aboutsummaryrefslogtreecommitdiff
path: root/gcc/tree-data-ref.c
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2022-01-14 16:56:44 +0100
committerMartin Liska <mliska@suse.cz>2022-01-17 22:12:04 +0100
commit5c69acb32329d49e58c26fa41ae74229a52b9106 (patch)
treeddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/tree-data-ref.c
parent490e23032baaece71f2ec09fa1805064b150fbc2 (diff)
downloadgcc-5c69acb32329d49e58c26fa41ae74229a52b9106.zip
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.bz2
Rename .c files to .cc files.
gcc/ada/ChangeLog: * adadecode.c: Moved to... * adadecode.cc: ...here. * affinity.c: Moved to... * affinity.cc: ...here. * argv-lynxos178-raven-cert.c: Moved to... * argv-lynxos178-raven-cert.cc: ...here. * argv.c: Moved to... * argv.cc: ...here. * aux-io.c: Moved to... * aux-io.cc: ...here. * cio.c: Moved to... * cio.cc: ...here. * cstreams.c: Moved to... * cstreams.cc: ...here. * env.c: Moved to... * env.cc: ...here. * exit.c: Moved to... * exit.cc: ...here. * expect.c: Moved to... * expect.cc: ...here. * final.c: Moved to... * final.cc: ...here. * gcc-interface/cuintp.c: Moved to... * gcc-interface/cuintp.cc: ...here. * gcc-interface/decl.c: Moved to... * gcc-interface/decl.cc: ...here. * gcc-interface/misc.c: Moved to... * gcc-interface/misc.cc: ...here. * gcc-interface/targtyps.c: Moved to... * gcc-interface/targtyps.cc: ...here. * gcc-interface/trans.c: Moved to... * gcc-interface/trans.cc: ...here. * gcc-interface/utils.c: Moved to... * gcc-interface/utils.cc: ...here. * gcc-interface/utils2.c: Moved to... * gcc-interface/utils2.cc: ...here. * init.c: Moved to... * init.cc: ...here. * initialize.c: Moved to... * initialize.cc: ...here. * libgnarl/thread.c: Moved to... * libgnarl/thread.cc: ...here. * link.c: Moved to... * link.cc: ...here. * locales.c: Moved to... * locales.cc: ...here. * mkdir.c: Moved to... * mkdir.cc: ...here. * raise.c: Moved to... * raise.cc: ...here. * rtfinal.c: Moved to... * rtfinal.cc: ...here. * rtinit.c: Moved to... * rtinit.cc: ...here. * seh_init.c: Moved to... * seh_init.cc: ...here. * sigtramp-armdroid.c: Moved to... * sigtramp-armdroid.cc: ...here. * sigtramp-ios.c: Moved to... * sigtramp-ios.cc: ...here. * sigtramp-qnx.c: Moved to... * sigtramp-qnx.cc: ...here. * sigtramp-vxworks.c: Moved to... * sigtramp-vxworks.cc: ...here. * socket.c: Moved to... * socket.cc: ...here. * tracebak.c: Moved to... * tracebak.cc: ...here. * version.c: Moved to... * version.cc: ...here. * vx_stack_info.c: Moved to... * vx_stack_info.cc: ...here. gcc/ChangeLog: * adjust-alignment.c: Moved to... * adjust-alignment.cc: ...here. * alias.c: Moved to... * alias.cc: ...here. * alloc-pool.c: Moved to... * alloc-pool.cc: ...here. * asan.c: Moved to... * asan.cc: ...here. * attribs.c: Moved to... * attribs.cc: ...here. * auto-inc-dec.c: Moved to... * auto-inc-dec.cc: ...here. * auto-profile.c: Moved to... * auto-profile.cc: ...here. * bb-reorder.c: Moved to... * bb-reorder.cc: ...here. * bitmap.c: Moved to... * bitmap.cc: ...here. * btfout.c: Moved to... * btfout.cc: ...here. * builtins.c: Moved to... * builtins.cc: ...here. * caller-save.c: Moved to... * caller-save.cc: ...here. * calls.c: Moved to... * calls.cc: ...here. * ccmp.c: Moved to... * ccmp.cc: ...here. * cfg.c: Moved to... * cfg.cc: ...here. * cfganal.c: Moved to... * cfganal.cc: ...here. * cfgbuild.c: Moved to... * cfgbuild.cc: ...here. * cfgcleanup.c: Moved to... * cfgcleanup.cc: ...here. * cfgexpand.c: Moved to... * cfgexpand.cc: ...here. * cfghooks.c: Moved to... * cfghooks.cc: ...here. * cfgloop.c: Moved to... * cfgloop.cc: ...here. * cfgloopanal.c: Moved to... * cfgloopanal.cc: ...here. * cfgloopmanip.c: Moved to... * cfgloopmanip.cc: ...here. * cfgrtl.c: Moved to... * cfgrtl.cc: ...here. * cgraph.c: Moved to... * cgraph.cc: ...here. * cgraphbuild.c: Moved to... * cgraphbuild.cc: ...here. * cgraphclones.c: Moved to... * cgraphclones.cc: ...here. * cgraphunit.c: Moved to... * cgraphunit.cc: ...here. * collect-utils.c: Moved to... * collect-utils.cc: ...here. * collect2-aix.c: Moved to... * collect2-aix.cc: ...here. * collect2.c: Moved to... * collect2.cc: ...here. * combine-stack-adj.c: Moved to... * combine-stack-adj.cc: ...here. * combine.c: Moved to... * combine.cc: ...here. * common/common-targhooks.c: Moved to... * common/common-targhooks.cc: ...here. * common/config/aarch64/aarch64-common.c: Moved to... * common/config/aarch64/aarch64-common.cc: ...here. * common/config/alpha/alpha-common.c: Moved to... * common/config/alpha/alpha-common.cc: ...here. * common/config/arc/arc-common.c: Moved to... * common/config/arc/arc-common.cc: ...here. * common/config/arm/arm-common.c: Moved to... * common/config/arm/arm-common.cc: ...here. * common/config/avr/avr-common.c: Moved to... * common/config/avr/avr-common.cc: ...here. * common/config/bfin/bfin-common.c: Moved to... * common/config/bfin/bfin-common.cc: ...here. * common/config/bpf/bpf-common.c: Moved to... * common/config/bpf/bpf-common.cc: ...here. * common/config/c6x/c6x-common.c: Moved to... * common/config/c6x/c6x-common.cc: ...here. * common/config/cr16/cr16-common.c: Moved to... * common/config/cr16/cr16-common.cc: ...here. * common/config/cris/cris-common.c: Moved to... * common/config/cris/cris-common.cc: ...here. * common/config/csky/csky-common.c: Moved to... * common/config/csky/csky-common.cc: ...here. * common/config/default-common.c: Moved to... * common/config/default-common.cc: ...here. * common/config/epiphany/epiphany-common.c: Moved to... * common/config/epiphany/epiphany-common.cc: ...here. * common/config/fr30/fr30-common.c: Moved to... * common/config/fr30/fr30-common.cc: ...here. * common/config/frv/frv-common.c: Moved to... * common/config/frv/frv-common.cc: ...here. * common/config/gcn/gcn-common.c: Moved to... * common/config/gcn/gcn-common.cc: ...here. * common/config/h8300/h8300-common.c: Moved to... * common/config/h8300/h8300-common.cc: ...here. * common/config/i386/i386-common.c: Moved to... * common/config/i386/i386-common.cc: ...here. * common/config/ia64/ia64-common.c: Moved to... * common/config/ia64/ia64-common.cc: ...here. * common/config/iq2000/iq2000-common.c: Moved to... * common/config/iq2000/iq2000-common.cc: ...here. * common/config/lm32/lm32-common.c: Moved to... * common/config/lm32/lm32-common.cc: ...here. * common/config/m32r/m32r-common.c: Moved to... * common/config/m32r/m32r-common.cc: ...here. * common/config/m68k/m68k-common.c: Moved to... * common/config/m68k/m68k-common.cc: ...here. * common/config/mcore/mcore-common.c: Moved to... * common/config/mcore/mcore-common.cc: ...here. * common/config/microblaze/microblaze-common.c: Moved to... * common/config/microblaze/microblaze-common.cc: ...here. * common/config/mips/mips-common.c: Moved to... * common/config/mips/mips-common.cc: ...here. * common/config/mmix/mmix-common.c: Moved to... * common/config/mmix/mmix-common.cc: ...here. * common/config/mn10300/mn10300-common.c: Moved to... * common/config/mn10300/mn10300-common.cc: ...here. * common/config/msp430/msp430-common.c: Moved to... * common/config/msp430/msp430-common.cc: ...here. * common/config/nds32/nds32-common.c: Moved to... * common/config/nds32/nds32-common.cc: ...here. * common/config/nios2/nios2-common.c: Moved to... * common/config/nios2/nios2-common.cc: ...here. * common/config/nvptx/nvptx-common.c: Moved to... * common/config/nvptx/nvptx-common.cc: ...here. * common/config/or1k/or1k-common.c: Moved to... * common/config/or1k/or1k-common.cc: ...here. * common/config/pa/pa-common.c: Moved to... * common/config/pa/pa-common.cc: ...here. * common/config/pdp11/pdp11-common.c: Moved to... * common/config/pdp11/pdp11-common.cc: ...here. * common/config/pru/pru-common.c: Moved to... * common/config/pru/pru-common.cc: ...here. * common/config/riscv/riscv-common.c: Moved to... * common/config/riscv/riscv-common.cc: ...here. * common/config/rs6000/rs6000-common.c: Moved to... * common/config/rs6000/rs6000-common.cc: ...here. * common/config/rx/rx-common.c: Moved to... * common/config/rx/rx-common.cc: ...here. * common/config/s390/s390-common.c: Moved to... * common/config/s390/s390-common.cc: ...here. * common/config/sh/sh-common.c: Moved to... * common/config/sh/sh-common.cc: ...here. * common/config/sparc/sparc-common.c: Moved to... * common/config/sparc/sparc-common.cc: ...here. * common/config/tilegx/tilegx-common.c: Moved to... * common/config/tilegx/tilegx-common.cc: ...here. * common/config/tilepro/tilepro-common.c: Moved to... * common/config/tilepro/tilepro-common.cc: ...here. * common/config/v850/v850-common.c: Moved to... * common/config/v850/v850-common.cc: ...here. * common/config/vax/vax-common.c: Moved to... * common/config/vax/vax-common.cc: ...here. * common/config/visium/visium-common.c: Moved to... * common/config/visium/visium-common.cc: ...here. * common/config/xstormy16/xstormy16-common.c: Moved to... * common/config/xstormy16/xstormy16-common.cc: ...here. * common/config/xtensa/xtensa-common.c: Moved to... * common/config/xtensa/xtensa-common.cc: ...here. * compare-elim.c: Moved to... * compare-elim.cc: ...here. * config/aarch64/aarch64-bti-insert.c: Moved to... * config/aarch64/aarch64-bti-insert.cc: ...here. * config/aarch64/aarch64-builtins.c: Moved to... * config/aarch64/aarch64-builtins.cc: ...here. * config/aarch64/aarch64-c.c: Moved to... * config/aarch64/aarch64-c.cc: ...here. * config/aarch64/aarch64-d.c: Moved to... * config/aarch64/aarch64-d.cc: ...here. * config/aarch64/aarch64.c: Moved to... * config/aarch64/aarch64.cc: ...here. * config/aarch64/cortex-a57-fma-steering.c: Moved to... * config/aarch64/cortex-a57-fma-steering.cc: ...here. * config/aarch64/driver-aarch64.c: Moved to... * config/aarch64/driver-aarch64.cc: ...here. * config/aarch64/falkor-tag-collision-avoidance.c: Moved to... * config/aarch64/falkor-tag-collision-avoidance.cc: ...here. * config/aarch64/host-aarch64-darwin.c: Moved to... * config/aarch64/host-aarch64-darwin.cc: ...here. * config/alpha/alpha.c: Moved to... * config/alpha/alpha.cc: ...here. * config/alpha/driver-alpha.c: Moved to... * config/alpha/driver-alpha.cc: ...here. * config/arc/arc-c.c: Moved to... * config/arc/arc-c.cc: ...here. * config/arc/arc.c: Moved to... * config/arc/arc.cc: ...here. * config/arc/driver-arc.c: Moved to... * config/arc/driver-arc.cc: ...here. * config/arm/aarch-common.c: Moved to... * config/arm/aarch-common.cc: ...here. * config/arm/arm-builtins.c: Moved to... * config/arm/arm-builtins.cc: ...here. * config/arm/arm-c.c: Moved to... * config/arm/arm-c.cc: ...here. * config/arm/arm-d.c: Moved to... * config/arm/arm-d.cc: ...here. * config/arm/arm.c: Moved to... * config/arm/arm.cc: ...here. * config/arm/driver-arm.c: Moved to... * config/arm/driver-arm.cc: ...here. * config/avr/avr-c.c: Moved to... * config/avr/avr-c.cc: ...here. * config/avr/avr-devices.c: Moved to... * config/avr/avr-devices.cc: ...here. * config/avr/avr-log.c: Moved to... * config/avr/avr-log.cc: ...here. * config/avr/avr.c: Moved to... * config/avr/avr.cc: ...here. * config/avr/driver-avr.c: Moved to... * config/avr/driver-avr.cc: ...here. * config/avr/gen-avr-mmcu-specs.c: Moved to... * config/avr/gen-avr-mmcu-specs.cc: ...here. * config/avr/gen-avr-mmcu-texi.c: Moved to... * config/avr/gen-avr-mmcu-texi.cc: ...here. * config/bfin/bfin.c: Moved to... * config/bfin/bfin.cc: ...here. * config/bpf/bpf.c: Moved to... * config/bpf/bpf.cc: ...here. * config/bpf/coreout.c: Moved to... * config/bpf/coreout.cc: ...here. * config/c6x/c6x.c: Moved to... * config/c6x/c6x.cc: ...here. * config/cr16/cr16.c: Moved to... * config/cr16/cr16.cc: ...here. * config/cris/cris.c: Moved to... * config/cris/cris.cc: ...here. * config/csky/csky.c: Moved to... * config/csky/csky.cc: ...here. * config/darwin-c.c: Moved to... * config/darwin-c.cc: ...here. * config/darwin-d.c: Moved to... * config/darwin-d.cc: ...here. * config/darwin-driver.c: Moved to... * config/darwin-driver.cc: ...here. * config/darwin-f.c: Moved to... * config/darwin-f.cc: ...here. * config/darwin.c: Moved to... * config/darwin.cc: ...here. * config/default-c.c: Moved to... * config/default-c.cc: ...here. * config/default-d.c: Moved to... * config/default-d.cc: ...here. * config/dragonfly-d.c: Moved to... * config/dragonfly-d.cc: ...here. * config/epiphany/epiphany.c: Moved to... * config/epiphany/epiphany.cc: ...here. * config/epiphany/mode-switch-use.c: Moved to... * config/epiphany/mode-switch-use.cc: ...here. * config/epiphany/resolve-sw-modes.c: Moved to... * config/epiphany/resolve-sw-modes.cc: ...here. * config/fr30/fr30.c: Moved to... * config/fr30/fr30.cc: ...here. * config/freebsd-d.c: Moved to... * config/freebsd-d.cc: ...here. * config/frv/frv.c: Moved to... * config/frv/frv.cc: ...here. * config/ft32/ft32.c: Moved to... * config/ft32/ft32.cc: ...here. * config/gcn/driver-gcn.c: Moved to... * config/gcn/driver-gcn.cc: ...here. * config/gcn/gcn-run.c: Moved to... * config/gcn/gcn-run.cc: ...here. * config/gcn/gcn-tree.c: Moved to... * config/gcn/gcn-tree.cc: ...here. * config/gcn/gcn.c: Moved to... * config/gcn/gcn.cc: ...here. * config/gcn/mkoffload.c: Moved to... * config/gcn/mkoffload.cc: ...here. * config/glibc-c.c: Moved to... * config/glibc-c.cc: ...here. * config/glibc-d.c: Moved to... * config/glibc-d.cc: ...here. * config/h8300/h8300.c: Moved to... * config/h8300/h8300.cc: ...here. * config/host-darwin.c: Moved to... * config/host-darwin.cc: ...here. * config/host-hpux.c: Moved to... * config/host-hpux.cc: ...here. * config/host-linux.c: Moved to... * config/host-linux.cc: ...here. * config/host-netbsd.c: Moved to... * config/host-netbsd.cc: ...here. * config/host-openbsd.c: Moved to... * config/host-openbsd.cc: ...here. * config/host-solaris.c: Moved to... * config/host-solaris.cc: ...here. * config/i386/djgpp.c: Moved to... * config/i386/djgpp.cc: ...here. * config/i386/driver-i386.c: Moved to... * config/i386/driver-i386.cc: ...here. * config/i386/driver-mingw32.c: Moved to... * config/i386/driver-mingw32.cc: ...here. * config/i386/gnu-property.c: Moved to... * config/i386/gnu-property.cc: ...here. * config/i386/host-cygwin.c: Moved to... * config/i386/host-cygwin.cc: ...here. * config/i386/host-i386-darwin.c: Moved to... * config/i386/host-i386-darwin.cc: ...here. * config/i386/host-mingw32.c: Moved to... * config/i386/host-mingw32.cc: ...here. * config/i386/i386-builtins.c: Moved to... * config/i386/i386-builtins.cc: ...here. * config/i386/i386-c.c: Moved to... * config/i386/i386-c.cc: ...here. * config/i386/i386-d.c: Moved to... * config/i386/i386-d.cc: ...here. * config/i386/i386-expand.c: Moved to... * config/i386/i386-expand.cc: ...here. * config/i386/i386-features.c: Moved to... * config/i386/i386-features.cc: ...here. * config/i386/i386-options.c: Moved to... * config/i386/i386-options.cc: ...here. * config/i386/i386.c: Moved to... * config/i386/i386.cc: ...here. * config/i386/intelmic-mkoffload.c: Moved to... * config/i386/intelmic-mkoffload.cc: ...here. * config/i386/msformat-c.c: Moved to... * config/i386/msformat-c.cc: ...here. * config/i386/winnt-cxx.c: Moved to... * config/i386/winnt-cxx.cc: ...here. * config/i386/winnt-d.c: Moved to... * config/i386/winnt-d.cc: ...here. * config/i386/winnt-stubs.c: Moved to... * config/i386/winnt-stubs.cc: ...here. * config/i386/winnt.c: Moved to... * config/i386/winnt.cc: ...here. * config/i386/x86-tune-sched-atom.c: Moved to... * config/i386/x86-tune-sched-atom.cc: ...here. * config/i386/x86-tune-sched-bd.c: Moved to... * config/i386/x86-tune-sched-bd.cc: ...here. * config/i386/x86-tune-sched-core.c: Moved to... * config/i386/x86-tune-sched-core.cc: ...here. * config/i386/x86-tune-sched.c: Moved to... * config/i386/x86-tune-sched.cc: ...here. * config/ia64/ia64-c.c: Moved to... * config/ia64/ia64-c.cc: ...here. * config/ia64/ia64.c: Moved to... * config/ia64/ia64.cc: ...here. * config/iq2000/iq2000.c: Moved to... * config/iq2000/iq2000.cc: ...here. * config/linux.c: Moved to... * config/linux.cc: ...here. * config/lm32/lm32.c: Moved to... * config/lm32/lm32.cc: ...here. * config/m32c/m32c-pragma.c: Moved to... * config/m32c/m32c-pragma.cc: ...here. * config/m32c/m32c.c: Moved to... * config/m32c/m32c.cc: ...here. * config/m32r/m32r.c: Moved to... * config/m32r/m32r.cc: ...here. * config/m68k/m68k.c: Moved to... * config/m68k/m68k.cc: ...here. * config/mcore/mcore.c: Moved to... * config/mcore/mcore.cc: ...here. * config/microblaze/microblaze-c.c: Moved to... * config/microblaze/microblaze-c.cc: ...here. * config/microblaze/microblaze.c: Moved to... * config/microblaze/microblaze.cc: ...here. * config/mips/driver-native.c: Moved to... * config/mips/driver-native.cc: ...here. * config/mips/frame-header-opt.c: Moved to... * config/mips/frame-header-opt.cc: ...here. * config/mips/mips-d.c: Moved to... * config/mips/mips-d.cc: ...here. * config/mips/mips.c: Moved to... * config/mips/mips.cc: ...here. * config/mmix/mmix.c: Moved to... * config/mmix/mmix.cc: ...here. * config/mn10300/mn10300.c: Moved to... * config/mn10300/mn10300.cc: ...here. * config/moxie/moxie.c: Moved to... * config/moxie/moxie.cc: ...here. * config/msp430/driver-msp430.c: Moved to... * config/msp430/driver-msp430.cc: ...here. * config/msp430/msp430-c.c: Moved to... * config/msp430/msp430-c.cc: ...here. * config/msp430/msp430-devices.c: Moved to... * config/msp430/msp430-devices.cc: ...here. * config/msp430/msp430.c: Moved to... * config/msp430/msp430.cc: ...here. * config/nds32/nds32-cost.c: Moved to... * config/nds32/nds32-cost.cc: ...here. * config/nds32/nds32-fp-as-gp.c: Moved to... * config/nds32/nds32-fp-as-gp.cc: ...here. * config/nds32/nds32-intrinsic.c: Moved to... * config/nds32/nds32-intrinsic.cc: ...here. * config/nds32/nds32-isr.c: Moved to... * config/nds32/nds32-isr.cc: ...here. * config/nds32/nds32-md-auxiliary.c: Moved to... * config/nds32/nds32-md-auxiliary.cc: ...here. * config/nds32/nds32-memory-manipulation.c: Moved to... * config/nds32/nds32-memory-manipulation.cc: ...here. * config/nds32/nds32-pipelines-auxiliary.c: Moved to... * config/nds32/nds32-pipelines-auxiliary.cc: ...here. * config/nds32/nds32-predicates.c: Moved to... * config/nds32/nds32-predicates.cc: ...here. * config/nds32/nds32-relax-opt.c: Moved to... * config/nds32/nds32-relax-opt.cc: ...here. * config/nds32/nds32-utils.c: Moved to... * config/nds32/nds32-utils.cc: ...here. * config/nds32/nds32.c: Moved to... * config/nds32/nds32.cc: ...here. * config/netbsd-d.c: Moved to... * config/netbsd-d.cc: ...here. * config/netbsd.c: Moved to... * config/netbsd.cc: ...here. * config/nios2/nios2.c: Moved to... * config/nios2/nios2.cc: ...here. * config/nvptx/mkoffload.c: Moved to... * config/nvptx/mkoffload.cc: ...here. * config/nvptx/nvptx-c.c: Moved to... * config/nvptx/nvptx-c.cc: ...here. * config/nvptx/nvptx.c: Moved to... * config/nvptx/nvptx.cc: ...here. * config/openbsd-d.c: Moved to... * config/openbsd-d.cc: ...here. * config/or1k/or1k.c: Moved to... * config/or1k/or1k.cc: ...here. * config/pa/pa-d.c: Moved to... * config/pa/pa-d.cc: ...here. * config/pa/pa.c: Moved to... * config/pa/pa.cc: ...here. * config/pdp11/pdp11.c: Moved to... * config/pdp11/pdp11.cc: ...here. * config/pru/pru-passes.c: Moved to... * config/pru/pru-passes.cc: ...here. * config/pru/pru-pragma.c: Moved to... * config/pru/pru-pragma.cc: ...here. * config/pru/pru.c: Moved to... * config/pru/pru.cc: ...here. * config/riscv/riscv-builtins.c: Moved to... * config/riscv/riscv-builtins.cc: ...here. * config/riscv/riscv-c.c: Moved to... * config/riscv/riscv-c.cc: ...here. * config/riscv/riscv-d.c: Moved to... * config/riscv/riscv-d.cc: ...here. * config/riscv/riscv-shorten-memrefs.c: Moved to... * config/riscv/riscv-shorten-memrefs.cc: ...here. * config/riscv/riscv-sr.c: Moved to... * config/riscv/riscv-sr.cc: ...here. * config/riscv/riscv.c: Moved to... * config/riscv/riscv.cc: ...here. * config/rl78/rl78-c.c: Moved to... * config/rl78/rl78-c.cc: ...here. * config/rl78/rl78.c: Moved to... * config/rl78/rl78.cc: ...here. * config/rs6000/driver-rs6000.c: Moved to... * config/rs6000/driver-rs6000.cc: ...here. * config/rs6000/host-darwin.c: Moved to... * config/rs6000/host-darwin.cc: ...here. * config/rs6000/host-ppc64-darwin.c: Moved to... * config/rs6000/host-ppc64-darwin.cc: ...here. * config/rs6000/rbtree.c: Moved to... * config/rs6000/rbtree.cc: ...here. * config/rs6000/rs6000-c.c: Moved to... * config/rs6000/rs6000-c.cc: ...here. * config/rs6000/rs6000-call.c: Moved to... * config/rs6000/rs6000-call.cc: ...here. * config/rs6000/rs6000-d.c: Moved to... * config/rs6000/rs6000-d.cc: ...here. * config/rs6000/rs6000-gen-builtins.c: Moved to... * config/rs6000/rs6000-gen-builtins.cc: ...here. * config/rs6000/rs6000-linux.c: Moved to... * config/rs6000/rs6000-linux.cc: ...here. * config/rs6000/rs6000-logue.c: Moved to... * config/rs6000/rs6000-logue.cc: ...here. * config/rs6000/rs6000-p8swap.c: Moved to... * config/rs6000/rs6000-p8swap.cc: ...here. * config/rs6000/rs6000-pcrel-opt.c: Moved to... * config/rs6000/rs6000-pcrel-opt.cc: ...here. * config/rs6000/rs6000-string.c: Moved to... * config/rs6000/rs6000-string.cc: ...here. * config/rs6000/rs6000.c: Moved to... * config/rs6000/rs6000.cc: ...here. * config/rx/rx.c: Moved to... * config/rx/rx.cc: ...here. * config/s390/driver-native.c: Moved to... * config/s390/driver-native.cc: ...here. * config/s390/s390-c.c: Moved to... * config/s390/s390-c.cc: ...here. * config/s390/s390-d.c: Moved to... * config/s390/s390-d.cc: ...here. * config/s390/s390.c: Moved to... * config/s390/s390.cc: ...here. * config/sh/divtab-sh4-300.c: Moved to... * config/sh/divtab-sh4-300.cc: ...here. * config/sh/divtab-sh4.c: Moved to... * config/sh/divtab-sh4.cc: ...here. * config/sh/divtab.c: Moved to... * config/sh/divtab.cc: ...here. * config/sh/sh-c.c: Moved to... * config/sh/sh-c.cc: ...here. * config/sh/sh.c: Moved to... * config/sh/sh.cc: ...here. * config/sol2-c.c: Moved to... * config/sol2-c.cc: ...here. * config/sol2-cxx.c: Moved to... * config/sol2-cxx.cc: ...here. * config/sol2-d.c: Moved to... * config/sol2-d.cc: ...here. * config/sol2-stubs.c: Moved to... * config/sol2-stubs.cc: ...here. * config/sol2.c: Moved to... * config/sol2.cc: ...here. * config/sparc/driver-sparc.c: Moved to... * config/sparc/driver-sparc.cc: ...here. * config/sparc/sparc-c.c: Moved to... * config/sparc/sparc-c.cc: ...here. * config/sparc/sparc-d.c: Moved to... * config/sparc/sparc-d.cc: ...here. * config/sparc/sparc.c: Moved to... * config/sparc/sparc.cc: ...here. * config/stormy16/stormy16.c: Moved to... * config/stormy16/stormy16.cc: ...here. * config/tilegx/mul-tables.c: Moved to... * config/tilegx/mul-tables.cc: ...here. * config/tilegx/tilegx-c.c: Moved to... * config/tilegx/tilegx-c.cc: ...here. * config/tilegx/tilegx.c: Moved to... * config/tilegx/tilegx.cc: ...here. * config/tilepro/mul-tables.c: Moved to... * config/tilepro/mul-tables.cc: ...here. * config/tilepro/tilepro-c.c: Moved to... * config/tilepro/tilepro-c.cc: ...here. * config/tilepro/tilepro.c: Moved to... * config/tilepro/tilepro.cc: ...here. * config/v850/v850-c.c: Moved to... * config/v850/v850-c.cc: ...here. * config/v850/v850.c: Moved to... * config/v850/v850.cc: ...here. * config/vax/vax.c: Moved to... * config/vax/vax.cc: ...here. * config/visium/visium.c: Moved to... * config/visium/visium.cc: ...here. * config/vms/vms-c.c: Moved to... * config/vms/vms-c.cc: ...here. * config/vms/vms-f.c: Moved to... * config/vms/vms-f.cc: ...here. * config/vms/vms.c: Moved to... * config/vms/vms.cc: ...here. * config/vxworks-c.c: Moved to... * config/vxworks-c.cc: ...here. * config/vxworks.c: Moved to... * config/vxworks.cc: ...here. * config/winnt-c.c: Moved to... * config/winnt-c.cc: ...here. * config/xtensa/xtensa.c: Moved to... * config/xtensa/xtensa.cc: ...here. * context.c: Moved to... * context.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * coverage.c: Moved to... * coverage.cc: ...here. * cppbuiltin.c: Moved to... * cppbuiltin.cc: ...here. * cppdefault.c: Moved to... * cppdefault.cc: ...here. * cprop.c: Moved to... * cprop.cc: ...here. * cse.c: Moved to... * cse.cc: ...here. * cselib.c: Moved to... * cselib.cc: ...here. * ctfc.c: Moved to... * ctfc.cc: ...here. * ctfout.c: Moved to... * ctfout.cc: ...here. * data-streamer-in.c: Moved to... * data-streamer-in.cc: ...here. * data-streamer-out.c: Moved to... * data-streamer-out.cc: ...here. * data-streamer.c: Moved to... * data-streamer.cc: ...here. * dbgcnt.c: Moved to... * dbgcnt.cc: ...here. * dbxout.c: Moved to... * dbxout.cc: ...here. * dce.c: Moved to... * dce.cc: ...here. * ddg.c: Moved to... * ddg.cc: ...here. * debug.c: Moved to... * debug.cc: ...here. * df-core.c: Moved to... * df-core.cc: ...here. * df-problems.c: Moved to... * df-problems.cc: ...here. * df-scan.c: Moved to... * df-scan.cc: ...here. * dfp.c: Moved to... * dfp.cc: ...here. * diagnostic-color.c: Moved to... * diagnostic-color.cc: ...here. * diagnostic-show-locus.c: Moved to... * diagnostic-show-locus.cc: ...here. * diagnostic-spec.c: Moved to... * diagnostic-spec.cc: ...here. * diagnostic.c: Moved to... * diagnostic.cc: ...here. * dojump.c: Moved to... * dojump.cc: ...here. * dominance.c: Moved to... * dominance.cc: ...here. * domwalk.c: Moved to... * domwalk.cc: ...here. * double-int.c: Moved to... * double-int.cc: ...here. * dse.c: Moved to... * dse.cc: ...here. * dumpfile.c: Moved to... * dumpfile.cc: ...here. * dwarf2asm.c: Moved to... * dwarf2asm.cc: ...here. * dwarf2cfi.c: Moved to... * dwarf2cfi.cc: ...here. * dwarf2ctf.c: Moved to... * dwarf2ctf.cc: ...here. * dwarf2out.c: Moved to... * dwarf2out.cc: ...here. * early-remat.c: Moved to... * early-remat.cc: ...here. * edit-context.c: Moved to... * edit-context.cc: ...here. * emit-rtl.c: Moved to... * emit-rtl.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * et-forest.c: Moved to... * et-forest.cc: ...here. * except.c: Moved to... * except.cc: ...here. * explow.c: Moved to... * explow.cc: ...here. * expmed.c: Moved to... * expmed.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * fibonacci_heap.c: Moved to... * fibonacci_heap.cc: ...here. * file-find.c: Moved to... * file-find.cc: ...here. * file-prefix-map.c: Moved to... * file-prefix-map.cc: ...here. * final.c: Moved to... * final.cc: ...here. * fixed-value.c: Moved to... * fixed-value.cc: ...here. * fold-const-call.c: Moved to... * fold-const-call.cc: ...here. * fold-const.c: Moved to... * fold-const.cc: ...here. * fp-test.c: Moved to... * fp-test.cc: ...here. * function-tests.c: Moved to... * function-tests.cc: ...here. * function.c: Moved to... * function.cc: ...here. * fwprop.c: Moved to... * fwprop.cc: ...here. * gcc-ar.c: Moved to... * gcc-ar.cc: ...here. * gcc-main.c: Moved to... * gcc-main.cc: ...here. * gcc-rich-location.c: Moved to... * gcc-rich-location.cc: ...here. * gcc.c: Moved to... * gcc.cc: ...here. * gcov-dump.c: Moved to... * gcov-dump.cc: ...here. * gcov-io.c: Moved to... * gcov-io.cc: ...here. * gcov-tool.c: Moved to... * gcov-tool.cc: ...here. * gcov.c: Moved to... * gcov.cc: ...here. * gcse-common.c: Moved to... * gcse-common.cc: ...here. * gcse.c: Moved to... * gcse.cc: ...here. * genattr-common.c: Moved to... * genattr-common.cc: ...here. * genattr.c: Moved to... * genattr.cc: ...here. * genattrtab.c: Moved to... * genattrtab.cc: ...here. * genautomata.c: Moved to... * genautomata.cc: ...here. * gencfn-macros.c: Moved to... * gencfn-macros.cc: ...here. * gencheck.c: Moved to... * gencheck.cc: ...here. * genchecksum.c: Moved to... * genchecksum.cc: ...here. * gencodes.c: Moved to... * gencodes.cc: ...here. * genconditions.c: Moved to... * genconditions.cc: ...here. * genconfig.c: Moved to... * genconfig.cc: ...here. * genconstants.c: Moved to... * genconstants.cc: ...here. * genemit.c: Moved to... * genemit.cc: ...here. * genenums.c: Moved to... * genenums.cc: ...here. * generic-match-head.c: Moved to... * generic-match-head.cc: ...here. * genextract.c: Moved to... * genextract.cc: ...here. * genflags.c: Moved to... * genflags.cc: ...here. * gengenrtl.c: Moved to... * gengenrtl.cc: ...here. * gengtype-parse.c: Moved to... * gengtype-parse.cc: ...here. * gengtype-state.c: Moved to... * gengtype-state.cc: ...here. * gengtype.c: Moved to... * gengtype.cc: ...here. * genhooks.c: Moved to... * genhooks.cc: ...here. * genmatch.c: Moved to... * genmatch.cc: ...here. * genmddeps.c: Moved to... * genmddeps.cc: ...here. * genmddump.c: Moved to... * genmddump.cc: ...here. * genmodes.c: Moved to... * genmodes.cc: ...here. * genopinit.c: Moved to... * genopinit.cc: ...here. * genoutput.c: Moved to... * genoutput.cc: ...here. * genpeep.c: Moved to... * genpeep.cc: ...here. * genpreds.c: Moved to... * genpreds.cc: ...here. * genrecog.c: Moved to... * genrecog.cc: ...here. * gensupport.c: Moved to... * gensupport.cc: ...here. * gentarget-def.c: Moved to... * gentarget-def.cc: ...here. * genversion.c: Moved to... * genversion.cc: ...here. * ggc-common.c: Moved to... * ggc-common.cc: ...here. * ggc-none.c: Moved to... * ggc-none.cc: ...here. * ggc-page.c: Moved to... * ggc-page.cc: ...here. * ggc-tests.c: Moved to... * ggc-tests.cc: ...here. * gimple-builder.c: Moved to... * gimple-builder.cc: ...here. * gimple-expr.c: Moved to... * gimple-expr.cc: ...here. * gimple-fold.c: Moved to... * gimple-fold.cc: ...here. * gimple-iterator.c: Moved to... * gimple-iterator.cc: ...here. * gimple-laddress.c: Moved to... * gimple-laddress.cc: ...here. * gimple-loop-jam.c: Moved to... * gimple-loop-jam.cc: ...here. * gimple-low.c: Moved to... * gimple-low.cc: ...here. * gimple-match-head.c: Moved to... * gimple-match-head.cc: ...here. * gimple-pretty-print.c: Moved to... * gimple-pretty-print.cc: ...here. * gimple-ssa-backprop.c: Moved to... * gimple-ssa-backprop.cc: ...here. * gimple-ssa-evrp-analyze.c: Moved to... * gimple-ssa-evrp-analyze.cc: ...here. * gimple-ssa-evrp.c: Moved to... * gimple-ssa-evrp.cc: ...here. * gimple-ssa-isolate-paths.c: Moved to... * gimple-ssa-isolate-paths.cc: ...here. * gimple-ssa-nonnull-compare.c: Moved to... * gimple-ssa-nonnull-compare.cc: ...here. * gimple-ssa-split-paths.c: Moved to... * gimple-ssa-split-paths.cc: ...here. * gimple-ssa-sprintf.c: Moved to... * gimple-ssa-sprintf.cc: ...here. * gimple-ssa-store-merging.c: Moved to... * gimple-ssa-store-merging.cc: ...here. * gimple-ssa-strength-reduction.c: Moved to... * gimple-ssa-strength-reduction.cc: ...here. * gimple-ssa-warn-alloca.c: Moved to... * gimple-ssa-warn-alloca.cc: ...here. * gimple-ssa-warn-restrict.c: Moved to... * gimple-ssa-warn-restrict.cc: ...here. * gimple-streamer-in.c: Moved to... * gimple-streamer-in.cc: ...here. * gimple-streamer-out.c: Moved to... * gimple-streamer-out.cc: ...here. * gimple-walk.c: Moved to... * gimple-walk.cc: ...here. * gimple-warn-recursion.c: Moved to... * gimple-warn-recursion.cc: ...here. * gimple.c: Moved to... * gimple.cc: ...here. * gimplify-me.c: Moved to... * gimplify-me.cc: ...here. * gimplify.c: Moved to... * gimplify.cc: ...here. * godump.c: Moved to... * godump.cc: ...here. * graph.c: Moved to... * graph.cc: ...here. * graphds.c: Moved to... * graphds.cc: ...here. * graphite-dependences.c: Moved to... * graphite-dependences.cc: ...here. * graphite-isl-ast-to-gimple.c: Moved to... * graphite-isl-ast-to-gimple.cc: ...here. * graphite-optimize-isl.c: Moved to... * graphite-optimize-isl.cc: ...here. * graphite-poly.c: Moved to... * graphite-poly.cc: ...here. * graphite-scop-detection.c: Moved to... * graphite-scop-detection.cc: ...here. * graphite-sese-to-poly.c: Moved to... * graphite-sese-to-poly.cc: ...here. * graphite.c: Moved to... * graphite.cc: ...here. * haifa-sched.c: Moved to... * haifa-sched.cc: ...here. * hash-map-tests.c: Moved to... * hash-map-tests.cc: ...here. * hash-set-tests.c: Moved to... * hash-set-tests.cc: ...here. * hash-table.c: Moved to... * hash-table.cc: ...here. * hooks.c: Moved to... * hooks.cc: ...here. * host-default.c: Moved to... * host-default.cc: ...here. * hw-doloop.c: Moved to... * hw-doloop.cc: ...here. * hwint.c: Moved to... * hwint.cc: ...here. * ifcvt.c: Moved to... * ifcvt.cc: ...here. * inchash.c: Moved to... * inchash.cc: ...here. * incpath.c: Moved to... * incpath.cc: ...here. * init-regs.c: Moved to... * init-regs.cc: ...here. * input.c: Moved to... * input.cc: ...here. * internal-fn.c: Moved to... * internal-fn.cc: ...here. * intl.c: Moved to... * intl.cc: ...here. * ipa-comdats.c: Moved to... * ipa-comdats.cc: ...here. * ipa-cp.c: Moved to... * ipa-cp.cc: ...here. * ipa-devirt.c: Moved to... * ipa-devirt.cc: ...here. * ipa-fnsummary.c: Moved to... * ipa-fnsummary.cc: ...here. * ipa-icf-gimple.c: Moved to... * ipa-icf-gimple.cc: ...here. * ipa-icf.c: Moved to... * ipa-icf.cc: ...here. * ipa-inline-analysis.c: Moved to... * ipa-inline-analysis.cc: ...here. * ipa-inline-transform.c: Moved to... * ipa-inline-transform.cc: ...here. * ipa-inline.c: Moved to... * ipa-inline.cc: ...here. * ipa-modref-tree.c: Moved to... * ipa-modref-tree.cc: ...here. * ipa-modref.c: Moved to... * ipa-modref.cc: ...here. * ipa-param-manipulation.c: Moved to... * ipa-param-manipulation.cc: ...here. * ipa-polymorphic-call.c: Moved to... * ipa-polymorphic-call.cc: ...here. * ipa-predicate.c: Moved to... * ipa-predicate.cc: ...here. * ipa-profile.c: Moved to... * ipa-profile.cc: ...here. * ipa-prop.c: Moved to... * ipa-prop.cc: ...here. * ipa-pure-const.c: Moved to... * ipa-pure-const.cc: ...here. * ipa-ref.c: Moved to... * ipa-ref.cc: ...here. * ipa-reference.c: Moved to... * ipa-reference.cc: ...here. * ipa-split.c: Moved to... * ipa-split.cc: ...here. * ipa-sra.c: Moved to... * ipa-sra.cc: ...here. * ipa-utils.c: Moved to... * ipa-utils.cc: ...here. * ipa-visibility.c: Moved to... * ipa-visibility.cc: ...here. * ipa.c: Moved to... * ipa.cc: ...here. * ira-build.c: Moved to... * ira-build.cc: ...here. * ira-color.c: Moved to... * ira-color.cc: ...here. * ira-conflicts.c: Moved to... * ira-conflicts.cc: ...here. * ira-costs.c: Moved to... * ira-costs.cc: ...here. * ira-emit.c: Moved to... * ira-emit.cc: ...here. * ira-lives.c: Moved to... * ira-lives.cc: ...here. * ira.c: Moved to... * ira.cc: ...here. * jump.c: Moved to... * jump.cc: ...here. * langhooks.c: Moved to... * langhooks.cc: ...here. * lcm.c: Moved to... * lcm.cc: ...here. * lists.c: Moved to... * lists.cc: ...here. * loop-doloop.c: Moved to... * loop-doloop.cc: ...here. * loop-init.c: Moved to... * loop-init.cc: ...here. * loop-invariant.c: Moved to... * loop-invariant.cc: ...here. * loop-iv.c: Moved to... * loop-iv.cc: ...here. * loop-unroll.c: Moved to... * loop-unroll.cc: ...here. * lower-subreg.c: Moved to... * lower-subreg.cc: ...here. * lra-assigns.c: Moved to... * lra-assigns.cc: ...here. * lra-coalesce.c: Moved to... * lra-coalesce.cc: ...here. * lra-constraints.c: Moved to... * lra-constraints.cc: ...here. * lra-eliminations.c: Moved to... * lra-eliminations.cc: ...here. * lra-lives.c: Moved to... * lra-lives.cc: ...here. * lra-remat.c: Moved to... * lra-remat.cc: ...here. * lra-spills.c: Moved to... * lra-spills.cc: ...here. * lra.c: Moved to... * lra.cc: ...here. * lto-cgraph.c: Moved to... * lto-cgraph.cc: ...here. * lto-compress.c: Moved to... * lto-compress.cc: ...here. * lto-opts.c: Moved to... * lto-opts.cc: ...here. * lto-section-in.c: Moved to... * lto-section-in.cc: ...here. * lto-section-out.c: Moved to... * lto-section-out.cc: ...here. * lto-streamer-in.c: Moved to... * lto-streamer-in.cc: ...here. * lto-streamer-out.c: Moved to... * lto-streamer-out.cc: ...here. * lto-streamer.c: Moved to... * lto-streamer.cc: ...here. * lto-wrapper.c: Moved to... * lto-wrapper.cc: ...here. * main.c: Moved to... * main.cc: ...here. * mcf.c: Moved to... * mcf.cc: ...here. * mode-switching.c: Moved to... * mode-switching.cc: ...here. * modulo-sched.c: Moved to... * modulo-sched.cc: ...here. * multiple_target.c: Moved to... * multiple_target.cc: ...here. * omp-expand.c: Moved to... * omp-expand.cc: ...here. * omp-general.c: Moved to... * omp-general.cc: ...here. * omp-low.c: Moved to... * omp-low.cc: ...here. * omp-offload.c: Moved to... * omp-offload.cc: ...here. * omp-simd-clone.c: Moved to... * omp-simd-clone.cc: ...here. * opt-suggestions.c: Moved to... * opt-suggestions.cc: ...here. * optabs-libfuncs.c: Moved to... * optabs-libfuncs.cc: ...here. * optabs-query.c: Moved to... * optabs-query.cc: ...here. * optabs-tree.c: Moved to... * optabs-tree.cc: ...here. * optabs.c: Moved to... * optabs.cc: ...here. * opts-common.c: Moved to... * opts-common.cc: ...here. * opts-global.c: Moved to... * opts-global.cc: ...here. * opts.c: Moved to... * opts.cc: ...here. * passes.c: Moved to... * passes.cc: ...here. * plugin.c: Moved to... * plugin.cc: ...here. * postreload-gcse.c: Moved to... * postreload-gcse.cc: ...here. * postreload.c: Moved to... * postreload.cc: ...here. * predict.c: Moved to... * predict.cc: ...here. * prefix.c: Moved to... * prefix.cc: ...here. * pretty-print.c: Moved to... * pretty-print.cc: ...here. * print-rtl-function.c: Moved to... * print-rtl-function.cc: ...here. * print-rtl.c: Moved to... * print-rtl.cc: ...here. * print-tree.c: Moved to... * print-tree.cc: ...here. * profile-count.c: Moved to... * profile-count.cc: ...here. * profile.c: Moved to... * profile.cc: ...here. * read-md.c: Moved to... * read-md.cc: ...here. * read-rtl-function.c: Moved to... * read-rtl-function.cc: ...here. * read-rtl.c: Moved to... * read-rtl.cc: ...here. * real.c: Moved to... * real.cc: ...here. * realmpfr.c: Moved to... * realmpfr.cc: ...here. * recog.c: Moved to... * recog.cc: ...here. * ree.c: Moved to... * ree.cc: ...here. * reg-stack.c: Moved to... * reg-stack.cc: ...here. * regcprop.c: Moved to... * regcprop.cc: ...here. * reginfo.c: Moved to... * reginfo.cc: ...here. * regrename.c: Moved to... * regrename.cc: ...here. * regstat.c: Moved to... * regstat.cc: ...here. * reload.c: Moved to... * reload.cc: ...here. * reload1.c: Moved to... * reload1.cc: ...here. * reorg.c: Moved to... * reorg.cc: ...here. * resource.c: Moved to... * resource.cc: ...here. * rtl-error.c: Moved to... * rtl-error.cc: ...here. * rtl-tests.c: Moved to... * rtl-tests.cc: ...here. * rtl.c: Moved to... * rtl.cc: ...here. * rtlanal.c: Moved to... * rtlanal.cc: ...here. * rtlhash.c: Moved to... * rtlhash.cc: ...here. * rtlhooks.c: Moved to... * rtlhooks.cc: ...here. * rtx-vector-builder.c: Moved to... * rtx-vector-builder.cc: ...here. * run-rtl-passes.c: Moved to... * run-rtl-passes.cc: ...here. * sancov.c: Moved to... * sancov.cc: ...here. * sanopt.c: Moved to... * sanopt.cc: ...here. * sbitmap.c: Moved to... * sbitmap.cc: ...here. * sched-deps.c: Moved to... * sched-deps.cc: ...here. * sched-ebb.c: Moved to... * sched-ebb.cc: ...here. * sched-rgn.c: Moved to... * sched-rgn.cc: ...here. * sel-sched-dump.c: Moved to... * sel-sched-dump.cc: ...here. * sel-sched-ir.c: Moved to... * sel-sched-ir.cc: ...here. * sel-sched.c: Moved to... * sel-sched.cc: ...here. * selftest-diagnostic.c: Moved to... * selftest-diagnostic.cc: ...here. * selftest-rtl.c: Moved to... * selftest-rtl.cc: ...here. * selftest-run-tests.c: Moved to... * selftest-run-tests.cc: ...here. * selftest.c: Moved to... * selftest.cc: ...here. * sese.c: Moved to... * sese.cc: ...here. * shrink-wrap.c: Moved to... * shrink-wrap.cc: ...here. * simplify-rtx.c: Moved to... * simplify-rtx.cc: ...here. * sparseset.c: Moved to... * sparseset.cc: ...here. * spellcheck-tree.c: Moved to... * spellcheck-tree.cc: ...here. * spellcheck.c: Moved to... * spellcheck.cc: ...here. * sreal.c: Moved to... * sreal.cc: ...here. * stack-ptr-mod.c: Moved to... * stack-ptr-mod.cc: ...here. * statistics.c: Moved to... * statistics.cc: ...here. * stmt.c: Moved to... * stmt.cc: ...here. * stor-layout.c: Moved to... * stor-layout.cc: ...here. * store-motion.c: Moved to... * store-motion.cc: ...here. * streamer-hooks.c: Moved to... * streamer-hooks.cc: ...here. * stringpool.c: Moved to... * stringpool.cc: ...here. * substring-locations.c: Moved to... * substring-locations.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * target-globals.c: Moved to... * target-globals.cc: ...here. * targhooks.c: Moved to... * targhooks.cc: ...here. * timevar.c: Moved to... * timevar.cc: ...here. * toplev.c: Moved to... * toplev.cc: ...here. * tracer.c: Moved to... * tracer.cc: ...here. * trans-mem.c: Moved to... * trans-mem.cc: ...here. * tree-affine.c: Moved to... * tree-affine.cc: ...here. * tree-call-cdce.c: Moved to... * tree-call-cdce.cc: ...here. * tree-cfg.c: Moved to... * tree-cfg.cc: ...here. * tree-cfgcleanup.c: Moved to... * tree-cfgcleanup.cc: ...here. * tree-chrec.c: Moved to... * tree-chrec.cc: ...here. * tree-complex.c: Moved to... * tree-complex.cc: ...here. * tree-data-ref.c: Moved to... * tree-data-ref.cc: ...here. * tree-dfa.c: Moved to... * tree-dfa.cc: ...here. * tree-diagnostic.c: Moved to... * tree-diagnostic.cc: ...here. * tree-dump.c: Moved to... * tree-dump.cc: ...here. * tree-eh.c: Moved to... * tree-eh.cc: ...here. * tree-emutls.c: Moved to... * tree-emutls.cc: ...here. * tree-if-conv.c: Moved to... * tree-if-conv.cc: ...here. * tree-inline.c: Moved to... * tree-inline.cc: ...here. * tree-into-ssa.c: Moved to... * tree-into-ssa.cc: ...here. * tree-iterator.c: Moved to... * tree-iterator.cc: ...here. * tree-loop-distribution.c: Moved to... * tree-loop-distribution.cc: ...here. * tree-nested.c: Moved to... * tree-nested.cc: ...here. * tree-nrv.c: Moved to... * tree-nrv.cc: ...here. * tree-object-size.c: Moved to... * tree-object-size.cc: ...here. * tree-outof-ssa.c: Moved to... * tree-outof-ssa.cc: ...here. * tree-parloops.c: Moved to... * tree-parloops.cc: ...here. * tree-phinodes.c: Moved to... * tree-phinodes.cc: ...here. * tree-predcom.c: Moved to... * tree-predcom.cc: ...here. * tree-pretty-print.c: Moved to... * tree-pretty-print.cc: ...here. * tree-profile.c: Moved to... * tree-profile.cc: ...here. * tree-scalar-evolution.c: Moved to... * tree-scalar-evolution.cc: ...here. * tree-sra.c: Moved to... * tree-sra.cc: ...here. * tree-ssa-address.c: Moved to... * tree-ssa-address.cc: ...here. * tree-ssa-alias.c: Moved to... * tree-ssa-alias.cc: ...here. * tree-ssa-ccp.c: Moved to... * tree-ssa-ccp.cc: ...here. * tree-ssa-coalesce.c: Moved to... * tree-ssa-coalesce.cc: ...here. * tree-ssa-copy.c: Moved to... * tree-ssa-copy.cc: ...here. * tree-ssa-dce.c: Moved to... * tree-ssa-dce.cc: ...here. * tree-ssa-dom.c: Moved to... * tree-ssa-dom.cc: ...here. * tree-ssa-dse.c: Moved to... * tree-ssa-dse.cc: ...here. * tree-ssa-forwprop.c: Moved to... * tree-ssa-forwprop.cc: ...here. * tree-ssa-ifcombine.c: Moved to... * tree-ssa-ifcombine.cc: ...here. * tree-ssa-live.c: Moved to... * tree-ssa-live.cc: ...here. * tree-ssa-loop-ch.c: Moved to... * tree-ssa-loop-ch.cc: ...here. * tree-ssa-loop-im.c: Moved to... * tree-ssa-loop-im.cc: ...here. * tree-ssa-loop-ivcanon.c: Moved to... * tree-ssa-loop-ivcanon.cc: ...here. * tree-ssa-loop-ivopts.c: Moved to... * tree-ssa-loop-ivopts.cc: ...here. * tree-ssa-loop-manip.c: Moved to... * tree-ssa-loop-manip.cc: ...here. * tree-ssa-loop-niter.c: Moved to... * tree-ssa-loop-niter.cc: ...here. * tree-ssa-loop-prefetch.c: Moved to... * tree-ssa-loop-prefetch.cc: ...here. * tree-ssa-loop-split.c: Moved to... * tree-ssa-loop-split.cc: ...here. * tree-ssa-loop-unswitch.c: Moved to... * tree-ssa-loop-unswitch.cc: ...here. * tree-ssa-loop.c: Moved to... * tree-ssa-loop.cc: ...here. * tree-ssa-math-opts.c: Moved to... * tree-ssa-math-opts.cc: ...here. * tree-ssa-operands.c: Moved to... * tree-ssa-operands.cc: ...here. * tree-ssa-phiopt.c: Moved to... * tree-ssa-phiopt.cc: ...here. * tree-ssa-phiprop.c: Moved to... * tree-ssa-phiprop.cc: ...here. * tree-ssa-pre.c: Moved to... * tree-ssa-pre.cc: ...here. * tree-ssa-propagate.c: Moved to... * tree-ssa-propagate.cc: ...here. * tree-ssa-reassoc.c: Moved to... * tree-ssa-reassoc.cc: ...here. * tree-ssa-sccvn.c: Moved to... * tree-ssa-sccvn.cc: ...here. * tree-ssa-scopedtables.c: Moved to... * tree-ssa-scopedtables.cc: ...here. * tree-ssa-sink.c: Moved to... * tree-ssa-sink.cc: ...here. * tree-ssa-strlen.c: Moved to... * tree-ssa-strlen.cc: ...here. * tree-ssa-structalias.c: Moved to... * tree-ssa-structalias.cc: ...here. * tree-ssa-tail-merge.c: Moved to... * tree-ssa-tail-merge.cc: ...here. * tree-ssa-ter.c: Moved to... * tree-ssa-ter.cc: ...here. * tree-ssa-threadbackward.c: Moved to... * tree-ssa-threadbackward.cc: ...here. * tree-ssa-threadedge.c: Moved to... * tree-ssa-threadedge.cc: ...here. * tree-ssa-threadupdate.c: Moved to... * tree-ssa-threadupdate.cc: ...here. * tree-ssa-uncprop.c: Moved to... * tree-ssa-uncprop.cc: ...here. * tree-ssa-uninit.c: Moved to... * tree-ssa-uninit.cc: ...here. * tree-ssa.c: Moved to... * tree-ssa.cc: ...here. * tree-ssanames.c: Moved to... * tree-ssanames.cc: ...here. * tree-stdarg.c: Moved to... * tree-stdarg.cc: ...here. * tree-streamer-in.c: Moved to... * tree-streamer-in.cc: ...here. * tree-streamer-out.c: Moved to... * tree-streamer-out.cc: ...here. * tree-streamer.c: Moved to... * tree-streamer.cc: ...here. * tree-switch-conversion.c: Moved to... * tree-switch-conversion.cc: ...here. * tree-tailcall.c: Moved to... * tree-tailcall.cc: ...here. * tree-vect-data-refs.c: Moved to... * tree-vect-data-refs.cc: ...here. * tree-vect-generic.c: Moved to... * tree-vect-generic.cc: ...here. * tree-vect-loop-manip.c: Moved to... * tree-vect-loop-manip.cc: ...here. * tree-vect-loop.c: Moved to... * tree-vect-loop.cc: ...here. * tree-vect-patterns.c: Moved to... * tree-vect-patterns.cc: ...here. * tree-vect-slp-patterns.c: Moved to... * tree-vect-slp-patterns.cc: ...here. * tree-vect-slp.c: Moved to... * tree-vect-slp.cc: ...here. * tree-vect-stmts.c: Moved to... * tree-vect-stmts.cc: ...here. * tree-vector-builder.c: Moved to... * tree-vector-builder.cc: ...here. * tree-vectorizer.c: Moved to... * tree-vectorizer.cc: ...here. * tree-vrp.c: Moved to... * tree-vrp.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * tsan.c: Moved to... * tsan.cc: ...here. * typed-splay-tree.c: Moved to... * typed-splay-tree.cc: ...here. * ubsan.c: Moved to... * ubsan.cc: ...here. * valtrack.c: Moved to... * valtrack.cc: ...here. * value-prof.c: Moved to... * value-prof.cc: ...here. * var-tracking.c: Moved to... * var-tracking.cc: ...here. * varasm.c: Moved to... * varasm.cc: ...here. * varpool.c: Moved to... * varpool.cc: ...here. * vec-perm-indices.c: Moved to... * vec-perm-indices.cc: ...here. * vec.c: Moved to... * vec.cc: ...here. * vmsdbgout.c: Moved to... * vmsdbgout.cc: ...here. * vr-values.c: Moved to... * vr-values.cc: ...here. * vtable-verify.c: Moved to... * vtable-verify.cc: ...here. * web.c: Moved to... * web.cc: ...here. * xcoffout.c: Moved to... * xcoffout.cc: ...here. gcc/c-family/ChangeLog: * c-ada-spec.c: Moved to... * c-ada-spec.cc: ...here. * c-attribs.c: Moved to... * c-attribs.cc: ...here. * c-common.c: Moved to... * c-common.cc: ...here. * c-cppbuiltin.c: Moved to... * c-cppbuiltin.cc: ...here. * c-dump.c: Moved to... * c-dump.cc: ...here. * c-format.c: Moved to... * c-format.cc: ...here. * c-gimplify.c: Moved to... * c-gimplify.cc: ...here. * c-indentation.c: Moved to... * c-indentation.cc: ...here. * c-lex.c: Moved to... * c-lex.cc: ...here. * c-omp.c: Moved to... * c-omp.cc: ...here. * c-opts.c: Moved to... * c-opts.cc: ...here. * c-pch.c: Moved to... * c-pch.cc: ...here. * c-ppoutput.c: Moved to... * c-ppoutput.cc: ...here. * c-pragma.c: Moved to... * c-pragma.cc: ...here. * c-pretty-print.c: Moved to... * c-pretty-print.cc: ...here. * c-semantics.c: Moved to... * c-semantics.cc: ...here. * c-ubsan.c: Moved to... * c-ubsan.cc: ...here. * c-warn.c: Moved to... * c-warn.cc: ...here. * cppspec.c: Moved to... * cppspec.cc: ...here. * stub-objc.c: Moved to... * stub-objc.cc: ...here. gcc/c/ChangeLog: * c-aux-info.c: Moved to... * c-aux-info.cc: ...here. * c-convert.c: Moved to... * c-convert.cc: ...here. * c-decl.c: Moved to... * c-decl.cc: ...here. * c-errors.c: Moved to... * c-errors.cc: ...here. * c-fold.c: Moved to... * c-fold.cc: ...here. * c-lang.c: Moved to... * c-lang.cc: ...here. * c-objc-common.c: Moved to... * c-objc-common.cc: ...here. * c-parser.c: Moved to... * c-parser.cc: ...here. * c-typeck.c: Moved to... * c-typeck.cc: ...here. * gccspec.c: Moved to... * gccspec.cc: ...here. * gimple-parser.c: Moved to... * gimple-parser.cc: ...here. gcc/cp/ChangeLog: * call.c: Moved to... * call.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constexpr.c: Moved to... * constexpr.cc: ...here. * cp-gimplify.c: Moved to... * cp-gimplify.cc: ...here. * cp-lang.c: Moved to... * cp-lang.cc: ...here. * cp-objcp-common.c: Moved to... * cp-objcp-common.cc: ...here. * cp-ubsan.c: Moved to... * cp-ubsan.cc: ...here. * cvt.c: Moved to... * cvt.cc: ...here. * cxx-pretty-print.c: Moved to... * cxx-pretty-print.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * decl2.c: Moved to... * decl2.cc: ...here. * dump.c: Moved to... * dump.cc: ...here. * error.c: Moved to... * error.cc: ...here. * except.c: Moved to... * except.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * friend.c: Moved to... * friend.cc: ...here. * g++spec.c: Moved to... * g++spec.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lambda.c: Moved to... * lambda.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * mangle.c: Moved to... * mangle.cc: ...here. * method.c: Moved to... * method.cc: ...here. * name-lookup.c: Moved to... * name-lookup.cc: ...here. * optimize.c: Moved to... * optimize.cc: ...here. * parser.c: Moved to... * parser.cc: ...here. * pt.c: Moved to... * pt.cc: ...here. * ptree.c: Moved to... * ptree.cc: ...here. * rtti.c: Moved to... * rtti.cc: ...here. * search.c: Moved to... * search.cc: ...here. * semantics.c: Moved to... * semantics.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * typeck.c: Moved to... * typeck.cc: ...here. * typeck2.c: Moved to... * typeck2.cc: ...here. * vtable-class-hierarchy.c: Moved to... * vtable-class-hierarchy.cc: ...here. gcc/fortran/ChangeLog: * arith.c: Moved to... * arith.cc: ...here. * array.c: Moved to... * array.cc: ...here. * bbt.c: Moved to... * bbt.cc: ...here. * check.c: Moved to... * check.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constructor.c: Moved to... * constructor.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * cpp.c: Moved to... * cpp.cc: ...here. * data.c: Moved to... * data.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * dependency.c: Moved to... * dependency.cc: ...here. * dump-parse-tree.c: Moved to... * dump-parse-tree.cc: ...here. * error.c: Moved to... * error.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * f95-lang.c: Moved to... * f95-lang.cc: ...here. * frontend-passes.c: Moved to... * frontend-passes.cc: ...here. * gfortranspec.c: Moved to... * gfortranspec.cc: ...here. * interface.c: Moved to... * interface.cc: ...here. * intrinsic.c: Moved to... * intrinsic.cc: ...here. * io.c: Moved to... * io.cc: ...here. * iresolve.c: Moved to... * iresolve.cc: ...here. * match.c: Moved to... * match.cc: ...here. * matchexp.c: Moved to... * matchexp.cc: ...here. * misc.c: Moved to... * misc.cc: ...here. * module.c: Moved to... * module.cc: ...here. * openmp.c: Moved to... * openmp.cc: ...here. * options.c: Moved to... * options.cc: ...here. * parse.c: Moved to... * parse.cc: ...here. * primary.c: Moved to... * primary.cc: ...here. * resolve.c: Moved to... * resolve.cc: ...here. * scanner.c: Moved to... * scanner.cc: ...here. * simplify.c: Moved to... * simplify.cc: ...here. * st.c: Moved to... * st.cc: ...here. * symbol.c: Moved to... * symbol.cc: ...here. * target-memory.c: Moved to... * target-memory.cc: ...here. * trans-array.c: Moved to... * trans-array.cc: ...here. * trans-common.c: Moved to... * trans-common.cc: ...here. * trans-const.c: Moved to... * trans-const.cc: ...here. * trans-decl.c: Moved to... * trans-decl.cc: ...here. * trans-expr.c: Moved to... * trans-expr.cc: ...here. * trans-intrinsic.c: Moved to... * trans-intrinsic.cc: ...here. * trans-io.c: Moved to... * trans-io.cc: ...here. * trans-openmp.c: Moved to... * trans-openmp.cc: ...here. * trans-stmt.c: Moved to... * trans-stmt.cc: ...here. * trans-types.c: Moved to... * trans-types.cc: ...here. * trans.c: Moved to... * trans.cc: ...here. gcc/go/ChangeLog: * go-backend.c: Moved to... * go-backend.cc: ...here. * go-lang.c: Moved to... * go-lang.cc: ...here. * gospec.c: Moved to... * gospec.cc: ...here. gcc/jit/ChangeLog: * dummy-frontend.c: Moved to... * dummy-frontend.cc: ...here. * jit-builtins.c: Moved to... * jit-builtins.cc: ...here. * jit-logging.c: Moved to... * jit-logging.cc: ...here. * jit-playback.c: Moved to... * jit-playback.cc: ...here. * jit-recording.c: Moved to... * jit-recording.cc: ...here. * jit-result.c: Moved to... * jit-result.cc: ...here. * jit-spec.c: Moved to... * jit-spec.cc: ...here. * jit-tempdir.c: Moved to... * jit-tempdir.cc: ...here. * jit-w32.c: Moved to... * jit-w32.cc: ...here. * libgccjit.c: Moved to... * libgccjit.cc: ...here. gcc/lto/ChangeLog: * common.c: Moved to... * common.cc: ...here. * lto-common.c: Moved to... * lto-common.cc: ...here. * lto-dump.c: Moved to... * lto-dump.cc: ...here. * lto-lang.c: Moved to... * lto-lang.cc: ...here. * lto-object.c: Moved to... * lto-object.cc: ...here. * lto-partition.c: Moved to... * lto-partition.cc: ...here. * lto-symtab.c: Moved to... * lto-symtab.cc: ...here. * lto.c: Moved to... * lto.cc: ...here. gcc/objc/ChangeLog: * objc-act.c: Moved to... * objc-act.cc: ...here. * objc-encoding.c: Moved to... * objc-encoding.cc: ...here. * objc-gnu-runtime-abi-01.c: Moved to... * objc-gnu-runtime-abi-01.cc: ...here. * objc-lang.c: Moved to... * objc-lang.cc: ...here. * objc-map.c: Moved to... * objc-map.cc: ...here. * objc-next-runtime-abi-01.c: Moved to... * objc-next-runtime-abi-01.cc: ...here. * objc-next-runtime-abi-02.c: Moved to... * objc-next-runtime-abi-02.cc: ...here. * objc-runtime-shared-support.c: Moved to... * objc-runtime-shared-support.cc: ...here. gcc/objcp/ChangeLog: * objcp-decl.c: Moved to... * objcp-decl.cc: ...here. * objcp-lang.c: Moved to... * objcp-lang.cc: ...here. libcpp/ChangeLog: * charset.c: Moved to... * charset.cc: ...here. * directives.c: Moved to... * directives.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * files.c: Moved to... * files.cc: ...here. * identifiers.c: Moved to... * identifiers.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * line-map.c: Moved to... * line-map.cc: ...here. * macro.c: Moved to... * macro.cc: ...here. * makeucnid.c: Moved to... * makeucnid.cc: ...here. * mkdeps.c: Moved to... * mkdeps.cc: ...here. * pch.c: Moved to... * pch.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * traditional.c: Moved to... * traditional.cc: ...here.
Diffstat (limited to 'gcc/tree-data-ref.c')
-rw-r--r--gcc/tree-data-ref.c6386
1 files changed, 0 insertions, 6386 deletions
diff --git a/gcc/tree-data-ref.c b/gcc/tree-data-ref.c
deleted file mode 100644
index 397792c..0000000
--- a/gcc/tree-data-ref.c
+++ /dev/null
@@ -1,6386 +0,0 @@
-/* Data references and dependences detectors.
- Copyright (C) 2003-2022 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <pop@cri.ensmp.fr>
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-/* This pass walks a given loop structure searching for array
- references. The information about the array accesses is recorded
- in DATA_REFERENCE structures.
-
- The basic test for determining the dependences is:
- given two access functions chrec1 and chrec2 to a same array, and
- x and y two vectors from the iteration domain, the same element of
- the array is accessed twice at iterations x and y if and only if:
- | chrec1 (x) == chrec2 (y).
-
- The goals of this analysis are:
-
- - to determine the independence: the relation between two
- independent accesses is qualified with the chrec_known (this
- information allows a loop parallelization),
-
- - when two data references access the same data, to qualify the
- dependence relation with classic dependence representations:
-
- - distance vectors
- - direction vectors
- - loop carried level dependence
- - polyhedron dependence
- or with the chains of recurrences based representation,
-
- - to define a knowledge base for storing the data dependence
- information,
-
- - to define an interface to access this data.
-
-
- Definitions:
-
- - subscript: given two array accesses a subscript is the tuple
- composed of the access functions for a given dimension. Example:
- Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
- (f1, g1), (f2, g2), (f3, g3).
-
- - Diophantine equation: an equation whose coefficients and
- solutions are integer constants, for example the equation
- | 3*x + 2*y = 1
- has an integer solution x = 1 and y = -1.
-
- References:
-
- - "Advanced Compilation for High Performance Computing" by Randy
- Allen and Ken Kennedy.
- http://citeseer.ist.psu.edu/goff91practical.html
-
- - "Loop Transformations for Restructuring Compilers - The Foundations"
- by Utpal Banerjee.
-
-
-*/
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "gimple-pretty-print.h"
-#include "alias.h"
-#include "fold-const.h"
-#include "expr.h"
-#include "gimple-iterator.h"
-#include "tree-ssa-loop-niter.h"
-#include "tree-ssa-loop.h"
-#include "tree-ssa.h"
-#include "cfgloop.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "dumpfile.h"
-#include "tree-affine.h"
-#include "builtins.h"
-#include "tree-eh.h"
-#include "ssa.h"
-#include "internal-fn.h"
-#include "vr-values.h"
-#include "range-op.h"
-#include "tree-ssa-loop-ivopts.h"
-
-static struct datadep_stats
-{
- int num_dependence_tests;
- int num_dependence_dependent;
- int num_dependence_independent;
- int num_dependence_undetermined;
-
- int num_subscript_tests;
- int num_subscript_undetermined;
- int num_same_subscript_function;
-
- int num_ziv;
- int num_ziv_independent;
- int num_ziv_dependent;
- int num_ziv_unimplemented;
-
- int num_siv;
- int num_siv_independent;
- int num_siv_dependent;
- int num_siv_unimplemented;
-
- int num_miv;
- int num_miv_independent;
- int num_miv_dependent;
- int num_miv_unimplemented;
-} dependence_stats;
-
-static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
- unsigned int, unsigned int,
- class loop *);
-/* Returns true iff A divides B. */
-
-static inline bool
-tree_fold_divides_p (const_tree a, const_tree b)
-{
- gcc_assert (TREE_CODE (a) == INTEGER_CST);
- gcc_assert (TREE_CODE (b) == INTEGER_CST);
- return integer_zerop (int_const_binop (TRUNC_MOD_EXPR, b, a));
-}
-
-/* Returns true iff A divides B. */
-
-static inline bool
-int_divides_p (lambda_int a, lambda_int b)
-{
- return ((b % a) == 0);
-}
-
-/* Return true if reference REF contains a union access. */
-
-static bool
-ref_contains_union_access_p (tree ref)
-{
- while (handled_component_p (ref))
- {
- ref = TREE_OPERAND (ref, 0);
- if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
- || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
- return true;
- }
- return false;
-}
-
-
-
-/* Dump into FILE all the data references from DATAREFS. */
-
-static void
-dump_data_references (FILE *file, vec<data_reference_p> datarefs)
-{
- for (data_reference *dr : datarefs)
- dump_data_reference (file, dr);
-}
-
-/* Unified dump into FILE all the data references from DATAREFS. */
-
-DEBUG_FUNCTION void
-debug (vec<data_reference_p> &ref)
-{
- dump_data_references (stderr, ref);
-}
-
-DEBUG_FUNCTION void
-debug (vec<data_reference_p> *ptr)
-{
- if (ptr)
- debug (*ptr);
- else
- fprintf (stderr, "<nil>\n");
-}
-
-
-/* Dump into STDERR all the data references from DATAREFS. */
-
-DEBUG_FUNCTION void
-debug_data_references (vec<data_reference_p> datarefs)
-{
- dump_data_references (stderr, datarefs);
-}
-
-/* Print to STDERR the data_reference DR. */
-
-DEBUG_FUNCTION void
-debug_data_reference (struct data_reference *dr)
-{
- dump_data_reference (stderr, dr);
-}
-
-/* Dump function for a DATA_REFERENCE structure. */
-
-void
-dump_data_reference (FILE *outf,
- struct data_reference *dr)
-{
- unsigned int i;
-
- fprintf (outf, "#(Data Ref: \n");
- fprintf (outf, "# bb: %d \n", gimple_bb (DR_STMT (dr))->index);
- fprintf (outf, "# stmt: ");
- print_gimple_stmt (outf, DR_STMT (dr), 0);
- fprintf (outf, "# ref: ");
- print_generic_stmt (outf, DR_REF (dr));
- fprintf (outf, "# base_object: ");
- print_generic_stmt (outf, DR_BASE_OBJECT (dr));
-
- for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
- {
- fprintf (outf, "# Access function %d: ", i);
- print_generic_stmt (outf, DR_ACCESS_FN (dr, i));
- }
- fprintf (outf, "#)\n");
-}
-
-/* Unified dump function for a DATA_REFERENCE structure. */
-
-DEBUG_FUNCTION void
-debug (data_reference &ref)
-{
- dump_data_reference (stderr, &ref);
-}
-
-DEBUG_FUNCTION void
-debug (data_reference *ptr)
-{
- if (ptr)
- debug (*ptr);
- else
- fprintf (stderr, "<nil>\n");
-}
-
-
-/* Dumps the affine function described by FN to the file OUTF. */
-
-DEBUG_FUNCTION void
-dump_affine_function (FILE *outf, affine_fn fn)
-{
- unsigned i;
- tree coef;
-
- print_generic_expr (outf, fn[0], TDF_SLIM);
- for (i = 1; fn.iterate (i, &coef); i++)
- {
- fprintf (outf, " + ");
- print_generic_expr (outf, coef, TDF_SLIM);
- fprintf (outf, " * x_%u", i);
- }
-}
-
-/* Dumps the conflict function CF to the file OUTF. */
-
-DEBUG_FUNCTION void
-dump_conflict_function (FILE *outf, conflict_function *cf)
-{
- unsigned i;
-
- if (cf->n == NO_DEPENDENCE)
- fprintf (outf, "no dependence");
- else if (cf->n == NOT_KNOWN)
- fprintf (outf, "not known");
- else
- {
- for (i = 0; i < cf->n; i++)
- {
- if (i != 0)
- fprintf (outf, " ");
- fprintf (outf, "[");
- dump_affine_function (outf, cf->fns[i]);
- fprintf (outf, "]");
- }
- }
-}
-
-/* Dump function for a SUBSCRIPT structure. */
-
-DEBUG_FUNCTION void
-dump_subscript (FILE *outf, struct subscript *subscript)
-{
- conflict_function *cf = SUB_CONFLICTS_IN_A (subscript);
-
- fprintf (outf, "\n (subscript \n");
- fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
- dump_conflict_function (outf, cf);
- if (CF_NONTRIVIAL_P (cf))
- {
- tree last_iteration = SUB_LAST_CONFLICT (subscript);
- fprintf (outf, "\n last_conflict: ");
- print_generic_expr (outf, last_iteration);
- }
-
- cf = SUB_CONFLICTS_IN_B (subscript);
- fprintf (outf, "\n iterations_that_access_an_element_twice_in_B: ");
- dump_conflict_function (outf, cf);
- if (CF_NONTRIVIAL_P (cf))
- {
- tree last_iteration = SUB_LAST_CONFLICT (subscript);
- fprintf (outf, "\n last_conflict: ");
- print_generic_expr (outf, last_iteration);
- }
-
- fprintf (outf, "\n (Subscript distance: ");
- print_generic_expr (outf, SUB_DISTANCE (subscript));
- fprintf (outf, " ))\n");
-}
-
-/* Print the classic direction vector DIRV to OUTF. */
-
-DEBUG_FUNCTION void
-print_direction_vector (FILE *outf,
- lambda_vector dirv,
- int length)
-{
- int eq;
-
- for (eq = 0; eq < length; eq++)
- {
- enum data_dependence_direction dir = ((enum data_dependence_direction)
- dirv[eq]);
-
- switch (dir)
- {
- case dir_positive:
- fprintf (outf, " +");
- break;
- case dir_negative:
- fprintf (outf, " -");
- break;
- case dir_equal:
- fprintf (outf, " =");
- break;
- case dir_positive_or_equal:
- fprintf (outf, " +=");
- break;
- case dir_positive_or_negative:
- fprintf (outf, " +-");
- break;
- case dir_negative_or_equal:
- fprintf (outf, " -=");
- break;
- case dir_star:
- fprintf (outf, " *");
- break;
- default:
- fprintf (outf, "indep");
- break;
- }
- }
- fprintf (outf, "\n");
-}
-
-/* Print a vector of direction vectors. */
-
-DEBUG_FUNCTION void
-print_dir_vectors (FILE *outf, vec<lambda_vector> dir_vects,
- int length)
-{
- for (lambda_vector v : dir_vects)
- print_direction_vector (outf, v, length);
-}
-
-/* Print out a vector VEC of length N to OUTFILE. */
-
-DEBUG_FUNCTION void
-print_lambda_vector (FILE * outfile, lambda_vector vector, int n)
-{
- int i;
-
- for (i = 0; i < n; i++)
- fprintf (outfile, HOST_WIDE_INT_PRINT_DEC " ", vector[i]);
- fprintf (outfile, "\n");
-}
-
-/* Print a vector of distance vectors. */
-
-DEBUG_FUNCTION void
-print_dist_vectors (FILE *outf, vec<lambda_vector> dist_vects,
- int length)
-{
- for (lambda_vector v : dist_vects)
- print_lambda_vector (outf, v, length);
-}
-
-/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
-
-DEBUG_FUNCTION void
-dump_data_dependence_relation (FILE *outf, const data_dependence_relation *ddr)
-{
- struct data_reference *dra, *drb;
-
- fprintf (outf, "(Data Dep: \n");
-
- if (!ddr || DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- {
- if (ddr)
- {
- dra = DDR_A (ddr);
- drb = DDR_B (ddr);
- if (dra)
- dump_data_reference (outf, dra);
- else
- fprintf (outf, " (nil)\n");
- if (drb)
- dump_data_reference (outf, drb);
- else
- fprintf (outf, " (nil)\n");
- }
- fprintf (outf, " (don't know)\n)\n");
- return;
- }
-
- dra = DDR_A (ddr);
- drb = DDR_B (ddr);
- dump_data_reference (outf, dra);
- dump_data_reference (outf, drb);
-
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
- fprintf (outf, " (no dependence)\n");
-
- else if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
- {
- unsigned int i;
- class loop *loopi;
-
- subscript *sub;
- FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
- {
- fprintf (outf, " access_fn_A: ");
- print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
- fprintf (outf, " access_fn_B: ");
- print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
- dump_subscript (outf, sub);
- }
-
- fprintf (outf, " loop nest: (");
- FOR_EACH_VEC_ELT (DDR_LOOP_NEST (ddr), i, loopi)
- fprintf (outf, "%d ", loopi->num);
- fprintf (outf, ")\n");
-
- for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
- {
- fprintf (outf, " distance_vector: ");
- print_lambda_vector (outf, DDR_DIST_VECT (ddr, i),
- DDR_NB_LOOPS (ddr));
- }
-
- for (i = 0; i < DDR_NUM_DIR_VECTS (ddr); i++)
- {
- fprintf (outf, " direction_vector: ");
- print_direction_vector (outf, DDR_DIR_VECT (ddr, i),
- DDR_NB_LOOPS (ddr));
- }
- }
-
- fprintf (outf, ")\n");
-}
-
-/* Debug version. */
-
-DEBUG_FUNCTION void
-debug_data_dependence_relation (const struct data_dependence_relation *ddr)
-{
- dump_data_dependence_relation (stderr, ddr);
-}
-
-/* Dump into FILE all the dependence relations from DDRS. */
-
-DEBUG_FUNCTION void
-dump_data_dependence_relations (FILE *file, const vec<ddr_p> &ddrs)
-{
- for (auto ddr : ddrs)
- dump_data_dependence_relation (file, ddr);
-}
-
-DEBUG_FUNCTION void
-debug (vec<ddr_p> &ref)
-{
- dump_data_dependence_relations (stderr, ref);
-}
-
-DEBUG_FUNCTION void
-debug (vec<ddr_p> *ptr)
-{
- if (ptr)
- debug (*ptr);
- else
- fprintf (stderr, "<nil>\n");
-}
-
-
-/* Dump to STDERR all the dependence relations from DDRS. */
-
-DEBUG_FUNCTION void
-debug_data_dependence_relations (vec<ddr_p> ddrs)
-{
- dump_data_dependence_relations (stderr, ddrs);
-}
-
-/* Dumps the distance and direction vectors in FILE. DDRS contains
- the dependence relations, and VECT_SIZE is the size of the
- dependence vectors, or in other words the number of loops in the
- considered nest. */
-
-DEBUG_FUNCTION void
-dump_dist_dir_vectors (FILE *file, vec<ddr_p> ddrs)
-{
- for (data_dependence_relation *ddr : ddrs)
- if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_AFFINE_P (ddr))
- {
- for (lambda_vector v : DDR_DIST_VECTS (ddr))
- {
- fprintf (file, "DISTANCE_V (");
- print_lambda_vector (file, v, DDR_NB_LOOPS (ddr));
- fprintf (file, ")\n");
- }
-
- for (lambda_vector v : DDR_DIR_VECTS (ddr))
- {
- fprintf (file, "DIRECTION_V (");
- print_direction_vector (file, v, DDR_NB_LOOPS (ddr));
- fprintf (file, ")\n");
- }
- }
-
- fprintf (file, "\n\n");
-}
-
-/* Dumps the data dependence relations DDRS in FILE. */
-
-DEBUG_FUNCTION void
-dump_ddrs (FILE *file, vec<ddr_p> ddrs)
-{
- for (data_dependence_relation *ddr : ddrs)
- dump_data_dependence_relation (file, ddr);
-
- fprintf (file, "\n\n");
-}
-
-DEBUG_FUNCTION void
-debug_ddrs (vec<ddr_p> ddrs)
-{
- dump_ddrs (stderr, ddrs);
-}
-
-/* If RESULT_RANGE is nonnull, set *RESULT_RANGE to the range of
- OP0 CODE OP1, where:
-
- - OP0 CODE OP1 has integral type TYPE
- - the range of OP0 is given by OP0_RANGE and
- - the range of OP1 is given by OP1_RANGE.
-
- Independently of RESULT_RANGE, try to compute:
-
- DELTA = ((sizetype) OP0 CODE (sizetype) OP1)
- - (sizetype) (OP0 CODE OP1)
-
- as a constant and subtract DELTA from the ssizetype constant in *OFF.
- Return true on success, or false if DELTA is not known at compile time.
-
- Truncation and sign changes are known to distribute over CODE, i.e.
-
- (itype) (A CODE B) == (itype) A CODE (itype) B
-
- for any integral type ITYPE whose precision is no greater than the
- precision of A and B. */
-
-static bool
-compute_distributive_range (tree type, value_range &op0_range,
- tree_code code, value_range &op1_range,
- tree *off, value_range *result_range)
-{
- gcc_assert (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type));
- if (result_range)
- {
- range_operator *op = range_op_handler (code, type);
- op->fold_range (*result_range, type, op0_range, op1_range);
- }
-
- /* The distributive property guarantees that if TYPE is no narrower
- than SIZETYPE,
-
- (sizetype) (OP0 CODE OP1) == (sizetype) OP0 CODE (sizetype) OP1
-
- and so we can treat DELTA as zero. */
- if (TYPE_PRECISION (type) >= TYPE_PRECISION (sizetype))
- return true;
-
- /* If overflow is undefined, we can assume that:
-
- X == (ssizetype) OP0 CODE (ssizetype) OP1
-
- is within the range of TYPE, i.e.:
-
- X == (ssizetype) (TYPE) X
-
- Distributing the (TYPE) truncation over X gives:
-
- X == (ssizetype) (OP0 CODE OP1)
-
- Casting both sides to sizetype and distributing the sizetype cast
- over X gives:
-
- (sizetype) OP0 CODE (sizetype) OP1 == (sizetype) (OP0 CODE OP1)
-
- and so we can treat DELTA as zero. */
- if (TYPE_OVERFLOW_UNDEFINED (type))
- return true;
-
- /* Compute the range of:
-
- (ssizetype) OP0 CODE (ssizetype) OP1
-
- The distributive property guarantees that this has the same bitpattern as:
-
- (sizetype) OP0 CODE (sizetype) OP1
-
- but its range is more conducive to analysis. */
- range_cast (op0_range, ssizetype);
- range_cast (op1_range, ssizetype);
- value_range wide_range;
- range_operator *op = range_op_handler (code, ssizetype);
- bool saved_flag_wrapv = flag_wrapv;
- flag_wrapv = 1;
- op->fold_range (wide_range, ssizetype, op0_range, op1_range);
- flag_wrapv = saved_flag_wrapv;
- if (wide_range.num_pairs () != 1 || !range_int_cst_p (&wide_range))
- return false;
-
- wide_int lb = wide_range.lower_bound ();
- wide_int ub = wide_range.upper_bound ();
-
- /* Calculate the number of times that each end of the range overflows or
- underflows TYPE. We can only calculate DELTA if the numbers match. */
- unsigned int precision = TYPE_PRECISION (type);
- if (!TYPE_UNSIGNED (type))
- {
- wide_int type_min = wi::mask (precision - 1, true, lb.get_precision ());
- lb -= type_min;
- ub -= type_min;
- }
- wide_int upper_bits = wi::mask (precision, true, lb.get_precision ());
- lb &= upper_bits;
- ub &= upper_bits;
- if (lb != ub)
- return false;
-
- /* OP0 CODE OP1 overflows exactly arshift (LB, PRECISION) times, with
- negative values indicating underflow. The low PRECISION bits of LB
- are clear, so DELTA is therefore LB (== UB). */
- *off = wide_int_to_tree (ssizetype, wi::to_wide (*off) - lb);
- return true;
-}
-
-/* Return true if (sizetype) OP == (sizetype) (TO_TYPE) OP,
- given that OP has type FROM_TYPE and range RANGE. Both TO_TYPE and
- FROM_TYPE are integral types. */
-
-static bool
-nop_conversion_for_offset_p (tree to_type, tree from_type, value_range &range)
-{
- gcc_assert (INTEGRAL_TYPE_P (to_type)
- && INTEGRAL_TYPE_P (from_type)
- && !TYPE_OVERFLOW_TRAPS (to_type)
- && !TYPE_OVERFLOW_TRAPS (from_type));
-
- /* Converting to something no narrower than sizetype and then to sizetype
- is equivalent to converting directly to sizetype. */
- if (TYPE_PRECISION (to_type) >= TYPE_PRECISION (sizetype))
- return true;
-
- /* Check whether TO_TYPE can represent all values that FROM_TYPE can. */
- if (TYPE_PRECISION (from_type) < TYPE_PRECISION (to_type)
- && (TYPE_UNSIGNED (from_type) || !TYPE_UNSIGNED (to_type)))
- return true;
-
- /* For narrowing conversions, we could in principle test whether
- the bits in FROM_TYPE but not in TO_TYPE have a fixed value
- and apply a constant adjustment.
-
- For other conversions (which involve a sign change) we could
- check that the signs are always equal, and apply a constant
- adjustment if the signs are negative.
-
- However, both cases should be rare. */
- return range_fits_type_p (&range, TYPE_PRECISION (to_type),
- TYPE_SIGN (to_type));
-}
-
-static void
-split_constant_offset (tree type, tree *var, tree *off,
- value_range *result_range,
- hash_map<tree, std::pair<tree, tree> > &cache,
- unsigned *limit);
-
-/* Helper function for split_constant_offset. If TYPE is a pointer type,
- try to express OP0 CODE OP1 as:
-
- POINTER_PLUS <*VAR, (sizetype) *OFF>
-
- where:
-
- - *VAR has type TYPE
- - *OFF is a constant of type ssizetype.
-
- If TYPE is an integral type, try to express (sizetype) (OP0 CODE OP1) as:
-
- *VAR + (sizetype) *OFF
-
- where:
-
- - *VAR has type sizetype
- - *OFF is a constant of type ssizetype.
-
- In both cases, OP0 CODE OP1 has type TYPE.
-
- Return true on success. A false return value indicates that we can't
- do better than set *OFF to zero.
-
- When returning true, set RESULT_RANGE to the range of OP0 CODE OP1,
- if RESULT_RANGE is nonnull and if we can do better than assume VR_VARYING.
-
- CACHE caches {*VAR, *OFF} pairs for SSA names that we've previously
- visited. LIMIT counts down the number of SSA names that we are
- allowed to process before giving up. */
-
-static bool
-split_constant_offset_1 (tree type, tree op0, enum tree_code code, tree op1,
- tree *var, tree *off, value_range *result_range,
- hash_map<tree, std::pair<tree, tree> > &cache,
- unsigned *limit)
-{
- tree var0, var1;
- tree off0, off1;
- value_range op0_range, op1_range;
-
- *var = NULL_TREE;
- *off = NULL_TREE;
-
- if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type))
- return false;
-
- switch (code)
- {
- case INTEGER_CST:
- *var = size_int (0);
- *off = fold_convert (ssizetype, op0);
- if (result_range)
- result_range->set (op0, op0);
- return true;
-
- case POINTER_PLUS_EXPR:
- split_constant_offset (op0, &var0, &off0, nullptr, cache, limit);
- split_constant_offset (op1, &var1, &off1, nullptr, cache, limit);
- *var = fold_build2 (POINTER_PLUS_EXPR, type, var0, var1);
- *off = size_binop (PLUS_EXPR, off0, off1);
- return true;
-
- case PLUS_EXPR:
- case MINUS_EXPR:
- split_constant_offset (op0, &var0, &off0, &op0_range, cache, limit);
- split_constant_offset (op1, &var1, &off1, &op1_range, cache, limit);
- *off = size_binop (code, off0, off1);
- if (!compute_distributive_range (type, op0_range, code, op1_range,
- off, result_range))
- return false;
- *var = fold_build2 (code, sizetype, var0, var1);
- return true;
-
- case MULT_EXPR:
- if (TREE_CODE (op1) != INTEGER_CST)
- return false;
-
- split_constant_offset (op0, &var0, &off0, &op0_range, cache, limit);
- op1_range.set (op1, op1);
- *off = size_binop (MULT_EXPR, off0, fold_convert (ssizetype, op1));
- if (!compute_distributive_range (type, op0_range, code, op1_range,
- off, result_range))
- return false;
- *var = fold_build2 (MULT_EXPR, sizetype, var0,
- fold_convert (sizetype, op1));
- return true;
-
- case ADDR_EXPR:
- {
- tree base, poffset;
- poly_int64 pbitsize, pbitpos, pbytepos;
- machine_mode pmode;
- int punsignedp, preversep, pvolatilep;
-
- op0 = TREE_OPERAND (op0, 0);
- base
- = get_inner_reference (op0, &pbitsize, &pbitpos, &poffset, &pmode,
- &punsignedp, &preversep, &pvolatilep);
-
- if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
- return false;
- base = build_fold_addr_expr (base);
- off0 = ssize_int (pbytepos);
-
- if (poffset)
- {
- split_constant_offset (poffset, &poffset, &off1, nullptr,
- cache, limit);
- off0 = size_binop (PLUS_EXPR, off0, off1);
- base = fold_build_pointer_plus (base, poffset);
- }
-
- var0 = fold_convert (type, base);
-
- /* If variable length types are involved, punt, otherwise casts
- might be converted into ARRAY_REFs in gimplify_conversion.
- To compute that ARRAY_REF's element size TYPE_SIZE_UNIT, which
- possibly no longer appears in current GIMPLE, might resurface.
- This perhaps could run
- if (CONVERT_EXPR_P (var0))
- {
- gimplify_conversion (&var0);
- // Attempt to fill in any within var0 found ARRAY_REF's
- // element size from corresponding op embedded ARRAY_REF,
- // if unsuccessful, just punt.
- } */
- while (POINTER_TYPE_P (type))
- type = TREE_TYPE (type);
- if (int_size_in_bytes (type) < 0)
- return false;
-
- *var = var0;
- *off = off0;
- return true;
- }
-
- case SSA_NAME:
- {
- if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op0))
- return false;
-
- gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
- enum tree_code subcode;
-
- if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
- return false;
-
- subcode = gimple_assign_rhs_code (def_stmt);
-
- /* We are using a cache to avoid un-CSEing large amounts of code. */
- bool use_cache = false;
- if (!has_single_use (op0)
- && (subcode == POINTER_PLUS_EXPR
- || subcode == PLUS_EXPR
- || subcode == MINUS_EXPR
- || subcode == MULT_EXPR
- || subcode == ADDR_EXPR
- || CONVERT_EXPR_CODE_P (subcode)))
- {
- use_cache = true;
- bool existed;
- std::pair<tree, tree> &e = cache.get_or_insert (op0, &existed);
- if (existed)
- {
- if (integer_zerop (e.second))
- return false;
- *var = e.first;
- *off = e.second;
- /* The caller sets the range in this case. */
- return true;
- }
- e = std::make_pair (op0, ssize_int (0));
- }
-
- if (*limit == 0)
- return false;
- --*limit;
-
- var0 = gimple_assign_rhs1 (def_stmt);
- var1 = gimple_assign_rhs2 (def_stmt);
-
- bool res = split_constant_offset_1 (type, var0, subcode, var1,
- var, off, nullptr, cache, limit);
- if (res && use_cache)
- *cache.get (op0) = std::make_pair (*var, *off);
- /* The caller sets the range in this case. */
- return res;
- }
- CASE_CONVERT:
- {
- /* We can only handle the following conversions:
-
- - Conversions from one pointer type to another pointer type.
-
- - Conversions from one non-trapping integral type to another
- non-trapping integral type. In this case, the recursive
- call makes sure that:
-
- (sizetype) OP0
-
- can be expressed as a sizetype operation involving VAR and OFF,
- and all we need to do is check whether:
-
- (sizetype) OP0 == (sizetype) (TYPE) OP0
-
- - Conversions from a non-trapping sizetype-size integral type to
- a like-sized pointer type. In this case, the recursive call
- makes sure that:
-
- (sizetype) OP0 == *VAR + (sizetype) *OFF
-
- and we can convert that to:
-
- POINTER_PLUS <(TYPE) *VAR, (sizetype) *OFF>
-
- - Conversions from a sizetype-sized pointer type to a like-sized
- non-trapping integral type. In this case, the recursive call
- makes sure that:
-
- OP0 == POINTER_PLUS <*VAR, (sizetype) *OFF>
-
- where the POINTER_PLUS and *VAR have the same precision as
- TYPE (and the same precision as sizetype). Then:
-
- (sizetype) (TYPE) OP0 == (sizetype) *VAR + (sizetype) *OFF. */
- tree itype = TREE_TYPE (op0);
- if ((POINTER_TYPE_P (itype)
- || (INTEGRAL_TYPE_P (itype) && !TYPE_OVERFLOW_TRAPS (itype)))
- && (POINTER_TYPE_P (type)
- || (INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_TRAPS (type)))
- && (POINTER_TYPE_P (type) == POINTER_TYPE_P (itype)
- || (TYPE_PRECISION (type) == TYPE_PRECISION (sizetype)
- && TYPE_PRECISION (itype) == TYPE_PRECISION (sizetype))))
- {
- if (POINTER_TYPE_P (type))
- {
- split_constant_offset (op0, var, off, nullptr, cache, limit);
- *var = fold_convert (type, *var);
- }
- else if (POINTER_TYPE_P (itype))
- {
- split_constant_offset (op0, var, off, nullptr, cache, limit);
- *var = fold_convert (sizetype, *var);
- }
- else
- {
- split_constant_offset (op0, var, off, &op0_range,
- cache, limit);
- if (!nop_conversion_for_offset_p (type, itype, op0_range))
- return false;
- if (result_range)
- {
- *result_range = op0_range;
- range_cast (*result_range, type);
- }
- }
- return true;
- }
- return false;
- }
-
- default:
- return false;
- }
-}
-
-/* If EXP has pointer type, try to express it as:
-
- POINTER_PLUS <*VAR, (sizetype) *OFF>
-
- where:
-
- - *VAR has the same type as EXP
- - *OFF is a constant of type ssizetype.
-
- If EXP has an integral type, try to express (sizetype) EXP as:
-
- *VAR + (sizetype) *OFF
-
- where:
-
- - *VAR has type sizetype
- - *OFF is a constant of type ssizetype.
-
- If EXP_RANGE is nonnull, set it to the range of EXP.
-
- CACHE caches {*VAR, *OFF} pairs for SSA names that we've previously
- visited. LIMIT counts down the number of SSA names that we are
- allowed to process before giving up. */
-
-static void
-split_constant_offset (tree exp, tree *var, tree *off, value_range *exp_range,
- hash_map<tree, std::pair<tree, tree> > &cache,
- unsigned *limit)
-{
- tree type = TREE_TYPE (exp), op0, op1;
- enum tree_code code;
-
- code = TREE_CODE (exp);
- if (exp_range)
- {
- *exp_range = type;
- if (code == SSA_NAME)
- {
- value_range vr;
- get_range_query (cfun)->range_of_expr (vr, exp);
- if (vr.undefined_p ())
- vr.set_varying (TREE_TYPE (exp));
- wide_int var_min = wi::to_wide (vr.min ());
- wide_int var_max = wi::to_wide (vr.max ());
- value_range_kind vr_kind = vr.kind ();
- wide_int var_nonzero = get_nonzero_bits (exp);
- vr_kind = intersect_range_with_nonzero_bits (vr_kind,
- &var_min, &var_max,
- var_nonzero,
- TYPE_SIGN (type));
- /* This check for VR_VARYING is here because the old code
- using get_range_info would return VR_RANGE for the entire
- domain, instead of VR_VARYING. The new code normalizes
- full-domain ranges to VR_VARYING. */
- if (vr_kind == VR_RANGE || vr_kind == VR_VARYING)
- *exp_range = value_range (type, var_min, var_max);
- }
- }
-
- if (!tree_is_chrec (exp)
- && get_gimple_rhs_class (TREE_CODE (exp)) != GIMPLE_TERNARY_RHS)
- {
- extract_ops_from_tree (exp, &code, &op0, &op1);
- if (split_constant_offset_1 (type, op0, code, op1, var, off,
- exp_range, cache, limit))
- return;
- }
-
- *var = exp;
- if (INTEGRAL_TYPE_P (type))
- *var = fold_convert (sizetype, *var);
- *off = ssize_int (0);
-
- value_range r;
- if (exp_range && code != SSA_NAME
- && get_range_query (cfun)->range_of_expr (r, exp)
- && !r.undefined_p ())
- *exp_range = r;
-}
-
-/* Expresses EXP as VAR + OFF, where OFF is a constant. VAR has the same
- type as EXP while OFF has type ssizetype. */
-
-void
-split_constant_offset (tree exp, tree *var, tree *off)
-{
- unsigned limit = param_ssa_name_def_chain_limit;
- static hash_map<tree, std::pair<tree, tree> > *cache;
- if (!cache)
- cache = new hash_map<tree, std::pair<tree, tree> > (37);
- split_constant_offset (exp, var, off, nullptr, *cache, &limit);
- *var = fold_convert (TREE_TYPE (exp), *var);
- cache->empty ();
-}
-
-/* Returns the address ADDR of an object in a canonical shape (without nop
- casts, and with type of pointer to the object). */
-
-static tree
-canonicalize_base_object_address (tree addr)
-{
- tree orig = addr;
-
- STRIP_NOPS (addr);
-
- /* The base address may be obtained by casting from integer, in that case
- keep the cast. */
- if (!POINTER_TYPE_P (TREE_TYPE (addr)))
- return orig;
-
- if (TREE_CODE (addr) != ADDR_EXPR)
- return addr;
-
- return build_fold_addr_expr (TREE_OPERAND (addr, 0));
-}
-
-/* Analyze the behavior of memory reference REF within STMT.
- There are two modes:
-
- - BB analysis. In this case we simply split the address into base,
- init and offset components, without reference to any containing loop.
- The resulting base and offset are general expressions and they can
- vary arbitrarily from one iteration of the containing loop to the next.
- The step is always zero.
-
- - loop analysis. In this case we analyze the reference both wrt LOOP
- and on the basis that the reference occurs (is "used") in LOOP;
- see the comment above analyze_scalar_evolution_in_loop for more
- information about this distinction. The base, init, offset and
- step fields are all invariant in LOOP.
-
- Perform BB analysis if LOOP is null, or if LOOP is the function's
- dummy outermost loop. In other cases perform loop analysis.
-
- Return true if the analysis succeeded and store the results in DRB if so.
- BB analysis can only fail for bitfield or reversed-storage accesses. */
-
-opt_result
-dr_analyze_innermost (innermost_loop_behavior *drb, tree ref,
- class loop *loop, const gimple *stmt)
-{
- poly_int64 pbitsize, pbitpos;
- tree base, poffset;
- machine_mode pmode;
- int punsignedp, preversep, pvolatilep;
- affine_iv base_iv, offset_iv;
- tree init, dinit, step;
- bool in_loop = (loop && loop->num);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "analyze_innermost: ");
-
- base = get_inner_reference (ref, &pbitsize, &pbitpos, &poffset, &pmode,
- &punsignedp, &preversep, &pvolatilep);
- gcc_assert (base != NULL_TREE);
-
- poly_int64 pbytepos;
- if (!multiple_p (pbitpos, BITS_PER_UNIT, &pbytepos))
- return opt_result::failure_at (stmt,
- "failed: bit offset alignment.\n");
-
- if (preversep)
- return opt_result::failure_at (stmt,
- "failed: reverse storage order.\n");
-
- /* Calculate the alignment and misalignment for the inner reference. */
- unsigned int HOST_WIDE_INT bit_base_misalignment;
- unsigned int bit_base_alignment;
- get_object_alignment_1 (base, &bit_base_alignment, &bit_base_misalignment);
-
- /* There are no bitfield references remaining in BASE, so the values
- we got back must be whole bytes. */
- gcc_assert (bit_base_alignment % BITS_PER_UNIT == 0
- && bit_base_misalignment % BITS_PER_UNIT == 0);
- unsigned int base_alignment = bit_base_alignment / BITS_PER_UNIT;
- poly_int64 base_misalignment = bit_base_misalignment / BITS_PER_UNIT;
-
- if (TREE_CODE (base) == MEM_REF)
- {
- if (!integer_zerop (TREE_OPERAND (base, 1)))
- {
- /* Subtract MOFF from the base and add it to POFFSET instead.
- Adjust the misalignment to reflect the amount we subtracted. */
- poly_offset_int moff = mem_ref_offset (base);
- base_misalignment -= moff.force_shwi ();
- tree mofft = wide_int_to_tree (sizetype, moff);
- if (!poffset)
- poffset = mofft;
- else
- poffset = size_binop (PLUS_EXPR, poffset, mofft);
- }
- base = TREE_OPERAND (base, 0);
- }
- else
- base = build_fold_addr_expr (base);
-
- if (in_loop)
- {
- if (!simple_iv (loop, loop, base, &base_iv, true))
- return opt_result::failure_at
- (stmt, "failed: evolution of base is not affine.\n");
- }
- else
- {
- base_iv.base = base;
- base_iv.step = ssize_int (0);
- base_iv.no_overflow = true;
- }
-
- if (!poffset)
- {
- offset_iv.base = ssize_int (0);
- offset_iv.step = ssize_int (0);
- }
- else
- {
- if (!in_loop)
- {
- offset_iv.base = poffset;
- offset_iv.step = ssize_int (0);
- }
- else if (!simple_iv (loop, loop, poffset, &offset_iv, true))
- return opt_result::failure_at
- (stmt, "failed: evolution of offset is not affine.\n");
- }
-
- init = ssize_int (pbytepos);
-
- /* Subtract any constant component from the base and add it to INIT instead.
- Adjust the misalignment to reflect the amount we subtracted. */
- split_constant_offset (base_iv.base, &base_iv.base, &dinit);
- init = size_binop (PLUS_EXPR, init, dinit);
- base_misalignment -= TREE_INT_CST_LOW (dinit);
-
- split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
- init = size_binop (PLUS_EXPR, init, dinit);
-
- step = size_binop (PLUS_EXPR,
- fold_convert (ssizetype, base_iv.step),
- fold_convert (ssizetype, offset_iv.step));
-
- base = canonicalize_base_object_address (base_iv.base);
-
- /* See if get_pointer_alignment can guarantee a higher alignment than
- the one we calculated above. */
- unsigned int HOST_WIDE_INT alt_misalignment;
- unsigned int alt_alignment;
- get_pointer_alignment_1 (base, &alt_alignment, &alt_misalignment);
-
- /* As above, these values must be whole bytes. */
- gcc_assert (alt_alignment % BITS_PER_UNIT == 0
- && alt_misalignment % BITS_PER_UNIT == 0);
- alt_alignment /= BITS_PER_UNIT;
- alt_misalignment /= BITS_PER_UNIT;
-
- if (base_alignment < alt_alignment)
- {
- base_alignment = alt_alignment;
- base_misalignment = alt_misalignment;
- }
-
- drb->base_address = base;
- drb->offset = fold_convert (ssizetype, offset_iv.base);
- drb->init = init;
- drb->step = step;
- if (known_misalignment (base_misalignment, base_alignment,
- &drb->base_misalignment))
- drb->base_alignment = base_alignment;
- else
- {
- drb->base_alignment = known_alignment (base_misalignment);
- drb->base_misalignment = 0;
- }
- drb->offset_alignment = highest_pow2_factor (offset_iv.base);
- drb->step_alignment = highest_pow2_factor (step);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "success.\n");
-
- return opt_result::success ();
-}
-
-/* Return true if OP is a valid component reference for a DR access
- function. This accepts a subset of what handled_component_p accepts. */
-
-static bool
-access_fn_component_p (tree op)
-{
- switch (TREE_CODE (op))
- {
- case REALPART_EXPR:
- case IMAGPART_EXPR:
- case ARRAY_REF:
- return true;
-
- case COMPONENT_REF:
- return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
-
- default:
- return false;
- }
-}
-
-/* Returns whether BASE can have a access_fn_component_p with BASE
- as base. */
-
-static bool
-base_supports_access_fn_components_p (tree base)
-{
- switch (TREE_CODE (TREE_TYPE (base)))
- {
- case COMPLEX_TYPE:
- case ARRAY_TYPE:
- case RECORD_TYPE:
- return true;
- default:
- return false;
- }
-}
-
-/* Determines the base object and the list of indices of memory reference
- DR, analyzed in LOOP and instantiated before NEST. */
-
-static void
-dr_analyze_indices (struct indices *dri, tree ref, edge nest, loop_p loop)
-{
- /* If analyzing a basic-block there are no indices to analyze
- and thus no access functions. */
- if (!nest)
- {
- dri->base_object = ref;
- dri->access_fns.create (0);
- return;
- }
-
- vec<tree> access_fns = vNULL;
-
- /* REALPART_EXPR and IMAGPART_EXPR can be handled like accesses
- into a two element array with a constant index. The base is
- then just the immediate underlying object. */
- if (TREE_CODE (ref) == REALPART_EXPR)
- {
- ref = TREE_OPERAND (ref, 0);
- access_fns.safe_push (integer_zero_node);
- }
- else if (TREE_CODE (ref) == IMAGPART_EXPR)
- {
- ref = TREE_OPERAND (ref, 0);
- access_fns.safe_push (integer_one_node);
- }
-
- /* Analyze access functions of dimensions we know to be independent.
- The list of component references handled here should be kept in
- sync with access_fn_component_p. */
- while (handled_component_p (ref))
- {
- if (TREE_CODE (ref) == ARRAY_REF)
- {
- tree op = TREE_OPERAND (ref, 1);
- tree access_fn = analyze_scalar_evolution (loop, op);
- access_fn = instantiate_scev (nest, loop, access_fn);
- access_fns.safe_push (access_fn);
- }
- else if (TREE_CODE (ref) == COMPONENT_REF
- && TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
- {
- /* For COMPONENT_REFs of records (but not unions!) use the
- FIELD_DECL offset as constant access function so we can
- disambiguate a[i].f1 and a[i].f2. */
- tree off = component_ref_field_offset (ref);
- off = size_binop (PLUS_EXPR,
- size_binop (MULT_EXPR,
- fold_convert (bitsizetype, off),
- bitsize_int (BITS_PER_UNIT)),
- DECL_FIELD_BIT_OFFSET (TREE_OPERAND (ref, 1)));
- access_fns.safe_push (off);
- }
- else
- /* If we have an unhandled component we could not translate
- to an access function stop analyzing. We have determined
- our base object in this case. */
- break;
-
- ref = TREE_OPERAND (ref, 0);
- }
-
- /* If the address operand of a MEM_REF base has an evolution in the
- analyzed nest, add it as an additional independent access-function. */
- if (TREE_CODE (ref) == MEM_REF)
- {
- tree op = TREE_OPERAND (ref, 0);
- tree access_fn = analyze_scalar_evolution (loop, op);
- access_fn = instantiate_scev (nest, loop, access_fn);
- STRIP_NOPS (access_fn);
- if (TREE_CODE (access_fn) == POLYNOMIAL_CHREC)
- {
- tree memoff = TREE_OPERAND (ref, 1);
- tree base = initial_condition (access_fn);
- tree orig_type = TREE_TYPE (base);
- STRIP_USELESS_TYPE_CONVERSION (base);
- tree off;
- split_constant_offset (base, &base, &off);
- STRIP_USELESS_TYPE_CONVERSION (base);
- /* Fold the MEM_REF offset into the evolutions initial
- value to make more bases comparable. */
- if (!integer_zerop (memoff))
- {
- off = size_binop (PLUS_EXPR, off,
- fold_convert (ssizetype, memoff));
- memoff = build_int_cst (TREE_TYPE (memoff), 0);
- }
- /* Adjust the offset so it is a multiple of the access type
- size and thus we separate bases that can possibly be used
- to produce partial overlaps (which the access_fn machinery
- cannot handle). */
- wide_int rem;
- if (TYPE_SIZE_UNIT (TREE_TYPE (ref))
- && TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (ref))) == INTEGER_CST
- && !integer_zerop (TYPE_SIZE_UNIT (TREE_TYPE (ref))))
- rem = wi::mod_trunc
- (wi::to_wide (off),
- wi::to_wide (TYPE_SIZE_UNIT (TREE_TYPE (ref))),
- SIGNED);
- else
- /* If we can't compute the remainder simply force the initial
- condition to zero. */
- rem = wi::to_wide (off);
- off = wide_int_to_tree (ssizetype, wi::to_wide (off) - rem);
- memoff = wide_int_to_tree (TREE_TYPE (memoff), rem);
- /* And finally replace the initial condition. */
- access_fn = chrec_replace_initial_condition
- (access_fn, fold_convert (orig_type, off));
- /* ??? This is still not a suitable base object for
- dr_may_alias_p - the base object needs to be an
- access that covers the object as whole. With
- an evolution in the pointer this cannot be
- guaranteed.
- As a band-aid, mark the access so we can special-case
- it in dr_may_alias_p. */
- tree old = ref;
- ref = fold_build2_loc (EXPR_LOCATION (ref),
- MEM_REF, TREE_TYPE (ref),
- base, memoff);
- MR_DEPENDENCE_CLIQUE (ref) = MR_DEPENDENCE_CLIQUE (old);
- MR_DEPENDENCE_BASE (ref) = MR_DEPENDENCE_BASE (old);
- dri->unconstrained_base = true;
- access_fns.safe_push (access_fn);
- }
- }
- else if (DECL_P (ref))
- {
- /* Canonicalize DR_BASE_OBJECT to MEM_REF form. */
- ref = build2 (MEM_REF, TREE_TYPE (ref),
- build_fold_addr_expr (ref),
- build_int_cst (reference_alias_ptr_type (ref), 0));
- }
-
- dri->base_object = ref;
- dri->access_fns = access_fns;
-}
-
-/* Extracts the alias analysis information from the memory reference DR. */
-
-static void
-dr_analyze_alias (struct data_reference *dr)
-{
- tree ref = DR_REF (dr);
- tree base = get_base_address (ref), addr;
-
- if (INDIRECT_REF_P (base)
- || TREE_CODE (base) == MEM_REF)
- {
- addr = TREE_OPERAND (base, 0);
- if (TREE_CODE (addr) == SSA_NAME)
- DR_PTR_INFO (dr) = SSA_NAME_PTR_INFO (addr);
- }
-}
-
-/* Frees data reference DR. */
-
-void
-free_data_ref (data_reference_p dr)
-{
- DR_ACCESS_FNS (dr).release ();
- if (dr->alt_indices.base_object)
- dr->alt_indices.access_fns.release ();
- free (dr);
-}
-
-/* Analyze memory reference MEMREF, which is accessed in STMT.
- The reference is a read if IS_READ is true, otherwise it is a write.
- IS_CONDITIONAL_IN_STMT indicates that the reference is conditional
- within STMT, i.e. that it might not occur even if STMT is executed
- and runs to completion.
-
- Return the data_reference description of MEMREF. NEST is the outermost
- loop in which the reference should be instantiated, LOOP is the loop
- in which the data reference should be analyzed. */
-
-struct data_reference *
-create_data_ref (edge nest, loop_p loop, tree memref, gimple *stmt,
- bool is_read, bool is_conditional_in_stmt)
-{
- struct data_reference *dr;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Creating dr for ");
- print_generic_expr (dump_file, memref, TDF_SLIM);
- fprintf (dump_file, "\n");
- }
-
- dr = XCNEW (struct data_reference);
- DR_STMT (dr) = stmt;
- DR_REF (dr) = memref;
- DR_IS_READ (dr) = is_read;
- DR_IS_CONDITIONAL_IN_STMT (dr) = is_conditional_in_stmt;
-
- dr_analyze_innermost (&DR_INNERMOST (dr), memref,
- nest != NULL ? loop : NULL, stmt);
- dr_analyze_indices (&dr->indices, DR_REF (dr), nest, loop);
- dr_analyze_alias (dr);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- unsigned i;
- fprintf (dump_file, "\tbase_address: ");
- print_generic_expr (dump_file, DR_BASE_ADDRESS (dr), TDF_SLIM);
- fprintf (dump_file, "\n\toffset from base address: ");
- print_generic_expr (dump_file, DR_OFFSET (dr), TDF_SLIM);
- fprintf (dump_file, "\n\tconstant offset from base address: ");
- print_generic_expr (dump_file, DR_INIT (dr), TDF_SLIM);
- fprintf (dump_file, "\n\tstep: ");
- print_generic_expr (dump_file, DR_STEP (dr), TDF_SLIM);
- fprintf (dump_file, "\n\tbase alignment: %d", DR_BASE_ALIGNMENT (dr));
- fprintf (dump_file, "\n\tbase misalignment: %d",
- DR_BASE_MISALIGNMENT (dr));
- fprintf (dump_file, "\n\toffset alignment: %d",
- DR_OFFSET_ALIGNMENT (dr));
- fprintf (dump_file, "\n\tstep alignment: %d", DR_STEP_ALIGNMENT (dr));
- fprintf (dump_file, "\n\tbase_object: ");
- print_generic_expr (dump_file, DR_BASE_OBJECT (dr), TDF_SLIM);
- fprintf (dump_file, "\n");
- for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
- {
- fprintf (dump_file, "\tAccess function %d: ", i);
- print_generic_stmt (dump_file, DR_ACCESS_FN (dr, i), TDF_SLIM);
- }
- }
-
- return dr;
-}
-
-/* A helper function computes order between two tree expressions T1 and T2.
- This is used in comparator functions sorting objects based on the order
- of tree expressions. The function returns -1, 0, or 1. */
-
-int
-data_ref_compare_tree (tree t1, tree t2)
-{
- int i, cmp;
- enum tree_code code;
- char tclass;
-
- if (t1 == t2)
- return 0;
- if (t1 == NULL)
- return -1;
- if (t2 == NULL)
- return 1;
-
- STRIP_USELESS_TYPE_CONVERSION (t1);
- STRIP_USELESS_TYPE_CONVERSION (t2);
- if (t1 == t2)
- return 0;
-
- if (TREE_CODE (t1) != TREE_CODE (t2)
- && ! (CONVERT_EXPR_P (t1) && CONVERT_EXPR_P (t2)))
- return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
-
- code = TREE_CODE (t1);
- switch (code)
- {
- case INTEGER_CST:
- return tree_int_cst_compare (t1, t2);
-
- case STRING_CST:
- if (TREE_STRING_LENGTH (t1) != TREE_STRING_LENGTH (t2))
- return TREE_STRING_LENGTH (t1) < TREE_STRING_LENGTH (t2) ? -1 : 1;
- return memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
- TREE_STRING_LENGTH (t1));
-
- case SSA_NAME:
- if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
- return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
- break;
-
- default:
- if (POLY_INT_CST_P (t1))
- return compare_sizes_for_sort (wi::to_poly_widest (t1),
- wi::to_poly_widest (t2));
-
- tclass = TREE_CODE_CLASS (code);
-
- /* For decls, compare their UIDs. */
- if (tclass == tcc_declaration)
- {
- if (DECL_UID (t1) != DECL_UID (t2))
- return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
- break;
- }
- /* For expressions, compare their operands recursively. */
- else if (IS_EXPR_CODE_CLASS (tclass))
- {
- for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
- {
- cmp = data_ref_compare_tree (TREE_OPERAND (t1, i),
- TREE_OPERAND (t2, i));
- if (cmp != 0)
- return cmp;
- }
- }
- else
- gcc_unreachable ();
- }
-
- return 0;
-}
-
-/* Return TRUE it's possible to resolve data dependence DDR by runtime alias
- check. */
-
-opt_result
-runtime_alias_check_p (ddr_p ddr, class loop *loop, bool speed_p)
-{
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "consider run-time aliasing test between %T and %T\n",
- DR_REF (DDR_A (ddr)), DR_REF (DDR_B (ddr)));
-
- if (!speed_p)
- return opt_result::failure_at (DR_STMT (DDR_A (ddr)),
- "runtime alias check not supported when"
- " optimizing for size.\n");
-
- /* FORNOW: We don't support versioning with outer-loop in either
- vectorization or loop distribution. */
- if (loop != NULL && loop->inner != NULL)
- return opt_result::failure_at (DR_STMT (DDR_A (ddr)),
- "runtime alias check not supported for"
- " outer loop.\n");
-
- return opt_result::success ();
-}
-
-/* Operator == between two dr_with_seg_len objects.
-
- This equality operator is used to make sure two data refs
- are the same one so that we will consider to combine the
- aliasing checks of those two pairs of data dependent data
- refs. */
-
-static bool
-operator == (const dr_with_seg_len& d1,
- const dr_with_seg_len& d2)
-{
- return (operand_equal_p (DR_BASE_ADDRESS (d1.dr),
- DR_BASE_ADDRESS (d2.dr), 0)
- && data_ref_compare_tree (DR_OFFSET (d1.dr), DR_OFFSET (d2.dr)) == 0
- && data_ref_compare_tree (DR_INIT (d1.dr), DR_INIT (d2.dr)) == 0
- && data_ref_compare_tree (d1.seg_len, d2.seg_len) == 0
- && known_eq (d1.access_size, d2.access_size)
- && d1.align == d2.align);
-}
-
-/* Comparison function for sorting objects of dr_with_seg_len_pair_t
- so that we can combine aliasing checks in one scan. */
-
-static int
-comp_dr_with_seg_len_pair (const void *pa_, const void *pb_)
-{
- const dr_with_seg_len_pair_t* pa = (const dr_with_seg_len_pair_t *) pa_;
- const dr_with_seg_len_pair_t* pb = (const dr_with_seg_len_pair_t *) pb_;
- const dr_with_seg_len &a1 = pa->first, &a2 = pa->second;
- const dr_with_seg_len &b1 = pb->first, &b2 = pb->second;
-
- /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
- if a and c have the same basic address snd step, and b and d have the same
- address and step. Therefore, if any a&c or b&d don't have the same address
- and step, we don't care the order of those two pairs after sorting. */
- int comp_res;
-
- if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a1.dr),
- DR_BASE_ADDRESS (b1.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (a2.dr),
- DR_BASE_ADDRESS (b2.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_STEP (a1.dr),
- DR_STEP (b1.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_STEP (a2.dr),
- DR_STEP (b2.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_OFFSET (a1.dr),
- DR_OFFSET (b1.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_INIT (a1.dr),
- DR_INIT (b1.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_OFFSET (a2.dr),
- DR_OFFSET (b2.dr))) != 0)
- return comp_res;
- if ((comp_res = data_ref_compare_tree (DR_INIT (a2.dr),
- DR_INIT (b2.dr))) != 0)
- return comp_res;
-
- return 0;
-}
-
-/* Dump information about ALIAS_PAIR, indenting each line by INDENT. */
-
-static void
-dump_alias_pair (dr_with_seg_len_pair_t *alias_pair, const char *indent)
-{
- dump_printf (MSG_NOTE, "%sreference: %T vs. %T\n", indent,
- DR_REF (alias_pair->first.dr),
- DR_REF (alias_pair->second.dr));
-
- dump_printf (MSG_NOTE, "%ssegment length: %T", indent,
- alias_pair->first.seg_len);
- if (!operand_equal_p (alias_pair->first.seg_len,
- alias_pair->second.seg_len, 0))
- dump_printf (MSG_NOTE, " vs. %T", alias_pair->second.seg_len);
-
- dump_printf (MSG_NOTE, "\n%saccess size: ", indent);
- dump_dec (MSG_NOTE, alias_pair->first.access_size);
- if (maybe_ne (alias_pair->first.access_size, alias_pair->second.access_size))
- {
- dump_printf (MSG_NOTE, " vs. ");
- dump_dec (MSG_NOTE, alias_pair->second.access_size);
- }
-
- dump_printf (MSG_NOTE, "\n%salignment: %d", indent,
- alias_pair->first.align);
- if (alias_pair->first.align != alias_pair->second.align)
- dump_printf (MSG_NOTE, " vs. %d", alias_pair->second.align);
-
- dump_printf (MSG_NOTE, "\n%sflags: ", indent);
- if (alias_pair->flags & DR_ALIAS_RAW)
- dump_printf (MSG_NOTE, " RAW");
- if (alias_pair->flags & DR_ALIAS_WAR)
- dump_printf (MSG_NOTE, " WAR");
- if (alias_pair->flags & DR_ALIAS_WAW)
- dump_printf (MSG_NOTE, " WAW");
- if (alias_pair->flags & DR_ALIAS_ARBITRARY)
- dump_printf (MSG_NOTE, " ARBITRARY");
- if (alias_pair->flags & DR_ALIAS_SWAPPED)
- dump_printf (MSG_NOTE, " SWAPPED");
- if (alias_pair->flags & DR_ALIAS_UNSWAPPED)
- dump_printf (MSG_NOTE, " UNSWAPPED");
- if (alias_pair->flags & DR_ALIAS_MIXED_STEPS)
- dump_printf (MSG_NOTE, " MIXED_STEPS");
- if (alias_pair->flags == 0)
- dump_printf (MSG_NOTE, " <none>");
- dump_printf (MSG_NOTE, "\n");
-}
-
-/* Merge alias checks recorded in ALIAS_PAIRS and remove redundant ones.
- FACTOR is number of iterations that each data reference is accessed.
-
- Basically, for each pair of dependent data refs store_ptr_0 & load_ptr_0,
- we create an expression:
-
- ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
- || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
-
- for aliasing checks. However, in some cases we can decrease the number
- of checks by combining two checks into one. For example, suppose we have
- another pair of data refs store_ptr_0 & load_ptr_1, and if the following
- condition is satisfied:
-
- load_ptr_0 < load_ptr_1 &&
- load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
-
- (this condition means, in each iteration of vectorized loop, the accessed
- memory of store_ptr_0 cannot be between the memory of load_ptr_0 and
- load_ptr_1.)
-
- we then can use only the following expression to finish the alising checks
- between store_ptr_0 & load_ptr_0 and store_ptr_0 & load_ptr_1:
-
- ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
- || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
-
- Note that we only consider that load_ptr_0 and load_ptr_1 have the same
- basic address. */
-
-void
-prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
- poly_uint64)
-{
- if (alias_pairs->is_empty ())
- return;
-
- /* Canonicalize each pair so that the base components are ordered wrt
- data_ref_compare_tree. This allows the loop below to merge more
- cases. */
- unsigned int i;
- dr_with_seg_len_pair_t *alias_pair;
- FOR_EACH_VEC_ELT (*alias_pairs, i, alias_pair)
- {
- data_reference_p dr_a = alias_pair->first.dr;
- data_reference_p dr_b = alias_pair->second.dr;
- int comp_res = data_ref_compare_tree (DR_BASE_ADDRESS (dr_a),
- DR_BASE_ADDRESS (dr_b));
- if (comp_res == 0)
- comp_res = data_ref_compare_tree (DR_OFFSET (dr_a), DR_OFFSET (dr_b));
- if (comp_res == 0)
- comp_res = data_ref_compare_tree (DR_INIT (dr_a), DR_INIT (dr_b));
- if (comp_res > 0)
- {
- std::swap (alias_pair->first, alias_pair->second);
- alias_pair->flags |= DR_ALIAS_SWAPPED;
- }
- else
- alias_pair->flags |= DR_ALIAS_UNSWAPPED;
- }
-
- /* Sort the collected data ref pairs so that we can scan them once to
- combine all possible aliasing checks. */
- alias_pairs->qsort (comp_dr_with_seg_len_pair);
-
- /* Scan the sorted dr pairs and check if we can combine alias checks
- of two neighboring dr pairs. */
- unsigned int last = 0;
- for (i = 1; i < alias_pairs->length (); ++i)
- {
- /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
- dr_with_seg_len_pair_t *alias_pair1 = &(*alias_pairs)[last];
- dr_with_seg_len_pair_t *alias_pair2 = &(*alias_pairs)[i];
-
- dr_with_seg_len *dr_a1 = &alias_pair1->first;
- dr_with_seg_len *dr_b1 = &alias_pair1->second;
- dr_with_seg_len *dr_a2 = &alias_pair2->first;
- dr_with_seg_len *dr_b2 = &alias_pair2->second;
-
- /* Remove duplicate data ref pairs. */
- if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
- {
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "found equal ranges %T, %T and %T, %T\n",
- DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
- DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
- alias_pair1->flags |= alias_pair2->flags;
- continue;
- }
-
- /* Assume that we won't be able to merge the pairs, then correct
- if we do. */
- last += 1;
- if (last != i)
- (*alias_pairs)[last] = (*alias_pairs)[i];
-
- if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
- {
- /* We consider the case that DR_B1 and DR_B2 are same memrefs,
- and DR_A1 and DR_A2 are two consecutive memrefs. */
- if (*dr_a1 == *dr_a2)
- {
- std::swap (dr_a1, dr_b1);
- std::swap (dr_a2, dr_b2);
- }
-
- poly_int64 init_a1, init_a2;
- /* Only consider cases in which the distance between the initial
- DR_A1 and the initial DR_A2 is known at compile time. */
- if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
- DR_BASE_ADDRESS (dr_a2->dr), 0)
- || !operand_equal_p (DR_OFFSET (dr_a1->dr),
- DR_OFFSET (dr_a2->dr), 0)
- || !poly_int_tree_p (DR_INIT (dr_a1->dr), &init_a1)
- || !poly_int_tree_p (DR_INIT (dr_a2->dr), &init_a2))
- continue;
-
- /* Don't combine if we can't tell which one comes first. */
- if (!ordered_p (init_a1, init_a2))
- continue;
-
- /* Work out what the segment length would be if we did combine
- DR_A1 and DR_A2:
-
- - If DR_A1 and DR_A2 have equal lengths, that length is
- also the combined length.
-
- - If DR_A1 and DR_A2 both have negative "lengths", the combined
- length is the lower bound on those lengths.
-
- - If DR_A1 and DR_A2 both have positive lengths, the combined
- length is the upper bound on those lengths.
-
- Other cases are unlikely to give a useful combination.
-
- The lengths both have sizetype, so the sign is taken from
- the step instead. */
- poly_uint64 new_seg_len = 0;
- bool new_seg_len_p = !operand_equal_p (dr_a1->seg_len,
- dr_a2->seg_len, 0);
- if (new_seg_len_p)
- {
- poly_uint64 seg_len_a1, seg_len_a2;
- if (!poly_int_tree_p (dr_a1->seg_len, &seg_len_a1)
- || !poly_int_tree_p (dr_a2->seg_len, &seg_len_a2))
- continue;
-
- tree indicator_a = dr_direction_indicator (dr_a1->dr);
- if (TREE_CODE (indicator_a) != INTEGER_CST)
- continue;
-
- tree indicator_b = dr_direction_indicator (dr_a2->dr);
- if (TREE_CODE (indicator_b) != INTEGER_CST)
- continue;
-
- int sign_a = tree_int_cst_sgn (indicator_a);
- int sign_b = tree_int_cst_sgn (indicator_b);
-
- if (sign_a <= 0 && sign_b <= 0)
- new_seg_len = lower_bound (seg_len_a1, seg_len_a2);
- else if (sign_a >= 0 && sign_b >= 0)
- new_seg_len = upper_bound (seg_len_a1, seg_len_a2);
- else
- continue;
- }
- /* At this point we're committed to merging the refs. */
-
- /* Make sure dr_a1 starts left of dr_a2. */
- if (maybe_gt (init_a1, init_a2))
- {
- std::swap (*dr_a1, *dr_a2);
- std::swap (init_a1, init_a2);
- }
-
- /* The DR_Bs are equal, so only the DR_As can introduce
- mixed steps. */
- if (!operand_equal_p (DR_STEP (dr_a1->dr), DR_STEP (dr_a2->dr), 0))
- alias_pair1->flags |= DR_ALIAS_MIXED_STEPS;
-
- if (new_seg_len_p)
- {
- dr_a1->seg_len = build_int_cst (TREE_TYPE (dr_a1->seg_len),
- new_seg_len);
- dr_a1->align = MIN (dr_a1->align, known_alignment (new_seg_len));
- }
-
- /* This is always positive due to the swap above. */
- poly_uint64 diff = init_a2 - init_a1;
-
- /* The new check will start at DR_A1. Make sure that its access
- size encompasses the initial DR_A2. */
- if (maybe_lt (dr_a1->access_size, diff + dr_a2->access_size))
- {
- dr_a1->access_size = upper_bound (dr_a1->access_size,
- diff + dr_a2->access_size);
- unsigned int new_align = known_alignment (dr_a1->access_size);
- dr_a1->align = MIN (dr_a1->align, new_align);
- }
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "merging ranges for %T, %T and %T, %T\n",
- DR_REF (dr_a1->dr), DR_REF (dr_b1->dr),
- DR_REF (dr_a2->dr), DR_REF (dr_b2->dr));
- alias_pair1->flags |= alias_pair2->flags;
- last -= 1;
- }
- }
- alias_pairs->truncate (last + 1);
-
- /* Try to restore the original dr_with_seg_len order within each
- dr_with_seg_len_pair_t. If we ended up combining swapped and
- unswapped pairs into the same check, we have to invalidate any
- RAW, WAR and WAW information for it. */
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "merged alias checks:\n");
- FOR_EACH_VEC_ELT (*alias_pairs, i, alias_pair)
- {
- unsigned int swap_mask = (DR_ALIAS_SWAPPED | DR_ALIAS_UNSWAPPED);
- unsigned int swapped = (alias_pair->flags & swap_mask);
- if (swapped == DR_ALIAS_SWAPPED)
- std::swap (alias_pair->first, alias_pair->second);
- else if (swapped != DR_ALIAS_UNSWAPPED)
- alias_pair->flags |= DR_ALIAS_ARBITRARY;
- alias_pair->flags &= ~swap_mask;
- if (dump_enabled_p ())
- dump_alias_pair (alias_pair, " ");
- }
-}
-
-/* A subroutine of create_intersect_range_checks, with a subset of the
- same arguments. Try to use IFN_CHECK_RAW_PTRS and IFN_CHECK_WAR_PTRS
- to optimize cases in which the references form a simple RAW, WAR or
- WAR dependence. */
-
-static bool
-create_ifn_alias_checks (tree *cond_expr,
- const dr_with_seg_len_pair_t &alias_pair)
-{
- const dr_with_seg_len& dr_a = alias_pair.first;
- const dr_with_seg_len& dr_b = alias_pair.second;
-
- /* Check for cases in which:
-
- (a) we have a known RAW, WAR or WAR dependence
- (b) the accesses are well-ordered in both the original and new code
- (see the comment above the DR_ALIAS_* flags for details); and
- (c) the DR_STEPs describe all access pairs covered by ALIAS_PAIR. */
- if (alias_pair.flags & ~(DR_ALIAS_RAW | DR_ALIAS_WAR | DR_ALIAS_WAW))
- return false;
-
- /* Make sure that both DRs access the same pattern of bytes,
- with a constant length and step. */
- poly_uint64 seg_len;
- if (!operand_equal_p (dr_a.seg_len, dr_b.seg_len, 0)
- || !poly_int_tree_p (dr_a.seg_len, &seg_len)
- || maybe_ne (dr_a.access_size, dr_b.access_size)
- || !operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0)
- || !tree_fits_uhwi_p (DR_STEP (dr_a.dr)))
- return false;
-
- unsigned HOST_WIDE_INT bytes = tree_to_uhwi (DR_STEP (dr_a.dr));
- tree addr_a = DR_BASE_ADDRESS (dr_a.dr);
- tree addr_b = DR_BASE_ADDRESS (dr_b.dr);
-
- /* See whether the target suports what we want to do. WAW checks are
- equivalent to WAR checks here. */
- internal_fn ifn = (alias_pair.flags & DR_ALIAS_RAW
- ? IFN_CHECK_RAW_PTRS
- : IFN_CHECK_WAR_PTRS);
- unsigned int align = MIN (dr_a.align, dr_b.align);
- poly_uint64 full_length = seg_len + bytes;
- if (!internal_check_ptrs_fn_supported_p (ifn, TREE_TYPE (addr_a),
- full_length, align))
- {
- full_length = seg_len + dr_a.access_size;
- if (!internal_check_ptrs_fn_supported_p (ifn, TREE_TYPE (addr_a),
- full_length, align))
- return false;
- }
-
- /* Commit to using this form of test. */
- addr_a = fold_build_pointer_plus (addr_a, DR_OFFSET (dr_a.dr));
- addr_a = fold_build_pointer_plus (addr_a, DR_INIT (dr_a.dr));
-
- addr_b = fold_build_pointer_plus (addr_b, DR_OFFSET (dr_b.dr));
- addr_b = fold_build_pointer_plus (addr_b, DR_INIT (dr_b.dr));
-
- *cond_expr = build_call_expr_internal_loc (UNKNOWN_LOCATION,
- ifn, boolean_type_node,
- 4, addr_a, addr_b,
- size_int (full_length),
- size_int (align));
-
- if (dump_enabled_p ())
- {
- if (ifn == IFN_CHECK_RAW_PTRS)
- dump_printf (MSG_NOTE, "using an IFN_CHECK_RAW_PTRS test\n");
- else
- dump_printf (MSG_NOTE, "using an IFN_CHECK_WAR_PTRS test\n");
- }
- return true;
-}
-
-/* Try to generate a runtime condition that is true if ALIAS_PAIR is
- free of aliases, using a condition based on index values instead
- of a condition based on addresses. Return true on success,
- storing the condition in *COND_EXPR.
-
- This can only be done if the two data references in ALIAS_PAIR access
- the same array object and the index is the only difference. For example,
- if the two data references are DR_A and DR_B:
-
- DR_A DR_B
- data-ref arr[i] arr[j]
- base_object arr arr
- index {i_0, +, 1}_loop {j_0, +, 1}_loop
-
- The addresses and their index are like:
-
- |<- ADDR_A ->| |<- ADDR_B ->|
- ------------------------------------------------------->
- | | | | | | | | | |
- ------------------------------------------------------->
- i_0 ... i_0+4 j_0 ... j_0+4
-
- We can create expression based on index rather than address:
-
- (unsigned) (i_0 - j_0 + 3) <= 6
-
- i.e. the indices are less than 4 apart.
-
- Note evolution step of index needs to be considered in comparison. */
-
-static bool
-create_intersect_range_checks_index (class loop *loop, tree *cond_expr,
- const dr_with_seg_len_pair_t &alias_pair)
-{
- const dr_with_seg_len &dr_a = alias_pair.first;
- const dr_with_seg_len &dr_b = alias_pair.second;
- if ((alias_pair.flags & DR_ALIAS_MIXED_STEPS)
- || integer_zerop (DR_STEP (dr_a.dr))
- || integer_zerop (DR_STEP (dr_b.dr))
- || DR_NUM_DIMENSIONS (dr_a.dr) != DR_NUM_DIMENSIONS (dr_b.dr))
- return false;
-
- poly_uint64 seg_len1, seg_len2;
- if (!poly_int_tree_p (dr_a.seg_len, &seg_len1)
- || !poly_int_tree_p (dr_b.seg_len, &seg_len2))
- return false;
-
- if (!tree_fits_shwi_p (DR_STEP (dr_a.dr)))
- return false;
-
- if (!operand_equal_p (DR_BASE_OBJECT (dr_a.dr), DR_BASE_OBJECT (dr_b.dr), 0))
- return false;
-
- if (!operand_equal_p (DR_STEP (dr_a.dr), DR_STEP (dr_b.dr), 0))
- return false;
-
- gcc_assert (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST);
-
- bool neg_step = tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0;
- unsigned HOST_WIDE_INT abs_step = tree_to_shwi (DR_STEP (dr_a.dr));
- if (neg_step)
- {
- abs_step = -abs_step;
- seg_len1 = (-wi::to_poly_wide (dr_a.seg_len)).force_uhwi ();
- seg_len2 = (-wi::to_poly_wide (dr_b.seg_len)).force_uhwi ();
- }
-
- /* Infer the number of iterations with which the memory segment is accessed
- by DR. In other words, alias is checked if memory segment accessed by
- DR_A in some iterations intersect with memory segment accessed by DR_B
- in the same amount iterations.
- Note segnment length is a linear function of number of iterations with
- DR_STEP as the coefficient. */
- poly_uint64 niter_len1, niter_len2;
- if (!can_div_trunc_p (seg_len1 + abs_step - 1, abs_step, &niter_len1)
- || !can_div_trunc_p (seg_len2 + abs_step - 1, abs_step, &niter_len2))
- return false;
-
- /* Divide each access size by the byte step, rounding up. */
- poly_uint64 niter_access1, niter_access2;
- if (!can_div_trunc_p (dr_a.access_size + abs_step - 1,
- abs_step, &niter_access1)
- || !can_div_trunc_p (dr_b.access_size + abs_step - 1,
- abs_step, &niter_access2))
- return false;
-
- bool waw_or_war_p = (alias_pair.flags & ~(DR_ALIAS_WAR | DR_ALIAS_WAW)) == 0;
-
- int found = -1;
- for (unsigned int i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
- {
- tree access1 = DR_ACCESS_FN (dr_a.dr, i);
- tree access2 = DR_ACCESS_FN (dr_b.dr, i);
- /* Two indices must be the same if they are not scev, or not scev wrto
- current loop being vecorized. */
- if (TREE_CODE (access1) != POLYNOMIAL_CHREC
- || TREE_CODE (access2) != POLYNOMIAL_CHREC
- || CHREC_VARIABLE (access1) != (unsigned)loop->num
- || CHREC_VARIABLE (access2) != (unsigned)loop->num)
- {
- if (operand_equal_p (access1, access2, 0))
- continue;
-
- return false;
- }
- if (found >= 0)
- return false;
- found = i;
- }
-
- /* Ought not to happen in practice, since if all accesses are equal then the
- alias should be decidable at compile time. */
- if (found < 0)
- return false;
-
- /* The two indices must have the same step. */
- tree access1 = DR_ACCESS_FN (dr_a.dr, found);
- tree access2 = DR_ACCESS_FN (dr_b.dr, found);
- if (!operand_equal_p (CHREC_RIGHT (access1), CHREC_RIGHT (access2), 0))
- return false;
-
- tree idx_step = CHREC_RIGHT (access1);
- /* Index must have const step, otherwise DR_STEP won't be constant. */
- gcc_assert (TREE_CODE (idx_step) == INTEGER_CST);
- /* Index must evaluate in the same direction as DR. */
- gcc_assert (!neg_step || tree_int_cst_sign_bit (idx_step) == 1);
-
- tree min1 = CHREC_LEFT (access1);
- tree min2 = CHREC_LEFT (access2);
- if (!types_compatible_p (TREE_TYPE (min1), TREE_TYPE (min2)))
- return false;
-
- /* Ideally, alias can be checked against loop's control IV, but we
- need to prove linear mapping between control IV and reference
- index. Although that should be true, we check against (array)
- index of data reference. Like segment length, index length is
- linear function of the number of iterations with index_step as
- the coefficient, i.e, niter_len * idx_step. */
- offset_int abs_idx_step = offset_int::from (wi::to_wide (idx_step),
- SIGNED);
- if (neg_step)
- abs_idx_step = -abs_idx_step;
- poly_offset_int idx_len1 = abs_idx_step * niter_len1;
- poly_offset_int idx_len2 = abs_idx_step * niter_len2;
- poly_offset_int idx_access1 = abs_idx_step * niter_access1;
- poly_offset_int idx_access2 = abs_idx_step * niter_access2;
-
- gcc_assert (known_ge (idx_len1, 0)
- && known_ge (idx_len2, 0)
- && known_ge (idx_access1, 0)
- && known_ge (idx_access2, 0));
-
- /* Each access has the following pattern, with lengths measured
- in units of INDEX:
-
- <-- idx_len -->
- <--- A: -ve step --->
- +-----+-------+-----+-------+-----+
- | n-1 | ..... | 0 | ..... | n-1 |
- +-----+-------+-----+-------+-----+
- <--- B: +ve step --->
- <-- idx_len -->
- |
- min
-
- where "n" is the number of scalar iterations covered by the segment
- and where each access spans idx_access units.
-
- A is the range of bytes accessed when the step is negative,
- B is the range when the step is positive.
-
- When checking for general overlap, we need to test whether
- the range:
-
- [min1 + low_offset1, min1 + high_offset1 + idx_access1 - 1]
-
- overlaps:
-
- [min2 + low_offset2, min2 + high_offset2 + idx_access2 - 1]
-
- where:
-
- low_offsetN = +ve step ? 0 : -idx_lenN;
- high_offsetN = +ve step ? idx_lenN : 0;
-
- This is equivalent to testing whether:
-
- min1 + low_offset1 <= min2 + high_offset2 + idx_access2 - 1
- && min2 + low_offset2 <= min1 + high_offset1 + idx_access1 - 1
-
- Converting this into a single test, there is an overlap if:
-
- 0 <= min2 - min1 + bias <= limit
-
- where bias = high_offset2 + idx_access2 - 1 - low_offset1
- limit = (high_offset1 - low_offset1 + idx_access1 - 1)
- + (high_offset2 - low_offset2 + idx_access2 - 1)
- i.e. limit = idx_len1 + idx_access1 - 1 + idx_len2 + idx_access2 - 1
-
- Combining the tests requires limit to be computable in an unsigned
- form of the index type; if it isn't, we fall back to the usual
- pointer-based checks.
-
- We can do better if DR_B is a write and if DR_A and DR_B are
- well-ordered in both the original and the new code (see the
- comment above the DR_ALIAS_* flags for details). In this case
- we know that for each i in [0, n-1], the write performed by
- access i of DR_B occurs after access numbers j<=i of DR_A in
- both the original and the new code. Any write or anti
- dependencies wrt those DR_A accesses are therefore maintained.
-
- We just need to make sure that each individual write in DR_B does not
- overlap any higher-indexed access in DR_A; such DR_A accesses happen
- after the DR_B access in the original code but happen before it in
- the new code.
-
- We know the steps for both accesses are equal, so by induction, we
- just need to test whether the first write of DR_B overlaps a later
- access of DR_A. In other words, we need to move min1 along by
- one iteration:
-
- min1' = min1 + idx_step
-
- and use the ranges:
-
- [min1' + low_offset1', min1' + high_offset1' + idx_access1 - 1]
-
- and:
-
- [min2, min2 + idx_access2 - 1]
-
- where:
-
- low_offset1' = +ve step ? 0 : -(idx_len1 - |idx_step|)
- high_offset1' = +ve_step ? idx_len1 - |idx_step| : 0. */
- if (waw_or_war_p)
- idx_len1 -= abs_idx_step;
-
- poly_offset_int limit = idx_len1 + idx_access1 - 1 + idx_access2 - 1;
- if (!waw_or_war_p)
- limit += idx_len2;
-
- tree utype = unsigned_type_for (TREE_TYPE (min1));
- if (!wi::fits_to_tree_p (limit, utype))
- return false;
-
- poly_offset_int low_offset1 = neg_step ? -idx_len1 : 0;
- poly_offset_int high_offset2 = neg_step || waw_or_war_p ? 0 : idx_len2;
- poly_offset_int bias = high_offset2 + idx_access2 - 1 - low_offset1;
- /* Equivalent to adding IDX_STEP to MIN1. */
- if (waw_or_war_p)
- bias -= wi::to_offset (idx_step);
-
- tree subject = fold_build2 (MINUS_EXPR, utype,
- fold_convert (utype, min2),
- fold_convert (utype, min1));
- subject = fold_build2 (PLUS_EXPR, utype, subject,
- wide_int_to_tree (utype, bias));
- tree part_cond_expr = fold_build2 (GT_EXPR, boolean_type_node, subject,
- wide_int_to_tree (utype, limit));
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
- if (dump_enabled_p ())
- {
- if (waw_or_war_p)
- dump_printf (MSG_NOTE, "using an index-based WAR/WAW test\n");
- else
- dump_printf (MSG_NOTE, "using an index-based overlap test\n");
- }
- return true;
-}
-
-/* A subroutine of create_intersect_range_checks, with a subset of the
- same arguments. Try to optimize cases in which the second access
- is a write and in which some overlap is valid. */
-
-static bool
-create_waw_or_war_checks (tree *cond_expr,
- const dr_with_seg_len_pair_t &alias_pair)
-{
- const dr_with_seg_len& dr_a = alias_pair.first;
- const dr_with_seg_len& dr_b = alias_pair.second;
-
- /* Check for cases in which:
-
- (a) DR_B is always a write;
- (b) the accesses are well-ordered in both the original and new code
- (see the comment above the DR_ALIAS_* flags for details); and
- (c) the DR_STEPs describe all access pairs covered by ALIAS_PAIR. */
- if (alias_pair.flags & ~(DR_ALIAS_WAR | DR_ALIAS_WAW))
- return false;
-
- /* Check for equal (but possibly variable) steps. */
- tree step = DR_STEP (dr_a.dr);
- if (!operand_equal_p (step, DR_STEP (dr_b.dr)))
- return false;
-
- /* Make sure that we can operate on sizetype without loss of precision. */
- tree addr_type = TREE_TYPE (DR_BASE_ADDRESS (dr_a.dr));
- if (TYPE_PRECISION (addr_type) != TYPE_PRECISION (sizetype))
- return false;
-
- /* All addresses involved are known to have a common alignment ALIGN.
- We can therefore subtract ALIGN from an exclusive endpoint to get
- an inclusive endpoint. In the best (and common) case, ALIGN is the
- same as the access sizes of both DRs, and so subtracting ALIGN
- cancels out the addition of an access size. */
- unsigned int align = MIN (dr_a.align, dr_b.align);
- poly_uint64 last_chunk_a = dr_a.access_size - align;
- poly_uint64 last_chunk_b = dr_b.access_size - align;
-
- /* Get a boolean expression that is true when the step is negative. */
- tree indicator = dr_direction_indicator (dr_a.dr);
- tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
- fold_convert (ssizetype, indicator),
- ssize_int (0));
-
- /* Get lengths in sizetype. */
- tree seg_len_a
- = fold_convert (sizetype, rewrite_to_non_trapping_overflow (dr_a.seg_len));
- step = fold_convert (sizetype, rewrite_to_non_trapping_overflow (step));
-
- /* Each access has the following pattern:
-
- <- |seg_len| ->
- <--- A: -ve step --->
- +-----+-------+-----+-------+-----+
- | n-1 | ..... | 0 | ..... | n-1 |
- +-----+-------+-----+-------+-----+
- <--- B: +ve step --->
- <- |seg_len| ->
- |
- base address
-
- where "n" is the number of scalar iterations covered by the segment.
-
- A is the range of bytes accessed when the step is negative,
- B is the range when the step is positive.
-
- We know that DR_B is a write. We also know (from checking that
- DR_A and DR_B are well-ordered) that for each i in [0, n-1],
- the write performed by access i of DR_B occurs after access numbers
- j<=i of DR_A in both the original and the new code. Any write or
- anti dependencies wrt those DR_A accesses are therefore maintained.
-
- We just need to make sure that each individual write in DR_B does not
- overlap any higher-indexed access in DR_A; such DR_A accesses happen
- after the DR_B access in the original code but happen before it in
- the new code.
-
- We know the steps for both accesses are equal, so by induction, we
- just need to test whether the first write of DR_B overlaps a later
- access of DR_A. In other words, we need to move addr_a along by
- one iteration:
-
- addr_a' = addr_a + step
-
- and check whether:
-
- [addr_b, addr_b + last_chunk_b]
-
- overlaps:
-
- [addr_a' + low_offset_a, addr_a' + high_offset_a + last_chunk_a]
-
- where [low_offset_a, high_offset_a] spans accesses [1, n-1]. I.e.:
-
- low_offset_a = +ve step ? 0 : seg_len_a - step
- high_offset_a = +ve step ? seg_len_a - step : 0
-
- This is equivalent to testing whether:
-
- addr_a' + low_offset_a <= addr_b + last_chunk_b
- && addr_b <= addr_a' + high_offset_a + last_chunk_a
-
- Converting this into a single test, there is an overlap if:
-
- 0 <= addr_b + last_chunk_b - addr_a' - low_offset_a <= limit
-
- where limit = high_offset_a - low_offset_a + last_chunk_a + last_chunk_b
-
- If DR_A is performed, limit + |step| - last_chunk_b is known to be
- less than the size of the object underlying DR_A. We also know
- that last_chunk_b <= |step|; this is checked elsewhere if it isn't
- guaranteed at compile time. There can therefore be no overflow if
- "limit" is calculated in an unsigned type with pointer precision. */
- tree addr_a = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr),
- DR_OFFSET (dr_a.dr));
- addr_a = fold_build_pointer_plus (addr_a, DR_INIT (dr_a.dr));
-
- tree addr_b = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr),
- DR_OFFSET (dr_b.dr));
- addr_b = fold_build_pointer_plus (addr_b, DR_INIT (dr_b.dr));
-
- /* Advance ADDR_A by one iteration and adjust the length to compensate. */
- addr_a = fold_build_pointer_plus (addr_a, step);
- tree seg_len_a_minus_step = fold_build2 (MINUS_EXPR, sizetype,
- seg_len_a, step);
- if (!CONSTANT_CLASS_P (seg_len_a_minus_step))
- seg_len_a_minus_step = build1 (SAVE_EXPR, sizetype, seg_len_a_minus_step);
-
- tree low_offset_a = fold_build3 (COND_EXPR, sizetype, neg_step,
- seg_len_a_minus_step, size_zero_node);
- if (!CONSTANT_CLASS_P (low_offset_a))
- low_offset_a = build1 (SAVE_EXPR, sizetype, low_offset_a);
-
- /* We could use COND_EXPR <neg_step, size_zero_node, seg_len_a_minus_step>,
- but it's usually more efficient to reuse the LOW_OFFSET_A result. */
- tree high_offset_a = fold_build2 (MINUS_EXPR, sizetype, seg_len_a_minus_step,
- low_offset_a);
-
- /* The amount added to addr_b - addr_a'. */
- tree bias = fold_build2 (MINUS_EXPR, sizetype,
- size_int (last_chunk_b), low_offset_a);
-
- tree limit = fold_build2 (MINUS_EXPR, sizetype, high_offset_a, low_offset_a);
- limit = fold_build2 (PLUS_EXPR, sizetype, limit,
- size_int (last_chunk_a + last_chunk_b));
-
- tree subject = fold_build2 (POINTER_DIFF_EXPR, ssizetype, addr_b, addr_a);
- subject = fold_build2 (PLUS_EXPR, sizetype,
- fold_convert (sizetype, subject), bias);
-
- *cond_expr = fold_build2 (GT_EXPR, boolean_type_node, subject, limit);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "using an address-based WAR/WAW test\n");
- return true;
-}
-
-/* If ALIGN is nonzero, set up *SEQ_MIN_OUT and *SEQ_MAX_OUT so that for
- every address ADDR accessed by D:
-
- *SEQ_MIN_OUT <= ADDR (== ADDR & -ALIGN) <= *SEQ_MAX_OUT
-
- In this case, every element accessed by D is aligned to at least
- ALIGN bytes.
-
- If ALIGN is zero then instead set *SEG_MAX_OUT so that:
-
- *SEQ_MIN_OUT <= ADDR < *SEQ_MAX_OUT. */
-
-static void
-get_segment_min_max (const dr_with_seg_len &d, tree *seg_min_out,
- tree *seg_max_out, HOST_WIDE_INT align)
-{
- /* Each access has the following pattern:
-
- <- |seg_len| ->
- <--- A: -ve step --->
- +-----+-------+-----+-------+-----+
- | n-1 | ,.... | 0 | ..... | n-1 |
- +-----+-------+-----+-------+-----+
- <--- B: +ve step --->
- <- |seg_len| ->
- |
- base address
-
- where "n" is the number of scalar iterations covered by the segment.
- (This should be VF for a particular pair if we know that both steps
- are the same, otherwise it will be the full number of scalar loop
- iterations.)
-
- A is the range of bytes accessed when the step is negative,
- B is the range when the step is positive.
-
- If the access size is "access_size" bytes, the lowest addressed byte is:
-
- base + (step < 0 ? seg_len : 0) [LB]
-
- and the highest addressed byte is always below:
-
- base + (step < 0 ? 0 : seg_len) + access_size [UB]
-
- Thus:
-
- LB <= ADDR < UB
-
- If ALIGN is nonzero, all three values are aligned to at least ALIGN
- bytes, so:
-
- LB <= ADDR <= UB - ALIGN
-
- where "- ALIGN" folds naturally with the "+ access_size" and often
- cancels it out.
-
- We don't try to simplify LB and UB beyond this (e.g. by using
- MIN and MAX based on whether seg_len rather than the stride is
- negative) because it is possible for the absolute size of the
- segment to overflow the range of a ssize_t.
-
- Keeping the pointer_plus outside of the cond_expr should allow
- the cond_exprs to be shared with other alias checks. */
- tree indicator = dr_direction_indicator (d.dr);
- tree neg_step = fold_build2 (LT_EXPR, boolean_type_node,
- fold_convert (ssizetype, indicator),
- ssize_int (0));
- tree addr_base = fold_build_pointer_plus (DR_BASE_ADDRESS (d.dr),
- DR_OFFSET (d.dr));
- addr_base = fold_build_pointer_plus (addr_base, DR_INIT (d.dr));
- tree seg_len
- = fold_convert (sizetype, rewrite_to_non_trapping_overflow (d.seg_len));
-
- tree min_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
- seg_len, size_zero_node);
- tree max_reach = fold_build3 (COND_EXPR, sizetype, neg_step,
- size_zero_node, seg_len);
- max_reach = fold_build2 (PLUS_EXPR, sizetype, max_reach,
- size_int (d.access_size - align));
-
- *seg_min_out = fold_build_pointer_plus (addr_base, min_reach);
- *seg_max_out = fold_build_pointer_plus (addr_base, max_reach);
-}
-
-/* Generate a runtime condition that is true if ALIAS_PAIR is free of aliases,
- storing the condition in *COND_EXPR. The fallback is to generate a
- a test that the two accesses do not overlap:
-
- end_a <= start_b || end_b <= start_a. */
-
-static void
-create_intersect_range_checks (class loop *loop, tree *cond_expr,
- const dr_with_seg_len_pair_t &alias_pair)
-{
- const dr_with_seg_len& dr_a = alias_pair.first;
- const dr_with_seg_len& dr_b = alias_pair.second;
- *cond_expr = NULL_TREE;
- if (create_intersect_range_checks_index (loop, cond_expr, alias_pair))
- return;
-
- if (create_ifn_alias_checks (cond_expr, alias_pair))
- return;
-
- if (create_waw_or_war_checks (cond_expr, alias_pair))
- return;
-
- unsigned HOST_WIDE_INT min_align;
- tree_code cmp_code;
- /* We don't have to check DR_ALIAS_MIXED_STEPS here, since both versions
- are equivalent. This is just an optimization heuristic. */
- if (TREE_CODE (DR_STEP (dr_a.dr)) == INTEGER_CST
- && TREE_CODE (DR_STEP (dr_b.dr)) == INTEGER_CST)
- {
- /* In this case adding access_size to seg_len is likely to give
- a simple X * step, where X is either the number of scalar
- iterations or the vectorization factor. We're better off
- keeping that, rather than subtracting an alignment from it.
-
- In this case the maximum values are exclusive and so there is
- no alias if the maximum of one segment equals the minimum
- of another. */
- min_align = 0;
- cmp_code = LE_EXPR;
- }
- else
- {
- /* Calculate the minimum alignment shared by all four pointers,
- then arrange for this alignment to be subtracted from the
- exclusive maximum values to get inclusive maximum values.
- This "- min_align" is cumulative with a "+ access_size"
- in the calculation of the maximum values. In the best
- (and common) case, the two cancel each other out, leaving
- us with an inclusive bound based only on seg_len. In the
- worst case we're simply adding a smaller number than before.
-
- Because the maximum values are inclusive, there is an alias
- if the maximum value of one segment is equal to the minimum
- value of the other. */
- min_align = MIN (dr_a.align, dr_b.align);
- cmp_code = LT_EXPR;
- }
-
- tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
- get_segment_min_max (dr_a, &seg_a_min, &seg_a_max, min_align);
- get_segment_min_max (dr_b, &seg_b_min, &seg_b_max, min_align);
-
- *cond_expr
- = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
- fold_build2 (cmp_code, boolean_type_node, seg_a_max, seg_b_min),
- fold_build2 (cmp_code, boolean_type_node, seg_b_max, seg_a_min));
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE, "using an address-based overlap test\n");
-}
-
-/* Create a conditional expression that represents the run-time checks for
- overlapping of address ranges represented by a list of data references
- pairs passed in ALIAS_PAIRS. Data references are in LOOP. The returned
- COND_EXPR is the conditional expression to be used in the if statement
- that controls which version of the loop gets executed at runtime. */
-
-void
-create_runtime_alias_checks (class loop *loop,
- const vec<dr_with_seg_len_pair_t> *alias_pairs,
- tree * cond_expr)
-{
- tree part_cond_expr;
-
- fold_defer_overflow_warnings ();
- for (const dr_with_seg_len_pair_t &alias_pair : alias_pairs)
- {
- gcc_assert (alias_pair.flags);
- if (dump_enabled_p ())
- dump_printf (MSG_NOTE,
- "create runtime check for data references %T and %T\n",
- DR_REF (alias_pair.first.dr),
- DR_REF (alias_pair.second.dr));
-
- /* Create condition expression for each pair data references. */
- create_intersect_range_checks (loop, &part_cond_expr, alias_pair);
- if (*cond_expr)
- *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
- *cond_expr, part_cond_expr);
- else
- *cond_expr = part_cond_expr;
- }
- fold_undefer_and_ignore_overflow_warnings ();
-}
-
-/* Check if OFFSET1 and OFFSET2 (DR_OFFSETs of some data-refs) are identical
- expressions. */
-static bool
-dr_equal_offsets_p1 (tree offset1, tree offset2)
-{
- bool res;
-
- STRIP_NOPS (offset1);
- STRIP_NOPS (offset2);
-
- if (offset1 == offset2)
- return true;
-
- if (TREE_CODE (offset1) != TREE_CODE (offset2)
- || (!BINARY_CLASS_P (offset1) && !UNARY_CLASS_P (offset1)))
- return false;
-
- res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 0),
- TREE_OPERAND (offset2, 0));
-
- if (!res || !BINARY_CLASS_P (offset1))
- return res;
-
- res = dr_equal_offsets_p1 (TREE_OPERAND (offset1, 1),
- TREE_OPERAND (offset2, 1));
-
- return res;
-}
-
-/* Check if DRA and DRB have equal offsets. */
-bool
-dr_equal_offsets_p (struct data_reference *dra,
- struct data_reference *drb)
-{
- tree offset1, offset2;
-
- offset1 = DR_OFFSET (dra);
- offset2 = DR_OFFSET (drb);
-
- return dr_equal_offsets_p1 (offset1, offset2);
-}
-
-/* Returns true if FNA == FNB. */
-
-static bool
-affine_function_equal_p (affine_fn fna, affine_fn fnb)
-{
- unsigned i, n = fna.length ();
-
- if (n != fnb.length ())
- return false;
-
- for (i = 0; i < n; i++)
- if (!operand_equal_p (fna[i], fnb[i], 0))
- return false;
-
- return true;
-}
-
-/* If all the functions in CF are the same, returns one of them,
- otherwise returns NULL. */
-
-static affine_fn
-common_affine_function (conflict_function *cf)
-{
- unsigned i;
- affine_fn comm;
-
- if (!CF_NONTRIVIAL_P (cf))
- return affine_fn ();
-
- comm = cf->fns[0];
-
- for (i = 1; i < cf->n; i++)
- if (!affine_function_equal_p (comm, cf->fns[i]))
- return affine_fn ();
-
- return comm;
-}
-
-/* Returns the base of the affine function FN. */
-
-static tree
-affine_function_base (affine_fn fn)
-{
- return fn[0];
-}
-
-/* Returns true if FN is a constant. */
-
-static bool
-affine_function_constant_p (affine_fn fn)
-{
- unsigned i;
- tree coef;
-
- for (i = 1; fn.iterate (i, &coef); i++)
- if (!integer_zerop (coef))
- return false;
-
- return true;
-}
-
-/* Returns true if FN is the zero constant function. */
-
-static bool
-affine_function_zero_p (affine_fn fn)
-{
- return (integer_zerop (affine_function_base (fn))
- && affine_function_constant_p (fn));
-}
-
-/* Returns a signed integer type with the largest precision from TA
- and TB. */
-
-static tree
-signed_type_for_types (tree ta, tree tb)
-{
- if (TYPE_PRECISION (ta) > TYPE_PRECISION (tb))
- return signed_type_for (ta);
- else
- return signed_type_for (tb);
-}
-
-/* Applies operation OP on affine functions FNA and FNB, and returns the
- result. */
-
-static affine_fn
-affine_fn_op (enum tree_code op, affine_fn fna, affine_fn fnb)
-{
- unsigned i, n, m;
- affine_fn ret;
- tree coef;
-
- if (fnb.length () > fna.length ())
- {
- n = fna.length ();
- m = fnb.length ();
- }
- else
- {
- n = fnb.length ();
- m = fna.length ();
- }
-
- ret.create (m);
- for (i = 0; i < n; i++)
- {
- tree type = signed_type_for_types (TREE_TYPE (fna[i]),
- TREE_TYPE (fnb[i]));
- ret.quick_push (fold_build2 (op, type, fna[i], fnb[i]));
- }
-
- for (; fna.iterate (i, &coef); i++)
- ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
- coef, integer_zero_node));
- for (; fnb.iterate (i, &coef); i++)
- ret.quick_push (fold_build2 (op, signed_type_for (TREE_TYPE (coef)),
- integer_zero_node, coef));
-
- return ret;
-}
-
-/* Returns the sum of affine functions FNA and FNB. */
-
-static affine_fn
-affine_fn_plus (affine_fn fna, affine_fn fnb)
-{
- return affine_fn_op (PLUS_EXPR, fna, fnb);
-}
-
-/* Returns the difference of affine functions FNA and FNB. */
-
-static affine_fn
-affine_fn_minus (affine_fn fna, affine_fn fnb)
-{
- return affine_fn_op (MINUS_EXPR, fna, fnb);
-}
-
-/* Frees affine function FN. */
-
-static void
-affine_fn_free (affine_fn fn)
-{
- fn.release ();
-}
-
-/* Determine for each subscript in the data dependence relation DDR
- the distance. */
-
-static void
-compute_subscript_distance (struct data_dependence_relation *ddr)
-{
- conflict_function *cf_a, *cf_b;
- affine_fn fn_a, fn_b, diff;
-
- if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
- {
- unsigned int i;
-
- for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
- {
- struct subscript *subscript;
-
- subscript = DDR_SUBSCRIPT (ddr, i);
- cf_a = SUB_CONFLICTS_IN_A (subscript);
- cf_b = SUB_CONFLICTS_IN_B (subscript);
-
- fn_a = common_affine_function (cf_a);
- fn_b = common_affine_function (cf_b);
- if (!fn_a.exists () || !fn_b.exists ())
- {
- SUB_DISTANCE (subscript) = chrec_dont_know;
- return;
- }
- diff = affine_fn_minus (fn_a, fn_b);
-
- if (affine_function_constant_p (diff))
- SUB_DISTANCE (subscript) = affine_function_base (diff);
- else
- SUB_DISTANCE (subscript) = chrec_dont_know;
-
- affine_fn_free (diff);
- }
- }
-}
-
-/* Returns the conflict function for "unknown". */
-
-static conflict_function *
-conflict_fn_not_known (void)
-{
- conflict_function *fn = XCNEW (conflict_function);
- fn->n = NOT_KNOWN;
-
- return fn;
-}
-
-/* Returns the conflict function for "independent". */
-
-static conflict_function *
-conflict_fn_no_dependence (void)
-{
- conflict_function *fn = XCNEW (conflict_function);
- fn->n = NO_DEPENDENCE;
-
- return fn;
-}
-
-/* Returns true if the address of OBJ is invariant in LOOP. */
-
-static bool
-object_address_invariant_in_loop_p (const class loop *loop, const_tree obj)
-{
- while (handled_component_p (obj))
- {
- if (TREE_CODE (obj) == ARRAY_REF)
- {
- for (int i = 1; i < 4; ++i)
- if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, i),
- loop->num))
- return false;
- }
- else if (TREE_CODE (obj) == COMPONENT_REF)
- {
- if (chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 2),
- loop->num))
- return false;
- }
- obj = TREE_OPERAND (obj, 0);
- }
-
- if (!INDIRECT_REF_P (obj)
- && TREE_CODE (obj) != MEM_REF)
- return true;
-
- return !chrec_contains_symbols_defined_in_loop (TREE_OPERAND (obj, 0),
- loop->num);
-}
-
-/* Returns false if we can prove that data references A and B do not alias,
- true otherwise. If LOOP_NEST is false no cross-iteration aliases are
- considered. */
-
-bool
-dr_may_alias_p (const struct data_reference *a, const struct data_reference *b,
- class loop *loop_nest)
-{
- tree addr_a = DR_BASE_OBJECT (a);
- tree addr_b = DR_BASE_OBJECT (b);
-
- /* If we are not processing a loop nest but scalar code we
- do not need to care about possible cross-iteration dependences
- and thus can process the full original reference. Do so,
- similar to how loop invariant motion applies extra offset-based
- disambiguation. */
- if (!loop_nest)
- {
- aff_tree off1, off2;
- poly_widest_int size1, size2;
- get_inner_reference_aff (DR_REF (a), &off1, &size1);
- get_inner_reference_aff (DR_REF (b), &off2, &size2);
- aff_combination_scale (&off1, -1);
- aff_combination_add (&off2, &off1);
- if (aff_comb_cannot_overlap_p (&off2, size1, size2))
- return false;
- }
-
- if ((TREE_CODE (addr_a) == MEM_REF || TREE_CODE (addr_a) == TARGET_MEM_REF)
- && (TREE_CODE (addr_b) == MEM_REF || TREE_CODE (addr_b) == TARGET_MEM_REF)
- /* For cross-iteration dependences the cliques must be valid for the
- whole loop, not just individual iterations. */
- && (!loop_nest
- || MR_DEPENDENCE_CLIQUE (addr_a) == 1
- || MR_DEPENDENCE_CLIQUE (addr_a) == loop_nest->owned_clique)
- && MR_DEPENDENCE_CLIQUE (addr_a) == MR_DEPENDENCE_CLIQUE (addr_b)
- && MR_DEPENDENCE_BASE (addr_a) != MR_DEPENDENCE_BASE (addr_b))
- return false;
-
- /* If we had an evolution in a pointer-based MEM_REF BASE_OBJECT we
- do not know the size of the base-object. So we cannot do any
- offset/overlap based analysis but have to rely on points-to
- information only. */
- if (TREE_CODE (addr_a) == MEM_REF
- && (DR_UNCONSTRAINED_BASE (a)
- || TREE_CODE (TREE_OPERAND (addr_a, 0)) == SSA_NAME))
- {
- /* For true dependences we can apply TBAA. */
- if (flag_strict_aliasing
- && DR_IS_WRITE (a) && DR_IS_READ (b)
- && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
- get_alias_set (DR_REF (b))))
- return false;
- if (TREE_CODE (addr_b) == MEM_REF)
- return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
- TREE_OPERAND (addr_b, 0));
- else
- return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
- build_fold_addr_expr (addr_b));
- }
- else if (TREE_CODE (addr_b) == MEM_REF
- && (DR_UNCONSTRAINED_BASE (b)
- || TREE_CODE (TREE_OPERAND (addr_b, 0)) == SSA_NAME))
- {
- /* For true dependences we can apply TBAA. */
- if (flag_strict_aliasing
- && DR_IS_WRITE (a) && DR_IS_READ (b)
- && !alias_sets_conflict_p (get_alias_set (DR_REF (a)),
- get_alias_set (DR_REF (b))))
- return false;
- if (TREE_CODE (addr_a) == MEM_REF)
- return ptr_derefs_may_alias_p (TREE_OPERAND (addr_a, 0),
- TREE_OPERAND (addr_b, 0));
- else
- return ptr_derefs_may_alias_p (build_fold_addr_expr (addr_a),
- TREE_OPERAND (addr_b, 0));
- }
-
- /* Otherwise DR_BASE_OBJECT is an access that covers the whole object
- that is being subsetted in the loop nest. */
- if (DR_IS_WRITE (a) && DR_IS_WRITE (b))
- return refs_output_dependent_p (addr_a, addr_b);
- else if (DR_IS_READ (a) && DR_IS_WRITE (b))
- return refs_anti_dependent_p (addr_a, addr_b);
- return refs_may_alias_p (addr_a, addr_b);
-}
-
-/* REF_A and REF_B both satisfy access_fn_component_p. Return true
- if it is meaningful to compare their associated access functions
- when checking for dependencies. */
-
-static bool
-access_fn_components_comparable_p (tree ref_a, tree ref_b)
-{
- /* Allow pairs of component refs from the following sets:
-
- { REALPART_EXPR, IMAGPART_EXPR }
- { COMPONENT_REF }
- { ARRAY_REF }. */
- tree_code code_a = TREE_CODE (ref_a);
- tree_code code_b = TREE_CODE (ref_b);
- if (code_a == IMAGPART_EXPR)
- code_a = REALPART_EXPR;
- if (code_b == IMAGPART_EXPR)
- code_b = REALPART_EXPR;
- if (code_a != code_b)
- return false;
-
- if (TREE_CODE (ref_a) == COMPONENT_REF)
- /* ??? We cannot simply use the type of operand #0 of the refs here as
- the Fortran compiler smuggles type punning into COMPONENT_REFs.
- Use the DECL_CONTEXT of the FIELD_DECLs instead. */
- return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
- == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
-
- return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
- TREE_TYPE (TREE_OPERAND (ref_b, 0)));
-}
-
-/* Initialize a data dependence relation RES in LOOP_NEST. USE_ALT_INDICES
- is true when the main indices of A and B were not comparable so we try again
- with alternate indices computed on an indirect reference. */
-
-struct data_dependence_relation *
-initialize_data_dependence_relation (struct data_dependence_relation *res,
- vec<loop_p> loop_nest,
- bool use_alt_indices)
-{
- struct data_reference *a = DDR_A (res);
- struct data_reference *b = DDR_B (res);
- unsigned int i;
-
- struct indices *indices_a = &a->indices;
- struct indices *indices_b = &b->indices;
- if (use_alt_indices)
- {
- if (TREE_CODE (DR_REF (a)) != MEM_REF)
- indices_a = &a->alt_indices;
- if (TREE_CODE (DR_REF (b)) != MEM_REF)
- indices_b = &b->alt_indices;
- }
- unsigned int num_dimensions_a = indices_a->access_fns.length ();
- unsigned int num_dimensions_b = indices_b->access_fns.length ();
- if (num_dimensions_a == 0 || num_dimensions_b == 0)
- {
- DDR_ARE_DEPENDENT (res) = chrec_dont_know;
- return res;
- }
-
- /* For unconstrained bases, the root (highest-indexed) subscript
- describes a variation in the base of the original DR_REF rather
- than a component access. We have no type that accurately describes
- the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
- applying this subscript) so limit the search to the last real
- component access.
-
- E.g. for:
-
- void
- f (int a[][8], int b[][8])
- {
- for (int i = 0; i < 8; ++i)
- a[i * 2][0] = b[i][0];
- }
-
- the a and b accesses have a single ARRAY_REF component reference [0]
- but have two subscripts. */
- if (indices_a->unconstrained_base)
- num_dimensions_a -= 1;
- if (indices_b->unconstrained_base)
- num_dimensions_b -= 1;
-
- /* These structures describe sequences of component references in
- DR_REF (A) and DR_REF (B). Each component reference is tied to a
- specific access function. */
- struct {
- /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
- DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
- indices. In C notation, these are the indices of the rightmost
- component references; e.g. for a sequence .b.c.d, the start
- index is for .d. */
- unsigned int start_a;
- unsigned int start_b;
-
- /* The sequence contains LENGTH consecutive access functions from
- each DR. */
- unsigned int length;
-
- /* The enclosing objects for the A and B sequences respectively,
- i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
- and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied. */
- tree object_a;
- tree object_b;
- } full_seq = {}, struct_seq = {};
-
- /* Before each iteration of the loop:
-
- - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
- - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B). */
- unsigned int index_a = 0;
- unsigned int index_b = 0;
- tree ref_a = DR_REF (a);
- tree ref_b = DR_REF (b);
-
- /* Now walk the component references from the final DR_REFs back up to
- the enclosing base objects. Each component reference corresponds
- to one access function in the DR, with access function 0 being for
- the final DR_REF and the highest-indexed access function being the
- one that is applied to the base of the DR.
-
- Look for a sequence of component references whose access functions
- are comparable (see access_fn_components_comparable_p). If more
- than one such sequence exists, pick the one nearest the base
- (which is the leftmost sequence in C notation). Store this sequence
- in FULL_SEQ.
-
- For example, if we have:
-
- struct foo { struct bar s; ... } (*a)[10], (*b)[10];
-
- A: a[0][i].s.c.d
- B: __real b[0][i].s.e[i].f
-
- (where d is the same type as the real component of f) then the access
- functions would be:
-
- 0 1 2 3
- A: .d .c .s [i]
-
- 0 1 2 3 4 5
- B: __real .f [i] .e .s [i]
-
- The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
- and [i] is an ARRAY_REF. However, the A1/B3 column contains two
- COMPONENT_REF accesses for struct bar, so is comparable. Likewise
- the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
- so is comparable. The A3/B5 column contains two ARRAY_REFs that
- index foo[10] arrays, so is again comparable. The sequence is
- therefore:
-
- A: [1, 3] (i.e. [i].s.c)
- B: [3, 5] (i.e. [i].s.e)
-
- Also look for sequences of component references whose access
- functions are comparable and whose enclosing objects have the same
- RECORD_TYPE. Store this sequence in STRUCT_SEQ. In the above
- example, STRUCT_SEQ would be:
-
- A: [1, 2] (i.e. s.c)
- B: [3, 4] (i.e. s.e) */
- while (index_a < num_dimensions_a && index_b < num_dimensions_b)
- {
- /* The alternate indices form always has a single dimension
- with unconstrained base. */
- gcc_assert (!use_alt_indices);
-
- /* REF_A and REF_B must be one of the component access types
- allowed by dr_analyze_indices. */
- gcc_checking_assert (access_fn_component_p (ref_a));
- gcc_checking_assert (access_fn_component_p (ref_b));
-
- /* Get the immediately-enclosing objects for REF_A and REF_B,
- i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
- and DR_ACCESS_FN (B, INDEX_B). */
- tree object_a = TREE_OPERAND (ref_a, 0);
- tree object_b = TREE_OPERAND (ref_b, 0);
-
- tree type_a = TREE_TYPE (object_a);
- tree type_b = TREE_TYPE (object_b);
- if (access_fn_components_comparable_p (ref_a, ref_b))
- {
- /* This pair of component accesses is comparable for dependence
- analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
- DR_ACCESS_FN (B, INDEX_B) in the sequence. */
- if (full_seq.start_a + full_seq.length != index_a
- || full_seq.start_b + full_seq.length != index_b)
- {
- /* The accesses don't extend the current sequence,
- so start a new one here. */
- full_seq.start_a = index_a;
- full_seq.start_b = index_b;
- full_seq.length = 0;
- }
-
- /* Add this pair of references to the sequence. */
- full_seq.length += 1;
- full_seq.object_a = object_a;
- full_seq.object_b = object_b;
-
- /* If the enclosing objects are structures (and thus have the
- same RECORD_TYPE), record the new sequence in STRUCT_SEQ. */
- if (TREE_CODE (type_a) == RECORD_TYPE)
- struct_seq = full_seq;
-
- /* Move to the next containing reference for both A and B. */
- ref_a = object_a;
- ref_b = object_b;
- index_a += 1;
- index_b += 1;
- continue;
- }
-
- /* Try to approach equal type sizes. */
- if (!COMPLETE_TYPE_P (type_a)
- || !COMPLETE_TYPE_P (type_b)
- || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
- || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
- break;
-
- unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
- unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
- if (size_a <= size_b)
- {
- index_a += 1;
- ref_a = object_a;
- }
- if (size_b <= size_a)
- {
- index_b += 1;
- ref_b = object_b;
- }
- }
-
- /* See whether FULL_SEQ ends at the base and whether the two bases
- are equal. We do not care about TBAA or alignment info so we can
- use OEP_ADDRESS_OF to avoid false negatives. */
- tree base_a = indices_a->base_object;
- tree base_b = indices_b->base_object;
- bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
- && full_seq.start_b + full_seq.length == num_dimensions_b
- && (indices_a->unconstrained_base
- == indices_b->unconstrained_base)
- && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
- && (types_compatible_p (TREE_TYPE (base_a),
- TREE_TYPE (base_b))
- || (!base_supports_access_fn_components_p (base_a)
- && !base_supports_access_fn_components_p (base_b)
- && operand_equal_p
- (TYPE_SIZE (TREE_TYPE (base_a)),
- TYPE_SIZE (TREE_TYPE (base_b)), 0)))
- && (!loop_nest.exists ()
- || (object_address_invariant_in_loop_p
- (loop_nest[0], base_a))));
-
- /* If the bases are the same, we can include the base variation too.
- E.g. the b accesses in:
-
- for (int i = 0; i < n; ++i)
- b[i + 4][0] = b[i][0];
-
- have a definite dependence distance of 4, while for:
-
- for (int i = 0; i < n; ++i)
- a[i + 4][0] = b[i][0];
-
- the dependence distance depends on the gap between a and b.
-
- If the bases are different then we can only rely on the sequence
- rooted at a structure access, since arrays are allowed to overlap
- arbitrarily and change shape arbitrarily. E.g. we treat this as
- valid code:
-
- int a[256];
- ...
- ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
-
- where two lvalues with the same int[4][3] type overlap, and where
- both lvalues are distinct from the object's declared type. */
- if (same_base_p)
- {
- if (indices_a->unconstrained_base)
- full_seq.length += 1;
- }
- else
- full_seq = struct_seq;
-
- /* Punt if we didn't find a suitable sequence. */
- if (full_seq.length == 0)
- {
- if (use_alt_indices
- || (TREE_CODE (DR_REF (a)) == MEM_REF
- && TREE_CODE (DR_REF (b)) == MEM_REF)
- || may_be_nonaddressable_p (DR_REF (a))
- || may_be_nonaddressable_p (DR_REF (b)))
- {
- /* Fully exhausted possibilities. */
- DDR_ARE_DEPENDENT (res) = chrec_dont_know;
- return res;
- }
-
- /* Try evaluating both DRs as dereferences of pointers. */
- if (!a->alt_indices.base_object
- && TREE_CODE (DR_REF (a)) != MEM_REF)
- {
- tree alt_ref = build2 (MEM_REF, TREE_TYPE (DR_REF (a)),
- build1 (ADDR_EXPR, ptr_type_node, DR_REF (a)),
- build_int_cst
- (reference_alias_ptr_type (DR_REF (a)), 0));
- dr_analyze_indices (&a->alt_indices, alt_ref,
- loop_preheader_edge (loop_nest[0]),
- loop_containing_stmt (DR_STMT (a)));
- }
- if (!b->alt_indices.base_object
- && TREE_CODE (DR_REF (b)) != MEM_REF)
- {
- tree alt_ref = build2 (MEM_REF, TREE_TYPE (DR_REF (b)),
- build1 (ADDR_EXPR, ptr_type_node, DR_REF (b)),
- build_int_cst
- (reference_alias_ptr_type (DR_REF (b)), 0));
- dr_analyze_indices (&b->alt_indices, alt_ref,
- loop_preheader_edge (loop_nest[0]),
- loop_containing_stmt (DR_STMT (b)));
- }
- return initialize_data_dependence_relation (res, loop_nest, true);
- }
-
- if (!same_base_p)
- {
- /* Partial overlap is possible for different bases when strict aliasing
- is not in effect. It's also possible if either base involves a union
- access; e.g. for:
-
- struct s1 { int a[2]; };
- struct s2 { struct s1 b; int c; };
- struct s3 { int d; struct s1 e; };
- union u { struct s2 f; struct s3 g; } *p, *q;
-
- the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
- "p->g.e" (base "p->g") and might partially overlap the s1 at
- "q->g.e" (base "q->g"). */
- if (!flag_strict_aliasing
- || ref_contains_union_access_p (full_seq.object_a)
- || ref_contains_union_access_p (full_seq.object_b))
- {
- DDR_ARE_DEPENDENT (res) = chrec_dont_know;
- return res;
- }
-
- DDR_COULD_BE_INDEPENDENT_P (res) = true;
- if (!loop_nest.exists ()
- || (object_address_invariant_in_loop_p (loop_nest[0],
- full_seq.object_a)
- && object_address_invariant_in_loop_p (loop_nest[0],
- full_seq.object_b)))
- {
- DDR_OBJECT_A (res) = full_seq.object_a;
- DDR_OBJECT_B (res) = full_seq.object_b;
- }
- }
-
- DDR_AFFINE_P (res) = true;
- DDR_ARE_DEPENDENT (res) = NULL_TREE;
- DDR_SUBSCRIPTS (res).create (full_seq.length);
- DDR_LOOP_NEST (res) = loop_nest;
- DDR_SELF_REFERENCE (res) = false;
-
- for (i = 0; i < full_seq.length; ++i)
- {
- struct subscript *subscript;
-
- subscript = XNEW (struct subscript);
- SUB_ACCESS_FN (subscript, 0) = indices_a->access_fns[full_seq.start_a + i];
- SUB_ACCESS_FN (subscript, 1) = indices_b->access_fns[full_seq.start_b + i];
- SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
- SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
- SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
- SUB_DISTANCE (subscript) = chrec_dont_know;
- DDR_SUBSCRIPTS (res).safe_push (subscript);
- }
-
- return res;
-}
-
-/* Initialize a data dependence relation between data accesses A and
- B. NB_LOOPS is the number of loops surrounding the references: the
- size of the classic distance/direction vectors. */
-
-struct data_dependence_relation *
-initialize_data_dependence_relation (struct data_reference *a,
- struct data_reference *b,
- vec<loop_p> loop_nest)
-{
- data_dependence_relation *res = XCNEW (struct data_dependence_relation);
- DDR_A (res) = a;
- DDR_B (res) = b;
- DDR_LOOP_NEST (res).create (0);
- DDR_SUBSCRIPTS (res).create (0);
- DDR_DIR_VECTS (res).create (0);
- DDR_DIST_VECTS (res).create (0);
-
- if (a == NULL || b == NULL)
- {
- DDR_ARE_DEPENDENT (res) = chrec_dont_know;
- return res;
- }
-
- /* If the data references do not alias, then they are independent. */
- if (!dr_may_alias_p (a, b, loop_nest.exists () ? loop_nest[0] : NULL))
- {
- DDR_ARE_DEPENDENT (res) = chrec_known;
- return res;
- }
-
- return initialize_data_dependence_relation (res, loop_nest, false);
-}
-
-
-/* Frees memory used by the conflict function F. */
-
-static void
-free_conflict_function (conflict_function *f)
-{
- unsigned i;
-
- if (CF_NONTRIVIAL_P (f))
- {
- for (i = 0; i < f->n; i++)
- affine_fn_free (f->fns[i]);
- }
- free (f);
-}
-
-/* Frees memory used by SUBSCRIPTS. */
-
-static void
-free_subscripts (vec<subscript_p> subscripts)
-{
- for (subscript_p s : subscripts)
- {
- free_conflict_function (s->conflicting_iterations_in_a);
- free_conflict_function (s->conflicting_iterations_in_b);
- free (s);
- }
- subscripts.release ();
-}
-
-/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
- description. */
-
-static inline void
-finalize_ddr_dependent (struct data_dependence_relation *ddr,
- tree chrec)
-{
- DDR_ARE_DEPENDENT (ddr) = chrec;
- free_subscripts (DDR_SUBSCRIPTS (ddr));
- DDR_SUBSCRIPTS (ddr).create (0);
-}
-
-/* The dependence relation DDR cannot be represented by a distance
- vector. */
-
-static inline void
-non_affine_dependence_relation (struct data_dependence_relation *ddr)
-{
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(Dependence relation cannot be represented by distance vector.) \n");
-
- DDR_AFFINE_P (ddr) = false;
-}
-
-
-
-/* This section contains the classic Banerjee tests. */
-
-/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
- variables, i.e., if the ZIV (Zero Index Variable) test is true. */
-
-static inline bool
-ziv_subscript_p (const_tree chrec_a, const_tree chrec_b)
-{
- return (evolution_function_is_constant_p (chrec_a)
- && evolution_function_is_constant_p (chrec_b));
-}
-
-/* Returns true iff CHREC_A and CHREC_B are dependent on an index
- variable, i.e., if the SIV (Single Index Variable) test is true. */
-
-static bool
-siv_subscript_p (const_tree chrec_a, const_tree chrec_b)
-{
- if ((evolution_function_is_constant_p (chrec_a)
- && evolution_function_is_univariate_p (chrec_b))
- || (evolution_function_is_constant_p (chrec_b)
- && evolution_function_is_univariate_p (chrec_a)))
- return true;
-
- if (evolution_function_is_univariate_p (chrec_a)
- && evolution_function_is_univariate_p (chrec_b))
- {
- switch (TREE_CODE (chrec_a))
- {
- case POLYNOMIAL_CHREC:
- switch (TREE_CODE (chrec_b))
- {
- case POLYNOMIAL_CHREC:
- if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
- return false;
- /* FALLTHRU */
-
- default:
- return true;
- }
-
- default:
- return true;
- }
- }
-
- return false;
-}
-
-/* Creates a conflict function with N dimensions. The affine functions
- in each dimension follow. */
-
-static conflict_function *
-conflict_fn (unsigned n, ...)
-{
- unsigned i;
- conflict_function *ret = XCNEW (conflict_function);
- va_list ap;
-
- gcc_assert (n > 0 && n <= MAX_DIM);
- va_start (ap, n);
-
- ret->n = n;
- for (i = 0; i < n; i++)
- ret->fns[i] = va_arg (ap, affine_fn);
- va_end (ap);
-
- return ret;
-}
-
-/* Returns constant affine function with value CST. */
-
-static affine_fn
-affine_fn_cst (tree cst)
-{
- affine_fn fn;
- fn.create (1);
- fn.quick_push (cst);
- return fn;
-}
-
-/* Returns affine function with single variable, CST + COEF * x_DIM. */
-
-static affine_fn
-affine_fn_univar (tree cst, unsigned dim, tree coef)
-{
- affine_fn fn;
- fn.create (dim + 1);
- unsigned i;
-
- gcc_assert (dim > 0);
- fn.quick_push (cst);
- for (i = 1; i < dim; i++)
- fn.quick_push (integer_zero_node);
- fn.quick_push (coef);
- return fn;
-}
-
-/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
- *OVERLAPS_B are initialized to the functions that describe the
- relation between the elements accessed twice by CHREC_A and
- CHREC_B. For k >= 0, the following property is verified:
-
- CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
-
-static void
-analyze_ziv_subscript (tree chrec_a,
- tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts)
-{
- tree type, difference;
- dependence_stats.num_ziv++;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(analyze_ziv_subscript \n");
-
- type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
- chrec_a = chrec_convert (type, chrec_a, NULL);
- chrec_b = chrec_convert (type, chrec_b, NULL);
- difference = chrec_fold_minus (type, chrec_a, chrec_b);
-
- switch (TREE_CODE (difference))
- {
- case INTEGER_CST:
- if (integer_zerop (difference))
- {
- /* The difference is equal to zero: the accessed index
- overlaps for each iteration in the loop. */
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_ziv_dependent++;
- }
- else
- {
- /* The accesses do not overlap. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_ziv_independent++;
- }
- break;
-
- default:
- /* We're not sure whether the indexes overlap. For the moment,
- conservatively answer "don't know". */
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "ziv test failed: difference is non-integer.\n");
-
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_ziv_unimplemented++;
- break;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, ")\n");
-}
-
-/* Similar to max_stmt_executions_int, but returns the bound as a tree,
- and only if it fits to the int type. If this is not the case, or the
- bound on the number of iterations of LOOP could not be derived, returns
- chrec_dont_know. */
-
-static tree
-max_stmt_executions_tree (class loop *loop)
-{
- widest_int nit;
-
- if (!max_stmt_executions (loop, &nit))
- return chrec_dont_know;
-
- if (!wi::fits_to_tree_p (nit, unsigned_type_node))
- return chrec_dont_know;
-
- return wide_int_to_tree (unsigned_type_node, nit);
-}
-
-/* Determine whether the CHREC is always positive/negative. If the expression
- cannot be statically analyzed, return false, otherwise set the answer into
- VALUE. */
-
-static bool
-chrec_is_positive (tree chrec, bool *value)
-{
- bool value0, value1, value2;
- tree end_value, nb_iter;
-
- switch (TREE_CODE (chrec))
- {
- case POLYNOMIAL_CHREC:
- if (!chrec_is_positive (CHREC_LEFT (chrec), &value0)
- || !chrec_is_positive (CHREC_RIGHT (chrec), &value1))
- return false;
-
- /* FIXME -- overflows. */
- if (value0 == value1)
- {
- *value = value0;
- return true;
- }
-
- /* Otherwise the chrec is under the form: "{-197, +, 2}_1",
- and the proof consists in showing that the sign never
- changes during the execution of the loop, from 0 to
- loop->nb_iterations. */
- if (!evolution_function_is_affine_p (chrec))
- return false;
-
- nb_iter = number_of_latch_executions (get_chrec_loop (chrec));
- if (chrec_contains_undetermined (nb_iter))
- return false;
-
-#if 0
- /* TODO -- If the test is after the exit, we may decrease the number of
- iterations by one. */
- if (after_exit)
- nb_iter = chrec_fold_minus (type, nb_iter, build_int_cst (type, 1));
-#endif
-
- end_value = chrec_apply (CHREC_VARIABLE (chrec), chrec, nb_iter);
-
- if (!chrec_is_positive (end_value, &value2))
- return false;
-
- *value = value0;
- return value0 == value1;
-
- case INTEGER_CST:
- switch (tree_int_cst_sgn (chrec))
- {
- case -1:
- *value = false;
- break;
- case 1:
- *value = true;
- break;
- default:
- return false;
- }
- return true;
-
- default:
- return false;
- }
-}
-
-
-/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
- constant, and CHREC_B is an affine function. *OVERLAPS_A and
- *OVERLAPS_B are initialized to the functions that describe the
- relation between the elements accessed twice by CHREC_A and
- CHREC_B. For k >= 0, the following property is verified:
-
- CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
-
-static void
-analyze_siv_subscript_cst_affine (tree chrec_a,
- tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts)
-{
- bool value0, value1, value2;
- tree type, difference, tmp;
-
- type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
- chrec_a = chrec_convert (type, chrec_a, NULL);
- chrec_b = chrec_convert (type, chrec_b, NULL);
- difference = chrec_fold_minus (type, initial_condition (chrec_b), chrec_a);
-
- /* Special case overlap in the first iteration. */
- if (integer_zerop (difference))
- {
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = integer_one_node;
- return;
- }
-
- if (!chrec_is_positive (initial_condition (difference), &value0))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "siv test failed: chrec is not positive.\n");
-
- dependence_stats.num_siv_unimplemented++;
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- return;
- }
- else
- {
- if (value0 == false)
- {
- if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
- || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "siv test failed: chrec not positive.\n");
-
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_siv_unimplemented++;
- return;
- }
- else
- {
- if (value1 == true)
- {
- /* Example:
- chrec_a = 12
- chrec_b = {10, +, 1}
- */
-
- if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
- {
- HOST_WIDE_INT numiter;
- class loop *loop = get_chrec_loop (chrec_b);
-
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- tmp = fold_build2 (EXACT_DIV_EXPR, type,
- fold_build1 (ABS_EXPR, type, difference),
- CHREC_RIGHT (chrec_b));
- *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
- *last_conflicts = integer_one_node;
-
-
- /* Perform weak-zero siv test to see if overlap is
- outside the loop bounds. */
- numiter = max_stmt_executions_int (loop);
-
- if (numiter >= 0
- && compare_tree_int (tmp, numiter) > 0)
- {
- free_conflict_function (*overlaps_a);
- free_conflict_function (*overlaps_b);
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- dependence_stats.num_siv_dependent++;
- return;
- }
-
- /* When the step does not divide the difference, there are
- no overlaps. */
- else
- {
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- }
-
- else
- {
- /* Example:
- chrec_a = 12
- chrec_b = {10, +, -1}
-
- In this case, chrec_a will not overlap with chrec_b. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- }
- }
- else
- {
- if (TREE_CODE (chrec_b) != POLYNOMIAL_CHREC
- || !chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "siv test failed: chrec not positive.\n");
-
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_siv_unimplemented++;
- return;
- }
- else
- {
- if (value2 == false)
- {
- /* Example:
- chrec_a = 3
- chrec_b = {10, +, -1}
- */
- if (tree_fold_divides_p (CHREC_RIGHT (chrec_b), difference))
- {
- HOST_WIDE_INT numiter;
- class loop *loop = get_chrec_loop (chrec_b);
-
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- tmp = fold_build2 (EXACT_DIV_EXPR, type, difference,
- CHREC_RIGHT (chrec_b));
- *overlaps_b = conflict_fn (1, affine_fn_cst (tmp));
- *last_conflicts = integer_one_node;
-
- /* Perform weak-zero siv test to see if overlap is
- outside the loop bounds. */
- numiter = max_stmt_executions_int (loop);
-
- if (numiter >= 0
- && compare_tree_int (tmp, numiter) > 0)
- {
- free_conflict_function (*overlaps_a);
- free_conflict_function (*overlaps_b);
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- dependence_stats.num_siv_dependent++;
- return;
- }
-
- /* When the step does not divide the difference, there
- are no overlaps. */
- else
- {
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- }
- else
- {
- /* Example:
- chrec_a = 3
- chrec_b = {4, +, 1}
-
- In this case, chrec_a will not overlap with chrec_b. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_siv_independent++;
- return;
- }
- }
- }
- }
-}
-
-/* Helper recursive function for initializing the matrix A. Returns
- the initial value of CHREC. */
-
-static tree
-initialize_matrix_A (lambda_matrix A, tree chrec, unsigned index, int mult)
-{
- gcc_assert (chrec);
-
- switch (TREE_CODE (chrec))
- {
- case POLYNOMIAL_CHREC:
- HOST_WIDE_INT chrec_right;
- if (!cst_and_fits_in_hwi (CHREC_RIGHT (chrec)))
- return chrec_dont_know;
- chrec_right = int_cst_value (CHREC_RIGHT (chrec));
- /* We want to be able to negate without overflow. */
- if (chrec_right == HOST_WIDE_INT_MIN)
- return chrec_dont_know;
- A[index][0] = mult * chrec_right;
- return initialize_matrix_A (A, CHREC_LEFT (chrec), index + 1, mult);
-
- case PLUS_EXPR:
- case MULT_EXPR:
- case MINUS_EXPR:
- {
- tree op0 = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
- tree op1 = initialize_matrix_A (A, TREE_OPERAND (chrec, 1), index, mult);
-
- return chrec_fold_op (TREE_CODE (chrec), chrec_type (chrec), op0, op1);
- }
-
- CASE_CONVERT:
- {
- tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
- return chrec_convert (chrec_type (chrec), op, NULL);
- }
-
- case BIT_NOT_EXPR:
- {
- /* Handle ~X as -1 - X. */
- tree op = initialize_matrix_A (A, TREE_OPERAND (chrec, 0), index, mult);
- return chrec_fold_op (MINUS_EXPR, chrec_type (chrec),
- build_int_cst (TREE_TYPE (chrec), -1), op);
- }
-
- case INTEGER_CST:
- return chrec;
-
- default:
- gcc_unreachable ();
- return NULL_TREE;
- }
-}
-
-#define FLOOR_DIV(x,y) ((x) / (y))
-
-/* Solves the special case of the Diophantine equation:
- | {0, +, STEP_A}_x (OVERLAPS_A) = {0, +, STEP_B}_y (OVERLAPS_B)
-
- Computes the descriptions OVERLAPS_A and OVERLAPS_B. NITER is the
- number of iterations that loops X and Y run. The overlaps will be
- constructed as evolutions in dimension DIM. */
-
-static void
-compute_overlap_steps_for_affine_univar (HOST_WIDE_INT niter,
- HOST_WIDE_INT step_a,
- HOST_WIDE_INT step_b,
- affine_fn *overlaps_a,
- affine_fn *overlaps_b,
- tree *last_conflicts, int dim)
-{
- if (((step_a > 0 && step_b > 0)
- || (step_a < 0 && step_b < 0)))
- {
- HOST_WIDE_INT step_overlaps_a, step_overlaps_b;
- HOST_WIDE_INT gcd_steps_a_b, last_conflict, tau2;
-
- gcd_steps_a_b = gcd (step_a, step_b);
- step_overlaps_a = step_b / gcd_steps_a_b;
- step_overlaps_b = step_a / gcd_steps_a_b;
-
- if (niter > 0)
- {
- tau2 = FLOOR_DIV (niter, step_overlaps_a);
- tau2 = MIN (tau2, FLOOR_DIV (niter, step_overlaps_b));
- last_conflict = tau2;
- *last_conflicts = build_int_cst (NULL_TREE, last_conflict);
- }
- else
- *last_conflicts = chrec_dont_know;
-
- *overlaps_a = affine_fn_univar (integer_zero_node, dim,
- build_int_cst (NULL_TREE,
- step_overlaps_a));
- *overlaps_b = affine_fn_univar (integer_zero_node, dim,
- build_int_cst (NULL_TREE,
- step_overlaps_b));
- }
-
- else
- {
- *overlaps_a = affine_fn_cst (integer_zero_node);
- *overlaps_b = affine_fn_cst (integer_zero_node);
- *last_conflicts = integer_zero_node;
- }
-}
-
-/* Solves the special case of a Diophantine equation where CHREC_A is
- an affine bivariate function, and CHREC_B is an affine univariate
- function. For example,
-
- | {{0, +, 1}_x, +, 1335}_y = {0, +, 1336}_z
-
- has the following overlapping functions:
-
- | x (t, u, v) = {{0, +, 1336}_t, +, 1}_v
- | y (t, u, v) = {{0, +, 1336}_u, +, 1}_v
- | z (t, u, v) = {{{0, +, 1}_t, +, 1335}_u, +, 1}_v
-
- FORNOW: This is a specialized implementation for a case occurring in
- a common benchmark. Implement the general algorithm. */
-
-static void
-compute_overlap_steps_for_affine_1_2 (tree chrec_a, tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts)
-{
- bool xz_p, yz_p, xyz_p;
- HOST_WIDE_INT step_x, step_y, step_z;
- HOST_WIDE_INT niter_x, niter_y, niter_z, niter;
- affine_fn overlaps_a_xz, overlaps_b_xz;
- affine_fn overlaps_a_yz, overlaps_b_yz;
- affine_fn overlaps_a_xyz, overlaps_b_xyz;
- affine_fn ova1, ova2, ovb;
- tree last_conflicts_xz, last_conflicts_yz, last_conflicts_xyz;
-
- step_x = int_cst_value (CHREC_RIGHT (CHREC_LEFT (chrec_a)));
- step_y = int_cst_value (CHREC_RIGHT (chrec_a));
- step_z = int_cst_value (CHREC_RIGHT (chrec_b));
-
- niter_x = max_stmt_executions_int (get_chrec_loop (CHREC_LEFT (chrec_a)));
- niter_y = max_stmt_executions_int (get_chrec_loop (chrec_a));
- niter_z = max_stmt_executions_int (get_chrec_loop (chrec_b));
-
- if (niter_x < 0 || niter_y < 0 || niter_z < 0)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "overlap steps test failed: no iteration counts.\n");
-
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- return;
- }
-
- niter = MIN (niter_x, niter_z);
- compute_overlap_steps_for_affine_univar (niter, step_x, step_z,
- &overlaps_a_xz,
- &overlaps_b_xz,
- &last_conflicts_xz, 1);
- niter = MIN (niter_y, niter_z);
- compute_overlap_steps_for_affine_univar (niter, step_y, step_z,
- &overlaps_a_yz,
- &overlaps_b_yz,
- &last_conflicts_yz, 2);
- niter = MIN (niter_x, niter_z);
- niter = MIN (niter_y, niter);
- compute_overlap_steps_for_affine_univar (niter, step_x + step_y, step_z,
- &overlaps_a_xyz,
- &overlaps_b_xyz,
- &last_conflicts_xyz, 3);
-
- xz_p = !integer_zerop (last_conflicts_xz);
- yz_p = !integer_zerop (last_conflicts_yz);
- xyz_p = !integer_zerop (last_conflicts_xyz);
-
- if (xz_p || yz_p || xyz_p)
- {
- ova1 = affine_fn_cst (integer_zero_node);
- ova2 = affine_fn_cst (integer_zero_node);
- ovb = affine_fn_cst (integer_zero_node);
- if (xz_p)
- {
- affine_fn t0 = ova1;
- affine_fn t2 = ovb;
-
- ova1 = affine_fn_plus (ova1, overlaps_a_xz);
- ovb = affine_fn_plus (ovb, overlaps_b_xz);
- affine_fn_free (t0);
- affine_fn_free (t2);
- *last_conflicts = last_conflicts_xz;
- }
- if (yz_p)
- {
- affine_fn t0 = ova2;
- affine_fn t2 = ovb;
-
- ova2 = affine_fn_plus (ova2, overlaps_a_yz);
- ovb = affine_fn_plus (ovb, overlaps_b_yz);
- affine_fn_free (t0);
- affine_fn_free (t2);
- *last_conflicts = last_conflicts_yz;
- }
- if (xyz_p)
- {
- affine_fn t0 = ova1;
- affine_fn t2 = ova2;
- affine_fn t4 = ovb;
-
- ova1 = affine_fn_plus (ova1, overlaps_a_xyz);
- ova2 = affine_fn_plus (ova2, overlaps_a_xyz);
- ovb = affine_fn_plus (ovb, overlaps_b_xyz);
- affine_fn_free (t0);
- affine_fn_free (t2);
- affine_fn_free (t4);
- *last_conflicts = last_conflicts_xyz;
- }
- *overlaps_a = conflict_fn (2, ova1, ova2);
- *overlaps_b = conflict_fn (1, ovb);
- }
- else
- {
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = integer_zero_node;
- }
-
- affine_fn_free (overlaps_a_xz);
- affine_fn_free (overlaps_b_xz);
- affine_fn_free (overlaps_a_yz);
- affine_fn_free (overlaps_b_yz);
- affine_fn_free (overlaps_a_xyz);
- affine_fn_free (overlaps_b_xyz);
-}
-
-/* Copy the elements of vector VEC1 with length SIZE to VEC2. */
-
-static void
-lambda_vector_copy (lambda_vector vec1, lambda_vector vec2,
- int size)
-{
- memcpy (vec2, vec1, size * sizeof (*vec1));
-}
-
-/* Copy the elements of M x N matrix MAT1 to MAT2. */
-
-static void
-lambda_matrix_copy (lambda_matrix mat1, lambda_matrix mat2,
- int m, int n)
-{
- int i;
-
- for (i = 0; i < m; i++)
- lambda_vector_copy (mat1[i], mat2[i], n);
-}
-
-/* Store the N x N identity matrix in MAT. */
-
-static void
-lambda_matrix_id (lambda_matrix mat, int size)
-{
- int i, j;
-
- for (i = 0; i < size; i++)
- for (j = 0; j < size; j++)
- mat[i][j] = (i == j) ? 1 : 0;
-}
-
-/* Return the index of the first nonzero element of vector VEC1 between
- START and N. We must have START <= N.
- Returns N if VEC1 is the zero vector. */
-
-static int
-lambda_vector_first_nz (lambda_vector vec1, int n, int start)
-{
- int j = start;
- while (j < n && vec1[j] == 0)
- j++;
- return j;
-}
-
-/* Add a multiple of row R1 of matrix MAT with N columns to row R2:
- R2 = R2 + CONST1 * R1. */
-
-static bool
-lambda_matrix_row_add (lambda_matrix mat, int n, int r1, int r2,
- lambda_int const1)
-{
- int i;
-
- if (const1 == 0)
- return true;
-
- for (i = 0; i < n; i++)
- {
- bool ovf;
- lambda_int tem = mul_hwi (mat[r1][i], const1, &ovf);
- if (ovf)
- return false;
- lambda_int tem2 = add_hwi (mat[r2][i], tem, &ovf);
- if (ovf || tem2 == HOST_WIDE_INT_MIN)
- return false;
- mat[r2][i] = tem2;
- }
-
- return true;
-}
-
-/* Multiply vector VEC1 of length SIZE by a constant CONST1,
- and store the result in VEC2. */
-
-static void
-lambda_vector_mult_const (lambda_vector vec1, lambda_vector vec2,
- int size, lambda_int const1)
-{
- int i;
-
- if (const1 == 0)
- lambda_vector_clear (vec2, size);
- else
- for (i = 0; i < size; i++)
- vec2[i] = const1 * vec1[i];
-}
-
-/* Negate vector VEC1 with length SIZE and store it in VEC2. */
-
-static void
-lambda_vector_negate (lambda_vector vec1, lambda_vector vec2,
- int size)
-{
- lambda_vector_mult_const (vec1, vec2, size, -1);
-}
-
-/* Negate row R1 of matrix MAT which has N columns. */
-
-static void
-lambda_matrix_row_negate (lambda_matrix mat, int n, int r1)
-{
- lambda_vector_negate (mat[r1], mat[r1], n);
-}
-
-/* Return true if two vectors are equal. */
-
-static bool
-lambda_vector_equal (lambda_vector vec1, lambda_vector vec2, int size)
-{
- int i;
- for (i = 0; i < size; i++)
- if (vec1[i] != vec2[i])
- return false;
- return true;
-}
-
-/* Given an M x N integer matrix A, this function determines an M x
- M unimodular matrix U, and an M x N echelon matrix S such that
- "U.A = S". This decomposition is also known as "right Hermite".
-
- Ref: Algorithm 2.1 page 33 in "Loop Transformations for
- Restructuring Compilers" Utpal Banerjee. */
-
-static bool
-lambda_matrix_right_hermite (lambda_matrix A, int m, int n,
- lambda_matrix S, lambda_matrix U)
-{
- int i, j, i0 = 0;
-
- lambda_matrix_copy (A, S, m, n);
- lambda_matrix_id (U, m);
-
- for (j = 0; j < n; j++)
- {
- if (lambda_vector_first_nz (S[j], m, i0) < m)
- {
- ++i0;
- for (i = m - 1; i >= i0; i--)
- {
- while (S[i][j] != 0)
- {
- lambda_int factor, a, b;
-
- a = S[i-1][j];
- b = S[i][j];
- gcc_assert (a != HOST_WIDE_INT_MIN);
- factor = a / b;
-
- if (!lambda_matrix_row_add (S, n, i, i-1, -factor))
- return false;
- std::swap (S[i], S[i-1]);
-
- if (!lambda_matrix_row_add (U, m, i, i-1, -factor))
- return false;
- std::swap (U[i], U[i-1]);
- }
- }
- }
- }
-
- return true;
-}
-
-/* Determines the overlapping elements due to accesses CHREC_A and
- CHREC_B, that are affine functions. This function cannot handle
- symbolic evolution functions, ie. when initial conditions are
- parameters, because it uses lambda matrices of integers. */
-
-static void
-analyze_subscript_affine_affine (tree chrec_a,
- tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts)
-{
- unsigned nb_vars_a, nb_vars_b, dim;
- lambda_int gamma, gcd_alpha_beta;
- lambda_matrix A, U, S;
- struct obstack scratch_obstack;
-
- if (eq_evolutions_p (chrec_a, chrec_b))
- {
- /* The accessed index overlaps for each iteration in the
- loop. */
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = chrec_dont_know;
- return;
- }
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(analyze_subscript_affine_affine \n");
-
- /* For determining the initial intersection, we have to solve a
- Diophantine equation. This is the most time consuming part.
-
- For answering to the question: "Is there a dependence?" we have
- to prove that there exists a solution to the Diophantine
- equation, and that the solution is in the iteration domain,
- i.e. the solution is positive or zero, and that the solution
- happens before the upper bound loop.nb_iterations. Otherwise
- there is no dependence. This function outputs a description of
- the iterations that hold the intersections. */
-
- nb_vars_a = nb_vars_in_chrec (chrec_a);
- nb_vars_b = nb_vars_in_chrec (chrec_b);
-
- gcc_obstack_init (&scratch_obstack);
-
- dim = nb_vars_a + nb_vars_b;
- U = lambda_matrix_new (dim, dim, &scratch_obstack);
- A = lambda_matrix_new (dim, 1, &scratch_obstack);
- S = lambda_matrix_new (dim, 1, &scratch_obstack);
-
- tree init_a = initialize_matrix_A (A, chrec_a, 0, 1);
- tree init_b = initialize_matrix_A (A, chrec_b, nb_vars_a, -1);
- if (init_a == chrec_dont_know
- || init_b == chrec_dont_know)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "affine-affine test failed: "
- "representation issue.\n");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- goto end_analyze_subs_aa;
- }
- gamma = int_cst_value (init_b) - int_cst_value (init_a);
-
- /* Don't do all the hard work of solving the Diophantine equation
- when we already know the solution: for example,
- | {3, +, 1}_1
- | {3, +, 4}_2
- | gamma = 3 - 3 = 0.
- Then the first overlap occurs during the first iterations:
- | {3, +, 1}_1 ({0, +, 4}_x) = {3, +, 4}_2 ({0, +, 1}_x)
- */
- if (gamma == 0)
- {
- if (nb_vars_a == 1 && nb_vars_b == 1)
- {
- HOST_WIDE_INT step_a, step_b;
- HOST_WIDE_INT niter, niter_a, niter_b;
- affine_fn ova, ovb;
-
- niter_a = max_stmt_executions_int (get_chrec_loop (chrec_a));
- niter_b = max_stmt_executions_int (get_chrec_loop (chrec_b));
- niter = MIN (niter_a, niter_b);
- step_a = int_cst_value (CHREC_RIGHT (chrec_a));
- step_b = int_cst_value (CHREC_RIGHT (chrec_b));
-
- compute_overlap_steps_for_affine_univar (niter, step_a, step_b,
- &ova, &ovb,
- last_conflicts, 1);
- *overlaps_a = conflict_fn (1, ova);
- *overlaps_b = conflict_fn (1, ovb);
- }
-
- else if (nb_vars_a == 2 && nb_vars_b == 1)
- compute_overlap_steps_for_affine_1_2
- (chrec_a, chrec_b, overlaps_a, overlaps_b, last_conflicts);
-
- else if (nb_vars_a == 1 && nb_vars_b == 2)
- compute_overlap_steps_for_affine_1_2
- (chrec_b, chrec_a, overlaps_b, overlaps_a, last_conflicts);
-
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "affine-affine test failed: too many variables.\n");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- }
- goto end_analyze_subs_aa;
- }
-
- /* U.A = S */
- if (!lambda_matrix_right_hermite (A, dim, 1, S, U))
- {
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- goto end_analyze_subs_aa;
- }
-
- if (S[0][0] < 0)
- {
- S[0][0] *= -1;
- lambda_matrix_row_negate (U, dim, 0);
- }
- gcd_alpha_beta = S[0][0];
-
- /* Something went wrong: for example in {1, +, 0}_5 vs. {0, +, 0}_5,
- but that is a quite strange case. Instead of ICEing, answer
- don't know. */
- if (gcd_alpha_beta == 0)
- {
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- goto end_analyze_subs_aa;
- }
-
- /* The classic "gcd-test". */
- if (!int_divides_p (gcd_alpha_beta, gamma))
- {
- /* The "gcd-test" has determined that there is no integer
- solution, i.e. there is no dependence. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- }
-
- /* Both access functions are univariate. This includes SIV and MIV cases. */
- else if (nb_vars_a == 1 && nb_vars_b == 1)
- {
- /* Both functions should have the same evolution sign. */
- if (((A[0][0] > 0 && -A[1][0] > 0)
- || (A[0][0] < 0 && -A[1][0] < 0)))
- {
- /* The solutions are given by:
- |
- | [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [x0]
- | [u21 u22] [y0]
-
- For a given integer t. Using the following variables,
-
- | i0 = u11 * gamma / gcd_alpha_beta
- | j0 = u12 * gamma / gcd_alpha_beta
- | i1 = u21
- | j1 = u22
-
- the solutions are:
-
- | x0 = i0 + i1 * t,
- | y0 = j0 + j1 * t. */
- HOST_WIDE_INT i0, j0, i1, j1;
-
- i0 = U[0][0] * gamma / gcd_alpha_beta;
- j0 = U[0][1] * gamma / gcd_alpha_beta;
- i1 = U[1][0];
- j1 = U[1][1];
-
- if ((i1 == 0 && i0 < 0)
- || (j1 == 0 && j0 < 0))
- {
- /* There is no solution.
- FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
- falls in here, but for the moment we don't look at the
- upper bound of the iteration domain. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- goto end_analyze_subs_aa;
- }
-
- if (i1 > 0 && j1 > 0)
- {
- HOST_WIDE_INT niter_a
- = max_stmt_executions_int (get_chrec_loop (chrec_a));
- HOST_WIDE_INT niter_b
- = max_stmt_executions_int (get_chrec_loop (chrec_b));
- HOST_WIDE_INT niter = MIN (niter_a, niter_b);
-
- /* (X0, Y0) is a solution of the Diophantine equation:
- "chrec_a (X0) = chrec_b (Y0)". */
- HOST_WIDE_INT tau1 = MAX (CEIL (-i0, i1),
- CEIL (-j0, j1));
- HOST_WIDE_INT x0 = i1 * tau1 + i0;
- HOST_WIDE_INT y0 = j1 * tau1 + j0;
-
- /* (X1, Y1) is the smallest positive solution of the eq
- "chrec_a (X1) = chrec_b (Y1)", i.e. this is where the
- first conflict occurs. */
- HOST_WIDE_INT min_multiple = MIN (x0 / i1, y0 / j1);
- HOST_WIDE_INT x1 = x0 - i1 * min_multiple;
- HOST_WIDE_INT y1 = y0 - j1 * min_multiple;
-
- if (niter > 0)
- {
- /* If the overlap occurs outside of the bounds of the
- loop, there is no dependence. */
- if (x1 >= niter_a || y1 >= niter_b)
- {
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- goto end_analyze_subs_aa;
- }
-
- /* max stmt executions can get quite large, avoid
- overflows by using wide ints here. */
- widest_int tau2
- = wi::smin (wi::sdiv_floor (wi::sub (niter_a, i0), i1),
- wi::sdiv_floor (wi::sub (niter_b, j0), j1));
- widest_int last_conflict = wi::sub (tau2, (x1 - i0)/i1);
- if (wi::min_precision (last_conflict, SIGNED)
- <= TYPE_PRECISION (integer_type_node))
- *last_conflicts
- = build_int_cst (integer_type_node,
- last_conflict.to_shwi ());
- else
- *last_conflicts = chrec_dont_know;
- }
- else
- *last_conflicts = chrec_dont_know;
-
- *overlaps_a
- = conflict_fn (1,
- affine_fn_univar (build_int_cst (NULL_TREE, x1),
- 1,
- build_int_cst (NULL_TREE, i1)));
- *overlaps_b
- = conflict_fn (1,
- affine_fn_univar (build_int_cst (NULL_TREE, y1),
- 1,
- build_int_cst (NULL_TREE, j1)));
- }
- else
- {
- /* FIXME: For the moment, the upper bound of the
- iteration domain for i and j is not checked. */
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- }
- }
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- }
- }
- else
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "affine-affine test failed: unimplemented.\n");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- }
-
-end_analyze_subs_aa:
- obstack_free (&scratch_obstack, NULL);
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (overlaps_a = ");
- dump_conflict_function (dump_file, *overlaps_a);
- fprintf (dump_file, ")\n (overlaps_b = ");
- dump_conflict_function (dump_file, *overlaps_b);
- fprintf (dump_file, "))\n");
- }
-}
-
-/* Returns true when analyze_subscript_affine_affine can be used for
- determining the dependence relation between chrec_a and chrec_b,
- that contain symbols. This function modifies chrec_a and chrec_b
- such that the analysis result is the same, and such that they don't
- contain symbols, and then can safely be passed to the analyzer.
-
- Example: The analysis of the following tuples of evolutions produce
- the same results: {x+1, +, 1}_1 vs. {x+3, +, 1}_1, and {-2, +, 1}_1
- vs. {0, +, 1}_1
-
- {x+1, +, 1}_1 ({2, +, 1}_1) = {x+3, +, 1}_1 ({0, +, 1}_1)
- {-2, +, 1}_1 ({2, +, 1}_1) = {0, +, 1}_1 ({0, +, 1}_1)
-*/
-
-static bool
-can_use_analyze_subscript_affine_affine (tree *chrec_a, tree *chrec_b)
-{
- tree diff, type, left_a, left_b, right_b;
-
- if (chrec_contains_symbols (CHREC_RIGHT (*chrec_a))
- || chrec_contains_symbols (CHREC_RIGHT (*chrec_b)))
- /* FIXME: For the moment not handled. Might be refined later. */
- return false;
-
- type = chrec_type (*chrec_a);
- left_a = CHREC_LEFT (*chrec_a);
- left_b = chrec_convert (type, CHREC_LEFT (*chrec_b), NULL);
- diff = chrec_fold_minus (type, left_a, left_b);
-
- if (!evolution_function_is_constant_p (diff))
- return false;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "can_use_subscript_aff_aff_for_symbolic \n");
-
- *chrec_a = build_polynomial_chrec (CHREC_VARIABLE (*chrec_a),
- diff, CHREC_RIGHT (*chrec_a));
- right_b = chrec_convert (type, CHREC_RIGHT (*chrec_b), NULL);
- *chrec_b = build_polynomial_chrec (CHREC_VARIABLE (*chrec_b),
- build_int_cst (type, 0),
- right_b);
- return true;
-}
-
-/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
- *OVERLAPS_B are initialized to the functions that describe the
- relation between the elements accessed twice by CHREC_A and
- CHREC_B. For k >= 0, the following property is verified:
-
- CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
-
-static void
-analyze_siv_subscript (tree chrec_a,
- tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts,
- int loop_nest_num)
-{
- dependence_stats.num_siv++;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(analyze_siv_subscript \n");
-
- if (evolution_function_is_constant_p (chrec_a)
- && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
- analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
- overlaps_a, overlaps_b, last_conflicts);
-
- else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
- && evolution_function_is_constant_p (chrec_b))
- analyze_siv_subscript_cst_affine (chrec_b, chrec_a,
- overlaps_b, overlaps_a, last_conflicts);
-
- else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest_num)
- && evolution_function_is_affine_in_loop (chrec_b, loop_nest_num))
- {
- if (!chrec_contains_symbols (chrec_a)
- && !chrec_contains_symbols (chrec_b))
- {
- analyze_subscript_affine_affine (chrec_a, chrec_b,
- overlaps_a, overlaps_b,
- last_conflicts);
-
- if (CF_NOT_KNOWN_P (*overlaps_a)
- || CF_NOT_KNOWN_P (*overlaps_b))
- dependence_stats.num_siv_unimplemented++;
- else if (CF_NO_DEPENDENCE_P (*overlaps_a)
- || CF_NO_DEPENDENCE_P (*overlaps_b))
- dependence_stats.num_siv_independent++;
- else
- dependence_stats.num_siv_dependent++;
- }
- else if (can_use_analyze_subscript_affine_affine (&chrec_a,
- &chrec_b))
- {
- analyze_subscript_affine_affine (chrec_a, chrec_b,
- overlaps_a, overlaps_b,
- last_conflicts);
-
- if (CF_NOT_KNOWN_P (*overlaps_a)
- || CF_NOT_KNOWN_P (*overlaps_b))
- dependence_stats.num_siv_unimplemented++;
- else if (CF_NO_DEPENDENCE_P (*overlaps_a)
- || CF_NO_DEPENDENCE_P (*overlaps_b))
- dependence_stats.num_siv_independent++;
- else
- dependence_stats.num_siv_dependent++;
- }
- else
- goto siv_subscript_dontknow;
- }
-
- else
- {
- siv_subscript_dontknow:;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, " siv test failed: unimplemented");
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_siv_unimplemented++;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, ")\n");
-}
-
-/* Returns false if we can prove that the greatest common divisor of the steps
- of CHREC does not divide CST, false otherwise. */
-
-static bool
-gcd_of_steps_may_divide_p (const_tree chrec, const_tree cst)
-{
- HOST_WIDE_INT cd = 0, val;
- tree step;
-
- if (!tree_fits_shwi_p (cst))
- return true;
- val = tree_to_shwi (cst);
-
- while (TREE_CODE (chrec) == POLYNOMIAL_CHREC)
- {
- step = CHREC_RIGHT (chrec);
- if (!tree_fits_shwi_p (step))
- return true;
- cd = gcd (cd, tree_to_shwi (step));
- chrec = CHREC_LEFT (chrec);
- }
-
- return val % cd == 0;
-}
-
-/* Analyze a MIV (Multiple Index Variable) subscript with respect to
- LOOP_NEST. *OVERLAPS_A and *OVERLAPS_B are initialized to the
- functions that describe the relation between the elements accessed
- twice by CHREC_A and CHREC_B. For k >= 0, the following property
- is verified:
-
- CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
-
-static void
-analyze_miv_subscript (tree chrec_a,
- tree chrec_b,
- conflict_function **overlaps_a,
- conflict_function **overlaps_b,
- tree *last_conflicts,
- class loop *loop_nest)
-{
- tree type, difference;
-
- dependence_stats.num_miv++;
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "(analyze_miv_subscript \n");
-
- type = signed_type_for_types (TREE_TYPE (chrec_a), TREE_TYPE (chrec_b));
- chrec_a = chrec_convert (type, chrec_a, NULL);
- chrec_b = chrec_convert (type, chrec_b, NULL);
- difference = chrec_fold_minus (type, chrec_a, chrec_b);
-
- if (eq_evolutions_p (chrec_a, chrec_b))
- {
- /* Access functions are the same: all the elements are accessed
- in the same order. */
- *overlaps_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlaps_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = max_stmt_executions_tree (get_chrec_loop (chrec_a));
- dependence_stats.num_miv_dependent++;
- }
-
- else if (evolution_function_is_constant_p (difference)
- && evolution_function_is_affine_multivariate_p (chrec_a,
- loop_nest->num)
- && !gcd_of_steps_may_divide_p (chrec_a, difference))
- {
- /* testsuite/.../ssa-chrec-33.c
- {{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
-
- The difference is 1, and all the evolution steps are multiples
- of 2, consequently there are no overlapping elements. */
- *overlaps_a = conflict_fn_no_dependence ();
- *overlaps_b = conflict_fn_no_dependence ();
- *last_conflicts = integer_zero_node;
- dependence_stats.num_miv_independent++;
- }
-
- else if (evolution_function_is_affine_in_loop (chrec_a, loop_nest->num)
- && !chrec_contains_symbols (chrec_a, loop_nest)
- && evolution_function_is_affine_in_loop (chrec_b, loop_nest->num)
- && !chrec_contains_symbols (chrec_b, loop_nest))
- {
- /* testsuite/.../ssa-chrec-35.c
- {0, +, 1}_2 vs. {0, +, 1}_3
- the overlapping elements are respectively located at iterations:
- {0, +, 1}_x and {0, +, 1}_x,
- in other words, we have the equality:
- {0, +, 1}_2 ({0, +, 1}_x) = {0, +, 1}_3 ({0, +, 1}_x)
-
- Other examples:
- {{0, +, 1}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y) =
- {0, +, 1}_1 ({{0, +, 1}_x, +, 2}_y)
-
- {{0, +, 2}_1, +, 3}_2 ({0, +, 1}_y, {0, +, 1}_x) =
- {{0, +, 3}_1, +, 2}_2 ({0, +, 1}_x, {0, +, 1}_y)
- */
- analyze_subscript_affine_affine (chrec_a, chrec_b,
- overlaps_a, overlaps_b, last_conflicts);
-
- if (CF_NOT_KNOWN_P (*overlaps_a)
- || CF_NOT_KNOWN_P (*overlaps_b))
- dependence_stats.num_miv_unimplemented++;
- else if (CF_NO_DEPENDENCE_P (*overlaps_a)
- || CF_NO_DEPENDENCE_P (*overlaps_b))
- dependence_stats.num_miv_independent++;
- else
- dependence_stats.num_miv_dependent++;
- }
-
- else
- {
- /* When the analysis is too difficult, answer "don't know". */
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, "analyze_miv_subscript test failed: unimplemented.\n");
-
- *overlaps_a = conflict_fn_not_known ();
- *overlaps_b = conflict_fn_not_known ();
- *last_conflicts = chrec_dont_know;
- dependence_stats.num_miv_unimplemented++;
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file, ")\n");
-}
-
-/* Determines the iterations for which CHREC_A is equal to CHREC_B in
- with respect to LOOP_NEST. OVERLAP_ITERATIONS_A and
- OVERLAP_ITERATIONS_B are initialized with two functions that
- describe the iterations that contain conflicting elements.
-
- Remark: For an integer k >= 0, the following equality is true:
-
- CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
-*/
-
-static void
-analyze_overlapping_iterations (tree chrec_a,
- tree chrec_b,
- conflict_function **overlap_iterations_a,
- conflict_function **overlap_iterations_b,
- tree *last_conflicts, class loop *loop_nest)
-{
- unsigned int lnn = loop_nest->num;
-
- dependence_stats.num_subscript_tests++;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(analyze_overlapping_iterations \n");
- fprintf (dump_file, " (chrec_a = ");
- print_generic_expr (dump_file, chrec_a);
- fprintf (dump_file, ")\n (chrec_b = ");
- print_generic_expr (dump_file, chrec_b);
- fprintf (dump_file, ")\n");
- }
-
- if (chrec_a == NULL_TREE
- || chrec_b == NULL_TREE
- || chrec_contains_undetermined (chrec_a)
- || chrec_contains_undetermined (chrec_b))
- {
- dependence_stats.num_subscript_undetermined++;
-
- *overlap_iterations_a = conflict_fn_not_known ();
- *overlap_iterations_b = conflict_fn_not_known ();
- }
-
- /* If they are the same chrec, and are affine, they overlap
- on every iteration. */
- else if (eq_evolutions_p (chrec_a, chrec_b)
- && (evolution_function_is_affine_multivariate_p (chrec_a, lnn)
- || operand_equal_p (chrec_a, chrec_b, 0)))
- {
- dependence_stats.num_same_subscript_function++;
- *overlap_iterations_a = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *overlap_iterations_b = conflict_fn (1, affine_fn_cst (integer_zero_node));
- *last_conflicts = chrec_dont_know;
- }
-
- /* If they aren't the same, and aren't affine, we can't do anything
- yet. */
- else if ((chrec_contains_symbols (chrec_a)
- || chrec_contains_symbols (chrec_b))
- && (!evolution_function_is_affine_multivariate_p (chrec_a, lnn)
- || !evolution_function_is_affine_multivariate_p (chrec_b, lnn)))
- {
- dependence_stats.num_subscript_undetermined++;
- *overlap_iterations_a = conflict_fn_not_known ();
- *overlap_iterations_b = conflict_fn_not_known ();
- }
-
- else if (ziv_subscript_p (chrec_a, chrec_b))
- analyze_ziv_subscript (chrec_a, chrec_b,
- overlap_iterations_a, overlap_iterations_b,
- last_conflicts);
-
- else if (siv_subscript_p (chrec_a, chrec_b))
- analyze_siv_subscript (chrec_a, chrec_b,
- overlap_iterations_a, overlap_iterations_b,
- last_conflicts, lnn);
-
- else
- analyze_miv_subscript (chrec_a, chrec_b,
- overlap_iterations_a, overlap_iterations_b,
- last_conflicts, loop_nest);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, " (overlap_iterations_a = ");
- dump_conflict_function (dump_file, *overlap_iterations_a);
- fprintf (dump_file, ")\n (overlap_iterations_b = ");
- dump_conflict_function (dump_file, *overlap_iterations_b);
- fprintf (dump_file, "))\n");
- }
-}
-
-/* Helper function for uniquely inserting distance vectors. */
-
-static void
-save_dist_v (struct data_dependence_relation *ddr, lambda_vector dist_v)
-{
- for (lambda_vector v : DDR_DIST_VECTS (ddr))
- if (lambda_vector_equal (v, dist_v, DDR_NB_LOOPS (ddr)))
- return;
-
- DDR_DIST_VECTS (ddr).safe_push (dist_v);
-}
-
-/* Helper function for uniquely inserting direction vectors. */
-
-static void
-save_dir_v (struct data_dependence_relation *ddr, lambda_vector dir_v)
-{
- for (lambda_vector v : DDR_DIR_VECTS (ddr))
- if (lambda_vector_equal (v, dir_v, DDR_NB_LOOPS (ddr)))
- return;
-
- DDR_DIR_VECTS (ddr).safe_push (dir_v);
-}
-
-/* Add a distance of 1 on all the loops outer than INDEX. If we
- haven't yet determined a distance for this outer loop, push a new
- distance vector composed of the previous distance, and a distance
- of 1 for this outer loop. Example:
-
- | loop_1
- | loop_2
- | A[10]
- | endloop_2
- | endloop_1
-
- Saved vectors are of the form (dist_in_1, dist_in_2). First, we
- save (0, 1), then we have to save (1, 0). */
-
-static void
-add_outer_distances (struct data_dependence_relation *ddr,
- lambda_vector dist_v, int index)
-{
- /* For each outer loop where init_v is not set, the accesses are
- in dependence of distance 1 in the loop. */
- while (--index >= 0)
- {
- lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
- save_v[index] = 1;
- save_dist_v (ddr, save_v);
- }
-}
-
-/* Return false when fail to represent the data dependence as a
- distance vector. A_INDEX is the index of the first reference
- (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
- second reference. INIT_B is set to true when a component has been
- added to the distance vector DIST_V. INDEX_CARRY is then set to
- the index in DIST_V that carries the dependence. */
-
-static bool
-build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
- unsigned int a_index, unsigned int b_index,
- lambda_vector dist_v, bool *init_b,
- int *index_carry)
-{
- unsigned i;
- lambda_vector init_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- class loop *loop = DDR_LOOP_NEST (ddr)[0];
-
- for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
- {
- tree access_fn_a, access_fn_b;
- struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
-
- if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
- {
- non_affine_dependence_relation (ddr);
- return false;
- }
-
- access_fn_a = SUB_ACCESS_FN (subscript, a_index);
- access_fn_b = SUB_ACCESS_FN (subscript, b_index);
-
- if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
- && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
- {
- HOST_WIDE_INT dist;
- int index;
- int var_a = CHREC_VARIABLE (access_fn_a);
- int var_b = CHREC_VARIABLE (access_fn_b);
-
- if (var_a != var_b
- || chrec_contains_undetermined (SUB_DISTANCE (subscript)))
- {
- non_affine_dependence_relation (ddr);
- return false;
- }
-
- /* When data references are collected in a loop while data
- dependences are analyzed in loop nest nested in the loop, we
- would have more number of access functions than number of
- loops. Skip access functions of loops not in the loop nest.
-
- See PR89725 for more information. */
- if (flow_loop_nested_p (get_loop (cfun, var_a), loop))
- continue;
-
- dist = int_cst_value (SUB_DISTANCE (subscript));
- index = index_in_loop_nest (var_a, DDR_LOOP_NEST (ddr));
- *index_carry = MIN (index, *index_carry);
-
- /* This is the subscript coupling test. If we have already
- recorded a distance for this loop (a distance coming from
- another subscript), it should be the same. For example,
- in the following code, there is no dependence:
-
- | loop i = 0, N, 1
- | T[i+1][i] = ...
- | ... = T[i][i]
- | endloop
- */
- if (init_v[index] != 0 && dist_v[index] != dist)
- {
- finalize_ddr_dependent (ddr, chrec_known);
- return false;
- }
-
- dist_v[index] = dist;
- init_v[index] = 1;
- *init_b = true;
- }
- else if (!operand_equal_p (access_fn_a, access_fn_b, 0))
- {
- /* This can be for example an affine vs. constant dependence
- (T[i] vs. T[3]) that is not an affine dependence and is
- not representable as a distance vector. */
- non_affine_dependence_relation (ddr);
- return false;
- }
- else
- *init_b = true;
- }
-
- return true;
-}
-
-/* Return true when the DDR contains only invariant access functions wrto. loop
- number LNUM. */
-
-static bool
-invariant_access_functions (const struct data_dependence_relation *ddr,
- int lnum)
-{
- for (subscript *sub : DDR_SUBSCRIPTS (ddr))
- if (!evolution_function_is_invariant_p (SUB_ACCESS_FN (sub, 0), lnum)
- || !evolution_function_is_invariant_p (SUB_ACCESS_FN (sub, 1), lnum))
- return false;
-
- return true;
-}
-
-/* Helper function for the case where DDR_A and DDR_B are the same
- multivariate access function with a constant step. For an example
- see pr34635-1.c. */
-
-static void
-add_multivariate_self_dist (struct data_dependence_relation *ddr, tree c_2)
-{
- int x_1, x_2;
- tree c_1 = CHREC_LEFT (c_2);
- tree c_0 = CHREC_LEFT (c_1);
- lambda_vector dist_v;
- HOST_WIDE_INT v1, v2, cd;
-
- /* Polynomials with more than 2 variables are not handled yet. When
- the evolution steps are parameters, it is not possible to
- represent the dependence using classical distance vectors. */
- if (TREE_CODE (c_0) != INTEGER_CST
- || TREE_CODE (CHREC_RIGHT (c_1)) != INTEGER_CST
- || TREE_CODE (CHREC_RIGHT (c_2)) != INTEGER_CST)
- {
- DDR_AFFINE_P (ddr) = false;
- return;
- }
-
- x_2 = index_in_loop_nest (CHREC_VARIABLE (c_2), DDR_LOOP_NEST (ddr));
- x_1 = index_in_loop_nest (CHREC_VARIABLE (c_1), DDR_LOOP_NEST (ddr));
-
- /* For "{{0, +, 2}_1, +, 3}_2" the distance vector is (3, -2). */
- dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- v1 = int_cst_value (CHREC_RIGHT (c_1));
- v2 = int_cst_value (CHREC_RIGHT (c_2));
- cd = gcd (v1, v2);
- v1 /= cd;
- v2 /= cd;
-
- if (v2 < 0)
- {
- v2 = -v2;
- v1 = -v1;
- }
-
- dist_v[x_1] = v2;
- dist_v[x_2] = -v1;
- save_dist_v (ddr, dist_v);
-
- add_outer_distances (ddr, dist_v, x_1);
-}
-
-/* Helper function for the case where DDR_A and DDR_B are the same
- access functions. */
-
-static void
-add_other_self_distances (struct data_dependence_relation *ddr)
-{
- lambda_vector dist_v;
- unsigned i;
- int index_carry = DDR_NB_LOOPS (ddr);
- subscript *sub;
- class loop *loop = DDR_LOOP_NEST (ddr)[0];
-
- FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
- {
- tree access_fun = SUB_ACCESS_FN (sub, 0);
-
- if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
- {
- if (!evolution_function_is_univariate_p (access_fun, loop->num))
- {
- if (DDR_NUM_SUBSCRIPTS (ddr) != 1)
- {
- DDR_ARE_DEPENDENT (ddr) = chrec_dont_know;
- return;
- }
-
- access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
-
- if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
- add_multivariate_self_dist (ddr, access_fun);
- else
- /* The evolution step is not constant: it varies in
- the outer loop, so this cannot be represented by a
- distance vector. For example in pr34635.c the
- evolution is {0, +, {0, +, 4}_1}_2. */
- DDR_AFFINE_P (ddr) = false;
-
- return;
- }
-
- /* When data references are collected in a loop while data
- dependences are analyzed in loop nest nested in the loop, we
- would have more number of access functions than number of
- loops. Skip access functions of loops not in the loop nest.
-
- See PR89725 for more information. */
- if (flow_loop_nested_p (get_loop (cfun, CHREC_VARIABLE (access_fun)),
- loop))
- continue;
-
- index_carry = MIN (index_carry,
- index_in_loop_nest (CHREC_VARIABLE (access_fun),
- DDR_LOOP_NEST (ddr)));
- }
- }
-
- dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- add_outer_distances (ddr, dist_v, index_carry);
-}
-
-static void
-insert_innermost_unit_dist_vector (struct data_dependence_relation *ddr)
-{
- lambda_vector dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-
- dist_v[0] = 1;
- save_dist_v (ddr, dist_v);
-}
-
-/* Adds a unit distance vector to DDR when there is a 0 overlap. This
- is the case for example when access functions are the same and
- equal to a constant, as in:
-
- | loop_1
- | A[3] = ...
- | ... = A[3]
- | endloop_1
-
- in which case the distance vectors are (0) and (1). */
-
-static void
-add_distance_for_zero_overlaps (struct data_dependence_relation *ddr)
-{
- unsigned i, j;
-
- for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
- {
- subscript_p sub = DDR_SUBSCRIPT (ddr, i);
- conflict_function *ca = SUB_CONFLICTS_IN_A (sub);
- conflict_function *cb = SUB_CONFLICTS_IN_B (sub);
-
- for (j = 0; j < ca->n; j++)
- if (affine_function_zero_p (ca->fns[j]))
- {
- insert_innermost_unit_dist_vector (ddr);
- return;
- }
-
- for (j = 0; j < cb->n; j++)
- if (affine_function_zero_p (cb->fns[j]))
- {
- insert_innermost_unit_dist_vector (ddr);
- return;
- }
- }
-}
-
-/* Return true when the DDR contains two data references that have the
- same access functions. */
-
-static inline bool
-same_access_functions (const struct data_dependence_relation *ddr)
-{
- for (subscript *sub : DDR_SUBSCRIPTS (ddr))
- if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
- SUB_ACCESS_FN (sub, 1)))
- return false;
-
- return true;
-}
-
-/* Compute the classic per loop distance vector. DDR is the data
- dependence relation to build a vector from. Return false when fail
- to represent the data dependence as a distance vector. */
-
-static bool
-build_classic_dist_vector (struct data_dependence_relation *ddr,
- class loop *loop_nest)
-{
- bool init_b = false;
- int index_carry = DDR_NB_LOOPS (ddr);
- lambda_vector dist_v;
-
- if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
- return false;
-
- if (same_access_functions (ddr))
- {
- /* Save the 0 vector. */
- dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- save_dist_v (ddr, dist_v);
-
- if (invariant_access_functions (ddr, loop_nest->num))
- add_distance_for_zero_overlaps (ddr);
-
- if (DDR_NB_LOOPS (ddr) > 1)
- add_other_self_distances (ddr);
-
- return true;
- }
-
- dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, &index_carry))
- return false;
-
- /* Save the distance vector if we initialized one. */
- if (init_b)
- {
- /* Verify a basic constraint: classic distance vectors should
- always be lexicographically positive.
-
- Data references are collected in the order of execution of
- the program, thus for the following loop
-
- | for (i = 1; i < 100; i++)
- | for (j = 1; j < 100; j++)
- | {
- | t = T[j+1][i-1]; // A
- | T[j][i] = t + 2; // B
- | }
-
- references are collected following the direction of the wind:
- A then B. The data dependence tests are performed also
- following this order, such that we're looking at the distance
- separating the elements accessed by A from the elements later
- accessed by B. But in this example, the distance returned by
- test_dep (A, B) is lexicographically negative (-1, 1), that
- means that the access A occurs later than B with respect to
- the outer loop, ie. we're actually looking upwind. In this
- case we solve test_dep (B, A) looking downwind to the
- lexicographically positive solution, that returns the
- distance vector (1, -1). */
- if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
- {
- lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
- return false;
- compute_subscript_distance (ddr);
- if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
- &index_carry))
- return false;
- save_dist_v (ddr, save_v);
- DDR_REVERSED_P (ddr) = true;
-
- /* In this case there is a dependence forward for all the
- outer loops:
-
- | for (k = 1; k < 100; k++)
- | for (i = 1; i < 100; i++)
- | for (j = 1; j < 100; j++)
- | {
- | t = T[j+1][i-1]; // A
- | T[j][i] = t + 2; // B
- | }
-
- the vectors are:
- (0, 1, -1)
- (1, 1, -1)
- (1, -1, 1)
- */
- if (DDR_NB_LOOPS (ddr) > 1)
- {
- add_outer_distances (ddr, save_v, index_carry);
- add_outer_distances (ddr, dist_v, index_carry);
- }
- }
- else
- {
- lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
- lambda_vector_copy (dist_v, save_v, DDR_NB_LOOPS (ddr));
-
- if (DDR_NB_LOOPS (ddr) > 1)
- {
- lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-
- if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
- return false;
- compute_subscript_distance (ddr);
- if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
- &index_carry))
- return false;
-
- save_dist_v (ddr, save_v);
- add_outer_distances (ddr, dist_v, index_carry);
- add_outer_distances (ddr, opposite_v, index_carry);
- }
- else
- save_dist_v (ddr, save_v);
- }
- }
- else
- {
- /* There is a distance of 1 on all the outer loops: Example:
- there is a dependence of distance 1 on loop_1 for the array A.
-
- | loop_1
- | A[5] = ...
- | endloop
- */
- add_outer_distances (ddr, dist_v,
- lambda_vector_first_nz (dist_v,
- DDR_NB_LOOPS (ddr), 0));
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- unsigned i;
-
- fprintf (dump_file, "(build_classic_dist_vector\n");
- for (i = 0; i < DDR_NUM_DIST_VECTS (ddr); i++)
- {
- fprintf (dump_file, " dist_vector = (");
- print_lambda_vector (dump_file, DDR_DIST_VECT (ddr, i),
- DDR_NB_LOOPS (ddr));
- fprintf (dump_file, " )\n");
- }
- fprintf (dump_file, ")\n");
- }
-
- return true;
-}
-
-/* Return the direction for a given distance.
- FIXME: Computing dir this way is suboptimal, since dir can catch
- cases that dist is unable to represent. */
-
-static inline enum data_dependence_direction
-dir_from_dist (int dist)
-{
- if (dist > 0)
- return dir_positive;
- else if (dist < 0)
- return dir_negative;
- else
- return dir_equal;
-}
-
-/* Compute the classic per loop direction vector. DDR is the data
- dependence relation to build a vector from. */
-
-static void
-build_classic_dir_vector (struct data_dependence_relation *ddr)
-{
- unsigned i, j;
- lambda_vector dist_v;
-
- FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
- {
- lambda_vector dir_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
-
- for (j = 0; j < DDR_NB_LOOPS (ddr); j++)
- dir_v[j] = dir_from_dist (dist_v[j]);
-
- save_dir_v (ddr, dir_v);
- }
-}
-
-/* Helper function. Returns true when there is a dependence between the
- data references. A_INDEX is the index of the first reference (0 for
- DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference. */
-
-static bool
-subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
- unsigned int a_index, unsigned int b_index,
- class loop *loop_nest)
-{
- unsigned int i;
- tree last_conflicts;
- struct subscript *subscript;
- tree res = NULL_TREE;
-
- for (i = 0; DDR_SUBSCRIPTS (ddr).iterate (i, &subscript); i++)
- {
- conflict_function *overlaps_a, *overlaps_b;
-
- analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
- SUB_ACCESS_FN (subscript, b_index),
- &overlaps_a, &overlaps_b,
- &last_conflicts, loop_nest);
-
- if (SUB_CONFLICTS_IN_A (subscript))
- free_conflict_function (SUB_CONFLICTS_IN_A (subscript));
- if (SUB_CONFLICTS_IN_B (subscript))
- free_conflict_function (SUB_CONFLICTS_IN_B (subscript));
-
- SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
- SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
- SUB_LAST_CONFLICT (subscript) = last_conflicts;
-
- /* If there is any undetermined conflict function we have to
- give a conservative answer in case we cannot prove that
- no dependence exists when analyzing another subscript. */
- if (CF_NOT_KNOWN_P (overlaps_a)
- || CF_NOT_KNOWN_P (overlaps_b))
- {
- res = chrec_dont_know;
- continue;
- }
-
- /* When there is a subscript with no dependence we can stop. */
- else if (CF_NO_DEPENDENCE_P (overlaps_a)
- || CF_NO_DEPENDENCE_P (overlaps_b))
- {
- res = chrec_known;
- break;
- }
- }
-
- if (res == NULL_TREE)
- return true;
-
- if (res == chrec_known)
- dependence_stats.num_dependence_independent++;
- else
- dependence_stats.num_dependence_undetermined++;
- finalize_ddr_dependent (ddr, res);
- return false;
-}
-
-/* Computes the conflicting iterations in LOOP_NEST, and initialize DDR. */
-
-static void
-subscript_dependence_tester (struct data_dependence_relation *ddr,
- class loop *loop_nest)
-{
- if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
- dependence_stats.num_dependence_dependent++;
-
- compute_subscript_distance (ddr);
- if (build_classic_dist_vector (ddr, loop_nest))
- build_classic_dir_vector (ddr);
-}
-
-/* Returns true when all the access functions of A are affine or
- constant with respect to LOOP_NEST. */
-
-static bool
-access_functions_are_affine_or_constant_p (const struct data_reference *a,
- const class loop *loop_nest)
-{
- vec<tree> fns = DR_ACCESS_FNS (a);
- for (tree t : fns)
- if (!evolution_function_is_invariant_p (t, loop_nest->num)
- && !evolution_function_is_affine_multivariate_p (t, loop_nest->num))
- return false;
-
- return true;
-}
-
-/* This computes the affine dependence relation between A and B with
- respect to LOOP_NEST. CHREC_KNOWN is used for representing the
- independence between two accesses, while CHREC_DONT_KNOW is used
- for representing the unknown relation.
-
- Note that it is possible to stop the computation of the dependence
- relation the first time we detect a CHREC_KNOWN element for a given
- subscript. */
-
-void
-compute_affine_dependence (struct data_dependence_relation *ddr,
- class loop *loop_nest)
-{
- struct data_reference *dra = DDR_A (ddr);
- struct data_reference *drb = DDR_B (ddr);
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "(compute_affine_dependence\n");
- fprintf (dump_file, " ref_a: ");
- print_generic_expr (dump_file, DR_REF (dra));
- fprintf (dump_file, ", stmt_a: ");
- print_gimple_stmt (dump_file, DR_STMT (dra), 0, TDF_SLIM);
- fprintf (dump_file, " ref_b: ");
- print_generic_expr (dump_file, DR_REF (drb));
- fprintf (dump_file, ", stmt_b: ");
- print_gimple_stmt (dump_file, DR_STMT (drb), 0, TDF_SLIM);
- }
-
- /* Analyze only when the dependence relation is not yet known. */
- if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
- {
- dependence_stats.num_dependence_tests++;
-
- if (access_functions_are_affine_or_constant_p (dra, loop_nest)
- && access_functions_are_affine_or_constant_p (drb, loop_nest))
- subscript_dependence_tester (ddr, loop_nest);
-
- /* As a last case, if the dependence cannot be determined, or if
- the dependence is considered too difficult to determine, answer
- "don't know". */
- else
- {
- dependence_stats.num_dependence_undetermined++;
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- fprintf (dump_file, "Data ref a:\n");
- dump_data_reference (dump_file, dra);
- fprintf (dump_file, "Data ref b:\n");
- dump_data_reference (dump_file, drb);
- fprintf (dump_file, "affine dependence test not usable: access function not affine or constant.\n");
- }
- finalize_ddr_dependent (ddr, chrec_dont_know);
- }
- }
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- {
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
- fprintf (dump_file, ") -> no dependence\n");
- else if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- fprintf (dump_file, ") -> dependence analysis failed\n");
- else
- fprintf (dump_file, ")\n");
- }
-}
-
-/* Compute in DEPENDENCE_RELATIONS the data dependence graph for all
- the data references in DATAREFS, in the LOOP_NEST. When
- COMPUTE_SELF_AND_RR is FALSE, don't compute read-read and self
- relations. Return true when successful, i.e. data references number
- is small enough to be handled. */
-
-bool
-compute_all_dependences (const vec<data_reference_p> &datarefs,
- vec<ddr_p> *dependence_relations,
- const vec<loop_p> &loop_nest,
- bool compute_self_and_rr)
-{
- struct data_dependence_relation *ddr;
- struct data_reference *a, *b;
- unsigned int i, j;
-
- if ((int) datarefs.length ()
- > param_loop_max_datarefs_for_datadeps)
- {
- struct data_dependence_relation *ddr;
-
- /* Insert a single relation into dependence_relations:
- chrec_dont_know. */
- ddr = initialize_data_dependence_relation (NULL, NULL, loop_nest);
- dependence_relations->safe_push (ddr);
- return false;
- }
-
- FOR_EACH_VEC_ELT (datarefs, i, a)
- for (j = i + 1; datarefs.iterate (j, &b); j++)
- if (DR_IS_WRITE (a) || DR_IS_WRITE (b) || compute_self_and_rr)
- {
- ddr = initialize_data_dependence_relation (a, b, loop_nest);
- dependence_relations->safe_push (ddr);
- if (loop_nest.exists ())
- compute_affine_dependence (ddr, loop_nest[0]);
- }
-
- if (compute_self_and_rr)
- FOR_EACH_VEC_ELT (datarefs, i, a)
- {
- ddr = initialize_data_dependence_relation (a, a, loop_nest);
- dependence_relations->safe_push (ddr);
- if (loop_nest.exists ())
- compute_affine_dependence (ddr, loop_nest[0]);
- }
-
- return true;
-}
-
-/* Describes a location of a memory reference. */
-
-struct data_ref_loc
-{
- /* The memory reference. */
- tree ref;
-
- /* True if the memory reference is read. */
- bool is_read;
-
- /* True if the data reference is conditional within the containing
- statement, i.e. if it might not occur even when the statement
- is executed and runs to completion. */
- bool is_conditional_in_stmt;
-};
-
-
-/* Stores the locations of memory references in STMT to REFERENCES. Returns
- true if STMT clobbers memory, false otherwise. */
-
-static bool
-get_references_in_stmt (gimple *stmt, vec<data_ref_loc, va_heap> *references)
-{
- bool clobbers_memory = false;
- data_ref_loc ref;
- tree op0, op1;
- enum gimple_code stmt_code = gimple_code (stmt);
-
- /* ASM_EXPR and CALL_EXPR may embed arbitrary side effects.
- As we cannot model data-references to not spelled out
- accesses give up if they may occur. */
- if (stmt_code == GIMPLE_CALL
- && !(gimple_call_flags (stmt) & ECF_CONST))
- {
- /* Allow IFN_GOMP_SIMD_LANE in their own loops. */
- if (gimple_call_internal_p (stmt))
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_GOMP_SIMD_LANE:
- {
- class loop *loop = gimple_bb (stmt)->loop_father;
- tree uid = gimple_call_arg (stmt, 0);
- gcc_assert (TREE_CODE (uid) == SSA_NAME);
- if (loop == NULL
- || loop->simduid != SSA_NAME_VAR (uid))
- clobbers_memory = true;
- break;
- }
- case IFN_MASK_LOAD:
- case IFN_MASK_STORE:
- break;
- default:
- clobbers_memory = true;
- break;
- }
- else
- clobbers_memory = true;
- }
- else if (stmt_code == GIMPLE_ASM
- && (gimple_asm_volatile_p (as_a <gasm *> (stmt))
- || gimple_vuse (stmt)))
- clobbers_memory = true;
-
- if (!gimple_vuse (stmt))
- return clobbers_memory;
-
- if (stmt_code == GIMPLE_ASSIGN)
- {
- tree base;
- op0 = gimple_assign_lhs (stmt);
- op1 = gimple_assign_rhs1 (stmt);
-
- if (DECL_P (op1)
- || (REFERENCE_CLASS_P (op1)
- && (base = get_base_address (op1))
- && TREE_CODE (base) != SSA_NAME
- && !is_gimple_min_invariant (base)))
- {
- ref.ref = op1;
- ref.is_read = true;
- ref.is_conditional_in_stmt = false;
- references->safe_push (ref);
- }
- }
- else if (stmt_code == GIMPLE_CALL)
- {
- unsigned i, n;
- tree ptr, type;
- unsigned int align;
-
- ref.is_read = false;
- if (gimple_call_internal_p (stmt))
- switch (gimple_call_internal_fn (stmt))
- {
- case IFN_MASK_LOAD:
- if (gimple_call_lhs (stmt) == NULL_TREE)
- break;
- ref.is_read = true;
- /* FALLTHRU */
- case IFN_MASK_STORE:
- ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)), 0);
- align = tree_to_shwi (gimple_call_arg (stmt, 1));
- if (ref.is_read)
- type = TREE_TYPE (gimple_call_lhs (stmt));
- else
- type = TREE_TYPE (gimple_call_arg (stmt, 3));
- if (TYPE_ALIGN (type) != align)
- type = build_aligned_type (type, align);
- ref.is_conditional_in_stmt = true;
- ref.ref = fold_build2 (MEM_REF, type, gimple_call_arg (stmt, 0),
- ptr);
- references->safe_push (ref);
- return false;
- default:
- break;
- }
-
- op0 = gimple_call_lhs (stmt);
- n = gimple_call_num_args (stmt);
- for (i = 0; i < n; i++)
- {
- op1 = gimple_call_arg (stmt, i);
-
- if (DECL_P (op1)
- || (REFERENCE_CLASS_P (op1) && get_base_address (op1)))
- {
- ref.ref = op1;
- ref.is_read = true;
- ref.is_conditional_in_stmt = false;
- references->safe_push (ref);
- }
- }
- }
- else
- return clobbers_memory;
-
- if (op0
- && (DECL_P (op0)
- || (REFERENCE_CLASS_P (op0) && get_base_address (op0))))
- {
- ref.ref = op0;
- ref.is_read = false;
- ref.is_conditional_in_stmt = false;
- references->safe_push (ref);
- }
- return clobbers_memory;
-}
-
-
-/* Returns true if the loop-nest has any data reference. */
-
-bool
-loop_nest_has_data_refs (loop_p loop)
-{
- basic_block *bbs = get_loop_body (loop);
- auto_vec<data_ref_loc, 3> references;
-
- for (unsigned i = 0; i < loop->num_nodes; i++)
- {
- basic_block bb = bbs[i];
- gimple_stmt_iterator bsi;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- gimple *stmt = gsi_stmt (bsi);
- get_references_in_stmt (stmt, &references);
- if (references.length ())
- {
- free (bbs);
- return true;
- }
- }
- }
- free (bbs);
- return false;
-}
-
-/* Stores the data references in STMT to DATAREFS. If there is an unanalyzable
- reference, returns false, otherwise returns true. NEST is the outermost
- loop of the loop nest in which the references should be analyzed. */
-
-opt_result
-find_data_references_in_stmt (class loop *nest, gimple *stmt,
- vec<data_reference_p> *datarefs)
-{
- auto_vec<data_ref_loc, 2> references;
- data_reference_p dr;
-
- if (get_references_in_stmt (stmt, &references))
- return opt_result::failure_at (stmt, "statement clobbers memory: %G",
- stmt);
-
- for (const data_ref_loc &ref : references)
- {
- dr = create_data_ref (nest ? loop_preheader_edge (nest) : NULL,
- loop_containing_stmt (stmt), ref.ref,
- stmt, ref.is_read, ref.is_conditional_in_stmt);
- gcc_assert (dr != NULL);
- datarefs->safe_push (dr);
- }
-
- return opt_result::success ();
-}
-
-/* Stores the data references in STMT to DATAREFS. If there is an
- unanalyzable reference, returns false, otherwise returns true.
- NEST is the outermost loop of the loop nest in which the references
- should be instantiated, LOOP is the loop in which the references
- should be analyzed. */
-
-bool
-graphite_find_data_references_in_stmt (edge nest, loop_p loop, gimple *stmt,
- vec<data_reference_p> *datarefs)
-{
- auto_vec<data_ref_loc, 2> references;
- bool ret = true;
- data_reference_p dr;
-
- if (get_references_in_stmt (stmt, &references))
- return false;
-
- for (const data_ref_loc &ref : references)
- {
- dr = create_data_ref (nest, loop, ref.ref, stmt, ref.is_read,
- ref.is_conditional_in_stmt);
- gcc_assert (dr != NULL);
- datarefs->safe_push (dr);
- }
-
- return ret;
-}
-
-/* Search the data references in LOOP, and record the information into
- DATAREFS. Returns chrec_dont_know when failing to analyze a
- difficult case, returns NULL_TREE otherwise. */
-
-tree
-find_data_references_in_bb (class loop *loop, basic_block bb,
- vec<data_reference_p> *datarefs)
-{
- gimple_stmt_iterator bsi;
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- gimple *stmt = gsi_stmt (bsi);
-
- if (!find_data_references_in_stmt (loop, stmt, datarefs))
- {
- struct data_reference *res;
- res = XCNEW (struct data_reference);
- datarefs->safe_push (res);
-
- return chrec_dont_know;
- }
- }
-
- return NULL_TREE;
-}
-
-/* Search the data references in LOOP, and record the information into
- DATAREFS. Returns chrec_dont_know when failing to analyze a
- difficult case, returns NULL_TREE otherwise.
-
- TODO: This function should be made smarter so that it can handle address
- arithmetic as if they were array accesses, etc. */
-
-tree
-find_data_references_in_loop (class loop *loop,
- vec<data_reference_p> *datarefs)
-{
- basic_block bb, *bbs;
- unsigned int i;
-
- bbs = get_loop_body_in_dom_order (loop);
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- bb = bbs[i];
-
- if (find_data_references_in_bb (loop, bb, datarefs) == chrec_dont_know)
- {
- free (bbs);
- return chrec_dont_know;
- }
- }
- free (bbs);
-
- return NULL_TREE;
-}
-
-/* Return the alignment in bytes that DRB is guaranteed to have at all
- times. */
-
-unsigned int
-dr_alignment (innermost_loop_behavior *drb)
-{
- /* Get the alignment of BASE_ADDRESS + INIT. */
- unsigned int alignment = drb->base_alignment;
- unsigned int misalignment = (drb->base_misalignment
- + TREE_INT_CST_LOW (drb->init));
- if (misalignment != 0)
- alignment = MIN (alignment, misalignment & -misalignment);
-
- /* Cap it to the alignment of OFFSET. */
- if (!integer_zerop (drb->offset))
- alignment = MIN (alignment, drb->offset_alignment);
-
- /* Cap it to the alignment of STEP. */
- if (!integer_zerop (drb->step))
- alignment = MIN (alignment, drb->step_alignment);
-
- return alignment;
-}
-
-/* If BASE is a pointer-typed SSA name, try to find the object that it
- is based on. Return this object X on success and store the alignment
- in bytes of BASE - &X in *ALIGNMENT_OUT. */
-
-static tree
-get_base_for_alignment_1 (tree base, unsigned int *alignment_out)
-{
- if (TREE_CODE (base) != SSA_NAME || !POINTER_TYPE_P (TREE_TYPE (base)))
- return NULL_TREE;
-
- gimple *def = SSA_NAME_DEF_STMT (base);
- base = analyze_scalar_evolution (loop_containing_stmt (def), base);
-
- /* Peel chrecs and record the minimum alignment preserved by
- all steps. */
- unsigned int alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
- while (TREE_CODE (base) == POLYNOMIAL_CHREC)
- {
- unsigned int step_alignment = highest_pow2_factor (CHREC_RIGHT (base));
- alignment = MIN (alignment, step_alignment);
- base = CHREC_LEFT (base);
- }
-
- /* Punt if the expression is too complicated to handle. */
- if (tree_contains_chrecs (base, NULL) || !POINTER_TYPE_P (TREE_TYPE (base)))
- return NULL_TREE;
-
- /* The only useful cases are those for which a dereference folds to something
- other than an INDIRECT_REF. */
- tree ref_type = TREE_TYPE (TREE_TYPE (base));
- tree ref = fold_indirect_ref_1 (UNKNOWN_LOCATION, ref_type, base);
- if (!ref)
- return NULL_TREE;
-
- /* Analyze the base to which the steps we peeled were applied. */
- poly_int64 bitsize, bitpos, bytepos;
- machine_mode mode;
- int unsignedp, reversep, volatilep;
- tree offset;
- base = get_inner_reference (ref, &bitsize, &bitpos, &offset, &mode,
- &unsignedp, &reversep, &volatilep);
- if (!base || !multiple_p (bitpos, BITS_PER_UNIT, &bytepos))
- return NULL_TREE;
-
- /* Restrict the alignment to that guaranteed by the offsets. */
- unsigned int bytepos_alignment = known_alignment (bytepos);
- if (bytepos_alignment != 0)
- alignment = MIN (alignment, bytepos_alignment);
- if (offset)
- {
- unsigned int offset_alignment = highest_pow2_factor (offset);
- alignment = MIN (alignment, offset_alignment);
- }
-
- *alignment_out = alignment;
- return base;
-}
-
-/* Return the object whose alignment would need to be changed in order
- to increase the alignment of ADDR. Store the maximum achievable
- alignment in *MAX_ALIGNMENT. */
-
-tree
-get_base_for_alignment (tree addr, unsigned int *max_alignment)
-{
- tree base = get_base_for_alignment_1 (addr, max_alignment);
- if (base)
- return base;
-
- if (TREE_CODE (addr) == ADDR_EXPR)
- addr = TREE_OPERAND (addr, 0);
- *max_alignment = MAX_OFILE_ALIGNMENT / BITS_PER_UNIT;
- return addr;
-}
-
-/* Recursive helper function. */
-
-static bool
-find_loop_nest_1 (class loop *loop, vec<loop_p> *loop_nest)
-{
- /* Inner loops of the nest should not contain siblings. Example:
- when there are two consecutive loops,
-
- | loop_0
- | loop_1
- | A[{0, +, 1}_1]
- | endloop_1
- | loop_2
- | A[{0, +, 1}_2]
- | endloop_2
- | endloop_0
-
- the dependence relation cannot be captured by the distance
- abstraction. */
- if (loop->next)
- return false;
-
- loop_nest->safe_push (loop);
- if (loop->inner)
- return find_loop_nest_1 (loop->inner, loop_nest);
- return true;
-}
-
-/* Return false when the LOOP is not well nested. Otherwise return
- true and insert in LOOP_NEST the loops of the nest. LOOP_NEST will
- contain the loops from the outermost to the innermost, as they will
- appear in the classic distance vector. */
-
-bool
-find_loop_nest (class loop *loop, vec<loop_p> *loop_nest)
-{
- loop_nest->safe_push (loop);
- if (loop->inner)
- return find_loop_nest_1 (loop->inner, loop_nest);
- return true;
-}
-
-/* Returns true when the data dependences have been computed, false otherwise.
- Given a loop nest LOOP, the following vectors are returned:
- DATAREFS is initialized to all the array elements contained in this loop,
- DEPENDENCE_RELATIONS contains the relations between the data references.
- Compute read-read and self relations if
- COMPUTE_SELF_AND_READ_READ_DEPENDENCES is TRUE. */
-
-bool
-compute_data_dependences_for_loop (class loop *loop,
- bool compute_self_and_read_read_dependences,
- vec<loop_p> *loop_nest,
- vec<data_reference_p> *datarefs,
- vec<ddr_p> *dependence_relations)
-{
- bool res = true;
-
- memset (&dependence_stats, 0, sizeof (dependence_stats));
-
- /* If the loop nest is not well formed, or one of the data references
- is not computable, give up without spending time to compute other
- dependences. */
- if (!loop
- || !find_loop_nest (loop, loop_nest)
- || find_data_references_in_loop (loop, datarefs) == chrec_dont_know
- || !compute_all_dependences (*datarefs, dependence_relations, *loop_nest,
- compute_self_and_read_read_dependences))
- res = false;
-
- if (dump_file && (dump_flags & TDF_STATS))
- {
- fprintf (dump_file, "Dependence tester statistics:\n");
-
- fprintf (dump_file, "Number of dependence tests: %d\n",
- dependence_stats.num_dependence_tests);
- fprintf (dump_file, "Number of dependence tests classified dependent: %d\n",
- dependence_stats.num_dependence_dependent);
- fprintf (dump_file, "Number of dependence tests classified independent: %d\n",
- dependence_stats.num_dependence_independent);
- fprintf (dump_file, "Number of undetermined dependence tests: %d\n",
- dependence_stats.num_dependence_undetermined);
-
- fprintf (dump_file, "Number of subscript tests: %d\n",
- dependence_stats.num_subscript_tests);
- fprintf (dump_file, "Number of undetermined subscript tests: %d\n",
- dependence_stats.num_subscript_undetermined);
- fprintf (dump_file, "Number of same subscript function: %d\n",
- dependence_stats.num_same_subscript_function);
-
- fprintf (dump_file, "Number of ziv tests: %d\n",
- dependence_stats.num_ziv);
- fprintf (dump_file, "Number of ziv tests returning dependent: %d\n",
- dependence_stats.num_ziv_dependent);
- fprintf (dump_file, "Number of ziv tests returning independent: %d\n",
- dependence_stats.num_ziv_independent);
- fprintf (dump_file, "Number of ziv tests unimplemented: %d\n",
- dependence_stats.num_ziv_unimplemented);
-
- fprintf (dump_file, "Number of siv tests: %d\n",
- dependence_stats.num_siv);
- fprintf (dump_file, "Number of siv tests returning dependent: %d\n",
- dependence_stats.num_siv_dependent);
- fprintf (dump_file, "Number of siv tests returning independent: %d\n",
- dependence_stats.num_siv_independent);
- fprintf (dump_file, "Number of siv tests unimplemented: %d\n",
- dependence_stats.num_siv_unimplemented);
-
- fprintf (dump_file, "Number of miv tests: %d\n",
- dependence_stats.num_miv);
- fprintf (dump_file, "Number of miv tests returning dependent: %d\n",
- dependence_stats.num_miv_dependent);
- fprintf (dump_file, "Number of miv tests returning independent: %d\n",
- dependence_stats.num_miv_independent);
- fprintf (dump_file, "Number of miv tests unimplemented: %d\n",
- dependence_stats.num_miv_unimplemented);
- }
-
- return res;
-}
-
-/* Free the memory used by a data dependence relation DDR. */
-
-void
-free_dependence_relation (struct data_dependence_relation *ddr)
-{
- if (ddr == NULL)
- return;
-
- if (DDR_SUBSCRIPTS (ddr).exists ())
- free_subscripts (DDR_SUBSCRIPTS (ddr));
- DDR_DIST_VECTS (ddr).release ();
- DDR_DIR_VECTS (ddr).release ();
-
- free (ddr);
-}
-
-/* Free the memory used by the data dependence relations from
- DEPENDENCE_RELATIONS. */
-
-void
-free_dependence_relations (vec<ddr_p>& dependence_relations)
-{
- for (data_dependence_relation *ddr : dependence_relations)
- if (ddr)
- free_dependence_relation (ddr);
-
- dependence_relations.release ();
-}
-
-/* Free the memory used by the data references from DATAREFS. */
-
-void
-free_data_refs (vec<data_reference_p>& datarefs)
-{
- for (data_reference *dr : datarefs)
- free_data_ref (dr);
- datarefs.release ();
-}
-
-/* Common routine implementing both dr_direction_indicator and
- dr_zero_step_indicator. Return USEFUL_MIN if the indicator is known
- to be >= USEFUL_MIN and -1 if the indicator is known to be negative.
- Return the step as the indicator otherwise. */
-
-static tree
-dr_step_indicator (struct data_reference *dr, int useful_min)
-{
- tree step = DR_STEP (dr);
- if (!step)
- return NULL_TREE;
- STRIP_NOPS (step);
- /* Look for cases where the step is scaled by a positive constant
- integer, which will often be the access size. If the multiplication
- doesn't change the sign (due to overflow effects) then we can
- test the unscaled value instead. */
- if (TREE_CODE (step) == MULT_EXPR
- && TREE_CODE (TREE_OPERAND (step, 1)) == INTEGER_CST
- && tree_int_cst_sgn (TREE_OPERAND (step, 1)) > 0)
- {
- tree factor = TREE_OPERAND (step, 1);
- step = TREE_OPERAND (step, 0);
-
- /* Strip widening and truncating conversions as well as nops. */
- if (CONVERT_EXPR_P (step)
- && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (step, 0))))
- step = TREE_OPERAND (step, 0);
- tree type = TREE_TYPE (step);
-
- /* Get the range of step values that would not cause overflow. */
- widest_int minv = (wi::to_widest (TYPE_MIN_VALUE (ssizetype))
- / wi::to_widest (factor));
- widest_int maxv = (wi::to_widest (TYPE_MAX_VALUE (ssizetype))
- / wi::to_widest (factor));
-
- /* Get the range of values that the unconverted step actually has. */
- wide_int step_min, step_max;
- value_range vr;
- if (TREE_CODE (step) != SSA_NAME
- || !get_range_query (cfun)->range_of_expr (vr, step)
- || vr.kind () != VR_RANGE)
- {
- step_min = wi::to_wide (TYPE_MIN_VALUE (type));
- step_max = wi::to_wide (TYPE_MAX_VALUE (type));
- }
- else
- {
- step_min = vr.lower_bound ();
- step_max = vr.upper_bound ();
- }
-
- /* Check whether the unconverted step has an acceptable range. */
- signop sgn = TYPE_SIGN (type);
- if (wi::les_p (minv, widest_int::from (step_min, sgn))
- && wi::ges_p (maxv, widest_int::from (step_max, sgn)))
- {
- if (wi::ge_p (step_min, useful_min, sgn))
- return ssize_int (useful_min);
- else if (wi::lt_p (step_max, 0, sgn))
- return ssize_int (-1);
- else
- return fold_convert (ssizetype, step);
- }
- }
- return DR_STEP (dr);
-}
-
-/* Return a value that is negative iff DR has a negative step. */
-
-tree
-dr_direction_indicator (struct data_reference *dr)
-{
- return dr_step_indicator (dr, 0);
-}
-
-/* Return a value that is zero iff DR has a zero step. */
-
-tree
-dr_zero_step_indicator (struct data_reference *dr)
-{
- return dr_step_indicator (dr, 1);
-}
-
-/* Return true if DR is known to have a nonnegative (but possibly zero)
- step. */
-
-bool
-dr_known_forward_stride_p (struct data_reference *dr)
-{
- tree indicator = dr_direction_indicator (dr);
- tree neg_step_val = fold_binary (LT_EXPR, boolean_type_node,
- fold_convert (ssizetype, indicator),
- ssize_int (0));
- return neg_step_val && integer_zerop (neg_step_val);
-}