aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-structalias.c
diff options
context:
space:
mode:
authorKai Tietz <kai.tietz@onevision.com>2011-01-01 11:05:41 +0000
committerKai Tietz <ktietz@gcc.gnu.org>2011-01-01 12:05:41 +0100
commit220e83ca20ee9254033fd5a6adec8a18d5ef6eb9 (patch)
tree965dc756aaa48aec86a2a583feae2d461252558b /gcc/tree-ssa-structalias.c
parent49e38883586f5bcca7dc763550b541c4c83f135e (diff)
downloadgcc-220e83ca20ee9254033fd5a6adec8a18d5ef6eb9.zip
gcc-220e83ca20ee9254033fd5a6adec8a18d5ef6eb9.tar.gz
gcc-220e83ca20ee9254033fd5a6adec8a18d5ef6eb9.tar.bz2
ChangeLog gcc/
2011-01-01 Kai Tietz <kai.tietz@onevision.com> PR target/38662 * tree.c (type_hash_eq): Call language hook for METHOD_TYPEs, too. ChangeLog gcc/cp 2011-01-01 Kai Tietz <kai.tietz@onevision.com> PR target/38662 * tree.c (cxx_type_hash_eq): Allow METHOD_TYPE, too. ChangeLog gcc/testsuite 2011-01-01 Kai Tietz <kai.tietz@onevision.com> PR target/38662 * g++.dg/eh/pr38662.C: New testcase. From-SVN: r168389
Diffstat (limited to 'gcc/tree-ssa-structalias.c')
0 files changed, 0 insertions, 0 deletions
='#n151'>151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988
/*  Loop transformation code generation
    Copyright (C) 2003, 2004 Free Software Foundation, Inc.
    Contributed by Daniel Berlin <dberlin@dberlin.org>

    This file is part of GCC.
    
    GCC is free software; you can redistribute it and/or modify it under
    the terms of the GNU General Public License as published by the Free
    Software Foundation; either version 2, or (at your option) any later
    version.
    
    GCC is distributed in the hope that it will be useful, but WITHOUT ANY
    WARRANTY; without even the implied warranty of MERCHANTABILITY or
    FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
    for more details.
    
    You should have received a copy of the GNU General Public License
    along with GCC; see the file COPYING.  If not, write to the Free
    Software Foundation, 59 Temple Place - Suite 330, Boston, MA
    02111-1307, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "errors.h"
#include "ggc.h"
#include "tree.h"
#include "target.h"
#include "rtl.h"
#include "basic-block.h"
#include "diagnostic.h"
#include "tree-flow.h"
#include "tree-dump.h"
#include "timevar.h"
#include "cfgloop.h"
#include "expr.h"
#include "optabs.h"
#include "tree-chrec.h"
#include "tree-data-ref.h"
#include "tree-pass.h"
#include "tree-scalar-evolution.h"
#include "vec.h"
#include "lambda.h"

/* This loop nest code generation is based on non-singular matrix
   math.
 
 A little terminology and a general sketch of the algorithm.  See "A singular
 loop transformation framework based on non-singular matrices" by Wei Li and
 Keshav Pingali for formal proofs that the various statements below are
 correct. 

 A loop iteration space are the points traversed by the loop.  A point in the
 iteration space can be represented by a vector of size <loop depth>.  You can
 therefore represent the iteration space as a integral combinations of a set
 of basis vectors. 

 A loop iteration space is dense if every integer point between the loop
 bounds is a point in the iteration space.  Every loop with a step of 1
 therefore has a dense iteration space.

 for i = 1 to 3, step 1 is a dense iteration space.
   
 A loop iteration space is sparse if it is not dense.  That is, the iteration
 space skips integer points that are within the loop bounds.  

 for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
 2 is skipped.

 Dense source spaces are easy to transform, because they don't skip any
 points to begin with.  Thus we can compute the exact bounds of the target
 space using min/max and floor/ceil.

 For a dense source space, we take the transformation matrix, decompose it
 into a lower triangular part (H) and a unimodular part (U). 
 We then compute the auxiliary space from the unimodular part (source loop
 nest . U = auxiliary space) , which has two important properties:
  1. It traverses the iterations in the same lexicographic order as the source
  space.
  2. It is a dense space when the source is a dense space (even if the target
  space is going to be sparse).
 
 Given the auxiliary space, we use the lower triangular part to compute the
 bounds in the target space by simple matrix multiplication.
 The gaps in the target space (IE the new loop step sizes) will be the
 diagonals of the H matrix.

 Sparse source spaces require another step, because you can't directly compute
 the exact bounds of the auxiliary and target space from the sparse space.
 Rather than try to come up with a separate algorithm to handle sparse source
 spaces directly, we just find a legal transformation matrix that gives you
 the sparse source space, from a dense space, and then transform the dense
 space.

 For a regular sparse space, you can represent the source space as an integer
 lattice, and the base space of that lattice will always be dense.  Thus, we
 effectively use the lattice to figure out the transformation from the lattice
 base space, to the sparse iteration space (IE what transform was applied to
 the dense space to make it sparse).  We then compose this transform with the
 transformation matrix specified by the user (since our matrix transformations
 are closed under composition, this is okay).  We can then use the base space
 (which is dense) plus the composed transformation matrix, to compute the rest
 of the transform using the dense space algorithm above.
 
 In other words, our sparse source space (B) is decomposed into a dense base
 space (A), and a matrix (L) that transforms A into B, such that A.L = B.
 We then compute the composition of L and the user transformation matrix (T),
 so that T is now a transform from A to the result, instead of from B to the
 result. 
 IE A.(LT) = result instead of B.T = result
 Since A is now a dense source space, we can use the dense source space
 algorithm above to compute the result of applying transform (LT) to A.

 Fourier-Motzkin elimination is used to compute the bounds of the base space
 of the lattice.  */

/* Lattice stuff that is internal to the code generation algorithm.  */

typedef struct
{
  /* Lattice base matrix.  */
  lambda_matrix base;
  /* Lattice dimension.  */
  int dimension;
  /* Origin vector for the coefficients.  */
  lambda_vector origin;
  /* Origin matrix for the invariants.  */
  lambda_matrix origin_invariants;
  /* Number of invariants.  */
  int invariants;
} *lambda_lattice;

#define LATTICE_BASE(T) ((T)->base)
#define LATTICE_DIMENSION(T) ((T)->dimension)
#define LATTICE_ORIGIN(T) ((T)->origin)
#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
#define LATTICE_INVARIANTS(T) ((T)->invariants)

static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
		       int, int);
static lambda_lattice lambda_lattice_new (int, int);
static lambda_lattice lambda_lattice_compute_base (lambda_loopnest);

static tree find_induction_var_from_exit_cond (struct loop *);

/* Create a new lambda body vector.  */

lambda_body_vector
lambda_body_vector_new (int size)
{
  lambda_body_vector ret;

  ret = ggc_alloc (sizeof (*ret));
  LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
  LBV_SIZE (ret) = size;
  LBV_DENOMINATOR (ret) = 1;
  return ret;
}

/* Compute the new coefficients for the vector based on the
  *inverse* of the transformation matrix.  */

lambda_body_vector
lambda_body_vector_compute_new (lambda_trans_matrix transform,
				lambda_body_vector vect)
{
  lambda_body_vector temp;
  int depth;

  /* Make sure the matrix is square.  */
  gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));

  depth = LTM_ROWSIZE (transform);

  temp = lambda_body_vector_new (depth);
  LBV_DENOMINATOR (temp) =
    LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
  lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
			     LTM_MATRIX (transform), depth,
			     LBV_COEFFICIENTS (temp));
  LBV_SIZE (temp) = LBV_SIZE (vect);
  return temp;
}

/* Print out a lambda body vector.  */

void
print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
{
  print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
}

/* Return TRUE if two linear expressions are equal.  */

static bool
lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
	   int depth, int invariants)
{
  int i;

  if (lle1 == NULL || lle2 == NULL)
    return false;
  if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
    return false;
  if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
    return false;
  for (i = 0; i < depth; i++)
    if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
      return false;
  for (i = 0; i < invariants; i++)
    if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
	LLE_INVARIANT_COEFFICIENTS (lle2)[i])
      return false;
  return true;
}

/* Create a new linear expression with dimension DIM, and total number
   of invariants INVARIANTS.  */

lambda_linear_expression
lambda_linear_expression_new (int dim, int invariants)
{
  lambda_linear_expression ret;

  ret = ggc_alloc_cleared (sizeof (*ret));

  LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
  LLE_CONSTANT (ret) = 0;
  LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
  LLE_DENOMINATOR (ret) = 1;
  LLE_NEXT (ret) = NULL;

  return ret;
}

/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
   The starting letter used for variable names is START.  */

static void
print_linear_expression (FILE * outfile, lambda_vector expr, int size,
			 char start)
{
  int i;
  bool first = true;
  for (i = 0; i < size; i++)
    {
      if (expr[i] != 0)
	{
	  if (first)
	    {
	      if (expr[i] < 0)
		fprintf (outfile, "-");
	      first = false;
	    }
	  else if (expr[i] > 0)
	    fprintf (outfile, " + ");
	  else
	    fprintf (outfile, " - ");
	  if (abs (expr[i]) == 1)
	    fprintf (outfile, "%c", start + i);
	  else
	    fprintf (outfile, "%d%c", abs (expr[i]), start + i);
	}
    }
}

/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
   depth/number of coefficients is given by DEPTH, the number of invariants is
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_linear_expression (FILE * outfile,
				lambda_linear_expression expr,
				int depth, int invariants, char start)
{
  fprintf (outfile, "\tLinear expression: ");
  print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
  fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
  fprintf (outfile, "  invariants: ");
  print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
			   invariants, 'A');
  fprintf (outfile, "  denominator: %d\n", LLE_DENOMINATOR (expr));
}

/* Print a lambda loop structure LOOP to OUTFILE.  The depth/number of
   coefficients is given by DEPTH, the number of invariants is 
   given by INVARIANTS, and the character to start variable names with is given
   by START.  */

void
print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
		   int invariants, char start)
{
  int step;
  lambda_linear_expression expr;

  gcc_assert (loop);

  expr = LL_LINEAR_OFFSET (loop);
  step = LL_STEP (loop);
  fprintf (outfile, "  step size = %d \n", step);

  if (expr)
    {
      fprintf (outfile, "  linear offset: \n");
      print_lambda_linear_expression (outfile, expr, depth, invariants,
				      start);
    }

  fprintf (outfile, "  lower bound: \n");
  for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
  fprintf (outfile, "  upper bound: \n");
  for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
    print_lambda_linear_expression (outfile, expr, depth, invariants, start);
}

/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
   number of invariants.  */

lambda_loopnest
lambda_loopnest_new (int depth, int invariants)
{
  lambda_loopnest ret;
  ret = ggc_alloc (sizeof (*ret));

  LN_LOOPS (ret) = ggc_alloc_cleared (depth * sizeof (lambda_loop));
  LN_DEPTH (ret) = depth;
  LN_INVARIANTS (ret) = invariants;

  return ret;
}

/* Print a lambda loopnest structure, NEST, to OUTFILE.  The starting
   character to use for loop names is given by START.  */

void
print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
{
  int i;
  for (i = 0; i < LN_DEPTH (nest); i++)
    {
      fprintf (outfile, "Loop %c\n", start + i);
      print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
			 LN_INVARIANTS (nest), 'i');
      fprintf (outfile, "\n");
    }
}

/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
   of invariants.    */

static lambda_lattice
lambda_lattice_new (int depth, int invariants)
{
  lambda_lattice ret;
  ret = ggc_alloc (sizeof (*ret));
  LATTICE_BASE (ret) = lambda_matrix_new (depth, depth);
  LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
  LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants);
  LATTICE_DIMENSION (ret) = depth;
  LATTICE_INVARIANTS (ret) = invariants;
  return ret;
}

/* Compute the lattice base for NEST.  The lattice base is essentially a
   non-singular transform from a dense base space to a sparse iteration space.
   We use it so that we don't have to specially handle the case of a sparse
   iteration space in other parts of the algorithm.  As a result, this routine
   only does something interesting (IE produce a matrix that isn't the
   identity matrix) if NEST is a sparse space.  */

static lambda_lattice
lambda_lattice_compute_base (lambda_loopnest nest)
{
  lambda_lattice ret;
  int depth, invariants;
  lambda_matrix base;

  int i, j, step;
  lambda_loop loop;
  lambda_linear_expression expression;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  ret = lambda_lattice_new (depth, invariants);
  base = LATTICE_BASE (ret);
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];
      gcc_assert (loop);
      step = LL_STEP (loop);
      /* If we have a step of 1, then the base is one, and the
         origin and invariant coefficients are 0.  */
      if (step == 1)
	{
	  for (j = 0; j < depth; j++)
	    base[i][j] = 0;
	  base[i][i] = 1;
	  LATTICE_ORIGIN (ret)[i] = 0;
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
	}
      else
	{
	  /* Otherwise, we need the lower bound expression (which must
	     be an affine function)  to determine the base.  */
	  expression = LL_LOWER_BOUND (loop);
	  gcc_assert (expression && LLE_NEXT (expression) 
		      && LLE_DENOMINATOR (expression) == 1);

	  /* The lower triangular portion of the base is going to be the
	     coefficient times the step */
	  for (j = 0; j < i; j++)
	    base[i][j] = LLE_COEFFICIENTS (expression)[j]
	      * LL_STEP (LN_LOOPS (nest)[j]);
	  base[i][i] = step;
	  for (j = i + 1; j < depth; j++)
	    base[i][j] = 0;

	  /* Origin for this loop is the constant of the lower bound
	     expression.  */
	  LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);

	  /* Coefficient for the invariants are equal to the invariant
	     coefficients in the expression.  */
	  for (j = 0; j < invariants; j++)
	    LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
	      LLE_INVARIANT_COEFFICIENTS (expression)[j];
	}
    }
  return ret;
}

/* Compute the greatest common denominator of two numbers (A and B) using
   Euclid's algorithm.  */

static int
gcd (int a, int b)
{

  int x, y, z;

  x = abs (a);
  y = abs (b);

  while (x > 0)
    {
      z = y % x;
      y = x;
      x = z;
    }

  return (y);
}

/* Compute the greatest common denominator of a VECTOR of SIZE numbers.  */

static int
gcd_vector (lambda_vector vector, int size)
{
  int i;
  int gcd1 = 0;

  if (size > 0)
    {
      gcd1 = vector[0];
      for (i = 1; i < size; i++)
	gcd1 = gcd (gcd1, vector[i]);
    }
  return gcd1;
}

/* Compute the least common multiple of two numbers A and B .  */

static int
lcm (int a, int b)
{
  return (abs (a) * abs (b) / gcd (a, b));
}

/* Compute the loop bounds for the auxiliary space NEST.
   Input system used is Ax <= b.  TRANS is the unimodular transformation.  */

static lambda_loopnest
lambda_compute_auxillary_space (lambda_loopnest nest,
				lambda_trans_matrix trans)
{
  lambda_matrix A, B, A1, B1, temp0;
  lambda_vector a, a1, temp1;
  lambda_matrix invertedtrans;
  int determinant, depth, invariants, size, newsize;
  int i, j, k;
  lambda_loopnest auxillary_nest;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_lattice lattice;

  int multiple, f1, f2;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Unfortunately, we can't know the number of constraints we'll have
     ahead of time, but this should be enough even in ridiculous loop nest
     cases. We abort if we go over this limit.  */
  A = lambda_matrix_new (128, depth);
  B = lambda_matrix_new (128, invariants);
  a = lambda_vector_new (128);

  A1 = lambda_matrix_new (128, depth);
  B1 = lambda_matrix_new (128, invariants);
  a1 = lambda_vector_new (128);

  /* Store the bounds in the equation matrix A, constant vector a, and
     invariant matrix B, so that we have Ax <= a + B.
     This requires a little equation rearranging so that everything is on the
     correct side of the inequality.  */
  size = 0;
  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (nest)[i];

      /* First we do the lower bound.  */
      if (LL_STEP (loop) > 0)
	expression = LL_LOWER_BOUND (loop);
      else
	expression = LL_UPPER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b.  IE put all
	     constants and single variables on   */
	  A[size][i] = -1 * LLE_DENOMINATOR (expression);
	  a[size] *= -1;
	  for (j = 0; j < invariants; j++)
	    B[size][j] *= -1;

	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);
	  
	}

      /* Then do the exact same thing for the upper bounds.  */
      if (LL_STEP (loop) > 0)
	expression = LL_UPPER_BOUND (loop);
      else
	expression = LL_LOWER_BOUND (loop);

      for (; expression != NULL; expression = LLE_NEXT (expression))
	{
	  /* Fill in the coefficient.  */
	  for (j = 0; j < i; j++)
	    A[size][j] = LLE_COEFFICIENTS (expression)[j];

	  /* And the invariant coefficient.  */
	  for (j = 0; j < invariants; j++)
	    B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];

	  /* And the constant.  */
	  a[size] = LLE_CONSTANT (expression);

	  /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b.  */
	  for (j = 0; j < i; j++)
	    A[size][j] *= -1;
	  A[size][i] = LLE_DENOMINATOR (expression);
	  size++;
	  /* Need to increase matrix sizes above.  */
	  gcc_assert (size <= 127);

	}
    }

  /* Compute the lattice base x = base * y + origin, where y is the
     base space.  */
  lattice = lambda_lattice_compute_base (nest);

  /* Ax <= a + B then becomes ALy <= a+B - A*origin.  L is the lattice base  */

  /* A1 = A * L */
  lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);

  /* a1 = a - A * origin constant.  */
  lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
  lambda_vector_add_mc (a, 1, a1, -1, a1, size);

  /* B1 = B - A * origin invariant.  */
  lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
		      invariants);
  lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);

  /* Now compute the auxiliary space bounds by first inverting U, multiplying
     it by A1, then performing fourier motzkin.  */

  invertedtrans = lambda_matrix_new (depth, depth);

  /* Compute the inverse of U.  */
  determinant = lambda_matrix_inverse (LTM_MATRIX (trans),
				       invertedtrans, depth);

  /* A = A1 inv(U).  */
  lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);

  /* Perform Fourier-Motzkin elimination to calculate the bounds of the
     auxillary nest.
     Fourier-Motzkin is a way of reducing systems of linear inequality so that
     it is easy to calculate the answer and bounds.
     A sketch of how it works:
     Given a system of linear inequalities, ai * xj >= bk, you can always
     rewrite the constraints so they are all of the form
     a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
     in b1 ... bk, and some a in a1...ai)
     You can then eliminate this x from the non-constant inequalities by
     rewriting these as a <= b, x >= constant, and delete the x variable.
     You can then repeat this for any remaining x variables, and then we have
     an easy to use variable <= constant (or no variables at all) form that we
     can construct our bounds from. 

     In our case, each time we eliminate, we construct part of the bound from
     the ith variable, then delete the ith variable. 

     Remember the constant are in our vector a, our coefficient matrix is A,
     and our invariant coefficient matrix is B  */

  /* Swap B and B1, and a1 and a */
  temp0 = B1;
  B1 = B;
  B = temp0;

  temp1 = a1;
  a1 = a;
  a = temp1;

  auxillary_nest = lambda_loopnest_new (depth, invariants);

  for (i = depth - 1; i >= 0; i--)
    {
      loop = lambda_loop_new ();
      LN_LOOPS (auxillary_nest)[i] = loop;
      LL_STEP (loop) = 1;

      for (j = 0; j < size; j++)
	{
	  if (A[j][i] < 0)
	    {
	      /* Lower bound.  */
	      expression = lambda_linear_expression_new (depth, invariants);

	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = A[j][k];
	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
	      LLE_DENOMINATOR (expression) = -1 * A[j][i];
	      LLE_CONSTANT (expression) = -1 * a[j];
	      /* Ignore if identical to the existing lower bound.  */
	      if (!lle_equal (LL_LOWER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
		  LL_LOWER_BOUND (loop) = expression;
		}

	    }
	  else if (A[j][i] > 0)
	    {
	      /* Upper bound.  */
	      expression = lambda_linear_expression_new (depth, invariants);
	      for (k = 0; k < i; k++)
		LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
	      LLE_CONSTANT (expression) = a[j];

	      for (k = 0; k < invariants; k++)
		LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];

	      LLE_DENOMINATOR (expression) = A[j][i];
	      /* Ignore if identical to the existing upper bound.  */
	      if (!lle_equal (LL_UPPER_BOUND (loop),
			      expression, depth, invariants))
		{
		  LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
		  LL_UPPER_BOUND (loop) = expression;
		}

	    }
	}
      /* creates a new system by deleting the i'th variable.  */
      newsize = 0;
      for (j = 0; j < size; j++)
	{
	  if (A[j][i] == 0)
	    {
	      lambda_vector_copy (A[j], A1[newsize], depth);
	      lambda_vector_copy (B[j], B1[newsize], invariants);
	      a1[newsize] = a[j];
	      newsize++;
	    }
	  else if (A[j][i] > 0)
	    {
	      for (k = 0; k < size; k++)
		{
		  if (A[k][i] < 0)
		    {
		      multiple = lcm (A[j][i], A[k][i]);
		      f1 = multiple / A[j][i];
		      f2 = -1 * multiple / A[k][i];

		      lambda_vector_add_mc (A[j], f1, A[k], f2,
					    A1[newsize], depth);
		      lambda_vector_add_mc (B[j], f1, B[k], f2,
					    B1[newsize], invariants);
		      a1[newsize] = f1 * a[j] + f2 * a[k];
		      newsize++;
		    }
		}
	    }
	}

      temp0 = A;
      A = A1;
      A1 = temp0;

      temp0 = B;
      B = B1;
      B1 = temp0;

      temp1 = a;
      a = a1;
      a1 = temp1;

      size = newsize;
    }

  return auxillary_nest;
}

/* Compute the loop bounds for the target space, using the bounds of
   the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.  This is
   done by matrix multiplication and then transformation of the new matrix
   back into linear expression form.
   Return the target loopnest.  */

static lambda_loopnest
lambda_compute_target_space (lambda_loopnest auxillary_nest,
			     lambda_trans_matrix H, lambda_vector stepsigns)
{
  lambda_matrix inverse, H1;
  int determinant, i, j;
  int gcd1, gcd2;
  int factor;

  lambda_loopnest target_nest;
  int depth, invariants;
  lambda_matrix target;

  lambda_loop auxillary_loop, target_loop;
  lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;

  depth = LN_DEPTH (auxillary_nest);
  invariants = LN_INVARIANTS (auxillary_nest);

  inverse = lambda_matrix_new (depth, depth);
  determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth);

  /* H1 is H excluding its diagonal.  */
  H1 = lambda_matrix_new (depth, depth);
  lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);

  for (i = 0; i < depth; i++)
    H1[i][i] = 0;

  /* Computes the linear offsets of the loop bounds.  */
  target = lambda_matrix_new (depth, depth);
  lambda_matrix_mult (H1, inverse, target, depth, depth, depth);

  target_nest = lambda_loopnest_new (depth, invariants);

  for (i = 0; i < depth; i++)
    {

      /* Get a new loop structure.  */
      target_loop = lambda_loop_new ();
      LN_LOOPS (target_nest)[i] = target_loop;

      /* Computes the gcd of the coefficients of the linear part.  */
      gcd1 = gcd_vector (target[i], i);

      /* Include the denominator in the GCD  */
      gcd1 = gcd (gcd1, determinant);

      /* Now divide through by the gcd  */
      for (j = 0; j < i; j++)
	target[i][j] = target[i][j] / gcd1;

      expression = lambda_linear_expression_new (depth, invariants);
      lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
      LLE_DENOMINATOR (expression) = determinant / gcd1;
      LLE_CONSTANT (expression) = 0;
      lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
			   invariants);
      LL_LINEAR_OFFSET (target_loop) = expression;
    }

  /* For each loop, compute the new bounds from H */
  for (i = 0; i < depth; i++)
    {
      auxillary_loop = LN_LOOPS (auxillary_nest)[i];
      target_loop = LN_LOOPS (target_nest)[i];
      LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
      factor = LTM_MATRIX (H)[i][i];

      /* First we do the lower bound.  */
      auxillary_expr = LL_LOWER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);

	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, rather than doing it
	     at the tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if identical to existing bound.  */
	  if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
	      LL_LOWER_BOUND (target_loop) = target_expr;
	    }
	}
      /* Now do the upper bound.  */
      auxillary_expr = LL_UPPER_BOUND (auxillary_loop);

      for (; auxillary_expr != NULL;
	   auxillary_expr = LLE_NEXT (auxillary_expr))
	{
	  target_expr = lambda_linear_expression_new (depth, invariants);
	  lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
				     depth, inverse, depth,
				     LLE_COEFFICIENTS (target_expr));
	  lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
				    LLE_COEFFICIENTS (target_expr), depth,
				    factor);
	  LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
	  lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
			      LLE_INVARIANT_COEFFICIENTS (target_expr),
			      invariants);
	  lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
				    LLE_INVARIANT_COEFFICIENTS (target_expr),
				    invariants, factor);
	  LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);

	  if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
	    {
	      LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
		* determinant;
	      lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
					(target_expr),
					LLE_INVARIANT_COEFFICIENTS
					(target_expr), invariants,
					determinant);
	      LLE_DENOMINATOR (target_expr) =
		LLE_DENOMINATOR (target_expr) * determinant;
	    }
	  /* Find the gcd and divide by it here, instead of at the
	     tree level.  */
	  gcd1 = gcd_vector (LLE_COEFFICIENTS (target_expr), depth);
	  gcd2 = gcd_vector (LLE_INVARIANT_COEFFICIENTS (target_expr),
			     invariants);
	  gcd1 = gcd (gcd1, gcd2);
	  gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
	  gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
	  for (j = 0; j < depth; j++)
	    LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
	  for (j = 0; j < invariants; j++)
	    LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
	  LLE_CONSTANT (target_expr) /= gcd1;
	  LLE_DENOMINATOR (target_expr) /= gcd1;
	  /* Ignore if equal to existing bound.  */
	  if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
			  invariants))
	    {
	      LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
	      LL_UPPER_BOUND (target_loop) = target_expr;
	    }
	}
    }
  for (i = 0; i < depth; i++)
    {
      target_loop = LN_LOOPS (target_nest)[i];
      /* If necessary, exchange the upper and lower bounds and negate
         the step size.  */
      if (stepsigns[i] < 0)
	{
	  LL_STEP (target_loop) *= -1;
	  tmp_expr = LL_LOWER_BOUND (target_loop);
	  LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
	  LL_UPPER_BOUND (target_loop) = tmp_expr;
	}
    }
  return target_nest;
}

/* Compute the step signs of TRANS, using TRANS and stepsigns.  Return the new
   result.  */

static lambda_vector
lambda_compute_step_signs (lambda_trans_matrix trans, lambda_vector stepsigns)
{
  lambda_matrix matrix, H;
  int size;
  lambda_vector newsteps;
  int i, j, factor, minimum_column;
  int temp;

  matrix = LTM_MATRIX (trans);
  size = LTM_ROWSIZE (trans);
  H = lambda_matrix_new (size, size);

  newsteps = lambda_vector_new (size);
  lambda_vector_copy (stepsigns, newsteps, size);

  lambda_matrix_copy (matrix, H, size, size);

  for (j = 0; j < size; j++)
    {
      lambda_vector row;
      row = H[j];
      for (i = j; i < size; i++)
	if (row[i] < 0)
	  lambda_matrix_col_negate (H, size, i);
      while (lambda_vector_first_nz (row, size, j + 1) < size)
	{
	  minimum_column = lambda_vector_min_nz (row, size, j);
	  lambda_matrix_col_exchange (H, size, j, minimum_column);

	  temp = newsteps[j];
	  newsteps[j] = newsteps[minimum_column];
	  newsteps[minimum_column] = temp;

	  for (i = j + 1; i < size; i++)
	    {
	      factor = row[i] / row[j];
	      lambda_matrix_col_add (H, size, j, i, -1 * factor);
	    }
	}
    }
  return newsteps;
}

/* Transform NEST according to TRANS, and return the new loopnest.
   This involves
   1. Computing a lattice base for the transformation
   2. Composing the dense base with the specified transformation (TRANS)
   3. Decomposing the combined transformation into a lower triangular portion,
   and a unimodular portion. 
   4. Computing the auxillary nest using the unimodular portion.
   5. Computing the target nest using the auxillary nest and the lower
   triangular portion.  */ 

lambda_loopnest
lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans)
{
  lambda_loopnest auxillary_nest, target_nest;

  int depth, invariants;
  int i, j;
  lambda_lattice lattice;
  lambda_trans_matrix trans1, H, U;
  lambda_loop loop;
  lambda_linear_expression expression;
  lambda_vector origin;
  lambda_matrix origin_invariants;
  lambda_vector stepsigns;
  int f;

  depth = LN_DEPTH (nest);
  invariants = LN_INVARIANTS (nest);

  /* Keep track of the signs of the loop steps.  */
  stepsigns = lambda_vector_new (depth);
  for (i = 0; i < depth; i++)
    {
      if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
	stepsigns[i] = 1;
      else
	stepsigns[i] = -1;
    }

  /* Compute the lattice base.  */
  lattice = lambda_lattice_compute_base (nest);
  trans1 = lambda_trans_matrix_new (depth, depth);

  /* Multiply the transformation matrix by the lattice base.  */

  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
		      LTM_MATRIX (trans1), depth, depth, depth);

  /* Compute the Hermite normal form for the new transformation matrix.  */
  H = lambda_trans_matrix_new (depth, depth);
  U = lambda_trans_matrix_new (depth, depth);
  lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
			 LTM_MATRIX (U));

  /* Compute the auxiliary loop nest's space from the unimodular
     portion.  */
  auxillary_nest = lambda_compute_auxillary_space (nest, U);

  /* Compute the loop step signs from the old step signs and the
     transformation matrix.  */
  stepsigns = lambda_compute_step_signs (trans1, stepsigns);

  /* Compute the target loop nest space from the auxiliary nest and
     the lower triangular matrix H.  */
  target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns);
  origin = lambda_vector_new (depth);
  origin_invariants = lambda_matrix_new (depth, invariants);
  lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
			     LATTICE_ORIGIN (lattice), origin);
  lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
		      origin_invariants, depth, depth, invariants);

  for (i = 0; i < depth; i++)
    {
      loop = LN_LOOPS (target_nest)[i];
      expression = LL_LINEAR_OFFSET (loop);
      if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
	f = 1;
      else
	f = LLE_DENOMINATOR (expression);

      LLE_CONSTANT (expression) += f * origin[i];

      for (j = 0; j < invariants; j++)
	LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
	  f * origin_invariants[i][j];
    }

  return target_nest;

}

/* Convert a gcc tree expression EXPR to a lambda linear expression, and
   return the new expression.  DEPTH is the depth of the loopnest.
   OUTERINDUCTIONVARS is an array of the induction variables for outer loops
   in this nest.  INVARIANTS is the array of invariants for the loop.  EXTRA
   is the amount we have to add/subtract from the expression because of the
   type of comparison it is used in.  */

static lambda_linear_expression
gcc_tree_to_linear_expression (int depth, tree expr,
			       VEC(tree) *outerinductionvars,
			       VEC(tree) *invariants, int extra)
{
  lambda_linear_expression lle = NULL;
  switch (TREE_CODE (expr))
    {
    case INTEGER_CST:
      {
	lle = lambda_linear_expression_new (depth, 2 * depth);
	LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
	if (extra != 0)
	  LLE_CONSTANT (lle) = extra;

	LLE_DENOMINATOR (lle) = 1;
      }
      break;
    case SSA_NAME:
      {
	tree iv, invar;
	size_t i;
	for (i = 0; VEC_iterate (tree, outerinductionvars, i, iv); i++)
	  if (iv != NULL)
	    {
	      if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;

		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
	for (i = 0; VEC_iterate (tree, invariants, i, invar); i++)
	  if (invar != NULL)
	    {
	      if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
		{
		  lle = lambda_linear_expression_new (depth, 2 * depth);
		  LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
		  if (extra != 0)
		    LLE_CONSTANT (lle) = extra;
		  LLE_DENOMINATOR (lle) = 1;
		}
	    }
      }
      break;
    default:
      return NULL;
    }

  return lle;
}

/* Return true if OP is invariant in LOOP and all outer loops.  */

static bool
invariant_in_loop (struct loop *loop, tree op)
{
  if (loop->depth == 0)
    return true;
  if (TREE_CODE (op) == SSA_NAME)
    {
      if (TREE_CODE (SSA_NAME_VAR (op)) == PARM_DECL
	  && IS_EMPTY_STMT (SSA_NAME_DEF_STMT (op)))
	return true;
      if (IS_EMPTY_STMT (SSA_NAME_DEF_STMT (op)))
	return false;
      if (loop->outer)
	if (!invariant_in_loop (loop->outer, op))
	  return false;
      return !flow_bb_inside_loop_p (loop,
				     bb_for_stmt (SSA_NAME_DEF_STMT (op)));
    }
  return false;
}

/* Generate a lambda loop from a gcc loop LOOP.  Return the new lambda loop,
   or NULL if it could not be converted.
   DEPTH is the depth of the loop.
   INVARIANTS is a pointer to the array of loop invariants.
   The induction variable for this loop should be stored in the parameter
   OURINDUCTIONVAR.
   OUTERINDUCTIONVARS is an array of induction variables for outer loops.  */

static lambda_loop
gcc_loop_to_lambda_loop (struct loop *loop, int depth,
			 VEC (tree) ** invariants,
			 tree * ourinductionvar,
			 VEC (tree) * outerinductionvars)
{
  tree phi;
  tree exit_cond;
  tree access_fn, inductionvar;
  tree step;
  lambda_loop lloop = NULL;
  lambda_linear_expression lbound, ubound;
  tree test;
  int stepint;
  int extra = 0;
  tree uboundvar;
  use_optype uses;

  /* Find out induction var and set the pointer so that the caller can
     append it to the outerinductionvars array later.  */

  inductionvar = find_induction_var_from_exit_cond (loop);
  *ourinductionvar = inductionvar;

  exit_cond = get_loop_exit_condition (loop);

  if (inductionvar == NULL || exit_cond == NULL)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
      return NULL;
    }

  test = TREE_OPERAND (exit_cond, 0);

  if (SSA_NAME_DEF_STMT (inductionvar) == NULL_TREE)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot find PHI node for induction variable\n");

      return NULL;
    }

  phi = SSA_NAME_DEF_STMT (inductionvar);
  if (TREE_CODE (phi) != PHI_NODE)
    {
      get_stmt_operands (phi);
      uses = STMT_USE_OPS (phi);

      if (!uses)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");

	  return NULL;
	}

      phi = USE_OP (uses, 0);
      phi = SSA_NAME_DEF_STMT (phi);
      if (TREE_CODE (phi) != PHI_NODE)
	{

	  if (dump_file && (dump_flags & TDF_DETAILS))
	    fprintf (dump_file,
		     "Unable to convert loop: Cannot find PHI node for induction variable\n");
	  return NULL;
	}

    }

  access_fn = instantiate_parameters
    (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
  if (!access_fn)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Access function for induction variable phi is NULL\n");

      return NULL;
    }

  step = evolution_part_in_loop_num (access_fn, loop->num);
  if (!step || step == chrec_dont_know)
    {
      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Cannot determine step of loop.\n");

      return NULL;
    }
  if (TREE_CODE (step) != INTEGER_CST)
    {

      if (dump_file && (dump_flags & TDF_DETAILS))
	fprintf (dump_file,
		 "Unable to convert loop: Step of loop is not integer.\n");