diff options
author | Michael Matz <matz@suse.de> | 2016-10-20 12:18:32 +0000 |
---|---|---|
committer | Michael Matz <matz@gcc.gnu.org> | 2016-10-20 12:18:32 +0000 |
commit | 28df87300a0dadffa5332e8a8e25688a7e62f5cd (patch) | |
tree | 6e07e23b33a8db22031caaaa3e7c9e1df95f4a16 /gcc/tree-ssa-loop-split.c | |
parent | a2e0054e1d169984ec64d64145b71a88a9628537 (diff) | |
download | gcc-28df87300a0dadffa5332e8a8e25688a7e62f5cd.zip gcc-28df87300a0dadffa5332e8a8e25688a7e62f5cd.tar.gz gcc-28df87300a0dadffa5332e8a8e25688a7e62f5cd.tar.bz2 |
loop splitting
(approved at https://gcc.gnu.org/ml/gcc-patches/2015-12/msg00648.html )
* common.opt (-fsplit-loops): New flag.
* passes.def (pass_loop_split): Add.
* opts.c (default_options_table): Add OPT_fsplit_loops entry at -O3.
(enable_fdo_optimizations): Add loop splitting.
* timevar.def (TV_LOOP_SPLIT): Add.
* tree-pass.h (make_pass_loop_split): Declare.
* tree-ssa-loop-manip.h (rewrite_into_loop_closed_ssa_1): Declare.
* tree-ssa-loop-unswitch.c: Include tree-ssa-loop-manip.h,
* tree-ssa-loop-split.c: New file.
* Makefile.in (OBJS): Add tree-ssa-loop-split.o.
* doc/invoke.texi (fsplit-loops): Document.
* doc/passes.texi (Loop optimization): Add paragraph about loop
splitting.
testsuite/
* gcc.dg/loop-split.c: New test.
* gcc.dg/tree-ssa/ifc-9.c: Update.
* gcc.dg/tree-ssa/ifc-10.c: Update.
From-SVN: r241374
Diffstat (limited to 'gcc/tree-ssa-loop-split.c')
-rw-r--r-- | gcc/tree-ssa-loop-split.c | 687 |
1 files changed, 687 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c new file mode 100644 index 0000000..e2bfd78 --- /dev/null +++ b/gcc/tree-ssa-loop-split.c @@ -0,0 +1,687 @@ +/* Loop splitting. + Copyright (C) 2015 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "tree-pass.h" +#include "ssa.h" +#include "fold-const.h" +#include "tree-cfg.h" +#include "tree-ssa.h" +#include "tree-ssa-loop-niter.h" +#include "tree-ssa-loop.h" +#include "tree-ssa-loop-manip.h" +#include "tree-into-ssa.h" +#include "cfgloop.h" +#include "tree-scalar-evolution.h" +#include "gimple-iterator.h" +#include "gimple-pretty-print.h" +#include "cfghooks.h" +#include "gimple-fold.h" +#include "gimplify-me.h" + +/* This file implements loop splitting, i.e. transformation of loops like + + for (i = 0; i < 100; i++) + { + if (i < 50) + A; + else + B; + } + + into: + + for (i = 0; i < 50; i++) + { + A; + } + for (; i < 100; i++) + { + B; + } + + */ + +/* Return true when BB inside LOOP is a potential iteration space + split point, i.e. ends with a condition like "IV < comp", which + is true on one side of the iteration space and false on the other, + and the split point can be computed. If so, also return the border + point in *BORDER and the comparison induction variable in IV. */ + +static tree +split_at_bb_p (struct loop *loop, basic_block bb, tree *border, affine_iv *iv) +{ + gimple *last; + gcond *stmt; + affine_iv iv2; + + /* BB must end in a simple conditional jump. */ + last = last_stmt (bb); + if (!last || gimple_code (last) != GIMPLE_COND) + return NULL_TREE; + stmt = as_a <gcond *> (last); + + enum tree_code code = gimple_cond_code (stmt); + + /* Only handle relational comparisons, for equality and non-equality + we'd have to split the loop into two loops and a middle statement. */ + switch (code) + { + case LT_EXPR: + case LE_EXPR: + case GT_EXPR: + case GE_EXPR: + break; + default: + return NULL_TREE; + } + + if (loop_exits_from_bb_p (loop, bb)) + return NULL_TREE; + + tree op0 = gimple_cond_lhs (stmt); + tree op1 = gimple_cond_rhs (stmt); + + if (!simple_iv (loop, loop, op0, iv, false)) + return NULL_TREE; + if (!simple_iv (loop, loop, op1, &iv2, false)) + return NULL_TREE; + + /* Make it so that the first argument of the condition is + the looping one. */ + if (!integer_zerop (iv2.step)) + { + std::swap (op0, op1); + std::swap (*iv, iv2); + code = swap_tree_comparison (code); + gimple_cond_set_condition (stmt, code, op0, op1); + update_stmt (stmt); + } + else if (integer_zerop (iv->step)) + return NULL_TREE; + if (!integer_zerop (iv2.step)) + return NULL_TREE; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Found potential split point: "); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + fprintf (dump_file, " { "); + print_generic_expr (dump_file, iv->base, TDF_SLIM); + fprintf (dump_file, " + I*"); + print_generic_expr (dump_file, iv->step, TDF_SLIM); + fprintf (dump_file, " } %s ", get_tree_code_name (code)); + print_generic_expr (dump_file, iv2.base, TDF_SLIM); + fprintf (dump_file, "\n"); + } + + *border = iv2.base; + return op0; +} + +/* Given a GUARD conditional stmt inside LOOP, which we want to make always + true or false depending on INITIAL_TRUE, and adjusted values NEXTVAL + (a post-increment IV) and NEWBOUND (the comparator) adjust the loop + exit test statement to loop back only if the GUARD statement will + also be true/false in the next iteration. */ + +static void +patch_loop_exit (struct loop *loop, gcond *guard, tree nextval, tree newbound, + bool initial_true) +{ + edge exit = single_exit (loop); + gcond *stmt = as_a <gcond *> (last_stmt (exit->src)); + gimple_cond_set_condition (stmt, gimple_cond_code (guard), + nextval, newbound); + update_stmt (stmt); + + edge stay = single_pred_edge (loop->latch); + + exit->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + stay->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE); + + if (initial_true) + { + exit->flags |= EDGE_FALSE_VALUE; + stay->flags |= EDGE_TRUE_VALUE; + } + else + { + exit->flags |= EDGE_TRUE_VALUE; + stay->flags |= EDGE_FALSE_VALUE; + } +} + +/* Give an induction variable GUARD_IV, and its affine descriptor IV, + find the loop phi node in LOOP defining it directly, or create + such phi node. Return that phi node. */ + +static gphi * +find_or_create_guard_phi (struct loop *loop, tree guard_iv, affine_iv * /*iv*/) +{ + gimple *def = SSA_NAME_DEF_STMT (guard_iv); + gphi *phi; + if ((phi = dyn_cast <gphi *> (def)) + && gimple_bb (phi) == loop->header) + return phi; + + /* XXX Create the PHI instead. */ + return NULL; +} + +/* This function updates the SSA form after connect_loops made a new + edge NEW_E leading from LOOP1 exit to LOOP2 (via in intermediate + conditional). I.e. the second loop can now be entered either + via the original entry or via NEW_E, so the entry values of LOOP2 + phi nodes are either the original ones or those at the exit + of LOOP1. Insert new phi nodes in LOOP2 pre-header reflecting + this. */ + +static void +connect_loop_phis (struct loop *loop1, struct loop *loop2, edge new_e) +{ + basic_block rest = loop_preheader_edge (loop2)->src; + gcc_assert (new_e->dest == rest); + edge skip_first = EDGE_PRED (rest, EDGE_PRED (rest, 0) == new_e); + + edge firste = loop_preheader_edge (loop1); + edge seconde = loop_preheader_edge (loop2); + edge firstn = loop_latch_edge (loop1); + gphi_iterator psi_first, psi_second; + for (psi_first = gsi_start_phis (loop1->header), + psi_second = gsi_start_phis (loop2->header); + !gsi_end_p (psi_first); + gsi_next (&psi_first), gsi_next (&psi_second)) + { + tree init, next, new_init; + use_operand_p op; + gphi *phi_first = psi_first.phi (); + gphi *phi_second = psi_second.phi (); + + init = PHI_ARG_DEF_FROM_EDGE (phi_first, firste); + next = PHI_ARG_DEF_FROM_EDGE (phi_first, firstn); + op = PHI_ARG_DEF_PTR_FROM_EDGE (phi_second, seconde); + gcc_assert (operand_equal_for_phi_arg_p (init, USE_FROM_PTR (op))); + + /* Prefer using original variable as a base for the new ssa name. + This is necessary for virtual ops, and useful in order to avoid + losing debug info for real ops. */ + if (TREE_CODE (next) == SSA_NAME + && useless_type_conversion_p (TREE_TYPE (next), + TREE_TYPE (init))) + new_init = copy_ssa_name (next); + else if (TREE_CODE (init) == SSA_NAME + && useless_type_conversion_p (TREE_TYPE (init), + TREE_TYPE (next))) + new_init = copy_ssa_name (init); + else if (useless_type_conversion_p (TREE_TYPE (next), + TREE_TYPE (init))) + new_init = make_temp_ssa_name (TREE_TYPE (next), NULL, + "unrinittmp"); + else + new_init = make_temp_ssa_name (TREE_TYPE (init), NULL, + "unrinittmp"); + + gphi * newphi = create_phi_node (new_init, rest); + add_phi_arg (newphi, init, skip_first, UNKNOWN_LOCATION); + add_phi_arg (newphi, next, new_e, UNKNOWN_LOCATION); + SET_USE (op, new_init); + } +} + +/* The two loops LOOP1 and LOOP2 were just created by loop versioning, + they are still equivalent and placed in two arms of a diamond, like so: + + .------if (cond)------. + v v + pre1 pre2 + | | + .--->h1 h2<----. + | | | | + | ex1---. .---ex2 | + | / | | \ | + '---l1 X | l2---' + | | + | | + '--->join<---' + + This function transforms the program such that LOOP1 is conditionally + falling through to LOOP2, or skipping it. This is done by splitting + the ex1->join edge at X in the diagram above, and inserting a condition + whose one arm goes to pre2, resulting in this situation: + + .------if (cond)------. + v v + pre1 .---------->pre2 + | | | + .--->h1 | h2<----. + | | | | | + | ex1---. | .---ex2 | + | / v | | \ | + '---l1 skip---' | l2---' + | | + | | + '--->join<---' + + + The condition used is the exit condition of LOOP1, which effectively means + that when the first loop exits (for whatever reason) but the real original + exit expression is still false the second loop will be entered. + The function returns the new edge cond->pre2. + + This doesn't update the SSA form, see connect_loop_phis for that. */ + +static edge +connect_loops (struct loop *loop1, struct loop *loop2) +{ + edge exit = single_exit (loop1); + basic_block skip_bb = split_edge (exit); + gcond *skip_stmt; + gimple_stmt_iterator gsi; + edge new_e, skip_e; + + gimple *stmt = last_stmt (exit->src); + skip_stmt = gimple_build_cond (gimple_cond_code (stmt), + gimple_cond_lhs (stmt), + gimple_cond_rhs (stmt), + NULL_TREE, NULL_TREE); + gsi = gsi_last_bb (skip_bb); + gsi_insert_after (&gsi, skip_stmt, GSI_NEW_STMT); + + skip_e = EDGE_SUCC (skip_bb, 0); + skip_e->flags &= ~EDGE_FALLTHRU; + new_e = make_edge (skip_bb, loop_preheader_edge (loop2)->src, 0); + if (exit->flags & EDGE_TRUE_VALUE) + { + skip_e->flags |= EDGE_TRUE_VALUE; + new_e->flags |= EDGE_FALSE_VALUE; + } + else + { + skip_e->flags |= EDGE_FALSE_VALUE; + new_e->flags |= EDGE_TRUE_VALUE; + } + + new_e->count = skip_bb->count; + new_e->probability = PROB_LIKELY; + new_e->count = apply_probability (skip_e->count, PROB_LIKELY); + skip_e->count -= new_e->count; + skip_e->probability = inverse_probability (PROB_LIKELY); + + return new_e; +} + +/* This returns the new bound for iterations given the original iteration + space in NITER, an arbitrary new bound BORDER, assumed to be some + comparison value with a different IV, the initial value GUARD_INIT of + that other IV, and the comparison code GUARD_CODE that compares + that other IV with BORDER. We return an SSA name, and place any + necessary statements for that computation into *STMTS. + + For example for such a loop: + + for (i = beg, j = guard_init; i < end; i++, j++) + if (j < border) // this is supposed to be true/false + ... + + we want to return a new bound (on j) that makes the loop iterate + as long as the condition j < border stays true. We also don't want + to iterate more often than the original loop, so we have to introduce + some cut-off as well (via min/max), effectively resulting in: + + newend = min (end+guard_init-beg, border) + for (i = beg; j = guard_init; j < newend; i++, j++) + if (j < c) + ... + + Depending on the direction of the IVs and if the exit tests + are strict or non-strict we need to use MIN or MAX, + and add or subtract 1. This routine computes newend above. */ + +static tree +compute_new_first_bound (gimple_seq *stmts, struct tree_niter_desc *niter, + tree border, + enum tree_code guard_code, tree guard_init) +{ + /* The niter structure contains the after-increment IV, we need + the loop-enter base, so subtract STEP once. */ + tree controlbase = force_gimple_operand (niter->control.base, + stmts, true, NULL_TREE); + tree controlstep = niter->control.step; + tree enddiff; + if (POINTER_TYPE_P (TREE_TYPE (controlbase))) + { + controlstep = gimple_build (stmts, NEGATE_EXPR, + TREE_TYPE (controlstep), controlstep); + enddiff = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (controlbase), + controlbase, controlstep); + } + else + enddiff = gimple_build (stmts, MINUS_EXPR, + TREE_TYPE (controlbase), + controlbase, controlstep); + + /* Compute beg-guard_init. */ + if (POINTER_TYPE_P (TREE_TYPE (enddiff))) + { + tree tem = gimple_convert (stmts, sizetype, guard_init); + tem = gimple_build (stmts, NEGATE_EXPR, sizetype, tem); + enddiff = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (enddiff), + enddiff, tem); + } + else + enddiff = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff), + enddiff, guard_init); + + /* Compute end-(beg-guard_init). */ + gimple_seq stmts2; + tree newbound = force_gimple_operand (niter->bound, &stmts2, + true, NULL_TREE); + gimple_seq_add_seq_without_update (stmts, stmts2); + + if (POINTER_TYPE_P (TREE_TYPE (enddiff)) + || POINTER_TYPE_P (TREE_TYPE (newbound))) + { + enddiff = gimple_convert (stmts, sizetype, enddiff); + enddiff = gimple_build (stmts, NEGATE_EXPR, sizetype, enddiff); + newbound = gimple_build (stmts, POINTER_PLUS_EXPR, + TREE_TYPE (newbound), + newbound, enddiff); + } + else + newbound = gimple_build (stmts, MINUS_EXPR, TREE_TYPE (enddiff), + newbound, enddiff); + + /* Depending on the direction of the IVs the new bound for the first + loop is the minimum or maximum of old bound and border. + Also, if the guard condition isn't strictly less or greater, + we need to adjust the bound. */ + int addbound = 0; + enum tree_code minmax; + if (niter->cmp == LT_EXPR) + { + /* GT and LE are the same, inverted. */ + if (guard_code == GT_EXPR || guard_code == LE_EXPR) + addbound = -1; + minmax = MIN_EXPR; + } + else + { + gcc_assert (niter->cmp == GT_EXPR); + if (guard_code == GE_EXPR || guard_code == LT_EXPR) + addbound = 1; + minmax = MAX_EXPR; + } + + if (addbound) + { + tree type2 = TREE_TYPE (newbound); + if (POINTER_TYPE_P (type2)) + type2 = sizetype; + newbound = gimple_build (stmts, + POINTER_TYPE_P (TREE_TYPE (newbound)) + ? POINTER_PLUS_EXPR : PLUS_EXPR, + TREE_TYPE (newbound), + newbound, + build_int_cst (type2, addbound)); + } + + newbound = gimple_convert (stmts, TREE_TYPE (border), newbound); + tree newend = gimple_build (stmts, minmax, TREE_TYPE (border), + border, newbound); + return newend; +} + +/* Checks if LOOP contains an conditional block whose condition + depends on which side in the iteration space it is, and if so + splits the iteration space into two loops. Returns true if the + loop was split. NITER must contain the iteration descriptor for the + single exit of LOOP. */ + +static bool +split_loop (struct loop *loop1, struct tree_niter_desc *niter) +{ + basic_block *bbs; + unsigned i; + bool changed = false; + tree guard_iv; + tree border; + affine_iv iv; + + bbs = get_loop_body (loop1); + + /* Find a splitting opportunity. */ + for (i = 0; i < loop1->num_nodes; i++) + if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv))) + { + /* Handling opposite steps is not implemented yet. Neither + is handling different step sizes. */ + if ((tree_int_cst_sign_bit (iv.step) + != tree_int_cst_sign_bit (niter->control.step)) + || !tree_int_cst_equal (iv.step, niter->control.step)) + continue; + + /* Find a loop PHI node that defines guard_iv directly, + or create one doing that. */ + gphi *phi = find_or_create_guard_phi (loop1, guard_iv, &iv); + if (!phi) + continue; + gcond *guard_stmt = as_a<gcond *> (last_stmt (bbs[i])); + tree guard_init = PHI_ARG_DEF_FROM_EDGE (phi, + loop_preheader_edge (loop1)); + enum tree_code guard_code = gimple_cond_code (guard_stmt); + + /* Loop splitting is implemented by versioning the loop, placing + the new loop after the old loop, make the first loop iterate + as long as the conditional stays true (or false) and let the + second (new) loop handle the rest of the iterations. + + First we need to determine if the condition will start being true + or false in the first loop. */ + bool initial_true; + switch (guard_code) + { + case LT_EXPR: + case LE_EXPR: + initial_true = !tree_int_cst_sign_bit (iv.step); + break; + case GT_EXPR: + case GE_EXPR: + initial_true = tree_int_cst_sign_bit (iv.step); + break; + default: + gcc_unreachable (); + } + + /* Build a condition that will skip the first loop when the + guard condition won't ever be true (or false). */ + gimple_seq stmts2; + border = force_gimple_operand (border, &stmts2, true, NULL_TREE); + if (stmts2) + gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1), + stmts2); + tree cond = build2 (guard_code, boolean_type_node, guard_init, border); + if (!initial_true) + cond = fold_build1 (TRUTH_NOT_EXPR, boolean_type_node, cond); + + /* Now version the loop, placing loop2 after loop1 connecting + them, and fix up SSA form for that. */ + initialize_original_copy_tables (); + basic_block cond_bb; + struct loop *loop2 = loop_version (loop1, cond, &cond_bb, + REG_BR_PROB_BASE, REG_BR_PROB_BASE, + REG_BR_PROB_BASE, true); + gcc_assert (loop2); + update_ssa (TODO_update_ssa); + + edge new_e = connect_loops (loop1, loop2); + connect_loop_phis (loop1, loop2, new_e); + + /* The iterations of the second loop is now already + exactly those that the first loop didn't do, but the + iteration space of the first loop is still the original one. + Compute the new bound for the guarding IV and patch the + loop exit to use it instead of original IV and bound. */ + gimple_seq stmts = NULL; + tree newend = compute_new_first_bound (&stmts, niter, border, + guard_code, guard_init); + if (stmts) + gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1), + stmts); + tree guard_next = PHI_ARG_DEF_FROM_EDGE (phi, loop_latch_edge (loop1)); + patch_loop_exit (loop1, guard_stmt, guard_next, newend, initial_true); + + /* Finally patch out the two copies of the condition to be always + true/false (or opposite). */ + gcond *force_true = as_a<gcond *> (last_stmt (bbs[i])); + gcond *force_false = as_a<gcond *> (last_stmt (get_bb_copy (bbs[i]))); + if (!initial_true) + std::swap (force_true, force_false); + gimple_cond_make_true (force_true); + gimple_cond_make_false (force_false); + update_stmt (force_true); + update_stmt (force_false); + + free_original_copy_tables (); + + /* We destroyed LCSSA form above. Eventually we might be able + to fix it on the fly, for now simply punt and use the helper. */ + rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1); + + changed = true; + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, ";; Loop split.\n"); + + /* Only deal with the first opportunity. */ + break; + } + + free (bbs); + return changed; +} + +/* Main entry point. Perform loop splitting on all suitable loops. */ + +static unsigned int +tree_ssa_split_loops (void) +{ + struct loop *loop; + bool changed = false; + + gcc_assert (scev_initialized_p ()); + FOR_EACH_LOOP (loop, 0) + loop->aux = NULL; + + /* Go through all loops starting from innermost. */ + FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) + { + struct tree_niter_desc niter; + if (loop->aux) + { + /* If any of our inner loops was split, don't split us, + and mark our containing loop as having had splits as well. */ + loop_outer (loop)->aux = loop; + continue; + } + + if (single_exit (loop) + /* ??? We could handle non-empty latches when we split + the latch edge (not the exit edge), and put the new + exit condition in the new block. OTOH this executes some + code unconditionally that might have been skipped by the + original exit before. */ + && empty_block_p (loop->latch) + && !optimize_loop_for_size_p (loop) + && number_of_iterations_exit (loop, single_exit (loop), &niter, + false, true) + && niter.cmp != ERROR_MARK + /* We can't yet handle loops controlled by a != predicate. */ + && niter.cmp != NE_EXPR) + { + if (split_loop (loop, &niter)) + { + /* Mark our containing loop as having had some split inner + loops. */ + loop_outer (loop)->aux = loop; + changed = true; + } + } + } + + FOR_EACH_LOOP (loop, 0) + loop->aux = NULL; + + if (changed) + return TODO_cleanup_cfg; + return 0; +} + +/* Loop splitting pass. */ + +namespace { + +const pass_data pass_data_loop_split = +{ + GIMPLE_PASS, /* type */ + "lsplit", /* name */ + OPTGROUP_LOOP, /* optinfo_flags */ + TV_LOOP_SPLIT, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_loop_split : public gimple_opt_pass +{ +public: + pass_loop_split (gcc::context *ctxt) + : gimple_opt_pass (pass_data_loop_split, ctxt) + {} + + /* opt_pass methods: */ + virtual bool gate (function *) { return flag_split_loops != 0; } + virtual unsigned int execute (function *); + +}; // class pass_loop_split + +unsigned int +pass_loop_split::execute (function *fun) +{ + if (number_of_loops (fun) <= 1) + return 0; + + return tree_ssa_split_loops (); +} + +} // anon namespace + +gimple_opt_pass * +make_pass_loop_split (gcc::context *ctxt) +{ + return new pass_loop_split (ctxt); +} |