diff options
author | Thomas Schwinge <thomas@codesourcery.com> | 2022-02-03 21:12:21 +0100 |
---|---|---|
committer | Thomas Schwinge <thomas@codesourcery.com> | 2022-02-03 21:14:10 +0100 |
commit | 7eef766dc5a8abda2ca2cf8d535cdf160f40b50c (patch) | |
tree | f85ed9010c56dc8f250d7cba5761b4eae58f2a42 /gcc/tree-ssa-loop-im.cc | |
parent | 5199ecb8519c4c5f92160365cefe8e0aa1ca3873 (diff) | |
parent | ff7aeceb6b3a476c3bac66a7f39a5ef4240206fc (diff) | |
download | gcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.zip gcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.tar.gz gcc-7eef766dc5a8abda2ca2cf8d535cdf160f40b50c.tar.bz2 |
Merge commit 'ff7aeceb6b3a476c3bac66a7f39a5ef4240206fc' [#247, #906]
Diffstat (limited to 'gcc/tree-ssa-loop-im.cc')
-rw-r--r-- | gcc/tree-ssa-loop-im.cc | 3632 |
1 files changed, 3632 insertions, 0 deletions
diff --git a/gcc/tree-ssa-loop-im.cc b/gcc/tree-ssa-loop-im.cc new file mode 100644 index 0000000..6d9316e --- /dev/null +++ b/gcc/tree-ssa-loop-im.cc @@ -0,0 +1,3632 @@ +/* Loop invariant motion. + Copyright (C) 2003-2022 Free Software Foundation, Inc. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it +under the terms of the GNU General Public License as published by the +Free Software Foundation; either version 3, or (at your option) any +later version. + +GCC is distributed in the hope that it will be useful, but WITHOUT +ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "backend.h" +#include "tree.h" +#include "gimple.h" +#include "cfghooks.h" +#include "tree-pass.h" +#include "ssa.h" +#include "gimple-pretty-print.h" +#include "fold-const.h" +#include "cfganal.h" +#include "tree-eh.h" +#include "gimplify.h" +#include "gimple-iterator.h" +#include "tree-cfg.h" +#include "tree-ssa-loop-manip.h" +#include "tree-ssa-loop.h" +#include "tree-into-ssa.h" +#include "cfgloop.h" +#include "tree-affine.h" +#include "tree-ssa-propagate.h" +#include "trans-mem.h" +#include "gimple-fold.h" +#include "tree-scalar-evolution.h" +#include "tree-ssa-loop-niter.h" +#include "alias.h" +#include "builtins.h" +#include "tree-dfa.h" +#include "dbgcnt.h" + +/* TODO: Support for predicated code motion. I.e. + + while (1) + { + if (cond) + { + a = inv; + something; + } + } + + Where COND and INV are invariants, but evaluating INV may trap or be + invalid from some other reason if !COND. This may be transformed to + + if (cond) + a = inv; + while (1) + { + if (cond) + something; + } */ + +/* The auxiliary data kept for each statement. */ + +struct lim_aux_data +{ + class loop *max_loop; /* The outermost loop in that the statement + is invariant. */ + + class loop *tgt_loop; /* The loop out of that we want to move the + invariant. */ + + class loop *always_executed_in; + /* The outermost loop for that we are sure + the statement is executed if the loop + is entered. */ + + unsigned cost; /* Cost of the computation performed by the + statement. */ + + unsigned ref; /* The simple_mem_ref in this stmt or 0. */ + + vec<gimple *> depends; /* Vector of statements that must be also + hoisted out of the loop when this statement + is hoisted; i.e. those that define the + operands of the statement and are inside of + the MAX_LOOP loop. */ +}; + +/* Maps statements to their lim_aux_data. */ + +static hash_map<gimple *, lim_aux_data *> *lim_aux_data_map; + +/* Description of a memory reference location. */ + +struct mem_ref_loc +{ + tree *ref; /* The reference itself. */ + gimple *stmt; /* The statement in that it occurs. */ +}; + + +/* Description of a memory reference. */ + +class im_mem_ref +{ +public: + unsigned id : 30; /* ID assigned to the memory reference + (its index in memory_accesses.refs_list) */ + unsigned ref_canonical : 1; /* Whether mem.ref was canonicalized. */ + unsigned ref_decomposed : 1; /* Whether the ref was hashed from mem. */ + hashval_t hash; /* Its hash value. */ + + /* The memory access itself and associated caching of alias-oracle + query meta-data. We are using mem.ref == error_mark_node for the + case the reference is represented by its single access stmt + in accesses_in_loop[0]. */ + ao_ref mem; + + bitmap stored; /* The set of loops in that this memory location + is stored to. */ + bitmap loaded; /* The set of loops in that this memory location + is loaded from. */ + vec<mem_ref_loc> accesses_in_loop; + /* The locations of the accesses. */ + + /* The following set is computed on demand. */ + bitmap_head dep_loop; /* The set of loops in that the memory + reference is {in,}dependent in + different modes. */ +}; + +/* We use six bits per loop in the ref->dep_loop bitmap to record + the dep_kind x dep_state combinations. */ + +enum dep_kind { lim_raw, sm_war, sm_waw }; +enum dep_state { dep_unknown, dep_independent, dep_dependent }; + +/* coldest outermost loop for given loop. */ +vec<class loop *> coldest_outermost_loop; +/* hotter outer loop nearest to given loop. */ +vec<class loop *> hotter_than_inner_loop; + +/* Populate the loop dependence cache of REF for LOOP, KIND with STATE. */ + +static void +record_loop_dependence (class loop *loop, im_mem_ref *ref, + dep_kind kind, dep_state state) +{ + gcc_assert (state != dep_unknown); + unsigned bit = 6 * loop->num + kind * 2 + state == dep_dependent ? 1 : 0; + bitmap_set_bit (&ref->dep_loop, bit); +} + +/* Query the loop dependence cache of REF for LOOP, KIND. */ + +static dep_state +query_loop_dependence (class loop *loop, im_mem_ref *ref, dep_kind kind) +{ + unsigned first_bit = 6 * loop->num + kind * 2; + if (bitmap_bit_p (&ref->dep_loop, first_bit)) + return dep_independent; + else if (bitmap_bit_p (&ref->dep_loop, first_bit + 1)) + return dep_dependent; + return dep_unknown; +} + +/* Mem_ref hashtable helpers. */ + +struct mem_ref_hasher : nofree_ptr_hash <im_mem_ref> +{ + typedef ao_ref *compare_type; + static inline hashval_t hash (const im_mem_ref *); + static inline bool equal (const im_mem_ref *, const ao_ref *); +}; + +/* A hash function for class im_mem_ref object OBJ. */ + +inline hashval_t +mem_ref_hasher::hash (const im_mem_ref *mem) +{ + return mem->hash; +} + +/* An equality function for class im_mem_ref object MEM1 with + memory reference OBJ2. */ + +inline bool +mem_ref_hasher::equal (const im_mem_ref *mem1, const ao_ref *obj2) +{ + if (obj2->max_size_known_p ()) + return (mem1->ref_decomposed + && ((TREE_CODE (mem1->mem.base) == MEM_REF + && TREE_CODE (obj2->base) == MEM_REF + && operand_equal_p (TREE_OPERAND (mem1->mem.base, 0), + TREE_OPERAND (obj2->base, 0), 0) + && known_eq (mem_ref_offset (mem1->mem.base) * BITS_PER_UNIT + mem1->mem.offset, + mem_ref_offset (obj2->base) * BITS_PER_UNIT + obj2->offset)) + || (operand_equal_p (mem1->mem.base, obj2->base, 0) + && known_eq (mem1->mem.offset, obj2->offset))) + && known_eq (mem1->mem.size, obj2->size) + && known_eq (mem1->mem.max_size, obj2->max_size) + && mem1->mem.volatile_p == obj2->volatile_p + && (mem1->mem.ref_alias_set == obj2->ref_alias_set + /* We are not canonicalizing alias-sets but for the + special-case we didn't canonicalize yet and the + incoming ref is a alias-set zero MEM we pick + the correct one already. */ + || (!mem1->ref_canonical + && (TREE_CODE (obj2->ref) == MEM_REF + || TREE_CODE (obj2->ref) == TARGET_MEM_REF) + && obj2->ref_alias_set == 0) + /* Likewise if there's a canonical ref with alias-set zero. */ + || (mem1->ref_canonical && mem1->mem.ref_alias_set == 0)) + && types_compatible_p (TREE_TYPE (mem1->mem.ref), + TREE_TYPE (obj2->ref))); + else + return operand_equal_p (mem1->mem.ref, obj2->ref, 0); +} + + +/* Description of memory accesses in loops. */ + +static struct +{ + /* The hash table of memory references accessed in loops. */ + hash_table<mem_ref_hasher> *refs; + + /* The list of memory references. */ + vec<im_mem_ref *> refs_list; + + /* The set of memory references accessed in each loop. */ + vec<bitmap_head> refs_loaded_in_loop; + + /* The set of memory references stored in each loop. */ + vec<bitmap_head> refs_stored_in_loop; + + /* The set of memory references stored in each loop, including subloops . */ + vec<bitmap_head> all_refs_stored_in_loop; + + /* Cache for expanding memory addresses. */ + hash_map<tree, name_expansion *> *ttae_cache; +} memory_accesses; + +/* Obstack for the bitmaps in the above data structures. */ +static bitmap_obstack lim_bitmap_obstack; +static obstack mem_ref_obstack; + +static bool ref_indep_loop_p (class loop *, im_mem_ref *, dep_kind); +static bool ref_always_accessed_p (class loop *, im_mem_ref *, bool); +static bool refs_independent_p (im_mem_ref *, im_mem_ref *, bool = true); + +/* Minimum cost of an expensive expression. */ +#define LIM_EXPENSIVE ((unsigned) param_lim_expensive) + +/* The outermost loop for which execution of the header guarantees that the + block will be executed. */ +#define ALWAYS_EXECUTED_IN(BB) ((class loop *) (BB)->aux) +#define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL)) + +/* ID of the shared unanalyzable mem. */ +#define UNANALYZABLE_MEM_ID 0 + +/* Whether the reference was analyzable. */ +#define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID) + +static struct lim_aux_data * +init_lim_data (gimple *stmt) +{ + lim_aux_data *p = XCNEW (struct lim_aux_data); + lim_aux_data_map->put (stmt, p); + + return p; +} + +static struct lim_aux_data * +get_lim_data (gimple *stmt) +{ + lim_aux_data **p = lim_aux_data_map->get (stmt); + if (!p) + return NULL; + + return *p; +} + +/* Releases the memory occupied by DATA. */ + +static void +free_lim_aux_data (struct lim_aux_data *data) +{ + data->depends.release (); + free (data); +} + +static void +clear_lim_data (gimple *stmt) +{ + lim_aux_data **p = lim_aux_data_map->get (stmt); + if (!p) + return; + + free_lim_aux_data (*p); + *p = NULL; +} + + +/* The possibilities of statement movement. */ +enum move_pos + { + MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */ + MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement + become executed -- memory accesses, ... */ + MOVE_POSSIBLE /* Unlimited movement. */ + }; + + +/* If it is possible to hoist the statement STMT unconditionally, + returns MOVE_POSSIBLE. + If it is possible to hoist the statement STMT, but we must avoid making + it executed if it would not be executed in the original program (e.g. + because it may trap), return MOVE_PRESERVE_EXECUTION. + Otherwise return MOVE_IMPOSSIBLE. */ + +enum move_pos +movement_possibility (gimple *stmt) +{ + tree lhs; + enum move_pos ret = MOVE_POSSIBLE; + + if (flag_unswitch_loops + && gimple_code (stmt) == GIMPLE_COND) + { + /* If we perform unswitching, force the operands of the invariant + condition to be moved out of the loop. */ + return MOVE_POSSIBLE; + } + + if (gimple_code (stmt) == GIMPLE_PHI + && gimple_phi_num_args (stmt) <= 2 + && !virtual_operand_p (gimple_phi_result (stmt)) + && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt))) + return MOVE_POSSIBLE; + + if (gimple_get_lhs (stmt) == NULL_TREE) + return MOVE_IMPOSSIBLE; + + if (gimple_vdef (stmt)) + return MOVE_IMPOSSIBLE; + + if (stmt_ends_bb_p (stmt) + || gimple_has_volatile_ops (stmt) + || gimple_has_side_effects (stmt) + || stmt_could_throw_p (cfun, stmt)) + return MOVE_IMPOSSIBLE; + + if (is_gimple_call (stmt)) + { + /* While pure or const call is guaranteed to have no side effects, we + cannot move it arbitrarily. Consider code like + + char *s = something (); + + while (1) + { + if (s) + t = strlen (s); + else + t = 0; + } + + Here the strlen call cannot be moved out of the loop, even though + s is invariant. In addition to possibly creating a call with + invalid arguments, moving out a function call that is not executed + may cause performance regressions in case the call is costly and + not executed at all. */ + ret = MOVE_PRESERVE_EXECUTION; + lhs = gimple_call_lhs (stmt); + } + else if (is_gimple_assign (stmt)) + lhs = gimple_assign_lhs (stmt); + else + return MOVE_IMPOSSIBLE; + + if (TREE_CODE (lhs) == SSA_NAME + && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)) + return MOVE_IMPOSSIBLE; + + if (TREE_CODE (lhs) != SSA_NAME + || gimple_could_trap_p (stmt)) + return MOVE_PRESERVE_EXECUTION; + + /* Non local loads in a transaction cannot be hoisted out. Well, + unless the load happens on every path out of the loop, but we + don't take this into account yet. */ + if (flag_tm + && gimple_in_transaction (stmt) + && gimple_assign_single_p (stmt)) + { + tree rhs = gimple_assign_rhs1 (stmt); + if (DECL_P (rhs) && is_global_var (rhs)) + { + if (dump_file) + { + fprintf (dump_file, "Cannot hoist conditional load of "); + print_generic_expr (dump_file, rhs, TDF_SLIM); + fprintf (dump_file, " because it is in a transaction.\n"); + } + return MOVE_IMPOSSIBLE; + } + } + + return ret; +} + +/* Compare the profile count inequality of bb and loop's preheader, it is + three-state as stated in profile-count.h, FALSE is returned if inequality + cannot be decided. */ +bool +bb_colder_than_loop_preheader (basic_block bb, class loop *loop) +{ + gcc_assert (bb && loop); + return bb->count < loop_preheader_edge (loop)->src->count; +} + +/* Check coldest loop between OUTERMOST_LOOP and LOOP by comparing profile + count. + It does three steps check: + 1) Check whether CURR_BB is cold in it's own loop_father, if it is cold, just + return NULL which means it should not be moved out at all; + 2) CURR_BB is NOT cold, check if pre-computed COLDEST_LOOP is outside of + OUTERMOST_LOOP, if it is inside of OUTERMOST_LOOP, return the COLDEST_LOOP; + 3) If COLDEST_LOOP is outside of OUTERMOST_LOOP, check whether there is a + hotter loop between OUTERMOST_LOOP and loop in pre-computed + HOTTER_THAN_INNER_LOOP, return it's nested inner loop, otherwise return + OUTERMOST_LOOP. + At last, the coldest_loop is inside of OUTERMOST_LOOP, just return it as + the hoist target. */ + +static class loop * +get_coldest_out_loop (class loop *outermost_loop, class loop *loop, + basic_block curr_bb) +{ + gcc_assert (outermost_loop == loop + || flow_loop_nested_p (outermost_loop, loop)); + + /* If bb_colder_than_loop_preheader returns false due to three-state + comparision, OUTERMOST_LOOP is returned finally to preserve the behavior. + Otherwise, return the coldest loop between OUTERMOST_LOOP and LOOP. */ + if (curr_bb && bb_colder_than_loop_preheader (curr_bb, loop)) + return NULL; + + class loop *coldest_loop = coldest_outermost_loop[loop->num]; + if (loop_depth (coldest_loop) < loop_depth (outermost_loop)) + { + class loop *hotter_loop = hotter_than_inner_loop[loop->num]; + if (!hotter_loop + || loop_depth (hotter_loop) < loop_depth (outermost_loop)) + return outermost_loop; + + /* hotter_loop is between OUTERMOST_LOOP and LOOP like: + [loop tree root, ..., coldest_loop, ..., outermost_loop, ..., + hotter_loop, second_coldest_loop, ..., loop] + return second_coldest_loop to be the hoist target. */ + class loop *aloop; + for (aloop = hotter_loop->inner; aloop; aloop = aloop->next) + if (aloop == loop || flow_loop_nested_p (aloop, loop)) + return aloop; + } + return coldest_loop; +} + +/* Suppose that operand DEF is used inside the LOOP. Returns the outermost + loop to that we could move the expression using DEF if it did not have + other operands, i.e. the outermost loop enclosing LOOP in that the value + of DEF is invariant. */ + +static class loop * +outermost_invariant_loop (tree def, class loop *loop) +{ + gimple *def_stmt; + basic_block def_bb; + class loop *max_loop; + struct lim_aux_data *lim_data; + + if (!def) + return superloop_at_depth (loop, 1); + + if (TREE_CODE (def) != SSA_NAME) + { + gcc_assert (is_gimple_min_invariant (def)); + return superloop_at_depth (loop, 1); + } + + def_stmt = SSA_NAME_DEF_STMT (def); + def_bb = gimple_bb (def_stmt); + if (!def_bb) + return superloop_at_depth (loop, 1); + + max_loop = find_common_loop (loop, def_bb->loop_father); + + lim_data = get_lim_data (def_stmt); + if (lim_data != NULL && lim_data->max_loop != NULL) + max_loop = find_common_loop (max_loop, + loop_outer (lim_data->max_loop)); + if (max_loop == loop) + return NULL; + max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1); + + return max_loop; +} + +/* DATA is a structure containing information associated with a statement + inside LOOP. DEF is one of the operands of this statement. + + Find the outermost loop enclosing LOOP in that value of DEF is invariant + and record this in DATA->max_loop field. If DEF itself is defined inside + this loop as well (i.e. we need to hoist it out of the loop if we want + to hoist the statement represented by DATA), record the statement in that + DEF is defined to the DATA->depends list. Additionally if ADD_COST is true, + add the cost of the computation of DEF to the DATA->cost. + + If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */ + +static bool +add_dependency (tree def, struct lim_aux_data *data, class loop *loop, + bool add_cost) +{ + gimple *def_stmt = SSA_NAME_DEF_STMT (def); + basic_block def_bb = gimple_bb (def_stmt); + class loop *max_loop; + struct lim_aux_data *def_data; + + if (!def_bb) + return true; + + max_loop = outermost_invariant_loop (def, loop); + if (!max_loop) + return false; + + if (flow_loop_nested_p (data->max_loop, max_loop)) + data->max_loop = max_loop; + + def_data = get_lim_data (def_stmt); + if (!def_data) + return true; + + if (add_cost + /* Only add the cost if the statement defining DEF is inside LOOP, + i.e. if it is likely that by moving the invariants dependent + on it, we will be able to avoid creating a new register for + it (since it will be only used in these dependent invariants). */ + && def_bb->loop_father == loop) + data->cost += def_data->cost; + + data->depends.safe_push (def_stmt); + + return true; +} + +/* Returns an estimate for a cost of statement STMT. The values here + are just ad-hoc constants, similar to costs for inlining. */ + +static unsigned +stmt_cost (gimple *stmt) +{ + /* Always try to create possibilities for unswitching. */ + if (gimple_code (stmt) == GIMPLE_COND + || gimple_code (stmt) == GIMPLE_PHI) + return LIM_EXPENSIVE; + + /* We should be hoisting calls if possible. */ + if (is_gimple_call (stmt)) + { + tree fndecl; + + /* Unless the call is a builtin_constant_p; this always folds to a + constant, so moving it is useless. */ + fndecl = gimple_call_fndecl (stmt); + if (fndecl && fndecl_built_in_p (fndecl, BUILT_IN_CONSTANT_P)) + return 0; + + return LIM_EXPENSIVE; + } + + /* Hoisting memory references out should almost surely be a win. */ + if (gimple_references_memory_p (stmt)) + return LIM_EXPENSIVE; + + if (gimple_code (stmt) != GIMPLE_ASSIGN) + return 1; + + switch (gimple_assign_rhs_code (stmt)) + { + case MULT_EXPR: + case WIDEN_MULT_EXPR: + case WIDEN_MULT_PLUS_EXPR: + case WIDEN_MULT_MINUS_EXPR: + case DOT_PROD_EXPR: + case TRUNC_DIV_EXPR: + case CEIL_DIV_EXPR: + case FLOOR_DIV_EXPR: + case ROUND_DIV_EXPR: + case EXACT_DIV_EXPR: + case CEIL_MOD_EXPR: + case FLOOR_MOD_EXPR: + case ROUND_MOD_EXPR: + case TRUNC_MOD_EXPR: + case RDIV_EXPR: + /* Division and multiplication are usually expensive. */ + return LIM_EXPENSIVE; + + case LSHIFT_EXPR: + case RSHIFT_EXPR: + case WIDEN_LSHIFT_EXPR: + case LROTATE_EXPR: + case RROTATE_EXPR: + /* Shifts and rotates are usually expensive. */ + return LIM_EXPENSIVE; + + case CONSTRUCTOR: + /* Make vector construction cost proportional to the number + of elements. */ + return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt)); + + case SSA_NAME: + case PAREN_EXPR: + /* Whether or not something is wrapped inside a PAREN_EXPR + should not change move cost. Nor should an intermediate + unpropagated SSA name copy. */ + return 0; + + default: + return 1; + } +} + +/* Finds the outermost loop between OUTER and LOOP in that the memory reference + REF is independent. If REF is not independent in LOOP, NULL is returned + instead. */ + +static class loop * +outermost_indep_loop (class loop *outer, class loop *loop, im_mem_ref *ref) +{ + class loop *aloop; + + if (ref->stored && bitmap_bit_p (ref->stored, loop->num)) + return NULL; + + for (aloop = outer; + aloop != loop; + aloop = superloop_at_depth (loop, loop_depth (aloop) + 1)) + if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num)) + && ref_indep_loop_p (aloop, ref, lim_raw)) + return aloop; + + if (ref_indep_loop_p (loop, ref, lim_raw)) + return loop; + else + return NULL; +} + +/* If there is a simple load or store to a memory reference in STMT, returns + the location of the memory reference, and sets IS_STORE according to whether + it is a store or load. Otherwise, returns NULL. */ + +static tree * +simple_mem_ref_in_stmt (gimple *stmt, bool *is_store) +{ + tree *lhs, *rhs; + + /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */ + if (!gimple_assign_single_p (stmt)) + return NULL; + + lhs = gimple_assign_lhs_ptr (stmt); + rhs = gimple_assign_rhs1_ptr (stmt); + + if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt)) + { + *is_store = false; + return rhs; + } + else if (gimple_vdef (stmt) + && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs))) + { + *is_store = true; + return lhs; + } + else + return NULL; +} + +/* From a controlling predicate in DOM determine the arguments from + the PHI node PHI that are chosen if the predicate evaluates to + true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if + they are non-NULL. Returns true if the arguments can be determined, + else return false. */ + +static bool +extract_true_false_args_from_phi (basic_block dom, gphi *phi, + tree *true_arg_p, tree *false_arg_p) +{ + edge te, fe; + if (! extract_true_false_controlled_edges (dom, gimple_bb (phi), + &te, &fe)) + return false; + + if (true_arg_p) + *true_arg_p = PHI_ARG_DEF (phi, te->dest_idx); + if (false_arg_p) + *false_arg_p = PHI_ARG_DEF (phi, fe->dest_idx); + + return true; +} + +/* Determine the outermost loop to that it is possible to hoist a statement + STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine + the outermost loop in that the value computed by STMT is invariant. + If MUST_PRESERVE_EXEC is true, additionally choose such a loop that + we preserve the fact whether STMT is executed. It also fills other related + information to LIM_DATA (STMT). + + The function returns false if STMT cannot be hoisted outside of the loop it + is defined in, and true otherwise. */ + +static bool +determine_max_movement (gimple *stmt, bool must_preserve_exec) +{ + basic_block bb = gimple_bb (stmt); + class loop *loop = bb->loop_father; + class loop *level; + struct lim_aux_data *lim_data = get_lim_data (stmt); + tree val; + ssa_op_iter iter; + + if (must_preserve_exec) + level = ALWAYS_EXECUTED_IN (bb); + else + level = superloop_at_depth (loop, 1); + lim_data->max_loop = get_coldest_out_loop (level, loop, bb); + if (!lim_data->max_loop) + return false; + + if (gphi *phi = dyn_cast <gphi *> (stmt)) + { + use_operand_p use_p; + unsigned min_cost = UINT_MAX; + unsigned total_cost = 0; + struct lim_aux_data *def_data; + + /* We will end up promoting dependencies to be unconditionally + evaluated. For this reason the PHI cost (and thus the + cost we remove from the loop by doing the invariant motion) + is that of the cheapest PHI argument dependency chain. */ + FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE) + { + val = USE_FROM_PTR (use_p); + + if (TREE_CODE (val) != SSA_NAME) + { + /* Assign const 1 to constants. */ + min_cost = MIN (min_cost, 1); + total_cost += 1; + continue; + } + if (!add_dependency (val, lim_data, loop, false)) + return false; + + gimple *def_stmt = SSA_NAME_DEF_STMT (val); + if (gimple_bb (def_stmt) + && gimple_bb (def_stmt)->loop_father == loop) + { + def_data = get_lim_data (def_stmt); + if (def_data) + { + min_cost = MIN (min_cost, def_data->cost); + total_cost += def_data->cost; + } + } + } + + min_cost = MIN (min_cost, total_cost); + lim_data->cost += min_cost; + + if (gimple_phi_num_args (phi) > 1) + { + basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); + gimple *cond; + if (gsi_end_p (gsi_last_bb (dom))) + return false; + cond = gsi_stmt (gsi_last_bb (dom)); + if (gimple_code (cond) != GIMPLE_COND) + return false; + /* Verify that this is an extended form of a diamond and + the PHI arguments are completely controlled by the + predicate in DOM. */ + if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL)) + return false; + + /* Fold in dependencies and cost of the condition. */ + FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE) + { + if (!add_dependency (val, lim_data, loop, false)) + return false; + def_data = get_lim_data (SSA_NAME_DEF_STMT (val)); + if (def_data) + lim_data->cost += def_data->cost; + } + + /* We want to avoid unconditionally executing very expensive + operations. As costs for our dependencies cannot be + negative just claim we are not invariand for this case. + We also are not sure whether the control-flow inside the + loop will vanish. */ + if (total_cost - min_cost >= 2 * LIM_EXPENSIVE + && !(min_cost != 0 + && total_cost / min_cost <= 2)) + return false; + + /* Assume that the control-flow in the loop will vanish. + ??? We should verify this and not artificially increase + the cost if that is not the case. */ + lim_data->cost += stmt_cost (stmt); + } + + return true; + } + else + FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE) + if (!add_dependency (val, lim_data, loop, true)) + return false; + + if (gimple_vuse (stmt)) + { + im_mem_ref *ref + = lim_data ? memory_accesses.refs_list[lim_data->ref] : NULL; + if (ref + && MEM_ANALYZABLE (ref)) + { + lim_data->max_loop = outermost_indep_loop (lim_data->max_loop, + loop, ref); + if (!lim_data->max_loop) + return false; + } + else if (! add_dependency (gimple_vuse (stmt), lim_data, loop, false)) + return false; + } + + lim_data->cost += stmt_cost (stmt); + + return true; +} + +/* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL, + and that one of the operands of this statement is computed by STMT. + Ensure that STMT (together with all the statements that define its + operands) is hoisted at least out of the loop LEVEL. */ + +static void +set_level (gimple *stmt, class loop *orig_loop, class loop *level) +{ + class loop *stmt_loop = gimple_bb (stmt)->loop_father; + struct lim_aux_data *lim_data; + gimple *dep_stmt; + unsigned i; + + stmt_loop = find_common_loop (orig_loop, stmt_loop); + lim_data = get_lim_data (stmt); + if (lim_data != NULL && lim_data->tgt_loop != NULL) + stmt_loop = find_common_loop (stmt_loop, + loop_outer (lim_data->tgt_loop)); + if (flow_loop_nested_p (stmt_loop, level)) + return; + + gcc_assert (level == lim_data->max_loop + || flow_loop_nested_p (lim_data->max_loop, level)); + + lim_data->tgt_loop = level; + FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt) + set_level (dep_stmt, orig_loop, level); +} + +/* Determines an outermost loop from that we want to hoist the statement STMT. + For now we chose the outermost possible loop. TODO -- use profiling + information to set it more sanely. */ + +static void +set_profitable_level (gimple *stmt) +{ + set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop); +} + +/* Returns true if STMT is a call that has side effects. */ + +static bool +nonpure_call_p (gimple *stmt) +{ + if (gimple_code (stmt) != GIMPLE_CALL) + return false; + + return gimple_has_side_effects (stmt); +} + +/* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */ + +static gimple * +rewrite_reciprocal (gimple_stmt_iterator *bsi) +{ + gassign *stmt, *stmt1, *stmt2; + tree name, lhs, type; + tree real_one; + gimple_stmt_iterator gsi; + + stmt = as_a <gassign *> (gsi_stmt (*bsi)); + lhs = gimple_assign_lhs (stmt); + type = TREE_TYPE (lhs); + + real_one = build_one_cst (type); + + name = make_temp_ssa_name (type, NULL, "reciptmp"); + stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one, + gimple_assign_rhs2 (stmt)); + stmt2 = gimple_build_assign (lhs, MULT_EXPR, name, + gimple_assign_rhs1 (stmt)); + + /* Replace division stmt with reciprocal and multiply stmts. + The multiply stmt is not invariant, so update iterator + and avoid rescanning. */ + gsi = *bsi; + gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); + gsi_replace (&gsi, stmt2, true); + + /* Continue processing with invariant reciprocal statement. */ + return stmt1; +} + +/* Check if the pattern at *BSI is a bittest of the form + (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */ + +static gimple * +rewrite_bittest (gimple_stmt_iterator *bsi) +{ + gassign *stmt; + gimple *stmt1; + gassign *stmt2; + gimple *use_stmt; + gcond *cond_stmt; + tree lhs, name, t, a, b; + use_operand_p use; + + stmt = as_a <gassign *> (gsi_stmt (*bsi)); + lhs = gimple_assign_lhs (stmt); + + /* Verify that the single use of lhs is a comparison against zero. */ + if (TREE_CODE (lhs) != SSA_NAME + || !single_imm_use (lhs, &use, &use_stmt)) + return stmt; + cond_stmt = dyn_cast <gcond *> (use_stmt); + if (!cond_stmt) + return stmt; + if (gimple_cond_lhs (cond_stmt) != lhs + || (gimple_cond_code (cond_stmt) != NE_EXPR + && gimple_cond_code (cond_stmt) != EQ_EXPR) + || !integer_zerop (gimple_cond_rhs (cond_stmt))) + return stmt; + + /* Get at the operands of the shift. The rhs is TMP1 & 1. */ + stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt)); + if (gimple_code (stmt1) != GIMPLE_ASSIGN) + return stmt; + + /* There is a conversion in between possibly inserted by fold. */ + if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1))) + { + t = gimple_assign_rhs1 (stmt1); + if (TREE_CODE (t) != SSA_NAME + || !has_single_use (t)) + return stmt; + stmt1 = SSA_NAME_DEF_STMT (t); + if (gimple_code (stmt1) != GIMPLE_ASSIGN) + return stmt; + } + + /* Verify that B is loop invariant but A is not. Verify that with + all the stmt walking we are still in the same loop. */ + if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR + || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt)) + return stmt; + + a = gimple_assign_rhs1 (stmt1); + b = gimple_assign_rhs2 (stmt1); + + if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL + && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL) + { + gimple_stmt_iterator rsi; + + /* 1 << B */ + t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a), + build_int_cst (TREE_TYPE (a), 1), b); + name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp"); + stmt1 = gimple_build_assign (name, t); + + /* A & (1 << B) */ + t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name); + name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp"); + stmt2 = gimple_build_assign (name, t); + + /* Replace the SSA_NAME we compare against zero. Adjust + the type of zero accordingly. */ + SET_USE (use, name); + gimple_cond_set_rhs (cond_stmt, + build_int_cst_type (TREE_TYPE (name), + 0)); + + /* Don't use gsi_replace here, none of the new assignments sets + the variable originally set in stmt. Move bsi to stmt1, and + then remove the original stmt, so that we get a chance to + retain debug info for it. */ + rsi = *bsi; + gsi_insert_before (bsi, stmt1, GSI_NEW_STMT); + gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT); + gimple *to_release = gsi_stmt (rsi); + gsi_remove (&rsi, true); + release_defs (to_release); + + return stmt1; + } + + return stmt; +} + +/* Determine the outermost loops in that statements in basic block BB are + invariant, and record them to the LIM_DATA associated with the + statements. */ + +static void +compute_invariantness (basic_block bb) +{ + enum move_pos pos; + gimple_stmt_iterator bsi; + gimple *stmt; + bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL; + class loop *outermost = ALWAYS_EXECUTED_IN (bb); + struct lim_aux_data *lim_data; + + if (!loop_outer (bb->loop_father)) + return; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n", + bb->index, bb->loop_father->num, loop_depth (bb->loop_father)); + + /* Look at PHI nodes, but only if there is at most two. + ??? We could relax this further by post-processing the inserted + code and transforming adjacent cond-exprs with the same predicate + to control flow again. */ + bsi = gsi_start_phis (bb); + if (!gsi_end_p (bsi) + && ((gsi_next (&bsi), gsi_end_p (bsi)) + || (gsi_next (&bsi), gsi_end_p (bsi)))) + for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + { + stmt = gsi_stmt (bsi); + + pos = movement_possibility (stmt); + if (pos == MOVE_IMPOSSIBLE) + continue; + + lim_data = get_lim_data (stmt); + if (! lim_data) + lim_data = init_lim_data (stmt); + lim_data->always_executed_in = outermost; + + if (!determine_max_movement (stmt, false)) + { + lim_data->max_loop = NULL; + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + print_gimple_stmt (dump_file, stmt, 2); + fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", + loop_depth (lim_data->max_loop), + lim_data->cost); + } + + if (lim_data->cost >= LIM_EXPENSIVE) + set_profitable_level (stmt); + } + + for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + { + stmt = gsi_stmt (bsi); + + pos = movement_possibility (stmt); + if (pos == MOVE_IMPOSSIBLE) + { + if (nonpure_call_p (stmt)) + { + maybe_never = true; + outermost = NULL; + } + /* Make sure to note always_executed_in for stores to make + store-motion work. */ + else if (stmt_makes_single_store (stmt)) + { + struct lim_aux_data *lim_data = get_lim_data (stmt); + if (! lim_data) + lim_data = init_lim_data (stmt); + lim_data->always_executed_in = outermost; + } + continue; + } + + if (is_gimple_assign (stmt) + && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) + == GIMPLE_BINARY_RHS)) + { + tree op0 = gimple_assign_rhs1 (stmt); + tree op1 = gimple_assign_rhs2 (stmt); + class loop *ol1 = outermost_invariant_loop (op1, + loop_containing_stmt (stmt)); + + /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal + to be hoisted out of loop, saving expensive divide. */ + if (pos == MOVE_POSSIBLE + && gimple_assign_rhs_code (stmt) == RDIV_EXPR + && flag_unsafe_math_optimizations + && !flag_trapping_math + && ol1 != NULL + && outermost_invariant_loop (op0, ol1) == NULL) + stmt = rewrite_reciprocal (&bsi); + + /* If the shift count is invariant, convert (A >> B) & 1 to + A & (1 << B) allowing the bit mask to be hoisted out of the loop + saving an expensive shift. */ + if (pos == MOVE_POSSIBLE + && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR + && integer_onep (op1) + && TREE_CODE (op0) == SSA_NAME + && has_single_use (op0)) + stmt = rewrite_bittest (&bsi); + } + + lim_data = get_lim_data (stmt); + if (! lim_data) + lim_data = init_lim_data (stmt); + lim_data->always_executed_in = outermost; + + if (maybe_never && pos == MOVE_PRESERVE_EXECUTION) + continue; + + if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION)) + { + lim_data->max_loop = NULL; + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + print_gimple_stmt (dump_file, stmt, 2); + fprintf (dump_file, " invariant up to level %d, cost %d.\n\n", + loop_depth (lim_data->max_loop), + lim_data->cost); + } + + if (lim_data->cost >= LIM_EXPENSIVE) + set_profitable_level (stmt); + } +} + +/* Hoist the statements in basic block BB out of the loops prescribed by + data stored in LIM_DATA structures associated with each statement. Callback + for walk_dominator_tree. */ + +unsigned int +move_computations_worker (basic_block bb) +{ + class loop *level; + unsigned cost = 0; + struct lim_aux_data *lim_data; + unsigned int todo = 0; + + if (!loop_outer (bb->loop_father)) + return todo; + + for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); ) + { + gassign *new_stmt; + gphi *stmt = bsi.phi (); + + lim_data = get_lim_data (stmt); + if (lim_data == NULL) + { + gsi_next (&bsi); + continue; + } + + cost = lim_data->cost; + level = lim_data->tgt_loop; + clear_lim_data (stmt); + + if (!level) + { + gsi_next (&bsi); + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Moving PHI node\n"); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "(cost %u) out of loop %d.\n\n", + cost, level->num); + } + + if (gimple_phi_num_args (stmt) == 1) + { + tree arg = PHI_ARG_DEF (stmt, 0); + new_stmt = gimple_build_assign (gimple_phi_result (stmt), + TREE_CODE (arg), arg); + } + else + { + basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb); + gimple *cond = gsi_stmt (gsi_last_bb (dom)); + tree arg0 = NULL_TREE, arg1 = NULL_TREE, t; + /* Get the PHI arguments corresponding to the true and false + edges of COND. */ + extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1); + gcc_assert (arg0 && arg1); + t = build2 (gimple_cond_code (cond), boolean_type_node, + gimple_cond_lhs (cond), gimple_cond_rhs (cond)); + new_stmt = gimple_build_assign (gimple_phi_result (stmt), + COND_EXPR, t, arg0, arg1); + todo |= TODO_cleanup_cfg; + } + if (!ALWAYS_EXECUTED_IN (bb) + || (ALWAYS_EXECUTED_IN (bb) != level + && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))) + reset_flow_sensitive_info (gimple_assign_lhs (new_stmt)); + gsi_insert_on_edge (loop_preheader_edge (level), new_stmt); + remove_phi_node (&bsi, false); + } + + for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); ) + { + edge e; + + gimple *stmt = gsi_stmt (bsi); + + lim_data = get_lim_data (stmt); + if (lim_data == NULL) + { + gsi_next (&bsi); + continue; + } + + cost = lim_data->cost; + level = lim_data->tgt_loop; + clear_lim_data (stmt); + + if (!level) + { + gsi_next (&bsi); + continue; + } + + /* We do not really want to move conditionals out of the loop; we just + placed it here to force its operands to be moved if necessary. */ + if (gimple_code (stmt) == GIMPLE_COND) + { + gsi_next (&bsi); + continue; + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Moving statement\n"); + print_gimple_stmt (dump_file, stmt, 0); + fprintf (dump_file, "(cost %u) out of loop %d.\n\n", + cost, level->num); + } + + e = loop_preheader_edge (level); + gcc_assert (!gimple_vdef (stmt)); + if (gimple_vuse (stmt)) + { + /* The new VUSE is the one from the virtual PHI in the loop + header or the one already present. */ + gphi_iterator gsi2; + for (gsi2 = gsi_start_phis (e->dest); + !gsi_end_p (gsi2); gsi_next (&gsi2)) + { + gphi *phi = gsi2.phi (); + if (virtual_operand_p (gimple_phi_result (phi))) + { + SET_USE (gimple_vuse_op (stmt), + PHI_ARG_DEF_FROM_EDGE (phi, e)); + break; + } + } + } + gsi_remove (&bsi, false); + if (gimple_has_lhs (stmt) + && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME + && (!ALWAYS_EXECUTED_IN (bb) + || !(ALWAYS_EXECUTED_IN (bb) == level + || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) + reset_flow_sensitive_info (gimple_get_lhs (stmt)); + /* In case this is a stmt that is not unconditionally executed + when the target loop header is executed and the stmt may + invoke undefined integer or pointer overflow rewrite it to + unsigned arithmetic. */ + if (is_gimple_assign (stmt) + && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt))) + && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt))) + && arith_code_with_undefined_signed_overflow + (gimple_assign_rhs_code (stmt)) + && (!ALWAYS_EXECUTED_IN (bb) + || !(ALWAYS_EXECUTED_IN (bb) == level + || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level)))) + gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt)); + else + gsi_insert_on_edge (e, stmt); + } + + return todo; +} + +/* Checks whether the statement defining variable *INDEX can be hoisted + out of the loop passed in DATA. Callback for for_each_index. */ + +static bool +may_move_till (tree ref, tree *index, void *data) +{ + class loop *loop = (class loop *) data, *max_loop; + + /* If REF is an array reference, check also that the step and the lower + bound is invariant in LOOP. */ + if (TREE_CODE (ref) == ARRAY_REF) + { + tree step = TREE_OPERAND (ref, 3); + tree lbound = TREE_OPERAND (ref, 2); + + max_loop = outermost_invariant_loop (step, loop); + if (!max_loop) + return false; + + max_loop = outermost_invariant_loop (lbound, loop); + if (!max_loop) + return false; + } + + max_loop = outermost_invariant_loop (*index, loop); + if (!max_loop) + return false; + + return true; +} + +/* If OP is SSA NAME, force the statement that defines it to be + moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */ + +static void +force_move_till_op (tree op, class loop *orig_loop, class loop *loop) +{ + gimple *stmt; + + if (!op + || is_gimple_min_invariant (op)) + return; + + gcc_assert (TREE_CODE (op) == SSA_NAME); + + stmt = SSA_NAME_DEF_STMT (op); + if (gimple_nop_p (stmt)) + return; + + set_level (stmt, orig_loop, loop); +} + +/* Forces statement defining invariants in REF (and *INDEX) to be moved out of + the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for + for_each_index. */ + +struct fmt_data +{ + class loop *loop; + class loop *orig_loop; +}; + +static bool +force_move_till (tree ref, tree *index, void *data) +{ + struct fmt_data *fmt_data = (struct fmt_data *) data; + + if (TREE_CODE (ref) == ARRAY_REF) + { + tree step = TREE_OPERAND (ref, 3); + tree lbound = TREE_OPERAND (ref, 2); + + force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop); + force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop); + } + + force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop); + + return true; +} + +/* A function to free the mem_ref object OBJ. */ + +static void +memref_free (class im_mem_ref *mem) +{ + mem->accesses_in_loop.release (); +} + +/* Allocates and returns a memory reference description for MEM whose hash + value is HASH and id is ID. */ + +static im_mem_ref * +mem_ref_alloc (ao_ref *mem, unsigned hash, unsigned id) +{ + im_mem_ref *ref = XOBNEW (&mem_ref_obstack, class im_mem_ref); + if (mem) + ref->mem = *mem; + else + ao_ref_init (&ref->mem, error_mark_node); + ref->id = id; + ref->ref_canonical = false; + ref->ref_decomposed = false; + ref->hash = hash; + ref->stored = NULL; + ref->loaded = NULL; + bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack); + ref->accesses_in_loop.create (1); + + return ref; +} + +/* Records memory reference location *LOC in LOOP to the memory reference + description REF. The reference occurs in statement STMT. */ + +static void +record_mem_ref_loc (im_mem_ref *ref, gimple *stmt, tree *loc) +{ + mem_ref_loc aref; + aref.stmt = stmt; + aref.ref = loc; + ref->accesses_in_loop.safe_push (aref); +} + +/* Set the LOOP bit in REF stored bitmap and allocate that if + necessary. Return whether a bit was changed. */ + +static bool +set_ref_stored_in_loop (im_mem_ref *ref, class loop *loop) +{ + if (!ref->stored) + ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack); + return bitmap_set_bit (ref->stored, loop->num); +} + +/* Marks reference REF as stored in LOOP. */ + +static void +mark_ref_stored (im_mem_ref *ref, class loop *loop) +{ + while (loop != current_loops->tree_root + && set_ref_stored_in_loop (ref, loop)) + loop = loop_outer (loop); +} + +/* Set the LOOP bit in REF loaded bitmap and allocate that if + necessary. Return whether a bit was changed. */ + +static bool +set_ref_loaded_in_loop (im_mem_ref *ref, class loop *loop) +{ + if (!ref->loaded) + ref->loaded = BITMAP_ALLOC (&lim_bitmap_obstack); + return bitmap_set_bit (ref->loaded, loop->num); +} + +/* Marks reference REF as loaded in LOOP. */ + +static void +mark_ref_loaded (im_mem_ref *ref, class loop *loop) +{ + while (loop != current_loops->tree_root + && set_ref_loaded_in_loop (ref, loop)) + loop = loop_outer (loop); +} + +/* Gathers memory references in statement STMT in LOOP, storing the + information about them in the memory_accesses structure. Marks + the vops accessed through unrecognized statements there as + well. */ + +static void +gather_mem_refs_stmt (class loop *loop, gimple *stmt) +{ + tree *mem = NULL; + hashval_t hash; + im_mem_ref **slot; + im_mem_ref *ref; + bool is_stored; + unsigned id; + + if (!gimple_vuse (stmt)) + return; + + mem = simple_mem_ref_in_stmt (stmt, &is_stored); + if (!mem && is_gimple_assign (stmt)) + { + /* For aggregate copies record distinct references but use them + only for disambiguation purposes. */ + id = memory_accesses.refs_list.length (); + ref = mem_ref_alloc (NULL, 0, id); + memory_accesses.refs_list.safe_push (ref); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Unhandled memory reference %u: ", id); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + record_mem_ref_loc (ref, stmt, mem); + is_stored = gimple_vdef (stmt); + } + else if (!mem) + { + /* We use the shared mem_ref for all unanalyzable refs. */ + id = UNANALYZABLE_MEM_ID; + ref = memory_accesses.refs_list[id]; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Unanalyzed memory reference %u: ", id); + print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM); + } + is_stored = gimple_vdef (stmt); + } + else + { + /* We are looking for equal refs that might differ in structure + such as a.b vs. MEM[&a + 4]. So we key off the ao_ref but + make sure we can canonicalize the ref in the hashtable if + non-operand_equal_p refs are found. For the lookup we mark + the case we want strict equality with aor.max_size == -1. */ + ao_ref aor; + ao_ref_init (&aor, *mem); + ao_ref_base (&aor); + ao_ref_alias_set (&aor); + HOST_WIDE_INT offset, size, max_size; + poly_int64 saved_maxsize = aor.max_size, mem_off; + tree mem_base; + bool ref_decomposed; + if (aor.max_size_known_p () + && aor.offset.is_constant (&offset) + && aor.size.is_constant (&size) + && aor.max_size.is_constant (&max_size) + && size == max_size + && (size % BITS_PER_UNIT) == 0 + /* We're canonicalizing to a MEM where TYPE_SIZE specifies the + size. Make sure this is consistent with the extraction. */ + && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (*mem))) + && known_eq (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (*mem))), + aor.size) + && (mem_base = get_addr_base_and_unit_offset (aor.ref, &mem_off))) + { + ref_decomposed = true; + tree base = ao_ref_base (&aor); + poly_int64 moffset; + HOST_WIDE_INT mcoffset; + if (TREE_CODE (base) == MEM_REF + && (mem_ref_offset (base) * BITS_PER_UNIT + offset).to_shwi (&moffset) + && moffset.is_constant (&mcoffset)) + { + hash = iterative_hash_expr (TREE_OPERAND (base, 0), 0); + hash = iterative_hash_host_wide_int (mcoffset, hash); + } + else + { + hash = iterative_hash_expr (base, 0); + hash = iterative_hash_host_wide_int (offset, hash); + } + hash = iterative_hash_host_wide_int (size, hash); + } + else + { + ref_decomposed = false; + hash = iterative_hash_expr (aor.ref, 0); + aor.max_size = -1; + } + slot = memory_accesses.refs->find_slot_with_hash (&aor, hash, INSERT); + aor.max_size = saved_maxsize; + if (*slot) + { + if (!(*slot)->ref_canonical + && !operand_equal_p (*mem, (*slot)->mem.ref, 0)) + { + /* If we didn't yet canonicalize the hashtable ref (which + we'll end up using for code insertion) and hit a second + equal ref that is not structurally equivalent create + a canonical ref which is a bare MEM_REF. */ + if (TREE_CODE (*mem) == MEM_REF + || TREE_CODE (*mem) == TARGET_MEM_REF) + { + (*slot)->mem.ref = *mem; + (*slot)->mem.base_alias_set = ao_ref_base_alias_set (&aor); + } + else + { + tree ref_alias_type = reference_alias_ptr_type (*mem); + unsigned int ref_align = get_object_alignment (*mem); + tree ref_type = TREE_TYPE (*mem); + tree tmp = build1 (ADDR_EXPR, ptr_type_node, + unshare_expr (mem_base)); + if (TYPE_ALIGN (ref_type) != ref_align) + ref_type = build_aligned_type (ref_type, ref_align); + (*slot)->mem.ref + = fold_build2 (MEM_REF, ref_type, tmp, + build_int_cst (ref_alias_type, mem_off)); + if ((*slot)->mem.volatile_p) + TREE_THIS_VOLATILE ((*slot)->mem.ref) = 1; + gcc_checking_assert (TREE_CODE ((*slot)->mem.ref) == MEM_REF + && is_gimple_mem_ref_addr + (TREE_OPERAND ((*slot)->mem.ref, + 0))); + (*slot)->mem.base_alias_set = (*slot)->mem.ref_alias_set; + } + (*slot)->ref_canonical = true; + } + ref = *slot; + id = ref->id; + } + else + { + id = memory_accesses.refs_list.length (); + ref = mem_ref_alloc (&aor, hash, id); + ref->ref_decomposed = ref_decomposed; + memory_accesses.refs_list.safe_push (ref); + *slot = ref; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Memory reference %u: ", id); + print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM); + fprintf (dump_file, "\n"); + } + } + + record_mem_ref_loc (ref, stmt, mem); + } + if (is_stored) + { + bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id); + mark_ref_stored (ref, loop); + } + /* A not simple memory op is also a read when it is a write. */ + if (!is_stored || id == UNANALYZABLE_MEM_ID + || ref->mem.ref == error_mark_node) + { + bitmap_set_bit (&memory_accesses.refs_loaded_in_loop[loop->num], ref->id); + mark_ref_loaded (ref, loop); + } + init_lim_data (stmt)->ref = ref->id; + return; +} + +static unsigned *bb_loop_postorder; + +/* qsort sort function to sort blocks after their loop fathers postorder. */ + +static int +sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_, + void *bb_loop_postorder_) +{ + unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; + basic_block bb1 = *(const basic_block *)bb1_; + basic_block bb2 = *(const basic_block *)bb2_; + class loop *loop1 = bb1->loop_father; + class loop *loop2 = bb2->loop_father; + if (loop1->num == loop2->num) + return bb1->index - bb2->index; + return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; +} + +/* qsort sort function to sort ref locs after their loop fathers postorder. */ + +static int +sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_, + void *bb_loop_postorder_) +{ + unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; + const mem_ref_loc *loc1 = (const mem_ref_loc *)loc1_; + const mem_ref_loc *loc2 = (const mem_ref_loc *)loc2_; + class loop *loop1 = gimple_bb (loc1->stmt)->loop_father; + class loop *loop2 = gimple_bb (loc2->stmt)->loop_father; + if (loop1->num == loop2->num) + return 0; + return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1; +} + +/* Gathers memory references in loops. */ + +static void +analyze_memory_references (bool store_motion) +{ + gimple_stmt_iterator bsi; + basic_block bb, *bbs; + class loop *outer; + unsigned i, n; + + /* Collect all basic-blocks in loops and sort them after their + loops postorder. */ + i = 0; + bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS); + FOR_EACH_BB_FN (bb, cfun) + if (bb->loop_father != current_loops->tree_root) + bbs[i++] = bb; + n = i; + gcc_sort_r (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp, + bb_loop_postorder); + + /* Visit blocks in loop postorder and assign mem-ref IDs in that order. + That results in better locality for all the bitmaps. It also + automatically sorts the location list of gathered memory references + after their loop postorder number allowing to binary-search it. */ + for (i = 0; i < n; ++i) + { + basic_block bb = bbs[i]; + for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi)) + gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi)); + } + + /* Verify the list of gathered memory references is sorted after their + loop postorder number. */ + if (flag_checking) + { + im_mem_ref *ref; + FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) + for (unsigned j = 1; j < ref->accesses_in_loop.length (); ++j) + gcc_assert (sort_locs_in_loop_postorder_cmp + (&ref->accesses_in_loop[j-1], &ref->accesses_in_loop[j], + bb_loop_postorder) <= 0); + } + + free (bbs); + + if (!store_motion) + return; + + /* Propagate the information about accessed memory references up + the loop hierarchy. */ + for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) + { + /* Finalize the overall touched references (including subloops). */ + bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num], + &memory_accesses.refs_stored_in_loop[loop->num]); + + /* Propagate the information about accessed memory references up + the loop hierarchy. */ + outer = loop_outer (loop); + if (outer == current_loops->tree_root) + continue; + + bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num], + &memory_accesses.all_refs_stored_in_loop[loop->num]); + } +} + +/* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in + tree_to_aff_combination_expand. */ + +static bool +mem_refs_may_alias_p (im_mem_ref *mem1, im_mem_ref *mem2, + hash_map<tree, name_expansion *> **ttae_cache, + bool tbaa_p) +{ + gcc_checking_assert (mem1->mem.ref != error_mark_node + && mem2->mem.ref != error_mark_node); + + /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same + object and their offset differ in such a way that the locations cannot + overlap, then they cannot alias. */ + poly_widest_int size1, size2; + aff_tree off1, off2; + + /* Perform basic offset and type-based disambiguation. */ + if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, tbaa_p)) + return false; + + /* The expansion of addresses may be a bit expensive, thus we only do + the check at -O2 and higher optimization levels. */ + if (optimize < 2) + return true; + + get_inner_reference_aff (mem1->mem.ref, &off1, &size1); + get_inner_reference_aff (mem2->mem.ref, &off2, &size2); + aff_combination_expand (&off1, ttae_cache); + aff_combination_expand (&off2, ttae_cache); + aff_combination_scale (&off1, -1); + aff_combination_add (&off2, &off1); + + if (aff_comb_cannot_overlap_p (&off2, size1, size2)) + return false; + + return true; +} + +/* Compare function for bsearch searching for reference locations + in a loop. */ + +static int +find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_, + void *bb_loop_postorder_) +{ + unsigned *bb_loop_postorder = (unsigned *)bb_loop_postorder_; + class loop *loop = (class loop *)const_cast<void *>(loop_); + mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_); + class loop *loc_loop = gimple_bb (loc->stmt)->loop_father; + if (loop->num == loc_loop->num + || flow_loop_nested_p (loop, loc_loop)) + return 0; + return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num] + ? -1 : 1); +} + +/* Iterates over all locations of REF in LOOP and its subloops calling + fn.operator() with the location as argument. When that operator + returns true the iteration is stopped and true is returned. + Otherwise false is returned. */ + +template <typename FN> +static bool +for_all_locs_in_loop (class loop *loop, im_mem_ref *ref, FN fn) +{ + unsigned i; + mem_ref_loc *loc; + + /* Search for the cluster of locs in the accesses_in_loop vector + which is sorted after postorder index of the loop father. */ + loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp, + bb_loop_postorder); + if (!loc) + return false; + + /* We have found one location inside loop or its sub-loops. Iterate + both forward and backward to cover the whole cluster. */ + i = loc - ref->accesses_in_loop.address (); + while (i > 0) + { + --i; + mem_ref_loc *l = &ref->accesses_in_loop[i]; + if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt))) + break; + if (fn (l)) + return true; + } + for (i = loc - ref->accesses_in_loop.address (); + i < ref->accesses_in_loop.length (); ++i) + { + mem_ref_loc *l = &ref->accesses_in_loop[i]; + if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt))) + break; + if (fn (l)) + return true; + } + + return false; +} + +/* Rewrites location LOC by TMP_VAR. */ + +class rewrite_mem_ref_loc +{ +public: + rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {} + bool operator () (mem_ref_loc *loc); + tree tmp_var; +}; + +bool +rewrite_mem_ref_loc::operator () (mem_ref_loc *loc) +{ + *loc->ref = tmp_var; + update_stmt (loc->stmt); + return false; +} + +/* Rewrites all references to REF in LOOP by variable TMP_VAR. */ + +static void +rewrite_mem_refs (class loop *loop, im_mem_ref *ref, tree tmp_var) +{ + for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var)); +} + +/* Stores the first reference location in LOCP. */ + +class first_mem_ref_loc_1 +{ +public: + first_mem_ref_loc_1 (mem_ref_loc **locp_) : locp (locp_) {} + bool operator () (mem_ref_loc *loc); + mem_ref_loc **locp; +}; + +bool +first_mem_ref_loc_1::operator () (mem_ref_loc *loc) +{ + *locp = loc; + return true; +} + +/* Returns the first reference location to REF in LOOP. */ + +static mem_ref_loc * +first_mem_ref_loc (class loop *loop, im_mem_ref *ref) +{ + mem_ref_loc *locp = NULL; + for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp)); + return locp; +} + +/* Helper function for execute_sm. Emit code to store TMP_VAR into + MEM along edge EX. + + The store is only done if MEM has changed. We do this so no + changes to MEM occur on code paths that did not originally store + into it. + + The common case for execute_sm will transform: + + for (...) { + if (foo) + stuff; + else + MEM = TMP_VAR; + } + + into: + + lsm = MEM; + for (...) { + if (foo) + stuff; + else + lsm = TMP_VAR; + } + MEM = lsm; + + This function will generate: + + lsm = MEM; + + lsm_flag = false; + ... + for (...) { + if (foo) + stuff; + else { + lsm = TMP_VAR; + lsm_flag = true; + } + } + if (lsm_flag) <-- + MEM = lsm; <-- (X) + + In case MEM and TMP_VAR are NULL the function will return the then + block so the caller can insert (X) and other related stmts. +*/ + +static basic_block +execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag, + edge preheader, hash_set <basic_block> *flag_bbs, + edge &append_cond_position, edge &last_cond_fallthru) +{ + basic_block new_bb, then_bb, old_dest; + bool loop_has_only_one_exit; + edge then_old_edge; + gimple_stmt_iterator gsi; + gimple *stmt; + bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP; + + profile_count count_sum = profile_count::zero (); + int nbbs = 0, ncount = 0; + profile_probability flag_probability = profile_probability::uninitialized (); + + /* Flag is set in FLAG_BBS. Determine probability that flag will be true + at loop exit. + + This code may look fancy, but it cannot update profile very realistically + because we do not know the probability that flag will be true at given + loop exit. + + We look for two interesting extremes + - when exit is dominated by block setting the flag, we know it will + always be true. This is a common case. + - when all blocks setting the flag have very low frequency we know + it will likely be false. + In all other cases we default to 2/3 for flag being true. */ + + for (hash_set<basic_block>::iterator it = flag_bbs->begin (); + it != flag_bbs->end (); ++it) + { + if ((*it)->count.initialized_p ()) + count_sum += (*it)->count, ncount ++; + if (dominated_by_p (CDI_DOMINATORS, ex->src, *it)) + flag_probability = profile_probability::always (); + nbbs++; + } + + profile_probability cap = profile_probability::always ().apply_scale (2, 3); + + if (flag_probability.initialized_p ()) + ; + else if (ncount == nbbs + && preheader->count () >= count_sum && preheader->count ().nonzero_p ()) + { + flag_probability = count_sum.probability_in (preheader->count ()); + if (flag_probability > cap) + flag_probability = cap; + } + + if (!flag_probability.initialized_p ()) + flag_probability = cap; + + /* ?? Insert store after previous store if applicable. See note + below. */ + if (append_cond_position) + ex = append_cond_position; + + loop_has_only_one_exit = single_pred_p (ex->dest); + + if (loop_has_only_one_exit) + ex = split_block_after_labels (ex->dest); + else + { + for (gphi_iterator gpi = gsi_start_phis (ex->dest); + !gsi_end_p (gpi); gsi_next (&gpi)) + { + gphi *phi = gpi.phi (); + if (virtual_operand_p (gimple_phi_result (phi))) + continue; + + /* When the destination has a non-virtual PHI node with multiple + predecessors make sure we preserve the PHI structure by + forcing a forwarder block so that hoisting of that PHI will + still work. */ + split_edge (ex); + break; + } + } + + old_dest = ex->dest; + new_bb = split_edge (ex); + then_bb = create_empty_bb (new_bb); + then_bb->count = new_bb->count.apply_probability (flag_probability); + if (irr) + then_bb->flags = BB_IRREDUCIBLE_LOOP; + add_bb_to_loop (then_bb, new_bb->loop_father); + + gsi = gsi_start_bb (new_bb); + stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node, + NULL_TREE, NULL_TREE); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + + /* Insert actual store. */ + if (mem) + { + gsi = gsi_start_bb (then_bb); + stmt = gimple_build_assign (unshare_expr (mem), tmp_var); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + } + + edge e1 = single_succ_edge (new_bb); + edge e2 = make_edge (new_bb, then_bb, + EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); + e2->probability = flag_probability; + + e1->flags |= EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0); + e1->flags &= ~EDGE_FALLTHRU; + + e1->probability = flag_probability.invert (); + + then_old_edge = make_single_succ_edge (then_bb, old_dest, + EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0)); + + set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb); + + if (append_cond_position) + { + basic_block prevbb = last_cond_fallthru->src; + redirect_edge_succ (last_cond_fallthru, new_bb); + set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb); + set_immediate_dominator (CDI_DOMINATORS, old_dest, + recompute_dominator (CDI_DOMINATORS, old_dest)); + } + + /* ?? Because stores may alias, they must happen in the exact + sequence they originally happened. Save the position right after + the (_lsm) store we just created so we can continue appending after + it and maintain the original order. */ + append_cond_position = then_old_edge; + last_cond_fallthru = find_edge (new_bb, old_dest); + + if (!loop_has_only_one_exit) + for (gphi_iterator gpi = gsi_start_phis (old_dest); + !gsi_end_p (gpi); gsi_next (&gpi)) + { + gphi *phi = gpi.phi (); + unsigned i; + + for (i = 0; i < gimple_phi_num_args (phi); i++) + if (gimple_phi_arg_edge (phi, i)->src == new_bb) + { + tree arg = gimple_phi_arg_def (phi, i); + add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION); + update_stmt (phi); + } + } + + return then_bb; +} + +/* When REF is set on the location, set flag indicating the store. */ + +class sm_set_flag_if_changed +{ +public: + sm_set_flag_if_changed (tree flag_, hash_set <basic_block> *bbs_) + : flag (flag_), bbs (bbs_) {} + bool operator () (mem_ref_loc *loc); + tree flag; + hash_set <basic_block> *bbs; +}; + +bool +sm_set_flag_if_changed::operator () (mem_ref_loc *loc) +{ + /* Only set the flag for writes. */ + if (is_gimple_assign (loc->stmt) + && gimple_assign_lhs_ptr (loc->stmt) == loc->ref) + { + gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt); + gimple *stmt = gimple_build_assign (flag, boolean_true_node); + gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING); + bbs->add (gimple_bb (stmt)); + } + return false; +} + +/* Helper function for execute_sm. On every location where REF is + set, set an appropriate flag indicating the store. */ + +static tree +execute_sm_if_changed_flag_set (class loop *loop, im_mem_ref *ref, + hash_set <basic_block> *bbs) +{ + tree flag; + char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag"); + flag = create_tmp_reg (boolean_type_node, str); + for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag, bbs)); + return flag; +} + +struct sm_aux +{ + tree tmp_var; + tree store_flag; + hash_set <basic_block> flag_bbs; +}; + +/* Executes store motion of memory reference REF from LOOP. + Exits from the LOOP are stored in EXITS. The initialization of the + temporary variable is put to the preheader of the loop, and assignments + to the reference from the temporary variable are emitted to exits. */ + +static void +execute_sm (class loop *loop, im_mem_ref *ref, + hash_map<im_mem_ref *, sm_aux *> &aux_map, bool maybe_mt, + bool use_other_flag_var) +{ + gassign *load; + struct fmt_data fmt_data; + struct lim_aux_data *lim_data; + bool multi_threaded_model_p = false; + gimple_stmt_iterator gsi; + sm_aux *aux = new sm_aux; + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Executing store motion of "); + print_generic_expr (dump_file, ref->mem.ref); + fprintf (dump_file, " from loop %d\n", loop->num); + } + + aux->tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref), + get_lsm_tmp_name (ref->mem.ref, ~0)); + + fmt_data.loop = loop; + fmt_data.orig_loop = loop; + for_each_index (&ref->mem.ref, force_move_till, &fmt_data); + + bool always_stored = ref_always_accessed_p (loop, ref, true); + if (maybe_mt + && (bb_in_transaction (loop_preheader_edge (loop)->src) + || (! flag_store_data_races && ! always_stored))) + multi_threaded_model_p = true; + + if (multi_threaded_model_p && !use_other_flag_var) + aux->store_flag + = execute_sm_if_changed_flag_set (loop, ref, &aux->flag_bbs); + else + aux->store_flag = NULL_TREE; + + /* Remember variable setup. */ + aux_map.put (ref, aux); + + rewrite_mem_refs (loop, ref, aux->tmp_var); + + /* Emit the load code on a random exit edge or into the latch if + the loop does not exit, so that we are sure it will be processed + by move_computations after all dependencies. */ + gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt); + + /* Avoid doing a load if there was no load of the ref in the loop. + Esp. when the ref is not always stored we cannot optimize it + away later. But when it is not always stored we must use a conditional + store then. */ + if ((!always_stored && !multi_threaded_model_p) + || (ref->loaded && bitmap_bit_p (ref->loaded, loop->num))) + load = gimple_build_assign (aux->tmp_var, unshare_expr (ref->mem.ref)); + else + { + /* If not emitting a load mark the uninitialized state on the + loop entry as not to be warned for. */ + tree uninit = create_tmp_reg (TREE_TYPE (aux->tmp_var)); + suppress_warning (uninit, OPT_Wuninitialized); + load = gimple_build_assign (aux->tmp_var, uninit); + } + lim_data = init_lim_data (load); + lim_data->max_loop = loop; + lim_data->tgt_loop = loop; + gsi_insert_before (&gsi, load, GSI_SAME_STMT); + + if (aux->store_flag) + { + load = gimple_build_assign (aux->store_flag, boolean_false_node); + lim_data = init_lim_data (load); + lim_data->max_loop = loop; + lim_data->tgt_loop = loop; + gsi_insert_before (&gsi, load, GSI_SAME_STMT); + } +} + +/* sm_ord is used for ordinary stores we can retain order with respect + to other stores + sm_unord is used for conditional executed stores which need to be + able to execute in arbitrary order with respect to other stores + sm_other is used for stores we do not try to apply store motion to. */ +enum sm_kind { sm_ord, sm_unord, sm_other }; +struct seq_entry +{ + seq_entry () {} + seq_entry (unsigned f, sm_kind k, tree fr = NULL) + : first (f), second (k), from (fr) {} + unsigned first; + sm_kind second; + tree from; +}; + +static void +execute_sm_exit (class loop *loop, edge ex, vec<seq_entry> &seq, + hash_map<im_mem_ref *, sm_aux *> &aux_map, sm_kind kind, + edge &append_cond_position, edge &last_cond_fallthru) +{ + /* Sink the stores to exit from the loop. */ + for (unsigned i = seq.length (); i > 0; --i) + { + im_mem_ref *ref = memory_accesses.refs_list[seq[i-1].first]; + if (seq[i-1].second == sm_other) + { + gcc_assert (kind == sm_ord && seq[i-1].from != NULL_TREE); + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Re-issueing dependent store of "); + print_generic_expr (dump_file, ref->mem.ref); + fprintf (dump_file, " from loop %d on exit %d -> %d\n", + loop->num, ex->src->index, ex->dest->index); + } + gassign *store = gimple_build_assign (unshare_expr (ref->mem.ref), + seq[i-1].from); + gsi_insert_on_edge (ex, store); + } + else + { + sm_aux *aux = *aux_map.get (ref); + if (!aux->store_flag || kind == sm_ord) + { + gassign *store; + store = gimple_build_assign (unshare_expr (ref->mem.ref), + aux->tmp_var); + gsi_insert_on_edge (ex, store); + } + else + execute_sm_if_changed (ex, ref->mem.ref, aux->tmp_var, + aux->store_flag, + loop_preheader_edge (loop), &aux->flag_bbs, + append_cond_position, last_cond_fallthru); + } + } +} + +/* Push the SM candidate at index PTR in the sequence SEQ down until + we hit the next SM candidate. Return true if that went OK and + false if we could not disambiguate agains another unrelated ref. + Update *AT to the index where the candidate now resides. */ + +static bool +sm_seq_push_down (vec<seq_entry> &seq, unsigned ptr, unsigned *at) +{ + *at = ptr; + for (; ptr > 0; --ptr) + { + seq_entry &new_cand = seq[ptr]; + seq_entry &against = seq[ptr-1]; + if (against.second == sm_ord + || (against.second == sm_other && against.from != NULL_TREE)) + /* Found the tail of the sequence. */ + break; + /* We may not ignore self-dependences here. */ + if (new_cand.first == against.first + || !refs_independent_p (memory_accesses.refs_list[new_cand.first], + memory_accesses.refs_list[against.first], + false)) + /* ??? Prune new_cand from the list of refs to apply SM to. */ + return false; + std::swap (new_cand, against); + *at = ptr - 1; + } + return true; +} + +/* Computes the sequence of stores from candidates in REFS_NOT_IN_SEQ to SEQ + walking backwards from VDEF (or the end of BB if VDEF is NULL). */ + +static int +sm_seq_valid_bb (class loop *loop, basic_block bb, tree vdef, + vec<seq_entry> &seq, bitmap refs_not_in_seq, + bitmap refs_not_supported, bool forked, + bitmap fully_visited) +{ + if (!vdef) + for (gimple_stmt_iterator gsi = gsi_last_bb (bb); !gsi_end_p (gsi); + gsi_prev (&gsi)) + { + vdef = gimple_vdef (gsi_stmt (gsi)); + if (vdef) + break; + } + if (!vdef) + { + gphi *vphi = get_virtual_phi (bb); + if (vphi) + vdef = gimple_phi_result (vphi); + } + if (!vdef) + { + if (single_pred_p (bb)) + /* This handles the perfect nest case. */ + return sm_seq_valid_bb (loop, single_pred (bb), vdef, + seq, refs_not_in_seq, refs_not_supported, + forked, fully_visited); + return 0; + } + do + { + gimple *def = SSA_NAME_DEF_STMT (vdef); + if (gimple_bb (def) != bb) + { + /* If we forked by processing a PHI do not allow our walk to + merge again until we handle that robustly. */ + if (forked) + { + /* Mark refs_not_in_seq as unsupported. */ + bitmap_ior_into (refs_not_supported, refs_not_in_seq); + return 1; + } + /* Otherwise it doesn't really matter if we end up in different + BBs. */ + bb = gimple_bb (def); + } + if (gphi *phi = dyn_cast <gphi *> (def)) + { + /* Handle CFG merges. Until we handle forks (gimple_bb (def) != bb) + this is still linear. + Eventually we want to cache intermediate results per BB + (but we can't easily cache for different exits?). */ + /* Stop at PHIs with possible backedges. */ + if (bb == bb->loop_father->header + || bb->flags & BB_IRREDUCIBLE_LOOP) + { + /* Mark refs_not_in_seq as unsupported. */ + bitmap_ior_into (refs_not_supported, refs_not_in_seq); + return 1; + } + if (gimple_phi_num_args (phi) == 1) + return sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src, + gimple_phi_arg_def (phi, 0), seq, + refs_not_in_seq, refs_not_supported, + false, fully_visited); + if (bitmap_bit_p (fully_visited, + SSA_NAME_VERSION (gimple_phi_result (phi)))) + return 1; + auto_vec<seq_entry> first_edge_seq; + auto_bitmap tem_refs_not_in_seq (&lim_bitmap_obstack); + int eret; + bitmap_copy (tem_refs_not_in_seq, refs_not_in_seq); + eret = sm_seq_valid_bb (loop, gimple_phi_arg_edge (phi, 0)->src, + gimple_phi_arg_def (phi, 0), + first_edge_seq, + tem_refs_not_in_seq, refs_not_supported, + true, fully_visited); + if (eret != 1) + return -1; + /* Simplify our lives by pruning the sequence of !sm_ord. */ + while (!first_edge_seq.is_empty () + && first_edge_seq.last ().second != sm_ord) + first_edge_seq.pop (); + for (unsigned int i = 1; i < gimple_phi_num_args (phi); ++i) + { + tree vuse = gimple_phi_arg_def (phi, i); + edge e = gimple_phi_arg_edge (phi, i); + auto_vec<seq_entry> edge_seq; + bitmap_and_compl (tem_refs_not_in_seq, + refs_not_in_seq, refs_not_supported); + /* If we've marked all refs we search for as unsupported + we can stop processing and use the sequence as before + the PHI. */ + if (bitmap_empty_p (tem_refs_not_in_seq)) + return 1; + eret = sm_seq_valid_bb (loop, e->src, vuse, edge_seq, + tem_refs_not_in_seq, refs_not_supported, + true, fully_visited); + if (eret != 1) + return -1; + /* Simplify our lives by pruning the sequence of !sm_ord. */ + while (!edge_seq.is_empty () + && edge_seq.last ().second != sm_ord) + edge_seq.pop (); + unsigned min_len = MIN(first_edge_seq.length (), + edge_seq.length ()); + /* Incrementally merge seqs into first_edge_seq. */ + int first_uneq = -1; + auto_vec<seq_entry, 2> extra_refs; + for (unsigned int i = 0; i < min_len; ++i) + { + /* ??? We can more intelligently merge when we face different + order by additional sinking operations in one sequence. + For now we simply mark them as to be processed by the + not order-preserving SM code. */ + if (first_edge_seq[i].first != edge_seq[i].first) + { + if (first_edge_seq[i].second == sm_ord) + bitmap_set_bit (refs_not_supported, + first_edge_seq[i].first); + if (edge_seq[i].second == sm_ord) + bitmap_set_bit (refs_not_supported, edge_seq[i].first); + first_edge_seq[i].second = sm_other; + first_edge_seq[i].from = NULL_TREE; + /* Record the dropped refs for later processing. */ + if (first_uneq == -1) + first_uneq = i; + extra_refs.safe_push (seq_entry (edge_seq[i].first, + sm_other, NULL_TREE)); + } + /* sm_other prevails. */ + else if (first_edge_seq[i].second != edge_seq[i].second) + { + /* Make sure the ref is marked as not supported. */ + bitmap_set_bit (refs_not_supported, + first_edge_seq[i].first); + first_edge_seq[i].second = sm_other; + first_edge_seq[i].from = NULL_TREE; + } + else if (first_edge_seq[i].second == sm_other + && first_edge_seq[i].from != NULL_TREE + && (edge_seq[i].from == NULL_TREE + || !operand_equal_p (first_edge_seq[i].from, + edge_seq[i].from, 0))) + first_edge_seq[i].from = NULL_TREE; + } + /* Any excess elements become sm_other since they are now + coonditionally executed. */ + if (first_edge_seq.length () > edge_seq.length ()) + { + for (unsigned i = edge_seq.length (); + i < first_edge_seq.length (); ++i) + { + if (first_edge_seq[i].second == sm_ord) + bitmap_set_bit (refs_not_supported, + first_edge_seq[i].first); + first_edge_seq[i].second = sm_other; + } + } + else if (edge_seq.length () > first_edge_seq.length ()) + { + if (first_uneq == -1) + first_uneq = first_edge_seq.length (); + for (unsigned i = first_edge_seq.length (); + i < edge_seq.length (); ++i) + { + if (edge_seq[i].second == sm_ord) + bitmap_set_bit (refs_not_supported, edge_seq[i].first); + extra_refs.safe_push (seq_entry (edge_seq[i].first, + sm_other, NULL_TREE)); + } + } + /* Put unmerged refs at first_uneq to force dependence checking + on them. */ + if (first_uneq != -1) + { + /* Missing ordered_splice_at. */ + if ((unsigned)first_uneq == first_edge_seq.length ()) + first_edge_seq.safe_splice (extra_refs); + else + { + unsigned fes_length = first_edge_seq.length (); + first_edge_seq.safe_grow (fes_length + + extra_refs.length ()); + memmove (&first_edge_seq[first_uneq + extra_refs.length ()], + &first_edge_seq[first_uneq], + (fes_length - first_uneq) * sizeof (seq_entry)); + memcpy (&first_edge_seq[first_uneq], + extra_refs.address (), + extra_refs.length () * sizeof (seq_entry)); + } + } + } + /* Use the sequence from the first edge and push SMs down. */ + for (unsigned i = 0; i < first_edge_seq.length (); ++i) + { + unsigned id = first_edge_seq[i].first; + seq.safe_push (first_edge_seq[i]); + unsigned new_idx; + if ((first_edge_seq[i].second == sm_ord + || (first_edge_seq[i].second == sm_other + && first_edge_seq[i].from != NULL_TREE)) + && !sm_seq_push_down (seq, seq.length () - 1, &new_idx)) + { + if (first_edge_seq[i].second == sm_ord) + bitmap_set_bit (refs_not_supported, id); + /* Mark it sm_other. */ + seq[new_idx].second = sm_other; + seq[new_idx].from = NULL_TREE; + } + } + bitmap_set_bit (fully_visited, + SSA_NAME_VERSION (gimple_phi_result (phi))); + return 1; + } + lim_aux_data *data = get_lim_data (def); + gcc_assert (data); + if (data->ref == UNANALYZABLE_MEM_ID) + return -1; + /* Stop at memory references which we can't move. */ + else if (memory_accesses.refs_list[data->ref]->mem.ref == error_mark_node) + { + /* Mark refs_not_in_seq as unsupported. */ + bitmap_ior_into (refs_not_supported, refs_not_in_seq); + return 1; + } + /* One of the stores we want to apply SM to and we've not yet seen. */ + else if (bitmap_clear_bit (refs_not_in_seq, data->ref)) + { + seq.safe_push (seq_entry (data->ref, sm_ord)); + + /* 1) push it down the queue until a SMed + and not ignored ref is reached, skipping all not SMed refs + and ignored refs via non-TBAA disambiguation. */ + unsigned new_idx; + if (!sm_seq_push_down (seq, seq.length () - 1, &new_idx) + /* If that fails but we did not fork yet continue, we'll see + to re-materialize all of the stores in the sequence then. + Further stores will only be pushed up to this one. */ + && forked) + { + bitmap_set_bit (refs_not_supported, data->ref); + /* Mark it sm_other. */ + seq[new_idx].second = sm_other; + } + + /* 2) check whether we've seen all refs we want to SM and if so + declare success for the active exit */ + if (bitmap_empty_p (refs_not_in_seq)) + return 1; + } + else + /* Another store not part of the final sequence. Simply push it. */ + seq.safe_push (seq_entry (data->ref, sm_other, + gimple_assign_rhs1 (def))); + + vdef = gimple_vuse (def); + } + while (1); +} + +/* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit + edges of the LOOP. */ + +static void +hoist_memory_references (class loop *loop, bitmap mem_refs, + const vec<edge> &exits) +{ + im_mem_ref *ref; + unsigned i; + bitmap_iterator bi; + + /* There's a special case we can use ordered re-materialization for + conditionally excuted stores which is when all stores in the loop + happen in the same basic-block. In that case we know we'll reach + all stores and thus can simply process that BB and emit a single + conditional block of ordered materializations. See PR102436. */ + basic_block single_store_bb = NULL; + EXECUTE_IF_SET_IN_BITMAP (&memory_accesses.all_refs_stored_in_loop[loop->num], + 0, i, bi) + { + bool fail = false; + ref = memory_accesses.refs_list[i]; + for (auto loc : ref->accesses_in_loop) + if (!gimple_vdef (loc.stmt)) + ; + else if (!single_store_bb) + { + single_store_bb = gimple_bb (loc.stmt); + bool conditional = false; + for (edge e : exits) + if (!dominated_by_p (CDI_DOMINATORS, e->src, single_store_bb)) + { + /* Conditional as seen from e. */ + conditional = true; + break; + } + if (!conditional) + { + fail = true; + break; + } + } + else if (single_store_bb != gimple_bb (loc.stmt)) + { + fail = true; + break; + } + if (fail) + { + single_store_bb = NULL; + break; + } + } + if (single_store_bb) + { + /* Analyze the single block with stores. */ + auto_bitmap fully_visited; + auto_bitmap refs_not_supported; + auto_bitmap refs_not_in_seq; + auto_vec<seq_entry> seq; + bitmap_copy (refs_not_in_seq, mem_refs); + int res = sm_seq_valid_bb (loop, single_store_bb, NULL_TREE, + seq, refs_not_in_seq, refs_not_supported, + false, fully_visited); + if (res != 1) + { + /* Unhandled refs can still fail this. */ + bitmap_clear (mem_refs); + return; + } + + /* We cannot handle sm_other since we neither remember the + stored location nor the value at the point we execute them. */ + for (unsigned i = 0; i < seq.length (); ++i) + { + unsigned new_i; + if (seq[i].second == sm_other + && seq[i].from != NULL_TREE) + seq[i].from = NULL_TREE; + else if ((seq[i].second == sm_ord + || (seq[i].second == sm_other + && seq[i].from != NULL_TREE)) + && !sm_seq_push_down (seq, i, &new_i)) + { + bitmap_set_bit (refs_not_supported, seq[new_i].first); + seq[new_i].second = sm_other; + seq[new_i].from = NULL_TREE; + } + } + bitmap_and_compl_into (mem_refs, refs_not_supported); + if (bitmap_empty_p (mem_refs)) + return; + + /* Prune seq. */ + while (seq.last ().second == sm_other + && seq.last ().from == NULL_TREE) + seq.pop (); + + hash_map<im_mem_ref *, sm_aux *> aux_map; + + /* Execute SM but delay the store materialization for ordered + sequences on exit. */ + bool first_p = true; + EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) + { + ref = memory_accesses.refs_list[i]; + execute_sm (loop, ref, aux_map, true, !first_p); + first_p = false; + } + + /* Get at the single flag variable we eventually produced. */ + im_mem_ref *ref + = memory_accesses.refs_list[bitmap_first_set_bit (mem_refs)]; + sm_aux *aux = *aux_map.get (ref); + + /* Materialize ordered store sequences on exits. */ + edge e; + FOR_EACH_VEC_ELT (exits, i, e) + { + edge append_cond_position = NULL; + edge last_cond_fallthru = NULL; + edge insert_e = e; + /* Construct the single flag variable control flow and insert + the ordered seq of stores in the then block. With + -fstore-data-races we can do the stores unconditionally. */ + if (aux->store_flag) + insert_e + = single_pred_edge + (execute_sm_if_changed (e, NULL_TREE, NULL_TREE, + aux->store_flag, + loop_preheader_edge (loop), + &aux->flag_bbs, append_cond_position, + last_cond_fallthru)); + execute_sm_exit (loop, insert_e, seq, aux_map, sm_ord, + append_cond_position, last_cond_fallthru); + gsi_commit_one_edge_insert (insert_e, NULL); + } + + for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin (); + iter != aux_map.end (); ++iter) + delete (*iter).second; + + return; + } + + /* To address PR57359 before actually applying store-motion check + the candidates found for validity with regards to reordering + relative to other stores which we until here disambiguated using + TBAA which isn't valid. + What matters is the order of the last stores to the mem_refs + with respect to the other stores of the loop at the point of the + loop exits. */ + + /* For each exit compute the store order, pruning from mem_refs + on the fly. */ + /* The complexity of this is at least + O(number of exits * number of SM refs) but more approaching + O(number of exits * number of SM refs * number of stores). */ + /* ??? Somehow do this in a single sweep over the loop body. */ + auto_vec<std::pair<edge, vec<seq_entry> > > sms; + auto_bitmap refs_not_supported (&lim_bitmap_obstack); + edge e; + FOR_EACH_VEC_ELT (exits, i, e) + { + vec<seq_entry> seq; + seq.create (4); + auto_bitmap refs_not_in_seq (&lim_bitmap_obstack); + bitmap_and_compl (refs_not_in_seq, mem_refs, refs_not_supported); + if (bitmap_empty_p (refs_not_in_seq)) + { + seq.release (); + break; + } + auto_bitmap fully_visited; + int res = sm_seq_valid_bb (loop, e->src, NULL_TREE, + seq, refs_not_in_seq, + refs_not_supported, false, + fully_visited); + if (res != 1) + { + bitmap_copy (refs_not_supported, mem_refs); + seq.release (); + break; + } + sms.safe_push (std::make_pair (e, seq)); + } + + /* Prune pruned mem_refs from earlier processed exits. */ + bool changed = !bitmap_empty_p (refs_not_supported); + while (changed) + { + changed = false; + std::pair<edge, vec<seq_entry> > *seq; + FOR_EACH_VEC_ELT (sms, i, seq) + { + bool need_to_push = false; + for (unsigned i = 0; i < seq->second.length (); ++i) + { + sm_kind kind = seq->second[i].second; + if (kind == sm_other && seq->second[i].from == NULL_TREE) + break; + unsigned id = seq->second[i].first; + unsigned new_idx; + if (kind == sm_ord + && bitmap_bit_p (refs_not_supported, id)) + { + seq->second[i].second = sm_other; + gcc_assert (seq->second[i].from == NULL_TREE); + need_to_push = true; + } + else if (need_to_push + && !sm_seq_push_down (seq->second, i, &new_idx)) + { + /* We need to push down both sm_ord and sm_other + but for the latter we need to disqualify all + following refs. */ + if (kind == sm_ord) + { + if (bitmap_set_bit (refs_not_supported, id)) + changed = true; + seq->second[new_idx].second = sm_other; + } + else + { + for (unsigned j = seq->second.length () - 1; + j > new_idx; --j) + if (seq->second[j].second == sm_ord + && bitmap_set_bit (refs_not_supported, + seq->second[j].first)) + changed = true; + seq->second.truncate (new_idx); + break; + } + } + } + } + } + std::pair<edge, vec<seq_entry> > *seq; + FOR_EACH_VEC_ELT (sms, i, seq) + { + /* Prune sm_other from the end. */ + while (!seq->second.is_empty () + && seq->second.last ().second == sm_other) + seq->second.pop (); + /* Prune duplicates from the start. */ + auto_bitmap seen (&lim_bitmap_obstack); + unsigned j, k; + for (j = k = 0; j < seq->second.length (); ++j) + if (bitmap_set_bit (seen, seq->second[j].first)) + { + if (k != j) + seq->second[k] = seq->second[j]; + ++k; + } + seq->second.truncate (k); + /* And verify. */ + seq_entry *e; + FOR_EACH_VEC_ELT (seq->second, j, e) + gcc_assert (e->second == sm_ord + || (e->second == sm_other && e->from != NULL_TREE)); + } + + /* Verify dependence for refs we cannot handle with the order preserving + code (refs_not_supported) or prune them from mem_refs. */ + auto_vec<seq_entry> unord_refs; + EXECUTE_IF_SET_IN_BITMAP (refs_not_supported, 0, i, bi) + { + ref = memory_accesses.refs_list[i]; + if (!ref_indep_loop_p (loop, ref, sm_waw)) + bitmap_clear_bit (mem_refs, i); + /* We've now verified store order for ref with respect to all other + stores in the loop does not matter. */ + else + unord_refs.safe_push (seq_entry (i, sm_unord)); + } + + hash_map<im_mem_ref *, sm_aux *> aux_map; + + /* Execute SM but delay the store materialization for ordered + sequences on exit. */ + EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi) + { + ref = memory_accesses.refs_list[i]; + execute_sm (loop, ref, aux_map, bitmap_bit_p (refs_not_supported, i), + false); + } + + /* Materialize ordered store sequences on exits. */ + FOR_EACH_VEC_ELT (exits, i, e) + { + edge append_cond_position = NULL; + edge last_cond_fallthru = NULL; + if (i < sms.length ()) + { + gcc_assert (sms[i].first == e); + execute_sm_exit (loop, e, sms[i].second, aux_map, sm_ord, + append_cond_position, last_cond_fallthru); + sms[i].second.release (); + } + if (!unord_refs.is_empty ()) + execute_sm_exit (loop, e, unord_refs, aux_map, sm_unord, + append_cond_position, last_cond_fallthru); + /* Commit edge inserts here to preserve the order of stores + when an exit exits multiple loops. */ + gsi_commit_one_edge_insert (e, NULL); + } + + for (hash_map<im_mem_ref *, sm_aux *>::iterator iter = aux_map.begin (); + iter != aux_map.end (); ++iter) + delete (*iter).second; +} + +class ref_always_accessed +{ +public: + ref_always_accessed (class loop *loop_, bool stored_p_) + : loop (loop_), stored_p (stored_p_) {} + bool operator () (mem_ref_loc *loc); + class loop *loop; + bool stored_p; +}; + +bool +ref_always_accessed::operator () (mem_ref_loc *loc) +{ + class loop *must_exec; + + struct lim_aux_data *lim_data = get_lim_data (loc->stmt); + if (!lim_data) + return false; + + /* If we require an always executed store make sure the statement + is a store. */ + if (stored_p) + { + tree lhs = gimple_get_lhs (loc->stmt); + if (!lhs + || !(DECL_P (lhs) || REFERENCE_CLASS_P (lhs))) + return false; + } + + must_exec = lim_data->always_executed_in; + if (!must_exec) + return false; + + if (must_exec == loop + || flow_loop_nested_p (must_exec, loop)) + return true; + + return false; +} + +/* Returns true if REF is always accessed in LOOP. If STORED_P is true + make sure REF is always stored to in LOOP. */ + +static bool +ref_always_accessed_p (class loop *loop, im_mem_ref *ref, bool stored_p) +{ + return for_all_locs_in_loop (loop, ref, + ref_always_accessed (loop, stored_p)); +} + +/* Returns true if REF1 and REF2 are independent. */ + +static bool +refs_independent_p (im_mem_ref *ref1, im_mem_ref *ref2, bool tbaa_p) +{ + if (ref1 == ref2) + return true; + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Querying dependency of refs %u and %u: ", + ref1->id, ref2->id); + + if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache, tbaa_p)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "dependent.\n"); + return false; + } + else + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "independent.\n"); + return true; + } +} + +/* Returns true if REF is independent on all other accessess in LOOP. + KIND specifies the kind of dependence to consider. + lim_raw assumes REF is not stored in LOOP and disambiguates RAW + dependences so if true REF can be hoisted out of LOOP + sm_war disambiguates a store REF against all other loads to see + whether the store can be sunk across loads out of LOOP + sm_waw disambiguates a store REF against all other stores to see + whether the store can be sunk across stores out of LOOP. */ + +static bool +ref_indep_loop_p (class loop *loop, im_mem_ref *ref, dep_kind kind) +{ + bool indep_p = true; + bitmap refs_to_check; + + if (kind == sm_war) + refs_to_check = &memory_accesses.refs_loaded_in_loop[loop->num]; + else + refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num]; + + if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID) + || ref->mem.ref == error_mark_node) + indep_p = false; + else + { + /* tri-state, { unknown, independent, dependent } */ + dep_state state = query_loop_dependence (loop, ref, kind); + if (state != dep_unknown) + return state == dep_independent ? true : false; + + class loop *inner = loop->inner; + while (inner) + { + if (!ref_indep_loop_p (inner, ref, kind)) + { + indep_p = false; + break; + } + inner = inner->next; + } + + if (indep_p) + { + unsigned i; + bitmap_iterator bi; + EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi) + { + im_mem_ref *aref = memory_accesses.refs_list[i]; + if (aref->mem.ref == error_mark_node) + { + gimple *stmt = aref->accesses_in_loop[0].stmt; + if ((kind == sm_war + && ref_maybe_used_by_stmt_p (stmt, &ref->mem, + kind != sm_waw)) + || stmt_may_clobber_ref_p_1 (stmt, &ref->mem, + kind != sm_waw)) + { + indep_p = false; + break; + } + } + else if (!refs_independent_p (ref, aref, kind != sm_waw)) + { + indep_p = false; + break; + } + } + } + } + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Querying %s dependencies of ref %u in loop %d: %s\n", + kind == lim_raw ? "RAW" : (kind == sm_war ? "SM WAR" : "SM WAW"), + ref->id, loop->num, indep_p ? "independent" : "dependent"); + + /* Record the computed result in the cache. */ + record_loop_dependence (loop, ref, kind, + indep_p ? dep_independent : dep_dependent); + + return indep_p; +} + +class ref_in_loop_hot_body +{ +public: + ref_in_loop_hot_body (class loop *loop_) : l (loop_) {} + bool operator () (mem_ref_loc *loc); + class loop *l; +}; + +/* Check the coldest loop between loop L and innermost loop. If there is one + cold loop between L and INNER_LOOP, store motion can be performed, otherwise + no cold loop means no store motion. get_coldest_out_loop also handles cases + when l is inner_loop. */ +bool +ref_in_loop_hot_body::operator () (mem_ref_loc *loc) +{ + basic_block curr_bb = gimple_bb (loc->stmt); + class loop *inner_loop = curr_bb->loop_father; + return get_coldest_out_loop (l, inner_loop, curr_bb); +} + + +/* Returns true if we can perform store motion of REF from LOOP. */ + +static bool +can_sm_ref_p (class loop *loop, im_mem_ref *ref) +{ + tree base; + + /* Can't hoist unanalyzable refs. */ + if (!MEM_ANALYZABLE (ref)) + return false; + + /* Can't hoist/sink aggregate copies. */ + if (ref->mem.ref == error_mark_node) + return false; + + /* It should be movable. */ + if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref)) + || TREE_THIS_VOLATILE (ref->mem.ref) + || !for_each_index (&ref->mem.ref, may_move_till, loop)) + return false; + + /* If it can throw fail, we do not properly update EH info. */ + if (tree_could_throw_p (ref->mem.ref)) + return false; + + /* If it can trap, it must be always executed in LOOP. + Readonly memory locations may trap when storing to them, but + tree_could_trap_p is a predicate for rvalues, so check that + explicitly. */ + base = get_base_address (ref->mem.ref); + if ((tree_could_trap_p (ref->mem.ref) + || (DECL_P (base) && TREE_READONLY (base))) + /* ??? We can at least use false here, allowing loads? We + are forcing conditional stores if the ref is not always + stored to later anyway. So this would only guard + the load we need to emit. Thus when the ref is not + loaded we can elide this completely? */ + && !ref_always_accessed_p (loop, ref, true)) + return false; + + /* Verify all loads of ref can be hoisted. */ + if (ref->loaded + && bitmap_bit_p (ref->loaded, loop->num) + && !ref_indep_loop_p (loop, ref, lim_raw)) + return false; + + /* Verify the candidate can be disambiguated against all loads, + that is, we can elide all in-loop stores. Disambiguation + against stores is done later when we cannot guarantee preserving + the order of stores. */ + if (!ref_indep_loop_p (loop, ref, sm_war)) + return false; + + /* Verify whether the candidate is hot for LOOP. Only do store motion if the + candidate's profile count is hot. Statement in cold BB shouldn't be moved + out of it's loop_father. */ + if (!for_all_locs_in_loop (loop, ref, ref_in_loop_hot_body (loop))) + return false; + + return true; +} + +/* Marks the references in LOOP for that store motion should be performed + in REFS_TO_SM. SM_EXECUTED is the set of references for that store + motion was performed in one of the outer loops. */ + +static void +find_refs_for_sm (class loop *loop, bitmap sm_executed, bitmap refs_to_sm) +{ + bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num]; + unsigned i; + bitmap_iterator bi; + im_mem_ref *ref; + + EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi) + { + ref = memory_accesses.refs_list[i]; + if (can_sm_ref_p (loop, ref) && dbg_cnt (lim)) + bitmap_set_bit (refs_to_sm, i); + } +} + +/* Checks whether LOOP (with exits stored in EXITS array) is suitable + for a store motion optimization (i.e. whether we can insert statement + on its exits). */ + +static bool +loop_suitable_for_sm (class loop *loop ATTRIBUTE_UNUSED, + const vec<edge> &exits) +{ + unsigned i; + edge ex; + + FOR_EACH_VEC_ELT (exits, i, ex) + if (ex->flags & (EDGE_ABNORMAL | EDGE_EH)) + return false; + + return true; +} + +/* Try to perform store motion for all memory references modified inside + LOOP. SM_EXECUTED is the bitmap of the memory references for that + store motion was executed in one of the outer loops. */ + +static void +store_motion_loop (class loop *loop, bitmap sm_executed) +{ + auto_vec<edge> exits = get_loop_exit_edges (loop); + class loop *subloop; + bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack); + + if (loop_suitable_for_sm (loop, exits)) + { + find_refs_for_sm (loop, sm_executed, sm_in_loop); + if (!bitmap_empty_p (sm_in_loop)) + hoist_memory_references (loop, sm_in_loop, exits); + } + + bitmap_ior_into (sm_executed, sm_in_loop); + for (subloop = loop->inner; subloop != NULL; subloop = subloop->next) + store_motion_loop (subloop, sm_executed); + bitmap_and_compl_into (sm_executed, sm_in_loop); + BITMAP_FREE (sm_in_loop); +} + +/* Try to perform store motion for all memory references modified inside + loops. */ + +static void +do_store_motion (void) +{ + class loop *loop; + bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack); + + for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) + store_motion_loop (loop, sm_executed); + + BITMAP_FREE (sm_executed); +} + +/* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e. + for each such basic block bb records the outermost loop for that execution + of its header implies execution of bb. CONTAINS_CALL is the bitmap of + blocks that contain a nonpure call. */ + +static void +fill_always_executed_in_1 (class loop *loop, sbitmap contains_call) +{ + basic_block bb = NULL, last = NULL; + edge e; + class loop *inn_loop = loop; + + if (ALWAYS_EXECUTED_IN (loop->header) == NULL) + { + auto_vec<basic_block, 64> worklist; + worklist.reserve_exact (loop->num_nodes); + worklist.quick_push (loop->header); + do + { + edge_iterator ei; + bb = worklist.pop (); + + if (!flow_bb_inside_loop_p (inn_loop, bb)) + { + /* When we are leaving a possibly infinite inner loop + we have to stop processing. */ + if (!finite_loop_p (inn_loop)) + break; + /* If the loop was finite we can continue with processing + the loop we exited to. */ + inn_loop = bb->loop_father; + } + + if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) + last = bb; + + if (bitmap_bit_p (contains_call, bb->index)) + break; + + /* If LOOP exits from this BB stop processing. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if (!flow_bb_inside_loop_p (loop, e->dest)) + break; + if (e) + break; + + /* A loop might be infinite (TODO use simple loop analysis + to disprove this if possible). */ + if (bb->flags & BB_IRREDUCIBLE_LOOP) + break; + + if (bb->loop_father->header == bb) + /* Record that we enter into a subloop since it might not + be finite. */ + /* ??? Entering into a not always executed subloop makes + fill_always_executed_in quadratic in loop depth since + we walk those loops N times. This is not a problem + in practice though, see PR102253 for a worst-case testcase. */ + inn_loop = bb->loop_father; + + /* Walk the body of LOOP sorted by dominance relation. Additionally, + if a basic block S dominates the latch, then only blocks dominated + by S are after it. + This is get_loop_body_in_dom_order using a worklist algorithm and + stopping once we are no longer interested in visiting further + blocks. */ + unsigned old_len = worklist.length (); + unsigned postpone = 0; + for (basic_block son = first_dom_son (CDI_DOMINATORS, bb); + son; + son = next_dom_son (CDI_DOMINATORS, son)) + { + if (!flow_bb_inside_loop_p (loop, son)) + continue; + if (dominated_by_p (CDI_DOMINATORS, loop->latch, son)) + postpone = worklist.length (); + worklist.quick_push (son); + } + if (postpone) + /* Postponing the block that dominates the latch means + processing it last and thus putting it earliest in the + worklist. */ + std::swap (worklist[old_len], worklist[postpone]); + } + while (!worklist.is_empty ()); + + while (1) + { + if (dump_enabled_p ()) + dump_printf (MSG_NOTE, "BB %d is always executed in loop %d\n", + last->index, loop->num); + SET_ALWAYS_EXECUTED_IN (last, loop); + if (last == loop->header) + break; + last = get_immediate_dominator (CDI_DOMINATORS, last); + } + } + + for (loop = loop->inner; loop; loop = loop->next) + fill_always_executed_in_1 (loop, contains_call); +} + +/* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e. + for each such basic block bb records the outermost loop for that execution + of its header implies execution of bb. */ + +static void +fill_always_executed_in (void) +{ + basic_block bb; + class loop *loop; + + auto_sbitmap contains_call (last_basic_block_for_fn (cfun)); + bitmap_clear (contains_call); + FOR_EACH_BB_FN (bb, cfun) + { + gimple_stmt_iterator gsi; + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + if (nonpure_call_p (gsi_stmt (gsi))) + break; + } + + if (!gsi_end_p (gsi)) + bitmap_set_bit (contains_call, bb->index); + } + + for (loop = current_loops->tree_root->inner; loop; loop = loop->next) + fill_always_executed_in_1 (loop, contains_call); +} + +/* Find the coldest loop preheader for LOOP, also find the nearest hotter loop + to LOOP. Then recursively iterate each inner loop. */ + +void +fill_coldest_and_hotter_out_loop (class loop *coldest_loop, + class loop *hotter_loop, class loop *loop) +{ + if (bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src, + coldest_loop)) + coldest_loop = loop; + + coldest_outermost_loop[loop->num] = coldest_loop; + + hotter_than_inner_loop[loop->num] = NULL; + class loop *outer_loop = loop_outer (loop); + if (hotter_loop + && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src, + hotter_loop)) + hotter_than_inner_loop[loop->num] = hotter_loop; + + if (outer_loop && outer_loop != current_loops->tree_root + && bb_colder_than_loop_preheader (loop_preheader_edge (loop)->src, + outer_loop)) + hotter_than_inner_loop[loop->num] = outer_loop; + + if (dump_enabled_p ()) + { + dump_printf (MSG_NOTE, "loop %d's coldest_outermost_loop is %d, ", + loop->num, coldest_loop->num); + if (hotter_than_inner_loop[loop->num]) + dump_printf (MSG_NOTE, "hotter_than_inner_loop is %d\n", + hotter_than_inner_loop[loop->num]->num); + else + dump_printf (MSG_NOTE, "hotter_than_inner_loop is NULL\n"); + } + + class loop *inner_loop; + for (inner_loop = loop->inner; inner_loop; inner_loop = inner_loop->next) + fill_coldest_and_hotter_out_loop (coldest_loop, + hotter_than_inner_loop[loop->num], + inner_loop); +} + +/* Compute the global information needed by the loop invariant motion pass. */ + +static void +tree_ssa_lim_initialize (bool store_motion) +{ + unsigned i; + + bitmap_obstack_initialize (&lim_bitmap_obstack); + gcc_obstack_init (&mem_ref_obstack); + lim_aux_data_map = new hash_map<gimple *, lim_aux_data *>; + + if (flag_tm) + compute_transaction_bits (); + + memory_accesses.refs = new hash_table<mem_ref_hasher> (100); + memory_accesses.refs_list.create (100); + /* Allocate a special, unanalyzable mem-ref with ID zero. */ + memory_accesses.refs_list.quick_push + (mem_ref_alloc (NULL, 0, UNANALYZABLE_MEM_ID)); + + memory_accesses.refs_loaded_in_loop.create (number_of_loops (cfun)); + memory_accesses.refs_loaded_in_loop.quick_grow (number_of_loops (cfun)); + memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun)); + memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun)); + if (store_motion) + { + memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun)); + memory_accesses.all_refs_stored_in_loop.quick_grow + (number_of_loops (cfun)); + } + + for (i = 0; i < number_of_loops (cfun); i++) + { + bitmap_initialize (&memory_accesses.refs_loaded_in_loop[i], + &lim_bitmap_obstack); + bitmap_initialize (&memory_accesses.refs_stored_in_loop[i], + &lim_bitmap_obstack); + if (store_motion) + bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i], + &lim_bitmap_obstack); + } + + memory_accesses.ttae_cache = NULL; + + /* Initialize bb_loop_postorder with a mapping from loop->num to + its postorder index. */ + i = 0; + bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun)); + for (auto loop : loops_list (cfun, LI_FROM_INNERMOST)) + bb_loop_postorder[loop->num] = i++; +} + +/* Cleans up after the invariant motion pass. */ + +static void +tree_ssa_lim_finalize (void) +{ + basic_block bb; + unsigned i; + im_mem_ref *ref; + + FOR_EACH_BB_FN (bb, cfun) + SET_ALWAYS_EXECUTED_IN (bb, NULL); + + bitmap_obstack_release (&lim_bitmap_obstack); + delete lim_aux_data_map; + + delete memory_accesses.refs; + memory_accesses.refs = NULL; + + FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref) + memref_free (ref); + memory_accesses.refs_list.release (); + obstack_free (&mem_ref_obstack, NULL); + + memory_accesses.refs_loaded_in_loop.release (); + memory_accesses.refs_stored_in_loop.release (); + memory_accesses.all_refs_stored_in_loop.release (); + + if (memory_accesses.ttae_cache) + free_affine_expand_cache (&memory_accesses.ttae_cache); + + free (bb_loop_postorder); + + coldest_outermost_loop.release (); + hotter_than_inner_loop.release (); +} + +/* Moves invariants from loops. Only "expensive" invariants are moved out -- + i.e. those that are likely to be win regardless of the register pressure. + Only perform store motion if STORE_MOTION is true. */ + +unsigned int +loop_invariant_motion_in_fun (function *fun, bool store_motion) +{ + unsigned int todo = 0; + + tree_ssa_lim_initialize (store_motion); + + /* Gathers information about memory accesses in the loops. */ + analyze_memory_references (store_motion); + + /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */ + fill_always_executed_in (); + + /* Pre-compute coldest outermost loop and nearest hotter loop of each loop. + */ + class loop *loop; + coldest_outermost_loop.create (number_of_loops (cfun)); + coldest_outermost_loop.safe_grow_cleared (number_of_loops (cfun)); + hotter_than_inner_loop.create (number_of_loops (cfun)); + hotter_than_inner_loop.safe_grow_cleared (number_of_loops (cfun)); + for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next) + fill_coldest_and_hotter_out_loop (loop, NULL, loop); + + int *rpo = XNEWVEC (int, last_basic_block_for_fn (fun)); + int n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false); + + /* For each statement determine the outermost loop in that it is + invariant and cost for computing the invariant. */ + for (int i = 0; i < n; ++i) + compute_invariantness (BASIC_BLOCK_FOR_FN (fun, rpo[i])); + + /* Execute store motion. Force the necessary invariants to be moved + out of the loops as well. */ + if (store_motion) + do_store_motion (); + + free (rpo); + rpo = XNEWVEC (int, last_basic_block_for_fn (fun)); + n = pre_and_rev_post_order_compute_fn (fun, NULL, rpo, false); + + /* Move the expressions that are expensive enough. */ + for (int i = 0; i < n; ++i) + todo |= move_computations_worker (BASIC_BLOCK_FOR_FN (fun, rpo[i])); + + free (rpo); + + gsi_commit_edge_inserts (); + if (need_ssa_update_p (fun)) + rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); + + tree_ssa_lim_finalize (); + + return todo; +} + +/* Loop invariant motion pass. */ + +namespace { + +const pass_data pass_data_lim = +{ + GIMPLE_PASS, /* type */ + "lim", /* name */ + OPTGROUP_LOOP, /* optinfo_flags */ + TV_LIM, /* tv_id */ + PROP_cfg, /* properties_required */ + 0, /* properties_provided */ + 0, /* properties_destroyed */ + 0, /* todo_flags_start */ + 0, /* todo_flags_finish */ +}; + +class pass_lim : public gimple_opt_pass +{ +public: + pass_lim (gcc::context *ctxt) + : gimple_opt_pass (pass_data_lim, ctxt) + {} + + /* opt_pass methods: */ + opt_pass * clone () { return new pass_lim (m_ctxt); } + virtual bool gate (function *) { return flag_tree_loop_im != 0; } + virtual unsigned int execute (function *); + +}; // class pass_lim + +unsigned int +pass_lim::execute (function *fun) +{ + bool in_loop_pipeline = scev_initialized_p (); + if (!in_loop_pipeline) + loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS); + + if (number_of_loops (fun) <= 1) + return 0; + unsigned int todo = loop_invariant_motion_in_fun (fun, flag_move_loop_stores); + + if (!in_loop_pipeline) + loop_optimizer_finalize (); + else + scev_reset (); + return todo; +} + +} // anon namespace + +gimple_opt_pass * +make_pass_lim (gcc::context *ctxt) +{ + return new pass_lim (ctxt); +} + + |