }
-
- stmt_vec_info def_stmt_info = loop_info->lookup_def (latch_def);
- if (!def_stmt_info
- || !flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt)))
- return NULL;
-
- bool nested_in_vect_loop
- = flow_loop_nested_p (LOOP_VINFO_LOOP (loop_info), loop);
- unsigned nlatch_def_loop_uses = 0;
- auto_vec<gphi *, 3> lcphis;
- bool inner_loop_of_double_reduc = false;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, latch_def)
- {
- gimple *use_stmt = USE_STMT (use_p);
- if (is_gimple_debug (use_stmt))
- continue;
- if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
- nlatch_def_loop_uses++;
- else
- {
- /* We can have more than one loop-closed PHI. */
- lcphis.safe_push (as_a <gphi *> (use_stmt));
- if (nested_in_vect_loop
- && (STMT_VINFO_DEF_TYPE (loop_info->lookup_stmt (use_stmt))
- == vect_double_reduction_def))
- inner_loop_of_double_reduc = true;
- }
- }
-
- /* If we are vectorizing an inner reduction we are executing that
- in the original order only in case we are not dealing with a
- double reduction. */
- if (nested_in_vect_loop && !inner_loop_of_double_reduc)
- {
- if (dump_enabled_p ())
- report_vect_op (MSG_NOTE, def_stmt_info->stmt,
- "detected nested cycle: ");
- return def_stmt_info;
- }
-
- /* When the inner loop of a double reduction ends up with more than
- one loop-closed PHI we have failed to classify alternate such
- PHIs as double reduction, leading to wrong code. See PR103237. */
- if (inner_loop_of_double_reduc && lcphis.length () != 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "unhandle double reduction\n");
- return NULL;
- }
-
- /* If this isn't a nested cycle or if the nested cycle reduction value
- is used ouside of the inner loop we cannot handle uses of the reduction
- value. */
- if (nlatch_def_loop_uses > 1 || nphi_def_loop_uses > 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction used in loop.\n");
- return NULL;
- }
-
- /* If DEF_STMT is a phi node itself, we expect it to have a single argument
- defined in the inner loop. */
- if (gphi *def_stmt = dyn_cast <gphi *> (def_stmt_info->stmt))
- {
- tree op1 = PHI_ARG_DEF (def_stmt, 0);
- if (gimple_phi_num_args (def_stmt) != 1
- || TREE_CODE (op1) != SSA_NAME)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "unsupported phi node definition.\n");
-
- return NULL;
- }
-
- gimple *def1 = SSA_NAME_DEF_STMT (op1);
- if (gimple_bb (def1)
- && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
- && loop->inner
- && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
- && (is_gimple_assign (def1) || is_gimple_call (def1))
- && is_a <gphi *> (phi_use_stmt)
- && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
- {
- if (dump_enabled_p ())
- report_vect_op (MSG_NOTE, def_stmt,
- "detected double reduction: ");
-
- *double_reduc = true;
- return def_stmt_info;
- }
-
- return NULL;
- }
-
- /* Look for the expression computing latch_def from then loop PHI result. */
- auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
- code_helper code;
- if (check_reduction_path (vect_location, loop, phi, latch_def, &code,
- path))
- {
- STMT_VINFO_REDUC_CODE (phi_info) = code;
- if (code == COND_EXPR && !nested_in_vect_loop)
- STMT_VINFO_REDUC_TYPE (phi_info) = COND_REDUCTION;
-
- /* Fill in STMT_VINFO_REDUC_IDX and gather stmts for an SLP
- reduction chain for which the additional restriction is that
- all operations in the chain are the same. */
- auto_vec<stmt_vec_info, 8> reduc_chain;
- unsigned i;
- bool is_slp_reduc = !nested_in_vect_loop && code != COND_EXPR;
- for (i = path.length () - 1; i >= 1; --i)
- {
- gimple *stmt = USE_STMT (path[i].second);
- stmt_vec_info stmt_info = loop_info->lookup_stmt (stmt);
- gimple_match_op op;
- if (!gimple_extract_op (stmt, &op))
- gcc_unreachable ();
- if (gassign *assign = dyn_cast<gassign *> (stmt))
- STMT_VINFO_REDUC_IDX (stmt_info)
- = path[i].second->use - gimple_assign_rhs1_ptr (assign);
- else
- {
- gcall *call = as_a<gcall *> (stmt);
- STMT_VINFO_REDUC_IDX (stmt_info)
- = path[i].second->use - gimple_call_arg_ptr (call, 0);
- }
- bool leading_conversion = (CONVERT_EXPR_CODE_P (op.code)
- && (i == 1 || i == path.length () - 1));
- if ((op.code != code && !leading_conversion)
- /* We can only handle the final value in epilogue
- generation for reduction chains. */
- || (i != 1 && !has_single_use (gimple_get_lhs (stmt))))
- is_slp_reduc = false;
- /* For reduction chains we support a trailing/leading
- conversions. We do not store those in the actual chain. */
- if (leading_conversion)
- continue;
- reduc_chain.safe_push (stmt_info);
- }
- if (is_slp_reduc && reduc_chain.length () > 1)
- {
- for (unsigned i = 0; i < reduc_chain.length () - 1; ++i)
- {
- REDUC_GROUP_FIRST_ELEMENT (reduc_chain[i]) = reduc_chain[0];
- REDUC_GROUP_NEXT_ELEMENT (reduc_chain[i]) = reduc_chain[i+1];
- }
- REDUC_GROUP_FIRST_ELEMENT (reduc_chain.last ()) = reduc_chain[0];
- REDUC_GROUP_NEXT_ELEMENT (reduc_chain.last ()) = NULL;
-
- /* Save the chain for further analysis in SLP detection. */
- LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (reduc_chain[0]);
- REDUC_GROUP_SIZE (reduc_chain[0]) = reduc_chain.length ();
-
- *reduc_chain_p = true;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "reduction: detected reduction chain\n");
- }
- else if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "reduction: detected reduction\n");
-
- return def_stmt_info;
- }
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "reduction: unknown pattern\n");
-
- return NULL;
-}
-
-/* Estimate the number of peeled epilogue iterations for LOOP_VINFO.
- PEEL_ITERS_PROLOGUE is the number of peeled prologue iterations,
- or -1 if not known. */
-
-static int
-vect_get_peel_iters_epilogue (loop_vec_info loop_vinfo, int peel_iters_prologue)
-{
- int assumed_vf = vect_vf_for_cost (loop_vinfo);
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) || peel_iters_prologue == -1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "cost model: epilogue peel iters set to vf/2 "
- "because loop iterations are unknown .\n");
- return assumed_vf / 2;
- }
- else
- {
- int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
- peel_iters_prologue = MIN (niters, peel_iters_prologue);
- int peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
- /* If we need to peel for gaps, but no peeling is required, we have to
- peel VF iterations. */
- if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !peel_iters_epilogue)
- peel_iters_epilogue = assumed_vf;
- return peel_iters_epilogue;
- }
-}
-
-/* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
-int
-vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
- int *peel_iters_epilogue,
- stmt_vector_for_cost *scalar_cost_vec,
- stmt_vector_for_cost *prologue_cost_vec,
- stmt_vector_for_cost *epilogue_cost_vec)
-{
- int retval = 0;
-
- *peel_iters_epilogue
- = vect_get_peel_iters_epilogue (loop_vinfo, peel_iters_prologue);
-
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
- {
- /* If peeled iterations are known but number of scalar loop
- iterations are unknown, count a taken branch per peeled loop. */
- if (peel_iters_prologue > 0)
- retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
- NULL, NULL_TREE, 0, vect_prologue);
- if (*peel_iters_epilogue > 0)
- retval += record_stmt_cost (epilogue_cost_vec, 1, cond_branch_taken,
- NULL, NULL_TREE, 0, vect_epilogue);
- }
-
- stmt_info_for_cost *si;
- int j;
- if (peel_iters_prologue)
- FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
- retval += record_stmt_cost (prologue_cost_vec,
- si->count * peel_iters_prologue,
- si->kind, si->stmt_info, si->misalign,
- vect_prologue);
- if (*peel_iters_epilogue)
- FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
- retval += record_stmt_cost (epilogue_cost_vec,
- si->count * *peel_iters_epilogue,
- si->kind, si->stmt_info, si->misalign,
- vect_epilogue);
-
- return retval;
-}
-
-/* Function vect_estimate_min_profitable_iters
-
- Return the number of iterations required for the vector version of the
- loop to be profitable relative to the cost of the scalar version of the
- loop.
-
- *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
- of iterations for vectorization. -1 value means loop vectorization
- is not profitable. This returned value may be used for dynamic
- profitability check.
-
- *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
- for static check against estimated number of iterations. */
-
-static void
-vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
- int *ret_min_profitable_niters,
- int *ret_min_profitable_estimate)
-{
- int min_profitable_iters;
- int min_profitable_estimate;
- int peel_iters_prologue;
- int peel_iters_epilogue;
- unsigned vec_inside_cost = 0;
- int vec_outside_cost = 0;
- unsigned vec_prologue_cost = 0;
- unsigned vec_epilogue_cost = 0;
- int scalar_single_iter_cost = 0;
- int scalar_outside_cost = 0;
- int assumed_vf = vect_vf_for_cost (loop_vinfo);
- int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- vector_costs *target_cost_data = loop_vinfo->vector_costs;
-
- /* Cost model disabled. */
- if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
- *ret_min_profitable_niters = 0;
- *ret_min_profitable_estimate = 0;
- return;
- }
-
- /* Requires loop versioning tests to handle misalignment. */
- if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
- {
- /* FIXME: Make cost depend on complexity of individual check. */
- unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
- (void) add_stmt_cost (target_cost_data, len, vector_stmt,
- NULL, NULL_TREE, 0, vect_prologue);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "cost model: Adding cost of checks for loop "
- "versioning to treat misalignment.\n");
- }
-
- /* Requires loop versioning with alias checks. */
- if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
- {
- /* FIXME: Make cost depend on complexity of individual check. */
- unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
- (void) add_stmt_cost (target_cost_data, len, vector_stmt,
- NULL, NULL_TREE, 0, vect_prologue);
- len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
- if (len)
- /* Count LEN - 1 ANDs and LEN comparisons. */
- (void) add_stmt_cost (target_cost_data, len * 2 - 1,
- scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
- len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
- if (len)
- {
- /* Count LEN - 1 ANDs and LEN comparisons. */
- unsigned int nstmts = len * 2 - 1;
- /* +1 for each bias that needs adding. */
- for (unsigned int i = 0; i < len; ++i)
- if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
- nstmts += 1;
- (void) add_stmt_cost (target_cost_data, nstmts,
- scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
- }
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "cost model: Adding cost of checks for loop "
- "versioning aliasing.\n");
- }
-
- /* Requires loop versioning with niter checks. */
- if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
- {
- /* FIXME: Make cost depend on complexity of individual check. */
- (void) add_stmt_cost (target_cost_data, 1, vector_stmt,
- NULL, NULL_TREE, 0, vect_prologue);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "cost model: Adding cost of checks for loop "
- "versioning niters.\n");
- }
-
- if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
- (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
- NULL, NULL_TREE, 0, vect_prologue);
-
- /* Count statements in scalar loop. Using this as scalar cost for a single
- iteration for now.
-
- TODO: Add outer loop support.
-
- TODO: Consider assigning different costs to different scalar
- statements. */
-
- scalar_single_iter_cost = loop_vinfo->scalar_costs->total_cost ();
-
- /* Add additional cost for the peeled instructions in prologue and epilogue
- loop. (For fully-masked loops there will be no peeling.)
-
- FORNOW: If we don't know the value of peel_iters for prologue or epilogue
- at compile-time - we assume it's vf/2 (the worst would be vf-1).
-
- TODO: Build an expression that represents peel_iters for prologue and
- epilogue to be used in a run-time test. */
-
- bool prologue_need_br_taken_cost = false;
- bool prologue_need_br_not_taken_cost = false;
-
- /* Calculate peel_iters_prologue. */
- if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
- peel_iters_prologue = 0;
- else if (npeel < 0)
- {
- peel_iters_prologue = assumed_vf / 2;
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "cost model: "
- "prologue peel iters set to vf/2.\n");
-
- /* If peeled iterations are unknown, count a taken branch and a not taken
- branch per peeled loop. Even if scalar loop iterations are known,
- vector iterations are not known since peeled prologue iterations are
- not known. Hence guards remain the same. */
- prologue_need_br_taken_cost = true;
- prologue_need_br_not_taken_cost = true;
- }
- else
- {
- peel_iters_prologue = npeel;
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_prologue > 0)
- /* If peeled iterations are known but number of scalar loop
- iterations are unknown, count a taken branch per peeled loop. */
- prologue_need_br_taken_cost = true;
- }
-
- bool epilogue_need_br_taken_cost = false;
- bool epilogue_need_br_not_taken_cost = false;
-
- /* Calculate peel_iters_epilogue. */
- if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- /* We need to peel exactly one iteration for gaps. */
- peel_iters_epilogue = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
- else if (npeel < 0)
- {
- /* If peeling for alignment is unknown, loop bound of main loop
- becomes unknown. */
- peel_iters_epilogue = assumed_vf / 2;
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "cost model: "
- "epilogue peel iters set to vf/2 because "
- "peeling for alignment is unknown.\n");
-
- /* See the same reason above in peel_iters_prologue calculation. */
- epilogue_need_br_taken_cost = true;
- epilogue_need_br_not_taken_cost = true;
- }
- else
- {
- peel_iters_epilogue = vect_get_peel_iters_epilogue (loop_vinfo, npeel);
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && peel_iters_epilogue > 0)
- /* If peeled iterations are known but number of scalar loop
- iterations are unknown, count a taken branch per peeled loop. */
- epilogue_need_br_taken_cost = true;
- }
-
- stmt_info_for_cost *si;
- int j;
- /* Add costs associated with peel_iters_prologue. */
- if (peel_iters_prologue)
- FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
- {
- (void) add_stmt_cost (target_cost_data,
- si->count * peel_iters_prologue, si->kind,
- si->stmt_info, si->vectype, si->misalign,
- vect_prologue);
- }
-
- /* Add costs associated with peel_iters_epilogue. */
- if (peel_iters_epilogue)
- FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
- {
- (void) add_stmt_cost (target_cost_data,
- si->count * peel_iters_epilogue, si->kind,
- si->stmt_info, si->vectype, si->misalign,
- vect_epilogue);
- }
-
- /* Add possible cond_branch_taken/cond_branch_not_taken cost. */
-
- if (prologue_need_br_taken_cost)
- (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
- NULL, NULL_TREE, 0, vect_prologue);
-
- if (prologue_need_br_not_taken_cost)
- (void) add_stmt_cost (target_cost_data, 1,
- cond_branch_not_taken, NULL, NULL_TREE, 0,
- vect_prologue);
-
- if (epilogue_need_br_taken_cost)
- (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
- NULL, NULL_TREE, 0, vect_epilogue);
-
- if (epilogue_need_br_not_taken_cost)
- (void) add_stmt_cost (target_cost_data, 1,
- cond_branch_not_taken, NULL, NULL_TREE, 0,
- vect_epilogue);
-
- /* Take care of special costs for rgroup controls of partial vectors. */
- if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
- {
- /* Calculate how many masks we need to generate. */
- unsigned int num_masks = 0;
- rgroup_controls *rgm;
- unsigned int num_vectors_m1;
- FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), num_vectors_m1, rgm)
- if (rgm->type)
- num_masks += num_vectors_m1 + 1;
- gcc_assert (num_masks > 0);
-
- /* In the worst case, we need to generate each mask in the prologue
- and in the loop body. One of the loop body mask instructions
- replaces the comparison in the scalar loop, and since we don't
- count the scalar comparison against the scalar body, we shouldn't
- count that vector instruction against the vector body either.
-
- Sometimes we can use unpacks instead of generating prologue
- masks and sometimes the prologue mask will fold to a constant,
- so the actual prologue cost might be smaller. However, it's
- simpler and safer to use the worst-case cost; if this ends up
- being the tie-breaker between vectorizing or not, then it's
- probably better not to vectorize. */
- (void) add_stmt_cost (target_cost_data, num_masks,
- vector_stmt, NULL, NULL_TREE, 0, vect_prologue);
- (void) add_stmt_cost (target_cost_data, num_masks - 1,
- vector_stmt, NULL, NULL_TREE, 0, vect_body);
- }
- else if (LOOP_VINFO_FULLY_WITH_LENGTH_P (loop_vinfo))
- {
- /* Referring to the functions vect_set_loop_condition_partial_vectors
- and vect_set_loop_controls_directly, we need to generate each
- length in the prologue and in the loop body if required. Although
- there are some possible optimizations, we consider the worst case
- here. */
-
- bool niters_known_p = LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo);
- signed char partial_load_store_bias
- = LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo);
- bool need_iterate_p
- = (!LOOP_VINFO_EPILOGUE_P (loop_vinfo)
- && !vect_known_niters_smaller_than_vf (loop_vinfo));
-
- /* Calculate how many statements to be added. */
- unsigned int prologue_stmts = 0;
- unsigned int body_stmts = 0;
-
- rgroup_controls *rgc;
- unsigned int num_vectors_m1;
- FOR_EACH_VEC_ELT (LOOP_VINFO_LENS (loop_vinfo), num_vectors_m1, rgc)
- if (rgc->type)
- {
- /* May need one SHIFT for nitems_total computation. */
- unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
- if (nitems != 1 && !niters_known_p)
- prologue_stmts += 1;
-
- /* May need one MAX and one MINUS for wrap around. */
- if (vect_rgroup_iv_might_wrap_p (loop_vinfo, rgc))
- prologue_stmts += 2;
-
- /* Need one MAX and one MINUS for each batch limit excepting for
- the 1st one. */
- prologue_stmts += num_vectors_m1 * 2;
-
- unsigned int num_vectors = num_vectors_m1 + 1;
-
- /* Need to set up lengths in prologue, only one MIN required
- for each since start index is zero. */
- prologue_stmts += num_vectors;
-
- /* If we have a non-zero partial load bias, we need one PLUS
- to adjust the load length. */
- if (partial_load_store_bias != 0)
- body_stmts += 1;
-
- /* Each may need two MINs and one MINUS to update lengths in body
- for next iteration. */
- if (need_iterate_p)
- body_stmts += 3 * num_vectors;
- }
-
- (void) add_stmt_cost (target_cost_data, prologue_stmts,
- scalar_stmt, NULL, NULL_TREE, 0, vect_prologue);
- (void) add_stmt_cost (target_cost_data, body_stmts,
- scalar_stmt, NULL, NULL_TREE, 0, vect_body);
- }
-
- /* FORNOW: The scalar outside cost is incremented in one of the
- following ways:
-
- 1. The vectorizer checks for alignment and aliasing and generates
- a condition that allows dynamic vectorization. A cost model
- check is ANDED with the versioning condition. Hence scalar code
- path now has the added cost of the versioning check.
-
- if (cost > th & versioning_check)
- jmp to vector code
-
- Hence run-time scalar is incremented by not-taken branch cost.
-
- 2. The vectorizer then checks if a prologue is required. If the
- cost model check was not done before during versioning, it has to
- be done before the prologue check.
-
- if (cost <= th)
- prologue = scalar_iters
- if (prologue == 0)
- jmp to vector code
- else
- execute prologue
- if (prologue == num_iters)
- go to exit
-
- Hence the run-time scalar cost is incremented by a taken branch,
- plus a not-taken branch, plus a taken branch cost.
-
- 3. The vectorizer then checks if an epilogue is required. If the
- cost model check was not done before during prologue check, it
- has to be done with the epilogue check.
-
- if (prologue == 0)
- jmp to vector code
- else
- execute prologue
- if (prologue == num_iters)
- go to exit
- vector code:
- if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
- jmp to epilogue
-
- Hence the run-time scalar cost should be incremented by 2 taken
- branches.
-
- TODO: The back end may reorder the BBS's differently and reverse
- conditions/branch directions. Change the estimates below to
- something more reasonable. */
-
- /* If the number of iterations is known and we do not do versioning, we can
- decide whether to vectorize at compile time. Hence the scalar version
- do not carry cost model guard costs. */
- if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- || LOOP_REQUIRES_VERSIONING (loop_vinfo))
- {
- /* Cost model check occurs at versioning. */
- if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
- scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
- else
- {
- /* Cost model check occurs at prologue generation. */
- if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
- scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
- + vect_get_stmt_cost (cond_branch_not_taken);
- /* Cost model check occurs at epilogue generation. */
- else
- scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
- }
- }
-
- /* Complete the target-specific cost calculations. */
- finish_cost (loop_vinfo->vector_costs, loop_vinfo->scalar_costs,
- &vec_prologue_cost, &vec_inside_cost, &vec_epilogue_cost);
-
- vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
-
- if (dump_enabled_p ())
- {
- dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
- dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
- vec_inside_cost);
- dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
- vec_prologue_cost);
- dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
- vec_epilogue_cost);
- dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
- scalar_single_iter_cost);
- dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
- scalar_outside_cost);
- dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
- vec_outside_cost);
- dump_printf (MSG_NOTE, " prologue iterations: %d\n",
- peel_iters_prologue);
- dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
- peel_iters_epilogue);
- }
-
- /* Calculate number of iterations required to make the vector version
- profitable, relative to the loop bodies only. The following condition
- must hold true:
- SIC * niters + SOC > VIC * ((niters - NPEEL) / VF) + VOC
- where
- SIC = scalar iteration cost, VIC = vector iteration cost,
- VOC = vector outside cost, VF = vectorization factor,
- NPEEL = prologue iterations + epilogue iterations,
- SOC = scalar outside cost for run time cost model check. */
-
- int saving_per_viter = (scalar_single_iter_cost * assumed_vf
- - vec_inside_cost);
- if (saving_per_viter <= 0)
- {
- if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
- warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
- "vectorization did not happen for a simd loop");
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "cost model: the vector iteration cost = %d "
- "divided by the scalar iteration cost = %d "
- "is greater or equal to the vectorization factor = %d"
- ".\n",
- vec_inside_cost, scalar_single_iter_cost, assumed_vf);
- *ret_min_profitable_niters = -1;
- *ret_min_profitable_estimate = -1;
- return;
- }
-
- /* ??? The "if" arm is written to handle all cases; see below for what
- we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
- if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- /* Rewriting the condition above in terms of the number of
- vector iterations (vniters) rather than the number of
- scalar iterations (niters) gives:
-
- SIC * (vniters * VF + NPEEL) + SOC > VIC * vniters + VOC
-
- <==> vniters * (SIC * VF - VIC) > VOC - SIC * NPEEL - SOC
-
- For integer N, X and Y when X > 0:
-
- N * X > Y <==> N >= (Y /[floor] X) + 1. */
- int outside_overhead = (vec_outside_cost
- - scalar_single_iter_cost * peel_iters_prologue
- - scalar_single_iter_cost * peel_iters_epilogue
- - scalar_outside_cost);
- /* We're only interested in cases that require at least one
- vector iteration. */
- int min_vec_niters = 1;
- if (outside_overhead > 0)
- min_vec_niters = outside_overhead / saving_per_viter + 1;
-
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, " Minimum number of vector iterations: %d\n",
- min_vec_niters);
-
- if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- /* Now that we know the minimum number of vector iterations,
- find the minimum niters for which the scalar cost is larger:
-
- SIC * niters > VIC * vniters + VOC - SOC
-
- We know that the minimum niters is no more than
- vniters * VF + NPEEL, but it might be (and often is) less
- than that if a partial vector iteration is cheaper than the
- equivalent scalar code. */
- int threshold = (vec_inside_cost * min_vec_niters
- + vec_outside_cost
- - scalar_outside_cost);
- if (threshold <= 0)
- min_profitable_iters = 1;
- else
- min_profitable_iters = threshold / scalar_single_iter_cost + 1;
- }
- else
- /* Convert the number of vector iterations into a number of
- scalar iterations. */
- min_profitable_iters = (min_vec_niters * assumed_vf
- + peel_iters_prologue
- + peel_iters_epilogue);
- }
- else
- {
- min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
- * assumed_vf
- - vec_inside_cost * peel_iters_prologue
- - vec_inside_cost * peel_iters_epilogue);
- if (min_profitable_iters <= 0)
- min_profitable_iters = 0;
- else
- {
- min_profitable_iters /= saving_per_viter;
-
- if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
- <= (((int) vec_inside_cost * min_profitable_iters)
- + (((int) vec_outside_cost - scalar_outside_cost)
- * assumed_vf)))
- min_profitable_iters++;
- }
- }
-
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- " Calculated minimum iters for profitability: %d\n",
- min_profitable_iters);
-
- if (!LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
- && min_profitable_iters < (assumed_vf + peel_iters_prologue))
- /* We want the vectorized loop to execute at least once. */
- min_profitable_iters = assumed_vf + peel_iters_prologue;
- else if (min_profitable_iters < peel_iters_prologue)
- /* For LOOP_VINFO_USING_PARTIAL_VECTORS_P, we need to ensure the
- vectorized loop executes at least once. */
- min_profitable_iters = peel_iters_prologue;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- " Runtime profitability threshold = %d\n",
- min_profitable_iters);
-
- *ret_min_profitable_niters = min_profitable_iters;
-
- /* Calculate number of iterations required to make the vector version
- profitable, relative to the loop bodies only.
-
- Non-vectorized variant is SIC * niters and it must win over vector
- variant on the expected loop trip count. The following condition must hold true:
- SIC * niters > VIC * ((niters - NPEEL) / VF) + VOC + SOC */
-
- if (vec_outside_cost <= 0)
- min_profitable_estimate = 0;
- /* ??? This "else if" arm is written to handle all cases; see below for
- what we would do for !LOOP_VINFO_USING_PARTIAL_VECTORS_P. */
- else if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- /* This is a repeat of the code above, but with + SOC rather
- than - SOC. */
- int outside_overhead = (vec_outside_cost
- - scalar_single_iter_cost * peel_iters_prologue
- - scalar_single_iter_cost * peel_iters_epilogue
- + scalar_outside_cost);
- int min_vec_niters = 1;
- if (outside_overhead > 0)
- min_vec_niters = outside_overhead / saving_per_viter + 1;
-
- if (LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- int threshold = (vec_inside_cost * min_vec_niters
- + vec_outside_cost
- + scalar_outside_cost);
- min_profitable_estimate = threshold / scalar_single_iter_cost + 1;
- }
- else
- min_profitable_estimate = (min_vec_niters * assumed_vf
- + peel_iters_prologue
- + peel_iters_epilogue);
- }
- else
- {
- min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
- * assumed_vf
- - vec_inside_cost * peel_iters_prologue
- - vec_inside_cost * peel_iters_epilogue)
- / ((scalar_single_iter_cost * assumed_vf)
- - vec_inside_cost);
- }
- min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- " Static estimate profitability threshold = %d\n",
- min_profitable_estimate);
-
- *ret_min_profitable_estimate = min_profitable_estimate;
-}
-
-/* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
- vector elements (not bits) for a vector with NELT elements. */
-static void
-calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
- vec_perm_builder *sel)
-{
- /* The encoding is a single stepped pattern. Any wrap-around is handled
- by vec_perm_indices. */
- sel->new_vector (nelt, 1, 3);
- for (unsigned int i = 0; i < 3; i++)
- sel->quick_push (i + offset);
-}
-
-/* Checks whether the target supports whole-vector shifts for vectors of mode
- MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
- it supports vec_perm_const with masks for all necessary shift amounts. */
-static bool
-have_whole_vector_shift (machine_mode mode)
-{
- if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
- return true;
-
- /* Variable-length vectors should be handled via the optab. */
- unsigned int nelt;
- if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
- return false;
-
- vec_perm_builder sel;
- vec_perm_indices indices;
- for (unsigned int i = nelt / 2; i >= 1; i /= 2)
- {
- calc_vec_perm_mask_for_shift (i, nelt, &sel);
- indices.new_vector (sel, 2, nelt);
- if (!can_vec_perm_const_p (mode, indices, false))
- return false;
- }
- return true;
-}
-
-/* TODO: Close dependency between vect_model_*_cost and vectorizable_*
- functions. Design better to avoid maintenance issues. */
-
-/* Function vect_model_reduction_cost.
-
- Models cost for a reduction operation, including the vector ops
- generated within the strip-mine loop in some cases, the initial
- definition before the loop, and the epilogue code that must be generated. */
-
-static void
-vect_model_reduction_cost (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info, internal_fn reduc_fn,
- vect_reduction_type reduction_type,
- int ncopies, stmt_vector_for_cost *cost_vec)
-{
- int prologue_cost = 0, epilogue_cost = 0, inside_cost = 0;
- tree vectype;
- machine_mode mode;
- class loop *loop = NULL;
-
- if (loop_vinfo)
- loop = LOOP_VINFO_LOOP (loop_vinfo);
-
- /* Condition reductions generate two reductions in the loop. */
- if (reduction_type == COND_REDUCTION)
- ncopies *= 2;
-
- vectype = STMT_VINFO_VECTYPE (stmt_info);
- mode = TYPE_MODE (vectype);
- stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
-
- gimple_match_op op;
- if (!gimple_extract_op (orig_stmt_info->stmt, &op))
- gcc_unreachable ();
-
- if (reduction_type == EXTRACT_LAST_REDUCTION)
- /* No extra instructions are needed in the prologue. The loop body
- operations are costed in vectorizable_condition. */
- inside_cost = 0;
- else if (reduction_type == FOLD_LEFT_REDUCTION)
- {
- /* No extra instructions needed in the prologue. */
- prologue_cost = 0;
-
- if (reduc_fn != IFN_LAST)
- /* Count one reduction-like operation per vector. */
- inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
- stmt_info, 0, vect_body);
- else
- {
- /* Use NELEMENTS extracts and NELEMENTS scalar ops. */
- unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
- inside_cost = record_stmt_cost (cost_vec, nelements,
- vec_to_scalar, stmt_info, 0,
- vect_body);
- inside_cost += record_stmt_cost (cost_vec, nelements,
- scalar_stmt, stmt_info, 0,
- vect_body);
- }
- }
- else
- {
- /* Add in cost for initial definition.
- For cond reduction we have four vectors: initial index, step,
- initial result of the data reduction, initial value of the index
- reduction. */
- int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
- prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
- scalar_to_vec, stmt_info, 0,
- vect_prologue);
- }
-
- /* Determine cost of epilogue code.
-
- We have a reduction operator that will reduce the vector in one statement.
- Also requires scalar extract. */
-
- if (!loop || !nested_in_vect_loop_p (loop, orig_stmt_info))
- {
- if (reduc_fn != IFN_LAST)
- {
- if (reduction_type == COND_REDUCTION)
- {
- /* An EQ stmt and an COND_EXPR stmt. */
- epilogue_cost += record_stmt_cost (cost_vec, 2,
- vector_stmt, stmt_info, 0,
- vect_epilogue);
- /* Reduction of the max index and a reduction of the found
- values. */
- epilogue_cost += record_stmt_cost (cost_vec, 2,
- vec_to_scalar, stmt_info, 0,
- vect_epilogue);
- /* A broadcast of the max value. */
- epilogue_cost += record_stmt_cost (cost_vec, 1,
- scalar_to_vec, stmt_info, 0,
- vect_epilogue);
- }
- else
- {
- epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
- stmt_info, 0, vect_epilogue);
- epilogue_cost += record_stmt_cost (cost_vec, 1,
- vec_to_scalar, stmt_info, 0,
- vect_epilogue);
- }
- }
- else if (reduction_type == COND_REDUCTION)
- {
- unsigned estimated_nunits = vect_nunits_for_cost (vectype);
- /* Extraction of scalar elements. */
- epilogue_cost += record_stmt_cost (cost_vec,
- 2 * estimated_nunits,
- vec_to_scalar, stmt_info, 0,
- vect_epilogue);
- /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
- epilogue_cost += record_stmt_cost (cost_vec,
- 2 * estimated_nunits - 3,
- scalar_stmt, stmt_info, 0,
- vect_epilogue);
- }
- else if (reduction_type == EXTRACT_LAST_REDUCTION
- || reduction_type == FOLD_LEFT_REDUCTION)
- /* No extra instructions need in the epilogue. */
- ;
- else
- {
- int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
- tree bitsize = TYPE_SIZE (op.type);
- int element_bitsize = tree_to_uhwi (bitsize);
- int nelements = vec_size_in_bits / element_bitsize;
-
- if (op.code == COND_EXPR)
- op.code = MAX_EXPR;
-
- /* We have a whole vector shift available. */
- if (VECTOR_MODE_P (mode)
- && directly_supported_p (op.code, vectype)
- && have_whole_vector_shift (mode))
- {
- /* Final reduction via vector shifts and the reduction operator.
- Also requires scalar extract. */
- epilogue_cost += record_stmt_cost (cost_vec,
- exact_log2 (nelements) * 2,
- vector_stmt, stmt_info, 0,
- vect_epilogue);
- epilogue_cost += record_stmt_cost (cost_vec, 1,
- vec_to_scalar, stmt_info, 0,
- vect_epilogue);
- }
- else
- /* Use extracts and reduction op for final reduction. For N
- elements, we have N extracts and N-1 reduction ops. */
- epilogue_cost += record_stmt_cost (cost_vec,
- nelements + nelements - 1,
- vector_stmt, stmt_info, 0,
- vect_epilogue);
- }
- }
-
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "vect_model_reduction_cost: inside_cost = %d, "
- "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
- prologue_cost, epilogue_cost);
-}
-
-/* SEQ is a sequence of instructions that initialize the reduction
- described by REDUC_INFO. Emit them in the appropriate place. */
-
-static void
-vect_emit_reduction_init_stmts (loop_vec_info loop_vinfo,
- stmt_vec_info reduc_info, gimple *seq)
-{
- if (reduc_info->reused_accumulator)
- {
- /* When reusing an accumulator from the main loop, we only need
- initialization instructions if the main loop can be skipped.
- In that case, emit the initialization instructions at the end
- of the guard block that does the skip. */
- edge skip_edge = loop_vinfo->skip_main_loop_edge;
- gcc_assert (skip_edge);
- gimple_stmt_iterator gsi = gsi_last_bb (skip_edge->src);
- gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
- }
- else
- {
- /* The normal case: emit the initialization instructions on the
- preheader edge. */
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), seq);
- }
-}
-
-/* Function get_initial_def_for_reduction
-
- Input:
- REDUC_INFO - the info_for_reduction
- INIT_VAL - the initial value of the reduction variable
- NEUTRAL_OP - a value that has no effect on the reduction, as per
- neutral_op_for_reduction
-
- Output:
- Return a vector variable, initialized according to the operation that
- STMT_VINFO performs. This vector will be used as the initial value
- of the vector of partial results.
-
- The value we need is a vector in which element 0 has value INIT_VAL
- and every other element has value NEUTRAL_OP. */
-
-static tree
-get_initial_def_for_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info reduc_info,
- tree init_val, tree neutral_op)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree scalar_type = TREE_TYPE (init_val);
- tree vectype = get_vectype_for_scalar_type (loop_vinfo, scalar_type);
- tree init_def;
- gimple_seq stmts = NULL;
-
- gcc_assert (vectype);
-
- gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
- || SCALAR_FLOAT_TYPE_P (scalar_type));
-
- gcc_assert (nested_in_vect_loop_p (loop, reduc_info)
- || loop == (gimple_bb (reduc_info->stmt))->loop_father);
-
- if (operand_equal_p (init_val, neutral_op))
- {
- /* If both elements are equal then the vector described above is
- just a splat. */
- neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
- init_def = gimple_build_vector_from_val (&stmts, vectype, neutral_op);
- }
- else
- {
- neutral_op = gimple_convert (&stmts, TREE_TYPE (vectype), neutral_op);
- init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
- if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
- {
- /* Construct a splat of NEUTRAL_OP and insert INIT_VAL into
- element 0. */
- init_def = gimple_build_vector_from_val (&stmts, vectype,
- neutral_op);
- init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
- vectype, init_def, init_val);
- }
- else
- {
- /* Build {INIT_VAL, NEUTRAL_OP, NEUTRAL_OP, ...}. */
- tree_vector_builder elts (vectype, 1, 2);
- elts.quick_push (init_val);
- elts.quick_push (neutral_op);
- init_def = gimple_build_vector (&stmts, &elts);
- }
- }
-
- if (stmts)
- vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, stmts);
- return init_def;
-}
-
-/* Get at the initial defs for the reduction PHIs for REDUC_INFO,
- which performs a reduction involving GROUP_SIZE scalar statements.
- NUMBER_OF_VECTORS is the number of vector defs to create. If NEUTRAL_OP
- is nonnull, introducing extra elements of that value will not change the
- result. */
-
-static void
-get_initial_defs_for_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info reduc_info,
- vec<tree> *vec_oprnds,
- unsigned int number_of_vectors,
- unsigned int group_size, tree neutral_op)
-{
- vec<tree> &initial_values = reduc_info->reduc_initial_values;
- unsigned HOST_WIDE_INT nunits;
- unsigned j, number_of_places_left_in_vector;
- tree vector_type = STMT_VINFO_VECTYPE (reduc_info);
- unsigned int i;
-
- gcc_assert (group_size == initial_values.length () || neutral_op);
-
- /* NUMBER_OF_COPIES is the number of times we need to use the same values in
- created vectors. It is greater than 1 if unrolling is performed.
-
- For example, we have two scalar operands, s1 and s2 (e.g., group of
- strided accesses of size two), while NUNITS is four (i.e., four scalars
- of this type can be packed in a vector). The output vector will contain
- two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
- will be 2).
-
- If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
- vectors containing the operands.
-
- For example, NUNITS is four as before, and the group size is 8
- (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
- {s5, s6, s7, s8}. */
-
- if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
- nunits = group_size;
-
- number_of_places_left_in_vector = nunits;
- bool constant_p = true;
- tree_vector_builder elts (vector_type, nunits, 1);
- elts.quick_grow (nunits);
- gimple_seq ctor_seq = NULL;
- for (j = 0; j < nunits * number_of_vectors; ++j)
- {
- tree op;
- i = j % group_size;
-
- /* Get the def before the loop. In reduction chain we have only
- one initial value. Else we have as many as PHIs in the group. */
- if (i >= initial_values.length () || (j > i && neutral_op))
- op = neutral_op;
- else
- op = initial_values[i];
-
- /* Create 'vect_ = {op0,op1,...,opn}'. */
- number_of_places_left_in_vector--;
- elts[nunits - number_of_places_left_in_vector - 1] = op;
- if (!CONSTANT_CLASS_P (op))
- constant_p = false;
-
- if (number_of_places_left_in_vector == 0)
- {
- tree init;
- if (constant_p && !neutral_op
- ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
- : known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
- /* Build the vector directly from ELTS. */
- init = gimple_build_vector (&ctor_seq, &elts);
- else if (neutral_op)
- {
- /* Build a vector of the neutral value and shift the
- other elements into place. */
- init = gimple_build_vector_from_val (&ctor_seq, vector_type,
- neutral_op);
- int k = nunits;
- while (k > 0 && elts[k - 1] == neutral_op)
- k -= 1;
- while (k > 0)
- {
- k -= 1;
- init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
- vector_type, init, elts[k]);
- }
- }
- else
- {
- /* First time round, duplicate ELTS to fill the
- required number of vectors. */
- duplicate_and_interleave (loop_vinfo, &ctor_seq, vector_type,
- elts, number_of_vectors, *vec_oprnds);
- break;
- }
- vec_oprnds->quick_push (init);
-
- number_of_places_left_in_vector = nunits;
- elts.new_vector (vector_type, nunits, 1);
- elts.quick_grow (nunits);
- constant_p = true;
- }
- }
- if (ctor_seq != NULL)
- vect_emit_reduction_init_stmts (loop_vinfo, reduc_info, ctor_seq);
-}
-
-/* For a statement STMT_INFO taking part in a reduction operation return
- the stmt_vec_info the meta information is stored on. */
-
-stmt_vec_info
-info_for_reduction (vec_info *vinfo, stmt_vec_info stmt_info)
-{
- stmt_info = vect_orig_stmt (stmt_info);
- gcc_assert (STMT_VINFO_REDUC_DEF (stmt_info));
- if (!is_a <gphi *> (stmt_info->stmt)
- || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
- stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
- gphi *phi = as_a <gphi *> (stmt_info->stmt);
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
- {
- if (gimple_phi_num_args (phi) == 1)
- stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
- }
- else if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
- {
- stmt_vec_info info = vinfo->lookup_def (vect_phi_initial_value (phi));
- if (info && STMT_VINFO_DEF_TYPE (info) == vect_double_reduction_def)
- stmt_info = info;
- }
- return stmt_info;
-}
-
-/* See if LOOP_VINFO is an epilogue loop whose main loop had a reduction that
- REDUC_INFO can build on. Adjust REDUC_INFO and return true if so, otherwise
- return false. */
-
-static bool
-vect_find_reusable_accumulator (loop_vec_info loop_vinfo,
- stmt_vec_info reduc_info)
-{
- loop_vec_info main_loop_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
- if (!main_loop_vinfo)
- return false;
-
- if (STMT_VINFO_REDUC_TYPE (reduc_info) != TREE_CODE_REDUCTION)
- return false;
-
- unsigned int num_phis = reduc_info->reduc_initial_values.length ();
- auto_vec<tree, 16> main_loop_results (num_phis);
- auto_vec<tree, 16> initial_values (num_phis);
- if (edge main_loop_edge = loop_vinfo->main_loop_edge)
- {
- /* The epilogue loop can be entered either from the main loop or
- from an earlier guard block. */
- edge skip_edge = loop_vinfo->skip_main_loop_edge;
- for (tree incoming_value : reduc_info->reduc_initial_values)
- {
- /* Look for:
-
- INCOMING_VALUE = phi<MAIN_LOOP_RESULT(main loop),
- INITIAL_VALUE(guard block)>. */
- gcc_assert (TREE_CODE (incoming_value) == SSA_NAME);
-
- gphi *phi = as_a <gphi *> (SSA_NAME_DEF_STMT (incoming_value));
- gcc_assert (gimple_bb (phi) == main_loop_edge->dest);
-
- tree from_main_loop = PHI_ARG_DEF_FROM_EDGE (phi, main_loop_edge);
- tree from_skip = PHI_ARG_DEF_FROM_EDGE (phi, skip_edge);
-
- main_loop_results.quick_push (from_main_loop);
- initial_values.quick_push (from_skip);
- }
- }
- else
- /* The main loop dominates the epilogue loop. */
- main_loop_results.splice (reduc_info->reduc_initial_values);
-
- /* See if the main loop has the kind of accumulator we need. */
- vect_reusable_accumulator *accumulator
- = main_loop_vinfo->reusable_accumulators.get (main_loop_results[0]);
- if (!accumulator
- || num_phis != accumulator->reduc_info->reduc_scalar_results.length ()
- || !std::equal (main_loop_results.begin (), main_loop_results.end (),
- accumulator->reduc_info->reduc_scalar_results.begin ()))
- return false;
-
- /* Handle the case where we can reduce wider vectors to narrower ones. */
- tree vectype = STMT_VINFO_VECTYPE (reduc_info);
- tree old_vectype = TREE_TYPE (accumulator->reduc_input);
- if (!constant_multiple_p (TYPE_VECTOR_SUBPARTS (old_vectype),
- TYPE_VECTOR_SUBPARTS (vectype)))
- return false;
-
- /* Non-SLP reductions might apply an adjustment after the reduction
- operation, in order to simplify the initialization of the accumulator.
- If the epilogue loop carries on from where the main loop left off,
- it should apply the same adjustment to the final reduction result.
-
- If the epilogue loop can also be entered directly (rather than via
- the main loop), we need to be able to handle that case in the same way,
- with the same adjustment. (In principle we could add a PHI node
- to select the correct adjustment, but in practice that shouldn't be
- necessary.) */
- tree main_adjustment
- = STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (accumulator->reduc_info);
- if (loop_vinfo->main_loop_edge && main_adjustment)
- {
- gcc_assert (num_phis == 1);
- tree initial_value = initial_values[0];
- /* Check that we can use INITIAL_VALUE as the adjustment and
- initialize the accumulator with a neutral value instead. */
- if (!operand_equal_p (initial_value, main_adjustment))
- return false;
- code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
- initial_values[0] = neutral_op_for_reduction (TREE_TYPE (initial_value),
- code, initial_value);
- }
- STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info) = main_adjustment;
- reduc_info->reduc_initial_values.truncate (0);
- reduc_info->reduc_initial_values.splice (initial_values);
- reduc_info->reused_accumulator = accumulator;
- return true;
-}
-
-/* Reduce the vector VEC_DEF down to VECTYPE with reduction operation
- CODE emitting stmts before GSI. Returns a vector def of VECTYPE. */
-
-static tree
-vect_create_partial_epilog (tree vec_def, tree vectype, code_helper code,
- gimple_seq *seq)
-{
- unsigned nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec_def)).to_constant ();
- unsigned nunits1 = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
- tree stype = TREE_TYPE (vectype);
- tree new_temp = vec_def;
- while (nunits > nunits1)
- {
- nunits /= 2;
- tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
- stype, nunits);
- unsigned int bitsize = tree_to_uhwi (TYPE_SIZE (vectype1));
-
- /* The target has to make sure we support lowpart/highpart
- extraction, either via direct vector extract or through
- an integer mode punning. */
- tree dst1, dst2;
- gimple *epilog_stmt;
- if (convert_optab_handler (vec_extract_optab,
- TYPE_MODE (TREE_TYPE (new_temp)),
- TYPE_MODE (vectype1))
- != CODE_FOR_nothing)
- {
- /* Extract sub-vectors directly once vec_extract becomes
- a conversion optab. */
- dst1 = make_ssa_name (vectype1);
- epilog_stmt
- = gimple_build_assign (dst1, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF, vectype1,
- new_temp, TYPE_SIZE (vectype1),
- bitsize_int (0)));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- dst2 = make_ssa_name (vectype1);
- epilog_stmt
- = gimple_build_assign (dst2, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF, vectype1,
- new_temp, TYPE_SIZE (vectype1),
- bitsize_int (bitsize)));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- }
- else
- {
- /* Extract via punning to appropriately sized integer mode
- vector. */
- tree eltype = build_nonstandard_integer_type (bitsize, 1);
- tree etype = build_vector_type (eltype, 2);
- gcc_assert (convert_optab_handler (vec_extract_optab,
- TYPE_MODE (etype),
- TYPE_MODE (eltype))
- != CODE_FOR_nothing);
- tree tem = make_ssa_name (etype);
- epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
- build1 (VIEW_CONVERT_EXPR,
- etype, new_temp));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- new_temp = tem;
- tem = make_ssa_name (eltype);
- epilog_stmt
- = gimple_build_assign (tem, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF, eltype,
- new_temp, TYPE_SIZE (eltype),
- bitsize_int (0)));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- dst1 = make_ssa_name (vectype1);
- epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
- build1 (VIEW_CONVERT_EXPR,
- vectype1, tem));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- tem = make_ssa_name (eltype);
- epilog_stmt
- = gimple_build_assign (tem, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF, eltype,
- new_temp, TYPE_SIZE (eltype),
- bitsize_int (bitsize)));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- dst2 = make_ssa_name (vectype1);
- epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
- build1 (VIEW_CONVERT_EXPR,
- vectype1, tem));
- gimple_seq_add_stmt_without_update (seq, epilog_stmt);
- }
-
- new_temp = gimple_build (seq, code, vectype1, dst1, dst2);
- }
-
- return new_temp;
-}
-
-/* Function vect_create_epilog_for_reduction
-
- Create code at the loop-epilog to finalize the result of a reduction
- computation.
-
- STMT_INFO is the scalar reduction stmt that is being vectorized.
- SLP_NODE is an SLP node containing a group of reduction statements. The
- first one in this group is STMT_INFO.
- SLP_NODE_INSTANCE is the SLP node instance containing SLP_NODE
- REDUC_INDEX says which rhs operand of the STMT_INFO is the reduction phi
- (counting from 0)
-
- This function:
- 1. Completes the reduction def-use cycles.
- 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
- by calling the function specified by REDUC_FN if available, or by
- other means (whole-vector shifts or a scalar loop).
- The function also creates a new phi node at the loop exit to preserve
- loop-closed form, as illustrated below.
-
- The flow at the entry to this function:
-
- loop:
- vec_def = phi <vec_init, null> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT_INFO
- s_loop = scalar_stmt # (scalar) STMT_INFO
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- use <s_out0>
- use <s_out0>
-
- The above is transformed by this function into:
-
- loop:
- vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
- VECT_DEF = vector_stmt # vectorized form of STMT_INFO
- s_loop = scalar_stmt # (scalar) STMT_INFO
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1>
- s_out3 = extract_field <v_out2, 0>
- s_out4 = adjust_result <s_out3>
- use <s_out4>
- use <s_out4>
-*/
-
-static void
-vect_create_epilog_for_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info,
- slp_tree slp_node,
- slp_instance slp_node_instance)
-{
- stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
- gcc_assert (reduc_info->is_reduc_info);
- /* For double reductions we need to get at the inner loop reduction
- stmt which has the meta info attached. Our stmt_info is that of the
- loop-closed PHI of the inner loop which we remember as
- def for the reduction PHI generation. */
- bool double_reduc = false;
- stmt_vec_info rdef_info = stmt_info;
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
- {
- gcc_assert (!slp_node);
- double_reduc = true;
- stmt_info = loop_vinfo->lookup_def (gimple_phi_arg_def
- (stmt_info->stmt, 0));
- stmt_info = vect_stmt_to_vectorize (stmt_info);
- }
- gphi *reduc_def_stmt
- = as_a <gphi *> (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info))->stmt);
- code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
- internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
- tree vectype;
- machine_mode mode;
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
- basic_block exit_bb;
- tree scalar_dest;
- tree scalar_type;
- gimple *new_phi = NULL, *phi;
- gimple_stmt_iterator exit_gsi;
- tree new_temp = NULL_TREE, new_name, new_scalar_dest;
- gimple *epilog_stmt = NULL;
- gimple *exit_phi;
- tree bitsize;
- tree def;
- tree orig_name, scalar_result;
- imm_use_iterator imm_iter, phi_imm_iter;
- use_operand_p use_p, phi_use_p;
- gimple *use_stmt;
- auto_vec<tree> reduc_inputs;
- int j, i;
- vec<tree> &scalar_results = reduc_info->reduc_scalar_results;
- unsigned int group_size = 1, k;
- auto_vec<gimple *> phis;
- /* SLP reduction without reduction chain, e.g.,
- # a1 = phi <a2, a0>
- # b1 = phi <b2, b0>
- a2 = operation (a1)
- b2 = operation (b1) */
- bool slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (stmt_info));
- bool direct_slp_reduc;
- tree induction_index = NULL_TREE;
-
- if (slp_node)
- group_size = SLP_TREE_LANES (slp_node);
-
- if (nested_in_vect_loop_p (loop, stmt_info))
- {
- outer_loop = loop;
- loop = loop->inner;
- gcc_assert (!slp_node && double_reduc);
- }
-
- vectype = STMT_VINFO_REDUC_VECTYPE (reduc_info);
- gcc_assert (vectype);
- mode = TYPE_MODE (vectype);
-
- tree induc_val = NULL_TREE;
- tree adjustment_def = NULL;
- if (slp_node)
- ;
- else
- {
- /* Optimize: for induction condition reduction, if we can't use zero
- for induc_val, use initial_def. */
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
- induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
- else if (double_reduc)
- ;
- else
- adjustment_def = STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info);
- }
-
- stmt_vec_info single_live_out_stmt[] = { stmt_info };
- array_slice<const stmt_vec_info> live_out_stmts = single_live_out_stmt;
- if (slp_reduc)
- /* All statements produce live-out values. */
- live_out_stmts = SLP_TREE_SCALAR_STMTS (slp_node);
- else if (slp_node)
- /* The last statement in the reduction chain produces the live-out
- value. */
- single_live_out_stmt[0] = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
-
- unsigned vec_num;
- int ncopies;
- if (slp_node)
- {
- vec_num = SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis).length ();
- ncopies = 1;
- }
- else
- {
- stmt_vec_info reduc_info = loop_vinfo->lookup_stmt (reduc_def_stmt);
- vec_num = 1;
- ncopies = STMT_VINFO_VEC_STMTS (reduc_info).length ();
- }
-
- /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
- which is updated with the current index of the loop for every match of
- the original loop's cond_expr (VEC_STMT). This results in a vector
- containing the last time the condition passed for that vector lane.
- The first match will be a 1 to allow 0 to be used for non-matching
- indexes. If there are no matches at all then the vector will be all
- zeroes.
-
- PR92772: This algorithm is broken for architectures that support
- masked vectors, but do not provide fold_extract_last. */
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
- {
- auto_vec<std::pair<tree, bool>, 2> ccompares;
- stmt_vec_info cond_info = STMT_VINFO_REDUC_DEF (reduc_info);
- cond_info = vect_stmt_to_vectorize (cond_info);
- while (cond_info != reduc_info)
- {
- if (gimple_assign_rhs_code (cond_info->stmt) == COND_EXPR)
- {
- gimple *vec_stmt = STMT_VINFO_VEC_STMTS (cond_info)[0];
- gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
- ccompares.safe_push
- (std::make_pair (unshare_expr (gimple_assign_rhs1 (vec_stmt)),
- STMT_VINFO_REDUC_IDX (cond_info) == 2));
- }
- cond_info
- = loop_vinfo->lookup_def (gimple_op (cond_info->stmt,
- 1 + STMT_VINFO_REDUC_IDX
- (cond_info)));
- cond_info = vect_stmt_to_vectorize (cond_info);
- }
- gcc_assert (ccompares.length () != 0);
-
- tree indx_before_incr, indx_after_incr;
- poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
- int scalar_precision
- = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
- tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
- tree cr_index_vector_type = get_related_vectype_for_scalar_type
- (TYPE_MODE (vectype), cr_index_scalar_type,
- TYPE_VECTOR_SUBPARTS (vectype));
-
- /* First we create a simple vector induction variable which starts
- with the values {1,2,3,...} (SERIES_VECT) and increments by the
- vector size (STEP). */
-
- /* Create a {1,2,3,...} vector. */
- tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
-
- /* Create a vector of the step value. */
- tree step = build_int_cst (cr_index_scalar_type, nunits_out);
- tree vec_step = build_vector_from_val (cr_index_vector_type, step);
-
- /* Create an induction variable. */
- gimple_stmt_iterator incr_gsi;
- bool insert_after;
- standard_iv_increment_position (loop, &incr_gsi, &insert_after);
- create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
- insert_after, &indx_before_incr, &indx_after_incr);
-
- /* Next create a new phi node vector (NEW_PHI_TREE) which starts
- filled with zeros (VEC_ZERO). */
-
- /* Create a vector of 0s. */
- tree zero = build_zero_cst (cr_index_scalar_type);
- tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
-
- /* Create a vector phi node. */
- tree new_phi_tree = make_ssa_name (cr_index_vector_type);
- new_phi = create_phi_node (new_phi_tree, loop->header);
- add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
- loop_preheader_edge (loop), UNKNOWN_LOCATION);
-
- /* Now take the condition from the loops original cond_exprs
- and produce a new cond_exprs (INDEX_COND_EXPR) which for
- every match uses values from the induction variable
- (INDEX_BEFORE_INCR) otherwise uses values from the phi node
- (NEW_PHI_TREE).
- Finally, we update the phi (NEW_PHI_TREE) to take the value of
- the new cond_expr (INDEX_COND_EXPR). */
- gimple_seq stmts = NULL;
- for (int i = ccompares.length () - 1; i != -1; --i)
- {
- tree ccompare = ccompares[i].first;
- if (ccompares[i].second)
- new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
- cr_index_vector_type,
- ccompare,
- indx_before_incr, new_phi_tree);
- else
- new_phi_tree = gimple_build (&stmts, VEC_COND_EXPR,
- cr_index_vector_type,
- ccompare,
- new_phi_tree, indx_before_incr);
- }
- gsi_insert_seq_before (&incr_gsi, stmts, GSI_SAME_STMT);
-
- /* Update the phi with the vec cond. */
- induction_index = new_phi_tree;
- add_phi_arg (as_a <gphi *> (new_phi), induction_index,
- loop_latch_edge (loop), UNKNOWN_LOCATION);
- }
-
- /* 2. Create epilog code.
- The reduction epilog code operates across the elements of the vector
- of partial results computed by the vectorized loop.
- The reduction epilog code consists of:
-
- step 1: compute the scalar result in a vector (v_out2)
- step 2: extract the scalar result (s_out3) from the vector (v_out2)
- step 3: adjust the scalar result (s_out3) if needed.
-
- Step 1 can be accomplished using one the following three schemes:
- (scheme 1) using reduc_fn, if available.
- (scheme 2) using whole-vector shifts, if available.
- (scheme 3) using a scalar loop. In this case steps 1+2 above are
- combined.
-
- The overall epilog code looks like this:
-
- s_out0 = phi <s_loop> # original EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1> # step 1
- s_out3 = extract_field <v_out2, 0> # step 2
- s_out4 = adjust_result <s_out3> # step 3
-
- (step 3 is optional, and steps 1 and 2 may be combined).
- Lastly, the uses of s_out0 are replaced by s_out4. */
-
-
- /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
- v_out1 = phi <VECT_DEF>
- Store them in NEW_PHIS. */
- if (double_reduc)
- loop = outer_loop;
- exit_bb = single_exit (loop)->dest;
- exit_gsi = gsi_after_labels (exit_bb);
- reduc_inputs.create (slp_node ? vec_num : ncopies);
- for (unsigned i = 0; i < vec_num; i++)
- {
- gimple_seq stmts = NULL;
- if (slp_node)
- def = vect_get_slp_vect_def (slp_node, i);
- else
- def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[0]);
- for (j = 0; j < ncopies; j++)
- {
- tree new_def = copy_ssa_name (def);
- phi = create_phi_node (new_def, exit_bb);
- if (j)
- def = gimple_get_lhs (STMT_VINFO_VEC_STMTS (rdef_info)[j]);
- SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
- new_def = gimple_convert (&stmts, vectype, new_def);
- reduc_inputs.quick_push (new_def);
- }
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- }
-
- /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
- (i.e. when reduc_fn is not available) and in the final adjustment
- code (if needed). Also get the original scalar reduction variable as
- defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
- represents a reduction pattern), the tree-code and scalar-def are
- taken from the original stmt that the pattern-stmt (STMT) replaces.
- Otherwise (it is a regular reduction) - the tree-code and scalar-def
- are taken from STMT. */
-
- stmt_vec_info orig_stmt_info = vect_orig_stmt (stmt_info);
- if (orig_stmt_info != stmt_info)
- {
- /* Reduction pattern */
- gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
- gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt_info);
- }
-
- scalar_dest = gimple_get_lhs (orig_stmt_info->stmt);
- scalar_type = TREE_TYPE (scalar_dest);
- scalar_results.create (group_size);
- new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
- bitsize = TYPE_SIZE (scalar_type);
-
- /* True if we should implement SLP_REDUC using native reduction operations
- instead of scalar operations. */
- direct_slp_reduc = (reduc_fn != IFN_LAST
- && slp_reduc
- && !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
-
- /* In case of reduction chain, e.g.,
- # a1 = phi <a3, a0>
- a2 = operation (a1)
- a3 = operation (a2),
-
- we may end up with more than one vector result. Here we reduce them
- to one vector.
-
- The same is true if we couldn't use a single defuse cycle. */
- if (REDUC_GROUP_FIRST_ELEMENT (stmt_info)
- || direct_slp_reduc
- || ncopies > 1)
- {
- gimple_seq stmts = NULL;
- tree single_input = reduc_inputs[0];
- for (k = 1; k < reduc_inputs.length (); k++)
- single_input = gimple_build (&stmts, code, vectype,
- single_input, reduc_inputs[k]);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
-
- reduc_inputs.truncate (0);
- reduc_inputs.safe_push (single_input);
- }
-
- tree orig_reduc_input = reduc_inputs[0];
-
- /* If this loop is an epilogue loop that can be skipped after the
- main loop, we can only share a reduction operation between the
- main loop and the epilogue if we put it at the target of the
- skip edge.
-
- We can still reuse accumulators if this check fails. Doing so has
- the minor(?) benefit of making the epilogue loop's scalar result
- independent of the main loop's scalar result. */
- bool unify_with_main_loop_p = false;
- if (reduc_info->reused_accumulator
- && loop_vinfo->skip_this_loop_edge
- && single_succ_p (exit_bb)
- && single_succ (exit_bb) == loop_vinfo->skip_this_loop_edge->dest)
- {
- unify_with_main_loop_p = true;
-
- basic_block reduc_block = loop_vinfo->skip_this_loop_edge->dest;
- reduc_inputs[0] = make_ssa_name (vectype);
- gphi *new_phi = create_phi_node (reduc_inputs[0], reduc_block);
- add_phi_arg (new_phi, orig_reduc_input, single_succ_edge (exit_bb),
- UNKNOWN_LOCATION);
- add_phi_arg (new_phi, reduc_info->reused_accumulator->reduc_input,
- loop_vinfo->skip_this_loop_edge, UNKNOWN_LOCATION);
- exit_gsi = gsi_after_labels (reduc_block);
- }
-
- /* Shouldn't be used beyond this point. */
- exit_bb = nullptr;
-
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
- && reduc_fn != IFN_LAST)
- {
- /* For condition reductions, we have a vector (REDUC_INPUTS 0) containing
- various data values where the condition matched and another vector
- (INDUCTION_INDEX) containing all the indexes of those matches. We
- need to extract the last matching index (which will be the index with
- highest value) and use this to index into the data vector.
- For the case where there were no matches, the data vector will contain
- all default values and the index vector will be all zeros. */
-
- /* Get various versions of the type of the vector of indexes. */
- tree index_vec_type = TREE_TYPE (induction_index);
- gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
- tree index_scalar_type = TREE_TYPE (index_vec_type);
- tree index_vec_cmp_type = truth_type_for (index_vec_type);
-
- /* Get an unsigned integer version of the type of the data vector. */
- int scalar_precision
- = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
- tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
- tree vectype_unsigned = get_same_sized_vectype (scalar_type_unsigned,
- vectype);
-
- /* First we need to create a vector (ZERO_VEC) of zeros and another
- vector (MAX_INDEX_VEC) filled with the last matching index, which we
- can create using a MAX reduction and then expanding.
- In the case where the loop never made any matches, the max index will
- be zero. */
-
- /* Vector of {0, 0, 0,...}. */
- tree zero_vec = build_zero_cst (vectype);
-
- /* Find maximum value from the vector of found indexes. */
- tree max_index = make_ssa_name (index_scalar_type);
- gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
- 1, induction_index);
- gimple_call_set_lhs (max_index_stmt, max_index);
- gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
-
- /* Vector of {max_index, max_index, max_index,...}. */
- tree max_index_vec = make_ssa_name (index_vec_type);
- tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
- max_index);
- gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
- max_index_vec_rhs);
- gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
-
- /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
- with the vector (INDUCTION_INDEX) of found indexes, choosing values
- from the data vector (REDUC_INPUTS 0) for matches, 0 (ZERO_VEC)
- otherwise. Only one value should match, resulting in a vector
- (VEC_COND) with one data value and the rest zeros.
- In the case where the loop never made any matches, every index will
- match, resulting in a vector with all data values (which will all be
- the default value). */
-
- /* Compare the max index vector to the vector of found indexes to find
- the position of the max value. */
- tree vec_compare = make_ssa_name (index_vec_cmp_type);
- gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
- induction_index,
- max_index_vec);
- gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
-
- /* Use the compare to choose either values from the data vector or
- zero. */
- tree vec_cond = make_ssa_name (vectype);
- gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
- vec_compare,
- reduc_inputs[0],
- zero_vec);
- gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
-
- /* Finally we need to extract the data value from the vector (VEC_COND)
- into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
- reduction, but because this doesn't exist, we can use a MAX reduction
- instead. The data value might be signed or a float so we need to cast
- it first.
- In the case where the loop never made any matches, the data values are
- all identical, and so will reduce down correctly. */
-
- /* Make the matched data values unsigned. */
- tree vec_cond_cast = make_ssa_name (vectype_unsigned);
- tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
- vec_cond);
- gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
- VIEW_CONVERT_EXPR,
- vec_cond_cast_rhs);
- gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
-
- /* Reduce down to a scalar value. */
- tree data_reduc = make_ssa_name (scalar_type_unsigned);
- gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
- 1, vec_cond_cast);
- gimple_call_set_lhs (data_reduc_stmt, data_reduc);
- gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
-
- /* Convert the reduced value back to the result type and set as the
- result. */
- gimple_seq stmts = NULL;
- new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
- data_reduc);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- scalar_results.safe_push (new_temp);
- }
- else if (STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION
- && reduc_fn == IFN_LAST)
- {
- /* Condition reduction without supported IFN_REDUC_MAX. Generate
- idx = 0;
- idx_val = induction_index[0];
- val = data_reduc[0];
- for (idx = 0, val = init, i = 0; i < nelts; ++i)
- if (induction_index[i] > idx_val)
- val = data_reduc[i], idx_val = induction_index[i];
- return val; */
-
- tree data_eltype = TREE_TYPE (vectype);
- tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
- unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
- poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
- /* Enforced by vectorizable_reduction, which ensures we have target
- support before allowing a conditional reduction on variable-length
- vectors. */
- unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
- tree idx_val = NULL_TREE, val = NULL_TREE;
- for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
- {
- tree old_idx_val = idx_val;
- tree old_val = val;
- idx_val = make_ssa_name (idx_eltype);
- epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF, idx_eltype,
- induction_index,
- bitsize_int (el_size),
- bitsize_int (off)));
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- val = make_ssa_name (data_eltype);
- epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
- build3 (BIT_FIELD_REF,
- data_eltype,
- reduc_inputs[0],
- bitsize_int (el_size),
- bitsize_int (off)));
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- if (off != 0)
- {
- tree new_idx_val = idx_val;
- if (off != v_size - el_size)
- {
- new_idx_val = make_ssa_name (idx_eltype);
- epilog_stmt = gimple_build_assign (new_idx_val,
- MAX_EXPR, idx_val,
- old_idx_val);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- }
- tree new_val = make_ssa_name (data_eltype);
- epilog_stmt = gimple_build_assign (new_val,
- COND_EXPR,
- build2 (GT_EXPR,
- boolean_type_node,
- idx_val,
- old_idx_val),
- val, old_val);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- idx_val = new_idx_val;
- val = new_val;
- }
- }
- /* Convert the reduced value back to the result type and set as the
- result. */
- gimple_seq stmts = NULL;
- val = gimple_convert (&stmts, scalar_type, val);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- scalar_results.safe_push (val);
- }
-
- /* 2.3 Create the reduction code, using one of the three schemes described
- above. In SLP we simply need to extract all the elements from the
- vector (without reducing them), so we use scalar shifts. */
- else if (reduc_fn != IFN_LAST && !slp_reduc)
- {
- tree tmp;
- tree vec_elem_type;
-
- /* Case 1: Create:
- v_out2 = reduc_expr <v_out1> */
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Reduce using direct vector reduction.\n");
-
- gimple_seq stmts = NULL;
- vec_elem_type = TREE_TYPE (vectype);
- new_temp = gimple_build (&stmts, as_combined_fn (reduc_fn),
- vec_elem_type, reduc_inputs[0]);
- new_temp = gimple_convert (&stmts, scalar_type, new_temp);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
-
- if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
- && induc_val)
- {
- /* Earlier we set the initial value to be a vector if induc_val
- values. Check the result and if it is induc_val then replace
- with the original initial value, unless induc_val is
- the same as initial_def already. */
- tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
- induc_val);
- tree initial_def = reduc_info->reduc_initial_values[0];
-
- tmp = make_ssa_name (new_scalar_dest);
- epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
- initial_def, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- new_temp = tmp;
- }
-
- scalar_results.safe_push (new_temp);
- }
- else if (direct_slp_reduc)
- {
- /* Here we create one vector for each of the REDUC_GROUP_SIZE results,
- with the elements for other SLP statements replaced with the
- neutral value. We can then do a normal reduction on each vector. */
-
- /* Enforced by vectorizable_reduction. */
- gcc_assert (reduc_inputs.length () == 1);
- gcc_assert (pow2p_hwi (group_size));
-
- gimple_seq seq = NULL;
-
- /* Build a vector {0, 1, 2, ...}, with the same number of elements
- and the same element size as VECTYPE. */
- tree index = build_index_vector (vectype, 0, 1);
- tree index_type = TREE_TYPE (index);
- tree index_elt_type = TREE_TYPE (index_type);
- tree mask_type = truth_type_for (index_type);
-
- /* Create a vector that, for each element, identifies which of
- the REDUC_GROUP_SIZE results should use it. */
- tree index_mask = build_int_cst (index_elt_type, group_size - 1);
- index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
- build_vector_from_val (index_type, index_mask));
-
- /* Get a neutral vector value. This is simply a splat of the neutral
- scalar value if we have one, otherwise the initial scalar value
- is itself a neutral value. */
- tree vector_identity = NULL_TREE;
- tree neutral_op = NULL_TREE;
- if (slp_node)
- {
- tree initial_value = NULL_TREE;
- if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- initial_value = reduc_info->reduc_initial_values[0];
- neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype), code,
- initial_value);
- }
- if (neutral_op)
- vector_identity = gimple_build_vector_from_val (&seq, vectype,
- neutral_op);
- for (unsigned int i = 0; i < group_size; ++i)
- {
- /* If there's no univeral neutral value, we can use the
- initial scalar value from the original PHI. This is used
- for MIN and MAX reduction, for example. */
- if (!neutral_op)
- {
- tree scalar_value = reduc_info->reduc_initial_values[i];
- scalar_value = gimple_convert (&seq, TREE_TYPE (vectype),
- scalar_value);
- vector_identity = gimple_build_vector_from_val (&seq, vectype,
- scalar_value);
- }
-
- /* Calculate the equivalent of:
-
- sel[j] = (index[j] == i);
-
- which selects the elements of REDUC_INPUTS[0] that should
- be included in the result. */
- tree compare_val = build_int_cst (index_elt_type, i);
- compare_val = build_vector_from_val (index_type, compare_val);
- tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
- index, compare_val);
-
- /* Calculate the equivalent of:
-
- vec = seq ? reduc_inputs[0] : vector_identity;
-
- VEC is now suitable for a full vector reduction. */
- tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
- sel, reduc_inputs[0], vector_identity);
-
- /* Do the reduction and convert it to the appropriate type. */
- tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
- TREE_TYPE (vectype), vec);
- scalar = gimple_convert (&seq, scalar_type, scalar);
- scalar_results.safe_push (scalar);
- }
- gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
- }
- else
- {
- bool reduce_with_shift;
- tree vec_temp;
-
- gcc_assert (slp_reduc || reduc_inputs.length () == 1);
-
- /* See if the target wants to do the final (shift) reduction
- in a vector mode of smaller size and first reduce upper/lower
- halves against each other. */
- enum machine_mode mode1 = mode;
- tree stype = TREE_TYPE (vectype);
- unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype).to_constant ();
- unsigned nunits1 = nunits;
- if ((mode1 = targetm.vectorize.split_reduction (mode)) != mode
- && reduc_inputs.length () == 1)
- {
- nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
- /* For SLP reductions we have to make sure lanes match up, but
- since we're doing individual element final reduction reducing
- vector width here is even more important.
- ??? We can also separate lanes with permutes, for the common
- case of power-of-two group-size odd/even extracts would work. */
- if (slp_reduc && nunits != nunits1)
- {
- nunits1 = least_common_multiple (nunits1, group_size);
- gcc_assert (exact_log2 (nunits1) != -1 && nunits1 <= nunits);
- }
- }
- if (!slp_reduc
- && (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
- nunits1 = GET_MODE_NUNITS (mode1).to_constant ();
-
- tree vectype1 = get_related_vectype_for_scalar_type (TYPE_MODE (vectype),
- stype, nunits1);
- reduce_with_shift = have_whole_vector_shift (mode1);
- if (!VECTOR_MODE_P (mode1)
- || !directly_supported_p (code, vectype1))
- reduce_with_shift = false;
-
- /* First reduce the vector to the desired vector size we should
- do shift reduction on by combining upper and lower halves. */
- gimple_seq stmts = NULL;
- new_temp = vect_create_partial_epilog (reduc_inputs[0], vectype1,
- code, &stmts);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- reduc_inputs[0] = new_temp;
-
- if (reduce_with_shift && !slp_reduc)
- {
- int element_bitsize = tree_to_uhwi (bitsize);
- /* Enforced by vectorizable_reduction, which disallows SLP reductions
- for variable-length vectors and also requires direct target support
- for loop reductions. */
- int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
- int nelements = vec_size_in_bits / element_bitsize;
- vec_perm_builder sel;
- vec_perm_indices indices;
-
- int elt_offset;
-
- tree zero_vec = build_zero_cst (vectype1);
- /* Case 2: Create:
- for (offset = nelements/2; offset >= 1; offset/=2)
- {
- Create: va' = vec_shift <va, offset>
- Create: va = vop <va, va'>
- } */
-
- tree rhs;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Reduce using vector shifts\n");
-
- gimple_seq stmts = NULL;
- new_temp = gimple_convert (&stmts, vectype1, new_temp);
- for (elt_offset = nelements / 2;
- elt_offset >= 1;
- elt_offset /= 2)
- {
- calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
- indices.new_vector (sel, 2, nelements);
- tree mask = vect_gen_perm_mask_any (vectype1, indices);
- new_name = gimple_build (&stmts, VEC_PERM_EXPR, vectype1,
- new_temp, zero_vec, mask);
- new_temp = gimple_build (&stmts, code,
- vectype1, new_name, new_temp);
- }
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
-
- /* 2.4 Extract the final scalar result. Create:
- s_out3 = extract_field <v_out2, bitpos> */
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "extract scalar result\n");
-
- rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
- bitsize, bitsize_zero_node);
- epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
- new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
- gimple_assign_set_lhs (epilog_stmt, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- scalar_results.safe_push (new_temp);
- }
- else
- {
- /* Case 3: Create:
- s = extract_field <v_out2, 0>
- for (offset = element_size;
- offset < vector_size;
- offset += element_size;)
- {
- Create: s' = extract_field <v_out2, offset>
- Create: s = op <s, s'> // For non SLP cases
- } */
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Reduce using scalar code.\n");
-
- int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
- int element_bitsize = tree_to_uhwi (bitsize);
- tree compute_type = TREE_TYPE (vectype);
- gimple_seq stmts = NULL;
- FOR_EACH_VEC_ELT (reduc_inputs, i, vec_temp)
- {
- int bit_offset;
- new_temp = gimple_build (&stmts, BIT_FIELD_REF, compute_type,
- vec_temp, bitsize, bitsize_zero_node);
-
- /* In SLP we don't need to apply reduction operation, so we just
- collect s' values in SCALAR_RESULTS. */
- if (slp_reduc)
- scalar_results.safe_push (new_temp);
-
- for (bit_offset = element_bitsize;
- bit_offset < vec_size_in_bits;
- bit_offset += element_bitsize)
- {
- tree bitpos = bitsize_int (bit_offset);
- new_name = gimple_build (&stmts, BIT_FIELD_REF,
- compute_type, vec_temp,
- bitsize, bitpos);
- if (slp_reduc)
- {
- /* In SLP we don't need to apply reduction operation, so
- we just collect s' values in SCALAR_RESULTS. */
- new_temp = new_name;
- scalar_results.safe_push (new_name);
- }
- else
- new_temp = gimple_build (&stmts, code, compute_type,
- new_name, new_temp);
- }
- }
-
- /* The only case where we need to reduce scalar results in SLP, is
- unrolling. If the size of SCALAR_RESULTS is greater than
- REDUC_GROUP_SIZE, we reduce them combining elements modulo
- REDUC_GROUP_SIZE. */
- if (slp_reduc)
- {
- tree res, first_res, new_res;
-
- /* Reduce multiple scalar results in case of SLP unrolling. */
- for (j = group_size; scalar_results.iterate (j, &res);
- j++)
- {
- first_res = scalar_results[j % group_size];
- new_res = gimple_build (&stmts, code, compute_type,
- first_res, res);
- scalar_results[j % group_size] = new_res;
- }
- scalar_results.truncate (group_size);
- for (k = 0; k < group_size; k++)
- scalar_results[k] = gimple_convert (&stmts, scalar_type,
- scalar_results[k]);
- }
- else
- {
- /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
- new_temp = gimple_convert (&stmts, scalar_type, new_temp);
- scalar_results.safe_push (new_temp);
- }
-
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- }
-
- if ((STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
- && induc_val)
- {
- /* Earlier we set the initial value to be a vector if induc_val
- values. Check the result and if it is induc_val then replace
- with the original initial value, unless induc_val is
- the same as initial_def already. */
- tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
- induc_val);
- tree initial_def = reduc_info->reduc_initial_values[0];
-
- tree tmp = make_ssa_name (new_scalar_dest);
- epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
- initial_def, new_temp);
- gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
- scalar_results[0] = tmp;
- }
- }
-
- /* 2.5 Adjust the final result by the initial value of the reduction
- variable. (When such adjustment is not needed, then
- 'adjustment_def' is zero). For example, if code is PLUS we create:
- new_temp = loop_exit_def + adjustment_def */
-
- if (adjustment_def)
- {
- gcc_assert (!slp_reduc);
- gimple_seq stmts = NULL;
- if (double_reduc)
- {
- gcc_assert (VECTOR_TYPE_P (TREE_TYPE (adjustment_def)));
- adjustment_def = gimple_convert (&stmts, vectype, adjustment_def);
- new_temp = gimple_build (&stmts, code, vectype,
- reduc_inputs[0], adjustment_def);
- }
- else
- {
- new_temp = scalar_results[0];
- gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
- adjustment_def = gimple_convert (&stmts, scalar_type, adjustment_def);
- new_temp = gimple_build (&stmts, code, scalar_type,
- new_temp, adjustment_def);
- }
-
- epilog_stmt = gimple_seq_last_stmt (stmts);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
- scalar_results[0] = new_temp;
- }
-
- /* Record this operation if it could be reused by the epilogue loop. */
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == TREE_CODE_REDUCTION)
- loop_vinfo->reusable_accumulators.put (scalar_results[0],
- { orig_reduc_input, reduc_info });
-
- if (double_reduc)
- loop = outer_loop;
-
- /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
- phis with new adjusted scalar results, i.e., replace use <s_out0>
- with use <s_out4>.
-
- Transform:
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1>
- s_out3 = extract_field <v_out2, 0>
- s_out4 = adjust_result <s_out3>
- use <s_out0>
- use <s_out0>
-
- into:
-
- loop_exit:
- s_out0 = phi <s_loop> # (scalar) EXIT_PHI
- v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
- v_out2 = reduce <v_out1>
- s_out3 = extract_field <v_out2, 0>
- s_out4 = adjust_result <s_out3>
- use <s_out4>
- use <s_out4> */
-
- gcc_assert (live_out_stmts.size () == scalar_results.length ());
- for (k = 0; k < live_out_stmts.size (); k++)
- {
- stmt_vec_info scalar_stmt_info = vect_orig_stmt (live_out_stmts[k]);
- scalar_dest = gimple_get_lhs (scalar_stmt_info->stmt);
-
- phis.create (3);
- /* Find the loop-closed-use at the loop exit of the original scalar
- result. (The reduction result is expected to have two immediate uses,
- one at the latch block, and one at the loop exit). For double
- reductions we are looking for exit phis of the outer loop. */
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
- {
- if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
- {
- if (!is_gimple_debug (USE_STMT (use_p)))
- phis.safe_push (USE_STMT (use_p));
- }
- else
- {
- if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
- {
- tree phi_res = PHI_RESULT (USE_STMT (use_p));
-
- FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
- {
- if (!flow_bb_inside_loop_p (loop,
- gimple_bb (USE_STMT (phi_use_p)))
- && !is_gimple_debug (USE_STMT (phi_use_p)))
- phis.safe_push (USE_STMT (phi_use_p));
- }
- }
- }
- }
-
- FOR_EACH_VEC_ELT (phis, i, exit_phi)
- {
- /* Replace the uses: */
- orig_name = PHI_RESULT (exit_phi);
-
- /* Look for a single use at the target of the skip edge. */
- if (unify_with_main_loop_p)
- {
- use_operand_p use_p;
- gimple *user;
- if (!single_imm_use (orig_name, &use_p, &user))
- gcc_unreachable ();
- orig_name = gimple_get_lhs (user);
- }
-
- scalar_result = scalar_results[k];
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
- {
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, scalar_result);
- update_stmt (use_stmt);
- }
- }
-
- phis.release ();
- }
-}
-
-/* Return a vector of type VECTYPE that is equal to the vector select
- operation "MASK ? VEC : IDENTITY". Insert the select statements
- before GSI. */
-
-static tree
-merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
- tree vec, tree identity)
-{
- tree cond = make_temp_ssa_name (vectype, NULL, "cond");
- gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
- mask, vec, identity);
- gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
- return cond;
-}
-
-/* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
- order, starting with LHS. Insert the extraction statements before GSI and
- associate the new scalar SSA names with variable SCALAR_DEST.
- Return the SSA name for the result. */
-
-static tree
-vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
- tree_code code, tree lhs, tree vector_rhs)
-{
- tree vectype = TREE_TYPE (vector_rhs);
- tree scalar_type = TREE_TYPE (vectype);
- tree bitsize = TYPE_SIZE (scalar_type);
- unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
- unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
-
- for (unsigned HOST_WIDE_INT bit_offset = 0;
- bit_offset < vec_size_in_bits;
- bit_offset += element_bitsize)
- {
- tree bitpos = bitsize_int (bit_offset);
- tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
- bitsize, bitpos);
-
- gassign *stmt = gimple_build_assign (scalar_dest, rhs);
- rhs = make_ssa_name (scalar_dest, stmt);
- gimple_assign_set_lhs (stmt, rhs);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
-
- stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
- tree new_name = make_ssa_name (scalar_dest, stmt);
- gimple_assign_set_lhs (stmt, new_name);
- gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
- lhs = new_name;
- }
- return lhs;
-}
-
-/* Get a masked internal function equivalent to REDUC_FN. VECTYPE_IN is the
- type of the vector input. */
-
-static internal_fn
-get_masked_reduction_fn (internal_fn reduc_fn, tree vectype_in)
-{
- internal_fn mask_reduc_fn;
-
- switch (reduc_fn)
- {
- case IFN_FOLD_LEFT_PLUS:
- mask_reduc_fn = IFN_MASK_FOLD_LEFT_PLUS;
- break;
-
- default:
- return IFN_LAST;
- }
-
- if (direct_internal_fn_supported_p (mask_reduc_fn, vectype_in,
- OPTIMIZE_FOR_SPEED))
- return mask_reduc_fn;
- return IFN_LAST;
-}
-
-/* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT_INFO is the
- statement that sets the live-out value. REDUC_DEF_STMT is the phi
- statement. CODE is the operation performed by STMT_INFO and OPS are
- its scalar operands. REDUC_INDEX is the index of the operand in
- OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
- implements in-order reduction, or IFN_LAST if we should open-code it.
- VECTYPE_IN is the type of the vector input. MASKS specifies the masks
- that should be used to control the operation in a fully-masked loop. */
-
-static bool
-vectorize_fold_left_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info,
- gimple_stmt_iterator *gsi,
- gimple **vec_stmt, slp_tree slp_node,
- gimple *reduc_def_stmt,
- tree_code code, internal_fn reduc_fn,
- tree ops[3], tree vectype_in,
- int reduc_index, vec_loop_masks *masks)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
- internal_fn mask_reduc_fn = get_masked_reduction_fn (reduc_fn, vectype_in);
-
- int ncopies;
- if (slp_node)
- ncopies = 1;
- else
- ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
-
- gcc_assert (!nested_in_vect_loop_p (loop, stmt_info));
- gcc_assert (ncopies == 1);
- gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
-
- if (slp_node)
- gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
- TYPE_VECTOR_SUBPARTS (vectype_in)));
-
- tree op0 = ops[1 - reduc_index];
-
- int group_size = 1;
- stmt_vec_info scalar_dest_def_info;
- auto_vec<tree> vec_oprnds0;
- if (slp_node)
- {
- auto_vec<vec<tree> > vec_defs (2);
- vect_get_slp_defs (loop_vinfo, slp_node, &vec_defs);
- vec_oprnds0.safe_splice (vec_defs[1 - reduc_index]);
- vec_defs[0].release ();
- vec_defs[1].release ();
- group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
- scalar_dest_def_info = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
- }
- else
- {
- vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
- op0, &vec_oprnds0);
- scalar_dest_def_info = stmt_info;
- }
-
- tree scalar_dest = gimple_assign_lhs (scalar_dest_def_info->stmt);
- tree scalar_type = TREE_TYPE (scalar_dest);
- tree reduc_var = gimple_phi_result (reduc_def_stmt);
-
- int vec_num = vec_oprnds0.length ();
- gcc_assert (vec_num == 1 || slp_node);
- tree vec_elem_type = TREE_TYPE (vectype_out);
- gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
-
- tree vector_identity = NULL_TREE;
- if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
- vector_identity = build_zero_cst (vectype_out);
-
- tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
- int i;
- tree def0;
- FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
- {
- gimple *new_stmt;
- tree mask = NULL_TREE;
- if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
- mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);
-
- /* Handle MINUS by adding the negative. */
- if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
- {
- tree negated = make_ssa_name (vectype_out);
- new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
- gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
- def0 = negated;
- }
-
- if (mask && mask_reduc_fn == IFN_LAST)
- def0 = merge_with_identity (gsi, mask, vectype_out, def0,
- vector_identity);
-
- /* On the first iteration the input is simply the scalar phi
- result, and for subsequent iterations it is the output of
- the preceding operation. */
- if (reduc_fn != IFN_LAST || (mask && mask_reduc_fn != IFN_LAST))
- {
- if (mask && mask_reduc_fn != IFN_LAST)
- new_stmt = gimple_build_call_internal (mask_reduc_fn, 3, reduc_var,
- def0, mask);
- else
- new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var,
- def0);
- /* For chained SLP reductions the output of the previous reduction
- operation serves as the input of the next. For the final statement
- the output cannot be a temporary - we reuse the original
- scalar destination of the last statement. */
- if (i != vec_num - 1)
- {
- gimple_set_lhs (new_stmt, scalar_dest_var);
- reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
- gimple_set_lhs (new_stmt, reduc_var);
- }
- }
- else
- {
- reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
- reduc_var, def0);
- new_stmt = SSA_NAME_DEF_STMT (reduc_var);
- /* Remove the statement, so that we can use the same code paths
- as for statements that we've just created. */
- gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
- gsi_remove (&tmp_gsi, true);
- }
-
- if (i == vec_num - 1)
- {
- gimple_set_lhs (new_stmt, scalar_dest);
- vect_finish_replace_stmt (loop_vinfo,
- scalar_dest_def_info,
- new_stmt);
- }
- else
- vect_finish_stmt_generation (loop_vinfo,
- scalar_dest_def_info,
- new_stmt, gsi);
-
- if (slp_node)
- SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
- else
- {
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
- *vec_stmt = new_stmt;
- }
- }
-
- return true;
-}
-
-/* Function is_nonwrapping_integer_induction.
-
- Check if STMT_VINO (which is part of loop LOOP) both increments and
- does not cause overflow. */
-
-static bool
-is_nonwrapping_integer_induction (stmt_vec_info stmt_vinfo, class loop *loop)
-{
- gphi *phi = as_a <gphi *> (stmt_vinfo->stmt);
- tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
- tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
- tree lhs_type = TREE_TYPE (gimple_phi_result (phi));
- widest_int ni, max_loop_value, lhs_max;
- wi::overflow_type overflow = wi::OVF_NONE;
-
- /* Make sure the loop is integer based. */
- if (TREE_CODE (base) != INTEGER_CST
- || TREE_CODE (step) != INTEGER_CST)
- return false;
-
- /* Check that the max size of the loop will not wrap. */
-
- if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
- return true;
-
- if (! max_stmt_executions (loop, &ni))
- return false;
-
- max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
- &overflow);
- if (overflow)
- return false;
-
- max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
- TYPE_SIGN (lhs_type), &overflow);
- if (overflow)
- return false;
-
- return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
- <= TYPE_PRECISION (lhs_type));
-}
-
-/* Check if masking can be supported by inserting a conditional expression.
- CODE is the code for the operation. COND_FN is the conditional internal
- function, if it exists. VECTYPE_IN is the type of the vector input. */
-static bool
-use_mask_by_cond_expr_p (code_helper code, internal_fn cond_fn,
- tree vectype_in)
-{
- if (cond_fn != IFN_LAST
- && direct_internal_fn_supported_p (cond_fn, vectype_in,
- OPTIMIZE_FOR_SPEED))
- return false;
-
- if (code.is_tree_code ())
- switch (tree_code (code))
- {
- case DOT_PROD_EXPR:
- case SAD_EXPR:
- return true;
-
- default:
- break;
- }
- return false;
-}
-
-/* Insert a conditional expression to enable masked vectorization. CODE is the
- code for the operation. VOP is the array of operands. MASK is the loop
- mask. GSI is a statement iterator used to place the new conditional
- expression. */
-static void
-build_vect_cond_expr (code_helper code, tree vop[3], tree mask,
- gimple_stmt_iterator *gsi)
-{
- switch (tree_code (code))
- {
- case DOT_PROD_EXPR:
- {
- tree vectype = TREE_TYPE (vop[1]);
- tree zero = build_zero_cst (vectype);
- tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
- gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
- mask, vop[1], zero);
- gsi_insert_before (gsi, select, GSI_SAME_STMT);
- vop[1] = masked_op1;
- break;
- }
-
- case SAD_EXPR:
- {
- tree vectype = TREE_TYPE (vop[1]);
- tree masked_op1 = make_temp_ssa_name (vectype, NULL, "masked_op1");
- gassign *select = gimple_build_assign (masked_op1, VEC_COND_EXPR,
- mask, vop[1], vop[0]);
- gsi_insert_before (gsi, select, GSI_SAME_STMT);
- vop[1] = masked_op1;
- break;
- }
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Function vectorizable_reduction.
-
- Check if STMT_INFO performs a reduction operation that can be vectorized.
- If VEC_STMT is also passed, vectorize STMT_INFO: create a vectorized
- stmt to replace it, put it in VEC_STMT, and insert it at GSI.
- Return true if STMT_INFO is vectorizable in this way.
-
- This function also handles reduction idioms (patterns) that have been
- recognized in advance during vect_pattern_recog. In this case, STMT_INFO
- may be of this form:
- X = pattern_expr (arg0, arg1, ..., X)
- and its STMT_VINFO_RELATED_STMT points to the last stmt in the original
- sequence that had been detected and replaced by the pattern-stmt
- (STMT_INFO).
-
- This function also handles reduction of condition expressions, for example:
- for (int i = 0; i < N; i++)
- if (a[i] < value)
- last = a[i];
- This is handled by vectorising the loop and creating an additional vector
- containing the loop indexes for which "a[i] < value" was true. In the
- function epilogue this is reduced to a single max value and then used to
- index into the vector of results.
-
- In some cases of reduction patterns, the type of the reduction variable X is
- different than the type of the other arguments of STMT_INFO.
- In such cases, the vectype that is used when transforming STMT_INFO into
- a vector stmt is different than the vectype that is used to determine the
- vectorization factor, because it consists of a different number of elements
- than the actual number of elements that are being operated upon in parallel.
-
- For example, consider an accumulation of shorts into an int accumulator.
- On some targets it's possible to vectorize this pattern operating on 8
- shorts at a time (hence, the vectype for purposes of determining the
- vectorization factor should be V8HI); on the other hand, the vectype that
- is used to create the vector form is actually V4SI (the type of the result).
-
- Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
- indicates what is the actual level of parallelism (V8HI in the example), so
- that the right vectorization factor would be derived. This vectype
- corresponds to the type of arguments to the reduction stmt, and should *NOT*
- be used to create the vectorized stmt. The right vectype for the vectorized
- stmt is obtained from the type of the result X:
- get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
-
- This means that, contrary to "regular" reductions (or "regular" stmts in
- general), the following equation:
- STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (vinfo, TREE_TYPE (X))
- does *NOT* necessarily hold for reduction patterns. */
-
-bool
-vectorizable_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info, slp_tree slp_node,
- slp_instance slp_node_instance,
- stmt_vector_for_cost *cost_vec)
-{
- tree vectype_in = NULL_TREE;
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- enum vect_def_type cond_reduc_dt = vect_unknown_def_type;
- stmt_vec_info cond_stmt_vinfo = NULL;
- int i;
- int ncopies;
- bool single_defuse_cycle = false;
- bool nested_cycle = false;
- bool double_reduc = false;
- int vec_num;
- tree tem;
- tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
- tree cond_reduc_val = NULL_TREE;
-
- /* Make sure it was already recognized as a reduction computation. */
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
- && STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def
- && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
- return false;
-
- /* The stmt we store reduction analysis meta on. */
- stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
- reduc_info->is_reduc_info = true;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
- {
- if (is_a <gphi *> (stmt_info->stmt))
- {
- if (slp_node)
- {
- /* We eventually need to set a vector type on invariant
- arguments. */
- unsigned j;
- slp_tree child;
- FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
- if (!vect_maybe_update_slp_op_vectype
- (child, SLP_TREE_VECTYPE (slp_node)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector types for "
- "invariants\n");
- return false;
- }
- }
- /* Analysis for double-reduction is done on the outer
- loop PHI, nested cycles have no further restrictions. */
- STMT_VINFO_TYPE (stmt_info) = cycle_phi_info_type;
- }
- else
- STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
- return true;
- }
-
- stmt_vec_info orig_stmt_of_analysis = stmt_info;
- stmt_vec_info phi_info = stmt_info;
- if (!is_a <gphi *> (stmt_info->stmt))
- {
- STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
- return true;
- }
- if (slp_node)
- {
- slp_node_instance->reduc_phis = slp_node;
- /* ??? We're leaving slp_node to point to the PHIs, we only
- need it to get at the number of vector stmts which wasn't
- yet initialized for the instance root. */
- }
- if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
- stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (stmt_info));
- else
- {
- gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info)
- == vect_double_reduction_def);
- use_operand_p use_p;
- gimple *use_stmt;
- bool res = single_imm_use (gimple_phi_result (stmt_info->stmt),
- &use_p, &use_stmt);
- gcc_assert (res);
- phi_info = loop_vinfo->lookup_stmt (use_stmt);
- stmt_info = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
- }
-
- /* PHIs should not participate in patterns. */
- gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
- gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
-
- /* Verify following REDUC_IDX from the latch def leads us back to the PHI
- and compute the reduction chain length. Discover the real
- reduction operation stmt on the way (stmt_info and slp_for_stmt_info). */
- tree reduc_def
- = PHI_ARG_DEF_FROM_EDGE (reduc_def_phi,
- loop_latch_edge
- (gimple_bb (reduc_def_phi)->loop_father));
- unsigned reduc_chain_length = 0;
- bool only_slp_reduc_chain = true;
- stmt_info = NULL;
- slp_tree slp_for_stmt_info = slp_node ? slp_node_instance->root : NULL;
- while (reduc_def != PHI_RESULT (reduc_def_phi))
- {
- stmt_vec_info def = loop_vinfo->lookup_def (reduc_def);
- stmt_vec_info vdef = vect_stmt_to_vectorize (def);
- if (STMT_VINFO_REDUC_IDX (vdef) == -1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction chain broken by patterns.\n");
- return false;
- }
- if (!REDUC_GROUP_FIRST_ELEMENT (vdef))
- only_slp_reduc_chain = false;
- /* ??? For epilogue generation live members of the chain need
- to point back to the PHI via their original stmt for
- info_for_reduction to work. */
- if (STMT_VINFO_LIVE_P (vdef))
- STMT_VINFO_REDUC_DEF (def) = phi_info;
- gimple_match_op op;
- if (!gimple_extract_op (vdef->stmt, &op))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction chain includes unsupported"
- " statement type.\n");
- return false;
- }
- if (CONVERT_EXPR_CODE_P (op.code))
- {
- if (!tree_nop_conversion_p (op.type, TREE_TYPE (op.ops[0])))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "conversion in the reduction chain.\n");
- return false;
- }
- }
- else if (!stmt_info)
- /* First non-conversion stmt. */
- stmt_info = vdef;
- reduc_def = op.ops[STMT_VINFO_REDUC_IDX (vdef)];
- reduc_chain_length++;
- if (!stmt_info && slp_node)
- slp_for_stmt_info = SLP_TREE_CHILDREN (slp_for_stmt_info)[0];
- }
- /* PHIs should not participate in patterns. */
- gcc_assert (!STMT_VINFO_RELATED_STMT (phi_info));
-
- if (nested_in_vect_loop_p (loop, stmt_info))
- {
- loop = loop->inner;
- nested_cycle = true;
- }
-
- /* STMT_VINFO_REDUC_DEF doesn't point to the first but the last
- element. */
- if (slp_node && REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- {
- gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (stmt_info));
- stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
- }
- if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- gcc_assert (slp_node
- && REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt_info);
-
- /* 1. Is vectorizable reduction? */
- /* Not supportable if the reduction variable is used in the loop, unless
- it's a reduction chain. */
- if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
- && !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- return false;
-
- /* Reductions that are not used even in an enclosing outer-loop,
- are expected to be "live" (used out of the loop). */
- if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
- && !STMT_VINFO_LIVE_P (stmt_info))
- return false;
-
- /* 2. Has this been recognized as a reduction pattern?
-
- Check if STMT represents a pattern that has been recognized
- in earlier analysis stages. For stmts that represent a pattern,
- the STMT_VINFO_RELATED_STMT field records the last stmt in
- the original sequence that constitutes the pattern. */
-
- stmt_vec_info orig_stmt_info = STMT_VINFO_RELATED_STMT (stmt_info);
- if (orig_stmt_info)
- {
- gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
- gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
- }
-
- /* 3. Check the operands of the operation. The first operands are defined
- inside the loop body. The last operand is the reduction variable,
- which is defined by the loop-header-phi. */
-
- tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
- STMT_VINFO_REDUC_VECTYPE (reduc_info) = vectype_out;
- gimple_match_op op;
- if (!gimple_extract_op (stmt_info->stmt, &op))
- gcc_unreachable ();
- bool lane_reduc_code_p = (op.code == DOT_PROD_EXPR
- || op.code == WIDEN_SUM_EXPR
- || op.code == SAD_EXPR);
- enum optab_subtype optab_query_kind = optab_vector;
- if (op.code == DOT_PROD_EXPR
- && (TYPE_SIGN (TREE_TYPE (op.ops[0]))
- != TYPE_SIGN (TREE_TYPE (op.ops[1]))))
- optab_query_kind = optab_vector_mixed_sign;
-
- if (!POINTER_TYPE_P (op.type) && !INTEGRAL_TYPE_P (op.type)
- && !SCALAR_FLOAT_TYPE_P (op.type))
- return false;
-
- /* Do not try to vectorize bit-precision reductions. */
- if (!type_has_mode_precision_p (op.type))
- return false;
-
- /* For lane-reducing ops we're reducing the number of reduction PHIs
- which means the only use of that may be in the lane-reducing operation. */
- if (lane_reduc_code_p
- && reduc_chain_length != 1
- && !only_slp_reduc_chain)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "lane-reducing reduction with extra stmts.\n");
- return false;
- }
-
- /* All uses but the last are expected to be defined in the loop.
- The last use is the reduction variable. In case of nested cycle this
- assumption is not true: we use reduc_index to record the index of the
- reduction variable. */
- slp_tree *slp_op = XALLOCAVEC (slp_tree, op.num_ops);
- /* We need to skip an extra operand for COND_EXPRs with embedded
- comparison. */
- unsigned opno_adjust = 0;
- if (op.code == COND_EXPR && COMPARISON_CLASS_P (op.ops[0]))
- opno_adjust = 1;
- for (i = 0; i < (int) op.num_ops; i++)
- {
- /* The condition of COND_EXPR is checked in vectorizable_condition(). */
- if (i == 0 && op.code == COND_EXPR)
- continue;
-
- stmt_vec_info def_stmt_info;
- enum vect_def_type dt;
- if (!vect_is_simple_use (loop_vinfo, stmt_info, slp_for_stmt_info,
- i + opno_adjust, &op.ops[i], &slp_op[i], &dt,
- &tem, &def_stmt_info))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "use not simple.\n");
- return false;
- }
- if (i == STMT_VINFO_REDUC_IDX (stmt_info))
- continue;
-
- /* There should be only one cycle def in the stmt, the one
- leading to reduc_def. */
- if (VECTORIZABLE_CYCLE_DEF (dt))
- return false;
-
- /* To properly compute ncopies we are interested in the widest
- non-reduction input type in case we're looking at a widening
- accumulation that we later handle in vect_transform_reduction. */
- if (lane_reduc_code_p
- && tem
- && (!vectype_in
- || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
- < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem))))))
- vectype_in = tem;
-
- if (op.code == COND_EXPR)
- {
- /* Record how the non-reduction-def value of COND_EXPR is defined. */
- if (dt == vect_constant_def)
- {
- cond_reduc_dt = dt;
- cond_reduc_val = op.ops[i];
- }
- if (dt == vect_induction_def
- && def_stmt_info
- && is_nonwrapping_integer_induction (def_stmt_info, loop))
- {
- cond_reduc_dt = dt;
- cond_stmt_vinfo = def_stmt_info;
- }
- }
- }
- if (!vectype_in)
- vectype_in = STMT_VINFO_VECTYPE (phi_info);
- STMT_VINFO_REDUC_VECTYPE_IN (reduc_info) = vectype_in;
-
- enum vect_reduction_type v_reduc_type = STMT_VINFO_REDUC_TYPE (phi_info);
- STMT_VINFO_REDUC_TYPE (reduc_info) = v_reduc_type;
- /* If we have a condition reduction, see if we can simplify it further. */
- if (v_reduc_type == COND_REDUCTION)
- {
- if (slp_node)
- return false;
-
- /* When the condition uses the reduction value in the condition, fail. */
- if (STMT_VINFO_REDUC_IDX (stmt_info) == 0)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "condition depends on previous iteration\n");
- return false;
- }
-
- if (reduc_chain_length == 1
- && direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
- vectype_in, OPTIMIZE_FOR_SPEED))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "optimizing condition reduction with"
- " FOLD_EXTRACT_LAST.\n");
- STMT_VINFO_REDUC_TYPE (reduc_info) = EXTRACT_LAST_REDUCTION;
- }
- else if (cond_reduc_dt == vect_induction_def)
- {
- tree base
- = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
- tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
-
- gcc_assert (TREE_CODE (base) == INTEGER_CST
- && TREE_CODE (step) == INTEGER_CST);
- cond_reduc_val = NULL_TREE;
- enum tree_code cond_reduc_op_code = ERROR_MARK;
- tree res = PHI_RESULT (STMT_VINFO_STMT (cond_stmt_vinfo));
- if (!types_compatible_p (TREE_TYPE (res), TREE_TYPE (base)))
- ;
- /* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
- above base; punt if base is the minimum value of the type for
- MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
- else if (tree_int_cst_sgn (step) == -1)
- {
- cond_reduc_op_code = MIN_EXPR;
- if (tree_int_cst_sgn (base) == -1)
- cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
- else if (tree_int_cst_lt (base,
- TYPE_MAX_VALUE (TREE_TYPE (base))))
- cond_reduc_val
- = int_const_binop (PLUS_EXPR, base, integer_one_node);
- }
- else
- {
- cond_reduc_op_code = MAX_EXPR;
- if (tree_int_cst_sgn (base) == 1)
- cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
- else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
- base))
- cond_reduc_val
- = int_const_binop (MINUS_EXPR, base, integer_one_node);
- }
- if (cond_reduc_val)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "condition expression based on "
- "integer induction.\n");
- STMT_VINFO_REDUC_CODE (reduc_info) = cond_reduc_op_code;
- STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info)
- = cond_reduc_val;
- STMT_VINFO_REDUC_TYPE (reduc_info) = INTEGER_INDUC_COND_REDUCTION;
- }
- }
- else if (cond_reduc_dt == vect_constant_def)
- {
- enum vect_def_type cond_initial_dt;
- tree cond_initial_val = vect_phi_initial_value (reduc_def_phi);
- vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
- if (cond_initial_dt == vect_constant_def
- && types_compatible_p (TREE_TYPE (cond_initial_val),
- TREE_TYPE (cond_reduc_val)))
- {
- tree e = fold_binary (LE_EXPR, boolean_type_node,
- cond_initial_val, cond_reduc_val);
- if (e && (integer_onep (e) || integer_zerop (e)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "condition expression based on "
- "compile time constant.\n");
- /* Record reduction code at analysis stage. */
- STMT_VINFO_REDUC_CODE (reduc_info)
- = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
- STMT_VINFO_REDUC_TYPE (reduc_info) = CONST_COND_REDUCTION;
- }
- }
- }
- }
-
- if (STMT_VINFO_LIVE_P (phi_info))
- return false;
-
- if (slp_node)
- ncopies = 1;
- else
- ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
-
- gcc_assert (ncopies >= 1);
-
- poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
-
- if (nested_cycle)
- {
- gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info)
- == vect_double_reduction_def);
- double_reduc = true;
- }
-
- /* 4.2. Check support for the epilog operation.
-
- If STMT represents a reduction pattern, then the type of the
- reduction variable may be different than the type of the rest
- of the arguments. For example, consider the case of accumulation
- of shorts into an int accumulator; The original code:
- S1: int_a = (int) short_a;
- orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
-
- was replaced with:
- STMT: int_acc = widen_sum <short_a, int_acc>
-
- This means that:
- 1. The tree-code that is used to create the vector operation in the
- epilog code (that reduces the partial results) is not the
- tree-code of STMT, but is rather the tree-code of the original
- stmt from the pattern that STMT is replacing. I.e, in the example
- above we want to use 'widen_sum' in the loop, but 'plus' in the
- epilog.
- 2. The type (mode) we use to check available target support
- for the vector operation to be created in the *epilog*, is
- determined by the type of the reduction variable (in the example
- above we'd check this: optab_handler (plus_optab, vect_int_mode])).
- However the type (mode) we use to check available target support
- for the vector operation to be created *inside the loop*, is
- determined by the type of the other arguments to STMT (in the
- example we'd check this: optab_handler (widen_sum_optab,
- vect_short_mode)).
-
- This is contrary to "regular" reductions, in which the types of all
- the arguments are the same as the type of the reduction variable.
- For "regular" reductions we can therefore use the same vector type
- (and also the same tree-code) when generating the epilog code and
- when generating the code inside the loop. */
-
- code_helper orig_code = STMT_VINFO_REDUC_CODE (phi_info);
- STMT_VINFO_REDUC_CODE (reduc_info) = orig_code;
-
- vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
- if (reduction_type == TREE_CODE_REDUCTION)
- {
- /* Check whether it's ok to change the order of the computation.
- Generally, when vectorizing a reduction we change the order of the
- computation. This may change the behavior of the program in some
- cases, so we need to check that this is ok. One exception is when
- vectorizing an outer-loop: the inner-loop is executed sequentially,
- and therefore vectorizing reductions in the inner-loop during
- outer-loop vectorization is safe. Likewise when we are vectorizing
- a series of reductions using SLP and the VF is one the reductions
- are performed in scalar order. */
- if (slp_node
- && !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
- && known_eq (LOOP_VINFO_VECT_FACTOR (loop_vinfo), 1u))
- ;
- else if (needs_fold_left_reduction_p (op.type, orig_code))
- {
- /* When vectorizing a reduction chain w/o SLP the reduction PHI
- is not directy used in stmt. */
- if (!only_slp_reduc_chain
- && reduc_chain_length != 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "in-order reduction chain without SLP.\n");
- return false;
- }
- STMT_VINFO_REDUC_TYPE (reduc_info)
- = reduction_type = FOLD_LEFT_REDUCTION;
- }
- else if (!commutative_binary_op_p (orig_code, op.type)
- || !associative_binary_op_p (orig_code, op.type))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction: not commutative/associative");
- return false;
- }
- }
-
- if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
- && ncopies > 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "multiple types in double reduction or condition "
- "reduction or fold-left reduction.\n");
- return false;
- }
-
- internal_fn reduc_fn = IFN_LAST;
- if (reduction_type == TREE_CODE_REDUCTION
- || reduction_type == FOLD_LEFT_REDUCTION
- || reduction_type == INTEGER_INDUC_COND_REDUCTION
- || reduction_type == CONST_COND_REDUCTION)
- {
- if (reduction_type == FOLD_LEFT_REDUCTION
- ? fold_left_reduction_fn (orig_code, &reduc_fn)
- : reduction_fn_for_scalar_code (orig_code, &reduc_fn))
- {
- if (reduc_fn != IFN_LAST
- && !direct_internal_fn_supported_p (reduc_fn, vectype_out,
- OPTIMIZE_FOR_SPEED))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduc op not supported by target.\n");
-
- reduc_fn = IFN_LAST;
- }
- }
- else
- {
- if (!nested_cycle || double_reduc)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "no reduc code for scalar code.\n");
-
- return false;
- }
- }
- }
- else if (reduction_type == COND_REDUCTION)
- {
- int scalar_precision
- = GET_MODE_PRECISION (SCALAR_TYPE_MODE (op.type));
- cr_index_scalar_type = make_unsigned_type (scalar_precision);
- cr_index_vector_type = get_same_sized_vectype (cr_index_scalar_type,
- vectype_out);
-
- if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
- OPTIMIZE_FOR_SPEED))
- reduc_fn = IFN_REDUC_MAX;
- }
- STMT_VINFO_REDUC_FN (reduc_info) = reduc_fn;
-
- if (reduction_type != EXTRACT_LAST_REDUCTION
- && (!nested_cycle || double_reduc)
- && reduc_fn == IFN_LAST
- && !nunits_out.is_constant ())
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "missing target support for reduction on"
- " variable-length vectors.\n");
- return false;
- }
-
- /* For SLP reductions, see if there is a neutral value we can use. */
- tree neutral_op = NULL_TREE;
- if (slp_node)
- {
- tree initial_value = NULL_TREE;
- if (REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL)
- initial_value = vect_phi_initial_value (reduc_def_phi);
- neutral_op = neutral_op_for_reduction (TREE_TYPE (vectype_out),
- orig_code, initial_value);
- }
-
- if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
- {
- /* We can't support in-order reductions of code such as this:
-
- for (int i = 0; i < n1; ++i)
- for (int j = 0; j < n2; ++j)
- l += a[j];
-
- since GCC effectively transforms the loop when vectorizing:
-
- for (int i = 0; i < n1 / VF; ++i)
- for (int j = 0; j < n2; ++j)
- for (int k = 0; k < VF; ++k)
- l += a[j];
-
- which is a reassociation of the original operation. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "in-order double reduction not supported.\n");
-
- return false;
- }
-
- if (reduction_type == FOLD_LEFT_REDUCTION
- && slp_node
- && !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- {
- /* We cannot use in-order reductions in this case because there is
- an implicit reassociation of the operations involved. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "in-order unchained SLP reductions not supported.\n");
- return false;
- }
-
- /* For double reductions, and for SLP reductions with a neutral value,
- we construct a variable-length initial vector by loading a vector
- full of the neutral value and then shift-and-inserting the start
- values into the low-numbered elements. */
- if ((double_reduc || neutral_op)
- && !nunits_out.is_constant ()
- && !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
- vectype_out, OPTIMIZE_FOR_SPEED))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "reduction on variable-length vectors requires"
- " target support for a vector-shift-and-insert"
- " operation.\n");
- return false;
- }
-
- /* Check extra constraints for variable-length unchained SLP reductions. */
- if (STMT_SLP_TYPE (stmt_info)
- && !REDUC_GROUP_FIRST_ELEMENT (stmt_info)
- && !nunits_out.is_constant ())
- {
- /* We checked above that we could build the initial vector when
- there's a neutral element value. Check here for the case in
- which each SLP statement has its own initial value and in which
- that value needs to be repeated for every instance of the
- statement within the initial vector. */
- unsigned int group_size = SLP_TREE_LANES (slp_node);
- if (!neutral_op
- && !can_duplicate_and_interleave_p (loop_vinfo, group_size,
- TREE_TYPE (vectype_out)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "unsupported form of SLP reduction for"
- " variable-length vectors: cannot build"
- " initial vector.\n");
- return false;
- }
- /* The epilogue code relies on the number of elements being a multiple
- of the group size. The duplicate-and-interleave approach to setting
- up the initial vector does too. */
- if (!multiple_p (nunits_out, group_size))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "unsupported form of SLP reduction for"
- " variable-length vectors: the vector size"
- " is not a multiple of the number of results.\n");
- return false;
- }
- }
-
- if (reduction_type == COND_REDUCTION)
- {
- widest_int ni;
-
- if (! max_loop_iterations (loop, &ni))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "loop count not known, cannot create cond "
- "reduction.\n");
- return false;
- }
- /* Convert backedges to iterations. */
- ni += 1;
-
- /* The additional index will be the same type as the condition. Check
- that the loop can fit into this less one (because we'll use up the
- zero slot for when there are no matches). */
- tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
- if (wi::geu_p (ni, wi::to_widest (max_index)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "loop size is greater than data size.\n");
- return false;
- }
- }
-
- /* In case the vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. For more details see documentation
- in vectorizable_operation. */
-
- /* If the reduction is used in an outer loop we need to generate
- VF intermediate results, like so (e.g. for ncopies=2):
- r0 = phi (init, r0)
- r1 = phi (init, r1)
- r0 = x0 + r0;
- r1 = x1 + r1;
- (i.e. we generate VF results in 2 registers).
- In this case we have a separate def-use cycle for each copy, and therefore
- for each copy we get the vector def for the reduction variable from the
- respective phi node created for this copy.
-
- Otherwise (the reduction is unused in the loop nest), we can combine
- together intermediate results, like so (e.g. for ncopies=2):
- r = phi (init, r)
- r = x0 + r;
- r = x1 + r;
- (i.e. we generate VF/2 results in a single register).
- In this case for each copy we get the vector def for the reduction variable
- from the vectorized reduction operation generated in the previous iteration.
-
- This only works when we see both the reduction PHI and its only consumer
- in vectorizable_reduction and there are no intermediate stmts
- participating. */
- if (ncopies > 1
- && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
- && reduc_chain_length == 1)
- single_defuse_cycle = true;
-
- if (single_defuse_cycle || lane_reduc_code_p)
- {
- gcc_assert (op.code != COND_EXPR);
-
- /* 4. Supportable by target? */
- bool ok = true;
-
- /* 4.1. check support for the operation in the loop */
- machine_mode vec_mode = TYPE_MODE (vectype_in);
- if (!directly_supported_p (op.code, vectype_in, optab_query_kind))
- {
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "op not supported by target.\n");
- if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
- || !vect_can_vectorize_without_simd_p (op.code))
- ok = false;
- else
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "proceeding using word mode.\n");
- }
-
- if (vect_emulated_vector_p (vectype_in)
- && !vect_can_vectorize_without_simd_p (op.code))
- {
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "using word mode not possible.\n");
- return false;
- }
-
- /* lane-reducing operations have to go through vect_transform_reduction.
- For the other cases try without the single cycle optimization. */
- if (!ok)
- {
- if (lane_reduc_code_p)
- return false;
- else
- single_defuse_cycle = false;
- }
- }
- STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info) = single_defuse_cycle;
-
- /* If the reduction stmt is one of the patterns that have lane
- reduction embedded we cannot handle the case of ! single_defuse_cycle. */
- if ((ncopies > 1 && ! single_defuse_cycle)
- && lane_reduc_code_p)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "multi def-use cycle not possible for lane-reducing "
- "reduction operation\n");
- return false;
- }
-
- if (slp_node
- && !(!single_defuse_cycle
- && !lane_reduc_code_p
- && reduction_type != FOLD_LEFT_REDUCTION))
- for (i = 0; i < (int) op.num_ops; i++)
- if (!vect_maybe_update_slp_op_vectype (slp_op[i], vectype_in))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector types for invariants\n");
- return false;
- }
-
- if (slp_node)
- vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- else
- vec_num = 1;
-
- vect_model_reduction_cost (loop_vinfo, stmt_info, reduc_fn,
- reduction_type, ncopies, cost_vec);
- /* Cost the reduction op inside the loop if transformed via
- vect_transform_reduction. Otherwise this is costed by the
- separate vectorizable_* routines. */
- if (single_defuse_cycle || lane_reduc_code_p)
- record_stmt_cost (cost_vec, ncopies, vector_stmt, stmt_info, 0, vect_body);
-
- if (dump_enabled_p ()
- && reduction_type == FOLD_LEFT_REDUCTION)
- dump_printf_loc (MSG_NOTE, vect_location,
- "using an in-order (fold-left) reduction.\n");
- STMT_VINFO_TYPE (orig_stmt_of_analysis) = cycle_phi_info_type;
- /* All but single defuse-cycle optimized, lane-reducing and fold-left
- reductions go through their own vectorizable_* routines. */
- if (!single_defuse_cycle
- && !lane_reduc_code_p
- && reduction_type != FOLD_LEFT_REDUCTION)
- {
- stmt_vec_info tem
- = vect_stmt_to_vectorize (STMT_VINFO_REDUC_DEF (phi_info));
- if (slp_node && REDUC_GROUP_FIRST_ELEMENT (tem))
- {
- gcc_assert (!REDUC_GROUP_NEXT_ELEMENT (tem));
- tem = REDUC_GROUP_FIRST_ELEMENT (tem);
- }
- STMT_VINFO_DEF_TYPE (vect_orig_stmt (tem)) = vect_internal_def;
- STMT_VINFO_DEF_TYPE (tem) = vect_internal_def;
- }
- else if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
- {
- vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
- internal_fn cond_fn = get_conditional_internal_fn (op.code, op.type);
-
- if (reduction_type != FOLD_LEFT_REDUCTION
- && !use_mask_by_cond_expr_p (op.code, cond_fn, vectype_in)
- && (cond_fn == IFN_LAST
- || !direct_internal_fn_supported_p (cond_fn, vectype_in,
- OPTIMIZE_FOR_SPEED)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't operate on partial vectors because"
- " no conditional operation is available.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
- else if (reduction_type == FOLD_LEFT_REDUCTION
- && reduc_fn == IFN_LAST
- && !expand_vec_cond_expr_p (vectype_in,
- truth_type_for (vectype_in),
- SSA_NAME))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't operate on partial vectors because"
- " no conditional operation is available.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
- else
- vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
- vectype_in, NULL);
- }
- return true;
-}
-
-/* Transform the definition stmt STMT_INFO of a reduction PHI backedge
- value. */
-
-bool
-vect_transform_reduction (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info, gimple_stmt_iterator *gsi,
- gimple **vec_stmt, slp_tree slp_node)
-{
- tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- int i;
- int ncopies;
- int vec_num;
-
- stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
- gcc_assert (reduc_info->is_reduc_info);
-
- if (nested_in_vect_loop_p (loop, stmt_info))
- {
- loop = loop->inner;
- gcc_assert (STMT_VINFO_DEF_TYPE (reduc_info) == vect_double_reduction_def);
- }
-
- gimple_match_op op;
- if (!gimple_extract_op (stmt_info->stmt, &op))
- gcc_unreachable ();
- gcc_assert (op.code.is_tree_code ());
- auto code = tree_code (op.code);
-
- /* All uses but the last are expected to be defined in the loop.
- The last use is the reduction variable. In case of nested cycle this
- assumption is not true: we use reduc_index to record the index of the
- reduction variable. */
- stmt_vec_info phi_info = STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info));
- gphi *reduc_def_phi = as_a <gphi *> (phi_info->stmt);
- int reduc_index = STMT_VINFO_REDUC_IDX (stmt_info);
- tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
-
- if (slp_node)
- {
- ncopies = 1;
- vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- }
- else
- {
- ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
- vec_num = 1;
- }
-
- internal_fn cond_fn = get_conditional_internal_fn (code);
- vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
- bool mask_by_cond_expr = use_mask_by_cond_expr_p (code, cond_fn, vectype_in);
-
- /* Transform. */
- tree new_temp = NULL_TREE;
- auto_vec<tree> vec_oprnds0;
- auto_vec<tree> vec_oprnds1;
- auto_vec<tree> vec_oprnds2;
- tree def0;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
-
- /* FORNOW: Multiple types are not supported for condition. */
- if (code == COND_EXPR)
- gcc_assert (ncopies == 1);
-
- bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
-
- vect_reduction_type reduction_type = STMT_VINFO_REDUC_TYPE (reduc_info);
- if (reduction_type == FOLD_LEFT_REDUCTION)
- {
- internal_fn reduc_fn = STMT_VINFO_REDUC_FN (reduc_info);
- return vectorize_fold_left_reduction
- (loop_vinfo, stmt_info, gsi, vec_stmt, slp_node, reduc_def_phi, code,
- reduc_fn, op.ops, vectype_in, reduc_index, masks);
- }
-
- bool single_defuse_cycle = STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info);
- gcc_assert (single_defuse_cycle
- || code == DOT_PROD_EXPR
- || code == WIDEN_SUM_EXPR
- || code == SAD_EXPR);
-
- /* Create the destination vector */
- tree scalar_dest = gimple_assign_lhs (stmt_info->stmt);
- tree vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
-
- vect_get_vec_defs (loop_vinfo, stmt_info, slp_node, ncopies,
- single_defuse_cycle && reduc_index == 0
- ? NULL_TREE : op.ops[0], &vec_oprnds0,
- single_defuse_cycle && reduc_index == 1
- ? NULL_TREE : op.ops[1], &vec_oprnds1,
- op.num_ops == 3
- && !(single_defuse_cycle && reduc_index == 2)
- ? op.ops[2] : NULL_TREE, &vec_oprnds2);
- if (single_defuse_cycle)
- {
- gcc_assert (!slp_node);
- vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
- op.ops[reduc_index],
- reduc_index == 0 ? &vec_oprnds0
- : (reduc_index == 1 ? &vec_oprnds1
- : &vec_oprnds2));
- }
-
- FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
- {
- gimple *new_stmt;
- tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
- if (masked_loop_p && !mask_by_cond_expr)
- {
- /* Make sure that the reduction accumulator is vop[0]. */
- if (reduc_index == 1)
- {
- gcc_assert (commutative_tree_code (code));
- std::swap (vop[0], vop[1]);
- }
- tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
- vectype_in, i);
- gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
- vop[0], vop[1], vop[0]);
- new_temp = make_ssa_name (vec_dest, call);
- gimple_call_set_lhs (call, new_temp);
- gimple_call_set_nothrow (call, true);
- vect_finish_stmt_generation (loop_vinfo, stmt_info, call, gsi);
- new_stmt = call;
- }
- else
- {
- if (op.num_ops == 3)
- vop[2] = vec_oprnds2[i];
-
- if (masked_loop_p && mask_by_cond_expr)
- {
- tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
- vectype_in, i);
- build_vect_cond_expr (code, vop, mask, gsi);
- }
-
- new_stmt = gimple_build_assign (vec_dest, code,
- vop[0], vop[1], vop[2]);
- new_temp = make_ssa_name (vec_dest, new_stmt);
- gimple_assign_set_lhs (new_stmt, new_temp);
- vect_finish_stmt_generation (loop_vinfo, stmt_info, new_stmt, gsi);
- }
-
- if (slp_node)
- SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
- else if (single_defuse_cycle
- && i < ncopies - 1)
- {
- if (reduc_index == 0)
- vec_oprnds0.safe_push (gimple_get_lhs (new_stmt));
- else if (reduc_index == 1)
- vec_oprnds1.safe_push (gimple_get_lhs (new_stmt));
- else if (reduc_index == 2)
- vec_oprnds2.safe_push (gimple_get_lhs (new_stmt));
- }
- else
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
- }
-
- if (!slp_node)
- *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
-
- return true;
-}
-
-/* Transform phase of a cycle PHI. */
-
-bool
-vect_transform_cycle_phi (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info, gimple **vec_stmt,
- slp_tree slp_node, slp_instance slp_node_instance)
-{
- tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- int i;
- int ncopies;
- int j;
- bool nested_cycle = false;
- int vec_num;
-
- if (nested_in_vect_loop_p (loop, stmt_info))
- {
- loop = loop->inner;
- nested_cycle = true;
- }
-
- stmt_vec_info reduc_stmt_info = STMT_VINFO_REDUC_DEF (stmt_info);
- reduc_stmt_info = vect_stmt_to_vectorize (reduc_stmt_info);
- stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
- gcc_assert (reduc_info->is_reduc_info);
-
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION
- || STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION)
- /* Leave the scalar phi in place. */
- return true;
-
- tree vectype_in = STMT_VINFO_REDUC_VECTYPE_IN (reduc_info);
- /* For a nested cycle we do not fill the above. */
- if (!vectype_in)
- vectype_in = STMT_VINFO_VECTYPE (stmt_info);
- gcc_assert (vectype_in);
-
- if (slp_node)
- {
- /* The size vect_schedule_slp_instance computes is off for us. */
- vec_num = vect_get_num_vectors (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
- * SLP_TREE_LANES (slp_node), vectype_in);
- ncopies = 1;
- }
- else
- {
- vec_num = 1;
- ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
- }
-
- /* Check whether we should use a single PHI node and accumulate
- vectors to one before the backedge. */
- if (STMT_VINFO_FORCE_SINGLE_CYCLE (reduc_info))
- ncopies = 1;
-
- /* Create the destination vector */
- gphi *phi = as_a <gphi *> (stmt_info->stmt);
- tree vec_dest = vect_create_destination_var (gimple_phi_result (phi),
- vectype_out);
-
- /* Get the loop-entry arguments. */
- tree vec_initial_def = NULL_TREE;
- auto_vec<tree> vec_initial_defs;
- if (slp_node)
- {
- vec_initial_defs.reserve (vec_num);
- if (nested_cycle)
- {
- unsigned phi_idx = loop_preheader_edge (loop)->dest_idx;
- vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[phi_idx],
- &vec_initial_defs);
- }
- else
- {
- gcc_assert (slp_node == slp_node_instance->reduc_phis);
- vec<tree> &initial_values = reduc_info->reduc_initial_values;
- vec<stmt_vec_info> &stmts = SLP_TREE_SCALAR_STMTS (slp_node);
-
- unsigned int num_phis = stmts.length ();
- if (REDUC_GROUP_FIRST_ELEMENT (reduc_stmt_info))
- num_phis = 1;
- initial_values.reserve (num_phis);
- for (unsigned int i = 0; i < num_phis; ++i)
- {
- gphi *this_phi = as_a<gphi *> (stmts[i]->stmt);
- initial_values.quick_push (vect_phi_initial_value (this_phi));
- }
- if (vec_num == 1)
- vect_find_reusable_accumulator (loop_vinfo, reduc_info);
- if (!initial_values.is_empty ())
- {
- tree initial_value
- = (num_phis == 1 ? initial_values[0] : NULL_TREE);
- code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
- tree neutral_op
- = neutral_op_for_reduction (TREE_TYPE (vectype_out),
- code, initial_value);
- get_initial_defs_for_reduction (loop_vinfo, reduc_info,
- &vec_initial_defs, vec_num,
- stmts.length (), neutral_op);
- }
- }
- }
- else
- {
- /* Get at the scalar def before the loop, that defines the initial
- value of the reduction variable. */
- tree initial_def = vect_phi_initial_value (phi);
- reduc_info->reduc_initial_values.safe_push (initial_def);
- /* Optimize: if initial_def is for REDUC_MAX smaller than the base
- and we can't use zero for induc_val, use initial_def. Similarly
- for REDUC_MIN and initial_def larger than the base. */
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == INTEGER_INDUC_COND_REDUCTION)
- {
- tree induc_val = STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info);
- if (TREE_CODE (initial_def) == INTEGER_CST
- && !integer_zerop (induc_val)
- && ((STMT_VINFO_REDUC_CODE (reduc_info) == MAX_EXPR
- && tree_int_cst_lt (initial_def, induc_val))
- || (STMT_VINFO_REDUC_CODE (reduc_info) == MIN_EXPR
- && tree_int_cst_lt (induc_val, initial_def))))
- {
- induc_val = initial_def;
- /* Communicate we used the initial_def to epilouge
- generation. */
- STMT_VINFO_VEC_INDUC_COND_INITIAL_VAL (reduc_info) = NULL_TREE;
- }
- vec_initial_def = build_vector_from_val (vectype_out, induc_val);
- }
- else if (nested_cycle)
- {
- /* Do not use an adjustment def as that case is not supported
- correctly if ncopies is not one. */
- vect_get_vec_defs_for_operand (loop_vinfo, reduc_stmt_info,
- ncopies, initial_def,
- &vec_initial_defs);
- }
- else if (STMT_VINFO_REDUC_TYPE (reduc_info) == CONST_COND_REDUCTION
- || STMT_VINFO_REDUC_TYPE (reduc_info) == COND_REDUCTION)
- /* Fill the initial vector with the initial scalar value. */
- vec_initial_def
- = get_initial_def_for_reduction (loop_vinfo, reduc_stmt_info,
- initial_def, initial_def);
- else
- {
- if (ncopies == 1)
- vect_find_reusable_accumulator (loop_vinfo, reduc_info);
- if (!reduc_info->reduc_initial_values.is_empty ())
- {
- initial_def = reduc_info->reduc_initial_values[0];
- code_helper code = STMT_VINFO_REDUC_CODE (reduc_info);
- tree neutral_op
- = neutral_op_for_reduction (TREE_TYPE (initial_def),
- code, initial_def);
- gcc_assert (neutral_op);
- /* Try to simplify the vector initialization by applying an
- adjustment after the reduction has been performed. */
- if (!reduc_info->reused_accumulator
- && STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
- && !operand_equal_p (neutral_op, initial_def))
- {
- STMT_VINFO_REDUC_EPILOGUE_ADJUSTMENT (reduc_info)
- = initial_def;
- initial_def = neutral_op;
- }
- vec_initial_def
- = get_initial_def_for_reduction (loop_vinfo, reduc_info,
- initial_def, neutral_op);
- }
- }
- }
-
- if (vec_initial_def)
- {
- vec_initial_defs.create (ncopies);
- for (i = 0; i < ncopies; ++i)
- vec_initial_defs.quick_push (vec_initial_def);
- }
-
- if (auto *accumulator = reduc_info->reused_accumulator)
- {
- tree def = accumulator->reduc_input;
- if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
- {
- unsigned int nreduc;
- bool res = constant_multiple_p (TYPE_VECTOR_SUBPARTS
- (TREE_TYPE (def)),
- TYPE_VECTOR_SUBPARTS (vectype_out),
- &nreduc);
- gcc_assert (res);
- gimple_seq stmts = NULL;
- /* Reduce the single vector to a smaller one. */
- if (nreduc != 1)
- {
- /* Perform the reduction in the appropriate type. */
- tree rvectype = vectype_out;
- if (!useless_type_conversion_p (TREE_TYPE (vectype_out),
- TREE_TYPE (TREE_TYPE (def))))
- rvectype = build_vector_type (TREE_TYPE (TREE_TYPE (def)),
- TYPE_VECTOR_SUBPARTS
- (vectype_out));
- def = vect_create_partial_epilog (def, rvectype,
- STMT_VINFO_REDUC_CODE
- (reduc_info),
- &stmts);
- }
- /* The epilogue loop might use a different vector mode, like
- VNx2DI vs. V2DI. */
- if (TYPE_MODE (vectype_out) != TYPE_MODE (TREE_TYPE (def)))
- {
- tree reduc_type = build_vector_type_for_mode
- (TREE_TYPE (TREE_TYPE (def)), TYPE_MODE (vectype_out));
- def = gimple_convert (&stmts, reduc_type, def);
- }
- /* Adjust the input so we pick up the partially reduced value
- for the skip edge in vect_create_epilog_for_reduction. */
- accumulator->reduc_input = def;
- /* And the reduction could be carried out using a different sign. */
- if (!useless_type_conversion_p (vectype_out, TREE_TYPE (def)))
- def = gimple_convert (&stmts, vectype_out, def);
- if (loop_vinfo->main_loop_edge)
- {
- /* While we'd like to insert on the edge this will split
- blocks and disturb bookkeeping, we also will eventually
- need this on the skip edge. Rely on sinking to
- fixup optimal placement and insert in the pred. */
- gimple_stmt_iterator gsi
- = gsi_last_bb (loop_vinfo->main_loop_edge->src);
- /* Insert before a cond that eventually skips the
- epilogue. */
- if (!gsi_end_p (gsi) && stmt_ends_bb_p (gsi_stmt (gsi)))
- gsi_prev (&gsi);
- gsi_insert_seq_after (&gsi, stmts, GSI_CONTINUE_LINKING);
- }
- else
- gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop),
- stmts);
- }
- if (loop_vinfo->main_loop_edge)
- vec_initial_defs[0]
- = vect_get_main_loop_result (loop_vinfo, def,
- vec_initial_defs[0]);
- else
- vec_initial_defs.safe_push (def);
- }
-
- /* Generate the reduction PHIs upfront. */
- for (i = 0; i < vec_num; i++)
- {
- tree vec_init_def = vec_initial_defs[i];
- for (j = 0; j < ncopies; j++)
- {
- /* Create the reduction-phi that defines the reduction
- operand. */
- gphi *new_phi = create_phi_node (vec_dest, loop->header);
-
- /* Set the loop-entry arg of the reduction-phi. */
- if (j != 0 && nested_cycle)
- vec_init_def = vec_initial_defs[j];
- add_phi_arg (new_phi, vec_init_def, loop_preheader_edge (loop),
- UNKNOWN_LOCATION);
-
- /* The loop-latch arg is set in epilogue processing. */
-
- if (slp_node)
- SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
- else
- {
- if (j == 0)
- *vec_stmt = new_phi;
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
- }
- }
- }
-
- return true;
-}
-
-/* Vectorizes LC PHIs. */
-
-bool
-vectorizable_lc_phi (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info, gimple **vec_stmt,
- slp_tree slp_node)
-{
- if (!loop_vinfo
- || !is_a <gphi *> (stmt_info->stmt)
- || gimple_phi_num_args (stmt_info->stmt) != 1)
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
- && STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
- return false;
-
- if (!vec_stmt) /* transformation not required. */
- {
- /* Deal with copies from externs or constants that disguise as
- loop-closed PHI nodes (PR97886). */
- if (slp_node
- && !vect_maybe_update_slp_op_vectype (SLP_TREE_CHILDREN (slp_node)[0],
- SLP_TREE_VECTYPE (slp_node)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector types for invariants\n");
- return false;
- }
- STMT_VINFO_TYPE (stmt_info) = lc_phi_info_type;
- return true;
- }
-
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- tree scalar_dest = gimple_phi_result (stmt_info->stmt);
- basic_block bb = gimple_bb (stmt_info->stmt);
- edge e = single_pred_edge (bb);
- tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
- auto_vec<tree> vec_oprnds;
- vect_get_vec_defs (loop_vinfo, stmt_info, slp_node,
- !slp_node ? vect_get_num_copies (loop_vinfo, vectype) : 1,
- gimple_phi_arg_def (stmt_info->stmt, 0), &vec_oprnds);
- for (unsigned i = 0; i < vec_oprnds.length (); i++)
- {
- /* Create the vectorized LC PHI node. */
- gphi *new_phi = create_phi_node (vec_dest, bb);
- add_phi_arg (new_phi, vec_oprnds[i], e, UNKNOWN_LOCATION);
- if (slp_node)
- SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
- else
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_phi);
- }
- if (!slp_node)
- *vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info)[0];
-
- return true;
-}
-
-/* Vectorizes PHIs. */
-
-bool
-vectorizable_phi (vec_info *,
- stmt_vec_info stmt_info, gimple **vec_stmt,
- slp_tree slp_node, stmt_vector_for_cost *cost_vec)
-{
- if (!is_a <gphi *> (stmt_info->stmt) || !slp_node)
- return false;
-
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
- return false;
-
- tree vectype = SLP_TREE_VECTYPE (slp_node);
-
- if (!vec_stmt) /* transformation not required. */
- {
- slp_tree child;
- unsigned i;
- FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), i, child)
- if (!child)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "PHI node with unvectorized backedge def\n");
- return false;
- }
- else if (!vect_maybe_update_slp_op_vectype (child, vectype))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector types for invariants\n");
- return false;
- }
- else if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
- && !useless_type_conversion_p (vectype,
- SLP_TREE_VECTYPE (child)))
- {
- /* With bools we can have mask and non-mask precision vectors
- or different non-mask precisions. while pattern recog is
- supposed to guarantee consistency here bugs in it can cause
- mismatches (PR103489 and PR103800 for example).
- Deal with them here instead of ICEing later. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector type setup from "
- "bool pattern detection\n");
- return false;
- }
-
- /* For single-argument PHIs assume coalescing which means zero cost
- for the scalar and the vector PHIs. This avoids artificially
- favoring the vector path (but may pessimize it in some cases). */
- if (gimple_phi_num_args (as_a <gphi *> (stmt_info->stmt)) > 1)
- record_stmt_cost (cost_vec, SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
- vector_stmt, stmt_info, vectype, 0, vect_body);
- STMT_VINFO_TYPE (stmt_info) = phi_info_type;
- return true;
- }
-
- tree scalar_dest = gimple_phi_result (stmt_info->stmt);
- basic_block bb = gimple_bb (stmt_info->stmt);
- tree vec_dest = vect_create_destination_var (scalar_dest, vectype);
- auto_vec<gphi *> new_phis;
- for (unsigned i = 0; i < gimple_phi_num_args (stmt_info->stmt); ++i)
- {
- slp_tree child = SLP_TREE_CHILDREN (slp_node)[i];
-
- /* Skip not yet vectorized defs. */
- if (SLP_TREE_DEF_TYPE (child) == vect_internal_def
- && SLP_TREE_VEC_STMTS (child).is_empty ())
- continue;
-
- auto_vec<tree> vec_oprnds;
- vect_get_slp_defs (SLP_TREE_CHILDREN (slp_node)[i], &vec_oprnds);
- if (!new_phis.exists ())
- {
- new_phis.create (vec_oprnds.length ());
- for (unsigned j = 0; j < vec_oprnds.length (); j++)
- {
- /* Create the vectorized LC PHI node. */
- new_phis.quick_push (create_phi_node (vec_dest, bb));
- SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phis[j]);
- }
- }
- edge e = gimple_phi_arg_edge (as_a <gphi *> (stmt_info->stmt), i);
- for (unsigned j = 0; j < vec_oprnds.length (); j++)
- add_phi_arg (new_phis[j], vec_oprnds[j], e, UNKNOWN_LOCATION);
- }
- /* We should have at least one already vectorized child. */
- gcc_assert (new_phis.exists ());
-
- return true;
-}
-
-/* Return true if VECTYPE represents a vector that requires lowering
- by the vector lowering pass. */
-
-bool
-vect_emulated_vector_p (tree vectype)
-{
- return (!VECTOR_MODE_P (TYPE_MODE (vectype))
- && (!VECTOR_BOOLEAN_TYPE_P (vectype)
- || TYPE_PRECISION (TREE_TYPE (vectype)) != 1));
-}
-
-/* Return true if we can emulate CODE on an integer mode representation
- of a vector. */
-
-bool
-vect_can_vectorize_without_simd_p (tree_code code)
-{
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- case NEGATE_EXPR:
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- case BIT_NOT_EXPR:
- return true;
-
- default:
- return false;
- }
-}
-
-/* Likewise, but taking a code_helper. */
-
-bool
-vect_can_vectorize_without_simd_p (code_helper code)
-{
- return (code.is_tree_code ()
- && vect_can_vectorize_without_simd_p (tree_code (code)));
-}
-
-/* Function vectorizable_induction
-
- Check if STMT_INFO performs an induction computation that can be vectorized.
- If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
- phi to replace it, put it in VEC_STMT, and add it to the same basic block.
- Return true if STMT_INFO is vectorizable in this way. */
-
-bool
-vectorizable_induction (loop_vec_info loop_vinfo,
- stmt_vec_info stmt_info,
- gimple **vec_stmt, slp_tree slp_node,
- stmt_vector_for_cost *cost_vec)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- unsigned ncopies;
- bool nested_in_vect_loop = false;
- class loop *iv_loop;
- tree vec_def;
- edge pe = loop_preheader_edge (loop);
- basic_block new_bb;
- tree new_vec, vec_init, vec_step, t;
- tree new_name;
- gimple *new_stmt;
- gphi *induction_phi;
- tree induc_def, vec_dest;
- tree init_expr, step_expr;
- poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- unsigned i;
- tree expr;
- gimple_stmt_iterator si;
-
- gphi *phi = dyn_cast <gphi *> (stmt_info->stmt);
- if (!phi)
- return false;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- return false;
-
- /* Make sure it was recognized as induction computation. */
- if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
- return false;
-
- tree vectype = STMT_VINFO_VECTYPE (stmt_info);
- poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
-
- if (slp_node)
- ncopies = 1;
- else
- ncopies = vect_get_num_copies (loop_vinfo, vectype);
- gcc_assert (ncopies >= 1);
-
- /* FORNOW. These restrictions should be relaxed. */
- if (nested_in_vect_loop_p (loop, stmt_info))
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- gimple *exit_phi;
- edge latch_e;
- tree loop_arg;
-
- if (ncopies > 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "multiple types in nested loop.\n");
- return false;
- }
-
- exit_phi = NULL;
- latch_e = loop_latch_edge (loop->inner);
- loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
- {
- gimple *use_stmt = USE_STMT (use_p);
- if (is_gimple_debug (use_stmt))
- continue;
-
- if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
- {
- exit_phi = use_stmt;
- break;
- }
- }
- if (exit_phi)
- {
- stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
- if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
- && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "inner-loop induction only used outside "
- "of the outer vectorized loop.\n");
- return false;
- }
- }
-
- nested_in_vect_loop = true;
- iv_loop = loop->inner;
- }
- else
- iv_loop = loop;
- gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
-
- if (slp_node && !nunits.is_constant ())
- {
- /* The current SLP code creates the step value element-by-element. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "SLP induction not supported for variable-length"
- " vectors.\n");
- return false;
- }
-
- step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
- gcc_assert (step_expr != NULL_TREE);
- tree step_vectype = get_same_sized_vectype (TREE_TYPE (step_expr), vectype);
-
- /* Check for backend support of PLUS/MINUS_EXPR. */
- if (!directly_supported_p (PLUS_EXPR, step_vectype)
- || !directly_supported_p (MINUS_EXPR, step_vectype))
- return false;
-
- if (!vec_stmt) /* transformation not required. */
- {
- unsigned inside_cost = 0, prologue_cost = 0;
- if (slp_node)
- {
- /* We eventually need to set a vector type on invariant
- arguments. */
- unsigned j;
- slp_tree child;
- FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (slp_node), j, child)
- if (!vect_maybe_update_slp_op_vectype
- (child, SLP_TREE_VECTYPE (slp_node)))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "incompatible vector types for "
- "invariants\n");
- return false;
- }
- /* loop cost for vec_loop. */
- inside_cost
- = record_stmt_cost (cost_vec,
- SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node),
- vector_stmt, stmt_info, 0, vect_body);
- /* prologue cost for vec_init (if not nested) and step. */
- prologue_cost = record_stmt_cost (cost_vec, 1 + !nested_in_vect_loop,
- scalar_to_vec,
- stmt_info, 0, vect_prologue);
- }
- else /* if (!slp_node) */
- {
- /* loop cost for vec_loop. */
- inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
- stmt_info, 0, vect_body);
- /* prologue cost for vec_init and vec_step. */
- prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
- stmt_info, 0, vect_prologue);
- }
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "vect_model_induction_cost: inside_cost = %d, "
- "prologue_cost = %d .\n", inside_cost,
- prologue_cost);
-
- STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
- DUMP_VECT_SCOPE ("vectorizable_induction");
- return true;
- }
-
- /* Transform. */
-
- /* Compute a vector variable, initialized with the first VF values of
- the induction variable. E.g., for an iv with IV_PHI='X' and
- evolution S, for a vector of 4 units, we want to compute:
- [X, X + S, X + 2*S, X + 3*S]. */
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
-
- pe = loop_preheader_edge (iv_loop);
- /* Find the first insertion point in the BB. */
- basic_block bb = gimple_bb (phi);
- si = gsi_after_labels (bb);
-
- /* For SLP induction we have to generate several IVs as for example
- with group size 3 we need
- [i0, i1, i2, i0 + S0] [i1 + S1, i2 + S2, i0 + 2*S0, i1 + 2*S1]
- [i2 + 2*S2, i0 + 3*S0, i1 + 3*S1, i2 + 3*S2]. */
- if (slp_node)
- {
- /* Enforced above. */
- unsigned int const_nunits = nunits.to_constant ();
-
- /* The initial values are vectorized, but any lanes > group_size
- need adjustment. */
- slp_tree init_node
- = SLP_TREE_CHILDREN (slp_node)[pe->dest_idx];
-
- /* Gather steps. Since we do not vectorize inductions as
- cycles we have to reconstruct the step from SCEV data. */
- unsigned group_size = SLP_TREE_LANES (slp_node);
- tree *steps = XALLOCAVEC (tree, group_size);
- tree *inits = XALLOCAVEC (tree, group_size);
- stmt_vec_info phi_info;
- FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, phi_info)
- {
- steps[i] = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
- if (!init_node)
- inits[i] = gimple_phi_arg_def (as_a<gphi *> (phi_info->stmt),
- pe->dest_idx);
- }
-
- /* Now generate the IVs. */
- unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- gcc_assert ((const_nunits * nvects) % group_size == 0);
- unsigned nivs;
- if (nested_in_vect_loop)
- nivs = nvects;
- else
- {
- /* Compute the number of distinct IVs we need. First reduce
- group_size if it is a multiple of const_nunits so we get
- one IV for a group_size of 4 but const_nunits 2. */
- unsigned group_sizep = group_size;
- if (group_sizep % const_nunits == 0)
- group_sizep = group_sizep / const_nunits;
- nivs = least_common_multiple (group_sizep,
- const_nunits) / const_nunits;
- }
- tree stept = TREE_TYPE (step_vectype);
- tree lupdate_mul = NULL_TREE;
- if (!nested_in_vect_loop)
- {
- /* The number of iterations covered in one vector iteration. */
- unsigned lup_mul = (nvects * const_nunits) / group_size;
- lupdate_mul
- = build_vector_from_val (step_vectype,
- SCALAR_FLOAT_TYPE_P (stept)
- ? build_real_from_wide (stept, lup_mul,
- UNSIGNED)
- : build_int_cstu (stept, lup_mul));
- }
- tree peel_mul = NULL_TREE;
- gimple_seq init_stmts = NULL;
- if (LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo))
- {
- if (SCALAR_FLOAT_TYPE_P (stept))
- peel_mul = gimple_build (&init_stmts, FLOAT_EXPR, stept,
- LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
- else
- peel_mul = gimple_convert (&init_stmts, stept,
- LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo));
- peel_mul = gimple_build_vector_from_val (&init_stmts,
- step_vectype, peel_mul);
- }
- unsigned ivn;
- auto_vec<tree> vec_steps;
- for (ivn = 0; ivn < nivs; ++ivn)
- {
- tree_vector_builder step_elts (step_vectype, const_nunits, 1);
- tree_vector_builder init_elts (vectype, const_nunits, 1);
- tree_vector_builder mul_elts (step_vectype, const_nunits, 1);
- for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
- {
- /* The scalar steps of the IVs. */
- tree elt = steps[(ivn*const_nunits + eltn) % group_size];
- elt = gimple_convert (&init_stmts, TREE_TYPE (step_vectype), elt);
- step_elts.quick_push (elt);
- if (!init_node)
- {
- /* The scalar inits of the IVs if not vectorized. */
- elt = inits[(ivn*const_nunits + eltn) % group_size];
- if (!useless_type_conversion_p (TREE_TYPE (vectype),
- TREE_TYPE (elt)))
- elt = gimple_build (&init_stmts, VIEW_CONVERT_EXPR,
- TREE_TYPE (vectype), elt);
- init_elts.quick_push (elt);
- }
- /* The number of steps to add to the initial values. */
- unsigned mul_elt = (ivn*const_nunits + eltn) / group_size;
- mul_elts.quick_push (SCALAR_FLOAT_TYPE_P (stept)
- ? build_real_from_wide (stept,
- mul_elt, UNSIGNED)
- : build_int_cstu (stept, mul_elt));
- }
- vec_step = gimple_build_vector (&init_stmts, &step_elts);
- vec_steps.safe_push (vec_step);
- tree step_mul = gimple_build_vector (&init_stmts, &mul_elts);
- if (peel_mul)
- step_mul = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
- step_mul, peel_mul);
- if (!init_node)
- vec_init = gimple_build_vector (&init_stmts, &init_elts);
-
- /* Create the induction-phi that defines the induction-operand. */
- vec_dest = vect_get_new_vect_var (vectype, vect_simple_var,
- "vec_iv_");
- induction_phi = create_phi_node (vec_dest, iv_loop->header);
- induc_def = PHI_RESULT (induction_phi);
-
- /* Create the iv update inside the loop */
- tree up = vec_step;
- if (lupdate_mul)
- up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
- vec_step, lupdate_mul);
- gimple_seq stmts = NULL;
- vec_def = gimple_convert (&stmts, step_vectype, induc_def);
- vec_def = gimple_build (&stmts,
- PLUS_EXPR, step_vectype, vec_def, up);
- vec_def = gimple_convert (&stmts, vectype, vec_def);
- gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
- add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
- UNKNOWN_LOCATION);
-
- if (init_node)
- vec_init = vect_get_slp_vect_def (init_node, ivn);
- if (!nested_in_vect_loop
- && !integer_zerop (step_mul))
- {
- vec_def = gimple_convert (&init_stmts, step_vectype, vec_init);
- up = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
- vec_step, step_mul);
- vec_def = gimple_build (&init_stmts, PLUS_EXPR, step_vectype,
- vec_def, up);
- vec_init = gimple_convert (&init_stmts, vectype, vec_def);
- }
-
- /* Set the arguments of the phi node: */
- add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
-
- SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
- }
- if (!nested_in_vect_loop)
- {
- /* Fill up to the number of vectors we need for the whole group. */
- nivs = least_common_multiple (group_size,
- const_nunits) / const_nunits;
- vec_steps.reserve (nivs-ivn);
- for (; ivn < nivs; ++ivn)
- {
- SLP_TREE_VEC_STMTS (slp_node)
- .quick_push (SLP_TREE_VEC_STMTS (slp_node)[0]);
- vec_steps.quick_push (vec_steps[0]);
- }
- }
-
- /* Re-use IVs when we can. We are generating further vector
- stmts by adding VF' * stride to the IVs generated above. */
- if (ivn < nvects)
- {
- unsigned vfp
- = least_common_multiple (group_size, const_nunits) / group_size;
- tree lupdate_mul
- = build_vector_from_val (step_vectype,
- SCALAR_FLOAT_TYPE_P (stept)
- ? build_real_from_wide (stept,
- vfp, UNSIGNED)
- : build_int_cstu (stept, vfp));
- for (; ivn < nvects; ++ivn)
- {
- gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
- tree def = gimple_get_lhs (iv);
- if (ivn < 2*nivs)
- vec_steps[ivn - nivs]
- = gimple_build (&init_stmts, MULT_EXPR, step_vectype,
- vec_steps[ivn - nivs], lupdate_mul);
- gimple_seq stmts = NULL;
- def = gimple_convert (&stmts, step_vectype, def);
- def = gimple_build (&stmts, PLUS_EXPR, step_vectype,
- def, vec_steps[ivn % nivs]);
- def = gimple_convert (&stmts, vectype, def);
- if (gimple_code (iv) == GIMPLE_PHI)
- gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
- else
- {
- gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
- gsi_insert_seq_after (&tgsi, stmts, GSI_CONTINUE_LINKING);
- }
- SLP_TREE_VEC_STMTS (slp_node)
- .quick_push (SSA_NAME_DEF_STMT (def));
- }
- }
-
- new_bb = gsi_insert_seq_on_edge_immediate (pe, init_stmts);
- gcc_assert (!new_bb);
-
- return true;
- }
-
- init_expr = vect_phi_initial_value (phi);
-
- gimple_seq stmts = NULL;
- if (!nested_in_vect_loop)
- {
- /* Convert the initial value to the IV update type. */
- tree new_type = TREE_TYPE (step_expr);
- init_expr = gimple_convert (&stmts, new_type, init_expr);
-
- /* If we are using the loop mask to "peel" for alignment then we need
- to adjust the start value here. */
- tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
- if (skip_niters != NULL_TREE)
- {
- if (FLOAT_TYPE_P (vectype))
- skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
- skip_niters);
- else
- skip_niters = gimple_convert (&stmts, new_type, skip_niters);
- tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
- skip_niters, step_expr);
- init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
- init_expr, skip_step);
- }
- }
-
- if (stmts)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
-
- /* Create the vector that holds the initial_value of the induction. */
- if (nested_in_vect_loop)
- {
- /* iv_loop is nested in the loop to be vectorized. init_expr had already
- been created during vectorization of previous stmts. We obtain it
- from the STMT_VINFO_VEC_STMT of the defining stmt. */
- auto_vec<tree> vec_inits;
- vect_get_vec_defs_for_operand (loop_vinfo, stmt_info, 1,
- init_expr, &vec_inits);
- vec_init = vec_inits[0];
- /* If the initial value is not of proper type, convert it. */
- if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
- {
- new_stmt
- = gimple_build_assign (vect_get_new_ssa_name (vectype,
- vect_simple_var,
- "vec_iv_"),
- VIEW_CONVERT_EXPR,
- build1 (VIEW_CONVERT_EXPR, vectype,
- vec_init));
- vec_init = gimple_assign_lhs (new_stmt);
- new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
- new_stmt);
- gcc_assert (!new_bb);
- }
- }
- else
- {
- /* iv_loop is the loop to be vectorized. Create:
- vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
- stmts = NULL;
- new_name = gimple_convert (&stmts, TREE_TYPE (step_expr), init_expr);
-
- unsigned HOST_WIDE_INT const_nunits;
- if (nunits.is_constant (&const_nunits))
- {
- tree_vector_builder elts (step_vectype, const_nunits, 1);
- elts.quick_push (new_name);
- for (i = 1; i < const_nunits; i++)
- {
- /* Create: new_name_i = new_name + step_expr */
- new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
- new_name, step_expr);
- elts.quick_push (new_name);
- }
- /* Create a vector from [new_name_0, new_name_1, ...,
- new_name_nunits-1] */
- vec_init = gimple_build_vector (&stmts, &elts);
- }
- else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
- /* Build the initial value directly from a VEC_SERIES_EXPR. */
- vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, step_vectype,
- new_name, step_expr);
- else
- {
- /* Build:
- [base, base, base, ...]
- + (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
- gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
- gcc_assert (flag_associative_math);
- tree index = build_index_vector (step_vectype, 0, 1);
- tree base_vec = gimple_build_vector_from_val (&stmts, step_vectype,
- new_name);
- tree step_vec = gimple_build_vector_from_val (&stmts, step_vectype,
- step_expr);
- vec_init = gimple_build (&stmts, FLOAT_EXPR, step_vectype, index);
- vec_init = gimple_build (&stmts, MULT_EXPR, step_vectype,
- vec_init, step_vec);
- vec_init = gimple_build (&stmts, PLUS_EXPR, step_vectype,
- vec_init, base_vec);
- }
- vec_init = gimple_convert (&stmts, vectype, vec_init);
-
- if (stmts)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
- gcc_assert (!new_bb);
- }
- }
-
-
- /* Create the vector that holds the step of the induction. */
- if (nested_in_vect_loop)
- /* iv_loop is nested in the loop to be vectorized. Generate:
- vec_step = [S, S, S, S] */
- new_name = step_expr;
- else
- {
- /* iv_loop is the loop to be vectorized. Generate:
- vec_step = [VF*S, VF*S, VF*S, VF*S] */
- gimple_seq seq = NULL;
- if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
- {
- expr = build_int_cst (integer_type_node, vf);
- expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
- }
- else
- expr = build_int_cst (TREE_TYPE (step_expr), vf);
- new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
- expr, step_expr);
- if (seq)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
- gcc_assert (!new_bb);
- }
- }
-
- t = unshare_expr (new_name);
- gcc_assert (CONSTANT_CLASS_P (new_name)
- || TREE_CODE (new_name) == SSA_NAME);
- new_vec = build_vector_from_val (step_vectype, t);
- vec_step = vect_init_vector (loop_vinfo, stmt_info,
- new_vec, step_vectype, NULL);
-
-
- /* Create the following def-use cycle:
- loop prolog:
- vec_init = ...
- vec_step = ...
- loop:
- vec_iv = PHI <vec_init, vec_loop>
- ...
- STMT
- ...
- vec_loop = vec_iv + vec_step; */
-
- /* Create the induction-phi that defines the induction-operand. */
- vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
- induction_phi = create_phi_node (vec_dest, iv_loop->header);
- induc_def = PHI_RESULT (induction_phi);
-
- /* Create the iv update inside the loop */
- stmts = NULL;
- vec_def = gimple_convert (&stmts, step_vectype, induc_def);
- vec_def = gimple_build (&stmts, PLUS_EXPR, step_vectype, vec_def, vec_step);
- vec_def = gimple_convert (&stmts, vectype, vec_def);
- gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
- new_stmt = SSA_NAME_DEF_STMT (vec_def);
-
- /* Set the arguments of the phi node: */
- add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
- add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
- UNKNOWN_LOCATION);
-
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (induction_phi);
- *vec_stmt = induction_phi;
-
- /* In case that vectorization factor (VF) is bigger than the number
- of elements that we can fit in a vectype (nunits), we have to generate
- more than one vector stmt - i.e - we need to "unroll" the
- vector stmt by a factor VF/nunits. For more details see documentation
- in vectorizable_operation. */
-
- if (ncopies > 1)
- {
- gimple_seq seq = NULL;
- /* FORNOW. This restriction should be relaxed. */
- gcc_assert (!nested_in_vect_loop);
-
- /* Create the vector that holds the step of the induction. */
- if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
- {
- expr = build_int_cst (integer_type_node, nunits);
- expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
- }
- else
- expr = build_int_cst (TREE_TYPE (step_expr), nunits);
- new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
- expr, step_expr);
- if (seq)
- {
- new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
- gcc_assert (!new_bb);
- }
-
- t = unshare_expr (new_name);
- gcc_assert (CONSTANT_CLASS_P (new_name)
- || TREE_CODE (new_name) == SSA_NAME);
- new_vec = build_vector_from_val (step_vectype, t);
- vec_step = vect_init_vector (loop_vinfo, stmt_info,
- new_vec, step_vectype, NULL);
-
- vec_def = induc_def;
- for (i = 1; i < ncopies; i++)
- {
- /* vec_i = vec_prev + vec_step */
- gimple_seq stmts = NULL;
- vec_def = gimple_convert (&stmts, step_vectype, vec_def);
- vec_def = gimple_build (&stmts,
- PLUS_EXPR, step_vectype, vec_def, vec_step);
- vec_def = gimple_convert (&stmts, vectype, vec_def);
-
- gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
- new_stmt = SSA_NAME_DEF_STMT (vec_def);
- STMT_VINFO_VEC_STMTS (stmt_info).safe_push (new_stmt);
- }
- }
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "transform induction: created def-use cycle: %G%G",
- induction_phi, SSA_NAME_DEF_STMT (vec_def));
-
- return true;
-}
-
-/* Function vectorizable_live_operation.
-
- STMT_INFO computes a value that is used outside the loop. Check if
- it can be supported. */
-
-bool
-vectorizable_live_operation (vec_info *vinfo,
- stmt_vec_info stmt_info,
- gimple_stmt_iterator *gsi,
- slp_tree slp_node, slp_instance slp_node_instance,
- int slp_index, bool vec_stmt_p,
- stmt_vector_for_cost *cost_vec)
-{
- loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
- imm_use_iterator imm_iter;
- tree lhs, lhs_type, bitsize;
- tree vectype = (slp_node
- ? SLP_TREE_VECTYPE (slp_node)
- : STMT_VINFO_VECTYPE (stmt_info));
- poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
- int ncopies;
- gimple *use_stmt;
- auto_vec<tree> vec_oprnds;
- int vec_entry = 0;
- poly_uint64 vec_index = 0;
-
- gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
-
- /* If a stmt of a reduction is live, vectorize it via
- vect_create_epilog_for_reduction. vectorizable_reduction assessed
- validity so just trigger the transform here. */
- if (STMT_VINFO_REDUC_DEF (vect_orig_stmt (stmt_info)))
- {
- if (!vec_stmt_p)
- return true;
- if (slp_node)
- {
- /* For reduction chains the meta-info is attached to
- the group leader. */
- if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
- stmt_info = REDUC_GROUP_FIRST_ELEMENT (stmt_info);
- /* For SLP reductions we vectorize the epilogue for
- all involved stmts together. */
- else if (slp_index != 0)
- return true;
- else
- /* For SLP reductions the meta-info is attached to
- the representative. */
- stmt_info = SLP_TREE_REPRESENTATIVE (slp_node);
- }
- stmt_vec_info reduc_info = info_for_reduction (loop_vinfo, stmt_info);
- gcc_assert (reduc_info->is_reduc_info);
- if (STMT_VINFO_REDUC_TYPE (reduc_info) == FOLD_LEFT_REDUCTION
- || STMT_VINFO_REDUC_TYPE (reduc_info) == EXTRACT_LAST_REDUCTION)
- return true;
- vect_create_epilog_for_reduction (loop_vinfo, stmt_info, slp_node,
- slp_node_instance);
- return true;
- }
-
- /* If STMT is not relevant and it is a simple assignment and its inputs are
- invariant then it can remain in place, unvectorized. The original last
- scalar value that it computes will be used. */
- if (!STMT_VINFO_RELEVANT_P (stmt_info))
- {
- gcc_assert (is_simple_and_all_uses_invariant (stmt_info, loop_vinfo));
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "statement is simple and uses invariant. Leaving in "
- "place.\n");
- return true;
- }
-
- if (slp_node)
- ncopies = 1;
- else
- ncopies = vect_get_num_copies (loop_vinfo, vectype);
-
- if (slp_node)
- {
- gcc_assert (slp_index >= 0);
-
- /* Get the last occurrence of the scalar index from the concatenation of
- all the slp vectors. Calculate which slp vector it is and the index
- within. */
- int num_scalar = SLP_TREE_LANES (slp_node);
- int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
- poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
-
- /* Calculate which vector contains the result, and which lane of
- that vector we need. */
- if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "Cannot determine which vector holds the"
- " final result.\n");
- return false;
- }
- }
-
- if (!vec_stmt_p)
- {
- /* No transformation required. */
- if (loop_vinfo && LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo))
- {
- if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
- OPTIMIZE_FOR_SPEED))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't operate on partial vectors "
- "because the target doesn't support extract "
- "last reduction.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
- else if (slp_node)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't operate on partial vectors "
- "because an SLP statement is live after "
- "the loop.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
- else if (ncopies > 1)
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "can't operate on partial vectors "
- "because ncopies is greater than 1.\n");
- LOOP_VINFO_CAN_USE_PARTIAL_VECTORS_P (loop_vinfo) = false;
- }
- else
- {
- gcc_assert (ncopies == 1 && !slp_node);
- vect_record_loop_mask (loop_vinfo,
- &LOOP_VINFO_MASKS (loop_vinfo),
- 1, vectype, NULL);
- }
- }
- /* ??? Enable for loop costing as well. */
- if (!loop_vinfo)
- record_stmt_cost (cost_vec, 1, vec_to_scalar, stmt_info, NULL_TREE,
- 0, vect_epilogue);
- return true;
- }
-
- /* Use the lhs of the original scalar statement. */
- gimple *stmt = vect_orig_stmt (stmt_info)->stmt;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "extracting lane for live "
- "stmt %G", stmt);
-
- lhs = gimple_get_lhs (stmt);
- lhs_type = TREE_TYPE (lhs);
-
- bitsize = vector_element_bits_tree (vectype);
-
- /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
- tree vec_lhs, bitstart;
- gimple *vec_stmt;
- if (slp_node)
- {
- gcc_assert (!loop_vinfo || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
-
- /* Get the correct slp vectorized stmt. */
- vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry];
- vec_lhs = gimple_get_lhs (vec_stmt);
-
- /* Get entry to use. */
- bitstart = bitsize_int (vec_index);
- bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
- }
- else
- {
- /* For multiple copies, get the last copy. */
- vec_stmt = STMT_VINFO_VEC_STMTS (stmt_info).last ();
- vec_lhs = gimple_get_lhs (vec_stmt);
-
- /* Get the last lane in the vector. */
- bitstart = int_const_binop (MULT_EXPR, bitsize, bitsize_int (nunits - 1));
- }
-
- if (loop_vinfo)
- {
- /* Ensure the VEC_LHS for lane extraction stmts satisfy loop-closed PHI
- requirement, insert one phi node for it. It looks like:
- loop;
- BB:
- # lhs' = PHI <lhs>
- ==>
- loop;
- BB:
- # vec_lhs' = PHI <vec_lhs>
- new_tree = lane_extract <vec_lhs', ...>;
- lhs' = new_tree; */
-
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- basic_block exit_bb = single_exit (loop)->dest;
- gcc_assert (single_pred_p (exit_bb));
-
- tree vec_lhs_phi = copy_ssa_name (vec_lhs);
- gimple *phi = create_phi_node (vec_lhs_phi, exit_bb);
- SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, vec_lhs);
-
- gimple_seq stmts = NULL;
- tree new_tree;
- if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
- {
- /* Emit:
-
- SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
-
- where VEC_LHS is the vectorized live-out result and MASK is
- the loop mask for the final iteration. */
- gcc_assert (ncopies == 1 && !slp_node);
- tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
- tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
- 1, vectype, 0);
- tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST, scalar_type,
- mask, vec_lhs_phi);
-
- /* Convert the extracted vector element to the scalar type. */
- new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
- }
- else
- {
- tree bftype = TREE_TYPE (vectype);
- if (VECTOR_BOOLEAN_TYPE_P (vectype))
- bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
- new_tree = build3 (BIT_FIELD_REF, bftype,
- vec_lhs_phi, bitsize, bitstart);
- new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
- &stmts, true, NULL_TREE);
- }
-
- if (stmts)
- {
- gimple_stmt_iterator exit_gsi = gsi_after_labels (exit_bb);
- gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
-
- /* Remove existing phi from lhs and create one copy from new_tree. */
- tree lhs_phi = NULL_TREE;
- gimple_stmt_iterator gsi;
- for (gsi = gsi_start_phis (exit_bb);
- !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gimple *phi = gsi_stmt (gsi);
- if ((gimple_phi_arg_def (phi, 0) == lhs))
- {
- remove_phi_node (&gsi, false);
- lhs_phi = gimple_phi_result (phi);
- gimple *copy = gimple_build_assign (lhs_phi, new_tree);
- gsi_insert_before (&exit_gsi, copy, GSI_SAME_STMT);
- break;
- }
- }
- }
-
- /* Replace use of lhs with newly computed result. If the use stmt is a
- single arg PHI, just replace all uses of PHI result. It's necessary
- because lcssa PHI defining lhs may be before newly inserted stmt. */
- use_operand_p use_p;
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
- if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
- && !is_gimple_debug (use_stmt))
- {
- if (gimple_code (use_stmt) == GIMPLE_PHI
- && gimple_phi_num_args (use_stmt) == 1)
- {
- replace_uses_by (gimple_phi_result (use_stmt), new_tree);
- }
- else
- {
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_tree);
- }
- update_stmt (use_stmt);
- }
- }
- else
- {
- /* For basic-block vectorization simply insert the lane-extraction. */
- tree bftype = TREE_TYPE (vectype);
- if (VECTOR_BOOLEAN_TYPE_P (vectype))
- bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
- tree new_tree = build3 (BIT_FIELD_REF, bftype,
- vec_lhs, bitsize, bitstart);
- gimple_seq stmts = NULL;
- new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
- &stmts, true, NULL_TREE);
- if (TREE_CODE (new_tree) == SSA_NAME
- && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
- SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_tree) = 1;
- if (is_a <gphi *> (vec_stmt))
- {
- gimple_stmt_iterator si = gsi_after_labels (gimple_bb (vec_stmt));
- gsi_insert_seq_before (&si, stmts, GSI_SAME_STMT);
- }
- else
- {
- gimple_stmt_iterator si = gsi_for_stmt (vec_stmt);
- gsi_insert_seq_after (&si, stmts, GSI_SAME_STMT);
- }
-
- /* Replace use of lhs with newly computed result. If the use stmt is a
- single arg PHI, just replace all uses of PHI result. It's necessary
- because lcssa PHI defining lhs may be before newly inserted stmt. */
- use_operand_p use_p;
- stmt_vec_info use_stmt_info;
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
- if (!is_gimple_debug (use_stmt)
- && (!(use_stmt_info = vinfo->lookup_stmt (use_stmt))
- || !PURE_SLP_STMT (vect_stmt_to_vectorize (use_stmt_info))))
- {
- /* ??? This can happen when the live lane ends up being
- used in a vector construction code-generated by an
- external SLP node (and code-generation for that already
- happened). See gcc.dg/vect/bb-slp-47.c.
- Doing this is what would happen if that vector CTOR
- were not code-generated yet so it is not too bad.
- ??? In fact we'd likely want to avoid this situation
- in the first place. */
- if (TREE_CODE (new_tree) == SSA_NAME
- && !SSA_NAME_IS_DEFAULT_DEF (new_tree)
- && gimple_code (use_stmt) != GIMPLE_PHI
- && !vect_stmt_dominates_stmt_p (SSA_NAME_DEF_STMT (new_tree),
- use_stmt))
- {
- enum tree_code code = gimple_assign_rhs_code (use_stmt);
- gcc_assert (code == CONSTRUCTOR
- || code == VIEW_CONVERT_EXPR
- || CONVERT_EXPR_CODE_P (code));
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "Using original scalar computation for "
- "live lane because use preceeds vector "
- "def\n");
- continue;
- }
- /* ??? It can also happen that we end up pulling a def into
- a loop where replacing out-of-loop uses would require
- a new LC SSA PHI node. Retain the original scalar in
- those cases as well. PR98064. */
- if (TREE_CODE (new_tree) == SSA_NAME
- && !SSA_NAME_IS_DEFAULT_DEF (new_tree)
- && (gimple_bb (use_stmt)->loop_father
- != gimple_bb (vec_stmt)->loop_father)
- && !flow_loop_nested_p (gimple_bb (vec_stmt)->loop_father,
- gimple_bb (use_stmt)->loop_father))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
- "Using original scalar computation for "
- "live lane because there is an out-of-loop "
- "definition for it\n");
- continue;
- }
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- SET_USE (use_p, new_tree);
- update_stmt (use_stmt);
- }
- }
-
- return true;
-}
-
-/* Kill any debug uses outside LOOP of SSA names defined in STMT_INFO. */
-
-static void
-vect_loop_kill_debug_uses (class loop *loop, stmt_vec_info stmt_info)
-{
- ssa_op_iter op_iter;
- imm_use_iterator imm_iter;
- def_operand_p def_p;
- gimple *ustmt;
-
- FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt_info->stmt, op_iter, SSA_OP_DEF)
- {
- FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
- {
- basic_block bb;
-
- if (!is_gimple_debug (ustmt))
- continue;
-
- bb = gimple_bb (ustmt);
-
- if (!flow_bb_inside_loop_p (loop, bb))
- {
- if (gimple_debug_bind_p (ustmt))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "killing debug use\n");
-
- gimple_debug_bind_reset_value (ustmt);
- update_stmt (ustmt);
- }
- else
- gcc_unreachable ();
- }
- }
- }
-}
-
-/* Given loop represented by LOOP_VINFO, return true if computation of
- LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
- otherwise. */
-
-static bool
-loop_niters_no_overflow (loop_vec_info loop_vinfo)
-{
- /* Constant case. */
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
- {
- tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
- tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
-
- gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
- gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
- if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
- return true;
- }
-
- widest_int max;
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- /* Check the upper bound of loop niters. */
- if (get_max_loop_iterations (loop, &max))
- {
- tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
- signop sgn = TYPE_SIGN (type);
- widest_int type_max = widest_int::from (wi::max_value (type), sgn);
- if (max < type_max)
- return true;
- }
- return false;
-}
-
-/* Return a mask type with half the number of elements as OLD_TYPE,
- given that it should have mode NEW_MODE. */
-
-tree
-vect_halve_mask_nunits (tree old_type, machine_mode new_mode)
-{
- poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (old_type), 2);
- return build_truth_vector_type_for_mode (nunits, new_mode);
-}
-
-/* Return a mask type with twice as many elements as OLD_TYPE,
- given that it should have mode NEW_MODE. */
-
-tree
-vect_double_mask_nunits (tree old_type, machine_mode new_mode)
-{
- poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (old_type) * 2;
- return build_truth_vector_type_for_mode (nunits, new_mode);
-}
-
-/* Record that a fully-masked version of LOOP_VINFO would need MASKS to
- contain a sequence of NVECTORS masks that each control a vector of type
- VECTYPE. If SCALAR_MASK is nonnull, the fully-masked loop would AND
- these vector masks with the vector version of SCALAR_MASK. */
-
-void
-vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
- unsigned int nvectors, tree vectype, tree scalar_mask)
-{
- gcc_assert (nvectors != 0);
- if (masks->length () < nvectors)
- masks->safe_grow_cleared (nvectors, true);
- rgroup_controls *rgm = &(*masks)[nvectors - 1];
- /* The number of scalars per iteration and the number of vectors are
- both compile-time constants. */
- unsigned int nscalars_per_iter
- = exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
- LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
-
- if (scalar_mask)
- {
- scalar_cond_masked_key cond (scalar_mask, nvectors);
- loop_vinfo->scalar_cond_masked_set.add (cond);
- }
-
- if (rgm->max_nscalars_per_iter < nscalars_per_iter)
- {
- rgm->max_nscalars_per_iter = nscalars_per_iter;
- rgm->type = truth_type_for (vectype);
- rgm->factor = 1;
- }
-}
-
-/* Given a complete set of masks MASKS, extract mask number INDEX
- for an rgroup that operates on NVECTORS vectors of type VECTYPE,
- where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
-
- See the comment above vec_loop_masks for more details about the mask
- arrangement. */
-
-tree
-vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
- unsigned int nvectors, tree vectype, unsigned int index)
-{
- rgroup_controls *rgm = &(*masks)[nvectors - 1];
- tree mask_type = rgm->type;
-
- /* Populate the rgroup's mask array, if this is the first time we've
- used it. */
- if (rgm->controls.is_empty ())
- {
- rgm->controls.safe_grow_cleared (nvectors, true);
- for (unsigned int i = 0; i < nvectors; ++i)
- {
- tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
- /* Provide a dummy definition until the real one is available. */
- SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
- rgm->controls[i] = mask;
- }
- }
-
- tree mask = rgm->controls[index];
- if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
- TYPE_VECTOR_SUBPARTS (vectype)))
- {
- /* A loop mask for data type X can be reused for data type Y
- if X has N times more elements than Y and if Y's elements
- are N times bigger than X's. In this case each sequence
- of N elements in the loop mask will be all-zero or all-one.
- We can then view-convert the mask so that each sequence of
- N elements is replaced by a single element. */
- gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
- TYPE_VECTOR_SUBPARTS (vectype)));
- gimple_seq seq = NULL;
- mask_type = truth_type_for (vectype);
- mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
- if (seq)
- gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
- }
- return mask;
-}
-
-/* Record that LOOP_VINFO would need LENS to contain a sequence of NVECTORS
- lengths for controlling an operation on VECTYPE. The operation splits
- each element of VECTYPE into FACTOR separate subelements, measuring the
- length as a number of these subelements. */
-
-void
-vect_record_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
- unsigned int nvectors, tree vectype, unsigned int factor)
-{
- gcc_assert (nvectors != 0);
- if (lens->length () < nvectors)
- lens->safe_grow_cleared (nvectors, true);
- rgroup_controls *rgl = &(*lens)[nvectors - 1];
-
- /* The number of scalars per iteration, scalar occupied bytes and
- the number of vectors are both compile-time constants. */
- unsigned int nscalars_per_iter
- = exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
- LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
-
- if (rgl->max_nscalars_per_iter < nscalars_per_iter)
- {
- /* For now, we only support cases in which all loads and stores fall back
- to VnQI or none do. */
- gcc_assert (!rgl->max_nscalars_per_iter
- || (rgl->factor == 1 && factor == 1)
- || (rgl->max_nscalars_per_iter * rgl->factor
- == nscalars_per_iter * factor));
- rgl->max_nscalars_per_iter = nscalars_per_iter;
- rgl->type = vectype;
- rgl->factor = factor;
- }
-}
-
-/* Given a complete set of length LENS, extract length number INDEX for an
- rgroup that operates on NVECTORS vectors, where 0 <= INDEX < NVECTORS. */
-
-tree
-vect_get_loop_len (loop_vec_info loop_vinfo, vec_loop_lens *lens,
- unsigned int nvectors, unsigned int index)
-{
- rgroup_controls *rgl = &(*lens)[nvectors - 1];
- bool use_bias_adjusted_len =
- LOOP_VINFO_PARTIAL_LOAD_STORE_BIAS (loop_vinfo) != 0;
-
- /* Populate the rgroup's len array, if this is the first time we've
- used it. */
- if (rgl->controls.is_empty ())
- {
- rgl->controls.safe_grow_cleared (nvectors, true);
- for (unsigned int i = 0; i < nvectors; ++i)
- {
- tree len_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
- gcc_assert (len_type != NULL_TREE);
-
- tree len = make_temp_ssa_name (len_type, NULL, "loop_len");
-
- /* Provide a dummy definition until the real one is available. */
- SSA_NAME_DEF_STMT (len) = gimple_build_nop ();
- rgl->controls[i] = len;
-
- if (use_bias_adjusted_len)
- {
- gcc_assert (i == 0);
- tree adjusted_len =
- make_temp_ssa_name (len_type, NULL, "adjusted_loop_len");
- SSA_NAME_DEF_STMT (adjusted_len) = gimple_build_nop ();
- rgl->bias_adjusted_ctrl = adjusted_len;
- }
- }
- }
-
- if (use_bias_adjusted_len)
- return rgl->bias_adjusted_ctrl;
- else
- return rgl->controls[index];
-}
-
-/* Scale profiling counters by estimation for LOOP which is vectorized
- by factor VF. */
-
-static void
-scale_profile_for_vect_loop (class loop *loop, unsigned vf)
-{
- edge preheader = loop_preheader_edge (loop);
- /* Reduce loop iterations by the vectorization factor. */
- gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
- profile_count freq_h = loop->header->count, freq_e = preheader->count ();
-
- if (freq_h.nonzero_p ())
- {
- profile_probability p;
-
- /* Avoid dropping loop body profile counter to 0 because of zero count
- in loop's preheader. */
- if (!(freq_e == profile_count::zero ()))
- freq_e = freq_e.force_nonzero ();
- p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
- scale_loop_frequencies (loop, p);
- }
-
- edge exit_e = single_exit (loop);
- exit_e->probability = profile_probability::always ()
- .apply_scale (1, new_est_niter + 1);
-
- edge exit_l = single_pred_edge (loop->latch);
- profile_probability prob = exit_l->probability;
- exit_l->probability = exit_e->probability.invert ();
- if (prob.initialized_p () && exit_l->probability.initialized_p ())
- scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
-}
-
-/* For a vectorized stmt DEF_STMT_INFO adjust all vectorized PHI
- latch edge values originally defined by it. */
-
-static void
-maybe_set_vectorized_backedge_value (loop_vec_info loop_vinfo,
- stmt_vec_info def_stmt_info)
-{
- tree def = gimple_get_lhs (vect_orig_stmt (def_stmt_info)->stmt);
- if (!def || TREE_CODE (def) != SSA_NAME)
- return;
- stmt_vec_info phi_info;
- imm_use_iterator iter;
- use_operand_p use_p;
- FOR_EACH_IMM_USE_FAST (use_p, iter, def)
- if (gphi *phi = dyn_cast <gphi *> (USE_STMT (use_p)))
- if (gimple_bb (phi)->loop_father->header == gimple_bb (phi)
- && (phi_info = loop_vinfo->lookup_stmt (phi))
- && STMT_VINFO_RELEVANT_P (phi_info)
- && VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (phi_info))
- && STMT_VINFO_REDUC_TYPE (phi_info) != FOLD_LEFT_REDUCTION
- && STMT_VINFO_REDUC_TYPE (phi_info) != EXTRACT_LAST_REDUCTION)
- {
- loop_p loop = gimple_bb (phi)->loop_father;
- edge e = loop_latch_edge (loop);
- if (PHI_ARG_DEF_FROM_EDGE (phi, e) == def)
- {
- vec<gimple *> &phi_defs = STMT_VINFO_VEC_STMTS (phi_info);
- vec<gimple *> &latch_defs = STMT_VINFO_VEC_STMTS (def_stmt_info);
- gcc_assert (phi_defs.length () == latch_defs.length ());
- for (unsigned i = 0; i < phi_defs.length (); ++i)
- add_phi_arg (as_a <gphi *> (phi_defs[i]),
- gimple_get_lhs (latch_defs[i]), e,
- gimple_phi_arg_location (phi, e->dest_idx));
- }
- }
-}
-
-/* Vectorize STMT_INFO if relevant, inserting any new instructions before GSI.
- When vectorizing STMT_INFO as a store, set *SEEN_STORE to its
- stmt_vec_info. */
-
-static bool
-vect_transform_loop_stmt (loop_vec_info loop_vinfo, stmt_vec_info stmt_info,
- gimple_stmt_iterator *gsi, stmt_vec_info *seen_store)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "------>vectorizing statement: %G", stmt_info->stmt);
-
- if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
- vect_loop_kill_debug_uses (loop, stmt_info);
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- return false;
-
- if (STMT_VINFO_VECTYPE (stmt_info))
- {
- poly_uint64 nunits
- = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
- if (!STMT_SLP_TYPE (stmt_info)
- && maybe_ne (nunits, vf)
- && dump_enabled_p ())
- /* For SLP VF is set according to unrolling factor, and not
- to vector size, hence for SLP this print is not valid. */
- dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
- }
-
- /* Pure SLP statements have already been vectorized. We still need
- to apply loop vectorization to hybrid SLP statements. */
- if (PURE_SLP_STMT (stmt_info))
- return false;
-
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
-
- if (vect_transform_stmt (loop_vinfo, stmt_info, gsi, NULL, NULL))
- *seen_store = stmt_info;
-
- return true;
-}
-
-/* Helper function to pass to simplify_replace_tree to enable replacing tree's
- in the hash_map with its corresponding values. */
-
-static tree
-find_in_mapping (tree t, void *context)
-{
- hash_map<tree,tree>* mapping = (hash_map<tree, tree>*) context;
-
- tree *value = mapping->get (t);
- return value ? *value : t;
-}
-
-/* Update EPILOGUE's loop_vec_info. EPILOGUE was constructed as a copy of the
- original loop that has now been vectorized.
-
- The inits of the data_references need to be advanced with the number of
- iterations of the main loop. This has been computed in vect_do_peeling and
- is stored in parameter ADVANCE. We first restore the data_references
- initial offset with the values recored in ORIG_DRS_INIT.
-
- Since the loop_vec_info of this EPILOGUE was constructed for the original
- loop, its stmt_vec_infos all point to the original statements. These need
- to be updated to point to their corresponding copies as well as the SSA_NAMES
- in their PATTERN_DEF_SEQs and RELATED_STMTs.
-
- The data_reference's connections also need to be updated. Their
- corresponding dr_vec_info need to be reconnected to the EPILOGUE's
- stmt_vec_infos, their statements need to point to their corresponding copy,
- if they are gather loads or scatter stores then their reference needs to be
- updated to point to its corresponding copy and finally we set
- 'base_misaligned' to false as we have already peeled for alignment in the
- prologue of the main loop. */
-
-static void
-update_epilogue_loop_vinfo (class loop *epilogue, tree advance)
-{
- loop_vec_info epilogue_vinfo = loop_vec_info_for_loop (epilogue);
- auto_vec<gimple *> stmt_worklist;
- hash_map<tree,tree> mapping;
- gimple *orig_stmt, *new_stmt;
- gimple_stmt_iterator epilogue_gsi;
- gphi_iterator epilogue_phi_gsi;
- stmt_vec_info stmt_vinfo = NULL, related_vinfo;
- basic_block *epilogue_bbs = get_loop_body (epilogue);
- unsigned i;
-
- free (LOOP_VINFO_BBS (epilogue_vinfo));
- LOOP_VINFO_BBS (epilogue_vinfo) = epilogue_bbs;
-
- /* Advance data_reference's with the number of iterations of the previous
- loop and its prologue. */
- vect_update_inits_of_drs (epilogue_vinfo, advance, PLUS_EXPR);
-
-
- /* The EPILOGUE loop is a copy of the original loop so they share the same
- gimple UIDs. In this loop we update the loop_vec_info of the EPILOGUE to
- point to the copied statements. We also create a mapping of all LHS' in
- the original loop and all the LHS' in the EPILOGUE and create worklists to
- update teh STMT_VINFO_PATTERN_DEF_SEQs and STMT_VINFO_RELATED_STMTs. */
- for (unsigned i = 0; i < epilogue->num_nodes; ++i)
- {
- for (epilogue_phi_gsi = gsi_start_phis (epilogue_bbs[i]);
- !gsi_end_p (epilogue_phi_gsi); gsi_next (&epilogue_phi_gsi))
- {
- new_stmt = epilogue_phi_gsi.phi ();
-
- gcc_assert (gimple_uid (new_stmt) > 0);
- stmt_vinfo
- = epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
-
- orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
- STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
-
- mapping.put (gimple_phi_result (orig_stmt),
- gimple_phi_result (new_stmt));
- /* PHI nodes can not have patterns or related statements. */
- gcc_assert (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo) == NULL
- && STMT_VINFO_RELATED_STMT (stmt_vinfo) == NULL);
- }
-
- for (epilogue_gsi = gsi_start_bb (epilogue_bbs[i]);
- !gsi_end_p (epilogue_gsi); gsi_next (&epilogue_gsi))
- {
- new_stmt = gsi_stmt (epilogue_gsi);
- if (is_gimple_debug (new_stmt))
- continue;
-
- gcc_assert (gimple_uid (new_stmt) > 0);
- stmt_vinfo
- = epilogue_vinfo->stmt_vec_infos[gimple_uid (new_stmt) - 1];
-
- orig_stmt = STMT_VINFO_STMT (stmt_vinfo);
- STMT_VINFO_STMT (stmt_vinfo) = new_stmt;
-
- if (tree old_lhs = gimple_get_lhs (orig_stmt))
- mapping.put (old_lhs, gimple_get_lhs (new_stmt));
-
- if (STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo))
- {
- gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_vinfo);
- for (gimple_stmt_iterator gsi = gsi_start (seq);
- !gsi_end_p (gsi); gsi_next (&gsi))
- stmt_worklist.safe_push (gsi_stmt (gsi));
- }
-
- related_vinfo = STMT_VINFO_RELATED_STMT (stmt_vinfo);
- if (related_vinfo != NULL && related_vinfo != stmt_vinfo)
- {
- gimple *stmt = STMT_VINFO_STMT (related_vinfo);
- stmt_worklist.safe_push (stmt);
- /* Set BB such that the assert in
- 'get_initial_def_for_reduction' is able to determine that
- the BB of the related stmt is inside this loop. */
- gimple_set_bb (stmt,
- gimple_bb (new_stmt));
- related_vinfo = STMT_VINFO_RELATED_STMT (related_vinfo);
- gcc_assert (related_vinfo == NULL
- || related_vinfo == stmt_vinfo);
- }
- }
- }
-
- /* The PATTERN_DEF_SEQs and RELATED_STMTs in the epilogue were constructed
- using the original main loop and thus need to be updated to refer to the
- cloned variables used in the epilogue. */
- for (unsigned i = 0; i < stmt_worklist.length (); ++i)
- {
- gimple *stmt = stmt_worklist[i];
- tree *new_op;
-
- for (unsigned j = 1; j < gimple_num_ops (stmt); ++j)
- {
- tree op = gimple_op (stmt, j);
- if ((new_op = mapping.get(op)))
- gimple_set_op (stmt, j, *new_op);
- else
- {
- /* PR92429: The last argument of simplify_replace_tree disables
- folding when replacing arguments. This is required as
- otherwise you might end up with different statements than the
- ones analyzed in vect_loop_analyze, leading to different
- vectorization. */
- op = simplify_replace_tree (op, NULL_TREE, NULL_TREE,
- &find_in_mapping, &mapping, false);
- gimple_set_op (stmt, j, op);
- }
- }
- }
-
- struct data_reference *dr;
- vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (epilogue_vinfo);
- FOR_EACH_VEC_ELT (datarefs, i, dr)
- {
- orig_stmt = DR_STMT (dr);
- gcc_assert (gimple_uid (orig_stmt) > 0);
- stmt_vinfo = epilogue_vinfo->stmt_vec_infos[gimple_uid (orig_stmt) - 1];
- /* Data references for gather loads and scatter stores do not use the
- updated offset we set using ADVANCE. Instead we have to make sure the
- reference in the data references point to the corresponding copy of
- the original in the epilogue. */
- if (STMT_VINFO_MEMORY_ACCESS_TYPE (vect_stmt_to_vectorize (stmt_vinfo))
- == VMAT_GATHER_SCATTER)
- {
- DR_REF (dr)
- = simplify_replace_tree (DR_REF (dr), NULL_TREE, NULL_TREE,
- &find_in_mapping, &mapping);
- DR_BASE_ADDRESS (dr)
- = simplify_replace_tree (DR_BASE_ADDRESS (dr), NULL_TREE, NULL_TREE,
- &find_in_mapping, &mapping);
- }
- DR_STMT (dr) = STMT_VINFO_STMT (stmt_vinfo);
- stmt_vinfo->dr_aux.stmt = stmt_vinfo;
- /* The vector size of the epilogue is smaller than that of the main loop
- so the alignment is either the same or lower. This means the dr will
- thus by definition be aligned. */
- STMT_VINFO_DR_INFO (stmt_vinfo)->base_misaligned = false;
- }
-
- epilogue_vinfo->shared->datarefs_copy.release ();
- epilogue_vinfo->shared->save_datarefs ();
-}
-
-/* Function vect_transform_loop.
-
- The analysis phase has determined that the loop is vectorizable.
- Vectorize the loop - created vectorized stmts to replace the scalar
- stmts in the loop, and update the loop exit condition.
- Returns scalar epilogue loop if any. */
-
-class loop *
-vect_transform_loop (loop_vec_info loop_vinfo, gimple *loop_vectorized_call)
-{
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- class loop *epilogue = NULL;
- basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
- int nbbs = loop->num_nodes;
- int i;
- tree niters_vector = NULL_TREE;
- tree step_vector = NULL_TREE;
- tree niters_vector_mult_vf = NULL_TREE;
- poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- unsigned int lowest_vf = constant_lower_bound (vf);
- gimple *stmt;
- bool check_profitability = false;
- unsigned int th;
-
- DUMP_VECT_SCOPE ("vec_transform_loop");
-
- loop_vinfo->shared->check_datarefs ();
-
- /* Use the more conservative vectorization threshold. If the number
- of iterations is constant assume the cost check has been performed
- by our caller. If the threshold makes all loops profitable that
- run at least the (estimated) vectorization factor number of times
- checking is pointless, too. */
- th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
- if (vect_apply_runtime_profitability_check_p (loop_vinfo))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Profitability threshold is %d loop iterations.\n",
- th);
- check_profitability = true;
- }
-
- /* Make sure there exists a single-predecessor exit bb. Do this before
- versioning. */
- edge e = single_exit (loop);
- if (! single_pred_p (e->dest))
- {
- split_loop_exit_edge (e, true);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "split exit edge\n");
- }
-
- /* Version the loop first, if required, so the profitability check
- comes first. */
-
- if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
- {
- class loop *sloop
- = vect_loop_versioning (loop_vinfo, loop_vectorized_call);
- sloop->force_vectorize = false;
- check_profitability = false;
- }
-
- /* Make sure there exists a single-predecessor exit bb also on the
- scalar loop copy. Do this after versioning but before peeling
- so CFG structure is fine for both scalar and if-converted loop
- to make slpeel_duplicate_current_defs_from_edges face matched
- loop closed PHI nodes on the exit. */
- if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
- {
- e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
- if (! single_pred_p (e->dest))
- {
- split_loop_exit_edge (e, true);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
- }
- }
-
- tree niters = vect_build_loop_niters (loop_vinfo);
- LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
- tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
- bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
- tree advance;
- drs_init_vec orig_drs_init;
-
- epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
- &step_vector, &niters_vector_mult_vf, th,
- check_profitability, niters_no_overflow,
- &advance);
-
- if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo)
- && LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo).initialized_p ())
- scale_loop_frequencies (LOOP_VINFO_SCALAR_LOOP (loop_vinfo),
- LOOP_VINFO_SCALAR_LOOP_SCALING (loop_vinfo));
-
- if (niters_vector == NULL_TREE)
- {
- if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
- && !LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo)
- && known_eq (lowest_vf, vf))
- {
- niters_vector
- = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
- LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
- step_vector = build_one_cst (TREE_TYPE (niters));
- }
- else if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
- vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
- &step_vector, niters_no_overflow);
- else
- /* vect_do_peeling subtracted the number of peeled prologue
- iterations from LOOP_VINFO_NITERS. */
- vect_gen_vector_loop_niters (loop_vinfo, LOOP_VINFO_NITERS (loop_vinfo),
- &niters_vector, &step_vector,
- niters_no_overflow);
- }
-
- /* 1) Make sure the loop header has exactly two entries
- 2) Make sure we have a preheader basic block. */
-
- gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
-
- split_edge (loop_preheader_edge (loop));
-
- if (vect_use_loop_mask_for_alignment_p (loop_vinfo))
- /* This will deal with any possible peeling. */
- vect_prepare_for_masked_peels (loop_vinfo);
-
- /* Schedule the SLP instances first, then handle loop vectorization
- below. */
- if (!loop_vinfo->slp_instances.is_empty ())
- {
- DUMP_VECT_SCOPE ("scheduling SLP instances");
- vect_schedule_slp (loop_vinfo, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
- }
-
- /* FORNOW: the vectorizer supports only loops which body consist
- of one basic block (header + empty latch). When the vectorizer will
- support more involved loop forms, the order by which the BBs are
- traversed need to be reconsidered. */
-
- for (i = 0; i < nbbs; i++)
- {
- basic_block bb = bbs[i];
- stmt_vec_info stmt_info;
-
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gphi *phi = si.phi ();
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "------>vectorizing phi: %G", phi);
- stmt_info = loop_vinfo->lookup_stmt (phi);
- if (!stmt_info)
- continue;
-
- if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
- vect_loop_kill_debug_uses (loop, stmt_info);
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- continue;
-
- if (STMT_VINFO_VECTYPE (stmt_info)
- && (maybe_ne
- (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
- && dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
-
- if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
- && ! PURE_SLP_STMT (stmt_info))
- {
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
- vect_transform_stmt (loop_vinfo, stmt_info, NULL, NULL, NULL);
- }
- }
-
- for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
- gsi_next (&si))
- {
- gphi *phi = si.phi ();
- stmt_info = loop_vinfo->lookup_stmt (phi);
- if (!stmt_info)
- continue;
-
- if (!STMT_VINFO_RELEVANT_P (stmt_info)
- && !STMT_VINFO_LIVE_P (stmt_info))
- continue;
-
- if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
- || STMT_VINFO_DEF_TYPE (stmt_info) == vect_internal_def)
- && ! PURE_SLP_STMT (stmt_info))
- maybe_set_vectorized_backedge_value (loop_vinfo, stmt_info);
- }
-
- for (gimple_stmt_iterator si = gsi_start_bb (bb);
- !gsi_end_p (si);)
- {
- stmt = gsi_stmt (si);
- /* During vectorization remove existing clobber stmts. */
- if (gimple_clobber_p (stmt))
- {
- unlink_stmt_vdef (stmt);
- gsi_remove (&si, true);
- release_defs (stmt);
- }
- else
- {
- /* Ignore vector stmts created in the outer loop. */
- stmt_info = loop_vinfo->lookup_stmt (stmt);
-
- /* vector stmts created in the outer-loop during vectorization of
- stmts in an inner-loop may not have a stmt_info, and do not
- need to be vectorized. */
- stmt_vec_info seen_store = NULL;
- if (stmt_info)
- {
- if (STMT_VINFO_IN_PATTERN_P (stmt_info))
- {
- gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
- for (gimple_stmt_iterator subsi = gsi_start (def_seq);
- !gsi_end_p (subsi); gsi_next (&subsi))
- {
- stmt_vec_info pat_stmt_info
- = loop_vinfo->lookup_stmt (gsi_stmt (subsi));
- vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
- &si, &seen_store);
- }
- stmt_vec_info pat_stmt_info
- = STMT_VINFO_RELATED_STMT (stmt_info);
- if (vect_transform_loop_stmt (loop_vinfo, pat_stmt_info,
- &si, &seen_store))
- maybe_set_vectorized_backedge_value (loop_vinfo,
- pat_stmt_info);
- }
- else
- {
- if (vect_transform_loop_stmt (loop_vinfo, stmt_info, &si,
- &seen_store))
- maybe_set_vectorized_backedge_value (loop_vinfo,
- stmt_info);
- }
- }
- gsi_next (&si);
- if (seen_store)
- {
- if (STMT_VINFO_GROUPED_ACCESS (seen_store))
- /* Interleaving. If IS_STORE is TRUE, the
- vectorization of the interleaving chain was
- completed - free all the stores in the chain. */
- vect_remove_stores (loop_vinfo,
- DR_GROUP_FIRST_ELEMENT (seen_store));
- else
- /* Free the attached stmt_vec_info and remove the stmt. */
- loop_vinfo->remove_stmt (stmt_info);
- }
- }
- }
-
- /* Stub out scalar statements that must not survive vectorization.
- Doing this here helps with grouped statements, or statements that
- are involved in patterns. */
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
- !gsi_end_p (gsi); gsi_next (&gsi))
- {
- gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
- if (!call || !gimple_call_internal_p (call))
- continue;
- internal_fn ifn = gimple_call_internal_fn (call);
- if (ifn == IFN_MASK_LOAD)
- {
- tree lhs = gimple_get_lhs (call);
- if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
- {
- tree zero = build_zero_cst (TREE_TYPE (lhs));
- gimple *new_stmt = gimple_build_assign (lhs, zero);
- gsi_replace (&gsi, new_stmt, true);
- }
- }
- else if (conditional_internal_fn_code (ifn) != ERROR_MARK)
- {
- tree lhs = gimple_get_lhs (call);
- if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
- {
- tree else_arg
- = gimple_call_arg (call, gimple_call_num_args (call) - 1);
- gimple *new_stmt = gimple_build_assign (lhs, else_arg);
- gsi_replace (&gsi, new_stmt, true);
- }
- }
- }
- } /* BBs in loop */
-
- /* The vectorization factor is always > 1, so if we use an IV increment of 1.
- a zero NITERS becomes a nonzero NITERS_VECTOR. */
- if (integer_onep (step_vector))
- niters_no_overflow = true;
- vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
- niters_vector_mult_vf, !niters_no_overflow);
-
- unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
- scale_profile_for_vect_loop (loop, assumed_vf);
-
- /* True if the final iteration might not handle a full vector's
- worth of scalar iterations. */
- bool final_iter_may_be_partial
- = LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo);
- /* The minimum number of iterations performed by the epilogue. This
- is 1 when peeling for gaps because we always need a final scalar
- iteration. */
- int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
- /* +1 to convert latch counts to loop iteration counts,
- -min_epilogue_iters to remove iterations that cannot be performed
- by the vector code. */
- int bias_for_lowest = 1 - min_epilogue_iters;
- int bias_for_assumed = bias_for_lowest;
- int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
- if (alignment_npeels && LOOP_VINFO_USING_PARTIAL_VECTORS_P (loop_vinfo))
- {
- /* When the amount of peeling is known at compile time, the first
- iteration will have exactly alignment_npeels active elements.
- In the worst case it will have at least one. */
- int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
- bias_for_lowest += lowest_vf - min_first_active;
- bias_for_assumed += assumed_vf - min_first_active;
- }
- /* In these calculations the "- 1" converts loop iteration counts
- back to latch counts. */
- if (loop->any_upper_bound)
- {
- loop_vec_info main_vinfo = LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo);
- loop->nb_iterations_upper_bound
- = (final_iter_may_be_partial
- ? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
- lowest_vf) - 1
- : wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
- lowest_vf) - 1);
- if (main_vinfo)
- {
- unsigned int bound;
- poly_uint64 main_iters
- = upper_bound (LOOP_VINFO_VECT_FACTOR (main_vinfo),
- LOOP_VINFO_COST_MODEL_THRESHOLD (main_vinfo));
- main_iters
- = upper_bound (main_iters,
- LOOP_VINFO_VERSIONING_THRESHOLD (main_vinfo));
- if (can_div_away_from_zero_p (main_iters,
- LOOP_VINFO_VECT_FACTOR (loop_vinfo),
- &bound))
- loop->nb_iterations_upper_bound
- = wi::umin ((widest_int) (bound - 1),
- loop->nb_iterations_upper_bound);
- }
- }
- if (loop->any_likely_upper_bound)
- loop->nb_iterations_likely_upper_bound
- = (final_iter_may_be_partial
- ? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
- + bias_for_lowest, lowest_vf) - 1
- : wi::udiv_floor (loop->nb_iterations_likely_upper_bound
- + bias_for_lowest, lowest_vf) - 1);
- if (loop->any_estimate)
- loop->nb_iterations_estimate
- = (final_iter_may_be_partial
- ? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
- assumed_vf) - 1
- : wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
- assumed_vf) - 1);
-
- if (dump_enabled_p ())
- {
- if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
- {
- dump_printf_loc (MSG_NOTE, vect_location,
- "LOOP VECTORIZED\n");
- if (loop->inner)
- dump_printf_loc (MSG_NOTE, vect_location,
- "OUTER LOOP VECTORIZED\n");
- dump_printf (MSG_NOTE, "\n");
- }
- else
- dump_printf_loc (MSG_NOTE, vect_location,
- "LOOP EPILOGUE VECTORIZED (MODE=%s)\n",
- GET_MODE_NAME (loop_vinfo->vector_mode));
- }
-
- /* Loops vectorized with a variable factor won't benefit from
- unrolling/peeling. */
- if (!vf.is_constant ())
- {
- loop->unroll = 1;
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location, "Disabling unrolling due to"
- " variable-length vectorization factor\n");
- }
- /* Free SLP instances here because otherwise stmt reference counting
- won't work. */
- slp_instance instance;
- FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
- vect_free_slp_instance (instance);
- LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
- /* Clear-up safelen field since its value is invalid after vectorization
- since vectorized loop can have loop-carried dependencies. */
- loop->safelen = 0;
-
- if (epilogue)
- {
- update_epilogue_loop_vinfo (epilogue, advance);
-
- epilogue->simduid = loop->simduid;
- epilogue->force_vectorize = loop->force_vectorize;
- epilogue->dont_vectorize = false;
- }
-
- return epilogue;
-}
-
-/* The code below is trying to perform simple optimization - revert
- if-conversion for masked stores, i.e. if the mask of a store is zero
- do not perform it and all stored value producers also if possible.
- For example,
- for (i=0; i<n; i++)
- if (c[i])
- {
- p1[i] += 1;
- p2[i] = p3[i] +2;
- }
- this transformation will produce the following semi-hammock:
-
- if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
- {
- vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
- vect__12.22_172 = vect__11.19_170 + vect_cst__171;
- MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
- vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
- vect__19.28_184 = vect__18.25_182 + vect_cst__183;
- MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
- }
-*/
-
-void
-optimize_mask_stores (class loop *loop)
-{
- basic_block *bbs = get_loop_body (loop);
- unsigned nbbs = loop->num_nodes;
- unsigned i;
- basic_block bb;
- class loop *bb_loop;
- gimple_stmt_iterator gsi;
- gimple *stmt;
- auto_vec<gimple *> worklist;
- auto_purge_vect_location sentinel;
-
- vect_location = find_loop_location (loop);
- /* Pick up all masked stores in loop if any. */
- for (i = 0; i < nbbs; i++)
- {
- bb = bbs[i];
- for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- stmt = gsi_stmt (gsi);
- if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
- worklist.safe_push (stmt);
- }
- }
-
- free (bbs);
- if (worklist.is_empty ())
- return;
-
- /* Loop has masked stores. */
- while (!worklist.is_empty ())
- {
- gimple *last, *last_store;
- edge e, efalse;
- tree mask;
- basic_block store_bb, join_bb;
- gimple_stmt_iterator gsi_to;
- tree vdef, new_vdef;
- gphi *phi;
- tree vectype;
- tree zero;
-
- last = worklist.pop ();
- mask = gimple_call_arg (last, 2);
- bb = gimple_bb (last);
- /* Create then_bb and if-then structure in CFG, then_bb belongs to
- the same loop as if_bb. It could be different to LOOP when two
- level loop-nest is vectorized and mask_store belongs to the inner
- one. */
- e = split_block (bb, last);
- bb_loop = bb->loop_father;
- gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
- join_bb = e->dest;
- store_bb = create_empty_bb (bb);
- add_bb_to_loop (store_bb, bb_loop);
- e->flags = EDGE_TRUE_VALUE;
- efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
- /* Put STORE_BB to likely part. */
- efalse->probability = profile_probability::unlikely ();
- store_bb->count = efalse->count ();
- make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
- if (dom_info_available_p (CDI_DOMINATORS))
- set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Create new block %d to sink mask stores.",
- store_bb->index);
- /* Create vector comparison with boolean result. */
- vectype = TREE_TYPE (mask);
- zero = build_zero_cst (vectype);
- stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
- gsi = gsi_last_bb (bb);
- gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
- /* Create new PHI node for vdef of the last masked store:
- .MEM_2 = VDEF <.MEM_1>
- will be converted to
- .MEM.3 = VDEF <.MEM_1>
- and new PHI node will be created in join bb
- .MEM_2 = PHI <.MEM_1, .MEM_3>
- */
- vdef = gimple_vdef (last);
- new_vdef = make_ssa_name (gimple_vop (cfun), last);
- gimple_set_vdef (last, new_vdef);
- phi = create_phi_node (vdef, join_bb);
- add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
-
- /* Put all masked stores with the same mask to STORE_BB if possible. */
- while (true)
- {
- gimple_stmt_iterator gsi_from;
- gimple *stmt1 = NULL;
-
- /* Move masked store to STORE_BB. */
- last_store = last;
- gsi = gsi_for_stmt (last);
- gsi_from = gsi;
- /* Shift GSI to the previous stmt for further traversal. */
- gsi_prev (&gsi);
- gsi_to = gsi_start_bb (store_bb);
- gsi_move_before (&gsi_from, &gsi_to);
- /* Setup GSI_TO to the non-empty block start. */
- gsi_to = gsi_start_bb (store_bb);
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Move stmt to created bb\n%G", last);
- /* Move all stored value producers if possible. */
- while (!gsi_end_p (gsi))
- {
- tree lhs;
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- bool res;
-
- /* Skip debug statements. */
- if (is_gimple_debug (gsi_stmt (gsi)))
- {
- gsi_prev (&gsi);
- continue;
- }
- stmt1 = gsi_stmt (gsi);
- /* Do not consider statements writing to memory or having
- volatile operand. */
- if (gimple_vdef (stmt1)
- || gimple_has_volatile_ops (stmt1))
- break;
- gsi_from = gsi;
- gsi_prev (&gsi);
- lhs = gimple_get_lhs (stmt1);
- if (!lhs)
- break;
-
- /* LHS of vectorized stmt must be SSA_NAME. */
- if (TREE_CODE (lhs) != SSA_NAME)
- break;
-
- if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
- {
- /* Remove dead scalar statement. */
- if (has_zero_uses (lhs))
- {
- gsi_remove (&gsi_from, true);
- continue;
- }
- }
-
- /* Check that LHS does not have uses outside of STORE_BB. */
- res = true;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
- {
- gimple *use_stmt;
- use_stmt = USE_STMT (use_p);
- if (is_gimple_debug (use_stmt))
- continue;
- if (gimple_bb (use_stmt) != store_bb)
- {
- res = false;
- break;
- }
- }
- if (!res)
- break;
-
- if (gimple_vuse (stmt1)
- && gimple_vuse (stmt1) != gimple_vuse (last_store))
- break;
-
- /* Can move STMT1 to STORE_BB. */
- if (dump_enabled_p ())
- dump_printf_loc (MSG_NOTE, vect_location,
- "Move stmt to created bb\n%G", stmt1);
- gsi_move_before (&gsi_from, &gsi_to);
- /* Shift GSI_TO for further insertion. */
- gsi_prev (&gsi_to);
- }
- /* Put other masked stores with the same mask to STORE_BB. */
- if (worklist.is_empty ()
- || gimple_call_arg (worklist.last (), 2) != mask
- || worklist.last () != stmt1)
- break;
- last = worklist.pop ();
- }
- add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
- }
-}
-
-/* Decide whether it is possible to use a zero-based induction variable
- when vectorizing LOOP_VINFO with partial vectors. If it is, return
- the value that the induction variable must be able to hold in order
- to ensure that the rgroups eventually have no active vector elements.
- Return -1 otherwise. */
-
-widest_int
-vect_iv_limit_for_partial_vectors (loop_vec_info loop_vinfo)
-{
- tree niters_skip = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
- class loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
- unsigned HOST_WIDE_INT max_vf = vect_max_vf (loop_vinfo);
-
- /* Calculate the value that the induction variable must be able
- to hit in order to ensure that we end the loop with an all-false mask.
- This involves adding the maximum number of inactive trailing scalar
- iterations. */
- widest_int iv_limit = -1;
- if (max_loop_iterations (loop, &iv_limit))
- {
- if (niters_skip)
- {
- /* Add the maximum number of skipped iterations to the
- maximum iteration count. */
- if (TREE_CODE (niters_skip) == INTEGER_CST)
- iv_limit += wi::to_widest (niters_skip);
- else
- iv_limit += max_vf - 1;
- }
- else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
- /* Make a conservatively-correct assumption. */
- iv_limit += max_vf - 1;
-
- /* IV_LIMIT is the maximum number of latch iterations, which is also
- the maximum in-range IV value. Round this value down to the previous
- vector alignment boundary and then add an extra full iteration. */
- poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
- iv_limit = (iv_limit & -(int) known_alignment (vf)) + max_vf;
- }
- return iv_limit;
-}
-
-/* For the given rgroup_controls RGC, check whether an induction variable
- would ever hit a value that produces a set of all-false masks or zero
- lengths before wrapping around. Return true if it's possible to wrap
- around before hitting the desirable value, otherwise return false. */
-
-bool
-vect_rgroup_iv_might_wrap_p (loop_vec_info loop_vinfo, rgroup_controls *rgc)
-{
- widest_int iv_limit = vect_iv_limit_for_partial_vectors (loop_vinfo);
-
- if (iv_limit == -1)
- return true;
-
- tree compare_type = LOOP_VINFO_RGROUP_COMPARE_TYPE (loop_vinfo);
- unsigned int compare_precision = TYPE_PRECISION (compare_type);
- unsigned nitems = rgc->max_nscalars_per_iter * rgc->factor;
-
- if (wi::min_precision (iv_limit * nitems, UNSIGNED) > compare_precision)
- return true;
-
- return false;
-}