diff options
author | Ian Lance Taylor <iant@golang.org> | 2022-02-11 15:02:44 -0800 |
---|---|---|
committer | Ian Lance Taylor <iant@golang.org> | 2022-02-11 15:02:44 -0800 |
commit | 9a510fb0970d3d9a4201bce8965cabe67850386b (patch) | |
tree | 43d7fd2bbfd7ad8c9625a718a5e8718889351994 /gcc/tree-predcom.c | |
parent | a6d3012b274f38b20e2a57162106f625746af6c6 (diff) | |
parent | 8dc2499aa62f768c6395c9754b8cabc1ce25c494 (diff) | |
download | gcc-9a510fb0970d3d9a4201bce8965cabe67850386b.zip gcc-9a510fb0970d3d9a4201bce8965cabe67850386b.tar.gz gcc-9a510fb0970d3d9a4201bce8965cabe67850386b.tar.bz2 |
Merge from trunk revision 8dc2499aa62f768c6395c9754b8cabc1ce25c494
Diffstat (limited to 'gcc/tree-predcom.c')
-rw-r--r-- | gcc/tree-predcom.c | 3516 |
1 files changed, 0 insertions, 3516 deletions
diff --git a/gcc/tree-predcom.c b/gcc/tree-predcom.c deleted file mode 100644 index 208e755..0000000 --- a/gcc/tree-predcom.c +++ /dev/null @@ -1,3516 +0,0 @@ -/* Predictive commoning. - Copyright (C) 2005-2021 Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it -under the terms of the GNU General Public License as published by the -Free Software Foundation; either version 3, or (at your option) any -later version. - -GCC is distributed in the hope that it will be useful, but WITHOUT -ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING3. If not see -<http://www.gnu.org/licenses/>. */ - -/* This file implements the predictive commoning optimization. Predictive - commoning can be viewed as CSE around a loop, and with some improvements, - as generalized strength reduction-- i.e., reusing values computed in - earlier iterations of a loop in the later ones. So far, the pass only - handles the most useful case, that is, reusing values of memory references. - If you think this is all just a special case of PRE, you are sort of right; - however, concentrating on loops is simpler, and makes it possible to - incorporate data dependence analysis to detect the opportunities, perform - loop unrolling to avoid copies together with renaming immediately, - and if needed, we could also take register pressure into account. - - Let us demonstrate what is done on an example: - - for (i = 0; i < 100; i++) - { - a[i+2] = a[i] + a[i+1]; - b[10] = b[10] + i; - c[i] = c[99 - i]; - d[i] = d[i + 1]; - } - - 1) We find data references in the loop, and split them to mutually - independent groups (i.e., we find components of a data dependence - graph). We ignore read-read dependences whose distance is not constant. - (TODO -- we could also ignore antidependences). In this example, we - find the following groups: - - a[i]{read}, a[i+1]{read}, a[i+2]{write} - b[10]{read}, b[10]{write} - c[99 - i]{read}, c[i]{write} - d[i + 1]{read}, d[i]{write} - - 2) Inside each of the group, we verify several conditions: - a) all the references must differ in indices only, and the indices - must all have the same step - b) the references must dominate loop latch (and thus, they must be - ordered by dominance relation). - c) the distance of the indices must be a small multiple of the step - We are then able to compute the difference of the references (# of - iterations before they point to the same place as the first of them). - Also, in case there are writes in the loop, we split the groups into - chains whose head is the write whose values are used by the reads in - the same chain. The chains are then processed independently, - making the further transformations simpler. Also, the shorter chains - need the same number of registers, but may require lower unrolling - factor in order to get rid of the copies on the loop latch. - - In our example, we get the following chains (the chain for c is invalid). - - a[i]{read,+0}, a[i+1]{read,-1}, a[i+2]{write,-2} - b[10]{read,+0}, b[10]{write,+0} - d[i + 1]{read,+0}, d[i]{write,+1} - - 3) For each read, we determine the read or write whose value it reuses, - together with the distance of this reuse. I.e. we take the last - reference before it with distance 0, or the last of the references - with the smallest positive distance to the read. Then, we remove - the references that are not used in any of these chains, discard the - empty groups, and propagate all the links so that they point to the - single root reference of the chain (adjusting their distance - appropriately). Some extra care needs to be taken for references with - step 0. In our example (the numbers indicate the distance of the - reuse), - - a[i] --> (*) 2, a[i+1] --> (*) 1, a[i+2] (*) - b[10] --> (*) 1, b[10] (*) - - 4) The chains are combined together if possible. If the corresponding - elements of two chains are always combined together with the same - operator, we remember just the result of this combination, instead - of remembering the values separately. We may need to perform - reassociation to enable combining, for example - - e[i] + f[i+1] + e[i+1] + f[i] - - can be reassociated as - - (e[i] + f[i]) + (e[i+1] + f[i+1]) - - and we can combine the chains for e and f into one chain. - - 5) For each root reference (end of the chain) R, let N be maximum distance - of a reference reusing its value. Variables R0 up to RN are created, - together with phi nodes that transfer values from R1 .. RN to - R0 .. R(N-1). - Initial values are loaded to R0..R(N-1) (in case not all references - must necessarily be accessed and they may trap, we may fail here; - TODO sometimes, the loads could be guarded by a check for the number - of iterations). Values loaded/stored in roots are also copied to - RN. Other reads are replaced with the appropriate variable Ri. - Everything is put to SSA form. - - As a small improvement, if R0 is dead after the root (i.e., all uses of - the value with the maximum distance dominate the root), we can avoid - creating RN and use R0 instead of it. - - In our example, we get (only the parts concerning a and b are shown): - for (i = 0; i < 100; i++) - { - f = phi (a[0], s); - s = phi (a[1], f); - x = phi (b[10], x); - - f = f + s; - a[i+2] = f; - x = x + i; - b[10] = x; - } - - 6) Factor F for unrolling is determined as the smallest common multiple of - (N + 1) for each root reference (N for references for that we avoided - creating RN). If F and the loop is small enough, loop is unrolled F - times. The stores to RN (R0) in the copies of the loop body are - periodically replaced with R0, R1, ... (R1, R2, ...), so that they can - be coalesced and the copies can be eliminated. - - TODO -- copy propagation and other optimizations may change the live - ranges of the temporary registers and prevent them from being coalesced; - this may increase the register pressure. - - In our case, F = 2 and the (main loop of the) result is - - for (i = 0; i < ...; i += 2) - { - f = phi (a[0], f); - s = phi (a[1], s); - x = phi (b[10], x); - - f = f + s; - a[i+2] = f; - x = x + i; - b[10] = x; - - s = s + f; - a[i+3] = s; - x = x + i; - b[10] = x; - } - - Apart from predictive commoning on Load-Load and Store-Load chains, we - also support Store-Store chains -- stores killed by other store can be - eliminated. Given below example: - - for (i = 0; i < n; i++) - { - a[i] = 1; - a[i+2] = 2; - } - - It can be replaced with: - - t0 = a[0]; - t1 = a[1]; - for (i = 0; i < n; i++) - { - a[i] = 1; - t2 = 2; - t0 = t1; - t1 = t2; - } - a[n] = t0; - a[n+1] = t1; - - If the loop runs more than 1 iterations, it can be further simplified into: - - for (i = 0; i < n; i++) - { - a[i] = 1; - } - a[n] = 2; - a[n+1] = 2; - - The interesting part is this can be viewed either as general store motion - or general dead store elimination in either intra/inter-iterations way. - - With trivial effort, we also support load inside Store-Store chains if the - load is dominated by a store statement in the same iteration of loop. You - can see this as a restricted Store-Mixed-Load-Store chain. - - TODO: For now, we don't support store-store chains in multi-exit loops. We - force to not unroll in case of store-store chain even if other chains might - ask for unroll. - - Predictive commoning can be generalized for arbitrary computations (not - just memory loads), and also nontrivial transfer functions (e.g., replacing - i * i with ii_last + 2 * i + 1), to generalize strength reduction. */ - -#include "config.h" -#include "system.h" -#include "coretypes.h" -#include "backend.h" -#include "rtl.h" -#include "tree.h" -#include "gimple.h" -#include "predict.h" -#include "tree-pass.h" -#include "ssa.h" -#include "gimple-pretty-print.h" -#include "alias.h" -#include "fold-const.h" -#include "cfgloop.h" -#include "tree-eh.h" -#include "gimplify.h" -#include "gimple-iterator.h" -#include "gimplify-me.h" -#include "tree-ssa-loop-ivopts.h" -#include "tree-ssa-loop-manip.h" -#include "tree-ssa-loop-niter.h" -#include "tree-ssa-loop.h" -#include "tree-into-ssa.h" -#include "tree-dfa.h" -#include "tree-ssa.h" -#include "tree-data-ref.h" -#include "tree-scalar-evolution.h" -#include "tree-affine.h" -#include "builtins.h" -#include "opts.h" - -/* The maximum number of iterations between the considered memory - references. */ - -#define MAX_DISTANCE (target_avail_regs < 16 ? 4 : 8) - -/* Data references (or phi nodes that carry data reference values across - loop iterations). */ - -typedef class dref_d -{ -public: - /* The reference itself. */ - struct data_reference *ref; - - /* The statement in that the reference appears. */ - gimple *stmt; - - /* In case that STMT is a phi node, this field is set to the SSA name - defined by it in replace_phis_by_defined_names (in order to avoid - pointing to phi node that got reallocated in the meantime). */ - tree name_defined_by_phi; - - /* Distance of the reference from the root of the chain (in number of - iterations of the loop). */ - unsigned distance; - - /* Number of iterations offset from the first reference in the component. */ - widest_int offset; - - /* Number of the reference in a component, in dominance ordering. */ - unsigned pos; - - /* True if the memory reference is always accessed when the loop is - entered. */ - unsigned always_accessed : 1; -} *dref; - - -/* Type of the chain of the references. */ - -enum chain_type -{ - /* The addresses of the references in the chain are constant. */ - CT_INVARIANT, - - /* There are only loads in the chain. */ - CT_LOAD, - - /* Root of the chain is store, the rest are loads. */ - CT_STORE_LOAD, - - /* There are only stores in the chain. */ - CT_STORE_STORE, - - /* A combination of two chains. */ - CT_COMBINATION -}; - -/* Chains of data references. */ - -typedef struct chain -{ - /* Type of the chain. */ - enum chain_type type; - - /* For combination chains, the operator and the two chains that are - combined, and the type of the result. */ - enum tree_code op; - tree rslt_type; - struct chain *ch1, *ch2; - - /* The references in the chain. */ - auto_vec<dref> refs; - - /* The maximum distance of the reference in the chain from the root. */ - unsigned length; - - /* The variables used to copy the value throughout iterations. */ - auto_vec<tree> vars; - - /* Initializers for the variables. */ - auto_vec<tree> inits; - - /* Finalizers for the eliminated stores. */ - auto_vec<tree> finis; - - /* gimple stmts intializing the initial variables of the chain. */ - gimple_seq init_seq; - - /* gimple stmts finalizing the eliminated stores of the chain. */ - gimple_seq fini_seq; - - /* True if there is a use of a variable with the maximal distance - that comes after the root in the loop. */ - unsigned has_max_use_after : 1; - - /* True if all the memory references in the chain are always accessed. */ - unsigned all_always_accessed : 1; - - /* True if this chain was combined together with some other chain. */ - unsigned combined : 1; - - /* True if this is store elimination chain and eliminated stores store - loop invariant value into memory. */ - unsigned inv_store_elimination : 1; -} *chain_p; - - -/* Describes the knowledge about the step of the memory references in - the component. */ - -enum ref_step_type -{ - /* The step is zero. */ - RS_INVARIANT, - - /* The step is nonzero. */ - RS_NONZERO, - - /* The step may or may not be nonzero. */ - RS_ANY -}; - -/* Components of the data dependence graph. */ - -struct component -{ - /* The references in the component. */ - auto_vec<dref> refs; - - /* What we know about the step of the references in the component. */ - enum ref_step_type comp_step; - - /* True if all references in component are stores and we try to do - intra/inter loop iteration dead store elimination. */ - bool eliminate_store_p; - - /* Next component in the list. */ - struct component *next; -}; - -/* A class to encapsulate the global states used for predictive - commoning work on top of one given LOOP. */ - -class pcom_worker -{ -public: - pcom_worker (loop_p l) : m_loop (l), m_cache (NULL) {} - - ~pcom_worker () - { - free_data_refs (m_datarefs); - free_dependence_relations (m_dependences); - free_affine_expand_cache (&m_cache); - release_chains (); - } - - pcom_worker (const pcom_worker &) = delete; - pcom_worker &operator= (const pcom_worker &) = delete; - - /* Performs predictive commoning. */ - unsigned tree_predictive_commoning_loop (bool allow_unroll_p); - - /* Perform the predictive commoning optimization for chains, make this - public for being called in callback execute_pred_commoning_cbck. */ - void execute_pred_commoning (bitmap tmp_vars); - -private: - /* The pointer to the given loop. */ - loop_p m_loop; - - /* All data references. */ - auto_vec<data_reference_p, 10> m_datarefs; - - /* All data dependences. */ - auto_vec<ddr_p, 10> m_dependences; - - /* All chains. */ - auto_vec<chain_p> m_chains; - - /* Bitmap of ssa names defined by looparound phi nodes covered by chains. */ - auto_bitmap m_looparound_phis; - - typedef hash_map<tree, name_expansion *> tree_expand_map_t; - /* Cache used by tree_to_aff_combination_expand. */ - tree_expand_map_t *m_cache; - - /* Splits dependence graph to components. */ - struct component *split_data_refs_to_components (); - - /* Check the conditions on references inside each of components COMPS, - and remove the unsuitable components from the list. */ - struct component *filter_suitable_components (struct component *comps); - - /* Find roots of the values and determine distances in components COMPS, - and separates the references to chains. */ - void determine_roots (struct component *comps); - - /* Prepare initializers for chains, and free chains that cannot - be used because the initializers might trap. */ - void prepare_initializers (); - - /* Generates finalizer memory reference for chains. Returns true if - finalizer code generation for chains breaks loop closed ssa form. */ - bool prepare_finalizers (); - - /* Try to combine the chains. */ - void try_combine_chains (); - - /* Frees CHAINS. */ - void release_chains (); - - /* Frees a chain CHAIN. */ - void release_chain (chain_p chain); - - /* Prepare initializers for CHAIN. Returns false if this is impossible - because one of these initializers may trap, true otherwise. */ - bool prepare_initializers_chain (chain_p chain); - - /* Generates finalizer memory references for CHAIN. Returns true - if finalizer code for CHAIN can be generated, otherwise false. */ - bool prepare_finalizers_chain (chain_p chain); - - /* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */ - void aff_combination_dr_offset (struct data_reference *dr, aff_tree *offset); - - /* Determines number of iterations of the innermost enclosing loop before - B refers to exactly the same location as A and stores it to OFF. */ - bool determine_offset (struct data_reference *a, struct data_reference *b, - poly_widest_int *off); - - /* Returns true if the component COMP satisfies the conditions - described in 2) at the beginning of this file. */ - bool suitable_component_p (struct component *comp); - - /* Returns true if REF is a valid initializer for ROOT with given - DISTANCE (in iterations of the innermost enclosing loop). */ - bool valid_initializer_p (struct data_reference *ref, unsigned distance, - struct data_reference *root); - - /* Finds looparound phi node of loop that copies the value of REF. */ - gphi *find_looparound_phi (dref ref, dref root); - - /* Find roots of the values and determine distances in the component - COMP. The references are redistributed into chains. */ - void determine_roots_comp (struct component *comp); - - /* For references in CHAIN that are copied around the loop, add the - results of such copies to the chain. */ - void add_looparound_copies (chain_p chain); - - /* Returns the single statement in that NAME is used, excepting - the looparound phi nodes contained in one of the chains. */ - gimple *single_nonlooparound_use (tree name); - - /* Remove statement STMT, as well as the chain of assignments in that - it is used. */ - void remove_stmt (gimple *stmt); - - /* Perform the predictive commoning optimization for a chain CHAIN. */ - void execute_pred_commoning_chain (chain_p chain, bitmap tmp_vars); - - /* Returns the modify statement that uses NAME. */ - gimple *find_use_stmt (tree *name); - - /* If the operation used in STMT is associative and commutative, go - through the tree of the same operations and returns its root. */ - gimple *find_associative_operation_root (gimple *stmt, unsigned *distance); - - /* Returns the common statement in that NAME1 and NAME2 have a use. */ - gimple *find_common_use_stmt (tree *name1, tree *name2); - - /* Checks whether R1 and R2 are combined together using CODE, with the - result in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order - R2 CODE R1 if it is true. */ - bool combinable_refs_p (dref r1, dref r2, enum tree_code *code, bool *swap, - tree *rslt_type); - - /* Reassociates the expression in that NAME1 and NAME2 are used so that - they are combined in a single statement, and returns this statement. */ - gimple *reassociate_to_the_same_stmt (tree name1, tree name2); - - /* Returns the statement that combines references R1 and R2. */ - gimple *stmt_combining_refs (dref r1, dref r2); - - /* Tries to combine chains CH1 and CH2 together. */ - chain_p combine_chains (chain_p ch1, chain_p ch2); -}; - -/* Dumps data reference REF to FILE. */ - -extern void dump_dref (FILE *, dref); -void -dump_dref (FILE *file, dref ref) -{ - if (ref->ref) - { - fprintf (file, " "); - print_generic_expr (file, DR_REF (ref->ref), TDF_SLIM); - fprintf (file, " (id %u%s)\n", ref->pos, - DR_IS_READ (ref->ref) ? "" : ", write"); - - fprintf (file, " offset "); - print_decs (ref->offset, file); - fprintf (file, "\n"); - - fprintf (file, " distance %u\n", ref->distance); - } - else - { - if (gimple_code (ref->stmt) == GIMPLE_PHI) - fprintf (file, " looparound ref\n"); - else - fprintf (file, " combination ref\n"); - fprintf (file, " in statement "); - print_gimple_stmt (file, ref->stmt, 0, TDF_SLIM); - fprintf (file, "\n"); - fprintf (file, " distance %u\n", ref->distance); - } - -} - -/* Dumps CHAIN to FILE. */ - -extern void dump_chain (FILE *, chain_p); -void -dump_chain (FILE *file, chain_p chain) -{ - dref a; - const char *chain_type; - unsigned i; - tree var; - - switch (chain->type) - { - case CT_INVARIANT: - chain_type = "Load motion"; - break; - - case CT_LOAD: - chain_type = "Loads-only"; - break; - - case CT_STORE_LOAD: - chain_type = "Store-loads"; - break; - - case CT_STORE_STORE: - chain_type = "Store-stores"; - break; - - case CT_COMBINATION: - chain_type = "Combination"; - break; - - default: - gcc_unreachable (); - } - - fprintf (file, "%s chain %p%s\n", chain_type, (void *) chain, - chain->combined ? " (combined)" : ""); - if (chain->type != CT_INVARIANT) - fprintf (file, " max distance %u%s\n", chain->length, - chain->has_max_use_after ? "" : ", may reuse first"); - - if (chain->type == CT_COMBINATION) - { - fprintf (file, " equal to %p %s %p in type ", - (void *) chain->ch1, op_symbol_code (chain->op), - (void *) chain->ch2); - print_generic_expr (file, chain->rslt_type, TDF_SLIM); - fprintf (file, "\n"); - } - - if (chain->vars.exists ()) - { - fprintf (file, " vars"); - FOR_EACH_VEC_ELT (chain->vars, i, var) - { - fprintf (file, " "); - print_generic_expr (file, var, TDF_SLIM); - } - fprintf (file, "\n"); - } - - if (chain->inits.exists ()) - { - fprintf (file, " inits"); - FOR_EACH_VEC_ELT (chain->inits, i, var) - { - fprintf (file, " "); - print_generic_expr (file, var, TDF_SLIM); - } - fprintf (file, "\n"); - } - - fprintf (file, " references:\n"); - FOR_EACH_VEC_ELT (chain->refs, i, a) - dump_dref (file, a); - - fprintf (file, "\n"); -} - -/* Dumps CHAINS to FILE. */ - -void -dump_chains (FILE *file, const vec<chain_p> &chains) -{ - chain_p chain; - unsigned i; - - FOR_EACH_VEC_ELT (chains, i, chain) - dump_chain (file, chain); -} - -/* Dumps COMP to FILE. */ - -extern void dump_component (FILE *, struct component *); -void -dump_component (FILE *file, struct component *comp) -{ - dref a; - unsigned i; - - fprintf (file, "Component%s:\n", - comp->comp_step == RS_INVARIANT ? " (invariant)" : ""); - FOR_EACH_VEC_ELT (comp->refs, i, a) - dump_dref (file, a); - fprintf (file, "\n"); -} - -/* Dumps COMPS to FILE. */ - -extern void dump_components (FILE *, struct component *); -void -dump_components (FILE *file, struct component *comps) -{ - struct component *comp; - - for (comp = comps; comp; comp = comp->next) - dump_component (file, comp); -} - -/* Frees a chain CHAIN. */ - -void -pcom_worker::release_chain (chain_p chain) -{ - dref ref; - unsigned i; - - if (chain == NULL) - return; - - FOR_EACH_VEC_ELT (chain->refs, i, ref) - free (ref); - - if (chain->init_seq) - gimple_seq_discard (chain->init_seq); - - if (chain->fini_seq) - gimple_seq_discard (chain->fini_seq); - - free (chain); -} - -/* Frees CHAINS. */ - -void -pcom_worker::release_chains () -{ - unsigned i; - chain_p chain; - - FOR_EACH_VEC_ELT (m_chains, i, chain) - release_chain (chain); -} - -/* Frees list of components COMPS. */ - -static void -release_components (struct component *comps) -{ - struct component *act, *next; - - for (act = comps; act; act = next) - { - next = act->next; - XDELETE (act); - } -} - -/* Finds a root of tree given by FATHERS containing A, and performs path - shortening. */ - -static unsigned -component_of (vec<unsigned> &fathers, unsigned a) -{ - unsigned root, n; - - for (root = a; root != fathers[root]; root = fathers[root]) - continue; - - for (; a != root; a = n) - { - n = fathers[a]; - fathers[a] = root; - } - - return root; -} - -/* Join operation for DFU. FATHERS gives the tree, SIZES are sizes of the - components, A and B are components to merge. */ - -static void -merge_comps (vec<unsigned> &fathers, vec<unsigned> &sizes, - unsigned a, unsigned b) -{ - unsigned ca = component_of (fathers, a); - unsigned cb = component_of (fathers, b); - - if (ca == cb) - return; - - if (sizes[ca] < sizes[cb]) - { - sizes[cb] += sizes[ca]; - fathers[ca] = cb; - } - else - { - sizes[ca] += sizes[cb]; - fathers[cb] = ca; - } -} - -/* Returns true if A is a reference that is suitable for predictive commoning - in the innermost loop that contains it. REF_STEP is set according to the - step of the reference A. */ - -static bool -suitable_reference_p (struct data_reference *a, enum ref_step_type *ref_step) -{ - tree ref = DR_REF (a), step = DR_STEP (a); - - if (!step - || TREE_THIS_VOLATILE (ref) - || !is_gimple_reg_type (TREE_TYPE (ref)) - || tree_could_throw_p (ref)) - return false; - - if (integer_zerop (step)) - *ref_step = RS_INVARIANT; - else if (integer_nonzerop (step)) - *ref_step = RS_NONZERO; - else - *ref_step = RS_ANY; - - return true; -} - -/* Stores DR_OFFSET (DR) + DR_INIT (DR) to OFFSET. */ - -void -pcom_worker::aff_combination_dr_offset (struct data_reference *dr, - aff_tree *offset) -{ - tree type = TREE_TYPE (DR_OFFSET (dr)); - aff_tree delta; - - tree_to_aff_combination_expand (DR_OFFSET (dr), type, offset, &m_cache); - aff_combination_const (&delta, type, wi::to_poly_widest (DR_INIT (dr))); - aff_combination_add (offset, &delta); -} - -/* Determines number of iterations of the innermost enclosing loop before B - refers to exactly the same location as A and stores it to OFF. If A and - B do not have the same step, they never meet, or anything else fails, - returns false, otherwise returns true. Both A and B are assumed to - satisfy suitable_reference_p. */ - -bool -pcom_worker::determine_offset (struct data_reference *a, - struct data_reference *b, poly_widest_int *off) -{ - aff_tree diff, baseb, step; - tree typea, typeb; - - /* Check that both the references access the location in the same type. */ - typea = TREE_TYPE (DR_REF (a)); - typeb = TREE_TYPE (DR_REF (b)); - if (!useless_type_conversion_p (typeb, typea)) - return false; - - /* Check whether the base address and the step of both references is the - same. */ - if (!operand_equal_p (DR_STEP (a), DR_STEP (b), 0) - || !operand_equal_p (DR_BASE_ADDRESS (a), DR_BASE_ADDRESS (b), 0)) - return false; - - if (integer_zerop (DR_STEP (a))) - { - /* If the references have loop invariant address, check that they access - exactly the same location. */ - *off = 0; - return (operand_equal_p (DR_OFFSET (a), DR_OFFSET (b), 0) - && operand_equal_p (DR_INIT (a), DR_INIT (b), 0)); - } - - /* Compare the offsets of the addresses, and check whether the difference - is a multiple of step. */ - aff_combination_dr_offset (a, &diff); - aff_combination_dr_offset (b, &baseb); - aff_combination_scale (&baseb, -1); - aff_combination_add (&diff, &baseb); - - tree_to_aff_combination_expand (DR_STEP (a), TREE_TYPE (DR_STEP (a)), - &step, &m_cache); - return aff_combination_constant_multiple_p (&diff, &step, off); -} - -/* Returns the last basic block in LOOP for that we are sure that - it is executed whenever the loop is entered. */ - -static basic_block -last_always_executed_block (class loop *loop) -{ - unsigned i; - auto_vec<edge> exits = get_loop_exit_edges (loop); - edge ex; - basic_block last = loop->latch; - - FOR_EACH_VEC_ELT (exits, i, ex) - last = nearest_common_dominator (CDI_DOMINATORS, last, ex->src); - - return last; -} - -/* Splits dependence graph on DATAREFS described by DEPENDENCES to - components. */ - -struct component * -pcom_worker::split_data_refs_to_components () -{ - unsigned i, n = m_datarefs.length (); - unsigned ca, ia, ib, bad; - struct data_reference *dr, *dra, *drb; - struct data_dependence_relation *ddr; - struct component *comp_list = NULL, *comp; - dref dataref; - /* Don't do store elimination if loop has multiple exit edges. */ - bool eliminate_store_p = single_exit (m_loop) != NULL; - basic_block last_always_executed = last_always_executed_block (m_loop); - auto_bitmap no_store_store_comps; - auto_vec<unsigned> comp_father (n + 1); - auto_vec<unsigned> comp_size (n + 1); - comp_father.quick_grow (n + 1); - comp_size.quick_grow (n + 1); - - FOR_EACH_VEC_ELT (m_datarefs, i, dr) - { - if (!DR_REF (dr)) - /* A fake reference for call or asm_expr that may clobber memory; - just fail. */ - return NULL; - /* predcom pass isn't prepared to handle calls with data references. */ - if (is_gimple_call (DR_STMT (dr))) - return NULL; - dr->aux = (void *) (size_t) i; - comp_father[i] = i; - comp_size[i] = 1; - } - - /* A component reserved for the "bad" data references. */ - comp_father[n] = n; - comp_size[n] = 1; - - FOR_EACH_VEC_ELT (m_datarefs, i, dr) - { - enum ref_step_type dummy; - - if (!suitable_reference_p (dr, &dummy)) - { - ia = (unsigned) (size_t) dr->aux; - merge_comps (comp_father, comp_size, n, ia); - } - } - - FOR_EACH_VEC_ELT (m_dependences, i, ddr) - { - poly_widest_int dummy_off; - - if (DDR_ARE_DEPENDENT (ddr) == chrec_known) - continue; - - dra = DDR_A (ddr); - drb = DDR_B (ddr); - - /* Don't do store elimination if there is any unknown dependence for - any store data reference. */ - if ((DR_IS_WRITE (dra) || DR_IS_WRITE (drb)) - && (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know - || DDR_NUM_DIST_VECTS (ddr) == 0)) - eliminate_store_p = false; - - ia = component_of (comp_father, (unsigned) (size_t) dra->aux); - ib = component_of (comp_father, (unsigned) (size_t) drb->aux); - if (ia == ib) - continue; - - bad = component_of (comp_father, n); - - /* If both A and B are reads, we may ignore unsuitable dependences. */ - if (DR_IS_READ (dra) && DR_IS_READ (drb)) - { - if (ia == bad || ib == bad - || !determine_offset (dra, drb, &dummy_off)) - continue; - } - /* If A is read and B write or vice versa and there is unsuitable - dependence, instead of merging both components into a component - that will certainly not pass suitable_component_p, just put the - read into bad component, perhaps at least the write together with - all the other data refs in it's component will be optimizable. */ - else if (DR_IS_READ (dra) && ib != bad) - { - if (ia == bad) - { - bitmap_set_bit (no_store_store_comps, ib); - continue; - } - else if (!determine_offset (dra, drb, &dummy_off)) - { - bitmap_set_bit (no_store_store_comps, ib); - merge_comps (comp_father, comp_size, bad, ia); - continue; - } - } - else if (DR_IS_READ (drb) && ia != bad) - { - if (ib == bad) - { - bitmap_set_bit (no_store_store_comps, ia); - continue; - } - else if (!determine_offset (dra, drb, &dummy_off)) - { - bitmap_set_bit (no_store_store_comps, ia); - merge_comps (comp_father, comp_size, bad, ib); - continue; - } - } - else if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb) - && ia != bad && ib != bad - && !determine_offset (dra, drb, &dummy_off)) - { - merge_comps (comp_father, comp_size, bad, ia); - merge_comps (comp_father, comp_size, bad, ib); - continue; - } - - merge_comps (comp_father, comp_size, ia, ib); - } - - if (eliminate_store_p) - { - tree niters = number_of_latch_executions (m_loop); - - /* Don't do store elimination if niters info is unknown because stores - in the last iteration can't be eliminated and we need to recover it - after loop. */ - eliminate_store_p = (niters != NULL_TREE && niters != chrec_dont_know); - } - - auto_vec<struct component *> comps; - comps.safe_grow_cleared (n, true); - bad = component_of (comp_father, n); - FOR_EACH_VEC_ELT (m_datarefs, i, dr) - { - ia = (unsigned) (size_t) dr->aux; - ca = component_of (comp_father, ia); - if (ca == bad) - continue; - - comp = comps[ca]; - if (!comp) - { - comp = XCNEW (struct component); - comp->refs.create (comp_size[ca]); - comp->eliminate_store_p = eliminate_store_p; - comps[ca] = comp; - } - - dataref = XCNEW (class dref_d); - dataref->ref = dr; - dataref->stmt = DR_STMT (dr); - dataref->offset = 0; - dataref->distance = 0; - - dataref->always_accessed - = dominated_by_p (CDI_DOMINATORS, last_always_executed, - gimple_bb (dataref->stmt)); - dataref->pos = comp->refs.length (); - comp->refs.quick_push (dataref); - } - - if (eliminate_store_p) - { - bitmap_iterator bi; - EXECUTE_IF_SET_IN_BITMAP (no_store_store_comps, 0, ia, bi) - { - ca = component_of (comp_father, ia); - if (ca != bad) - comps[ca]->eliminate_store_p = false; - } - } - - for (i = 0; i < n; i++) - { - comp = comps[i]; - if (comp) - { - comp->next = comp_list; - comp_list = comp; - } - } - return comp_list; -} - -/* Returns true if the component COMP satisfies the conditions - described in 2) at the beginning of this file. */ - -bool -pcom_worker::suitable_component_p (struct component *comp) -{ - unsigned i; - dref a, first; - basic_block ba, bp = m_loop->header; - bool ok, has_write = false; - - FOR_EACH_VEC_ELT (comp->refs, i, a) - { - ba = gimple_bb (a->stmt); - - if (!just_once_each_iteration_p (m_loop, ba)) - return false; - - gcc_assert (dominated_by_p (CDI_DOMINATORS, ba, bp)); - bp = ba; - - if (DR_IS_WRITE (a->ref)) - has_write = true; - } - - first = comp->refs[0]; - ok = suitable_reference_p (first->ref, &comp->comp_step); - gcc_assert (ok); - first->offset = 0; - - for (i = 1; comp->refs.iterate (i, &a); i++) - { - /* Polynomial offsets are no use, since we need to know the - gap between iteration numbers at compile time. */ - poly_widest_int offset; - if (!determine_offset (first->ref, a->ref, &offset) - || !offset.is_constant (&a->offset)) - return false; - - enum ref_step_type a_step; - gcc_checking_assert (suitable_reference_p (a->ref, &a_step) - && a_step == comp->comp_step); - } - - /* If there is a write inside the component, we must know whether the - step is nonzero or not -- we would not otherwise be able to recognize - whether the value accessed by reads comes from the OFFSET-th iteration - or the previous one. */ - if (has_write && comp->comp_step == RS_ANY) - return false; - - return true; -} - -/* Check the conditions on references inside each of components COMPS, - and remove the unsuitable components from the list. The new list - of components is returned. The conditions are described in 2) at - the beginning of this file. */ - -struct component * -pcom_worker::filter_suitable_components (struct component *comps) -{ - struct component **comp, *act; - - for (comp = &comps; *comp; ) - { - act = *comp; - if (suitable_component_p (act)) - comp = &act->next; - else - { - dref ref; - unsigned i; - - *comp = act->next; - FOR_EACH_VEC_ELT (act->refs, i, ref) - free (ref); - XDELETE (act); - } - } - - return comps; -} - -/* Compares two drefs A and B by their offset and position. Callback for - qsort. */ - -static int -order_drefs (const void *a, const void *b) -{ - const dref *const da = (const dref *) a; - const dref *const db = (const dref *) b; - int offcmp = wi::cmps ((*da)->offset, (*db)->offset); - - if (offcmp != 0) - return offcmp; - - return (*da)->pos - (*db)->pos; -} - -/* Compares two drefs A and B by their position. Callback for qsort. */ - -static int -order_drefs_by_pos (const void *a, const void *b) -{ - const dref *const da = (const dref *) a; - const dref *const db = (const dref *) b; - - return (*da)->pos - (*db)->pos; -} - -/* Returns root of the CHAIN. */ - -static inline dref -get_chain_root (chain_p chain) -{ - return chain->refs[0]; -} - -/* Given CHAIN, returns the last write ref at DISTANCE, or NULL if it doesn't - exist. */ - -static inline dref -get_chain_last_write_at (chain_p chain, unsigned distance) -{ - for (unsigned i = chain->refs.length (); i > 0; i--) - if (DR_IS_WRITE (chain->refs[i - 1]->ref) - && distance == chain->refs[i - 1]->distance) - return chain->refs[i - 1]; - - return NULL; -} - -/* Given CHAIN, returns the last write ref with the same distance before load - at index LOAD_IDX, or NULL if it doesn't exist. */ - -static inline dref -get_chain_last_write_before_load (chain_p chain, unsigned load_idx) -{ - gcc_assert (load_idx < chain->refs.length ()); - - unsigned distance = chain->refs[load_idx]->distance; - - for (unsigned i = load_idx; i > 0; i--) - if (DR_IS_WRITE (chain->refs[i - 1]->ref) - && distance == chain->refs[i - 1]->distance) - return chain->refs[i - 1]; - - return NULL; -} - -/* Adds REF to the chain CHAIN. */ - -static void -add_ref_to_chain (chain_p chain, dref ref) -{ - dref root = get_chain_root (chain); - - gcc_assert (wi::les_p (root->offset, ref->offset)); - widest_int dist = ref->offset - root->offset; - gcc_assert (wi::fits_uhwi_p (dist)); - - chain->refs.safe_push (ref); - - ref->distance = dist.to_uhwi (); - - if (ref->distance >= chain->length) - { - chain->length = ref->distance; - chain->has_max_use_after = false; - } - - /* Promote this chain to CT_STORE_STORE if it has multiple stores. */ - if (DR_IS_WRITE (ref->ref)) - chain->type = CT_STORE_STORE; - - /* Don't set the flag for store-store chain since there is no use. */ - if (chain->type != CT_STORE_STORE - && ref->distance == chain->length - && ref->pos > root->pos) - chain->has_max_use_after = true; - - chain->all_always_accessed &= ref->always_accessed; -} - -/* Returns the chain for invariant component COMP. */ - -static chain_p -make_invariant_chain (struct component *comp) -{ - chain_p chain = XCNEW (struct chain); - unsigned i; - dref ref; - - chain->type = CT_INVARIANT; - - chain->all_always_accessed = true; - - FOR_EACH_VEC_ELT (comp->refs, i, ref) - { - chain->refs.safe_push (ref); - chain->all_always_accessed &= ref->always_accessed; - } - - chain->inits = vNULL; - chain->finis = vNULL; - - return chain; -} - -/* Make a new chain of type TYPE rooted at REF. */ - -static chain_p -make_rooted_chain (dref ref, enum chain_type type) -{ - chain_p chain = XCNEW (struct chain); - - chain->type = type; - chain->refs.safe_push (ref); - chain->all_always_accessed = ref->always_accessed; - ref->distance = 0; - - chain->inits = vNULL; - chain->finis = vNULL; - - return chain; -} - -/* Returns true if CHAIN is not trivial. */ - -static bool -nontrivial_chain_p (chain_p chain) -{ - return chain != NULL && chain->refs.length () > 1; -} - -/* Returns the ssa name that contains the value of REF, or NULL_TREE if there - is no such name. */ - -static tree -name_for_ref (dref ref) -{ - tree name; - - if (is_gimple_assign (ref->stmt)) - { - if (!ref->ref || DR_IS_READ (ref->ref)) - name = gimple_assign_lhs (ref->stmt); - else - name = gimple_assign_rhs1 (ref->stmt); - } - else - name = PHI_RESULT (ref->stmt); - - return (TREE_CODE (name) == SSA_NAME ? name : NULL_TREE); -} - -/* Returns true if REF is a valid initializer for ROOT with given DISTANCE (in - iterations of the innermost enclosing loop). */ - -bool -pcom_worker::valid_initializer_p (struct data_reference *ref, unsigned distance, - struct data_reference *root) -{ - aff_tree diff, base, step; - poly_widest_int off; - - /* Both REF and ROOT must be accessing the same object. */ - if (!operand_equal_p (DR_BASE_ADDRESS (ref), DR_BASE_ADDRESS (root), 0)) - return false; - - /* The initializer is defined outside of loop, hence its address must be - invariant inside the loop. */ - gcc_assert (integer_zerop (DR_STEP (ref))); - - /* If the address of the reference is invariant, initializer must access - exactly the same location. */ - if (integer_zerop (DR_STEP (root))) - return (operand_equal_p (DR_OFFSET (ref), DR_OFFSET (root), 0) - && operand_equal_p (DR_INIT (ref), DR_INIT (root), 0)); - - /* Verify that this index of REF is equal to the root's index at - -DISTANCE-th iteration. */ - aff_combination_dr_offset (root, &diff); - aff_combination_dr_offset (ref, &base); - aff_combination_scale (&base, -1); - aff_combination_add (&diff, &base); - - tree_to_aff_combination_expand (DR_STEP (root), TREE_TYPE (DR_STEP (root)), - &step, &m_cache); - if (!aff_combination_constant_multiple_p (&diff, &step, &off)) - return false; - - if (maybe_ne (off, distance)) - return false; - - return true; -} - -/* Finds looparound phi node of loop that copies the value of REF, and if its - initial value is correct (equal to initial value of REF shifted by one - iteration), returns the phi node. Otherwise, NULL_TREE is returned. ROOT - is the root of the current chain. */ - -gphi * -pcom_worker::find_looparound_phi (dref ref, dref root) -{ - tree name, init, init_ref; - gphi *phi = NULL; - gimple *init_stmt; - edge latch = loop_latch_edge (m_loop); - struct data_reference init_dr; - gphi_iterator psi; - - if (is_gimple_assign (ref->stmt)) - { - if (DR_IS_READ (ref->ref)) - name = gimple_assign_lhs (ref->stmt); - else - name = gimple_assign_rhs1 (ref->stmt); - } - else - name = PHI_RESULT (ref->stmt); - if (!name) - return NULL; - - for (psi = gsi_start_phis (m_loop->header); !gsi_end_p (psi); gsi_next (&psi)) - { - phi = psi.phi (); - if (PHI_ARG_DEF_FROM_EDGE (phi, latch) == name) - break; - } - - if (gsi_end_p (psi)) - return NULL; - - init = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (m_loop)); - if (TREE_CODE (init) != SSA_NAME) - return NULL; - init_stmt = SSA_NAME_DEF_STMT (init); - if (gimple_code (init_stmt) != GIMPLE_ASSIGN) - return NULL; - gcc_assert (gimple_assign_lhs (init_stmt) == init); - - init_ref = gimple_assign_rhs1 (init_stmt); - if (!REFERENCE_CLASS_P (init_ref) - && !DECL_P (init_ref)) - return NULL; - - /* Analyze the behavior of INIT_REF with respect to LOOP (innermost - loop enclosing PHI). */ - memset (&init_dr, 0, sizeof (struct data_reference)); - DR_REF (&init_dr) = init_ref; - DR_STMT (&init_dr) = phi; - if (!dr_analyze_innermost (&DR_INNERMOST (&init_dr), init_ref, m_loop, - init_stmt)) - return NULL; - - if (!valid_initializer_p (&init_dr, ref->distance + 1, root->ref)) - return NULL; - - return phi; -} - -/* Adds a reference for the looparound copy of REF in PHI to CHAIN. */ - -static void -insert_looparound_copy (chain_p chain, dref ref, gphi *phi) -{ - dref nw = XCNEW (class dref_d), aref; - unsigned i; - - nw->stmt = phi; - nw->distance = ref->distance + 1; - nw->always_accessed = 1; - - FOR_EACH_VEC_ELT (chain->refs, i, aref) - if (aref->distance >= nw->distance) - break; - chain->refs.safe_insert (i, nw); - - if (nw->distance > chain->length) - { - chain->length = nw->distance; - chain->has_max_use_after = false; - } -} - -/* For references in CHAIN that are copied around the loop (created previously - by PRE, or by user), add the results of such copies to the chain. This - enables us to remove the copies by unrolling, and may need less registers - (also, it may allow us to combine chains together). */ - -void -pcom_worker::add_looparound_copies (chain_p chain) -{ - unsigned i; - dref ref, root = get_chain_root (chain); - gphi *phi; - - if (chain->type == CT_STORE_STORE) - return; - - FOR_EACH_VEC_ELT (chain->refs, i, ref) - { - phi = find_looparound_phi (ref, root); - if (!phi) - continue; - - bitmap_set_bit (m_looparound_phis, SSA_NAME_VERSION (PHI_RESULT (phi))); - insert_looparound_copy (chain, ref, phi); - } -} - -/* Find roots of the values and determine distances in the component COMP. - The references are redistributed into chains. */ - -void -pcom_worker::determine_roots_comp (struct component *comp) -{ - unsigned i; - dref a; - chain_p chain = NULL; - widest_int last_ofs = 0; - enum chain_type type; - - /* Invariants are handled specially. */ - if (comp->comp_step == RS_INVARIANT) - { - chain = make_invariant_chain (comp); - m_chains.safe_push (chain); - return; - } - - /* Trivial component. */ - if (comp->refs.length () <= 1) - { - if (comp->refs.length () == 1) - { - free (comp->refs[0]); - comp->refs.truncate (0); - } - return; - } - - comp->refs.qsort (order_drefs); - - /* For Store-Store chain, we only support load if it is dominated by a - store statement in the same iteration of loop. */ - if (comp->eliminate_store_p) - for (a = NULL, i = 0; i < comp->refs.length (); i++) - { - if (DR_IS_WRITE (comp->refs[i]->ref)) - a = comp->refs[i]; - else if (a == NULL || a->offset != comp->refs[i]->offset) - { - /* If there is load that is not dominated by a store in the - same iteration of loop, clear the flag so no Store-Store - chain is generated for this component. */ - comp->eliminate_store_p = false; - break; - } - } - - /* Determine roots and create chains for components. */ - FOR_EACH_VEC_ELT (comp->refs, i, a) - { - if (!chain - || (chain->type == CT_LOAD && DR_IS_WRITE (a->ref)) - || (!comp->eliminate_store_p && DR_IS_WRITE (a->ref)) - || wi::leu_p (MAX_DISTANCE, a->offset - last_ofs)) - { - if (nontrivial_chain_p (chain)) - { - add_looparound_copies (chain); - m_chains.safe_push (chain); - } - else - release_chain (chain); - - /* Determine type of the chain. If the root reference is a load, - this can only be a CT_LOAD chain; other chains are intialized - to CT_STORE_LOAD and might be promoted to CT_STORE_STORE when - new reference is added. */ - type = DR_IS_READ (a->ref) ? CT_LOAD : CT_STORE_LOAD; - chain = make_rooted_chain (a, type); - last_ofs = a->offset; - continue; - } - - add_ref_to_chain (chain, a); - } - - if (nontrivial_chain_p (chain)) - { - add_looparound_copies (chain); - m_chains.safe_push (chain); - } - else - release_chain (chain); -} - -/* Find roots of the values and determine distances in components COMPS, and - separates the references to chains. */ - -void -pcom_worker::determine_roots (struct component *comps) -{ - struct component *comp; - - for (comp = comps; comp; comp = comp->next) - determine_roots_comp (comp); -} - -/* Replace the reference in statement STMT with temporary variable - NEW_TREE. If SET is true, NEW_TREE is instead initialized to the value of - the reference in the statement. IN_LHS is true if the reference - is in the lhs of STMT, false if it is in rhs. */ - -static void -replace_ref_with (gimple *stmt, tree new_tree, bool set, bool in_lhs) -{ - tree val; - gassign *new_stmt; - gimple_stmt_iterator bsi, psi; - - if (gimple_code (stmt) == GIMPLE_PHI) - { - gcc_assert (!in_lhs && !set); - - val = PHI_RESULT (stmt); - bsi = gsi_after_labels (gimple_bb (stmt)); - psi = gsi_for_stmt (stmt); - remove_phi_node (&psi, false); - - /* Turn the phi node into GIMPLE_ASSIGN. */ - new_stmt = gimple_build_assign (val, new_tree); - gsi_insert_before (&bsi, new_stmt, GSI_NEW_STMT); - return; - } - - /* Since the reference is of gimple_reg type, it should only - appear as lhs or rhs of modify statement. */ - gcc_assert (is_gimple_assign (stmt)); - - bsi = gsi_for_stmt (stmt); - - /* If we do not need to initialize NEW_TREE, just replace the use of OLD. */ - if (!set) - { - gcc_assert (!in_lhs); - gimple_assign_set_rhs_from_tree (&bsi, new_tree); - stmt = gsi_stmt (bsi); - update_stmt (stmt); - return; - } - - if (in_lhs) - { - /* We have statement - - OLD = VAL - - If OLD is a memory reference, then VAL is gimple_val, and we transform - this to - - OLD = VAL - NEW = VAL - - Otherwise, we are replacing a combination chain, - VAL is the expression that performs the combination, and OLD is an - SSA name. In this case, we transform the assignment to - - OLD = VAL - NEW = OLD - - */ - - val = gimple_assign_lhs (stmt); - if (TREE_CODE (val) != SSA_NAME) - { - val = gimple_assign_rhs1 (stmt); - gcc_assert (gimple_assign_single_p (stmt)); - if (TREE_CLOBBER_P (val)) - val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (new_tree)); - else - gcc_assert (gimple_assign_copy_p (stmt)); - } - } - else - { - /* VAL = OLD - - is transformed to - - VAL = OLD - NEW = VAL */ - - val = gimple_assign_lhs (stmt); - } - - new_stmt = gimple_build_assign (new_tree, unshare_expr (val)); - gsi_insert_after (&bsi, new_stmt, GSI_NEW_STMT); -} - -/* Returns a memory reference to DR in the (NITERS + ITER)-th iteration - of the loop it was analyzed in. Append init stmts to STMTS. */ - -static tree -ref_at_iteration (data_reference_p dr, int iter, - gimple_seq *stmts, tree niters = NULL_TREE) -{ - tree off = DR_OFFSET (dr); - tree coff = DR_INIT (dr); - tree ref = DR_REF (dr); - enum tree_code ref_code = ERROR_MARK; - tree ref_type = NULL_TREE; - tree ref_op1 = NULL_TREE; - tree ref_op2 = NULL_TREE; - tree new_offset; - - if (iter != 0) - { - new_offset = size_binop (MULT_EXPR, DR_STEP (dr), ssize_int (iter)); - if (TREE_CODE (new_offset) == INTEGER_CST) - coff = size_binop (PLUS_EXPR, coff, new_offset); - else - off = size_binop (PLUS_EXPR, off, new_offset); - } - - if (niters != NULL_TREE) - { - niters = fold_convert (ssizetype, niters); - new_offset = size_binop (MULT_EXPR, DR_STEP (dr), niters); - if (TREE_CODE (niters) == INTEGER_CST) - coff = size_binop (PLUS_EXPR, coff, new_offset); - else - off = size_binop (PLUS_EXPR, off, new_offset); - } - - /* While data-ref analysis punts on bit offsets it still handles - bitfield accesses at byte boundaries. Cope with that. Note that - if the bitfield object also starts at a byte-boundary we can simply - replicate the COMPONENT_REF, but we have to subtract the component's - byte-offset from the MEM_REF address first. - Otherwise we simply build a BIT_FIELD_REF knowing that the bits - start at offset zero. */ - if (TREE_CODE (ref) == COMPONENT_REF - && DECL_BIT_FIELD (TREE_OPERAND (ref, 1))) - { - unsigned HOST_WIDE_INT boff; - tree field = TREE_OPERAND (ref, 1); - tree offset = component_ref_field_offset (ref); - ref_type = TREE_TYPE (ref); - boff = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)); - /* This can occur in Ada. See the comment in get_bit_range. */ - if (boff % BITS_PER_UNIT != 0 - || !tree_fits_uhwi_p (offset)) - { - ref_code = BIT_FIELD_REF; - ref_op1 = DECL_SIZE (field); - ref_op2 = bitsize_zero_node; - } - else - { - boff >>= LOG2_BITS_PER_UNIT; - boff += tree_to_uhwi (offset); - coff = size_binop (MINUS_EXPR, coff, ssize_int (boff)); - ref_code = COMPONENT_REF; - ref_op1 = field; - ref_op2 = TREE_OPERAND (ref, 2); - ref = TREE_OPERAND (ref, 0); - } - } - tree addr = fold_build_pointer_plus (DR_BASE_ADDRESS (dr), off); - addr = force_gimple_operand_1 (unshare_expr (addr), stmts, - is_gimple_mem_ref_addr, NULL_TREE); - tree alias_ptr = fold_convert (reference_alias_ptr_type (ref), coff); - tree type = build_aligned_type (TREE_TYPE (ref), - get_object_alignment (ref)); - ref = build2 (MEM_REF, type, addr, alias_ptr); - if (ref_type) - ref = build3 (ref_code, ref_type, ref, ref_op1, ref_op2); - return ref; -} - -/* Get the initialization expression for the INDEX-th temporary variable - of CHAIN. */ - -static tree -get_init_expr (chain_p chain, unsigned index) -{ - if (chain->type == CT_COMBINATION) - { - tree e1 = get_init_expr (chain->ch1, index); - tree e2 = get_init_expr (chain->ch2, index); - - return fold_build2 (chain->op, chain->rslt_type, e1, e2); - } - else - return chain->inits[index]; -} - -/* Returns a new temporary variable used for the I-th variable carrying - value of REF. The variable's uid is marked in TMP_VARS. */ - -static tree -predcom_tmp_var (tree ref, unsigned i, bitmap tmp_vars) -{ - tree type = TREE_TYPE (ref); - /* We never access the components of the temporary variable in predictive - commoning. */ - tree var = create_tmp_reg (type, get_lsm_tmp_name (ref, i)); - bitmap_set_bit (tmp_vars, DECL_UID (var)); - return var; -} - -/* Creates the variables for CHAIN, as well as phi nodes for them and - initialization on entry to LOOP. Uids of the newly created - temporary variables are marked in TMP_VARS. */ - -static void -initialize_root_vars (class loop *loop, chain_p chain, bitmap tmp_vars) -{ - unsigned i; - unsigned n = chain->length; - dref root = get_chain_root (chain); - bool reuse_first = !chain->has_max_use_after; - tree ref, init, var, next; - gphi *phi; - gimple_seq stmts; - edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop); - - /* If N == 0, then all the references are within the single iteration. And - since this is an nonempty chain, reuse_first cannot be true. */ - gcc_assert (n > 0 || !reuse_first); - - chain->vars.create (n + 1); - - if (chain->type == CT_COMBINATION) - ref = gimple_assign_lhs (root->stmt); - else - ref = DR_REF (root->ref); - - for (i = 0; i < n + (reuse_first ? 0 : 1); i++) - { - var = predcom_tmp_var (ref, i, tmp_vars); - chain->vars.quick_push (var); - } - if (reuse_first) - chain->vars.quick_push (chain->vars[0]); - - FOR_EACH_VEC_ELT (chain->vars, i, var) - chain->vars[i] = make_ssa_name (var); - - for (i = 0; i < n; i++) - { - var = chain->vars[i]; - next = chain->vars[i + 1]; - init = get_init_expr (chain, i); - - init = force_gimple_operand (init, &stmts, true, NULL_TREE); - if (stmts) - gsi_insert_seq_on_edge_immediate (entry, stmts); - - phi = create_phi_node (var, loop->header); - add_phi_arg (phi, init, entry, UNKNOWN_LOCATION); - add_phi_arg (phi, next, latch, UNKNOWN_LOCATION); - } -} - -/* For inter-iteration store elimination CHAIN in LOOP, returns true if - all stores to be eliminated store loop invariant values into memory. - In this case, we can use these invariant values directly after LOOP. */ - -static bool -is_inv_store_elimination_chain (class loop *loop, chain_p chain) -{ - if (chain->length == 0 || chain->type != CT_STORE_STORE) - return false; - - gcc_assert (!chain->has_max_use_after); - - /* If loop iterates for unknown times or fewer times than chain->length, - we still need to setup root variable and propagate it with PHI node. */ - tree niters = number_of_latch_executions (loop); - if (TREE_CODE (niters) != INTEGER_CST - || wi::leu_p (wi::to_wide (niters), chain->length)) - return false; - - /* Check stores in chain for elimination if they only store loop invariant - values. */ - for (unsigned i = 0; i < chain->length; i++) - { - dref a = get_chain_last_write_at (chain, i); - if (a == NULL) - continue; - - gimple *def_stmt, *stmt = a->stmt; - if (!gimple_assign_single_p (stmt)) - return false; - - tree val = gimple_assign_rhs1 (stmt); - if (TREE_CLOBBER_P (val)) - return false; - - if (CONSTANT_CLASS_P (val)) - continue; - - if (TREE_CODE (val) != SSA_NAME) - return false; - - def_stmt = SSA_NAME_DEF_STMT (val); - if (gimple_nop_p (def_stmt)) - continue; - - if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))) - return false; - } - return true; -} - -/* Creates root variables for store elimination CHAIN in which stores for - elimination only store loop invariant values. In this case, we neither - need to load root variables before loop nor propagate it with PHI nodes. */ - -static void -initialize_root_vars_store_elim_1 (chain_p chain) -{ - tree var; - unsigned i, n = chain->length; - - chain->vars.create (n); - chain->vars.safe_grow_cleared (n, true); - - /* Initialize root value for eliminated stores at each distance. */ - for (i = 0; i < n; i++) - { - dref a = get_chain_last_write_at (chain, i); - if (a == NULL) - continue; - - var = gimple_assign_rhs1 (a->stmt); - chain->vars[a->distance] = var; - } - - /* We don't propagate values with PHI nodes, so manually propagate value - to bubble positions. */ - var = chain->vars[0]; - for (i = 1; i < n; i++) - { - if (chain->vars[i] != NULL_TREE) - { - var = chain->vars[i]; - continue; - } - chain->vars[i] = var; - } - - /* Revert the vector. */ - for (i = 0; i < n / 2; i++) - std::swap (chain->vars[i], chain->vars[n - i - 1]); -} - -/* Creates root variables for store elimination CHAIN in which stores for - elimination store loop variant values. In this case, we may need to - load root variables before LOOP and propagate it with PHI nodes. Uids - of the newly created root variables are marked in TMP_VARS. */ - -static void -initialize_root_vars_store_elim_2 (class loop *loop, - chain_p chain, bitmap tmp_vars) -{ - unsigned i, n = chain->length; - tree ref, init, var, next, val, phi_result; - gimple *stmt; - gimple_seq stmts; - - chain->vars.create (n); - - ref = DR_REF (get_chain_root (chain)->ref); - for (i = 0; i < n; i++) - { - var = predcom_tmp_var (ref, i, tmp_vars); - chain->vars.quick_push (var); - } - - FOR_EACH_VEC_ELT (chain->vars, i, var) - chain->vars[i] = make_ssa_name (var); - - /* Root values are either rhs operand of stores to be eliminated, or - loaded from memory before loop. */ - auto_vec<tree> vtemps; - vtemps.safe_grow_cleared (n, true); - for (i = 0; i < n; i++) - { - init = get_init_expr (chain, i); - if (init == NULL_TREE) - { - /* Root value is rhs operand of the store to be eliminated if - it isn't loaded from memory before loop. */ - dref a = get_chain_last_write_at (chain, i); - val = gimple_assign_rhs1 (a->stmt); - if (TREE_CLOBBER_P (val)) - { - val = get_or_create_ssa_default_def (cfun, SSA_NAME_VAR (var)); - gimple_assign_set_rhs1 (a->stmt, val); - } - - vtemps[n - i - 1] = val; - } - else - { - edge latch = loop_latch_edge (loop); - edge entry = loop_preheader_edge (loop); - - /* Root value is loaded from memory before loop, we also need - to add PHI nodes to propagate the value across iterations. */ - init = force_gimple_operand (init, &stmts, true, NULL_TREE); - if (stmts) - gsi_insert_seq_on_edge_immediate (entry, stmts); - - next = chain->vars[n - i]; - phi_result = copy_ssa_name (next); - gphi *phi = create_phi_node (phi_result, loop->header); - add_phi_arg (phi, init, entry, UNKNOWN_LOCATION); - add_phi_arg (phi, next, latch, UNKNOWN_LOCATION); - vtemps[n - i - 1] = phi_result; - } - } - - /* Find the insertion position. */ - dref last = get_chain_root (chain); - for (i = 0; i < chain->refs.length (); i++) - { - if (chain->refs[i]->pos > last->pos) - last = chain->refs[i]; - } - - gimple_stmt_iterator gsi = gsi_for_stmt (last->stmt); - - /* Insert statements copying root value to root variable. */ - for (i = 0; i < n; i++) - { - var = chain->vars[i]; - val = vtemps[i]; - stmt = gimple_build_assign (var, val); - gsi_insert_after (&gsi, stmt, GSI_NEW_STMT); - } -} - -/* Generates stores for CHAIN's eliminated stores in LOOP's last - (CHAIN->length - 1) iterations. */ - -static void -finalize_eliminated_stores (class loop *loop, chain_p chain) -{ - unsigned i, n = chain->length; - - for (i = 0; i < n; i++) - { - tree var = chain->vars[i]; - tree fini = chain->finis[n - i - 1]; - gimple *stmt = gimple_build_assign (fini, var); - - gimple_seq_add_stmt_without_update (&chain->fini_seq, stmt); - } - - if (chain->fini_seq) - { - gsi_insert_seq_on_edge_immediate (single_exit (loop), chain->fini_seq); - chain->fini_seq = NULL; - } -} - -/* Initializes a variable for load motion for ROOT and prepares phi nodes and - initialization on entry to LOOP if necessary. The ssa name for the variable - is stored in VARS. If WRITTEN is true, also a phi node to copy its value - around the loop is created. Uid of the newly created temporary variable - is marked in TMP_VARS. INITS is the list containing the (single) - initializer. */ - -static void -initialize_root_vars_lm (class loop *loop, dref root, bool written, - vec<tree> *vars, const vec<tree> &inits, - bitmap tmp_vars) -{ - unsigned i; - tree ref = DR_REF (root->ref), init, var, next; - gimple_seq stmts; - gphi *phi; - edge entry = loop_preheader_edge (loop), latch = loop_latch_edge (loop); - - /* Find the initializer for the variable, and check that it cannot - trap. */ - init = inits[0]; - - vars->create (written ? 2 : 1); - var = predcom_tmp_var (ref, 0, tmp_vars); - vars->quick_push (var); - if (written) - vars->quick_push ((*vars)[0]); - - FOR_EACH_VEC_ELT (*vars, i, var) - (*vars)[i] = make_ssa_name (var); - - var = (*vars)[0]; - - init = force_gimple_operand (init, &stmts, written, NULL_TREE); - if (stmts) - gsi_insert_seq_on_edge_immediate (entry, stmts); - - if (written) - { - next = (*vars)[1]; - phi = create_phi_node (var, loop->header); - add_phi_arg (phi, init, entry, UNKNOWN_LOCATION); - add_phi_arg (phi, next, latch, UNKNOWN_LOCATION); - } - else - { - gassign *init_stmt = gimple_build_assign (var, init); - gsi_insert_on_edge_immediate (entry, init_stmt); - } -} - - -/* Execute load motion for references in chain CHAIN. Uids of the newly - created temporary variables are marked in TMP_VARS. */ - -static void -execute_load_motion (class loop *loop, chain_p chain, bitmap tmp_vars) -{ - auto_vec<tree> vars; - dref a; - unsigned n_writes = 0, ridx, i; - tree var; - - gcc_assert (chain->type == CT_INVARIANT); - gcc_assert (!chain->combined); - FOR_EACH_VEC_ELT (chain->refs, i, a) - if (DR_IS_WRITE (a->ref)) - n_writes++; - - /* If there are no reads in the loop, there is nothing to do. */ - if (n_writes == chain->refs.length ()) - return; - - initialize_root_vars_lm (loop, get_chain_root (chain), n_writes > 0, - &vars, chain->inits, tmp_vars); - - ridx = 0; - FOR_EACH_VEC_ELT (chain->refs, i, a) - { - bool is_read = DR_IS_READ (a->ref); - - if (DR_IS_WRITE (a->ref)) - { - n_writes--; - if (n_writes) - { - var = vars[0]; - var = make_ssa_name (SSA_NAME_VAR (var)); - vars[0] = var; - } - else - ridx = 1; - } - - replace_ref_with (a->stmt, vars[ridx], - !is_read, !is_read); - } -} - -/* Returns the single statement in that NAME is used, excepting - the looparound phi nodes contained in one of the chains. If there is no - such statement, or more statements, NULL is returned. */ - -gimple * -pcom_worker::single_nonlooparound_use (tree name) -{ - use_operand_p use; - imm_use_iterator it; - gimple *stmt, *ret = NULL; - - FOR_EACH_IMM_USE_FAST (use, it, name) - { - stmt = USE_STMT (use); - - if (gimple_code (stmt) == GIMPLE_PHI) - { - /* Ignore uses in looparound phi nodes. Uses in other phi nodes - could not be processed anyway, so just fail for them. */ - if (bitmap_bit_p (m_looparound_phis, - SSA_NAME_VERSION (PHI_RESULT (stmt)))) - continue; - - return NULL; - } - else if (is_gimple_debug (stmt)) - continue; - else if (ret != NULL) - return NULL; - else - ret = stmt; - } - - return ret; -} - -/* Remove statement STMT, as well as the chain of assignments in that it is - used. */ - -void -pcom_worker::remove_stmt (gimple *stmt) -{ - tree name; - gimple *next; - gimple_stmt_iterator psi; - - if (gimple_code (stmt) == GIMPLE_PHI) - { - name = PHI_RESULT (stmt); - next = single_nonlooparound_use (name); - reset_debug_uses (stmt); - psi = gsi_for_stmt (stmt); - remove_phi_node (&psi, true); - - if (!next - || !gimple_assign_ssa_name_copy_p (next) - || gimple_assign_rhs1 (next) != name) - return; - - stmt = next; - } - - while (1) - { - gimple_stmt_iterator bsi; - - bsi = gsi_for_stmt (stmt); - - name = gimple_assign_lhs (stmt); - if (TREE_CODE (name) == SSA_NAME) - { - next = single_nonlooparound_use (name); - reset_debug_uses (stmt); - } - else - { - /* This is a store to be eliminated. */ - gcc_assert (gimple_vdef (stmt) != NULL); - next = NULL; - } - - unlink_stmt_vdef (stmt); - gsi_remove (&bsi, true); - release_defs (stmt); - - if (!next - || !gimple_assign_ssa_name_copy_p (next) - || gimple_assign_rhs1 (next) != name) - return; - - stmt = next; - } -} - -/* Perform the predictive commoning optimization for a chain CHAIN. - Uids of the newly created temporary variables are marked in TMP_VARS.*/ - -void -pcom_worker::execute_pred_commoning_chain (chain_p chain, - bitmap tmp_vars) -{ - unsigned i; - dref a; - tree var; - bool in_lhs; - - if (chain->combined) - { - /* For combined chains, just remove the statements that are used to - compute the values of the expression (except for the root one). - We delay this until after all chains are processed. */ - } - else if (chain->type == CT_STORE_STORE) - { - if (chain->length > 0) - { - if (chain->inv_store_elimination) - { - /* If dead stores in this chain only store loop invariant - values, we can simply record the invariant value and use - it directly after loop. */ - initialize_root_vars_store_elim_1 (chain); - } - else - { - /* If dead stores in this chain store loop variant values, - we need to set up the variables by loading from memory - before loop and propagating it with PHI nodes. */ - initialize_root_vars_store_elim_2 (m_loop, chain, tmp_vars); - } - - /* For inter-iteration store elimination chain, stores at each - distance in loop's last (chain->length - 1) iterations can't - be eliminated, because there is no following killing store. - We need to generate these stores after loop. */ - finalize_eliminated_stores (m_loop, chain); - } - - bool last_store_p = true; - for (i = chain->refs.length (); i > 0; i--) - { - a = chain->refs[i - 1]; - /* Preserve the last store of the chain. Eliminate other stores - which are killed by the last one. */ - if (DR_IS_WRITE (a->ref)) - { - if (last_store_p) - last_store_p = false; - else - remove_stmt (a->stmt); - - continue; - } - - /* Any load in Store-Store chain must be dominated by a previous - store, we replace the load reference with rhs of the store. */ - dref b = get_chain_last_write_before_load (chain, i - 1); - gcc_assert (b != NULL); - var = gimple_assign_rhs1 (b->stmt); - replace_ref_with (a->stmt, var, false, false); - } - } - else - { - /* For non-combined chains, set up the variables that hold its value. */ - initialize_root_vars (m_loop, chain, tmp_vars); - a = get_chain_root (chain); - in_lhs = (chain->type == CT_STORE_LOAD - || chain->type == CT_COMBINATION); - replace_ref_with (a->stmt, chain->vars[chain->length], true, in_lhs); - - /* Replace the uses of the original references by these variables. */ - for (i = 1; chain->refs.iterate (i, &a); i++) - { - var = chain->vars[chain->length - a->distance]; - replace_ref_with (a->stmt, var, false, false); - } - } -} - -/* Determines the unroll factor necessary to remove as many temporary variable - copies as possible. CHAINS is the list of chains that will be - optimized. */ - -static unsigned -determine_unroll_factor (const vec<chain_p> &chains) -{ - chain_p chain; - unsigned factor = 1, af, nfactor, i; - unsigned max = param_max_unroll_times; - - FOR_EACH_VEC_ELT (chains, i, chain) - { - if (chain->type == CT_INVARIANT) - continue; - /* For now we can't handle unrolling when eliminating stores. */ - else if (chain->type == CT_STORE_STORE) - return 1; - - if (chain->combined) - { - /* For combined chains, we can't handle unrolling if we replace - looparound PHIs. */ - dref a; - unsigned j; - for (j = 1; chain->refs.iterate (j, &a); j++) - if (gimple_code (a->stmt) == GIMPLE_PHI) - return 1; - continue; - } - - /* The best unroll factor for this chain is equal to the number of - temporary variables that we create for it. */ - af = chain->length; - if (chain->has_max_use_after) - af++; - - nfactor = factor * af / gcd (factor, af); - if (nfactor <= max) - factor = nfactor; - } - - return factor; -} - -/* Perform the predictive commoning optimization for chains. - Uids of the newly created temporary variables are marked in TMP_VARS. */ - -void -pcom_worker::execute_pred_commoning (bitmap tmp_vars) -{ - chain_p chain; - unsigned i; - - FOR_EACH_VEC_ELT (m_chains, i, chain) - { - if (chain->type == CT_INVARIANT) - execute_load_motion (m_loop, chain, tmp_vars); - else - execute_pred_commoning_chain (chain, tmp_vars); - } - - FOR_EACH_VEC_ELT (m_chains, i, chain) - { - if (chain->type == CT_INVARIANT) - ; - else if (chain->combined) - { - /* For combined chains, just remove the statements that are used to - compute the values of the expression (except for the root one). */ - dref a; - unsigned j; - for (j = 1; chain->refs.iterate (j, &a); j++) - remove_stmt (a->stmt); - } - } -} - -/* For each reference in CHAINS, if its defining statement is - phi node, record the ssa name that is defined by it. */ - -static void -replace_phis_by_defined_names (vec<chain_p> &chains) -{ - chain_p chain; - dref a; - unsigned i, j; - - FOR_EACH_VEC_ELT (chains, i, chain) - FOR_EACH_VEC_ELT (chain->refs, j, a) - { - if (gimple_code (a->stmt) == GIMPLE_PHI) - { - a->name_defined_by_phi = PHI_RESULT (a->stmt); - a->stmt = NULL; - } - } -} - -/* For each reference in CHAINS, if name_defined_by_phi is not - NULL, use it to set the stmt field. */ - -static void -replace_names_by_phis (vec<chain_p> chains) -{ - chain_p chain; - dref a; - unsigned i, j; - - FOR_EACH_VEC_ELT (chains, i, chain) - FOR_EACH_VEC_ELT (chain->refs, j, a) - if (a->stmt == NULL) - { - a->stmt = SSA_NAME_DEF_STMT (a->name_defined_by_phi); - gcc_assert (gimple_code (a->stmt) == GIMPLE_PHI); - a->name_defined_by_phi = NULL_TREE; - } -} - -/* Wrapper over execute_pred_commoning, to pass it as a callback - to tree_transform_and_unroll_loop. */ - -struct epcc_data -{ - vec<chain_p> chains; - bitmap tmp_vars; - pcom_worker *worker; -}; - -static void -execute_pred_commoning_cbck (class loop *loop ATTRIBUTE_UNUSED, void *data) -{ - struct epcc_data *const dta = (struct epcc_data *) data; - pcom_worker *worker = dta->worker; - - /* Restore phi nodes that were replaced by ssa names before - tree_transform_and_unroll_loop (see detailed description in - tree_predictive_commoning_loop). */ - replace_names_by_phis (dta->chains); - worker->execute_pred_commoning (dta->tmp_vars); -} - -/* Base NAME and all the names in the chain of phi nodes that use it - on variable VAR. The phi nodes are recognized by being in the copies of - the header of the LOOP. */ - -static void -base_names_in_chain_on (class loop *loop, tree name, tree var) -{ - gimple *stmt, *phi; - imm_use_iterator iter; - - replace_ssa_name_symbol (name, var); - - while (1) - { - phi = NULL; - FOR_EACH_IMM_USE_STMT (stmt, iter, name) - { - if (gimple_code (stmt) == GIMPLE_PHI - && flow_bb_inside_loop_p (loop, gimple_bb (stmt))) - { - phi = stmt; - break; - } - } - if (!phi) - return; - - name = PHI_RESULT (phi); - replace_ssa_name_symbol (name, var); - } -} - -/* Given an unrolled LOOP after predictive commoning, remove the - register copies arising from phi nodes by changing the base - variables of SSA names. TMP_VARS is the set of the temporary variables - for those we want to perform this. */ - -static void -eliminate_temp_copies (class loop *loop, bitmap tmp_vars) -{ - edge e; - gphi *phi; - gimple *stmt; - tree name, use, var; - gphi_iterator psi; - - e = loop_latch_edge (loop); - for (psi = gsi_start_phis (loop->header); !gsi_end_p (psi); gsi_next (&psi)) - { - phi = psi.phi (); - name = PHI_RESULT (phi); - var = SSA_NAME_VAR (name); - if (!var || !bitmap_bit_p (tmp_vars, DECL_UID (var))) - continue; - use = PHI_ARG_DEF_FROM_EDGE (phi, e); - gcc_assert (TREE_CODE (use) == SSA_NAME); - - /* Base all the ssa names in the ud and du chain of NAME on VAR. */ - stmt = SSA_NAME_DEF_STMT (use); - while (gimple_code (stmt) == GIMPLE_PHI - /* In case we could not unroll the loop enough to eliminate - all copies, we may reach the loop header before the defining - statement (in that case, some register copies will be present - in loop latch in the final code, corresponding to the newly - created looparound phi nodes). */ - && gimple_bb (stmt) != loop->header) - { - gcc_assert (single_pred_p (gimple_bb (stmt))); - use = PHI_ARG_DEF (stmt, 0); - stmt = SSA_NAME_DEF_STMT (use); - } - - base_names_in_chain_on (loop, use, var); - } -} - -/* Returns true if CHAIN is suitable to be combined. */ - -static bool -chain_can_be_combined_p (chain_p chain) -{ - return (!chain->combined - && (chain->type == CT_LOAD || chain->type == CT_COMBINATION)); -} - -/* Returns the modify statement that uses NAME. Skips over assignment - statements, NAME is replaced with the actual name used in the returned - statement. */ - -gimple * -pcom_worker::find_use_stmt (tree *name) -{ - gimple *stmt; - tree rhs, lhs; - - /* Skip over assignments. */ - while (1) - { - stmt = single_nonlooparound_use (*name); - if (!stmt) - return NULL; - - if (gimple_code (stmt) != GIMPLE_ASSIGN) - return NULL; - - lhs = gimple_assign_lhs (stmt); - if (TREE_CODE (lhs) != SSA_NAME) - return NULL; - - if (gimple_assign_copy_p (stmt)) - { - rhs = gimple_assign_rhs1 (stmt); - if (rhs != *name) - return NULL; - - *name = lhs; - } - else if (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) - == GIMPLE_BINARY_RHS) - return stmt; - else - return NULL; - } -} - -/* Returns true if we may perform reassociation for operation CODE in TYPE. */ - -static bool -may_reassociate_p (tree type, enum tree_code code) -{ - if (FLOAT_TYPE_P (type) - && !flag_unsafe_math_optimizations) - return false; - - return (commutative_tree_code (code) - && associative_tree_code (code)); -} - -/* If the operation used in STMT is associative and commutative, go through the - tree of the same operations and returns its root. Distance to the root - is stored in DISTANCE. */ - -gimple * -pcom_worker::find_associative_operation_root (gimple *stmt, unsigned *distance) -{ - tree lhs; - gimple *next; - enum tree_code code = gimple_assign_rhs_code (stmt); - tree type = TREE_TYPE (gimple_assign_lhs (stmt)); - unsigned dist = 0; - - if (!may_reassociate_p (type, code)) - return NULL; - - while (1) - { - lhs = gimple_assign_lhs (stmt); - gcc_assert (TREE_CODE (lhs) == SSA_NAME); - - next = find_use_stmt (&lhs); - if (!next - || gimple_assign_rhs_code (next) != code) - break; - - stmt = next; - dist++; - } - - if (distance) - *distance = dist; - return stmt; -} - -/* Returns the common statement in that NAME1 and NAME2 have a use. If there - is no such statement, returns NULL_TREE. In case the operation used on - NAME1 and NAME2 is associative and commutative, returns the root of the - tree formed by this operation instead of the statement that uses NAME1 or - NAME2. */ - -gimple * -pcom_worker::find_common_use_stmt (tree *name1, tree *name2) -{ - gimple *stmt1, *stmt2; - - stmt1 = find_use_stmt (name1); - if (!stmt1) - return NULL; - - stmt2 = find_use_stmt (name2); - if (!stmt2) - return NULL; - - if (stmt1 == stmt2) - return stmt1; - - stmt1 = find_associative_operation_root (stmt1, NULL); - if (!stmt1) - return NULL; - stmt2 = find_associative_operation_root (stmt2, NULL); - if (!stmt2) - return NULL; - - return (stmt1 == stmt2 ? stmt1 : NULL); -} - -/* Checks whether R1 and R2 are combined together using CODE, with the result - in RSLT_TYPE, in order R1 CODE R2 if SWAP is false and in order R2 CODE R1 - if it is true. If CODE is ERROR_MARK, set these values instead. */ - -bool -pcom_worker::combinable_refs_p (dref r1, dref r2, - enum tree_code *code, bool *swap, tree *rslt_type) -{ - enum tree_code acode; - bool aswap; - tree atype; - tree name1, name2; - gimple *stmt; - - name1 = name_for_ref (r1); - name2 = name_for_ref (r2); - gcc_assert (name1 != NULL_TREE && name2 != NULL_TREE); - - stmt = find_common_use_stmt (&name1, &name2); - - if (!stmt - /* A simple post-dominance check - make sure the combination - is executed under the same condition as the references. */ - || (gimple_bb (stmt) != gimple_bb (r1->stmt) - && gimple_bb (stmt) != gimple_bb (r2->stmt))) - return false; - - acode = gimple_assign_rhs_code (stmt); - aswap = (!commutative_tree_code (acode) - && gimple_assign_rhs1 (stmt) != name1); - atype = TREE_TYPE (gimple_assign_lhs (stmt)); - - if (*code == ERROR_MARK) - { - *code = acode; - *swap = aswap; - *rslt_type = atype; - return true; - } - - return (*code == acode - && *swap == aswap - && *rslt_type == atype); -} - -/* Remove OP from the operation on rhs of STMT, and replace STMT with - an assignment of the remaining operand. */ - -static void -remove_name_from_operation (gimple *stmt, tree op) -{ - tree other_op; - gimple_stmt_iterator si; - - gcc_assert (is_gimple_assign (stmt)); - - if (gimple_assign_rhs1 (stmt) == op) - other_op = gimple_assign_rhs2 (stmt); - else - other_op = gimple_assign_rhs1 (stmt); - - si = gsi_for_stmt (stmt); - gimple_assign_set_rhs_from_tree (&si, other_op); - - /* We should not have reallocated STMT. */ - gcc_assert (gsi_stmt (si) == stmt); - - update_stmt (stmt); -} - -/* Reassociates the expression in that NAME1 and NAME2 are used so that they - are combined in a single statement, and returns this statement. */ - -gimple * -pcom_worker::reassociate_to_the_same_stmt (tree name1, tree name2) -{ - gimple *stmt1, *stmt2, *root1, *root2, *s1, *s2; - gassign *new_stmt, *tmp_stmt; - tree new_name, tmp_name, var, r1, r2; - unsigned dist1, dist2; - enum tree_code code; - tree type = TREE_TYPE (name1); - gimple_stmt_iterator bsi; - - stmt1 = find_use_stmt (&name1); - stmt2 = find_use_stmt (&name2); - root1 = find_associative_operation_root (stmt1, &dist1); - root2 = find_associative_operation_root (stmt2, &dist2); - code = gimple_assign_rhs_code (stmt1); - - gcc_assert (root1 && root2 && root1 == root2 - && code == gimple_assign_rhs_code (stmt2)); - - /* Find the root of the nearest expression in that both NAME1 and NAME2 - are used. */ - r1 = name1; - s1 = stmt1; - r2 = name2; - s2 = stmt2; - - while (dist1 > dist2) - { - s1 = find_use_stmt (&r1); - r1 = gimple_assign_lhs (s1); - dist1--; - } - while (dist2 > dist1) - { - s2 = find_use_stmt (&r2); - r2 = gimple_assign_lhs (s2); - dist2--; - } - - while (s1 != s2) - { - s1 = find_use_stmt (&r1); - r1 = gimple_assign_lhs (s1); - s2 = find_use_stmt (&r2); - r2 = gimple_assign_lhs (s2); - } - - /* Remove NAME1 and NAME2 from the statements in that they are used - currently. */ - remove_name_from_operation (stmt1, name1); - remove_name_from_operation (stmt2, name2); - - /* Insert the new statement combining NAME1 and NAME2 before S1, and - combine it with the rhs of S1. */ - var = create_tmp_reg (type, "predreastmp"); - new_name = make_ssa_name (var); - new_stmt = gimple_build_assign (new_name, code, name1, name2); - - var = create_tmp_reg (type, "predreastmp"); - tmp_name = make_ssa_name (var); - - /* Rhs of S1 may now be either a binary expression with operation - CODE, or gimple_val (in case that stmt1 == s1 or stmt2 == s1, - so that name1 or name2 was removed from it). */ - tmp_stmt = gimple_build_assign (tmp_name, gimple_assign_rhs_code (s1), - gimple_assign_rhs1 (s1), - gimple_assign_rhs2 (s1)); - - bsi = gsi_for_stmt (s1); - gimple_assign_set_rhs_with_ops (&bsi, code, new_name, tmp_name); - s1 = gsi_stmt (bsi); - update_stmt (s1); - - gsi_insert_before (&bsi, new_stmt, GSI_SAME_STMT); - gsi_insert_before (&bsi, tmp_stmt, GSI_SAME_STMT); - - return new_stmt; -} - -/* Returns the statement that combines references R1 and R2. In case R1 - and R2 are not used in the same statement, but they are used with an - associative and commutative operation in the same expression, reassociate - the expression so that they are used in the same statement. */ - -gimple * -pcom_worker::stmt_combining_refs (dref r1, dref r2) -{ - gimple *stmt1, *stmt2; - tree name1 = name_for_ref (r1); - tree name2 = name_for_ref (r2); - - stmt1 = find_use_stmt (&name1); - stmt2 = find_use_stmt (&name2); - if (stmt1 == stmt2) - return stmt1; - - return reassociate_to_the_same_stmt (name1, name2); -} - -/* Tries to combine chains CH1 and CH2 together. If this succeeds, the - description of the new chain is returned, otherwise we return NULL. */ - -chain_p -pcom_worker::combine_chains (chain_p ch1, chain_p ch2) -{ - dref r1, r2, nw; - enum tree_code op = ERROR_MARK; - bool swap = false; - chain_p new_chain; - unsigned i; - tree rslt_type = NULL_TREE; - - if (ch1 == ch2) - return NULL; - if (ch1->length != ch2->length) - return NULL; - - if (ch1->refs.length () != ch2->refs.length ()) - return NULL; - - for (i = 0; (ch1->refs.iterate (i, &r1) - && ch2->refs.iterate (i, &r2)); i++) - { - if (r1->distance != r2->distance) - return NULL; - - if (!combinable_refs_p (r1, r2, &op, &swap, &rslt_type)) - return NULL; - } - - if (swap) - std::swap (ch1, ch2); - - new_chain = XCNEW (struct chain); - new_chain->type = CT_COMBINATION; - new_chain->op = op; - new_chain->ch1 = ch1; - new_chain->ch2 = ch2; - new_chain->rslt_type = rslt_type; - new_chain->length = ch1->length; - - for (i = 0; (ch1->refs.iterate (i, &r1) - && ch2->refs.iterate (i, &r2)); i++) - { - nw = XCNEW (class dref_d); - nw->stmt = stmt_combining_refs (r1, r2); - nw->distance = r1->distance; - - new_chain->refs.safe_push (nw); - } - - ch1->combined = true; - ch2->combined = true; - return new_chain; -} - -/* Recursively update position information of all offspring chains to ROOT - chain's position information. */ - -static void -update_pos_for_combined_chains (chain_p root) -{ - chain_p ch1 = root->ch1, ch2 = root->ch2; - dref ref, ref1, ref2; - for (unsigned j = 0; (root->refs.iterate (j, &ref) - && ch1->refs.iterate (j, &ref1) - && ch2->refs.iterate (j, &ref2)); ++j) - ref1->pos = ref2->pos = ref->pos; - - if (ch1->type == CT_COMBINATION) - update_pos_for_combined_chains (ch1); - if (ch2->type == CT_COMBINATION) - update_pos_for_combined_chains (ch2); -} - -/* Returns true if statement S1 dominates statement S2. */ - -static bool -pcom_stmt_dominates_stmt_p (gimple *s1, gimple *s2) -{ - basic_block bb1 = gimple_bb (s1), bb2 = gimple_bb (s2); - - if (!bb1 || s1 == s2) - return true; - - if (bb1 == bb2) - return gimple_uid (s1) < gimple_uid (s2); - - return dominated_by_p (CDI_DOMINATORS, bb2, bb1); -} - -/* Try to combine the chains. */ - -void -pcom_worker::try_combine_chains () -{ - unsigned i, j; - chain_p ch1, ch2, cch; - auto_vec<chain_p> worklist; - bool combined_p = false; - - FOR_EACH_VEC_ELT (m_chains, i, ch1) - if (chain_can_be_combined_p (ch1)) - worklist.safe_push (ch1); - - while (!worklist.is_empty ()) - { - ch1 = worklist.pop (); - if (!chain_can_be_combined_p (ch1)) - continue; - - FOR_EACH_VEC_ELT (m_chains, j, ch2) - { - if (!chain_can_be_combined_p (ch2)) - continue; - - cch = combine_chains (ch1, ch2); - if (cch) - { - worklist.safe_push (cch); - m_chains.safe_push (cch); - combined_p = true; - break; - } - } - } - if (!combined_p) - return; - - /* Setup UID for all statements in dominance order. */ - basic_block *bbs = get_loop_body_in_dom_order (m_loop); - renumber_gimple_stmt_uids_in_blocks (bbs, m_loop->num_nodes); - free (bbs); - - /* Re-association in combined chains may generate statements different to - order of references of the original chain. We need to keep references - of combined chain in dominance order so that all uses will be inserted - after definitions. Note: - A) This is necessary for all combined chains. - B) This is only necessary for ZERO distance references because other - references inherit value from loop carried PHIs. - - We first update position information for all combined chains. */ - dref ref; - for (i = 0; m_chains.iterate (i, &ch1); ++i) - { - if (ch1->type != CT_COMBINATION || ch1->combined) - continue; - - for (j = 0; ch1->refs.iterate (j, &ref); ++j) - ref->pos = gimple_uid (ref->stmt); - - update_pos_for_combined_chains (ch1); - } - /* Then sort references according to newly updated position information. */ - for (i = 0; m_chains.iterate (i, &ch1); ++i) - { - if (ch1->type != CT_COMBINATION && !ch1->combined) - continue; - - /* Find the first reference with non-ZERO distance. */ - if (ch1->length == 0) - j = ch1->refs.length(); - else - { - for (j = 0; ch1->refs.iterate (j, &ref); ++j) - if (ref->distance != 0) - break; - } - - /* Sort all ZERO distance references by position. */ - qsort (&ch1->refs[0], j, sizeof (ch1->refs[0]), order_drefs_by_pos); - - if (ch1->combined) - continue; - - /* For ZERO length chain, has_max_use_after must be true since root - combined stmt must dominates others. */ - if (ch1->length == 0) - { - ch1->has_max_use_after = true; - continue; - } - /* Check if there is use at max distance after root for combined chains - and set flag accordingly. */ - ch1->has_max_use_after = false; - gimple *root_stmt = get_chain_root (ch1)->stmt; - for (j = 1; ch1->refs.iterate (j, &ref); ++j) - { - if (ref->distance == ch1->length - && !pcom_stmt_dominates_stmt_p (ref->stmt, root_stmt)) - { - ch1->has_max_use_after = true; - break; - } - } - } -} - -/* Prepare initializers for store elimination CHAIN in LOOP. Returns false - if this is impossible because one of these initializers may trap, true - otherwise. */ - -static bool -prepare_initializers_chain_store_elim (class loop *loop, chain_p chain) -{ - unsigned i, n = chain->length; - - /* For now we can't eliminate stores if some of them are conditional - executed. */ - if (!chain->all_always_accessed) - return false; - - /* Nothing to intialize for intra-iteration store elimination. */ - if (n == 0 && chain->type == CT_STORE_STORE) - return true; - - /* For store elimination chain, there is nothing to initialize if stores - to be eliminated only store loop invariant values into memory. */ - if (chain->type == CT_STORE_STORE - && is_inv_store_elimination_chain (loop, chain)) - { - chain->inv_store_elimination = true; - return true; - } - - chain->inits.create (n); - chain->inits.safe_grow_cleared (n, true); - - /* For store eliminatin chain like below: - - for (i = 0; i < len; i++) - { - a[i] = 1; - // a[i + 1] = ... - a[i + 2] = 3; - } - - store to a[i + 1] is missed in loop body, it acts like bubbles. The - content of a[i + 1] remain the same if the loop iterates fewer times - than chain->length. We need to set up root variables for such stores - by loading from memory before loop. Note we only need to load bubble - elements because loop body is guaranteed to be executed at least once - after loop's preheader edge. */ - auto_vec<bool> bubbles; - bubbles.safe_grow_cleared (n + 1, true); - for (i = 0; i < chain->refs.length (); i++) - bubbles[chain->refs[i]->distance] = true; - - struct data_reference *dr = get_chain_root (chain)->ref; - for (i = 0; i < n; i++) - { - if (bubbles[i]) - continue; - - gimple_seq stmts = NULL; - - tree init = ref_at_iteration (dr, (int) 0 - i, &stmts); - if (stmts) - gimple_seq_add_seq_without_update (&chain->init_seq, stmts); - - chain->inits[i] = init; - } - - return true; -} - -/* Prepare initializers for CHAIN. Returns false if this is impossible - because one of these initializers may trap, true otherwise. */ - -bool -pcom_worker::prepare_initializers_chain (chain_p chain) -{ - unsigned i, n = (chain->type == CT_INVARIANT) ? 1 : chain->length; - struct data_reference *dr = get_chain_root (chain)->ref; - tree init; - dref laref; - edge entry = loop_preheader_edge (m_loop); - - if (chain->type == CT_STORE_STORE) - return prepare_initializers_chain_store_elim (m_loop, chain); - - /* Find the initializers for the variables, and check that they cannot - trap. */ - chain->inits.create (n); - for (i = 0; i < n; i++) - chain->inits.quick_push (NULL_TREE); - - /* If we have replaced some looparound phi nodes, use their initializers - instead of creating our own. */ - FOR_EACH_VEC_ELT (chain->refs, i, laref) - { - if (gimple_code (laref->stmt) != GIMPLE_PHI) - continue; - - gcc_assert (laref->distance > 0); - chain->inits[n - laref->distance] - = PHI_ARG_DEF_FROM_EDGE (laref->stmt, entry); - } - - for (i = 0; i < n; i++) - { - gimple_seq stmts = NULL; - - if (chain->inits[i] != NULL_TREE) - continue; - - init = ref_at_iteration (dr, (int) i - n, &stmts); - if (!chain->all_always_accessed && tree_could_trap_p (init)) - { - gimple_seq_discard (stmts); - return false; - } - - if (stmts) - gimple_seq_add_seq_without_update (&chain->init_seq, stmts); - - chain->inits[i] = init; - } - - return true; -} - -/* Prepare initializers for chains, and free chains that cannot - be used because the initializers might trap. */ - -void -pcom_worker::prepare_initializers () -{ - chain_p chain; - unsigned i; - - for (i = 0; i < m_chains.length (); ) - { - chain = m_chains[i]; - if (prepare_initializers_chain (chain)) - i++; - else - { - release_chain (chain); - m_chains.unordered_remove (i); - } - } -} - -/* Generates finalizer memory references for CHAIN. Returns true - if finalizer code for CHAIN can be generated, otherwise false. */ - -bool -pcom_worker::prepare_finalizers_chain (chain_p chain) -{ - unsigned i, n = chain->length; - struct data_reference *dr = get_chain_root (chain)->ref; - tree fini, niters = number_of_latch_executions (m_loop); - - /* For now we can't eliminate stores if some of them are conditional - executed. */ - if (!chain->all_always_accessed) - return false; - - chain->finis.create (n); - for (i = 0; i < n; i++) - chain->finis.quick_push (NULL_TREE); - - /* We never use looparound phi node for store elimination chains. */ - - /* Find the finalizers for the variables, and check that they cannot - trap. */ - for (i = 0; i < n; i++) - { - gimple_seq stmts = NULL; - gcc_assert (chain->finis[i] == NULL_TREE); - - if (TREE_CODE (niters) != INTEGER_CST && TREE_CODE (niters) != SSA_NAME) - { - niters = unshare_expr (niters); - niters = force_gimple_operand (niters, &stmts, true, NULL); - if (stmts) - { - gimple_seq_add_seq_without_update (&chain->fini_seq, stmts); - stmts = NULL; - } - } - fini = ref_at_iteration (dr, (int) 0 - i, &stmts, niters); - if (stmts) - gimple_seq_add_seq_without_update (&chain->fini_seq, stmts); - - chain->finis[i] = fini; - } - - return true; -} - -/* Generates finalizer memory reference for chains. Returns true if - finalizer code generation for chains breaks loop closed ssa form. */ - -bool -pcom_worker::prepare_finalizers () -{ - chain_p chain; - unsigned i; - bool loop_closed_ssa = false; - - for (i = 0; i < m_chains.length ();) - { - chain = m_chains[i]; - - /* Finalizer is only necessary for inter-iteration store elimination - chains. */ - if (chain->length == 0 || chain->type != CT_STORE_STORE) - { - i++; - continue; - } - - if (prepare_finalizers_chain (chain)) - { - i++; - /* Be conservative, assume loop closed ssa form is corrupted - by store-store chain. Though it's not always the case if - eliminated stores only store loop invariant values into - memory. */ - loop_closed_ssa = true; - } - else - { - release_chain (chain); - m_chains.unordered_remove (i); - } - } - return loop_closed_ssa; -} - -/* Insert all initializing gimple stmts into LOOP's entry edge. */ - -static void -insert_init_seqs (class loop *loop, vec<chain_p> &chains) -{ - unsigned i; - edge entry = loop_preheader_edge (loop); - - for (i = 0; i < chains.length (); ++i) - if (chains[i]->init_seq) - { - gsi_insert_seq_on_edge_immediate (entry, chains[i]->init_seq); - chains[i]->init_seq = NULL; - } -} - -/* Performs predictive commoning for LOOP. Sets bit 1<<1 of return value - if LOOP was unrolled; Sets bit 1<<2 of return value if loop closed ssa - form was corrupted. Non-zero return value indicates some changes were - applied to this loop. */ - -unsigned -pcom_worker::tree_predictive_commoning_loop (bool allow_unroll_p) -{ - struct component *components; - unsigned unroll_factor = 0; - class tree_niter_desc desc; - bool unroll = false, loop_closed_ssa = false; - - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, "Processing loop %d\n", m_loop->num); - - /* Nothing for predicitive commoning if loop only iterates 1 time. */ - if (get_max_loop_iterations_int (m_loop) == 0) - { - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, "Loop iterates only 1 time, nothing to do.\n"); - - return 0; - } - - /* Find the data references and split them into components according to their - dependence relations. */ - auto_vec<loop_p, 3> loop_nest; - if (!compute_data_dependences_for_loop (m_loop, true, &loop_nest, &m_datarefs, - &m_dependences)) - { - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, "Cannot analyze data dependencies\n"); - return 0; - } - - if (dump_file && (dump_flags & TDF_DETAILS)) - dump_data_dependence_relations (dump_file, m_dependences); - - components = split_data_refs_to_components (); - - loop_nest.release (); - if (!components) - return 0; - - if (dump_file && (dump_flags & TDF_DETAILS)) - { - fprintf (dump_file, "Initial state:\n\n"); - dump_components (dump_file, components); - } - - /* Find the suitable components and split them into chains. */ - components = filter_suitable_components (components); - - auto_bitmap tmp_vars; - determine_roots (components); - release_components (components); - - if (!m_chains.exists ()) - { - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, - "Predictive commoning failed: no suitable chains\n"); - return 0; - } - - prepare_initializers (); - loop_closed_ssa = prepare_finalizers (); - - /* Try to combine the chains that are always worked with together. */ - try_combine_chains (); - - insert_init_seqs (m_loop, m_chains); - - if (dump_file && (dump_flags & TDF_DETAILS)) - { - fprintf (dump_file, "Before commoning:\n\n"); - dump_chains (dump_file, m_chains); - } - - if (allow_unroll_p) - /* Determine the unroll factor, and if the loop should be unrolled, ensure - that its number of iterations is divisible by the factor. */ - unroll_factor = determine_unroll_factor (m_chains); - - if (unroll_factor > 1) - unroll = can_unroll_loop_p (m_loop, unroll_factor, &desc); - - /* Execute the predictive commoning transformations, and possibly unroll the - loop. */ - if (unroll) - { - struct epcc_data dta; - - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, "Unrolling %u times.\n", unroll_factor); - - dta.tmp_vars = tmp_vars; - dta.chains = m_chains.to_vec_legacy (); - dta.worker = this; - - /* Cfg manipulations performed in tree_transform_and_unroll_loop before - execute_pred_commoning_cbck is called may cause phi nodes to be - reallocated, which is a problem since CHAINS may point to these - statements. To fix this, we store the ssa names defined by the - phi nodes here instead of the phi nodes themselves, and restore - the phi nodes in execute_pred_commoning_cbck. A bit hacky. */ - replace_phis_by_defined_names (m_chains); - - tree_transform_and_unroll_loop (m_loop, unroll_factor, &desc, - execute_pred_commoning_cbck, &dta); - eliminate_temp_copies (m_loop, tmp_vars); - } - else - { - if (dump_file && (dump_flags & TDF_DETAILS)) - fprintf (dump_file, - "Executing predictive commoning without unrolling.\n"); - execute_pred_commoning (tmp_vars); - } - - return (unroll ? 2 : 1) | (loop_closed_ssa ? 4 : 1); -} - -/* Runs predictive commoning. */ - -unsigned -tree_predictive_commoning (bool allow_unroll_p) -{ - unsigned ret = 0, changed = 0; - - initialize_original_copy_tables (); - for (auto loop : loops_list (cfun, LI_ONLY_INNERMOST)) - if (optimize_loop_for_speed_p (loop)) - { - pcom_worker w(loop); - changed |= w.tree_predictive_commoning_loop (allow_unroll_p); - } - free_original_copy_tables (); - - if (changed > 0) - { - ret = TODO_update_ssa_only_virtuals; - - /* Some loop(s) got unrolled. */ - if (changed > 1) - { - scev_reset (); - - /* Need to fix up loop closed SSA. */ - if (changed >= 4) - rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); - - ret |= TODO_cleanup_cfg; - } - } - - return ret; -} - -/* Predictive commoning Pass. */ - -static unsigned -run_tree_predictive_commoning (struct function *fun, bool allow_unroll_p) -{ - if (number_of_loops (fun) <= 1) - return 0; - - return tree_predictive_commoning (allow_unroll_p); -} - -namespace { - -const pass_data pass_data_predcom = -{ - GIMPLE_PASS, /* type */ - "pcom", /* name */ - OPTGROUP_LOOP, /* optinfo_flags */ - TV_PREDCOM, /* tv_id */ - PROP_cfg, /* properties_required */ - 0, /* properties_provided */ - 0, /* properties_destroyed */ - 0, /* todo_flags_start */ - 0, /* todo_flags_finish */ -}; - -class pass_predcom : public gimple_opt_pass -{ -public: - pass_predcom (gcc::context *ctxt) - : gimple_opt_pass (pass_data_predcom, ctxt) - {} - - /* opt_pass methods: */ - virtual bool - gate (function *) - { - if (flag_predictive_commoning != 0) - return true; - /* Loop vectorization enables predictive commoning implicitly - only if predictive commoning isn't set explicitly, and it - doesn't allow unrolling. */ - if (flag_tree_loop_vectorize - && !OPTION_SET_P (flag_predictive_commoning)) - return true; - - return false; - } - - virtual unsigned int - execute (function *fun) - { - bool allow_unroll_p = flag_predictive_commoning != 0; - return run_tree_predictive_commoning (fun, allow_unroll_p); - } - -}; // class pass_predcom - -} // anon namespace - -gimple_opt_pass * -make_pass_predcom (gcc::context *ctxt) -{ - return new pass_predcom (ctxt); -} |