aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-into-ssa.c
diff options
context:
space:
mode:
authorGiovanni Bajo <giovannibajo@gcc.gnu.org>2004-09-09 07:54:12 +0000
committerNathan Sidwell <nathan@gcc.gnu.org>2004-09-09 07:54:12 +0000
commit1e128c5f7b58721f49ba367788e518355747dc04 (patch)
tree55c4658394013a7e952ce866d97d939e911a7ce4 /gcc/tree-into-ssa.c
parentc557edf447d02a1bace4e84cb4515e1de06be4d9 (diff)
downloadgcc-1e128c5f7b58721f49ba367788e518355747dc04.zip
gcc-1e128c5f7b58721f49ba367788e518355747dc04.tar.gz
gcc-1e128c5f7b58721f49ba367788e518355747dc04.tar.bz2
targhooks.c (default_unwind_emit, [...]): Use gcc_assert, gcc_unreachable & internal_error instead of abort.
* targhooks.c (default_unwind_emit, default_scalar_mode_supported_p): Use gcc_assert, gcc_unreachable & internal_error instead of abort. * timevar.c (timevar_push, timevar_pop, timevar_start, timevar_stop): Likewise. * toplev.c (default_pch_valid_p): Likewise. * tracer.c (tail_duplicate): Likewise. * tree-alias-common.c (get_alias_var_decl, get_values_from_constructor, create_alias_var, delete_alias_vars, empty_points_to_set, same_points_to_set, ptr_may_alias_var): Likewise. * tree.c (tree_size, make_node_stat, copy_node_stat, build_int_cst_wide, integer_all_onesp, list_length, chainon, tree_node_structure, type_contains_placeholder_p, substitute_in_expr, substitute_placeholder_in_expr, tabilize_reference_1, build0_stat, build1_stat, build2_stat, build3_stat, build4_stat, is_attribute_p, lookup_attribute, type_hash_canon, host_integerp, iterative_hash_expr, build_method_type_directly, decl_type_context, get_callee_fndecl, get_set_constructor_bits, build_vector_type_for_mode, int_cst_value, tree_fold_gcd): Likewise. * tree-cfg.c (create_bb, make_ctrl_stmt_edges, make_exit_edges, make_cond_expr_edges, group_case_labels, tree_merge_blocks, cleanup_control_expr_graph, find_taken_edge, find_taken_edge_switch_expr, phi_alternatives_equal, is_ctrl_altering_stmt, disband_implicit_edges, set_bb_for_stmt, stmt_for_bsi, tree_find_edge_insert_loc, bsi_insert_on_edge_immediate, tree_split_edge, tree_verify_flow_info, thread_jumps, tree_redirect_edge_and_branch, tree_flow_call_edges_add): Likewise. * tree-chrec.c (chrec_fold_poly_cst, chrec_fold_plus_poly_poly, chrec_fold_multiply_poly_poly): Likewise. * tree-complex.c (extract_component, expand_complex_division, expand_complex_comparison, expand_complex_operations_1, build_replicated_const, expand_vector_operations_1): Likewise. * tree-data-ref.c (tree_fold_bezout, build_classic_dist_vector, build_classic_dir_vector): Likewise. * tree-dfa.c (compute_immediate_uses_for_phi, compute_immediate_uses_for_stmt, create_var_ann, create_stmt_ann, create_tree_ann, collect_dfa_stats, get_virtual_var): Likewise. * tree-dump.c (dequeue_and_dump): Likewise. * tree-eh.c (record_stmt_eh_region, add_stmt_to_eh_region, record_in_finally_tree, replace_goto_queue_1, maybe_record_in_goto_queue, verify_norecord_switch_expr, do_return_redirection): Likewise. * tree-if-conv.c (tree_if_convert_stmt, tree_if_convert_cond_expr, add_to_dst_predicate_list, find_phi_replacement_condition, replace_phi_with_cond_modify_expr, get_loop_body_in_if_conv_order): Likewise. * tree-inline.c (remap_decl, remap_type, remap_decls, copy_body_r, initialize_inlined_parameters, declare_return_variable, estimate_num_insns_1, expand_call_inline, expand_calls_inline, optimize_inline_calls, copy_tree_r): Likewise. * tree-into-ssa.c (rewrite_initialize_block_local_data, rewrite_stmt, ssa_rewrite_stmt, rewrite_into_ssa): Likewise. * tree-iterator.c (alloc_stmt_list, tsi_link_before, tsi_link_after, tsi_split_statement_list_after, tsi_split_statement_list_before): Likewise. * tree-mudflap.c (mf_varname_tree): Likewise. * tree-nested.c (create_tmp_var_for, lookup_field_for_decl, lookup_tramp_for_decl, convert_all_function_calls): Likewise. * tree-optimize.c (tree_rest_of_compilation): Likewise. * tree-outof-ssa.c (create_temp, eliminate_build, eliminate_phi, coalesce_abnormal_edges, coalesce_ssa_name, eliminate_virtual_phis, free_temp_expr_table, add_dependance, finish_expr, rewrite_trees): Likewise. * tree-phinodes.c (resize_phi_node, add_phi_arg, remove_all_phi_nodes_for): Likewise. * tree-pretty-print.c (op_prio, print_call_name): Likewise. * tree-profile.c (tree_gen_interval_profiler, tree_gen_pow2_profiler, tree_gen_one_value_profiler, tree_gen_const_delta_profiler): Likewise. * tree-sra.c (type_can_instantiate_all_elements, sra_hash_tree, sra_elt_eq, sra_walk_expr, instantiate_missing_elements, generate_one_element_ref, generate_element_copy, generate_element_zero, scalarize_copy, scalarize_init, scalarize_ldst): Likewise. * tree-ssa-alias.c (delete_alias_info, group_aliases, may_alias_p, add_may_alias, add_pointed_to_expr, add_pointed_to_var, collect_points_to_info_r, get_tmt_for, get_ptr_info): Likewise. * tree-ssa.c (walk_use_def_chains, check_phi_redundancy): Likewise. * tree-ssa-ccp.c (dump_lattice_value, get_default_value, get_value, set_lattice_value, likely_value, ccp_visit_phi_node, visit_assignment, widen_bitfield, ccp_fold_builtin): Likewise. * tree-ssa-copy.c (may_propagate_copy, merge_alias_info, replace_exp_1, propagate_tree_value): Likewise. * tree-ssa-copyrename.c (copy_rename_partition_coalesce): Likewise. * tree-ssa-dce.c (set_control_dependence_map_bit, find_control_dependence, find_pdom, mark_operand_necessary, mark_stmt_if_obviously_necessary, mark_control_dependent_edges_necessary, remove_dead_stmt): Likewise. * tree-ssa-dom.c (dom_opt_initialize_block_local_data, simplify_switch_and_lookup_avail_expr, cprop_into_successor_phis, eliminate_redundant_computations, avail_expr_eq): Likewise. * tree-ssa-dse.c (fix_stmt_v_may_defs): Likewise. * tree-ssa-loop-ch.c (should_duplicate_loop_header_p, duplicate_blocks): Likewise. * tree-ssa-loop-im.c (for_each_index, set_level, is_call_clobbered_ref): Likewise. * tree-ssa-loop-ivopts.c (dump_use, divide, stmt_after_ip_normal_pos, stmt_after_increment, set_iv, contains_abnormal_ssa_name_p, find_interesting_uses_outer_or_nonlin, add_derived_ivs_candidates, peel_address, ptr_difference_cost, may_replace_final_value, determine_use_iv_cost, rewrite_use_nonlinear_expr, rewrite_use_outer, rewrite_use, rewrite_uses): Likewise. * tree-ssa-loop-manip.c (rewrite_into_loop_closed_ssa, check_loop_closed_ssa_use): Likewise. * tree-ssanames.c (make_ssa_name): Likewise. * tree-ssa-operands.c (finalize_ssa_defs, finalize_ssa_uses, finalize_ssa_v_must_defs, finalize_ssa_stmt_operands, get_stmt_operands, get_expr_operands, get_asm_expr_operands, get_indirect_ref_operands, add_stmt_operand): Likewise. * tree-ssa-pre.c (value_exists_in_set_bitmap, value_remove_from_set_bitmap, bitmap_insert_into_set, insert_into_set, phi_translate, valid_in_set, compute_antic, find_or_generate_expression, create_expression_by_pieces, insert_aux, create_value_expr_from, eliminate): Likewise. * tree-ssa-propagate.c (cfg_blocks_get): Likewise. * tree-ssa-threadupdate.c (remove_last_stmt_and_useless_edges): Likewise. * tree-tailcall.c (independent_of_stmt_p, adjust_return_value, eliminate_tail_call): Likewise. * tree-vectorizer.c (vect_create_index_for_array_ref, vect_align_data_ref, vect_create_data_ref, vect_create_destination_var, vect_get_vec_def_for_operand, vect_finish_stmt_generation, vect_transform_stmt, vect_transform_loop_bound, vect_transform_loop, vect_analyze_operations): Likewise. * tree-vn.c (vn_compute, set_value_handle, get_value_handle): Likewise. * tree-flow-inline.h (var_ann, get_var_ann, get_def_from_ptr, get_use_op_ptr, immediate_use, phi_ssa_name_p, bsi_start, bsi_after_labels, bsi_last): Likewise. * tree-ssa-live.c (var_union, change_partition_var, create_ssa_var_map, calculate_live_on_entry, root_var_init, type_var_init, add_coalesce, sort_coalesce_list, pop_best_coalesce): Likewise. * tree-ssa-live.h (partition_is_global, live_entry_blocks, tpa_find_tree): Likewise. (register_ssa_partition_check): Declare. (register_ssa_partition): use it. * tree-ssa-live.c: Include errors.h. (register_ssa_partition_check): New. * tree-ssa-operands.c: Include errors.h. * Makefile.in (tree-ssa-operands.o): Depend on errors.h. Co-Authored-By: Nathan Sidwell <nathan@codesourcery.com> From-SVN: r87223
Diffstat (limited to 'gcc/tree-into-ssa.c')
-rw-r--r--gcc/tree-into-ssa.c19
1 files changed, 4 insertions, 15 deletions
diff --git a/gcc/tree-into-ssa.c b/gcc/tree-into-ssa.c
index 735d71f..bbec1b2 100644
--- a/gcc/tree-into-ssa.c
+++ b/gcc/tree-into-ssa.c
@@ -649,7 +649,6 @@ rewrite_initialize_block_local_data (struct dom_walk_data *walk_data ATTRIBUTE_U
basic_block bb ATTRIBUTE_UNUSED,
bool recycled ATTRIBUTE_UNUSED)
{
-#ifdef ENABLE_CHECKING
struct rewrite_block_data *bd
= (struct rewrite_block_data *)VARRAY_TOP_GENERIC_PTR (walk_data->block_data_stack);
@@ -657,9 +656,7 @@ rewrite_initialize_block_local_data (struct dom_walk_data *walk_data ATTRIBUTE_U
not cleared, then we are re-using a previously allocated entry. In
that case, we can also re-use the underlying virtual arrays. Just
make sure we clear them before using them! */
- if (recycled && bd->block_defs && VARRAY_ACTIVE_SIZE (bd->block_defs) > 0)
- abort ();
-#endif
+ gcc_assert (!recycled || !bd->block_defs || !(VARRAY_ACTIVE_SIZE (bd->block_defs) > 0));
}
@@ -1064,12 +1061,9 @@ rewrite_stmt (struct dom_walk_data *walk_data,
fprintf (dump_file, "\n");
}
-#if defined ENABLE_CHECKING
/* We have just scanned the code for operands. No statement should
be modified. */
- if (ann->modified)
- abort ();
-#endif
+ gcc_assert (!ann->modified);
/* Step 1. Rewrite USES and VUSES in the statement. */
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
@@ -1114,12 +1108,9 @@ ssa_rewrite_stmt (struct dom_walk_data *walk_data,
fprintf (dump_file, "\n");
}
-#if defined ENABLE_CHECKING
/* We have just scanned the code for operands. No statement should
be modified. */
- if (ann->modified)
- abort ();
-#endif
+ gcc_assert (!ann->modified);
/* Step 1. Rewrite USES and VUSES in the statement. */
FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
@@ -1421,9 +1412,7 @@ rewrite_into_ssa (bool all)
else
{
/* Initialize the array of variables to rename. */
-
- if (vars_to_rename == NULL)
- abort ();
+ gcc_assert (vars_to_rename);
if (bitmap_first_set_bit (vars_to_rename) < 0)
{
ref='#n488'>488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252
/* More subroutines needed by GCC output code on some machines.  */
/* Compile this one with gcc.  */
/* Copyright (C) 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
   2000, 2001, 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
   Free Software Foundation, Inc.

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.

You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
<http://www.gnu.org/licenses/>.  */

#include "tconfig.h"
#include "tsystem.h"
#include "coretypes.h"
#include "tm.h"

#ifdef HAVE_GAS_HIDDEN
#define ATTRIBUTE_HIDDEN  __attribute__ ((__visibility__ ("hidden")))
#else
#define ATTRIBUTE_HIDDEN
#endif

/* Work out the largest "word" size that we can deal with on this target.  */
#if MIN_UNITS_PER_WORD > 4
# define LIBGCC2_MAX_UNITS_PER_WORD 8
#elif (MIN_UNITS_PER_WORD > 2 \
       || (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
# define LIBGCC2_MAX_UNITS_PER_WORD 4
#else
# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
#endif

/* Work out what word size we are using for this compilation.
   The value can be set on the command line.  */
#ifndef LIBGCC2_UNITS_PER_WORD
#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
#endif

#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD

#include "libgcc2.h"

#ifdef DECLARE_LIBRARY_RENAMES
  DECLARE_LIBRARY_RENAMES
#endif

#if defined (L_negdi2)
DWtype
__negdi2 (DWtype u)
{
  const DWunion uu = {.ll = u};
  const DWunion w = { {.low = -uu.s.low,
		       .high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };

  return w.ll;
}
#endif

#ifdef L_addvsi3
Wtype
__addvSI3 (Wtype a, Wtype b)
{
  const Wtype w = (UWtype) a + (UWtype) b;

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__addvsi3 (SItype a, SItype b)
{
  const SItype w = (USItype) a + (USItype) b;

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif

#ifdef L_addvdi3
DWtype
__addvDI3 (DWtype a, DWtype b)
{
  const DWtype w = (UDWtype) a + (UDWtype) b;

  if (b >= 0 ? w < a : w > a)
    abort ();

  return w;
}
#endif

#ifdef L_subvsi3
Wtype
__subvSI3 (Wtype a, Wtype b)
{
  const Wtype w = (UWtype) a - (UWtype) b;

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__subvsi3 (SItype a, SItype b)
{
  const SItype w = (USItype) a - (USItype) b;

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif

#ifdef L_subvdi3
DWtype
__subvDI3 (DWtype a, DWtype b)
{
  const DWtype w = (UDWtype) a - (UDWtype) b;

  if (b >= 0 ? w > a : w < a)
    abort ();

  return w;
}
#endif

#ifdef L_mulvsi3
Wtype
__mulvSI3 (Wtype a, Wtype b)
{
  const DWtype w = (DWtype) a * (DWtype) b;

  if ((Wtype) (w >> W_TYPE_SIZE) != (Wtype) w >> (W_TYPE_SIZE - 1))
    abort ();

  return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
#undef WORD_SIZE
#define WORD_SIZE (sizeof (SItype) * BITS_PER_UNIT)
SItype
__mulvsi3 (SItype a, SItype b)
{
  const DItype w = (DItype) a * (DItype) b;

  if ((SItype) (w >> WORD_SIZE) != (SItype) w >> (WORD_SIZE-1))
    abort ();

  return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif

#ifdef L_negvsi2
Wtype
__negvSI2 (Wtype a)
{
  const Wtype w = -(UWtype) a;

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

   return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__negvsi2 (SItype a)
{
  const SItype w = -(USItype) a;

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

   return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif

#ifdef L_negvdi2
DWtype
__negvDI2 (DWtype a)
{
  const DWtype w = -(UDWtype) a;

  if (a >= 0 ? w > 0 : w < 0)
    abort ();

  return w;
}
#endif

#ifdef L_absvsi2
Wtype
__absvSI2 (Wtype a)
{
  Wtype w = a;

  if (a < 0)
#ifdef L_negvsi2
    w = __negvSI2 (a);
#else
    w = -(UWtype) a;

  if (w < 0)
    abort ();
#endif

   return w;
}
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
SItype
__absvsi2 (SItype a)
{
  SItype w = a;

  if (a < 0)
#ifdef L_negvsi2
    w = __negvsi2 (a);
#else
    w = -(USItype) a;

  if (w < 0)
    abort ();
#endif

   return w;
}
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
#endif

#ifdef L_absvdi2
DWtype
__absvDI2 (DWtype a)
{
  DWtype w = a;

  if (a < 0)
#ifdef L_negvdi2
    w = __negvDI2 (a);
#else
    w = -(UDWtype) a;

  if (w < 0)
    abort ();
#endif

  return w;
}
#endif

#ifdef L_mulvdi3
DWtype
__mulvDI3 (DWtype u, DWtype v)
{
  /* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
     but the checked multiplication needs only two.  */
  const DWunion uu = {.ll = u};
  const DWunion vv = {.ll = v};

  if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
    {
      /* u fits in a single Wtype.  */
      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
	{
	  /* v fits in a single Wtype as well.  */
	  /* A single multiplication.  No overflow risk.  */
	  return (DWtype) uu.s.low * (DWtype) vv.s.low;
	}
      else
	{
	  /* Two multiplications.  */
	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low};
	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.high};

	  if (vv.s.high < 0)
	    w1.s.high -= uu.s.low;
	  if (uu.s.low < 0)
	    w1.ll -= vv.ll;
	  w1.ll += (UWtype) w0.s.high;
	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
	    {
	      w0.s.high = w1.s.low;
	      return w0.ll;
	    }
	}
    }
  else
    {
      if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
	{
	  /* v fits into a single Wtype.  */
	  /* Two multiplications.  */
	  DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low};
	  DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
			* (UDWtype) (UWtype) vv.s.low};

	  if (uu.s.high < 0)
	    w1.s.high -= vv.s.low;
	  if (vv.s.low < 0)
	    w1.ll -= uu.ll;
	  w1.ll += (UWtype) w0.s.high;
	  if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
	    {
	      w0.s.high = w1.s.low;
	      return w0.ll;
	    }
	}
      else
	{
	  /* A few sign checks and a single multiplication.  */
	  if (uu.s.high >= 0)
	    {
	      if (vv.s.high >= 0)
		{
		  if (uu.s.high == 0 && vv.s.high == 0)
		    {
		      const DWtype w = (UDWtype) (UWtype) uu.s.low
			* (UDWtype) (UWtype) vv.s.low;
		      if (__builtin_expect (w >= 0, 1))
			return w;
		    }
		}
	      else
		{
		  if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
		    {
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};

		      ww.s.high -= uu.s.low;
		      if (__builtin_expect (ww.s.high < 0, 1))
			return ww.ll;
		    }
		}
	    }
	  else
	    {
	      if (vv.s.high >= 0)
		{
		  if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
		    {
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};

		      ww.s.high -= vv.s.low;
		      if (__builtin_expect (ww.s.high < 0, 1))
			return ww.ll;
		    }
		}
	      else
		{
		  if (uu.s.high == (Wtype) -1 && vv.s.high == (Wtype) - 1)
		    {
		      DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
				    * (UDWtype) (UWtype) vv.s.low};

		      ww.s.high -= uu.s.low;
		      ww.s.high -= vv.s.low;
		      if (__builtin_expect (ww.s.high >= 0, 1))
			return ww.ll;
		    }
		}
	    }
	}
    }

  /* Overflow.  */
  abort ();
}
#endif


/* Unless shift functions are defined with full ANSI prototypes,
   parameter b will be promoted to int if shift_count_type is smaller than an int.  */
#ifdef L_lshrdi3
DWtype
__lshrdi3 (DWtype u, shift_count_type b)
{
  if (b == 0)
    return u;

  const DWunion uu = {.ll = u};
  const shift_count_type bm = W_TYPE_SIZE - b;
  DWunion w;

  if (bm <= 0)
    {
      w.s.high = 0;
      w.s.low = (UWtype) uu.s.high >> -bm;
    }
  else
    {
      const UWtype carries = (UWtype) uu.s.high << bm;

      w.s.high = (UWtype) uu.s.high >> b;
      w.s.low = ((UWtype) uu.s.low >> b) | carries;
    }

  return w.ll;
}
#endif

#ifdef L_ashldi3
DWtype
__ashldi3 (DWtype u, shift_count_type b)
{
  if (b == 0)
    return u;

  const DWunion uu = {.ll = u};
  const shift_count_type bm = W_TYPE_SIZE - b;
  DWunion w;

  if (bm <= 0)
    {
      w.s.low = 0;
      w.s.high = (UWtype) uu.s.low << -bm;
    }
  else
    {
      const UWtype carries = (UWtype) uu.s.low >> bm;

      w.s.low = (UWtype) uu.s.low << b;
      w.s.high = ((UWtype) uu.s.high << b) | carries;
    }

  return w.ll;
}
#endif

#ifdef L_ashrdi3
DWtype
__ashrdi3 (DWtype u, shift_count_type b)
{
  if (b == 0)
    return u;

  const DWunion uu = {.ll = u};
  const shift_count_type bm = W_TYPE_SIZE - b;
  DWunion w;

  if (bm <= 0)
    {
      /* w.s.high = 1..1 or 0..0 */
      w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
      w.s.low = uu.s.high >> -bm;
    }
  else
    {
      const UWtype carries = (UWtype) uu.s.high << bm;

      w.s.high = uu.s.high >> b;
      w.s.low = ((UWtype) uu.s.low >> b) | carries;
    }

  return w.ll;
}
#endif

#ifdef L_bswapsi2
SItype
__bswapsi2 (SItype u)
{
  return ((((u) & 0xff000000) >> 24)
	  | (((u) & 0x00ff0000) >>  8)
	  | (((u) & 0x0000ff00) <<  8)
	  | (((u) & 0x000000ff) << 24));
}
#endif
#ifdef L_bswapdi2
DItype
__bswapdi2 (DItype u)
{
  return ((((u) & 0xff00000000000000ull) >> 56)
	  | (((u) & 0x00ff000000000000ull) >> 40)
	  | (((u) & 0x0000ff0000000000ull) >> 24)
	  | (((u) & 0x000000ff00000000ull) >>  8)
	  | (((u) & 0x00000000ff000000ull) <<  8)
	  | (((u) & 0x0000000000ff0000ull) << 24)
	  | (((u) & 0x000000000000ff00ull) << 40)
	  | (((u) & 0x00000000000000ffull) << 56));
}
#endif
#ifdef L_ffssi2
#undef int
int
__ffsSI2 (UWtype u)
{
  UWtype count;

  if (u == 0)
    return 0;

  count_trailing_zeros (count, u);
  return count + 1;
}
#endif

#ifdef L_ffsdi2
#undef int
int
__ffsDI2 (DWtype u)
{
  const DWunion uu = {.ll = u};
  UWtype word, count, add;

  if (uu.s.low != 0)
    word = uu.s.low, add = 0;
  else if (uu.s.high != 0)
    word = uu.s.high, add = W_TYPE_SIZE;
  else
    return 0;

  count_trailing_zeros (count, word);
  return count + add + 1;
}
#endif

#ifdef L_muldi3
DWtype
__muldi3 (DWtype u, DWtype v)
{
  const DWunion uu = {.ll = u};
  const DWunion vv = {.ll = v};
  DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};

  w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
	       + (UWtype) uu.s.high * (UWtype) vv.s.low);

  return w.ll;
}
#endif

#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
#if defined (sdiv_qrnnd)
#define L_udiv_w_sdiv
#endif
#endif

#ifdef L_udiv_w_sdiv
#if defined (sdiv_qrnnd)
#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
static inline __attribute__ ((__always_inline__))
#endif
UWtype
__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
{
  UWtype q, r;
  UWtype c0, c1, b1;

  if ((Wtype) d >= 0)
    {
      if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
	{
	  /* Dividend, divisor, and quotient are nonnegative.  */
	  sdiv_qrnnd (q, r, a1, a0, d);
	}
      else
	{
	  /* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d.  */
	  sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
	  /* Divide (c1*2^32 + c0) by d.  */
	  sdiv_qrnnd (q, r, c1, c0, d);
	  /* Add 2^31 to quotient.  */
	  q += (UWtype) 1 << (W_TYPE_SIZE - 1);
	}
    }
  else
    {
      b1 = d >> 1;			/* d/2, between 2^30 and 2^31 - 1 */
      c1 = a1 >> 1;			/* A/2 */
      c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);

      if (a1 < b1)			/* A < 2^32*b1, so A/2 < 2^31*b1 */
	{
	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  r = 2*r + (a0 & 1);		/* Remainder from A/(2*b1) */
	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else if (c1 < b1)			/* So 2^31 <= (A/2)/b1 < 2^32 */
	{
	  c1 = (b1 - 1) - c1;
	  c0 = ~c0;			/* logical NOT */

	  sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */

	  q = ~q;			/* (A/2)/b1 */
	  r = (b1 - 1) - r;

	  r = 2*r + (a0 & 1);		/* A/(2*b1) */

	  if ((d & 1) != 0)
	    {
	      if (r >= q)
		r = r - q;
	      else if (q - r <= d)
		{
		  r = r - q + d;
		  q--;
		}
	      else
		{
		  r = r - q + 2*d;
		  q -= 2;
		}
	    }
	}
      else				/* Implies c1 = b1 */
	{				/* Hence a1 = d - 1 = 2*b1 - 1 */
	  if (a0 >= -d)
	    {
	      q = -1;
	      r = a0 + d;
	    }
	  else
	    {
	      q = -2;
	      r = a0 + 2*d;
	    }
	}
    }

  *rp = r;
  return q;
}
#else
/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv.  */
UWtype
__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
	       UWtype a1 __attribute__ ((__unused__)),
	       UWtype a0 __attribute__ ((__unused__)),
	       UWtype d __attribute__ ((__unused__)))
{
  return 0;
}
#endif
#endif

#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
#define L_udivmoddi4
#endif

#ifdef L_clz
const UQItype __clz_tab[256] =
{
  0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
  6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
  8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
};
#endif

#ifdef L_clzsi2
#undef int
int
__clzSI2 (UWtype x)
{
  Wtype ret;

  count_leading_zeros (ret, x);

  return ret;
}
#endif

#ifdef L_clzdi2
#undef int
int
__clzDI2 (UDWtype x)
{
  const DWunion uu = {.ll = x};
  UWtype word;
  Wtype ret, add;

  if (uu.s.high)
    word = uu.s.high, add = 0;
  else
    word = uu.s.low, add = W_TYPE_SIZE;

  count_leading_zeros (ret, word);
  return ret + add;
}
#endif

#ifdef L_ctzsi2
#undef int
int
__ctzSI2 (UWtype x)
{
  Wtype ret;

  count_trailing_zeros (ret, x);

  return ret;
}
#endif

#ifdef L_ctzdi2
#undef int
int
__ctzDI2 (UDWtype x)
{
  const DWunion uu = {.ll = x};
  UWtype word;
  Wtype ret, add;

  if (uu.s.low)
    word = uu.s.low, add = 0;
  else
    word = uu.s.high, add = W_TYPE_SIZE;

  count_trailing_zeros (ret, word);
  return ret + add;
}
#endif

#ifdef L_clrsbsi2
#undef int
int
__clrsbSI2 (Wtype x)
{
  Wtype ret;

  if (x < 0)
    x = ~x;
  if (x == 0)
    return W_TYPE_SIZE - 1;
  count_leading_zeros (ret, x);
  return ret - 1;
}
#endif

#ifdef L_clrsbdi2
#undef int
int
__clrsbDI2 (DWtype x)
{
  const DWunion uu = {.ll = x};
  UWtype word;
  Wtype ret, add;

  if (uu.s.high == 0)
    word = uu.s.low, add = W_TYPE_SIZE;
  else if (uu.s.high == -1)
    word = ~uu.s.low, add = W_TYPE_SIZE;
  else if (uu.s.high >= 0)
    word = uu.s.high, add = 0;
  else
    word = ~uu.s.high, add = 0;

  if (word == 0)
    ret = W_TYPE_SIZE;
  else
    count_leading_zeros (ret, word);

  return ret + add - 1;
}
#endif

#ifdef L_popcount_tab
const UQItype __popcount_tab[256] =
{
    0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
    3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
};
#endif

#ifdef L_popcountsi2
#undef int
int
__popcountSI2 (UWtype x)
{
  int i, ret = 0;

  for (i = 0; i < W_TYPE_SIZE; i += 8)
    ret += __popcount_tab[(x >> i) & 0xff];

  return ret;
}
#endif

#ifdef L_popcountdi2
#undef int
int
__popcountDI2 (UDWtype x)
{
  int i, ret = 0;

  for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
    ret += __popcount_tab[(x >> i) & 0xff];

  return ret;
}
#endif

#ifdef L_paritysi2
#undef int
int
__paritySI2 (UWtype x)
{
#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
  x ^= x >> 32;
#endif
#if W_TYPE_SIZE > 16
  x ^= x >> 16;
#endif
  x ^= x >> 8;
  x ^= x >> 4;
  x &= 0xf;
  return (0x6996 >> x) & 1;
}
#endif

#ifdef L_paritydi2
#undef int
int
__parityDI2 (UDWtype x)
{
  const DWunion uu = {.ll = x};
  UWtype nx = uu.s.low ^ uu.s.high;

#if W_TYPE_SIZE > 64
# error "fill out the table"
#endif
#if W_TYPE_SIZE > 32
  nx ^= nx >> 32;
#endif
#if W_TYPE_SIZE > 16
  nx ^= nx >> 16;
#endif
  nx ^= nx >> 8;
  nx ^= nx >> 4;
  nx &= 0xf;
  return (0x6996 >> nx) & 1;
}
#endif

#ifdef L_udivmoddi4

#if (defined (L_udivdi3) || defined (L_divdi3) || \
     defined (L_umoddi3) || defined (L_moddi3))
static inline __attribute__ ((__always_inline__))
#endif
UDWtype
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
{
  const DWunion nn = {.ll = n};
  const DWunion dd = {.ll = d};
  DWunion rr;
  UWtype d0, d1, n0, n1, n2;
  UWtype q0, q1;
  UWtype b, bm;

  d0 = dd.s.low;
  d1 = dd.s.high;
  n0 = nn.s.low;
  n1 = nn.s.high;

#if !UDIV_NEEDS_NORMALIZATION
  if (d1 == 0)
    {
      if (d0 > n1)
	{
	  /* 0q = nn / 0D */

	  udiv_qrnnd (q0, n0, n1, n0, d0);
	  q1 = 0;

	  /* Remainder in n0.  */
	}
      else
	{
	  /* qq = NN / 0d */

	  if (d0 == 0)
	    d0 = 1 / d0;	/* Divide intentionally by zero.  */

	  udiv_qrnnd (q1, n1, 0, n1, d0);
	  udiv_qrnnd (q0, n0, n1, n0, d0);

	  /* Remainder in n0.  */
	}

      if (rp != 0)
	{
	  rr.s.low = n0;
	  rr.s.high = 0;
	  *rp = rr.ll;
	}
    }

#else /* UDIV_NEEDS_NORMALIZATION */

  if (d1 == 0)
    {
      if (d0 > n1)
	{
	  /* 0q = nn / 0D */

	  count_leading_zeros (bm, d0);

	  if (bm != 0)
	    {
	      /* Normalize, i.e. make the most significant bit of the
		 denominator set.  */

	      d0 = d0 << bm;
	      n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
	      n0 = n0 << bm;
	    }

	  udiv_qrnnd (q0, n0, n1, n0, d0);
	  q1 = 0;

	  /* Remainder in n0 >> bm.  */
	}
      else
	{
	  /* qq = NN / 0d */

	  if (d0 == 0)
	    d0 = 1 / d0;	/* Divide intentionally by zero.  */

	  count_leading_zeros (bm, d0);

	  if (bm == 0)
	    {
	      /* From (n1 >= d0) /\ (the most significant bit of d0 is set),
		 conclude (the most significant bit of n1 is set) /\ (the
		 leading quotient digit q1 = 1).

		 This special case is necessary, not an optimization.
		 (Shifts counts of W_TYPE_SIZE are undefined.)  */

	      n1 -= d0;
	      q1 = 1;
	    }
	  else
	    {
	      /* Normalize.  */

	      b = W_TYPE_SIZE - bm;

	      d0 = d0 << bm;
	      n2 = n1 >> b;
	      n1 = (n1 << bm) | (n0 >> b);
	      n0 = n0 << bm;

	      udiv_qrnnd (q1, n1, n2, n1, d0);
	    }

	  /* n1 != d0...  */

	  udiv_qrnnd (q0, n0, n1, n0, d0);

	  /* Remainder in n0 >> bm.  */
	}

      if (rp != 0)
	{
	  rr.s.low = n0 >> bm;
	  rr.s.high = 0;
	  *rp = rr.ll;
	}
    }
#endif /* UDIV_NEEDS_NORMALIZATION */

  else
    {
      if (d1 > n1)
	{
	  /* 00 = nn / DD */

	  q0 = 0;
	  q1 = 0;

	  /* Remainder in n1n0.  */
	  if (rp != 0)
	    {
	      rr.s.low = n0;
	      rr.s.high = n1;
	      *rp = rr.ll;
	    }
	}
      else
	{
	  /* 0q = NN / dd */

	  count_leading_zeros (bm, d1);
	  if (bm == 0)
	    {
	      /* From (n1 >= d1) /\ (the most significant bit of d1 is set),
		 conclude (the most significant bit of n1 is set) /\ (the
		 quotient digit q0 = 0 or 1).

		 This special case is necessary, not an optimization.  */

	      /* The condition on the next line takes advantage of that
		 n1 >= d1 (true due to program flow).  */
	      if (n1 > d1 || n0 >= d0)
		{
		  q0 = 1;
		  sub_ddmmss (n1, n0, n1, n0, d1, d0);
		}
	      else
		q0 = 0;

	      q1 = 0;

	      if (rp != 0)
		{
		  rr.s.low = n0;
		  rr.s.high = n1;
		  *rp = rr.ll;
		}
	    }
	  else
	    {
	      UWtype m1, m0;
	      /* Normalize.  */

	      b = W_TYPE_SIZE - bm;

	      d1 = (d1 << bm) | (d0 >> b);
	      d0 = d0 << bm;
	      n2 = n1 >> b;
	      n1 = (n1 << bm) | (n0 >> b);
	      n0 = n0 << bm;

	      udiv_qrnnd (q0, n1, n2, n1, d1);
	      umul_ppmm (m1, m0, q0, d0);

	      if (m1 > n1 || (m1 == n1 && m0 > n0))
		{
		  q0--;
		  sub_ddmmss (m1, m0, m1, m0, d1, d0);
		}

	      q1 = 0;

	      /* Remainder in (n1n0 - m1m0) >> bm.  */
	      if (rp != 0)
		{
		  sub_ddmmss (n1, n0, n1, n0, m1, m0);
		  rr.s.low = (n1 << b) | (n0 >> bm);
		  rr.s.high = n1 >> bm;
		  *rp = rr.ll;
		}
	    }
	}
    }

  const DWunion ww = {{.low = q0, .high = q1}};
  return ww.ll;
}
#endif

#ifdef L_divdi3
DWtype
__divdi3 (DWtype u, DWtype v)
{
  Wtype c = 0;
  DWunion uu = {.ll = u};
  DWunion vv = {.ll = v};
  DWtype w;

  if (uu.s.high < 0)
    c = ~c,
    uu.ll = -uu.ll;
  if (vv.s.high < 0)
    c = ~c,
    vv.ll = -vv.ll;

  w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
  if (c)
    w = -w;

  return w;
}
#endif

#ifdef L_moddi3
DWtype
__moddi3 (DWtype u, DWtype v)
{
  Wtype c = 0;
  DWunion uu = {.ll = u};
  DWunion vv = {.ll = v};
  DWtype w;

  if (uu.s.high < 0)
    c = ~c,
    uu.ll = -uu.ll;
  if (vv.s.high < 0)
    vv.ll = -vv.ll;

  (void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
  if (c)
    w = -w;

  return w;
}
#endif

#ifdef L_umoddi3
UDWtype
__umoddi3 (UDWtype u, UDWtype v)
{
  UDWtype w;

  (void) __udivmoddi4 (u, v, &w);

  return w;
}
#endif

#ifdef L_udivdi3
UDWtype
__udivdi3 (UDWtype n, UDWtype d)
{
  return __udivmoddi4 (n, d, (UDWtype *) 0);
}
#endif

#ifdef L_cmpdi2
cmp_return_type
__cmpdi2 (DWtype a, DWtype b)
{
  const DWunion au = {.ll = a};
  const DWunion bu = {.ll = b};

  if (au.s.high < bu.s.high)
    return 0;
  else if (au.s.high > bu.s.high)
    return 2;
  if ((UWtype) au.s.low < (UWtype) bu.s.low)
    return 0;
  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
    return 2;
  return 1;
}
#endif

#ifdef L_ucmpdi2
cmp_return_type
__ucmpdi2 (DWtype a, DWtype b)
{
  const DWunion au = {.ll = a};
  const DWunion bu = {.ll = b};

  if ((UWtype) au.s.high < (UWtype) bu.s.high)
    return 0;
  else if ((UWtype) au.s.high > (UWtype) bu.s.high)
    return 2;
  if ((UWtype) au.s.low < (UWtype) bu.s.low)
    return 0;
  else if ((UWtype) au.s.low > (UWtype) bu.s.low)
    return 2;
  return 1;
}
#endif

#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
UDWtype
__fixunstfDI (TFtype a)
{
  if (a < 0)
    return 0;

  /* Compute high word of result, as a flonum.  */
  const TFtype b = (a / Wtype_MAXp1_F);
  /* Convert that to fixed (but not to DWtype!),
     and shift it into the high word.  */
  UDWtype v = (UWtype) b;
  v <<= W_TYPE_SIZE;
  /* Remove high part from the TFtype, leaving the low part as flonum.  */
  a -= (TFtype)v;
  /* Convert that to fixed (but not to DWtype!) and add it in.
     Sometimes A comes out negative.  This is significant, since
     A has more bits than a long int does.  */
  if (a < 0)
    v -= (UWtype) (- a);
  else
    v += (UWtype) a;
  return v;
}
#endif

#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
DWtype
__fixtfdi (TFtype a)
{
  if (a < 0)
    return - __fixunstfDI (-a);
  return __fixunstfDI (a);
}
#endif

#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
UDWtype
__fixunsxfDI (XFtype a)
{
  if (a < 0)
    return 0;

  /* Compute high word of result, as a flonum.  */
  const XFtype b = (a / Wtype_MAXp1_F);
  /* Convert that to fixed (but not to DWtype!),
     and shift it into the high word.  */
  UDWtype v = (UWtype) b;
  v <<= W_TYPE_SIZE;
  /* Remove high part from the XFtype, leaving the low part as flonum.  */
  a -= (XFtype)v;
  /* Convert that to fixed (but not to DWtype!) and add it in.
     Sometimes A comes out negative.  This is significant, since
     A has more bits than a long int does.  */
  if (a < 0)
    v -= (UWtype) (- a);
  else
    v += (UWtype) a;
  return v;
}
#endif

#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
DWtype
__fixxfdi (XFtype a)
{
  if (a < 0)
    return - __fixunsxfDI (-a);
  return __fixunsxfDI (a);
}
#endif

#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
UDWtype
__fixunsdfDI (DFtype a)
{
  /* Get high part of result.  The division here will just moves the radix
     point and will not cause any rounding.  Then the conversion to integral
     type chops result as desired.  */
  const UWtype hi = a / Wtype_MAXp1_F;

  /* Get low part of result.  Convert `hi' to floating type and scale it back,
     then subtract this from the number being converted.  This leaves the low
     part.  Convert that to integral type.  */
  const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;

  /* Assemble result from the two parts.  */
  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
}
#endif

#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
DWtype
__fixdfdi (DFtype a)
{
  if (a < 0)
    return - __fixunsdfDI (-a);
  return __fixunsdfDI (a);
}
#endif

#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
UDWtype
__fixunssfDI (SFtype a)
{
#if LIBGCC2_HAS_DF_MODE
  /* Convert the SFtype to a DFtype, because that is surely not going
     to lose any bits.  Some day someone else can write a faster version
     that avoids converting to DFtype, and verify it really works right.  */
  const DFtype dfa = a;

  /* Get high part of result.  The division here will just moves the radix
     point and will not cause any rounding.  Then the conversion to integral
     type chops result as desired.  */
  const UWtype hi = dfa / Wtype_MAXp1_F;

  /* Get low part of result.  Convert `hi' to floating type and scale it back,
     then subtract this from the number being converted.  This leaves the low
     part.  Convert that to integral type.  */
  const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;

  /* Assemble result from the two parts.  */
  return ((UDWtype) hi << W_TYPE_SIZE) | lo;
#elif FLT_MANT_DIG < W_TYPE_SIZE
  if (a < 1)
    return 0;
  if (a < Wtype_MAXp1_F)
    return (UWtype)a;
  if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
    {
      /* Since we know that there are fewer significant bits in the SFmode
	 quantity than in a word, we know that we can convert out all the
	 significant bits in one step, and thus avoid losing bits.  */

      /* ??? This following loop essentially performs frexpf.  If we could
	 use the real libm function, or poke at the actual bits of the fp
	 format, it would be significantly faster.  */

      UWtype shift = 0, counter;
      SFtype msb;

      a /= Wtype_MAXp1_F;
      for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
	{
	  SFtype counterf = (UWtype)1 << counter;
	  if (a >= counterf)
	    {
	      shift |= counter;
	      a /= counterf;
	    }
	}

      /* Rescale into the range of one word, extract the bits of that
	 one word, and shift the result into position.  */
      a *= Wtype_MAXp1_F;
      counter = a;
      return (DWtype)counter << shift;
    }
  return -1;
#else
# error
#endif
}
#endif

#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
DWtype
__fixsfdi (SFtype a)
{
  if (a < 0)
    return - __fixunssfDI (-a);
  return __fixunssfDI (a);
}
#endif

#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatdixf (DWtype u)
{
#if W_TYPE_SIZE > XF_SIZE
# error
#endif
  XFtype d = (Wtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
XFtype
__floatundixf (UDWtype u)
{
#if W_TYPE_SIZE > XF_SIZE
# error
#endif
  XFtype d = (UWtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatditf (DWtype u)
{
#if W_TYPE_SIZE > TF_SIZE
# error
#endif
  TFtype d = (Wtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
TFtype
__floatunditf (UDWtype u)
{
#if W_TYPE_SIZE > TF_SIZE
# error
#endif
  TFtype d = (UWtype) (u >> W_TYPE_SIZE);
  d *= Wtype_MAXp1_F;
  d += (UWtype)u;
  return d;
}
#endif

#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE)	\
     || (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
  (SIZE < DI_SIZE							\
   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
   && !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatdisf)
#define FUNC __floatdisf
#define FSTYPE SFtype
#define FSSIZE SF_SIZE
#else
#define FUNC __floatdidf
#define FSTYPE DFtype
#define FSSIZE DF_SIZE
#endif

FSTYPE
FUNC (DWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
  /* When the word size is small, we never get any rounding error.  */
  FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))

#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
# define FSIZE DF_SIZE
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
# define FSIZE XF_SIZE
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
# define FSIZE TF_SIZE
# define FTYPE TFtype
#else
# error
#endif

#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))

  /* Protect against double-rounding error.
     Represent any low-order bits, that might be truncated by a bit that
     won't be lost.  The bit can go in anywhere below the rounding position
     of the FSTYPE.  A fixed mask and bit position handles all usual
     configurations.  */
  if (! (- ((DWtype) 1 << FSIZE) < u
	 && u < ((DWtype) 1 << FSIZE)))
    {
      if ((UDWtype) u & (REP_BIT - 1))
	{
	  u &= ~ (REP_BIT - 1);
	  u |= REP_BIT;
	}
    }

  /* Do the calculation in a wider type so that we don't lose any of
     the precision of the high word while multiplying it.  */
  FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return (FSTYPE) f;
#else
#if FSSIZE >= W_TYPE_SIZE - 2
# error
#endif
  /* Finally, the word size is larger than the number of bits in the
     required FSTYPE, and we've got no suitable wider type.  The only
     way to avoid double rounding is to special case the
     extraction.  */

  /* If there are no high bits set, fall back to one conversion.  */
  if ((Wtype)u == u)
    return (FSTYPE)(Wtype)u;

  /* Otherwise, find the power of two.  */
  Wtype hi = u >> W_TYPE_SIZE;
  if (hi < 0)
    hi = -hi;

  UWtype count, shift;
  count_leading_zeros (count, hi);

  /* No leading bits means u == minimum.  */
  if (count == 0)
    return -(Wtype_MAXp1_F * (Wtype_MAXp1_F / 2));

  shift = 1 + W_TYPE_SIZE - count;

  /* Shift down the most significant bits.  */
  hi = u >> shift;

  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
  if ((UWtype)u << (W_TYPE_SIZE - shift))
    hi |= 1;

  /* Convert the one word of data, and rescale.  */
  FSTYPE f = hi, e;
  if (shift == W_TYPE_SIZE)
    e = Wtype_MAXp1_F;
  /* The following two cases could be merged if we knew that the target
     supported a native unsigned->float conversion.  More often, we only
     have a signed conversion, and have to add extra fixup code.  */
  else if (shift == W_TYPE_SIZE - 1)
    e = Wtype_MAXp1_F / 2;
  else
    e = (Wtype)1 << shift;
  return f * e;
#endif
}
#endif

#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE)	\
     || (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
#define DI_SIZE (W_TYPE_SIZE * 2)
#define F_MODE_OK(SIZE) \
  (SIZE < DI_SIZE							\
   && SIZE > (DI_SIZE - SIZE + FSSIZE)					\
   && !AVOID_FP_TYPE_CONVERSION(SIZE))
#if defined(L_floatundisf)
#define FUNC __floatundisf
#define FSTYPE SFtype
#define FSSIZE SF_SIZE
#else
#define FUNC __floatundidf
#define FSTYPE DFtype
#define FSSIZE DF_SIZE
#endif

FSTYPE
FUNC (UDWtype u)
{
#if FSSIZE >= W_TYPE_SIZE
  /* When the word size is small, we never get any rounding error.  */
  FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return f;
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))	\
     || (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))	\
     || (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))

#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (DF_SIZE))
# define FSIZE DF_SIZE
# define FTYPE DFtype
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (XF_SIZE))
# define FSIZE XF_SIZE
# define FTYPE XFtype
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (TF_SIZE))
# define FSIZE TF_SIZE
# define FTYPE TFtype
#else
# error
#endif

#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))

  /* Protect against double-rounding error.
     Represent any low-order bits, that might be truncated by a bit that
     won't be lost.  The bit can go in anywhere below the rounding position
     of the FSTYPE.  A fixed mask and bit position handles all usual
     configurations.  */
  if (u >= ((UDWtype) 1 << FSIZE))
    {
      if ((UDWtype) u & (REP_BIT - 1))
	{
	  u &= ~ (REP_BIT - 1);
	  u |= REP_BIT;
	}
    }

  /* Do the calculation in a wider type so that we don't lose any of
     the precision of the high word while multiplying it.  */
  FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
  f *= Wtype_MAXp1_F;
  f += (UWtype)u;
  return (FSTYPE) f;
#else
#if FSSIZE == W_TYPE_SIZE - 1
# error
#endif
  /* Finally, the word size is larger than the number of bits in the
     required FSTYPE, and we've got no suitable wider type.  The only
     way to avoid double rounding is to special case the
     extraction.  */

  /* If there are no high bits set, fall back to one conversion.  */
  if ((UWtype)u == u)
    return (FSTYPE)(UWtype)u;

  /* Otherwise, find the power of two.  */
  UWtype hi = u >> W_TYPE_SIZE;

  UWtype count, shift;
  count_leading_zeros (count, hi);

  shift = W_TYPE_SIZE - count;

  /* Shift down the most significant bits.  */
  hi = u >> shift;

  /* If we lost any nonzero bits, set the lsb to ensure correct rounding.  */
  if ((UWtype)u << (W_TYPE_SIZE - shift))
    hi |= 1;

  /* Convert the one word of data, and rescale.  */
  FSTYPE f = hi, e;
  if (shift == W_TYPE_SIZE)
    e = Wtype_MAXp1_F;
  /* The following two cases could be merged if we knew that the target
     supported a native unsigned->float conversion.  More often, we only
     have a signed conversion, and have to add extra fixup code.  */
  else if (shift == W_TYPE_SIZE - 1)
    e = Wtype_MAXp1_F / 2;
  else
    e = (Wtype)1 << shift;
  return f * e;
#endif
}
#endif

#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
#undef MIN
#undef MAX
#include <limits.h>

UWtype
__fixunsxfSI (XFtype a)
{
  if (a >= - (DFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
  return (Wtype) a;
}
#endif

#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
#undef MIN
#undef MAX
#include <limits.h>

UWtype
__fixunsdfSI (DFtype a)
{
  if (a >= - (DFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
  return (Wtype) a;
}
#endif

#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
/* Reenable the normal types, in case limits.h needs them.  */
#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double
#undef MIN
#undef MAX
#include <limits.h>

UWtype
__fixunssfSI (SFtype a)
{
  if (a >= - (SFtype) Wtype_MIN)
    return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
  return (Wtype) a;
}
#endif

/* Integer power helper used from __builtin_powi for non-constant
   exponents.  */

#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
    || (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
    || (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
    || (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
# if defined(L_powisf2)
#  define TYPE SFtype
#  define NAME __powisf2
# elif defined(L_powidf2)
#  define TYPE DFtype
#  define NAME __powidf2
# elif defined(L_powixf2)
#  define TYPE XFtype
#  define NAME __powixf2
# elif defined(L_powitf2)
#  define TYPE TFtype
#  define NAME __powitf2
# endif

#undef int
#undef unsigned
TYPE
NAME (TYPE x, int m)
{
  unsigned int n = m < 0 ? -m : m;
  TYPE y = n % 2 ? x : 1;
  while (n >>= 1)
    {
      x = x * x;
      if (n % 2)
	y = y * x;
    }
  return m < 0 ? 1/y : y;
}

#endif

#if ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
    || ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
    || ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
    || ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)

#undef float
#undef double
#undef long

#if defined(L_mulsc3) || defined(L_divsc3)
# define MTYPE	SFtype
# define CTYPE	SCtype
# define MODE	sc
# define CEXT	f
# define NOTRUNC __FLT_EVAL_METHOD__ == 0
#elif defined(L_muldc3) || defined(L_divdc3)
# define MTYPE	DFtype
# define CTYPE	DCtype
# define MODE	dc
# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 64
#  define CEXT	l
#  define NOTRUNC 1
# else
#  define CEXT
#  define NOTRUNC __FLT_EVAL_METHOD__ == 0 || __FLT_EVAL_METHOD__ == 1
# endif
#elif defined(L_mulxc3) || defined(L_divxc3)
# define MTYPE	XFtype
# define CTYPE	XCtype
# define MODE	xc
# define CEXT	l
# define NOTRUNC 1
#elif defined(L_multc3) || defined(L_divtc3)
# define MTYPE	TFtype
# define CTYPE	TCtype
# define MODE	tc
# if LIBGCC2_LONG_DOUBLE_TYPE_SIZE == 128
#  define CEXT l
# else
#  define CEXT LIBGCC2_TF_CEXT
# endif
# define NOTRUNC 1
#else
# error
#endif

#define CONCAT3(A,B,C)	_CONCAT3(A,B,C)
#define _CONCAT3(A,B,C)	A##B##C

#define CONCAT2(A,B)	_CONCAT2(A,B)
#define _CONCAT2(A,B)	A##B

/* All of these would be present in a full C99 implementation of <math.h>
   and <complex.h>.  Our problem is that only a few systems have such full
   implementations.  Further, libgcc_s.so isn't currently linked against
   libm.so, and even for systems that do provide full C99, the extra overhead
   of all programs using libgcc having to link against libm.  So avoid it.  */

#define isnan(x)	__builtin_expect ((x) != (x), 0)
#define isfinite(x)	__builtin_expect (!isnan((x) - (x)), 1)
#define isinf(x)	__builtin_expect (!isnan(x) & !isfinite(x), 0)

#define INFINITY	CONCAT2(__builtin_huge_val, CEXT) ()
#define I		1i

/* Helpers to make the following code slightly less gross.  */
#define COPYSIGN	CONCAT2(__builtin_copysign, CEXT)
#define FABS		CONCAT2(__builtin_fabs, CEXT)

/* Verify that MTYPE matches up with CEXT.  */
extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];

/* Ensure that we've lost any extra precision.  */
#if NOTRUNC
# define TRUNC(x)
#else
# define TRUNC(x)	__asm__ ("" : "=m"(x) : "m"(x))
#endif

#if defined(L_mulsc3) || defined(L_muldc3) \
    || defined(L_mulxc3) || defined(L_multc3)

CTYPE
CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
  MTYPE ac, bd, ad, bc, x, y;
  CTYPE res;

  ac = a * c;
  bd = b * d;
  ad = a * d;
  bc = b * c;

  TRUNC (ac);
  TRUNC (bd);
  TRUNC (ad);
  TRUNC (bc);

  x = ac - bd;
  y = ad + bc;

  if (isnan (x) && isnan (y))
    {
      /* Recover infinities that computed as NaN + iNaN.  */
      _Bool recalc = 0;
      if (isinf (a) || isinf (b))
	{
	  /* z is infinite.  "Box" the infinity and change NaNs in
	     the other factor to 0.  */
	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
	  if (isnan (c)) c = COPYSIGN (0, c);
	  if (isnan (d)) d = COPYSIGN (0, d);
          recalc = 1;
	}
     if (isinf (c) || isinf (d))
	{
	  /* w is infinite.  "Box" the infinity and change NaNs in
	     the other factor to 0.  */
	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
	  if (isnan (a)) a = COPYSIGN (0, a);
	  if (isnan (b)) b = COPYSIGN (0, b);
	  recalc = 1;
	}
     if (!recalc
	  && (isinf (ac) || isinf (bd)
	      || isinf (ad) || isinf (bc)))
	{
	  /* Recover infinities from overflow by changing NaNs to 0.  */
	  if (isnan (a)) a = COPYSIGN (0, a);
	  if (isnan (b)) b = COPYSIGN (0, b);
	  if (isnan (c)) c = COPYSIGN (0, c);
	  if (isnan (d)) d = COPYSIGN (0, d);
	  recalc = 1;
	}
      if (recalc)
	{
	  x = INFINITY * (a * c - b * d);
	  y = INFINITY * (a * d + b * c);
	}
    }

  __real__ res = x;
  __imag__ res = y;
  return res;
}
#endif /* complex multiply */

#if defined(L_divsc3) || defined(L_divdc3) \
    || defined(L_divxc3) || defined(L_divtc3)

CTYPE
CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
{
  MTYPE denom, ratio, x, y;
  CTYPE res;

  /* ??? We can get better behavior from logarithmic scaling instead of
     the division.  But that would mean starting to link libgcc against
     libm.  We could implement something akin to ldexp/frexp as gcc builtins
     fairly easily...  */
  if (FABS (c) < FABS (d))
    {
      ratio = c / d;
      denom = (c * ratio) + d;
      x = ((a * ratio) + b) / denom;
      y = ((b * ratio) - a) / denom;
    }
  else
    {
      ratio = d / c;
      denom = (d * ratio) + c;
      x = ((b * ratio) + a) / denom;
      y = (b - (a * ratio)) / denom;
    }

  /* Recover infinities and zeros that computed as NaN+iNaN; the only cases
     are nonzero/zero, infinite/finite, and finite/infinite.  */
  if (isnan (x) && isnan (y))
    {
      if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
	{
	  x = COPYSIGN (INFINITY, c) * a;
	  y = COPYSIGN (INFINITY, c) * b;
	}
      else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
	{
	  a = COPYSIGN (isinf (a) ? 1 : 0, a);
	  b = COPYSIGN (isinf (b) ? 1 : 0, b);
	  x = INFINITY * (a * c + b * d);
	  y = INFINITY * (b * c - a * d);
	}
      else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
	{
	  c = COPYSIGN (isinf (c) ? 1 : 0, c);
	  d = COPYSIGN (isinf (d) ? 1 : 0, d);
	  x = 0.0 * (a * c + b * d);
	  y = 0.0 * (b * c - a * d);
	}
    }

  __real__ res = x;
  __imag__ res = y;
  return res;
}
#endif /* complex divide */

#endif /* all complex float routines */

/* From here on down, the routines use normal data types.  */

#define SItype bogus_type
#define USItype bogus_type
#define DItype bogus_type
#define UDItype bogus_type
#define SFtype bogus_type
#define DFtype bogus_type
#undef Wtype
#undef UWtype
#undef HWtype
#undef UHWtype
#undef DWtype
#undef UDWtype

#undef char
#undef short
#undef int
#undef long
#undef unsigned
#undef float
#undef double

#ifdef L__gcc_bcmp

/* Like bcmp except the sign is meaningful.
   Result is negative if S1 is less than S2,
   positive if S1 is greater, 0 if S1 and S2 are equal.  */

int
__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
{
  while (size > 0)
    {
      const unsigned char c1 = *s1++, c2 = *s2++;
      if (c1 != c2)
	return c1 - c2;
      size--;
    }
  return 0;
}

#endif

/* __eprintf used to be used by GCC's private version of <assert.h>.
   We no longer provide that header, but this routine remains in libgcc.a
   for binary backward compatibility.  Note that it is not included in
   the shared version of libgcc.  */
#ifdef L_eprintf
#ifndef inhibit_libc

#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch.  */
#include <stdio.h>

void
__eprintf (const char *string, const char *expression,
	   unsigned int line, const char *filename)
{
  fprintf (stderr, string, expression, line, filename);
  fflush (stderr);
  abort ();
}

#endif
#endif


#ifdef L_clear_cache
/* Clear part of an instruction cache.  */

void
__clear_cache (char *beg __attribute__((__unused__)),
	       char *end __attribute__((__unused__)))
{
#ifdef CLEAR_INSN_CACHE
  CLEAR_INSN_CACHE (beg, end);
#endif /* CLEAR_INSN_CACHE */
}

#endif /* L_clear_cache */

#ifdef L_trampoline

/* Jump to a trampoline, loading the static chain address.  */

#if defined(WINNT) && ! defined(__CYGWIN__)
#include <windows.h>
int getpagesize (void);
int mprotect (char *,int, int);

int
getpagesize (void)
{
#ifdef _ALPHA_
  return 8192;
#else
  return 4096;
#endif
}

int
mprotect (char *addr, int len, int prot)
{
  DWORD np, op;

  if (prot == 7)
    np = 0x40;
  else if (prot == 5)
    np = 0x20;
  else if (prot == 4)
    np = 0x10;
  else if (prot == 3)
    np = 0x04;
  else if (prot == 1)
    np = 0x02;
  else if (prot == 0)
    np = 0x01;
  else
    return -1;

  if (VirtualProtect (addr, len, np, &op))
    return 0;
  else
    return -1;
}

#endif /* WINNT && ! __CYGWIN__ */

#ifdef TRANSFER_FROM_TRAMPOLINE
TRANSFER_FROM_TRAMPOLINE
#endif
#endif /* L_trampoline */

#ifndef __CYGWIN__
#ifdef L__main

#include "gbl-ctors.h"

/* Some systems use __main in a way incompatible with its use in gcc, in these
   cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
   give the same symbol without quotes for an alternative entry point.  You
   must define both, or neither.  */
#ifndef NAME__MAIN
#define NAME__MAIN "__main"
#define SYMBOL__MAIN __main
#endif

#if defined (INIT_SECTION_ASM_OP) || defined (INIT_ARRAY_SECTION_ASM_OP)
#undef HAS_INIT_SECTION
#define HAS_INIT_SECTION
#endif

#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)

/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
   code to run constructors.  In that case, we need to handle EH here, too.  */

#ifdef EH_FRAME_SECTION_NAME
#include "unwind-dw2-fde.h"
extern unsigned char __EH_FRAME_BEGIN__[];
#endif

/* Run all the global destructors on exit from the program.  */

void
__do_global_dtors (void)
{
#ifdef DO_GLOBAL_DTORS_BODY
  DO_GLOBAL_DTORS_BODY;
#else
  static func_ptr *p = __DTOR_LIST__ + 1;
  while (*p)
    {
      p++;
      (*(p-1)) ();
    }
#endif
#if defined (EH_FRAME_SECTION_NAME) && !defined (HAS_INIT_SECTION)
  {
    static int completed = 0;
    if (! completed)
      {
	completed = 1;
	__deregister_frame_info (__EH_FRAME_BEGIN__);
      }
  }
#endif
}
#endif

#ifndef HAS_INIT_SECTION
/* Run all the global constructors on entry to the program.  */

void
__do_global_ctors (void)
{
#ifdef EH_FRAME_SECTION_NAME
  {
    static struct object object;
    __register_frame_info (__EH_FRAME_BEGIN__, &object);
  }
#endif
  DO_GLOBAL_CTORS_BODY;
  atexit (__do_global_dtors);
}
#endif /* no HAS_INIT_SECTION */

#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
/* Subroutine called automatically by `main'.
   Compiling a global function named `main'
   produces an automatic call to this function at the beginning.

   For many systems, this routine calls __do_global_ctors.
   For systems which support a .init section we use the .init section
   to run __do_global_ctors, so we need not do anything here.  */

extern void SYMBOL__MAIN (void);
void
SYMBOL__MAIN (void)
{
  /* Support recursive calls to `main': run initializers just once.  */
  static int initialized;
  if (! initialized)
    {
      initialized = 1;
      __do_global_ctors ();
    }
}
#endif /* no HAS_INIT_SECTION or INVOKE__main */

#endif /* L__main */
#endif /* __CYGWIN__ */

#ifdef L_ctors

#include "gbl-ctors.h"

/* Provide default definitions for the lists of constructors and
   destructors, so that we don't get linker errors.  These symbols are
   intentionally bss symbols, so that gld and/or collect will provide
   the right values.  */

/* We declare the lists here with two elements each,
   so that they are valid empty lists if no other definition is loaded.

   If we are using the old "set" extensions to have the gnu linker
   collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
   must be in the bss/common section.

   Long term no port should use those extensions.  But many still do.  */
#if !defined(INIT_SECTION_ASM_OP) && !defined(CTOR_LISTS_DEFINED_EXTERNALLY)
#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
func_ptr __CTOR_LIST__[2] = {0, 0};
func_ptr __DTOR_LIST__[2] = {0, 0};
#else
func_ptr __CTOR_LIST__[2];
func_ptr __DTOR_LIST__[2];
#endif
#endif /* no INIT_SECTION_ASM_OP and not CTOR_LISTS_DEFINED_EXTERNALLY */
#endif /* L_ctors */
#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */