aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-ssa-loop-im.cc
diff options
context:
space:
mode:
authorThomas Schwinge <thomas@codesourcery.com>2022-02-03 21:12:21 +0100
committerThomas Schwinge <thomas@codesourcery.com>2022-02-03 21:14:10 +0100
commit7eef766dc5a8abda2ca2cf8d535cdf160f40b50c (patch)
treef85ed9010c56dc8f250d7cba5761b4eae58f2a42 /gcc/tree-ssa-loop-im.cc
parent5199ecb8519c4c5f92160365cefe8e0aa1ca3873 (diff)
parentff7aeceb6b3a476c3bac66a7f39a5ef4240206fc (diff)
downloadgcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.zip
gcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.tar.gz
gcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.tar.bz2
Merge commit 'ff7aeceb6b3a476c3bac66a7f39a5ef4240206fc' [#247, #906]
Diffstat (limited to 'gcc/tree-ssa-loop-im.cc')
-rw-r--r--gcc/tree-ssa-loop-im.cc3632
1 files changed, 3632 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-im.cc b/gcc/tree-ssa-loop-im.cc
new file mode 100644
index 0000000..6d9316e
--- /dev/null
+++ b/gcc/tree-ssa-loop-im.cc
@@ -0,0 +1,3632 @@
+/* Loop invariant motion.
+ Copyright (C) 2003-2022 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it
+under the terms of the GNU General Public License as published by the
+Free Software Foundation; either version 3, or (at your option) any
+later version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT
+ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING3. If not see
+<http://www.gnu.org/licenses/>. */
+
+#include "config.h"
+#include "system.h"
+#include "coretypes.h"
+#include "backend.h"
+#include "tree.h"
+#include "gimple.h"
+#include "cfghooks.h"
+#include "tree-pass.h"
+#include "ssa.h"
+#include "gimple-pretty-print.h"
+#include "fold-const.h"
+#include "cfganal.h"
+#include "tree-eh.h"
+#include "gimplify.h"
+#include "gimple-iterator.h"
+#include "tree-cfg.h"
+#include "tree-ssa-loop-manip.h"
+#include "tree-ssa-loop.h"
+#include "tree-into-ssa.h"
+#include "cfgloop.h"
+#include "tree-affine.h"
+#include "tree-ssa-propagate.h"
+#include "trans-mem.h"
+#include "gimple-fold.h"
+#include "tree-scalar-evolution.h"
+#include "tree-ssa-loop-niter.h"
+#include "alias.h"
+#include "builtins.h"
+#include "tree-dfa.h"
+#include "dbgcnt.h"
+
+/* TODO: Support for predicated code motion. I.e.
+
+ while (1)
+ {
+ if (cond)
+ {
+ a = inv;
+ something;
+ }
+ }
+
+ Where COND and INV are invariants, but evaluating INV may trap or be
+ invalid from some other reason if !COND. This may be transformed to
+
+ if (cond)
+ a = inv;
+ while (1)
+ {
+ if (cond)
+ something;
+ } */
+
+/* The auxiliary data kept for each statement. */
+
+struct lim_aux_data
+{
+ class loop *max_loop; /* The outermost loop in that the statement
+ is invariant. */
+
+ class loop *tgt_loop; /* The loop out of that we want to move the
+ invariant. */
+
+ class loop *always_executed_in;
+ /* The outermost loop for that we are sure
+ the statement is executed if the loop
+ is entered. */
+
+ unsigned cost; /* Cost of the computation performed by the
+ statement. */
+
+ unsigned ref; /* The simple_mem_ref in this stmt or 0. */
+
+ vec<gimple *> depends; /* Vector of statements that must be also
+ hoisted out of the loop when this statement
+ is hoisted; i.e. those that define the
+ operands of the statement and are inside of
+ the MAX_LOOP loop. */
+};
+
+/* Maps statements to their lim_aux_data. */
+
+static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map;
+
+/* Description of a memory reference location. */
+
+struct mem_ref_loc
+{
+ tree *ref; /* The reference itself. */
+ gimple *stmt; /* The statement in that it occurs. */
+};
+
+
+/* Description of a memory reference. */
+
+class im_mem_ref
+{
+public:
+ unsigned id : 30; /* ID assigned to the memory reference
+ (its index in memory_accesses.refs_list) */
+ unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */
+ unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */
+ hashval_t hash; /* Its hash value. */
+
+ /* The memory access itself and associated caching of alias-oracle
+ query meta-data. We are using mem.ref == error_mark_node for the
+ case the reference is represented by its single access stmt
+ in accesses_in_loop[0]. */
+ ao_ref mem;
+
+ bitmap stored; /* The set of loops in that this memory location
+ is stored to. */
+ bitmap loaded; /* The set of loops in that this memory location
+ is loaded from. */
+ vec<mem_ref_loc> accesses_in_loop;
+ /* The locations of the accesses. */
+
+ /* The following set is computed on demand. */
+ bitmap_head dep_loop; /* The set of loops in that the memory
+ reference is {in,}dependent in
+ different modes. */
+};
+
+/* We use six bits per loop in the ref->dep_loop bitmap to record
+ the dep_kind x dep_state combinations. */
+
+enum dep_kind { lim_raw, sm_war, sm_waw };
+enum dep_state { dep_unknown, dep_independent, dep_dependent };
+
+/* coldest outermost loop for given loop. */
+vec<class loop *> coldest_outermost_loop;
+/* hotter outer loop nearest to given loop. */
+vec<class loop *> hotter_than_inner_loop;
+
+/* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */
+
+static void
+record_loop_dependence (class loop *loop, im_mem_ref *ref,
+ dep_kind kind, dep_state state)
+{
+ gcc_assert (state != dep_unknown);
+ unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0;
+ bitmap_set_bit (&ref->dep_loop, bit);
+}
+
+/* Query the loop dependence cache of REF for LOOP, KIND. */
+
+static dep_state
+query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind)
+{
+ unsigned first_bit = 6 * loop->num + kind * 2;
+ if (bitmap_bit_p (&ref->dep_loop, first_bit))
+ return dep_independent;
+ else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1))
+ return dep_dependent;
+ return dep_unknown;
+}
+
+/* Mem_ref hashtable helpers. */
+
+struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref>
+{
+ typedef ao_ref *compare_type;
+ static inline hashval_t hash (const im_mem_ref *);
+ static inline bool equal (const im_mem_ref *, const ao_ref *);
+};
+
+/* A hash function for class im_mem_ref object OBJ. */
+
+inline hashval_t
+mem_ref_hasher::hash (const im_mem_ref *mem)
+{
+ return mem->hash;
+}
+
+/* An equality function for class im_mem_ref object MEM1 with
+ memory reference OBJ2. */
+
+inline bool
+mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2)
+{
+ if (obj2->max_size_known_p ())
+ return (mem1->ref_decomposed
+ && ((TREE_CODE (mem1->mem.base) == MEM_REF
+ && TREE_CODE (obj2->base) == MEM_REF
+ && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0),
+ TREE_OPERAND (obj2->base, 0), 0)
+ && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset,
+ mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset))
+ || (operand_equal_p (mem1->mem.base, obj2->base, 0)
+ && known_eq (mem1->mem.offset, obj2->offset)))
+ && known_eq (mem1->mem.size, obj2->size)
+ && known_eq (mem1->mem.max_size, obj2->max_size)
+ && mem1->mem.volatile_p == obj2->volatile_p
+ && (mem1->mem.ref_alias_set == obj2->ref_alias_set
+ /* We are not canonicalizing alias-sets but for the
+ special-case we didn't canonicalize yet and the
+ incoming ref is a alias-set zero MEM we pick
+ the correct one already. */
+ || (!mem1->ref_canonical
+ && (TREE_CODE (obj2->ref) == MEM_REF
+ || TREE_CODE (obj2->ref) == TARGET_MEM_REF)
+ && obj2->ref_alias_set == 0)
+ /* Likewise if there's a canonical ref with alias-set zero. */
+ || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0))
+ && types_compatible_p (TREE_TYPE (mem1->mem.ref),
+ TREE_TYPE (obj2->ref)));
+ else
+ return operand_equal_p (mem1->mem.ref, obj2->ref, 0);
+}
+
+
+/* Description of memory accesses in loops. */
+
+static struct
+{
+ /* The hash table of memory references accessed in loops. */
+ hash_table<mem_ref_hasher> *refs;
+
+ /* The list of memory references. */
+ vec<im_mem_ref *> refs_list;
+
+ /* The set of memory references accessed in each loop. */
+ vec<bitmap_head> refs_loaded_in_loop;
+
+ /* The set of memory references stored in each loop. */
+ vec<bitmap_head> refs_stored_in_loop;
+
+ /* The set of memory references stored in each loop, including subloops . */
+ vec<bitmap_head> all_refs_stored_in_loop;
+
+ /* Cache for expanding memory addresses. */
+ hash_map<tree, name_expansion *> *ttae_cache;
+} memory_accesses;
+
+/* Obstack for the bitmaps in the above data structures. */
+static bitmap_obstack lim_bitmap_obstack;
+static obstack mem_ref_obstack;
+
+static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind);
+static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool);
+static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true);
+
+/* Minimum cost of an expensive expression. */
+#define LIM_EXPENSIVE ((unsigned) param_lim_expensive)
+
+/* The outermost loop for which execution of the header guarantees that the
+ block will be executed. */
+#define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux)
+#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
+
+/* ID of the shared unanalyzable mem. */
+#define UNANALYZABLE_MEM_ID 0
+
+/* Whether the reference was analyzable. */
+#define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
+
+static struct lim_aux_data *
+init_lim_data (gimple *stmt)
+{
+ lim_aux_data *p = XCNEW (struct lim_aux_data);
+ lim_aux_data_map->put (stmt, p);
+
+ return p;
+}
+
+static struct lim_aux_data *
+get_lim_data (gimple *stmt)
+{
+ lim_aux_data **p = lim_aux_data_map->get (stmt);
+ if (!p)
+ return NULL;
+
+ return *p;
+}
+
+/* Releases the memory occupied by DATA. */
+
+static void
+free_lim_aux_data (struct lim_aux_data *data)
+{
+ data->depends.release ();
+ free (data);
+}
+
+static void
+clear_lim_data (gimple *stmt)
+{
+ lim_aux_data **p = lim_aux_data_map->get (stmt);
+ if (!p)
+ return;
+
+ free_lim_aux_data (*p);
+ *p = NULL;
+}
+
+
+/* The possibilities of statement movement. */
+enum move_pos
+ {
+ MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
+ MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
+ become executed -- memory accesses, ... */
+ MOVE_POSSIBLE /* Unlimited movement. */
+ };
+
+
+/* If it is possible to hoist the statement STMT unconditionally,
+ returns MOVE_POSSIBLE.
+ If it is possible to hoist the statement STMT, but we must avoid making
+ it executed if it would not be executed in the original program (e.g.
+ because it may trap), return MOVE_PRESERVE_EXECUTION.
+ Otherwise return MOVE_IMPOSSIBLE. */
+
+enum move_pos
+movement_possibility (gimple *stmt)
+{
+ tree lhs;
+ enum move_pos ret = MOVE_POSSIBLE;
+
+ if (flag_unswitch_loops
+ && gimple_code (stmt) == GIMPLE_COND)
+ {
+ /* If we perform unswitching, force the operands of the invariant
+ condition to be moved out of the loop. */
+ return MOVE_POSSIBLE;
+ }
+
+ if (gimple_code (stmt) == GIMPLE_PHI
+ && gimple_phi_num_args (stmt) <= 2
+ && !virtual_operand_p (gimple_phi_result (stmt))
+ && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
+ return MOVE_POSSIBLE;
+
+ if (gimple_get_lhs (stmt) == NULL_TREE)
+ return MOVE_IMPOSSIBLE;
+
+ if (gimple_vdef (stmt))
+ return MOVE_IMPOSSIBLE;
+
+ if (stmt_ends_bb_p (stmt)
+ || gimple_has_volatile_ops (stmt)
+ || gimple_has_side_effects (stmt)
+ || stmt_could_throw_p (cfun, stmt))
+ return MOVE_IMPOSSIBLE;
+
+ if (is_gimple_call (stmt))
+ {
+ /* While pure or const call is guaranteed to have no side effects, we
+ cannot move it arbitrarily. Consider code like
+
+ char *s = something ();
+
+ while (1)
+ {
+ if (s)
+ t = strlen (s);
+ else
+ t = 0;
+ }
+
+ Here the strlen call cannot be moved out of the loop, even though
+ s is invariant. In addition to possibly creating a call with
+ invalid arguments, moving out a function call that is not executed
+ may cause performance regressions in case the call is costly and
+ not executed at all. */
+ ret = MOVE_PRESERVE_EXECUTION;
+ lhs = gimple_call_lhs (stmt);
+ }
+ else if (is_gimple_assign (stmt))
+ lhs = gimple_assign_lhs (stmt);
+ else
+ return MOVE_IMPOSSIBLE;
+
+ if (TREE_CODE (lhs) == SSA_NAME
+ && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
+ return MOVE_IMPOSSIBLE;
+
+ if (TREE_CODE (lhs) != SSA_NAME
+ || gimple_could_trap_p (stmt))
+ return MOVE_PRESERVE_EXECUTION;
+
+ /* Non local loads in a transaction cannot be hoisted out. Well,
+ unless the load happens on every path out of the loop, but we
+ don't take this into account yet. */
+ if (flag_tm
+ && gimple_in_transaction (stmt)
+ && gimple_assign_single_p (stmt))
+ {
+ tree rhs = gimple_assign_rhs1 (stmt);
+ if (DECL_P (rhs) && is_global_var (rhs))
+ {
+ if (dump_file)
+ {
+ fprintf (dump_file, "Cannot hoist conditional load of ");
+ print_generic_expr (dump_file, rhs, TDF_SLIM);
+ fprintf (dump_file, " because it is in a transaction.\n");
+ }
+ return MOVE_IMPOSSIBLE;
+ }
+ }
+
+ return ret;
+}
+
+/* Compare the profile count inequality of bb and loop's preheader, it is
+ three-state as stated in profile-count.h, FALSE is returned if inequality
+ cannot be decided. */
+bool
+bb_colder_than_loop_preheader (basic_block bb, class loop *loop)
+{
+ gcc_assert (bb && loop);
+ return bb->count < loop_preheader_edge (loop)->src->count;
+}
+
+/* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile
+ count.
+ It does three steps check:
+ 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just
+ return NULL which means it should not be moved out at all;
+ 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of
+ OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP;
+ 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a
+ hotter loop between OUTERMOST_LOOP and loop in pre-computed
+ HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return
+ OUTERMOST_LOOP.
+ At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as
+ the hoist target. */
+
+static class loop *
+get_coldest_out_loop (class loop *outermost_loop, class loop *loop,
+ basic_block curr_bb)
+{
+ gcc_assert (outermost_loop == loop
+ || flow_loop_nested_p (outermost_loop, loop));
+
+ /* If bb_colder_than_loop_preheader returns false due to three-state
+ comparision, OUTERMOST_LOOP is returned finally to preserve the behavior.
+ Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */
+ if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop))
+ return NULL;
+
+ class loop *coldest_loop = coldest_outermost_loop[loop->num];
+ if (loop_depth (coldest_loop) < loop_depth (outermost_loop))
+ {
+ class loop *hotter_loop = hotter_than_inner_loop[loop->num];
+ if (!hotter_loop
+ || loop_depth (hotter_loop) < loop_depth (outermost_loop))
+ return outermost_loop;
+
+ /* hotter_loop is between OUTERMOST_LOOP and LOOP like:
+ [loop tree root, ..., coldest_loop, ..., outermost_loop, ...,
+ hotter_loop, second_coldest_loop, ..., loop]
+ return second_coldest_loop to be the hoist target. */
+ class loop *aloop;
+ for (aloop = hotter_loop->inner; aloop; aloop = aloop->next)
+ if (aloop == loop || flow_loop_nested_p (aloop, loop))
+ return aloop;
+ }
+ return coldest_loop;
+}
+
+/* Suppose that operand DEF is used inside the LOOP. Returns the outermost
+ loop to that we could move the expression using DEF if it did not have
+ other operands, i.e. the outermost loop enclosing LOOP in that the value
+ of DEF is invariant. */
+
+static class loop *
+outermost_invariant_loop (tree def, class loop *loop)
+{
+ gimple *def_stmt;
+ basic_block def_bb;
+ class loop *max_loop;
+ struct lim_aux_data *lim_data;
+
+ if (!def)
+ return superloop_at_depth (loop, 1);
+
+ if (TREE_CODE (def) != SSA_NAME)
+ {
+ gcc_assert (is_gimple_min_invariant (def));
+ return superloop_at_depth (loop, 1);
+ }
+
+ def_stmt = SSA_NAME_DEF_STMT (def);
+ def_bb = gimple_bb (def_stmt);
+ if (!def_bb)
+ return superloop_at_depth (loop, 1);
+
+ max_loop = find_common_loop (loop, def_bb->loop_father);
+
+ lim_data = get_lim_data (def_stmt);
+ if (lim_data != NULL && lim_data->max_loop != NULL)
+ max_loop = find_common_loop (max_loop,
+ loop_outer (lim_data->max_loop));
+ if (max_loop == loop)
+ return NULL;
+ max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
+
+ return max_loop;
+}
+
+/* DATA is a structure containing information associated with a statement
+ inside LOOP. DEF is one of the operands of this statement.
+
+ Find the outermost loop enclosing LOOP in that value of DEF is invariant
+ and record this in DATA->max_loop field. If DEF itself is defined inside
+ this loop as well (i.e. we need to hoist it out of the loop if we want
+ to hoist the statement represented by DATA), record the statement in that
+ DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
+ add the cost of the computation of DEF to the DATA->cost.
+
+ If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
+
+static bool
+add_dependency (tree def, struct lim_aux_data *data, class loop *loop,
+ bool add_cost)
+{
+ gimple *def_stmt = SSA_NAME_DEF_STMT (def);
+ basic_block def_bb = gimple_bb (def_stmt);
+ class loop *max_loop;
+ struct lim_aux_data *def_data;
+
+ if (!def_bb)
+ return true;
+
+ max_loop = outermost_invariant_loop (def, loop);
+ if (!max_loop)
+ return false;
+
+ if (flow_loop_nested_p (data->max_loop, max_loop))
+ data->max_loop = max_loop;
+
+ def_data = get_lim_data (def_stmt);
+ if (!def_data)
+ return true;
+
+ if (add_cost
+ /* Only add the cost if the statement defining DEF is inside LOOP,
+ i.e. if it is likely that by moving the invariants dependent
+ on it, we will be able to avoid creating a new register for
+ it (since it will be only used in these dependent invariants). */
+ && def_bb->loop_father == loop)
+ data->cost += def_data->cost;
+
+ data->depends.safe_push (def_stmt);
+
+ return true;
+}
+
+/* Returns an estimate for a cost of statement STMT. The values here
+ are just ad-hoc constants, similar to costs for inlining. */
+
+static unsigned
+stmt_cost (gimple *stmt)
+{
+ /* Always try to create possibilities for unswitching. */
+ if (gimple_code (stmt) == GIMPLE_COND
+ || gimple_code (stmt) == GIMPLE_PHI)
+ return LIM_EXPENSIVE;
+
+ /* We should be hoisting calls if possible. */
+ if (is_gimple_call (stmt))
+ {
+ tree fndecl;
+
+ /* Unless the call is a builtin_constant_p; this always folds to a
+ constant, so moving it is useless. */
+ fndecl = gimple_call_fndecl (stmt);
+ if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P))
+ return 0;
+
+ return LIM_EXPENSIVE;
+ }
+
+ /* Hoisting memory references out should almost surely be a win. */
+ if (gimple_references_memory_p (stmt))
+ return LIM_EXPENSIVE;
+
+ if (gimple_code (stmt) != GIMPLE_ASSIGN)
+ return 1;
+
+ switch (gimple_assign_rhs_code (stmt))
+ {
+ case MULT_EXPR:
+ case WIDEN_MULT_EXPR:
+ case WIDEN_MULT_PLUS_EXPR:
+ case WIDEN_MULT_MINUS_EXPR:
+ case DOT_PROD_EXPR:
+ case TRUNC_DIV_EXPR:
+ case CEIL_DIV_EXPR:
+ case FLOOR_DIV_EXPR:
+ case ROUND_DIV_EXPR:
+ case EXACT_DIV_EXPR:
+ case CEIL_MOD_EXPR:
+ case FLOOR_MOD_EXPR:
+ case ROUND_MOD_EXPR:
+ case TRUNC_MOD_EXPR:
+ case RDIV_EXPR:
+ /* Division and multiplication are usually expensive. */
+ return LIM_EXPENSIVE;
+
+ case LSHIFT_EXPR:
+ case RSHIFT_EXPR:
+ case WIDEN_LSHIFT_EXPR:
+ case LROTATE_EXPR:
+ case RROTATE_EXPR:
+ /* Shifts and rotates are usually expensive. */
+ return LIM_EXPENSIVE;
+
+ case CONSTRUCTOR:
+ /* Make vector construction cost proportional to the number
+ of elements. */
+ return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
+
+ case SSA_NAME:
+ case PAREN_EXPR:
+ /* Whether or not something is wrapped inside a PAREN_EXPR
+ should not change move cost. Nor should an intermediate
+ unpropagated SSA name copy. */
+ return 0;
+
+ default:
+ return 1;
+ }
+}
+
+/* Finds the outermost loop between OUTER and LOOP in that the memory reference
+ REF is independent. If REF is not independent in LOOP, NULL is returned
+ instead. */
+
+static class loop *
+outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref)
+{
+ class loop *aloop;
+
+ if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
+ return NULL;
+
+ for (aloop = outer;
+ aloop != loop;
+ aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
+ if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
+ && ref_indep_loop_p (aloop, ref, lim_raw))
+ return aloop;
+
+ if (ref_indep_loop_p (loop, ref, lim_raw))
+ return loop;
+ else
+ return NULL;
+}
+
+/* If there is a simple load or store to a memory reference in STMT, returns
+ the location of the memory reference, and sets IS_STORE according to whether
+ it is a store or load. Otherwise, returns NULL. */
+
+static tree *
+simple_mem_ref_in_stmt (gimple *stmt, bool *is_store)
+{
+ tree *lhs, *rhs;
+
+ /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
+ if (!gimple_assign_single_p (stmt))
+ return NULL;
+
+ lhs = gimple_assign_lhs_ptr (stmt);
+ rhs = gimple_assign_rhs1_ptr (stmt);
+
+ if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
+ {
+ *is_store = false;
+ return rhs;
+ }
+ else if (gimple_vdef (stmt)
+ && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
+ {
+ *is_store = true;
+ return lhs;
+ }
+ else
+ return NULL;
+}
+
+/* From a controlling predicate in DOM determine the arguments from
+ the PHI node PHI that are chosen if the predicate evaluates to
+ true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
+ they are non-NULL. Returns true if the arguments can be determined,
+ else return false. */
+
+static bool
+extract_true_false_args_from_phi (basic_block dom, gphi *phi,
+ tree *true_arg_p, tree *false_arg_p)
+{
+ edge te, fe;
+ if (! extract_true_false_controlled_edges (dom, gimple_bb (phi),
+ &te, &fe))
+ return false;
+
+ if (true_arg_p)
+ *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx);
+ if (false_arg_p)
+ *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx);
+
+ return true;
+}
+
+/* Determine the outermost loop to that it is possible to hoist a statement
+ STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
+ the outermost loop in that the value computed by STMT is invariant.
+ If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
+ we preserve the fact whether STMT is executed. It also fills other related
+ information to LIM_DATA (STMT).
+
+ The function returns false if STMT cannot be hoisted outside of the loop it
+ is defined in, and true otherwise. */
+
+static bool
+determine_max_movement (gimple *stmt, bool must_preserve_exec)
+{
+ basic_block bb = gimple_bb (stmt);
+ class loop *loop = bb->loop_father;
+ class loop *level;
+ struct lim_aux_data *lim_data = get_lim_data (stmt);
+ tree val;
+ ssa_op_iter iter;
+
+ if (must_preserve_exec)
+ level = ALWAYS_EXECUTED_IN (bb);
+ else
+ level = superloop_at_depth (loop, 1);
+ lim_data->max_loop = get_coldest_out_loop (level, loop, bb);
+ if (!lim_data->max_loop)
+ return false;
+
+ if (gphi *phi = dyn_cast <gphi *> (stmt))
+ {
+ use_operand_p use_p;
+ unsigned min_cost = UINT_MAX;
+ unsigned total_cost = 0;
+ struct lim_aux_data *def_data;
+
+ /* We will end up promoting dependencies to be unconditionally
+ evaluated. For this reason the PHI cost (and thus the
+ cost we remove from the loop by doing the invariant motion)
+ is that of the cheapest PHI argument dependency chain. */
+ FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
+ {
+ val = USE_FROM_PTR (use_p);
+
+ if (TREE_CODE (val) != SSA_NAME)
+ {
+ /* Assign const 1 to constants. */
+ min_cost = MIN (min_cost, 1);
+ total_cost += 1;
+ continue;
+ }
+ if (!add_dependency (val, lim_data, loop, false))
+ return false;
+
+ gimple *def_stmt = SSA_NAME_DEF_STMT (val);
+ if (gimple_bb (def_stmt)
+ && gimple_bb (def_stmt)->loop_father == loop)
+ {
+ def_data = get_lim_data (def_stmt);
+ if (def_data)
+ {
+ min_cost = MIN (min_cost, def_data->cost);
+ total_cost += def_data->cost;
+ }
+ }
+ }
+
+ min_cost = MIN (min_cost, total_cost);
+ lim_data->cost += min_cost;
+
+ if (gimple_phi_num_args (phi) > 1)
+ {
+ basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
+ gimple *cond;
+ if (gsi_end_p (gsi_last_bb (dom)))
+ return false;
+ cond = gsi_stmt (gsi_last_bb (dom));
+ if (gimple_code (cond) != GIMPLE_COND)
+ return false;
+ /* Verify that this is an extended form of a diamond and
+ the PHI arguments are completely controlled by the
+ predicate in DOM. */
+ if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
+ return false;
+
+ /* Fold in dependencies and cost of the condition. */
+ FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
+ {
+ if (!add_dependency (val, lim_data, loop, false))
+ return false;
+ def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
+ if (def_data)
+ lim_data->cost += def_data->cost;
+ }
+
+ /* We want to avoid unconditionally executing very expensive
+ operations. As costs for our dependencies cannot be
+ negative just claim we are not invariand for this case.
+ We also are not sure whether the control-flow inside the
+ loop will vanish. */
+ if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
+ && !(min_cost != 0
+ && total_cost / min_cost <= 2))
+ return false;
+
+ /* Assume that the control-flow in the loop will vanish.
+ ??? We should verify this and not artificially increase
+ the cost if that is not the case. */
+ lim_data->cost += stmt_cost (stmt);
+ }
+
+ return true;
+ }
+ else
+ FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
+ if (!add_dependency (val, lim_data, loop, true))
+ return false;
+
+ if (gimple_vuse (stmt))
+ {
+ im_mem_ref *ref
+ = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL;
+ if (ref
+ && MEM_ANALYZABLE (ref))
+ {
+ lim_data->max_loop = outermost_indep_loop (lim_data->max_loop,
+ loop, ref);
+ if (!lim_data->max_loop)
+ return false;
+ }
+ else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false))
+ return false;
+ }
+
+ lim_data->cost += stmt_cost (stmt);
+
+ return true;
+}
+
+/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
+ and that one of the operands of this statement is computed by STMT.
+ Ensure that STMT (together with all the statements that define its
+ operands) is hoisted at least out of the loop LEVEL. */
+
+static void
+set_level (gimple *stmt, class loop *orig_loop, class loop *level)
+{
+ class loop *stmt_loop = gimple_bb (stmt)->loop_father;
+ struct lim_aux_data *lim_data;
+ gimple *dep_stmt;
+ unsigned i;
+
+ stmt_loop = find_common_loop (orig_loop, stmt_loop);
+ lim_data = get_lim_data (stmt);
+ if (lim_data != NULL && lim_data->tgt_loop != NULL)
+ stmt_loop = find_common_loop (stmt_loop,
+ loop_outer (lim_data->tgt_loop));
+ if (flow_loop_nested_p (stmt_loop, level))
+ return;
+
+ gcc_assert (level == lim_data->max_loop
+ || flow_loop_nested_p (lim_data->max_loop, level));
+
+ lim_data->tgt_loop = level;
+ FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
+ set_level (dep_stmt, orig_loop, level);
+}
+
+/* Determines an outermost loop from that we want to hoist the statement STMT.
+ For now we chose the outermost possible loop. TODO -- use profiling
+ information to set it more sanely. */
+
+static void
+set_profitable_level (gimple *stmt)
+{
+ set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
+}
+
+/* Returns true if STMT is a call that has side effects. */
+
+static bool
+nonpure_call_p (gimple *stmt)
+{
+ if (gimple_code (stmt) != GIMPLE_CALL)
+ return false;
+
+ return gimple_has_side_effects (stmt);
+}
+
+/* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
+
+static gimple *
+rewrite_reciprocal (gimple_stmt_iterator *bsi)
+{
+ gassign *stmt, *stmt1, *stmt2;
+ tree name, lhs, type;
+ tree real_one;
+ gimple_stmt_iterator gsi;
+
+ stmt = as_a <gassign *> (gsi_stmt (*bsi));
+ lhs = gimple_assign_lhs (stmt);
+ type = TREE_TYPE (lhs);
+
+ real_one = build_one_cst (type);
+
+ name = make_temp_ssa_name (type, NULL, "reciptmp");
+ stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
+ gimple_assign_rhs2 (stmt));
+ stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
+ gimple_assign_rhs1 (stmt));
+
+ /* Replace division stmt with reciprocal and multiply stmts.
+ The multiply stmt is not invariant, so update iterator
+ and avoid rescanning. */
+ gsi = *bsi;
+ gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
+ gsi_replace (&gsi, stmt2, true);
+
+ /* Continue processing with invariant reciprocal statement. */
+ return stmt1;
+}
+
+/* Check if the pattern at *BSI is a bittest of the form
+ (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
+
+static gimple *
+rewrite_bittest (gimple_stmt_iterator *bsi)
+{
+ gassign *stmt;
+ gimple *stmt1;
+ gassign *stmt2;
+ gimple *use_stmt;
+ gcond *cond_stmt;
+ tree lhs, name, t, a, b;
+ use_operand_p use;
+
+ stmt = as_a <gassign *> (gsi_stmt (*bsi));
+ lhs = gimple_assign_lhs (stmt);
+
+ /* Verify that the single use of lhs is a comparison against zero. */
+ if (TREE_CODE (lhs) != SSA_NAME
+ || !single_imm_use (lhs, &use, &use_stmt))
+ return stmt;
+ cond_stmt = dyn_cast <gcond *> (use_stmt);
+ if (!cond_stmt)
+ return stmt;
+ if (gimple_cond_lhs (cond_stmt) != lhs
+ || (gimple_cond_code (cond_stmt) != NE_EXPR
+ && gimple_cond_code (cond_stmt) != EQ_EXPR)
+ || !integer_zerop (gimple_cond_rhs (cond_stmt)))
+ return stmt;
+
+ /* Get at the operands of the shift. The rhs is TMP1 & 1. */
+ stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
+ if (gimple_code (stmt1) != GIMPLE_ASSIGN)
+ return stmt;
+
+ /* There is a conversion in between possibly inserted by fold. */
+ if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
+ {
+ t = gimple_assign_rhs1 (stmt1);
+ if (TREE_CODE (t) != SSA_NAME
+ || !has_single_use (t))
+ return stmt;
+ stmt1 = SSA_NAME_DEF_STMT (t);
+ if (gimple_code (stmt1) != GIMPLE_ASSIGN)
+ return stmt;
+ }
+
+ /* Verify that B is loop invariant but A is not. Verify that with
+ all the stmt walking we are still in the same loop. */
+ if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
+ || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
+ return stmt;
+
+ a = gimple_assign_rhs1 (stmt1);
+ b = gimple_assign_rhs2 (stmt1);
+
+ if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
+ && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
+ {
+ gimple_stmt_iterator rsi;
+
+ /* 1 << B */
+ t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
+ build_int_cst (TREE_TYPE (a), 1), b);
+ name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
+ stmt1 = gimple_build_assign (name, t);
+
+ /* A & (1 << B) */
+ t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
+ name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
+ stmt2 = gimple_build_assign (name, t);
+
+ /* Replace the SSA_NAME we compare against zero. Adjust
+ the type of zero accordingly. */
+ SET_USE (use, name);
+ gimple_cond_set_rhs (cond_stmt,
+ build_int_cst_type (TREE_TYPE (name),
+ 0));
+
+ /* Don't use gsi_replace here, none of the new assignments sets
+ the variable originally set in stmt. Move bsi to stmt1, and
+ then remove the original stmt, so that we get a chance to
+ retain debug info for it. */
+ rsi = *bsi;
+ gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
+ gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
+ gimple *to_release = gsi_stmt (rsi);
+ gsi_remove (&rsi, true);
+ release_defs (to_release);
+
+ return stmt1;
+ }
+
+ return stmt;
+}
+
+/* Determine the outermost loops in that statements in basic block BB are
+ invariant, and record them to the LIM_DATA associated with the
+ statements. */
+
+static void
+compute_invariantness (basic_block bb)
+{
+ enum move_pos pos;
+ gimple_stmt_iterator bsi;
+ gimple *stmt;
+ bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
+ class loop *outermost = ALWAYS_EXECUTED_IN (bb);
+ struct lim_aux_data *lim_data;
+
+ if (!loop_outer (bb->loop_father))
+ return;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
+ bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
+
+ /* Look at PHI nodes, but only if there is at most two.
+ ??? We could relax this further by post-processing the inserted
+ code and transforming adjacent cond-exprs with the same predicate
+ to control flow again. */
+ bsi = gsi_start_phis (bb);
+ if (!gsi_end_p (bsi)
+ && ((gsi_next (&bsi), gsi_end_p (bsi))
+ || (gsi_next (&bsi), gsi_end_p (bsi))))
+ for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ stmt = gsi_stmt (bsi);
+
+ pos = movement_possibility (stmt);
+ if (pos == MOVE_IMPOSSIBLE)
+ continue;
+
+ lim_data = get_lim_data (stmt);
+ if (! lim_data)
+ lim_data = init_lim_data (stmt);
+ lim_data->always_executed_in = outermost;
+
+ if (!determine_max_movement (stmt, false))
+ {
+ lim_data->max_loop = NULL;
+ continue;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ print_gimple_stmt (dump_file, stmt, 2);
+ fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
+ loop_depth (lim_data->max_loop),
+ lim_data->cost);
+ }
+
+ if (lim_data->cost >= LIM_EXPENSIVE)
+ set_profitable_level (stmt);
+ }
+
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ {
+ stmt = gsi_stmt (bsi);
+
+ pos = movement_possibility (stmt);
+ if (pos == MOVE_IMPOSSIBLE)
+ {
+ if (nonpure_call_p (stmt))
+ {
+ maybe_never = true;
+ outermost = NULL;
+ }
+ /* Make sure to note always_executed_in for stores to make
+ store-motion work. */
+ else if (stmt_makes_single_store (stmt))
+ {
+ struct lim_aux_data *lim_data = get_lim_data (stmt);
+ if (! lim_data)
+ lim_data = init_lim_data (stmt);
+ lim_data->always_executed_in = outermost;
+ }
+ continue;
+ }
+
+ if (is_gimple_assign (stmt)
+ && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
+ == GIMPLE_BINARY_RHS))
+ {
+ tree op0 = gimple_assign_rhs1 (stmt);
+ tree op1 = gimple_assign_rhs2 (stmt);
+ class loop *ol1 = outermost_invariant_loop (op1,
+ loop_containing_stmt (stmt));
+
+ /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
+ to be hoisted out of loop, saving expensive divide. */
+ if (pos == MOVE_POSSIBLE
+ && gimple_assign_rhs_code (stmt) == RDIV_EXPR
+ && flag_unsafe_math_optimizations
+ && !flag_trapping_math
+ && ol1 != NULL
+ && outermost_invariant_loop (op0, ol1) == NULL)
+ stmt = rewrite_reciprocal (&bsi);
+
+ /* If the shift count is invariant, convert (A >> B) & 1 to
+ A & (1 << B) allowing the bit mask to be hoisted out of the loop
+ saving an expensive shift. */
+ if (pos == MOVE_POSSIBLE
+ && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
+ && integer_onep (op1)
+ && TREE_CODE (op0) == SSA_NAME
+ && has_single_use (op0))
+ stmt = rewrite_bittest (&bsi);
+ }
+
+ lim_data = get_lim_data (stmt);
+ if (! lim_data)
+ lim_data = init_lim_data (stmt);
+ lim_data->always_executed_in = outermost;
+
+ if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
+ continue;
+
+ if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
+ {
+ lim_data->max_loop = NULL;
+ continue;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ print_gimple_stmt (dump_file, stmt, 2);
+ fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
+ loop_depth (lim_data->max_loop),
+ lim_data->cost);
+ }
+
+ if (lim_data->cost >= LIM_EXPENSIVE)
+ set_profitable_level (stmt);
+ }
+}
+
+/* Hoist the statements in basic block BB out of the loops prescribed by
+ data stored in LIM_DATA structures associated with each statement. Callback
+ for walk_dominator_tree. */
+
+unsigned int
+move_computations_worker (basic_block bb)
+{
+ class loop *level;
+ unsigned cost = 0;
+ struct lim_aux_data *lim_data;
+ unsigned int todo = 0;
+
+ if (!loop_outer (bb->loop_father))
+ return todo;
+
+ for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
+ {
+ gassign *new_stmt;
+ gphi *stmt = bsi.phi ();
+
+ lim_data = get_lim_data (stmt);
+ if (lim_data == NULL)
+ {
+ gsi_next (&bsi);
+ continue;
+ }
+
+ cost = lim_data->cost;
+ level = lim_data->tgt_loop;
+ clear_lim_data (stmt);
+
+ if (!level)
+ {
+ gsi_next (&bsi);
+ continue;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Moving PHI node\n");
+ print_gimple_stmt (dump_file, stmt, 0);
+ fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
+ cost, level->num);
+ }
+
+ if (gimple_phi_num_args (stmt) == 1)
+ {
+ tree arg = PHI_ARG_DEF (stmt, 0);
+ new_stmt = gimple_build_assign (gimple_phi_result (stmt),
+ TREE_CODE (arg), arg);
+ }
+ else
+ {
+ basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
+ gimple *cond = gsi_stmt (gsi_last_bb (dom));
+ tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
+ /* Get the PHI arguments corresponding to the true and false
+ edges of COND. */
+ extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
+ gcc_assert (arg0 && arg1);
+ t = build2 (gimple_cond_code (cond), boolean_type_node,
+ gimple_cond_lhs (cond), gimple_cond_rhs (cond));
+ new_stmt = gimple_build_assign (gimple_phi_result (stmt),
+ COND_EXPR, t, arg0, arg1);
+ todo |= TODO_cleanup_cfg;
+ }
+ if (!ALWAYS_EXECUTED_IN (bb)
+ || (ALWAYS_EXECUTED_IN (bb) != level
+ && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))
+ reset_flow_sensitive_info (gimple_assign_lhs (new_stmt));
+ gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
+ remove_phi_node (&bsi, false);
+ }
+
+ for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
+ {
+ edge e;
+
+ gimple *stmt = gsi_stmt (bsi);
+
+ lim_data = get_lim_data (stmt);
+ if (lim_data == NULL)
+ {
+ gsi_next (&bsi);
+ continue;
+ }
+
+ cost = lim_data->cost;
+ level = lim_data->tgt_loop;
+ clear_lim_data (stmt);
+
+ if (!level)
+ {
+ gsi_next (&bsi);
+ continue;
+ }
+
+ /* We do not really want to move conditionals out of the loop; we just
+ placed it here to force its operands to be moved if necessary. */
+ if (gimple_code (stmt) == GIMPLE_COND)
+ {
+ gsi_next (&bsi);
+ continue;
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Moving statement\n");
+ print_gimple_stmt (dump_file, stmt, 0);
+ fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
+ cost, level->num);
+ }
+
+ e = loop_preheader_edge (level);
+ gcc_assert (!gimple_vdef (stmt));
+ if (gimple_vuse (stmt))
+ {
+ /* The new VUSE is the one from the virtual PHI in the loop
+ header or the one already present. */
+ gphi_iterator gsi2;
+ for (gsi2 = gsi_start_phis (e->dest);
+ !gsi_end_p (gsi2); gsi_next (&gsi2))
+ {
+ gphi *phi = gsi2.phi ();
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ {
+ SET_USE (gimple_vuse_op (stmt),
+ PHI_ARG_DEF_FROM_EDGE (phi, e));
+ break;
+ }
+ }
+ }
+ gsi_remove (&bsi, false);
+ if (gimple_has_lhs (stmt)
+ && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
+ && (!ALWAYS_EXECUTED_IN (bb)
+ || !(ALWAYS_EXECUTED_IN (bb) == level
+ || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
+ reset_flow_sensitive_info (gimple_get_lhs (stmt));
+ /* In case this is a stmt that is not unconditionally executed
+ when the target loop header is executed and the stmt may
+ invoke undefined integer or pointer overflow rewrite it to
+ unsigned arithmetic. */
+ if (is_gimple_assign (stmt)
+ && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
+ && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
+ && arith_code_with_undefined_signed_overflow
+ (gimple_assign_rhs_code (stmt))
+ && (!ALWAYS_EXECUTED_IN (bb)
+ || !(ALWAYS_EXECUTED_IN (bb) == level
+ || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
+ gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
+ else
+ gsi_insert_on_edge (e, stmt);
+ }
+
+ return todo;
+}
+
+/* Checks whether the statement defining variable *INDEX can be hoisted
+ out of the loop passed in DATA. Callback for for_each_index. */
+
+static bool
+may_move_till (tree ref, tree *index, void *data)
+{
+ class loop *loop = (class loop *) data, *max_loop;
+
+ /* If REF is an array reference, check also that the step and the lower
+ bound is invariant in LOOP. */
+ if (TREE_CODE (ref) == ARRAY_REF)
+ {
+ tree step = TREE_OPERAND (ref, 3);
+ tree lbound = TREE_OPERAND (ref, 2);
+
+ max_loop = outermost_invariant_loop (step, loop);
+ if (!max_loop)
+ return false;
+
+ max_loop = outermost_invariant_loop (lbound, loop);
+ if (!max_loop)
+ return false;
+ }
+
+ max_loop = outermost_invariant_loop (*index, loop);
+ if (!max_loop)
+ return false;
+
+ return true;
+}
+
+/* If OP is SSA NAME, force the statement that defines it to be
+ moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
+
+static void
+force_move_till_op (tree op, class loop *orig_loop, class loop *loop)
+{
+ gimple *stmt;
+
+ if (!op
+ || is_gimple_min_invariant (op))
+ return;
+
+ gcc_assert (TREE_CODE (op) == SSA_NAME);
+
+ stmt = SSA_NAME_DEF_STMT (op);
+ if (gimple_nop_p (stmt))
+ return;
+
+ set_level (stmt, orig_loop, loop);
+}
+
+/* Forces statement defining invariants in REF (and *INDEX) to be moved out of
+ the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
+ for_each_index. */
+
+struct fmt_data
+{
+ class loop *loop;
+ class loop *orig_loop;
+};
+
+static bool
+force_move_till (tree ref, tree *index, void *data)
+{
+ struct fmt_data *fmt_data = (struct fmt_data *) data;
+
+ if (TREE_CODE (ref) == ARRAY_REF)
+ {
+ tree step = TREE_OPERAND (ref, 3);
+ tree lbound = TREE_OPERAND (ref, 2);
+
+ force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
+ force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
+ }
+
+ force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
+
+ return true;
+}
+
+/* A function to free the mem_ref object OBJ. */
+
+static void
+memref_free (class im_mem_ref *mem)
+{
+ mem->accesses_in_loop.release ();
+}
+
+/* Allocates and returns a memory reference description for MEM whose hash
+ value is HASH and id is ID. */
+
+static im_mem_ref *
+mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id)
+{
+ im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref);
+ if (mem)
+ ref->mem = *mem;
+ else
+ ao_ref_init (&ref->mem, error_mark_node);
+ ref->id = id;
+ ref->ref_canonical = false;
+ ref->ref_decomposed = false;
+ ref->hash = hash;
+ ref->stored = NULL;
+ ref->loaded = NULL;
+ bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
+ ref->accesses_in_loop.create (1);
+
+ return ref;
+}
+
+/* Records memory reference location *LOC in LOOP to the memory reference
+ description REF. The reference occurs in statement STMT. */
+
+static void
+record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc)
+{
+ mem_ref_loc aref;
+ aref.stmt = stmt;
+ aref.ref = loc;
+ ref->accesses_in_loop.safe_push (aref);
+}
+
+/* Set the LOOP bit in REF stored bitmap and allocate that if
+ necessary. Return whether a bit was changed. */
+
+static bool
+set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop)
+{
+ if (!ref->stored)
+ ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
+ return bitmap_set_bit (ref->stored, loop->num);
+}
+
+/* Marks reference REF as stored in LOOP. */
+
+static void
+mark_ref_stored (im_mem_ref *ref, class loop *loop)
+{
+ while (loop != current_loops->tree_root
+ && set_ref_stored_in_loop (ref, loop))
+ loop = loop_outer (loop);
+}
+
+/* Set the LOOP bit in REF loaded bitmap and allocate that if
+ necessary. Return whether a bit was changed. */
+
+static bool
+set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop)
+{
+ if (!ref->loaded)
+ ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack);
+ return bitmap_set_bit (ref->loaded, loop->num);
+}
+
+/* Marks reference REF as loaded in LOOP. */
+
+static void
+mark_ref_loaded (im_mem_ref *ref, class loop *loop)
+{
+ while (loop != current_loops->tree_root
+ && set_ref_loaded_in_loop (ref, loop))
+ loop = loop_outer (loop);
+}
+
+/* Gathers memory references in statement STMT in LOOP, storing the
+ information about them in the memory_accesses structure. Marks
+ the vops accessed through unrecognized statements there as
+ well. */
+
+static void
+gather_mem_refs_stmt (class loop *loop, gimple *stmt)
+{
+ tree *mem = NULL;
+ hashval_t hash;
+ im_mem_ref **slot;
+ im_mem_ref *ref;
+ bool is_stored;
+ unsigned id;
+
+ if (!gimple_vuse (stmt))
+ return;
+
+ mem = simple_mem_ref_in_stmt (stmt, &is_stored);
+ if (!mem && is_gimple_assign (stmt))
+ {
+ /* For aggregate copies record distinct references but use them
+ only for disambiguation purposes. */
+ id = memory_accesses.refs_list.length ();
+ ref = mem_ref_alloc (NULL, 0, id);
+ memory_accesses.refs_list.safe_push (ref);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Unhandled memory reference %u: ", id);
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+ record_mem_ref_loc (ref, stmt, mem);
+ is_stored = gimple_vdef (stmt);
+ }
+ else if (!mem)
+ {
+ /* We use the shared mem_ref for all unanalyzable refs. */
+ id = UNANALYZABLE_MEM_ID;
+ ref = memory_accesses.refs_list[id];
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
+ print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
+ }
+ is_stored = gimple_vdef (stmt);
+ }
+ else
+ {
+ /* We are looking for equal refs that might differ in structure
+ such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but
+ make sure we can canonicalize the ref in the hashtable if
+ non-operand_equal_p refs are found. For the lookup we mark
+ the case we want strict equality with aor.max_size == -1. */
+ ao_ref aor;
+ ao_ref_init (&aor, *mem);
+ ao_ref_base (&aor);
+ ao_ref_alias_set (&aor);
+ HOST_WIDE_INT offset, size, max_size;
+ poly_int64 saved_maxsize = aor.max_size, mem_off;
+ tree mem_base;
+ bool ref_decomposed;
+ if (aor.max_size_known_p ()
+ && aor.offset.is_constant (&offset)
+ && aor.size.is_constant (&size)
+ && aor.max_size.is_constant (&max_size)
+ && size == max_size
+ && (size % BITS_PER_UNIT) == 0
+ /* We're canonicalizing to a MEM where TYPE_SIZE specifies the
+ size. Make sure this is consistent with the extraction. */
+ && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem)))
+ && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))),
+ aor.size)
+ && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off)))
+ {
+ ref_decomposed = true;
+ tree base = ao_ref_base (&aor);
+ poly_int64 moffset;
+ HOST_WIDE_INT mcoffset;
+ if (TREE_CODE (base) == MEM_REF
+ && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset)
+ && moffset.is_constant (&mcoffset))
+ {
+ hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0);
+ hash = iterative_hash_host_wide_int (mcoffset, hash);
+ }
+ else
+ {
+ hash = iterative_hash_expr (base, 0);
+ hash = iterative_hash_host_wide_int (offset, hash);
+ }
+ hash = iterative_hash_host_wide_int (size, hash);
+ }
+ else
+ {
+ ref_decomposed = false;
+ hash = iterative_hash_expr (aor.ref, 0);
+ aor.max_size = -1;
+ }
+ slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT);
+ aor.max_size = saved_maxsize;
+ if (*slot)
+ {
+ if (!(*slot)->ref_canonical
+ && !operand_equal_p (*mem, (*slot)->mem.ref, 0))
+ {
+ /* If we didn't yet canonicalize the hashtable ref (which
+ we'll end up using for code insertion) and hit a second
+ equal ref that is not structurally equivalent create
+ a canonical ref which is a bare MEM_REF. */
+ if (TREE_CODE (*mem) == MEM_REF
+ || TREE_CODE (*mem) == TARGET_MEM_REF)
+ {
+ (*slot)->mem.ref = *mem;
+ (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor);
+ }
+ else
+ {
+ tree ref_alias_type = reference_alias_ptr_type (*mem);
+ unsigned int ref_align = get_object_alignment (*mem);
+ tree ref_type = TREE_TYPE (*mem);
+ tree tmp = build1 (ADDR_EXPR, ptr_type_node,
+ unshare_expr (mem_base));
+ if (TYPE_ALIGN (ref_type) != ref_align)
+ ref_type = build_aligned_type (ref_type, ref_align);
+ (*slot)->mem.ref
+ = fold_build2 (MEM_REF, ref_type, tmp,
+ build_int_cst (ref_alias_type, mem_off));
+ if ((*slot)->mem.volatile_p)
+ TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1;
+ gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF
+ && is_gimple_mem_ref_addr
+ (TREE_OPERAND ((*slot)->mem.ref,
+ 0)));
+ (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set;
+ }
+ (*slot)->ref_canonical = true;
+ }
+ ref = *slot;
+ id = ref->id;
+ }
+ else
+ {
+ id = memory_accesses.refs_list.length ();
+ ref = mem_ref_alloc (&aor, hash, id);
+ ref->ref_decomposed = ref_decomposed;
+ memory_accesses.refs_list.safe_push (ref);
+ *slot = ref;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Memory reference %u: ", id);
+ print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
+ fprintf (dump_file, "\n");
+ }
+ }
+
+ record_mem_ref_loc (ref, stmt, mem);
+ }
+ if (is_stored)
+ {
+ bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
+ mark_ref_stored (ref, loop);
+ }
+ /* A not simple memory op is also a read when it is a write. */
+ if (!is_stored || id == UNANALYZABLE_MEM_ID
+ || ref->mem.ref == error_mark_node)
+ {
+ bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id);
+ mark_ref_loaded (ref, loop);
+ }
+ init_lim_data (stmt)->ref = ref->id;
+ return;
+}
+
+static unsigned *bb_loop_postorder;
+
+/* qsort sort function to sort blocks after their loop fathers postorder. */
+
+static int
+sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_,
+ void *bb_loop_postorder_)
+{
+ unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
+ basic_block bb1 = *(const basic_block *)bb1_;
+ basic_block bb2 = *(const basic_block *)bb2_;
+ class loop *loop1 = bb1->loop_father;
+ class loop *loop2 = bb2->loop_father;
+ if (loop1->num == loop2->num)
+ return bb1->index - bb2->index;
+ return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
+}
+
+/* qsort sort function to sort ref locs after their loop fathers postorder. */
+
+static int
+sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_,
+ void *bb_loop_postorder_)
+{
+ unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
+ const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_;
+ const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_;
+ class loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
+ class loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
+ if (loop1->num == loop2->num)
+ return 0;
+ return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
+}
+
+/* Gathers memory references in loops. */
+
+static void
+analyze_memory_references (bool store_motion)
+{
+ gimple_stmt_iterator bsi;
+ basic_block bb, *bbs;
+ class loop *outer;
+ unsigned i, n;
+
+ /* Collect all basic-blocks in loops and sort them after their
+ loops postorder. */
+ i = 0;
+ bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
+ FOR_EACH_BB_FN (bb, cfun)
+ if (bb->loop_father != current_loops->tree_root)
+ bbs[i++] = bb;
+ n = i;
+ gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp,
+ bb_loop_postorder);
+
+ /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
+ That results in better locality for all the bitmaps. It also
+ automatically sorts the location list of gathered memory references
+ after their loop postorder number allowing to binary-search it. */
+ for (i = 0; i < n; ++i)
+ {
+ basic_block bb = bbs[i];
+ for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
+ gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
+ }
+
+ /* Verify the list of gathered memory references is sorted after their
+ loop postorder number. */
+ if (flag_checking)
+ {
+ im_mem_ref *ref;
+ FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
+ for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j)
+ gcc_assert (sort_locs_in_loop_postorder_cmp
+ (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j],
+ bb_loop_postorder) <= 0);
+ }
+
+ free (bbs);
+
+ if (!store_motion)
+ return;
+
+ /* Propagate the information about accessed memory references up
+ the loop hierarchy. */
+ for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
+ {
+ /* Finalize the overall touched references (including subloops). */
+ bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
+ &memory_accesses.refs_stored_in_loop[loop->num]);
+
+ /* Propagate the information about accessed memory references up
+ the loop hierarchy. */
+ outer = loop_outer (loop);
+ if (outer == current_loops->tree_root)
+ continue;
+
+ bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
+ &memory_accesses.all_refs_stored_in_loop[loop->num]);
+ }
+}
+
+/* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
+ tree_to_aff_combination_expand. */
+
+static bool
+mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2,
+ hash_map<tree, name_expansion *> **ttae_cache,
+ bool tbaa_p)
+{
+ gcc_checking_assert (mem1->mem.ref != error_mark_node
+ && mem2->mem.ref != error_mark_node);
+
+ /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
+ object and their offset differ in such a way that the locations cannot
+ overlap, then they cannot alias. */
+ poly_widest_int size1, size2;
+ aff_tree off1, off2;
+
+ /* Perform basic offset and type-based disambiguation. */
+ if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p))
+ return false;
+
+ /* The expansion of addresses may be a bit expensive, thus we only do
+ the check at -O2 and higher optimization levels. */
+ if (optimize < 2)
+ return true;
+
+ get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
+ get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
+ aff_combination_expand (&off1, ttae_cache);
+ aff_combination_expand (&off2, ttae_cache);
+ aff_combination_scale (&off1, -1);
+ aff_combination_add (&off2, &off1);
+
+ if (aff_comb_cannot_overlap_p (&off2, size1, size2))
+ return false;
+
+ return true;
+}
+
+/* Compare function for bsearch searching for reference locations
+ in a loop. */
+
+static int
+find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_,
+ void *bb_loop_postorder_)
+{
+ unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_;
+ class loop *loop = (class loop *)const_cast<void *>(loop_);
+ mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
+ class loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
+ if (loop->num == loc_loop->num
+ || flow_loop_nested_p (loop, loc_loop))
+ return 0;
+ return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
+ ? -1 : 1);
+}
+
+/* Iterates over all locations of REF in LOOP and its subloops calling
+ fn.operator() with the location as argument. When that operator
+ returns true the iteration is stopped and true is returned.
+ Otherwise false is returned. */
+
+template <typename FN>
+static bool
+for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn)
+{
+ unsigned i;
+ mem_ref_loc *loc;
+
+ /* Search for the cluster of locs in the accesses_in_loop vector
+ which is sorted after postorder index of the loop father. */
+ loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp,
+ bb_loop_postorder);
+ if (!loc)
+ return false;
+
+ /* We have found one location inside loop or its sub-loops. Iterate
+ both forward and backward to cover the whole cluster. */
+ i = loc - ref->accesses_in_loop.address ();
+ while (i > 0)
+ {
+ --i;
+ mem_ref_loc *l = &ref->accesses_in_loop[i];
+ if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
+ break;
+ if (fn (l))
+ return true;
+ }
+ for (i = loc - ref->accesses_in_loop.address ();
+ i < ref->accesses_in_loop.length (); ++i)
+ {
+ mem_ref_loc *l = &ref->accesses_in_loop[i];
+ if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
+ break;
+ if (fn (l))
+ return true;
+ }
+
+ return false;
+}
+
+/* Rewrites location LOC by TMP_VAR. */
+
+class rewrite_mem_ref_loc
+{
+public:
+ rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
+ bool operator () (mem_ref_loc *loc);
+ tree tmp_var;
+};
+
+bool
+rewrite_mem_ref_loc::operator () (mem_ref_loc *loc)
+{
+ *loc->ref = tmp_var;
+ update_stmt (loc->stmt);
+ return false;
+}
+
+/* Rewrites all references to REF in LOOP by variable TMP_VAR. */
+
+static void
+rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var)
+{
+ for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
+}
+
+/* Stores the first reference location in LOCP. */
+
+class first_mem_ref_loc_1
+{
+public:
+ first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {}
+ bool operator () (mem_ref_loc *loc);
+ mem_ref_loc **locp;
+};
+
+bool
+first_mem_ref_loc_1::operator () (mem_ref_loc *loc)
+{
+ *locp = loc;
+ return true;
+}
+
+/* Returns the first reference location to REF in LOOP. */
+
+static mem_ref_loc *
+first_mem_ref_loc (class loop *loop, im_mem_ref *ref)
+{
+ mem_ref_loc *locp = NULL;
+ for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
+ return locp;
+}
+
+/* Helper function for execute_sm. Emit code to store TMP_VAR into
+ MEM along edge EX.
+
+ The store is only done if MEM has changed. We do this so no
+ changes to MEM occur on code paths that did not originally store
+ into it.
+
+ The common case for execute_sm will transform:
+
+ for (...) {
+ if (foo)
+ stuff;
+ else
+ MEM = TMP_VAR;
+ }
+
+ into:
+
+ lsm = MEM;
+ for (...) {
+ if (foo)
+ stuff;
+ else
+ lsm = TMP_VAR;
+ }
+ MEM = lsm;
+
+ This function will generate:
+
+ lsm = MEM;
+
+ lsm_flag = false;
+ ...
+ for (...) {
+ if (foo)
+ stuff;
+ else {
+ lsm = TMP_VAR;
+ lsm_flag = true;
+ }
+ }
+ if (lsm_flag) <--
+ MEM = lsm; <-- (X)
+
+ In case MEM and TMP_VAR are NULL the function will return the then
+ block so the caller can insert (X) and other related stmts.
+*/
+
+static basic_block
+execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag,
+ edge preheader, hash_set <basic_block> *flag_bbs,
+ edge &append_cond_position, edge &last_cond_fallthru)
+{
+ basic_block new_bb, then_bb, old_dest;
+ bool loop_has_only_one_exit;
+ edge then_old_edge;
+ gimple_stmt_iterator gsi;
+ gimple *stmt;
+ bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
+
+ profile_count count_sum = profile_count::zero ();
+ int nbbs = 0, ncount = 0;
+ profile_probability flag_probability = profile_probability::uninitialized ();
+
+ /* Flag is set in FLAG_BBS. Determine probability that flag will be true
+ at loop exit.
+
+ This code may look fancy, but it cannot update profile very realistically
+ because we do not know the probability that flag will be true at given
+ loop exit.
+
+ We look for two interesting extremes
+ - when exit is dominated by block setting the flag, we know it will
+ always be true. This is a common case.
+ - when all blocks setting the flag have very low frequency we know
+ it will likely be false.
+ In all other cases we default to 2/3 for flag being true. */
+
+ for (hash_set<basic_block>::iterator it = flag_bbs->begin ();
+ it != flag_bbs->end (); ++it)
+ {
+ if ((*it)->count.initialized_p ())
+ count_sum += (*it)->count, ncount ++;
+ if (dominated_by_p (CDI_DOMINATORS, ex->src, *it))
+ flag_probability = profile_probability::always ();
+ nbbs++;
+ }
+
+ profile_probability cap = profile_probability::always ().apply_scale (2, 3);
+
+ if (flag_probability.initialized_p ())
+ ;
+ else if (ncount == nbbs
+ && preheader->count () >= count_sum && preheader->count ().nonzero_p ())
+ {
+ flag_probability = count_sum.probability_in (preheader->count ());
+ if (flag_probability > cap)
+ flag_probability = cap;
+ }
+
+ if (!flag_probability.initialized_p ())
+ flag_probability = cap;
+
+ /* ?? Insert store after previous store if applicable. See note
+ below. */
+ if (append_cond_position)
+ ex = append_cond_position;
+
+ loop_has_only_one_exit = single_pred_p (ex->dest);
+
+ if (loop_has_only_one_exit)
+ ex = split_block_after_labels (ex->dest);
+ else
+ {
+ for (gphi_iterator gpi = gsi_start_phis (ex->dest);
+ !gsi_end_p (gpi); gsi_next (&gpi))
+ {
+ gphi *phi = gpi.phi ();
+ if (virtual_operand_p (gimple_phi_result (phi)))
+ continue;
+
+ /* When the destination has a non-virtual PHI node with multiple
+ predecessors make sure we preserve the PHI structure by
+ forcing a forwarder block so that hoisting of that PHI will
+ still work. */
+ split_edge (ex);
+ break;
+ }
+ }
+
+ old_dest = ex->dest;
+ new_bb = split_edge (ex);
+ then_bb = create_empty_bb (new_bb);
+ then_bb->count = new_bb->count.apply_probability (flag_probability);
+ if (irr)
+ then_bb->flags = BB_IRREDUCIBLE_LOOP;
+ add_bb_to_loop (then_bb, new_bb->loop_father);
+
+ gsi = gsi_start_bb (new_bb);
+ stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
+ NULL_TREE, NULL_TREE);
+ gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
+
+ /* Insert actual store. */
+ if (mem)
+ {
+ gsi = gsi_start_bb (then_bb);
+ stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
+ gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
+ }
+
+ edge e1 = single_succ_edge (new_bb);
+ edge e2 = make_edge (new_bb, then_bb,
+ EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
+ e2->probability = flag_probability;
+
+ e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0);
+ e1->flags &= ~EDGE_FALLTHRU;
+
+ e1->probability = flag_probability.invert ();
+
+ then_old_edge = make_single_succ_edge (then_bb, old_dest,
+ EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
+
+ set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
+
+ if (append_cond_position)
+ {
+ basic_block prevbb = last_cond_fallthru->src;
+ redirect_edge_succ (last_cond_fallthru, new_bb);
+ set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
+ set_immediate_dominator (CDI_DOMINATORS, old_dest,
+ recompute_dominator (CDI_DOMINATORS, old_dest));
+ }
+
+ /* ?? Because stores may alias, they must happen in the exact
+ sequence they originally happened. Save the position right after
+ the (_lsm) store we just created so we can continue appending after
+ it and maintain the original order. */
+ append_cond_position = then_old_edge;
+ last_cond_fallthru = find_edge (new_bb, old_dest);
+
+ if (!loop_has_only_one_exit)
+ for (gphi_iterator gpi = gsi_start_phis (old_dest);
+ !gsi_end_p (gpi); gsi_next (&gpi))
+ {
+ gphi *phi = gpi.phi ();
+ unsigned i;
+
+ for (i = 0; i < gimple_phi_num_args (phi); i++)
+ if (gimple_phi_arg_edge (phi, i)->src == new_bb)
+ {
+ tree arg = gimple_phi_arg_def (phi, i);
+ add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
+ update_stmt (phi);
+ }
+ }
+
+ return then_bb;
+}
+
+/* When REF is set on the location, set flag indicating the store. */
+
+class sm_set_flag_if_changed
+{
+public:
+ sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_)
+ : flag (flag_), bbs (bbs_) {}
+ bool operator () (mem_ref_loc *loc);
+ tree flag;
+ hash_set <basic_block> *bbs;
+};
+
+bool
+sm_set_flag_if_changed::operator () (mem_ref_loc *loc)
+{
+ /* Only set the flag for writes. */
+ if (is_gimple_assign (loc->stmt)
+ && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
+ {
+ gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
+ gimple *stmt = gimple_build_assign (flag, boolean_true_node);
+ gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
+ bbs->add (gimple_bb (stmt));
+ }
+ return false;
+}
+
+/* Helper function for execute_sm. On every location where REF is
+ set, set an appropriate flag indicating the store. */
+
+static tree
+execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref,
+ hash_set <basic_block> *bbs)
+{
+ tree flag;
+ char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
+ flag = create_tmp_reg (boolean_type_node, str);
+ for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs));
+ return flag;
+}
+
+struct sm_aux
+{
+ tree tmp_var;
+ tree store_flag;
+ hash_set <basic_block> flag_bbs;
+};
+
+/* Executes store motion of memory reference REF from LOOP.
+ Exits from the LOOP are stored in EXITS. The initialization of the
+ temporary variable is put to the preheader of the loop, and assignments
+ to the reference from the temporary variable are emitted to exits. */
+
+static void
+execute_sm (class loop *loop, im_mem_ref *ref,
+ hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt,
+ bool use_other_flag_var)
+{
+ gassign *load;
+ struct fmt_data fmt_data;
+ struct lim_aux_data *lim_data;
+ bool multi_threaded_model_p = false;
+ gimple_stmt_iterator gsi;
+ sm_aux *aux = new sm_aux;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Executing store motion of ");
+ print_generic_expr (dump_file, ref->mem.ref);
+ fprintf (dump_file, " from loop %d\n", loop->num);
+ }
+
+ aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
+ get_lsm_tmp_name (ref->mem.ref, ~0));
+
+ fmt_data.loop = loop;
+ fmt_data.orig_loop = loop;
+ for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
+
+ bool always_stored = ref_always_accessed_p (loop, ref, true);
+ if (maybe_mt
+ && (bb_in_transaction (loop_preheader_edge (loop)->src)
+ || (! flag_store_data_races && ! always_stored)))
+ multi_threaded_model_p = true;
+
+ if (multi_threaded_model_p && !use_other_flag_var)
+ aux->store_flag
+ = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs);
+ else
+ aux->store_flag = NULL_TREE;
+
+ /* Remember variable setup. */
+ aux_map.put (ref, aux);
+
+ rewrite_mem_refs (loop, ref, aux->tmp_var);
+
+ /* Emit the load code on a random exit edge or into the latch if
+ the loop does not exit, so that we are sure it will be processed
+ by move_computations after all dependencies. */
+ gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
+
+ /* Avoid doing a load if there was no load of the ref in the loop.
+ Esp. when the ref is not always stored we cannot optimize it
+ away later. But when it is not always stored we must use a conditional
+ store then. */
+ if ((!always_stored && !multi_threaded_model_p)
+ || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num)))
+ load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref));
+ else
+ {
+ /* If not emitting a load mark the uninitialized state on the
+ loop entry as not to be warned for. */
+ tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var));
+ suppress_warning (uninit, OPT_Wuninitialized);
+ load = gimple_build_assign (aux->tmp_var, uninit);
+ }
+ lim_data = init_lim_data (load);
+ lim_data->max_loop = loop;
+ lim_data->tgt_loop = loop;
+ gsi_insert_before (&gsi, load, GSI_SAME_STMT);
+
+ if (aux->store_flag)
+ {
+ load = gimple_build_assign (aux->store_flag, boolean_false_node);
+ lim_data = init_lim_data (load);
+ lim_data->max_loop = loop;
+ lim_data->tgt_loop = loop;
+ gsi_insert_before (&gsi, load, GSI_SAME_STMT);
+ }
+}
+
+/* sm_ord is used for ordinary stores we can retain order with respect
+ to other stores
+ sm_unord is used for conditional executed stores which need to be
+ able to execute in arbitrary order with respect to other stores
+ sm_other is used for stores we do not try to apply store motion to. */
+enum sm_kind { sm_ord, sm_unord, sm_other };
+struct seq_entry
+{
+ seq_entry () {}
+ seq_entry (unsigned f, sm_kind k, tree fr = NULL)
+ : first (f), second (k), from (fr) {}
+ unsigned first;
+ sm_kind second;
+ tree from;
+};
+
+static void
+execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq,
+ hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind,
+ edge &append_cond_position, edge &last_cond_fallthru)
+{
+ /* Sink the stores to exit from the loop. */
+ for (unsigned i = seq.length (); i > 0; --i)
+ {
+ im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first];
+ if (seq[i-1].second == sm_other)
+ {
+ gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE);
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ {
+ fprintf (dump_file, "Re-issueing dependent store of ");
+ print_generic_expr (dump_file, ref->mem.ref);
+ fprintf (dump_file, " from loop %d on exit %d -> %d\n",
+ loop->num, ex->src->index, ex->dest->index);
+ }
+ gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref),
+ seq[i-1].from);
+ gsi_insert_on_edge (ex, store);
+ }
+ else
+ {
+ sm_aux *aux = *aux_map.get (ref);
+ if (!aux->store_flag || kind == sm_ord)
+ {
+ gassign *store;
+ store = gimple_build_assign (unshare_expr (ref->mem.ref),
+ aux->tmp_var);
+ gsi_insert_on_edge (ex, store);
+ }
+ else
+ execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var,
+ aux->store_flag,
+ loop_preheader_edge (loop), &aux->flag_bbs,
+ append_cond_position, last_cond_fallthru);
+ }
+ }
+}
+
+/* Push the SM candidate at index PTR in the sequence SEQ down until
+ we hit the next SM candidate. Return true if that went OK and
+ false if we could not disambiguate agains another unrelated ref.
+ Update *AT to the index where the candidate now resides. */
+
+static bool
+sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at)
+{
+ *at = ptr;
+ for (; ptr > 0; --ptr)
+ {
+ seq_entry &new_cand = seq[ptr];
+ seq_entry &against = seq[ptr-1];
+ if (against.second == sm_ord
+ || (against.second == sm_other && against.from != NULL_TREE))
+ /* Found the tail of the sequence. */
+ break;
+ /* We may not ignore self-dependences here. */
+ if (new_cand.first == against.first
+ || !refs_independent_p (memory_accesses.refs_list[new_cand.first],
+ memory_accesses.refs_list[against.first],
+ false))
+ /* ??? Prune new_cand from the list of refs to apply SM to. */
+ return false;
+ std::swap (new_cand, against);
+ *at = ptr - 1;
+ }
+ return true;
+}
+
+/* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ
+ walking backwards from VDEF (or the end of BB if VDEF is NULL). */
+
+static int
+sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef,
+ vec<seq_entry> &seq, bitmap refs_not_in_seq,
+ bitmap refs_not_supported, bool forked,
+ bitmap fully_visited)
+{
+ if (!vdef)
+ for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi);
+ gsi_prev (&gsi))
+ {
+ vdef = gimple_vdef (gsi_stmt (gsi));
+ if (vdef)
+ break;
+ }
+ if (!vdef)
+ {
+ gphi *vphi = get_virtual_phi (bb);
+ if (vphi)
+ vdef = gimple_phi_result (vphi);
+ }
+ if (!vdef)
+ {
+ if (single_pred_p (bb))
+ /* This handles the perfect nest case. */
+ return sm_seq_valid_bb (loop, single_pred (bb), vdef,
+ seq, refs_not_in_seq, refs_not_supported,
+ forked, fully_visited);
+ return 0;
+ }
+ do
+ {
+ gimple *def = SSA_NAME_DEF_STMT (vdef);
+ if (gimple_bb (def) != bb)
+ {
+ /* If we forked by processing a PHI do not allow our walk to
+ merge again until we handle that robustly. */
+ if (forked)
+ {
+ /* Mark refs_not_in_seq as unsupported. */
+ bitmap_ior_into (refs_not_supported, refs_not_in_seq);
+ return 1;
+ }
+ /* Otherwise it doesn't really matter if we end up in different
+ BBs. */
+ bb = gimple_bb (def);
+ }
+ if (gphi *phi = dyn_cast <gphi *> (def))
+ {
+ /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb)
+ this is still linear.
+ Eventually we want to cache intermediate results per BB
+ (but we can't easily cache for different exits?). */
+ /* Stop at PHIs with possible backedges. */
+ if (bb == bb->loop_father->header
+ || bb->flags & BB_IRREDUCIBLE_LOOP)
+ {
+ /* Mark refs_not_in_seq as unsupported. */
+ bitmap_ior_into (refs_not_supported, refs_not_in_seq);
+ return 1;
+ }
+ if (gimple_phi_num_args (phi) == 1)
+ return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
+ gimple_phi_arg_def (phi, 0), seq,
+ refs_not_in_seq, refs_not_supported,
+ false, fully_visited);
+ if (bitmap_bit_p (fully_visited,
+ SSA_NAME_VERSION (gimple_phi_result (phi))))
+ return 1;
+ auto_vec<seq_entry> first_edge_seq;
+ auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack);
+ int eret;
+ bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq);
+ eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src,
+ gimple_phi_arg_def (phi, 0),
+ first_edge_seq,
+ tem_refs_not_in_seq, refs_not_supported,
+ true, fully_visited);
+ if (eret != 1)
+ return -1;
+ /* Simplify our lives by pruning the sequence of !sm_ord. */
+ while (!first_edge_seq.is_empty ()
+ && first_edge_seq.last ().second != sm_ord)
+ first_edge_seq.pop ();
+ for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i)
+ {
+ tree vuse = gimple_phi_arg_def (phi, i);
+ edge e = gimple_phi_arg_edge (phi, i);
+ auto_vec<seq_entry> edge_seq;
+ bitmap_and_compl (tem_refs_not_in_seq,
+ refs_not_in_seq, refs_not_supported);
+ /* If we've marked all refs we search for as unsupported
+ we can stop processing and use the sequence as before
+ the PHI. */
+ if (bitmap_empty_p (tem_refs_not_in_seq))
+ return 1;
+ eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq,
+ tem_refs_not_in_seq, refs_not_supported,
+ true, fully_visited);
+ if (eret != 1)
+ return -1;
+ /* Simplify our lives by pruning the sequence of !sm_ord. */
+ while (!edge_seq.is_empty ()
+ && edge_seq.last ().second != sm_ord)
+ edge_seq.pop ();
+ unsigned min_len = MIN(first_edge_seq.length (),
+ edge_seq.length ());
+ /* Incrementally merge seqs into first_edge_seq. */
+ int first_uneq = -1;
+ auto_vec<seq_entry, 2> extra_refs;
+ for (unsigned int i = 0; i < min_len; ++i)
+ {
+ /* ??? We can more intelligently merge when we face different
+ order by additional sinking operations in one sequence.
+ For now we simply mark them as to be processed by the
+ not order-preserving SM code. */
+ if (first_edge_seq[i].first != edge_seq[i].first)
+ {
+ if (first_edge_seq[i].second == sm_ord)
+ bitmap_set_bit (refs_not_supported,
+ first_edge_seq[i].first);
+ if (edge_seq[i].second == sm_ord)
+ bitmap_set_bit (refs_not_supported, edge_seq[i].first);
+ first_edge_seq[i].second = sm_other;
+ first_edge_seq[i].from = NULL_TREE;
+ /* Record the dropped refs for later processing. */
+ if (first_uneq == -1)
+ first_uneq = i;
+ extra_refs.safe_push (seq_entry (edge_seq[i].first,
+ sm_other, NULL_TREE));
+ }
+ /* sm_other prevails. */
+ else if (first_edge_seq[i].second != edge_seq[i].second)
+ {
+ /* Make sure the ref is marked as not supported. */
+ bitmap_set_bit (refs_not_supported,
+ first_edge_seq[i].first);
+ first_edge_seq[i].second = sm_other;
+ first_edge_seq[i].from = NULL_TREE;
+ }
+ else if (first_edge_seq[i].second == sm_other
+ && first_edge_seq[i].from != NULL_TREE
+ && (edge_seq[i].from == NULL_TREE
+ || !operand_equal_p (first_edge_seq[i].from,
+ edge_seq[i].from, 0)))
+ first_edge_seq[i].from = NULL_TREE;
+ }
+ /* Any excess elements become sm_other since they are now
+ coonditionally executed. */
+ if (first_edge_seq.length () > edge_seq.length ())
+ {
+ for (unsigned i = edge_seq.length ();
+ i < first_edge_seq.length (); ++i)
+ {
+ if (first_edge_seq[i].second == sm_ord)
+ bitmap_set_bit (refs_not_supported,
+ first_edge_seq[i].first);
+ first_edge_seq[i].second = sm_other;
+ }
+ }
+ else if (edge_seq.length () > first_edge_seq.length ())
+ {
+ if (first_uneq == -1)
+ first_uneq = first_edge_seq.length ();
+ for (unsigned i = first_edge_seq.length ();
+ i < edge_seq.length (); ++i)
+ {
+ if (edge_seq[i].second == sm_ord)
+ bitmap_set_bit (refs_not_supported, edge_seq[i].first);
+ extra_refs.safe_push (seq_entry (edge_seq[i].first,
+ sm_other, NULL_TREE));
+ }
+ }
+ /* Put unmerged refs at first_uneq to force dependence checking
+ on them. */
+ if (first_uneq != -1)
+ {
+ /* Missing ordered_splice_at. */
+ if ((unsigned)first_uneq == first_edge_seq.length ())
+ first_edge_seq.safe_splice (extra_refs);
+ else
+ {
+ unsigned fes_length = first_edge_seq.length ();
+ first_edge_seq.safe_grow (fes_length
+ + extra_refs.length ());
+ memmove (&first_edge_seq[first_uneq + extra_refs.length ()],
+ &first_edge_seq[first_uneq],
+ (fes_length - first_uneq) * sizeof (seq_entry));
+ memcpy (&first_edge_seq[first_uneq],
+ extra_refs.address (),
+ extra_refs.length () * sizeof (seq_entry));
+ }
+ }
+ }
+ /* Use the sequence from the first edge and push SMs down. */
+ for (unsigned i = 0; i < first_edge_seq.length (); ++i)
+ {
+ unsigned id = first_edge_seq[i].first;
+ seq.safe_push (first_edge_seq[i]);
+ unsigned new_idx;
+ if ((first_edge_seq[i].second == sm_ord
+ || (first_edge_seq[i].second == sm_other
+ && first_edge_seq[i].from != NULL_TREE))
+ && !sm_seq_push_down (seq, seq.length () - 1, &new_idx))
+ {
+ if (first_edge_seq[i].second == sm_ord)
+ bitmap_set_bit (refs_not_supported, id);
+ /* Mark it sm_other. */
+ seq[new_idx].second = sm_other;
+ seq[new_idx].from = NULL_TREE;
+ }
+ }
+ bitmap_set_bit (fully_visited,
+ SSA_NAME_VERSION (gimple_phi_result (phi)));
+ return 1;
+ }
+ lim_aux_data *data = get_lim_data (def);
+ gcc_assert (data);
+ if (data->ref == UNANALYZABLE_MEM_ID)
+ return -1;
+ /* Stop at memory references which we can't move. */
+ else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node)
+ {
+ /* Mark refs_not_in_seq as unsupported. */
+ bitmap_ior_into (refs_not_supported, refs_not_in_seq);
+ return 1;
+ }
+ /* One of the stores we want to apply SM to and we've not yet seen. */
+ else if (bitmap_clear_bit (refs_not_in_seq, data->ref))
+ {
+ seq.safe_push (seq_entry (data->ref, sm_ord));
+
+ /* 1) push it down the queue until a SMed
+ and not ignored ref is reached, skipping all not SMed refs
+ and ignored refs via non-TBAA disambiguation. */
+ unsigned new_idx;
+ if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx)
+ /* If that fails but we did not fork yet continue, we'll see
+ to re-materialize all of the stores in the sequence then.
+ Further stores will only be pushed up to this one. */
+ && forked)
+ {
+ bitmap_set_bit (refs_not_supported, data->ref);
+ /* Mark it sm_other. */
+ seq[new_idx].second = sm_other;
+ }
+
+ /* 2) check whether we've seen all refs we want to SM and if so
+ declare success for the active exit */
+ if (bitmap_empty_p (refs_not_in_seq))
+ return 1;
+ }
+ else
+ /* Another store not part of the final sequence. Simply push it. */
+ seq.safe_push (seq_entry (data->ref, sm_other,
+ gimple_assign_rhs1 (def)));
+
+ vdef = gimple_vuse (def);
+ }
+ while (1);
+}
+
+/* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
+ edges of the LOOP. */
+
+static void
+hoist_memory_references (class loop *loop, bitmap mem_refs,
+ const vec<edge> &exits)
+{
+ im_mem_ref *ref;
+ unsigned i;
+ bitmap_iterator bi;
+
+ /* There's a special case we can use ordered re-materialization for
+ conditionally excuted stores which is when all stores in the loop
+ happen in the same basic-block. In that case we know we'll reach
+ all stores and thus can simply process that BB and emit a single
+ conditional block of ordered materializations. See PR102436. */
+ basic_block single_store_bb = NULL;
+ EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num],
+ 0, i, bi)
+ {
+ bool fail = false;
+ ref = memory_accesses.refs_list[i];
+ for (auto loc : ref->accesses_in_loop)
+ if (!gimple_vdef (loc.stmt))
+ ;
+ else if (!single_store_bb)
+ {
+ single_store_bb = gimple_bb (loc.stmt);
+ bool conditional = false;
+ for (edge e : exits)
+ if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb))
+ {
+ /* Conditional as seen from e. */
+ conditional = true;
+ break;
+ }
+ if (!conditional)
+ {
+ fail = true;
+ break;
+ }
+ }
+ else if (single_store_bb != gimple_bb (loc.stmt))
+ {
+ fail = true;
+ break;
+ }
+ if (fail)
+ {
+ single_store_bb = NULL;
+ break;
+ }
+ }
+ if (single_store_bb)
+ {
+ /* Analyze the single block with stores. */
+ auto_bitmap fully_visited;
+ auto_bitmap refs_not_supported;
+ auto_bitmap refs_not_in_seq;
+ auto_vec<seq_entry> seq;
+ bitmap_copy (refs_not_in_seq, mem_refs);
+ int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE,
+ seq, refs_not_in_seq, refs_not_supported,
+ false, fully_visited);
+ if (res != 1)
+ {
+ /* Unhandled refs can still fail this. */
+ bitmap_clear (mem_refs);
+ return;
+ }
+
+ /* We cannot handle sm_other since we neither remember the
+ stored location nor the value at the point we execute them. */
+ for (unsigned i = 0; i < seq.length (); ++i)
+ {
+ unsigned new_i;
+ if (seq[i].second == sm_other
+ && seq[i].from != NULL_TREE)
+ seq[i].from = NULL_TREE;
+ else if ((seq[i].second == sm_ord
+ || (seq[i].second == sm_other
+ && seq[i].from != NULL_TREE))
+ && !sm_seq_push_down (seq, i, &new_i))
+ {
+ bitmap_set_bit (refs_not_supported, seq[new_i].first);
+ seq[new_i].second = sm_other;
+ seq[new_i].from = NULL_TREE;
+ }
+ }
+ bitmap_and_compl_into (mem_refs, refs_not_supported);
+ if (bitmap_empty_p (mem_refs))
+ return;
+
+ /* Prune seq. */
+ while (seq.last ().second == sm_other
+ && seq.last ().from == NULL_TREE)
+ seq.pop ();
+
+ hash_map<im_mem_ref *, sm_aux *> aux_map;
+
+ /* Execute SM but delay the store materialization for ordered
+ sequences on exit. */
+ bool first_p = true;
+ EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
+ {
+ ref = memory_accesses.refs_list[i];
+ execute_sm (loop, ref, aux_map, true, !first_p);
+ first_p = false;
+ }
+
+ /* Get at the single flag variable we eventually produced. */
+ im_mem_ref *ref
+ = memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)];
+ sm_aux *aux = *aux_map.get (ref);
+
+ /* Materialize ordered store sequences on exits. */
+ edge e;
+ FOR_EACH_VEC_ELT (exits, i, e)
+ {
+ edge append_cond_position = NULL;
+ edge last_cond_fallthru = NULL;
+ edge insert_e = e;
+ /* Construct the single flag variable control flow and insert
+ the ordered seq of stores in the then block. With
+ -fstore-data-races we can do the stores unconditionally. */
+ if (aux->store_flag)
+ insert_e
+ = single_pred_edge
+ (execute_sm_if_changed (e, NULL_TREE, NULL_TREE,
+ aux->store_flag,
+ loop_preheader_edge (loop),
+ &aux->flag_bbs, append_cond_position,
+ last_cond_fallthru));
+ execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord,
+ append_cond_position, last_cond_fallthru);
+ gsi_commit_one_edge_insert (insert_e, NULL);
+ }
+
+ for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
+ iter != aux_map.end (); ++iter)
+ delete (*iter).second;
+
+ return;
+ }
+
+ /* To address PR57359 before actually applying store-motion check
+ the candidates found for validity with regards to reordering
+ relative to other stores which we until here disambiguated using
+ TBAA which isn't valid.
+ What matters is the order of the last stores to the mem_refs
+ with respect to the other stores of the loop at the point of the
+ loop exits. */
+
+ /* For each exit compute the store order, pruning from mem_refs
+ on the fly. */
+ /* The complexity of this is at least
+ O(number of exits * number of SM refs) but more approaching
+ O(number of exits * number of SM refs * number of stores). */
+ /* ??? Somehow do this in a single sweep over the loop body. */
+ auto_vec<std::pair<edge, vec<seq_entry> > > sms;
+ auto_bitmap refs_not_supported (&lim_bitmap_obstack);
+ edge e;
+ FOR_EACH_VEC_ELT (exits, i, e)
+ {
+ vec<seq_entry> seq;
+ seq.create (4);
+ auto_bitmap refs_not_in_seq (&lim_bitmap_obstack);
+ bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported);
+ if (bitmap_empty_p (refs_not_in_seq))
+ {
+ seq.release ();
+ break;
+ }
+ auto_bitmap fully_visited;
+ int res = sm_seq_valid_bb (loop, e->src, NULL_TREE,
+ seq, refs_not_in_seq,
+ refs_not_supported, false,
+ fully_visited);
+ if (res != 1)
+ {
+ bitmap_copy (refs_not_supported, mem_refs);
+ seq.release ();
+ break;
+ }
+ sms.safe_push (std::make_pair (e, seq));
+ }
+
+ /* Prune pruned mem_refs from earlier processed exits. */
+ bool changed = !bitmap_empty_p (refs_not_supported);
+ while (changed)
+ {
+ changed = false;
+ std::pair<edge, vec<seq_entry> > *seq;
+ FOR_EACH_VEC_ELT (sms, i, seq)
+ {
+ bool need_to_push = false;
+ for (unsigned i = 0; i < seq->second.length (); ++i)
+ {
+ sm_kind kind = seq->second[i].second;
+ if (kind == sm_other && seq->second[i].from == NULL_TREE)
+ break;
+ unsigned id = seq->second[i].first;
+ unsigned new_idx;
+ if (kind == sm_ord
+ && bitmap_bit_p (refs_not_supported, id))
+ {
+ seq->second[i].second = sm_other;
+ gcc_assert (seq->second[i].from == NULL_TREE);
+ need_to_push = true;
+ }
+ else if (need_to_push
+ && !sm_seq_push_down (seq->second, i, &new_idx))
+ {
+ /* We need to push down both sm_ord and sm_other
+ but for the latter we need to disqualify all
+ following refs. */
+ if (kind == sm_ord)
+ {
+ if (bitmap_set_bit (refs_not_supported, id))
+ changed = true;
+ seq->second[new_idx].second = sm_other;
+ }
+ else
+ {
+ for (unsigned j = seq->second.length () - 1;
+ j > new_idx; --j)
+ if (seq->second[j].second == sm_ord
+ && bitmap_set_bit (refs_not_supported,
+ seq->second[j].first))
+ changed = true;
+ seq->second.truncate (new_idx);
+ break;
+ }
+ }
+ }
+ }
+ }
+ std::pair<edge, vec<seq_entry> > *seq;
+ FOR_EACH_VEC_ELT (sms, i, seq)
+ {
+ /* Prune sm_other from the end. */
+ while (!seq->second.is_empty ()
+ && seq->second.last ().second == sm_other)
+ seq->second.pop ();
+ /* Prune duplicates from the start. */
+ auto_bitmap seen (&lim_bitmap_obstack);
+ unsigned j, k;
+ for (j = k = 0; j < seq->second.length (); ++j)
+ if (bitmap_set_bit (seen, seq->second[j].first))
+ {
+ if (k != j)
+ seq->second[k] = seq->second[j];
+ ++k;
+ }
+ seq->second.truncate (k);
+ /* And verify. */
+ seq_entry *e;
+ FOR_EACH_VEC_ELT (seq->second, j, e)
+ gcc_assert (e->second == sm_ord
+ || (e->second == sm_other && e->from != NULL_TREE));
+ }
+
+ /* Verify dependence for refs we cannot handle with the order preserving
+ code (refs_not_supported) or prune them from mem_refs. */
+ auto_vec<seq_entry> unord_refs;
+ EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi)
+ {
+ ref = memory_accesses.refs_list[i];
+ if (!ref_indep_loop_p (loop, ref, sm_waw))
+ bitmap_clear_bit (mem_refs, i);
+ /* We've now verified store order for ref with respect to all other
+ stores in the loop does not matter. */
+ else
+ unord_refs.safe_push (seq_entry (i, sm_unord));
+ }
+
+ hash_map<im_mem_ref *, sm_aux *> aux_map;
+
+ /* Execute SM but delay the store materialization for ordered
+ sequences on exit. */
+ EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
+ {
+ ref = memory_accesses.refs_list[i];
+ execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i),
+ false);
+ }
+
+ /* Materialize ordered store sequences on exits. */
+ FOR_EACH_VEC_ELT (exits, i, e)
+ {
+ edge append_cond_position = NULL;
+ edge last_cond_fallthru = NULL;
+ if (i < sms.length ())
+ {
+ gcc_assert (sms[i].first == e);
+ execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord,
+ append_cond_position, last_cond_fallthru);
+ sms[i].second.release ();
+ }
+ if (!unord_refs.is_empty ())
+ execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord,
+ append_cond_position, last_cond_fallthru);
+ /* Commit edge inserts here to preserve the order of stores
+ when an exit exits multiple loops. */
+ gsi_commit_one_edge_insert (e, NULL);
+ }
+
+ for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin ();
+ iter != aux_map.end (); ++iter)
+ delete (*iter).second;
+}
+
+class ref_always_accessed
+{
+public:
+ ref_always_accessed (class loop *loop_, bool stored_p_)
+ : loop (loop_), stored_p (stored_p_) {}
+ bool operator () (mem_ref_loc *loc);
+ class loop *loop;
+ bool stored_p;
+};
+
+bool
+ref_always_accessed::operator () (mem_ref_loc *loc)
+{
+ class loop *must_exec;
+
+ struct lim_aux_data *lim_data = get_lim_data (loc->stmt);
+ if (!lim_data)
+ return false;
+
+ /* If we require an always executed store make sure the statement
+ is a store. */
+ if (stored_p)
+ {
+ tree lhs = gimple_get_lhs (loc->stmt);
+ if (!lhs
+ || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs)))
+ return false;
+ }
+
+ must_exec = lim_data->always_executed_in;
+ if (!must_exec)
+ return false;
+
+ if (must_exec == loop
+ || flow_loop_nested_p (must_exec, loop))
+ return true;
+
+ return false;
+}
+
+/* Returns true if REF is always accessed in LOOP. If STORED_P is true
+ make sure REF is always stored to in LOOP. */
+
+static bool
+ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p)
+{
+ return for_all_locs_in_loop (loop, ref,
+ ref_always_accessed (loop, stored_p));
+}
+
+/* Returns true if REF1 and REF2 are independent. */
+
+static bool
+refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p)
+{
+ if (ref1 == ref2)
+ return true;
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Querying dependency of refs %u and %u: ",
+ ref1->id, ref2->id);
+
+ if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p))
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "dependent.\n");
+ return false;
+ }
+ else
+ {
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "independent.\n");
+ return true;
+ }
+}
+
+/* Returns true if REF is independent on all other accessess in LOOP.
+ KIND specifies the kind of dependence to consider.
+ lim_raw assumes REF is not stored in LOOP and disambiguates RAW
+ dependences so if true REF can be hoisted out of LOOP
+ sm_war disambiguates a store REF against all other loads to see
+ whether the store can be sunk across loads out of LOOP
+ sm_waw disambiguates a store REF against all other stores to see
+ whether the store can be sunk across stores out of LOOP. */
+
+static bool
+ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind)
+{
+ bool indep_p = true;
+ bitmap refs_to_check;
+
+ if (kind == sm_war)
+ refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num];
+ else
+ refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
+
+ if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID)
+ || ref->mem.ref == error_mark_node)
+ indep_p = false;
+ else
+ {
+ /* tri-state, { unknown, independent, dependent } */
+ dep_state state = query_loop_dependence (loop, ref, kind);
+ if (state != dep_unknown)
+ return state == dep_independent ? true : false;
+
+ class loop *inner = loop->inner;
+ while (inner)
+ {
+ if (!ref_indep_loop_p (inner, ref, kind))
+ {
+ indep_p = false;
+ break;
+ }
+ inner = inner->next;
+ }
+
+ if (indep_p)
+ {
+ unsigned i;
+ bitmap_iterator bi;
+ EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
+ {
+ im_mem_ref *aref = memory_accesses.refs_list[i];
+ if (aref->mem.ref == error_mark_node)
+ {
+ gimple *stmt = aref->accesses_in_loop[0].stmt;
+ if ((kind == sm_war
+ && ref_maybe_used_by_stmt_p (stmt, &ref->mem,
+ kind != sm_waw))
+ || stmt_may_clobber_ref_p_1 (stmt, &ref->mem,
+ kind != sm_waw))
+ {
+ indep_p = false;
+ break;
+ }
+ }
+ else if (!refs_independent_p (ref, aref, kind != sm_waw))
+ {
+ indep_p = false;
+ break;
+ }
+ }
+ }
+ }
+
+ if (dump_file && (dump_flags & TDF_DETAILS))
+ fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n",
+ kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"),
+ ref->id, loop->num, indep_p ? "independent" : "dependent");
+
+ /* Record the computed result in the cache. */
+ record_loop_dependence (loop, ref, kind,
+ indep_p ? dep_independent : dep_dependent);
+
+ return indep_p;
+}
+
+class ref_in_loop_hot_body
+{
+public:
+ ref_in_loop_hot_body (class loop *loop_) : l (loop_) {}
+ bool operator () (mem_ref_loc *loc);
+ class loop *l;
+};
+
+/* Check the coldest loop between loop L and innermost loop. If there is one
+ cold loop between L and INNER_LOOP, store motion can be performed, otherwise
+ no cold loop means no store motion. get_coldest_out_loop also handles cases
+ when l is inner_loop. */
+bool
+ref_in_loop_hot_body::operator () (mem_ref_loc *loc)
+{
+ basic_block curr_bb = gimple_bb (loc->stmt);
+ class loop *inner_loop = curr_bb->loop_father;
+ return get_coldest_out_loop (l, inner_loop, curr_bb);
+}
+
+
+/* Returns true if we can perform store motion of REF from LOOP. */
+
+static bool
+can_sm_ref_p (class loop *loop, im_mem_ref *ref)
+{
+ tree base;
+
+ /* Can't hoist unanalyzable refs. */
+ if (!MEM_ANALYZABLE (ref))
+ return false;
+
+ /* Can't hoist/sink aggregate copies. */
+ if (ref->mem.ref == error_mark_node)
+ return false;
+
+ /* It should be movable. */
+ if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
+ || TREE_THIS_VOLATILE (ref->mem.ref)
+ || !for_each_index (&ref->mem.ref, may_move_till, loop))
+ return false;
+
+ /* If it can throw fail, we do not properly update EH info. */
+ if (tree_could_throw_p (ref->mem.ref))
+ return false;
+
+ /* If it can trap, it must be always executed in LOOP.
+ Readonly memory locations may trap when storing to them, but
+ tree_could_trap_p is a predicate for rvalues, so check that
+ explicitly. */
+ base = get_base_address (ref->mem.ref);
+ if ((tree_could_trap_p (ref->mem.ref)
+ || (DECL_P (base) && TREE_READONLY (base)))
+ /* ??? We can at least use false here, allowing loads? We
+ are forcing conditional stores if the ref is not always
+ stored to later anyway. So this would only guard
+ the load we need to emit. Thus when the ref is not
+ loaded we can elide this completely? */
+ && !ref_always_accessed_p (loop, ref, true))
+ return false;
+
+ /* Verify all loads of ref can be hoisted. */
+ if (ref->loaded
+ && bitmap_bit_p (ref->loaded, loop->num)
+ && !ref_indep_loop_p (loop, ref, lim_raw))
+ return false;
+
+ /* Verify the candidate can be disambiguated against all loads,
+ that is, we can elide all in-loop stores. Disambiguation
+ against stores is done later when we cannot guarantee preserving
+ the order of stores. */
+ if (!ref_indep_loop_p (loop, ref, sm_war))
+ return false;
+
+ /* Verify whether the candidate is hot for LOOP. Only do store motion if the
+ candidate's profile count is hot. Statement in cold BB shouldn't be moved
+ out of it's loop_father. */
+ if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop)))
+ return false;
+
+ return true;
+}
+
+/* Marks the references in LOOP for that store motion should be performed
+ in REFS_TO_SM. SM_EXECUTED is the set of references for that store
+ motion was performed in one of the outer loops. */
+
+static void
+find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm)
+{
+ bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
+ unsigned i;
+ bitmap_iterator bi;
+ im_mem_ref *ref;
+
+ EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
+ {
+ ref = memory_accesses.refs_list[i];
+ if (can_sm_ref_p (loop, ref) && dbg_cnt (lim))
+ bitmap_set_bit (refs_to_sm, i);
+ }
+}
+
+/* Checks whether LOOP (with exits stored in EXITS array) is suitable
+ for a store motion optimization (i.e. whether we can insert statement
+ on its exits). */
+
+static bool
+loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED,
+ const vec<edge> &exits)
+{
+ unsigned i;
+ edge ex;
+
+ FOR_EACH_VEC_ELT (exits, i, ex)
+ if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
+ return false;
+
+ return true;
+}
+
+/* Try to perform store motion for all memory references modified inside
+ LOOP. SM_EXECUTED is the bitmap of the memory references for that
+ store motion was executed in one of the outer loops. */
+
+static void
+store_motion_loop (class loop *loop, bitmap sm_executed)
+{
+ auto_vec<edge> exits = get_loop_exit_edges (loop);
+ class loop *subloop;
+ bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
+
+ if (loop_suitable_for_sm (loop, exits))
+ {
+ find_refs_for_sm (loop, sm_executed, sm_in_loop);
+ if (!bitmap_empty_p (sm_in_loop))
+ hoist_memory_references (loop, sm_in_loop, exits);
+ }
+
+ bitmap_ior_into (sm_executed, sm_in_loop);
+ for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
+ store_motion_loop (subloop, sm_executed);
+ bitmap_and_compl_into (sm_executed, sm_in_loop);
+ BITMAP_FREE (sm_in_loop);
+}
+
+/* Try to perform store motion for all memory references modified inside
+ loops. */
+
+static void
+do_store_motion (void)
+{
+ class loop *loop;
+ bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
+
+ for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
+ store_motion_loop (loop, sm_executed);
+
+ BITMAP_FREE (sm_executed);
+}
+
+/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
+ for each such basic block bb records the outermost loop for that execution
+ of its header implies execution of bb. CONTAINS_CALL is the bitmap of
+ blocks that contain a nonpure call. */
+
+static void
+fill_always_executed_in_1 (class loop *loop, sbitmap contains_call)
+{
+ basic_block bb = NULL, last = NULL;
+ edge e;
+ class loop *inn_loop = loop;
+
+ if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
+ {
+ auto_vec<basic_block, 64> worklist;
+ worklist.reserve_exact (loop->num_nodes);
+ worklist.quick_push (loop->header);
+ do
+ {
+ edge_iterator ei;
+ bb = worklist.pop ();
+
+ if (!flow_bb_inside_loop_p (inn_loop, bb))
+ {
+ /* When we are leaving a possibly infinite inner loop
+ we have to stop processing. */
+ if (!finite_loop_p (inn_loop))
+ break;
+ /* If the loop was finite we can continue with processing
+ the loop we exited to. */
+ inn_loop = bb->loop_father;
+ }
+
+ if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
+ last = bb;
+
+ if (bitmap_bit_p (contains_call, bb->index))
+ break;
+
+ /* If LOOP exits from this BB stop processing. */
+ FOR_EACH_EDGE (e, ei, bb->succs)
+ if (!flow_bb_inside_loop_p (loop, e->dest))
+ break;
+ if (e)
+ break;
+
+ /* A loop might be infinite (TODO use simple loop analysis
+ to disprove this if possible). */
+ if (bb->flags & BB_IRREDUCIBLE_LOOP)
+ break;
+
+ if (bb->loop_father->header == bb)
+ /* Record that we enter into a subloop since it might not
+ be finite. */
+ /* ??? Entering into a not always executed subloop makes
+ fill_always_executed_in quadratic in loop depth since
+ we walk those loops N times. This is not a problem
+ in practice though, see PR102253 for a worst-case testcase. */
+ inn_loop = bb->loop_father;
+
+ /* Walk the body of LOOP sorted by dominance relation. Additionally,
+ if a basic block S dominates the latch, then only blocks dominated
+ by S are after it.
+ This is get_loop_body_in_dom_order using a worklist algorithm and
+ stopping once we are no longer interested in visiting further
+ blocks. */
+ unsigned old_len = worklist.length ();
+ unsigned postpone = 0;
+ for (basic_block son = first_dom_son (CDI_DOMINATORS, bb);
+ son;
+ son = next_dom_son (CDI_DOMINATORS, son))
+ {
+ if (!flow_bb_inside_loop_p (loop, son))
+ continue;
+ if (dominated_by_p (CDI_DOMINATORS, loop->latch, son))
+ postpone = worklist.length ();
+ worklist.quick_push (son);
+ }
+ if (postpone)
+ /* Postponing the block that dominates the latch means
+ processing it last and thus putting it earliest in the
+ worklist. */
+ std::swap (worklist[old_len], worklist[postpone]);
+ }
+ while (!worklist.is_empty ());
+
+ while (1)
+ {
+ if (dump_enabled_p ())
+ dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n",
+ last->index, loop->num);
+ SET_ALWAYS_EXECUTED_IN (last, loop);
+ if (last == loop->header)
+ break;
+ last = get_immediate_dominator (CDI_DOMINATORS, last);
+ }
+ }
+
+ for (loop = loop->inner; loop; loop = loop->next)
+ fill_always_executed_in_1 (loop, contains_call);
+}
+
+/* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
+ for each such basic block bb records the outermost loop for that execution
+ of its header implies execution of bb. */
+
+static void
+fill_always_executed_in (void)
+{
+ basic_block bb;
+ class loop *loop;
+
+ auto_sbitmap contains_call (last_basic_block_for_fn (cfun));
+ bitmap_clear (contains_call);
+ FOR_EACH_BB_FN (bb, cfun)
+ {
+ gimple_stmt_iterator gsi;
+ for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
+ {
+ if (nonpure_call_p (gsi_stmt (gsi)))
+ break;
+ }
+
+ if (!gsi_end_p (gsi))
+ bitmap_set_bit (contains_call, bb->index);
+ }
+
+ for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
+ fill_always_executed_in_1 (loop, contains_call);
+}
+
+/* Find the coldest loop preheader for LOOP, also find the nearest hotter loop
+ to LOOP. Then recursively iterate each inner loop. */
+
+void
+fill_coldest_and_hotter_out_loop (class loop *coldest_loop,
+ class loop *hotter_loop, class loop *loop)
+{
+ if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
+ coldest_loop))
+ coldest_loop = loop;
+
+ coldest_outermost_loop[loop->num] = coldest_loop;
+
+ hotter_than_inner_loop[loop->num] = NULL;
+ class loop *outer_loop = loop_outer (loop);
+ if (hotter_loop
+ && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
+ hotter_loop))
+ hotter_than_inner_loop[loop->num] = hotter_loop;
+
+ if (outer_loop && outer_loop != current_loops->tree_root
+ && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src,
+ outer_loop))
+ hotter_than_inner_loop[loop->num] = outer_loop;
+
+ if (dump_enabled_p ())
+ {
+ dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ",
+ loop->num, coldest_loop->num);
+ if (hotter_than_inner_loop[loop->num])
+ dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n",
+ hotter_than_inner_loop[loop->num]->num);
+ else
+ dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n");
+ }
+
+ class loop *inner_loop;
+ for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next)
+ fill_coldest_and_hotter_out_loop (coldest_loop,
+ hotter_than_inner_loop[loop->num],
+ inner_loop);
+}
+
+/* Compute the global information needed by the loop invariant motion pass. */
+
+static void
+tree_ssa_lim_initialize (bool store_motion)
+{
+ unsigned i;
+
+ bitmap_obstack_initialize (&lim_bitmap_obstack);
+ gcc_obstack_init (&mem_ref_obstack);
+ lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>;
+
+ if (flag_tm)
+ compute_transaction_bits ();
+
+ memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
+ memory_accesses.refs_list.create (100);
+ /* Allocate a special, unanalyzable mem-ref with ID zero. */
+ memory_accesses.refs_list.quick_push
+ (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID));
+
+ memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun));
+ memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun));
+ memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
+ memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
+ if (store_motion)
+ {
+ memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
+ memory_accesses.all_refs_stored_in_loop.quick_grow
+ (number_of_loops (cfun));
+ }
+
+ for (i = 0; i < number_of_loops (cfun); i++)
+ {
+ bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i],
+ &lim_bitmap_obstack);
+ bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
+ &lim_bitmap_obstack);
+ if (store_motion)
+ bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
+ &lim_bitmap_obstack);
+ }
+
+ memory_accesses.ttae_cache = NULL;
+
+ /* Initialize bb_loop_postorder with a mapping from loop->num to
+ its postorder index. */
+ i = 0;
+ bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
+ for (auto loop : loops_list (cfun, LI_FROM_INNERMOST))
+ bb_loop_postorder[loop->num] = i++;
+}
+
+/* Cleans up after the invariant motion pass. */
+
+static void
+tree_ssa_lim_finalize (void)
+{
+ basic_block bb;
+ unsigned i;
+ im_mem_ref *ref;
+
+ FOR_EACH_BB_FN (bb, cfun)
+ SET_ALWAYS_EXECUTED_IN (bb, NULL);
+
+ bitmap_obstack_release (&lim_bitmap_obstack);
+ delete lim_aux_data_map;
+
+ delete memory_accesses.refs;
+ memory_accesses.refs = NULL;
+
+ FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
+ memref_free (ref);
+ memory_accesses.refs_list.release ();
+ obstack_free (&mem_ref_obstack, NULL);
+
+ memory_accesses.refs_loaded_in_loop.release ();
+ memory_accesses.refs_stored_in_loop.release ();
+ memory_accesses.all_refs_stored_in_loop.release ();
+
+ if (memory_accesses.ttae_cache)
+ free_affine_expand_cache (&memory_accesses.ttae_cache);
+
+ free (bb_loop_postorder);
+
+ coldest_outermost_loop.release ();
+ hotter_than_inner_loop.release ();
+}
+
+/* Moves invariants from loops. Only "expensive" invariants are moved out --
+ i.e. those that are likely to be win regardless of the register pressure.
+ Only perform store motion if STORE_MOTION is true. */
+
+unsigned int
+loop_invariant_motion_in_fun (function *fun, bool store_motion)
+{
+ unsigned int todo = 0;
+
+ tree_ssa_lim_initialize (store_motion);
+
+ /* Gathers information about memory accesses in the loops. */
+ analyze_memory_references (store_motion);
+
+ /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
+ fill_always_executed_in ();
+
+ /* Pre-compute coldest outermost loop and nearest hotter loop of each loop.
+ */
+ class loop *loop;
+ coldest_outermost_loop.create (number_of_loops (cfun));
+ coldest_outermost_loop.safe_grow_cleared (number_of_loops (cfun));
+ hotter_than_inner_loop.create (number_of_loops (cfun));
+ hotter_than_inner_loop.safe_grow_cleared (number_of_loops (cfun));
+ for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
+ fill_coldest_and_hotter_out_loop (loop, NULL, loop);
+
+ int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
+ int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
+
+ /* For each statement determine the outermost loop in that it is
+ invariant and cost for computing the invariant. */
+ for (int i = 0; i < n; ++i)
+ compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
+
+ /* Execute store motion. Force the necessary invariants to be moved
+ out of the loops as well. */
+ if (store_motion)
+ do_store_motion ();
+
+ free (rpo);
+ rpo = XNEWVEC (int, last_basic_block_for_fn (fun));
+ n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false);
+
+ /* Move the expressions that are expensive enough. */
+ for (int i = 0; i < n; ++i)
+ todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i]));
+
+ free (rpo);
+
+ gsi_commit_edge_inserts ();
+ if (need_ssa_update_p (fun))
+ rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
+
+ tree_ssa_lim_finalize ();
+
+ return todo;
+}
+
+/* Loop invariant motion pass. */
+
+namespace {
+
+const pass_data pass_data_lim =
+{
+ GIMPLE_PASS, /* type */
+ "lim", /* name */
+ OPTGROUP_LOOP, /* optinfo_flags */
+ TV_LIM, /* tv_id */
+ PROP_cfg, /* properties_required */
+ 0, /* properties_provided */
+ 0, /* properties_destroyed */
+ 0, /* todo_flags_start */
+ 0, /* todo_flags_finish */
+};
+
+class pass_lim : public gimple_opt_pass
+{
+public:
+ pass_lim (gcc::context *ctxt)
+ : gimple_opt_pass (pass_data_lim, ctxt)
+ {}
+
+ /* opt_pass methods: */
+ opt_pass * clone () { return new pass_lim (m_ctxt); }
+ virtual bool gate (function *) { return flag_tree_loop_im != 0; }
+ virtual unsigned int execute (function *);
+
+}; // class pass_lim
+
+unsigned int
+pass_lim::execute (function *fun)
+{
+ bool in_loop_pipeline = scev_initialized_p ();
+ if (!in_loop_pipeline)
+ loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
+
+ if (number_of_loops (fun) <= 1)
+ return 0;
+ unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores);
+
+ if (!in_loop_pipeline)
+ loop_optimizer_finalize ();
+ else
+ scev_reset ();
+ return todo;
+}
+
+} // anon namespace
+
+gimple_opt_pass *
+make_pass_lim (gcc::context *ctxt)
+{
+ return new pass_lim (ctxt);
+}
+
+