aboutsummaryrefslogtreecommitdiff
path: root/gcc/lambda-code.c
diff options
context:
space:
mode:
authorSebastian Pop <sebastian.pop@amd.com>2011-01-25 21:24:23 +0000
committerSebastian Pop <spop@gcc.gnu.org>2011-01-25 21:24:23 +0000
commitb305e3dab4edef2ea58213e04a65a12408a97894 (patch)
tree95b39b6193ad1bd1417d5ce2c4c7944ac0abc0ee /gcc/lambda-code.c
parent6bdfdb96eeec5da99a6aa4ca592af1d6b9cef237 (diff)
downloadgcc-b305e3dab4edef2ea58213e04a65a12408a97894.zip
gcc-b305e3dab4edef2ea58213e04a65a12408a97894.tar.gz
gcc-b305e3dab4edef2ea58213e04a65a12408a97894.tar.bz2
Remove the lambda framework and make -ftree-loop-linear an alias of -floop-interchange.
2011-01-17 Sebastian Pop <sebastian.pop@amd.com> toplev/ * MAINTAINERS (linear loop transforms): Removed. toplev/gcc/ * Makefile.in (LAMBDA_H): Removed. (TREE_DATA_REF_H): Remove dependence on LAMBDA_H. (OBJS-common): Remove dependence on lambda-code.o, lambda-mat.o, lambda-trans.o, and tree-loop-linear.o. (lto-symtab.o): Remove dependence on LAMBDA_H. (tree-loop-linear.o): Remove rule. (lambda-mat.o): Same. (lambda-trans.o): Same. (lambda-code.o): Same. (tree-vect-loop.o): Add missing dependence on TREE_DATA_REF_H. (tree-vect-slp.o): Same. * hwint.h (gcd): Moved here. (least_common_multiple): Same. * lambda-code.c: Removed. * lambda-mat.c: Removed. * lambda-trans.c: Removed. * lambda.h: Removed. * tree-loop-linear.c: Removed. * lto-symtab.c: Do not include lambda.h. * omega.c (gcd): Removed. * passes.c (init_optimization_passes): Remove pass_linear_transform. * tree-data-ref.c (print_lambda_vector): Moved here. (lambda_vector_copy): Same. (lambda_matrix_copy): Same. (lambda_matrix_id): Same. (lambda_vector_first_nz): Same. (lambda_matrix_row_add): Same. (lambda_matrix_row_exchange): Same. (lambda_vector_mult_const): Same. (lambda_vector_negate): Same. (lambda_matrix_row_negate): Same. (lambda_vector_equal): Same. (lambda_matrix_right_hermite): Same. * tree-data-ref.h: Do not include lambda.h. (lambda_vector): Moved here. (lambda_matrix): Same. (dependence_level): Same. (lambda_transform_legal_p): Removed declaration. (lambda_collect_parameters): Same. (lambda_compute_access_matrices): Same. (lambda_vector_gcd): Same. (lambda_vector_new): Same. (lambda_vector_clear): Same. (lambda_vector_lexico_pos): Same. (lambda_vector_zerop): Same. (lambda_matrix_new): Same. * tree-flow.h (least_common_multiple): Removed declaration. * tree-parloops.c (lambda_trans_matrix): Moved here. (LTM_MATRIX): Same. (LTM_ROWSIZE): Same. (LTM_COLSIZE): Same. (LTM_DENOMINATOR): Same. (lambda_trans_matrix_new): Same. (lambda_matrix_vector_mult): Same. (lambda_transform_legal_p): Same. * tree-pass.h (pass_linear_transform): Removed declaration. * tree-ssa-loop.c (tree_linear_transform): Removed. (gate_tree_linear_transform): Removed. (pass_linear_transform): Removed. (gate_graphite_transforms): Make flag_tree_loop_linear an alias of flag_loop_interchange. toplev/gcc/testsuite/ * gfortran.dg/graphite/interchange-4.f: New. * gfortran.dg/graphite/interchange-5.f: New. * gcc.dg/tree-ssa/ltrans-1.c: Removed. * gcc.dg/tree-ssa/ltrans-2.c: Removed. * gcc.dg/tree-ssa/ltrans-3.c: Removed. * gcc.dg/tree-ssa/ltrans-4.c: Removed. * gcc.dg/tree-ssa/ltrans-5.c: Removed. * gcc.dg/tree-ssa/ltrans-6.c: Removed. * gcc.dg/tree-ssa/ltrans-8.c: Removed. * gfortran.dg/ltrans-7.f90: Removed. * gcc.dg/tree-ssa/data-dep-1.c: Removed. * gcc.dg/pr18792.c: -> gcc.dg/graphite/pr18792.c * gcc.dg/pr19910.c: -> gcc.dg/graphite/pr19910.c * gcc.dg/tree-ssa/20041110-1.c: -> gcc.dg/graphite/pr20041110-1.c * gcc.dg/tree-ssa/pr20256.c: -> gcc.dg/graphite/pr20256.c * gcc.dg/pr23625.c: -> gcc.dg/graphite/pr23625.c * gcc.dg/tree-ssa/pr23820.c: -> gcc.dg/graphite/pr23820.c * gcc.dg/tree-ssa/pr24309.c: -> gcc.dg/graphite/pr24309.c * gcc.dg/tree-ssa/pr26435.c: -> gcc.dg/graphite/pr26435.c * gcc.dg/pr29330.c: -> gcc.dg/graphite/pr29330.c * gcc.dg/pr29581-1.c: -> gcc.dg/graphite/pr29581-1.c * gcc.dg/pr29581-2.c: -> gcc.dg/graphite/pr29581-2.c * gcc.dg/pr29581-3.c: -> gcc.dg/graphite/pr29581-3.c * gcc.dg/pr29581-4.c: -> gcc.dg/graphite/pr29581-4.c * gcc.dg/tree-ssa/loop-27.c: -> gcc.dg/graphite/pr30565.c * gcc.dg/tree-ssa/pr31183.c: -> gcc.dg/graphite/pr31183.c * gcc.dg/tree-ssa/pr33576.c: -> gcc.dg/graphite/pr33576.c * gcc.dg/tree-ssa/pr33766.c: -> gcc.dg/graphite/pr33766.c * gcc.dg/pr34016.c: -> gcc.dg/graphite/pr34016.c * gcc.dg/tree-ssa/pr34017.c: -> gcc.dg/graphite/pr34017.c * gcc.dg/tree-ssa/pr34123.c: -> gcc.dg/graphite/pr34123.c * gcc.dg/tree-ssa/pr36287.c: -> gcc.dg/graphite/pr36287.c * gcc.dg/tree-ssa/pr37686.c: -> gcc.dg/graphite/pr37686.c * gcc.dg/pr42917.c: -> gcc.dg/graphite/pr42917.c * gfortran.dg/loop_nest_1.f90: -> gfortran.dg/graphite/pr29290.f90 * gfortran.dg/pr29581.f90: -> gfortran.dg/graphite/pr29581.f90 * gfortran.dg/pr36286.f90: -> gfortran.dg/graphite/pr36286.f90 * gfortran.dg/pr36922.f: -> gfortran.dg/graphite/pr36922.f * gfortran.dg/pr39516.f: -> gfortran.dg/graphite/pr39516.f From-SVN: r169251
Diffstat (limited to 'gcc/lambda-code.c')
-rw-r--r--gcc/lambda-code.c2855
1 files changed, 0 insertions, 2855 deletions
diff --git a/gcc/lambda-code.c b/gcc/lambda-code.c
deleted file mode 100644
index f462071..0000000
--- a/gcc/lambda-code.c
+++ /dev/null
@@ -1,2855 +0,0 @@
-/* Loop transformation code generation
- Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
- Free Software Foundation, Inc.
- Contributed by Daniel Berlin <dberlin@dberlin.org>
-
- This file is part of GCC.
-
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
-
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
-
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "tree-flow.h"
-#include "cfgloop.h"
-#include "tree-chrec.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "lambda.h"
-#include "tree-pass.h"
-
-/* This loop nest code generation is based on non-singular matrix
- math.
-
- A little terminology and a general sketch of the algorithm. See "A singular
- loop transformation framework based on non-singular matrices" by Wei Li and
- Keshav Pingali for formal proofs that the various statements below are
- correct.
-
- A loop iteration space represents the points traversed by the loop. A point in the
- iteration space can be represented by a vector of size <loop depth>. You can
- therefore represent the iteration space as an integral combinations of a set
- of basis vectors.
-
- A loop iteration space is dense if every integer point between the loop
- bounds is a point in the iteration space. Every loop with a step of 1
- therefore has a dense iteration space.
-
- for i = 1 to 3, step 1 is a dense iteration space.
-
- A loop iteration space is sparse if it is not dense. That is, the iteration
- space skips integer points that are within the loop bounds.
-
- for i = 1 to 3, step 2 is a sparse iteration space, because the integer point
- 2 is skipped.
-
- Dense source spaces are easy to transform, because they don't skip any
- points to begin with. Thus we can compute the exact bounds of the target
- space using min/max and floor/ceil.
-
- For a dense source space, we take the transformation matrix, decompose it
- into a lower triangular part (H) and a unimodular part (U).
- We then compute the auxiliary space from the unimodular part (source loop
- nest . U = auxiliary space) , which has two important properties:
- 1. It traverses the iterations in the same lexicographic order as the source
- space.
- 2. It is a dense space when the source is a dense space (even if the target
- space is going to be sparse).
-
- Given the auxiliary space, we use the lower triangular part to compute the
- bounds in the target space by simple matrix multiplication.
- The gaps in the target space (IE the new loop step sizes) will be the
- diagonals of the H matrix.
-
- Sparse source spaces require another step, because you can't directly compute
- the exact bounds of the auxiliary and target space from the sparse space.
- Rather than try to come up with a separate algorithm to handle sparse source
- spaces directly, we just find a legal transformation matrix that gives you
- the sparse source space, from a dense space, and then transform the dense
- space.
-
- For a regular sparse space, you can represent the source space as an integer
- lattice, and the base space of that lattice will always be dense. Thus, we
- effectively use the lattice to figure out the transformation from the lattice
- base space, to the sparse iteration space (IE what transform was applied to
- the dense space to make it sparse). We then compose this transform with the
- transformation matrix specified by the user (since our matrix transformations
- are closed under composition, this is okay). We can then use the base space
- (which is dense) plus the composed transformation matrix, to compute the rest
- of the transform using the dense space algorithm above.
-
- In other words, our sparse source space (B) is decomposed into a dense base
- space (A), and a matrix (L) that transforms A into B, such that A.L = B.
- We then compute the composition of L and the user transformation matrix (T),
- so that T is now a transform from A to the result, instead of from B to the
- result.
- IE A.(LT) = result instead of B.T = result
- Since A is now a dense source space, we can use the dense source space
- algorithm above to compute the result of applying transform (LT) to A.
-
- Fourier-Motzkin elimination is used to compute the bounds of the base space
- of the lattice. */
-
-static bool perfect_nestify (struct loop *, VEC(tree,heap) *,
- VEC(tree,heap) *, VEC(int,heap) *,
- VEC(tree,heap) *);
-/* Lattice stuff that is internal to the code generation algorithm. */
-
-typedef struct lambda_lattice_s
-{
- /* Lattice base matrix. */
- lambda_matrix base;
- /* Lattice dimension. */
- int dimension;
- /* Origin vector for the coefficients. */
- lambda_vector origin;
- /* Origin matrix for the invariants. */
- lambda_matrix origin_invariants;
- /* Number of invariants. */
- int invariants;
-} *lambda_lattice;
-
-#define LATTICE_BASE(T) ((T)->base)
-#define LATTICE_DIMENSION(T) ((T)->dimension)
-#define LATTICE_ORIGIN(T) ((T)->origin)
-#define LATTICE_ORIGIN_INVARIANTS(T) ((T)->origin_invariants)
-#define LATTICE_INVARIANTS(T) ((T)->invariants)
-
-static bool lle_equal (lambda_linear_expression, lambda_linear_expression,
- int, int);
-static lambda_lattice lambda_lattice_new (int, int, struct obstack *);
-static lambda_lattice lambda_lattice_compute_base (lambda_loopnest,
- struct obstack *);
-
-static bool can_convert_to_perfect_nest (struct loop *);
-
-/* Create a new lambda loop in LAMBDA_OBSTACK. */
-
-static lambda_loop
-lambda_loop_new (struct obstack * lambda_obstack)
-{
- lambda_loop result = (lambda_loop)
- obstack_alloc (lambda_obstack, sizeof (struct lambda_loop_s));
- memset (result, 0, sizeof (struct lambda_loop_s));
- return result;
-}
-
-/* Create a new lambda body vector. */
-
-lambda_body_vector
-lambda_body_vector_new (int size, struct obstack * lambda_obstack)
-{
- lambda_body_vector ret;
-
- ret = (lambda_body_vector) obstack_alloc (lambda_obstack,
- sizeof (*ret));
- LBV_COEFFICIENTS (ret) = lambda_vector_new (size);
- LBV_SIZE (ret) = size;
- LBV_DENOMINATOR (ret) = 1;
- return ret;
-}
-
-/* Compute the new coefficients for the vector based on the
- *inverse* of the transformation matrix. */
-
-lambda_body_vector
-lambda_body_vector_compute_new (lambda_trans_matrix transform,
- lambda_body_vector vect,
- struct obstack * lambda_obstack)
-{
- lambda_body_vector temp;
- int depth;
-
- /* Make sure the matrix is square. */
- gcc_assert (LTM_ROWSIZE (transform) == LTM_COLSIZE (transform));
-
- depth = LTM_ROWSIZE (transform);
-
- temp = lambda_body_vector_new (depth, lambda_obstack);
- LBV_DENOMINATOR (temp) =
- LBV_DENOMINATOR (vect) * LTM_DENOMINATOR (transform);
- lambda_vector_matrix_mult (LBV_COEFFICIENTS (vect), depth,
- LTM_MATRIX (transform), depth,
- LBV_COEFFICIENTS (temp));
- LBV_SIZE (temp) = LBV_SIZE (vect);
- return temp;
-}
-
-/* Print out a lambda body vector. */
-
-void
-print_lambda_body_vector (FILE * outfile, lambda_body_vector body)
-{
- print_lambda_vector (outfile, LBV_COEFFICIENTS (body), LBV_SIZE (body));
-}
-
-/* Return TRUE if two linear expressions are equal. */
-
-static bool
-lle_equal (lambda_linear_expression lle1, lambda_linear_expression lle2,
- int depth, int invariants)
-{
- int i;
-
- if (lle1 == NULL || lle2 == NULL)
- return false;
- if (LLE_CONSTANT (lle1) != LLE_CONSTANT (lle2))
- return false;
- if (LLE_DENOMINATOR (lle1) != LLE_DENOMINATOR (lle2))
- return false;
- for (i = 0; i < depth; i++)
- if (LLE_COEFFICIENTS (lle1)[i] != LLE_COEFFICIENTS (lle2)[i])
- return false;
- for (i = 0; i < invariants; i++)
- if (LLE_INVARIANT_COEFFICIENTS (lle1)[i] !=
- LLE_INVARIANT_COEFFICIENTS (lle2)[i])
- return false;
- return true;
-}
-
-/* Create a new linear expression with dimension DIM, and total number
- of invariants INVARIANTS. */
-
-lambda_linear_expression
-lambda_linear_expression_new (int dim, int invariants,
- struct obstack * lambda_obstack)
-{
- lambda_linear_expression ret;
-
- ret = (lambda_linear_expression)obstack_alloc (lambda_obstack,
- sizeof (*ret));
- LLE_COEFFICIENTS (ret) = lambda_vector_new (dim);
- LLE_CONSTANT (ret) = 0;
- LLE_INVARIANT_COEFFICIENTS (ret) = lambda_vector_new (invariants);
- LLE_DENOMINATOR (ret) = 1;
- LLE_NEXT (ret) = NULL;
-
- return ret;
-}
-
-/* Print out a linear expression EXPR, with SIZE coefficients, to OUTFILE.
- The starting letter used for variable names is START. */
-
-static void
-print_linear_expression (FILE * outfile, lambda_vector expr, int size,
- char start)
-{
- int i;
- bool first = true;
- for (i = 0; i < size; i++)
- {
- if (expr[i] != 0)
- {
- if (first)
- {
- if (expr[i] < 0)
- fprintf (outfile, "-");
- first = false;
- }
- else if (expr[i] > 0)
- fprintf (outfile, " + ");
- else
- fprintf (outfile, " - ");
- if (abs (expr[i]) == 1)
- fprintf (outfile, "%c", start + i);
- else
- fprintf (outfile, "%d%c", abs (expr[i]), start + i);
- }
- }
-}
-
-/* Print out a lambda linear expression structure, EXPR, to OUTFILE. The
- depth/number of coefficients is given by DEPTH, the number of invariants is
- given by INVARIANTS, and the character to start variable names with is given
- by START. */
-
-void
-print_lambda_linear_expression (FILE * outfile,
- lambda_linear_expression expr,
- int depth, int invariants, char start)
-{
- fprintf (outfile, "\tLinear expression: ");
- print_linear_expression (outfile, LLE_COEFFICIENTS (expr), depth, start);
- fprintf (outfile, " constant: %d ", LLE_CONSTANT (expr));
- fprintf (outfile, " invariants: ");
- print_linear_expression (outfile, LLE_INVARIANT_COEFFICIENTS (expr),
- invariants, 'A');
- fprintf (outfile, " denominator: %d\n", LLE_DENOMINATOR (expr));
-}
-
-/* Print a lambda loop structure LOOP to OUTFILE. The depth/number of
- coefficients is given by DEPTH, the number of invariants is
- given by INVARIANTS, and the character to start variable names with is given
- by START. */
-
-void
-print_lambda_loop (FILE * outfile, lambda_loop loop, int depth,
- int invariants, char start)
-{
- int step;
- lambda_linear_expression expr;
-
- gcc_assert (loop);
-
- expr = LL_LINEAR_OFFSET (loop);
- step = LL_STEP (loop);
- fprintf (outfile, " step size = %d \n", step);
-
- if (expr)
- {
- fprintf (outfile, " linear offset: \n");
- print_lambda_linear_expression (outfile, expr, depth, invariants,
- start);
- }
-
- fprintf (outfile, " lower bound: \n");
- for (expr = LL_LOWER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
- print_lambda_linear_expression (outfile, expr, depth, invariants, start);
- fprintf (outfile, " upper bound: \n");
- for (expr = LL_UPPER_BOUND (loop); expr != NULL; expr = LLE_NEXT (expr))
- print_lambda_linear_expression (outfile, expr, depth, invariants, start);
-}
-
-/* Create a new loop nest structure with DEPTH loops, and INVARIANTS as the
- number of invariants. */
-
-lambda_loopnest
-lambda_loopnest_new (int depth, int invariants,
- struct obstack * lambda_obstack)
-{
- lambda_loopnest ret;
- ret = (lambda_loopnest)obstack_alloc (lambda_obstack, sizeof (*ret));
-
- LN_LOOPS (ret) = (lambda_loop *)
- obstack_alloc (lambda_obstack, depth * sizeof(LN_LOOPS(ret)));
- LN_DEPTH (ret) = depth;
- LN_INVARIANTS (ret) = invariants;
-
- return ret;
-}
-
-/* Print a lambda loopnest structure, NEST, to OUTFILE. The starting
- character to use for loop names is given by START. */
-
-void
-print_lambda_loopnest (FILE * outfile, lambda_loopnest nest, char start)
-{
- int i;
- for (i = 0; i < LN_DEPTH (nest); i++)
- {
- fprintf (outfile, "Loop %c\n", start + i);
- print_lambda_loop (outfile, LN_LOOPS (nest)[i], LN_DEPTH (nest),
- LN_INVARIANTS (nest), 'i');
- fprintf (outfile, "\n");
- }
-}
-
-/* Allocate a new lattice structure of DEPTH x DEPTH, with INVARIANTS number
- of invariants. */
-
-static lambda_lattice
-lambda_lattice_new (int depth, int invariants, struct obstack * lambda_obstack)
-{
- lambda_lattice ret
- = (lambda_lattice)obstack_alloc (lambda_obstack, sizeof (*ret));
- LATTICE_BASE (ret) = lambda_matrix_new (depth, depth, lambda_obstack);
- LATTICE_ORIGIN (ret) = lambda_vector_new (depth);
- LATTICE_ORIGIN_INVARIANTS (ret) = lambda_matrix_new (depth, invariants,
- lambda_obstack);
- LATTICE_DIMENSION (ret) = depth;
- LATTICE_INVARIANTS (ret) = invariants;
- return ret;
-}
-
-/* Compute the lattice base for NEST. The lattice base is essentially a
- non-singular transform from a dense base space to a sparse iteration space.
- We use it so that we don't have to specially handle the case of a sparse
- iteration space in other parts of the algorithm. As a result, this routine
- only does something interesting (IE produce a matrix that isn't the
- identity matrix) if NEST is a sparse space. */
-
-static lambda_lattice
-lambda_lattice_compute_base (lambda_loopnest nest,
- struct obstack * lambda_obstack)
-{
- lambda_lattice ret;
- int depth, invariants;
- lambda_matrix base;
-
- int i, j, step;
- lambda_loop loop;
- lambda_linear_expression expression;
-
- depth = LN_DEPTH (nest);
- invariants = LN_INVARIANTS (nest);
-
- ret = lambda_lattice_new (depth, invariants, lambda_obstack);
- base = LATTICE_BASE (ret);
- for (i = 0; i < depth; i++)
- {
- loop = LN_LOOPS (nest)[i];
- gcc_assert (loop);
- step = LL_STEP (loop);
- /* If we have a step of 1, then the base is one, and the
- origin and invariant coefficients are 0. */
- if (step == 1)
- {
- for (j = 0; j < depth; j++)
- base[i][j] = 0;
- base[i][i] = 1;
- LATTICE_ORIGIN (ret)[i] = 0;
- for (j = 0; j < invariants; j++)
- LATTICE_ORIGIN_INVARIANTS (ret)[i][j] = 0;
- }
- else
- {
- /* Otherwise, we need the lower bound expression (which must
- be an affine function) to determine the base. */
- expression = LL_LOWER_BOUND (loop);
- gcc_assert (expression && !LLE_NEXT (expression)
- && LLE_DENOMINATOR (expression) == 1);
-
- /* The lower triangular portion of the base is going to be the
- coefficient times the step */
- for (j = 0; j < i; j++)
- base[i][j] = LLE_COEFFICIENTS (expression)[j]
- * LL_STEP (LN_LOOPS (nest)[j]);
- base[i][i] = step;
- for (j = i + 1; j < depth; j++)
- base[i][j] = 0;
-
- /* Origin for this loop is the constant of the lower bound
- expression. */
- LATTICE_ORIGIN (ret)[i] = LLE_CONSTANT (expression);
-
- /* Coefficient for the invariants are equal to the invariant
- coefficients in the expression. */
- for (j = 0; j < invariants; j++)
- LATTICE_ORIGIN_INVARIANTS (ret)[i][j] =
- LLE_INVARIANT_COEFFICIENTS (expression)[j];
- }
- }
- return ret;
-}
-
-/* Compute the least common multiple of two numbers A and B . */
-
-int
-least_common_multiple (int a, int b)
-{
- return (abs (a) * abs (b) / gcd (a, b));
-}
-
-/* Perform Fourier-Motzkin elimination to calculate the bounds of the
- auxiliary nest.
- Fourier-Motzkin is a way of reducing systems of linear inequalities so that
- it is easy to calculate the answer and bounds.
- A sketch of how it works:
- Given a system of linear inequalities, ai * xj >= bk, you can always
- rewrite the constraints so they are all of the form
- a <= x, or x <= b, or x >= constant for some x in x1 ... xj (and some b
- in b1 ... bk, and some a in a1...ai)
- You can then eliminate this x from the non-constant inequalities by
- rewriting these as a <= b, x >= constant, and delete the x variable.
- You can then repeat this for any remaining x variables, and then we have
- an easy to use variable <= constant (or no variables at all) form that we
- can construct our bounds from.
-
- In our case, each time we eliminate, we construct part of the bound from
- the ith variable, then delete the ith variable.
-
- Remember the constant are in our vector a, our coefficient matrix is A,
- and our invariant coefficient matrix is B.
-
- SIZE is the size of the matrices being passed.
- DEPTH is the loop nest depth.
- INVARIANTS is the number of loop invariants.
- A, B, and a are the coefficient matrix, invariant coefficient, and a
- vector of constants, respectively. */
-
-static lambda_loopnest
-compute_nest_using_fourier_motzkin (int size,
- int depth,
- int invariants,
- lambda_matrix A,
- lambda_matrix B,
- lambda_vector a,
- struct obstack * lambda_obstack)
-{
-
- int multiple, f1, f2;
- int i, j, k;
- lambda_linear_expression expression;
- lambda_loop loop;
- lambda_loopnest auxillary_nest;
- lambda_matrix swapmatrix, A1, B1;
- lambda_vector swapvector, a1;
- int newsize;
-
- A1 = lambda_matrix_new (128, depth, lambda_obstack);
- B1 = lambda_matrix_new (128, invariants, lambda_obstack);
- a1 = lambda_vector_new (128);
-
- auxillary_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
-
- for (i = depth - 1; i >= 0; i--)
- {
- loop = lambda_loop_new (lambda_obstack);
- LN_LOOPS (auxillary_nest)[i] = loop;
- LL_STEP (loop) = 1;
-
- for (j = 0; j < size; j++)
- {
- if (A[j][i] < 0)
- {
- /* Any linear expression in the matrix with a coefficient less
- than 0 becomes part of the new lower bound. */
- expression = lambda_linear_expression_new (depth, invariants,
- lambda_obstack);
-
- for (k = 0; k < i; k++)
- LLE_COEFFICIENTS (expression)[k] = A[j][k];
-
- for (k = 0; k < invariants; k++)
- LLE_INVARIANT_COEFFICIENTS (expression)[k] = -1 * B[j][k];
-
- LLE_DENOMINATOR (expression) = -1 * A[j][i];
- LLE_CONSTANT (expression) = -1 * a[j];
-
- /* Ignore if identical to the existing lower bound. */
- if (!lle_equal (LL_LOWER_BOUND (loop),
- expression, depth, invariants))
- {
- LLE_NEXT (expression) = LL_LOWER_BOUND (loop);
- LL_LOWER_BOUND (loop) = expression;
- }
-
- }
- else if (A[j][i] > 0)
- {
- /* Any linear expression with a coefficient greater than 0
- becomes part of the new upper bound. */
- expression = lambda_linear_expression_new (depth, invariants,
- lambda_obstack);
- for (k = 0; k < i; k++)
- LLE_COEFFICIENTS (expression)[k] = -1 * A[j][k];
-
- for (k = 0; k < invariants; k++)
- LLE_INVARIANT_COEFFICIENTS (expression)[k] = B[j][k];
-
- LLE_DENOMINATOR (expression) = A[j][i];
- LLE_CONSTANT (expression) = a[j];
-
- /* Ignore if identical to the existing upper bound. */
- if (!lle_equal (LL_UPPER_BOUND (loop),
- expression, depth, invariants))
- {
- LLE_NEXT (expression) = LL_UPPER_BOUND (loop);
- LL_UPPER_BOUND (loop) = expression;
- }
-
- }
- }
-
- /* This portion creates a new system of linear inequalities by deleting
- the i'th variable, reducing the system by one variable. */
- newsize = 0;
- for (j = 0; j < size; j++)
- {
- /* If the coefficient for the i'th variable is 0, then we can just
- eliminate the variable straightaway. Otherwise, we have to
- multiply through by the coefficients we are eliminating. */
- if (A[j][i] == 0)
- {
- lambda_vector_copy (A[j], A1[newsize], depth);
- lambda_vector_copy (B[j], B1[newsize], invariants);
- a1[newsize] = a[j];
- newsize++;
- }
- else if (A[j][i] > 0)
- {
- for (k = 0; k < size; k++)
- {
- if (A[k][i] < 0)
- {
- multiple = least_common_multiple (A[j][i], A[k][i]);
- f1 = multiple / A[j][i];
- f2 = -1 * multiple / A[k][i];
-
- lambda_vector_add_mc (A[j], f1, A[k], f2,
- A1[newsize], depth);
- lambda_vector_add_mc (B[j], f1, B[k], f2,
- B1[newsize], invariants);
- a1[newsize] = f1 * a[j] + f2 * a[k];
- newsize++;
- }
- }
- }
- }
-
- swapmatrix = A;
- A = A1;
- A1 = swapmatrix;
-
- swapmatrix = B;
- B = B1;
- B1 = swapmatrix;
-
- swapvector = a;
- a = a1;
- a1 = swapvector;
-
- size = newsize;
- }
-
- return auxillary_nest;
-}
-
-/* Compute the loop bounds for the auxiliary space NEST.
- Input system used is Ax <= b. TRANS is the unimodular transformation.
- Given the original nest, this function will
- 1. Convert the nest into matrix form, which consists of a matrix for the
- coefficients, a matrix for the
- invariant coefficients, and a vector for the constants.
- 2. Use the matrix form to calculate the lattice base for the nest (which is
- a dense space)
- 3. Compose the dense space transform with the user specified transform, to
- get a transform we can easily calculate transformed bounds for.
- 4. Multiply the composed transformation matrix times the matrix form of the
- loop.
- 5. Transform the newly created matrix (from step 4) back into a loop nest
- using Fourier-Motzkin elimination to figure out the bounds. */
-
-static lambda_loopnest
-lambda_compute_auxillary_space (lambda_loopnest nest,
- lambda_trans_matrix trans,
- struct obstack * lambda_obstack)
-{
- lambda_matrix A, B, A1, B1;
- lambda_vector a, a1;
- lambda_matrix invertedtrans;
- int depth, invariants, size;
- int i, j;
- lambda_loop loop;
- lambda_linear_expression expression;
- lambda_lattice lattice;
-
- depth = LN_DEPTH (nest);
- invariants = LN_INVARIANTS (nest);
-
- /* Unfortunately, we can't know the number of constraints we'll have
- ahead of time, but this should be enough even in ridiculous loop nest
- cases. We must not go over this limit. */
- A = lambda_matrix_new (128, depth, lambda_obstack);
- B = lambda_matrix_new (128, invariants, lambda_obstack);
- a = lambda_vector_new (128);
-
- A1 = lambda_matrix_new (128, depth, lambda_obstack);
- B1 = lambda_matrix_new (128, invariants, lambda_obstack);
- a1 = lambda_vector_new (128);
-
- /* Store the bounds in the equation matrix A, constant vector a, and
- invariant matrix B, so that we have Ax <= a + B.
- This requires a little equation rearranging so that everything is on the
- correct side of the inequality. */
- size = 0;
- for (i = 0; i < depth; i++)
- {
- loop = LN_LOOPS (nest)[i];
-
- /* First we do the lower bound. */
- if (LL_STEP (loop) > 0)
- expression = LL_LOWER_BOUND (loop);
- else
- expression = LL_UPPER_BOUND (loop);
-
- for (; expression != NULL; expression = LLE_NEXT (expression))
- {
- /* Fill in the coefficient. */
- for (j = 0; j < i; j++)
- A[size][j] = LLE_COEFFICIENTS (expression)[j];
-
- /* And the invariant coefficient. */
- for (j = 0; j < invariants; j++)
- B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
-
- /* And the constant. */
- a[size] = LLE_CONSTANT (expression);
-
- /* Convert (2x+3y+2+b)/4 <= z to 2x+3y-4z <= -2-b. IE put all
- constants and single variables on */
- A[size][i] = -1 * LLE_DENOMINATOR (expression);
- a[size] *= -1;
- for (j = 0; j < invariants; j++)
- B[size][j] *= -1;
-
- size++;
- /* Need to increase matrix sizes above. */
- gcc_assert (size <= 127);
-
- }
-
- /* Then do the exact same thing for the upper bounds. */
- if (LL_STEP (loop) > 0)
- expression = LL_UPPER_BOUND (loop);
- else
- expression = LL_LOWER_BOUND (loop);
-
- for (; expression != NULL; expression = LLE_NEXT (expression))
- {
- /* Fill in the coefficient. */
- for (j = 0; j < i; j++)
- A[size][j] = LLE_COEFFICIENTS (expression)[j];
-
- /* And the invariant coefficient. */
- for (j = 0; j < invariants; j++)
- B[size][j] = LLE_INVARIANT_COEFFICIENTS (expression)[j];
-
- /* And the constant. */
- a[size] = LLE_CONSTANT (expression);
-
- /* Convert z <= (2x+3y+2+b)/4 to -2x-3y+4z <= 2+b. */
- for (j = 0; j < i; j++)
- A[size][j] *= -1;
- A[size][i] = LLE_DENOMINATOR (expression);
- size++;
- /* Need to increase matrix sizes above. */
- gcc_assert (size <= 127);
-
- }
- }
-
- /* Compute the lattice base x = base * y + origin, where y is the
- base space. */
- lattice = lambda_lattice_compute_base (nest, lambda_obstack);
-
- /* Ax <= a + B then becomes ALy <= a+B - A*origin. L is the lattice base */
-
- /* A1 = A * L */
- lambda_matrix_mult (A, LATTICE_BASE (lattice), A1, size, depth, depth);
-
- /* a1 = a - A * origin constant. */
- lambda_matrix_vector_mult (A, size, depth, LATTICE_ORIGIN (lattice), a1);
- lambda_vector_add_mc (a, 1, a1, -1, a1, size);
-
- /* B1 = B - A * origin invariant. */
- lambda_matrix_mult (A, LATTICE_ORIGIN_INVARIANTS (lattice), B1, size, depth,
- invariants);
- lambda_matrix_add_mc (B, 1, B1, -1, B1, size, invariants);
-
- /* Now compute the auxiliary space bounds by first inverting U, multiplying
- it by A1, then performing Fourier-Motzkin. */
-
- invertedtrans = lambda_matrix_new (depth, depth, lambda_obstack);
-
- /* Compute the inverse of U. */
- lambda_matrix_inverse (LTM_MATRIX (trans),
- invertedtrans, depth, lambda_obstack);
-
- /* A = A1 inv(U). */
- lambda_matrix_mult (A1, invertedtrans, A, size, depth, depth);
-
- return compute_nest_using_fourier_motzkin (size, depth, invariants,
- A, B1, a1, lambda_obstack);
-}
-
-/* Compute the loop bounds for the target space, using the bounds of
- the auxiliary nest AUXILLARY_NEST, and the triangular matrix H.
- The target space loop bounds are computed by multiplying the triangular
- matrix H by the auxiliary nest, to get the new loop bounds. The sign of
- the loop steps (positive or negative) is then used to swap the bounds if
- the loop counts downwards.
- Return the target loopnest. */
-
-static lambda_loopnest
-lambda_compute_target_space (lambda_loopnest auxillary_nest,
- lambda_trans_matrix H, lambda_vector stepsigns,
- struct obstack * lambda_obstack)
-{
- lambda_matrix inverse, H1;
- int determinant, i, j;
- int gcd1, gcd2;
- int factor;
-
- lambda_loopnest target_nest;
- int depth, invariants;
- lambda_matrix target;
-
- lambda_loop auxillary_loop, target_loop;
- lambda_linear_expression expression, auxillary_expr, target_expr, tmp_expr;
-
- depth = LN_DEPTH (auxillary_nest);
- invariants = LN_INVARIANTS (auxillary_nest);
-
- inverse = lambda_matrix_new (depth, depth, lambda_obstack);
- determinant = lambda_matrix_inverse (LTM_MATRIX (H), inverse, depth,
- lambda_obstack);
-
- /* H1 is H excluding its diagonal. */
- H1 = lambda_matrix_new (depth, depth, lambda_obstack);
- lambda_matrix_copy (LTM_MATRIX (H), H1, depth, depth);
-
- for (i = 0; i < depth; i++)
- H1[i][i] = 0;
-
- /* Computes the linear offsets of the loop bounds. */
- target = lambda_matrix_new (depth, depth, lambda_obstack);
- lambda_matrix_mult (H1, inverse, target, depth, depth, depth);
-
- target_nest = lambda_loopnest_new (depth, invariants, lambda_obstack);
-
- for (i = 0; i < depth; i++)
- {
-
- /* Get a new loop structure. */
- target_loop = lambda_loop_new (lambda_obstack);
- LN_LOOPS (target_nest)[i] = target_loop;
-
- /* Computes the gcd of the coefficients of the linear part. */
- gcd1 = lambda_vector_gcd (target[i], i);
-
- /* Include the denominator in the GCD. */
- gcd1 = gcd (gcd1, determinant);
-
- /* Now divide through by the gcd. */
- for (j = 0; j < i; j++)
- target[i][j] = target[i][j] / gcd1;
-
- expression = lambda_linear_expression_new (depth, invariants,
- lambda_obstack);
- lambda_vector_copy (target[i], LLE_COEFFICIENTS (expression), depth);
- LLE_DENOMINATOR (expression) = determinant / gcd1;
- LLE_CONSTANT (expression) = 0;
- lambda_vector_clear (LLE_INVARIANT_COEFFICIENTS (expression),
- invariants);
- LL_LINEAR_OFFSET (target_loop) = expression;
- }
-
- /* For each loop, compute the new bounds from H. */
- for (i = 0; i < depth; i++)
- {
- auxillary_loop = LN_LOOPS (auxillary_nest)[i];
- target_loop = LN_LOOPS (target_nest)[i];
- LL_STEP (target_loop) = LTM_MATRIX (H)[i][i];
- factor = LTM_MATRIX (H)[i][i];
-
- /* First we do the lower bound. */
- auxillary_expr = LL_LOWER_BOUND (auxillary_loop);
-
- for (; auxillary_expr != NULL;
- auxillary_expr = LLE_NEXT (auxillary_expr))
- {
- target_expr = lambda_linear_expression_new (depth, invariants,
- lambda_obstack);
- lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
- depth, inverse, depth,
- LLE_COEFFICIENTS (target_expr));
- lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
- LLE_COEFFICIENTS (target_expr), depth,
- factor);
-
- LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
- lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
- LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants);
- lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
- LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants, factor);
- LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
-
- if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
- {
- LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
- * determinant;
- lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
- (target_expr),
- LLE_INVARIANT_COEFFICIENTS
- (target_expr), invariants,
- determinant);
- LLE_DENOMINATOR (target_expr) =
- LLE_DENOMINATOR (target_expr) * determinant;
- }
- /* Find the gcd and divide by it here, rather than doing it
- at the tree level. */
- gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
- gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants);
- gcd1 = gcd (gcd1, gcd2);
- gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
- gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
- for (j = 0; j < depth; j++)
- LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
- for (j = 0; j < invariants; j++)
- LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
- LLE_CONSTANT (target_expr) /= gcd1;
- LLE_DENOMINATOR (target_expr) /= gcd1;
- /* Ignore if identical to existing bound. */
- if (!lle_equal (LL_LOWER_BOUND (target_loop), target_expr, depth,
- invariants))
- {
- LLE_NEXT (target_expr) = LL_LOWER_BOUND (target_loop);
- LL_LOWER_BOUND (target_loop) = target_expr;
- }
- }
- /* Now do the upper bound. */
- auxillary_expr = LL_UPPER_BOUND (auxillary_loop);
-
- for (; auxillary_expr != NULL;
- auxillary_expr = LLE_NEXT (auxillary_expr))
- {
- target_expr = lambda_linear_expression_new (depth, invariants,
- lambda_obstack);
- lambda_vector_matrix_mult (LLE_COEFFICIENTS (auxillary_expr),
- depth, inverse, depth,
- LLE_COEFFICIENTS (target_expr));
- lambda_vector_mult_const (LLE_COEFFICIENTS (target_expr),
- LLE_COEFFICIENTS (target_expr), depth,
- factor);
- LLE_CONSTANT (target_expr) = LLE_CONSTANT (auxillary_expr) * factor;
- lambda_vector_copy (LLE_INVARIANT_COEFFICIENTS (auxillary_expr),
- LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants);
- lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS (target_expr),
- LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants, factor);
- LLE_DENOMINATOR (target_expr) = LLE_DENOMINATOR (auxillary_expr);
-
- if (!lambda_vector_zerop (LLE_COEFFICIENTS (target_expr), depth))
- {
- LLE_CONSTANT (target_expr) = LLE_CONSTANT (target_expr)
- * determinant;
- lambda_vector_mult_const (LLE_INVARIANT_COEFFICIENTS
- (target_expr),
- LLE_INVARIANT_COEFFICIENTS
- (target_expr), invariants,
- determinant);
- LLE_DENOMINATOR (target_expr) =
- LLE_DENOMINATOR (target_expr) * determinant;
- }
- /* Find the gcd and divide by it here, instead of at the
- tree level. */
- gcd1 = lambda_vector_gcd (LLE_COEFFICIENTS (target_expr), depth);
- gcd2 = lambda_vector_gcd (LLE_INVARIANT_COEFFICIENTS (target_expr),
- invariants);
- gcd1 = gcd (gcd1, gcd2);
- gcd1 = gcd (gcd1, LLE_CONSTANT (target_expr));
- gcd1 = gcd (gcd1, LLE_DENOMINATOR (target_expr));
- for (j = 0; j < depth; j++)
- LLE_COEFFICIENTS (target_expr)[j] /= gcd1;
- for (j = 0; j < invariants; j++)
- LLE_INVARIANT_COEFFICIENTS (target_expr)[j] /= gcd1;
- LLE_CONSTANT (target_expr) /= gcd1;
- LLE_DENOMINATOR (target_expr) /= gcd1;
- /* Ignore if equal to existing bound. */
- if (!lle_equal (LL_UPPER_BOUND (target_loop), target_expr, depth,
- invariants))
- {
- LLE_NEXT (target_expr) = LL_UPPER_BOUND (target_loop);
- LL_UPPER_BOUND (target_loop) = target_expr;
- }
- }
- }
- for (i = 0; i < depth; i++)
- {
- target_loop = LN_LOOPS (target_nest)[i];
- /* If necessary, exchange the upper and lower bounds and negate
- the step size. */
- if (stepsigns[i] < 0)
- {
- LL_STEP (target_loop) *= -1;
- tmp_expr = LL_LOWER_BOUND (target_loop);
- LL_LOWER_BOUND (target_loop) = LL_UPPER_BOUND (target_loop);
- LL_UPPER_BOUND (target_loop) = tmp_expr;
- }
- }
- return target_nest;
-}
-
-/* Compute the step signs of TRANS, using TRANS and stepsigns. Return the new
- result. */
-
-static lambda_vector
-lambda_compute_step_signs (lambda_trans_matrix trans,
- lambda_vector stepsigns,
- struct obstack * lambda_obstack)
-{
- lambda_matrix matrix, H;
- int size;
- lambda_vector newsteps;
- int i, j, factor, minimum_column;
- int temp;
-
- matrix = LTM_MATRIX (trans);
- size = LTM_ROWSIZE (trans);
- H = lambda_matrix_new (size, size, lambda_obstack);
-
- newsteps = lambda_vector_new (size);
- lambda_vector_copy (stepsigns, newsteps, size);
-
- lambda_matrix_copy (matrix, H, size, size);
-
- for (j = 0; j < size; j++)
- {
- lambda_vector row;
- row = H[j];
- for (i = j; i < size; i++)
- if (row[i] < 0)
- lambda_matrix_col_negate (H, size, i);
- while (lambda_vector_first_nz (row, size, j + 1) < size)
- {
- minimum_column = lambda_vector_min_nz (row, size, j);
- lambda_matrix_col_exchange (H, size, j, minimum_column);
-
- temp = newsteps[j];
- newsteps[j] = newsteps[minimum_column];
- newsteps[minimum_column] = temp;
-
- for (i = j + 1; i < size; i++)
- {
- factor = row[i] / row[j];
- lambda_matrix_col_add (H, size, j, i, -1 * factor);
- }
- }
- }
- return newsteps;
-}
-
-/* Transform NEST according to TRANS, and return the new loopnest.
- This involves
- 1. Computing a lattice base for the transformation
- 2. Composing the dense base with the specified transformation (TRANS)
- 3. Decomposing the combined transformation into a lower triangular portion,
- and a unimodular portion.
- 4. Computing the auxiliary nest using the unimodular portion.
- 5. Computing the target nest using the auxiliary nest and the lower
- triangular portion. */
-
-lambda_loopnest
-lambda_loopnest_transform (lambda_loopnest nest, lambda_trans_matrix trans,
- struct obstack * lambda_obstack)
-{
- lambda_loopnest auxillary_nest, target_nest;
-
- int depth, invariants;
- int i, j;
- lambda_lattice lattice;
- lambda_trans_matrix trans1, H, U;
- lambda_loop loop;
- lambda_linear_expression expression;
- lambda_vector origin;
- lambda_matrix origin_invariants;
- lambda_vector stepsigns;
- int f;
-
- depth = LN_DEPTH (nest);
- invariants = LN_INVARIANTS (nest);
-
- /* Keep track of the signs of the loop steps. */
- stepsigns = lambda_vector_new (depth);
- for (i = 0; i < depth; i++)
- {
- if (LL_STEP (LN_LOOPS (nest)[i]) > 0)
- stepsigns[i] = 1;
- else
- stepsigns[i] = -1;
- }
-
- /* Compute the lattice base. */
- lattice = lambda_lattice_compute_base (nest, lambda_obstack);
- trans1 = lambda_trans_matrix_new (depth, depth, lambda_obstack);
-
- /* Multiply the transformation matrix by the lattice base. */
-
- lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_BASE (lattice),
- LTM_MATRIX (trans1), depth, depth, depth);
-
- /* Compute the Hermite normal form for the new transformation matrix. */
- H = lambda_trans_matrix_new (depth, depth, lambda_obstack);
- U = lambda_trans_matrix_new (depth, depth, lambda_obstack);
- lambda_matrix_hermite (LTM_MATRIX (trans1), depth, LTM_MATRIX (H),
- LTM_MATRIX (U));
-
- /* Compute the auxiliary loop nest's space from the unimodular
- portion. */
- auxillary_nest = lambda_compute_auxillary_space (nest, U,
- lambda_obstack);
-
- /* Compute the loop step signs from the old step signs and the
- transformation matrix. */
- stepsigns = lambda_compute_step_signs (trans1, stepsigns,
- lambda_obstack);
-
- /* Compute the target loop nest space from the auxiliary nest and
- the lower triangular matrix H. */
- target_nest = lambda_compute_target_space (auxillary_nest, H, stepsigns,
- lambda_obstack);
- origin = lambda_vector_new (depth);
- origin_invariants = lambda_matrix_new (depth, invariants, lambda_obstack);
- lambda_matrix_vector_mult (LTM_MATRIX (trans), depth, depth,
- LATTICE_ORIGIN (lattice), origin);
- lambda_matrix_mult (LTM_MATRIX (trans), LATTICE_ORIGIN_INVARIANTS (lattice),
- origin_invariants, depth, depth, invariants);
-
- for (i = 0; i < depth; i++)
- {
- loop = LN_LOOPS (target_nest)[i];
- expression = LL_LINEAR_OFFSET (loop);
- if (lambda_vector_zerop (LLE_COEFFICIENTS (expression), depth))
- f = 1;
- else
- f = LLE_DENOMINATOR (expression);
-
- LLE_CONSTANT (expression) += f * origin[i];
-
- for (j = 0; j < invariants; j++)
- LLE_INVARIANT_COEFFICIENTS (expression)[j] +=
- f * origin_invariants[i][j];
- }
-
- return target_nest;
-
-}
-
-/* Convert a gcc tree expression EXPR to a lambda linear expression, and
- return the new expression. DEPTH is the depth of the loopnest.
- OUTERINDUCTIONVARS is an array of the induction variables for outer loops
- in this nest. INVARIANTS is the array of invariants for the loop. EXTRA
- is the amount we have to add/subtract from the expression because of the
- type of comparison it is used in. */
-
-static lambda_linear_expression
-gcc_tree_to_linear_expression (int depth, tree expr,
- VEC(tree,heap) *outerinductionvars,
- VEC(tree,heap) *invariants, int extra,
- struct obstack * lambda_obstack)
-{
- lambda_linear_expression lle = NULL;
- switch (TREE_CODE (expr))
- {
- case INTEGER_CST:
- {
- lle = lambda_linear_expression_new (depth, 2 * depth, lambda_obstack);
- LLE_CONSTANT (lle) = TREE_INT_CST_LOW (expr);
- if (extra != 0)
- LLE_CONSTANT (lle) += extra;
-
- LLE_DENOMINATOR (lle) = 1;
- }
- break;
- case SSA_NAME:
- {
- tree iv, invar;
- size_t i;
- FOR_EACH_VEC_ELT (tree, outerinductionvars, i, iv)
- if (iv != NULL)
- {
- if (SSA_NAME_VAR (iv) == SSA_NAME_VAR (expr))
- {
- lle = lambda_linear_expression_new (depth, 2 * depth,
- lambda_obstack);
- LLE_COEFFICIENTS (lle)[i] = 1;
- if (extra != 0)
- LLE_CONSTANT (lle) = extra;
-
- LLE_DENOMINATOR (lle) = 1;
- }
- }
- FOR_EACH_VEC_ELT (tree, invariants, i, invar)
- if (invar != NULL)
- {
- if (SSA_NAME_VAR (invar) == SSA_NAME_VAR (expr))
- {
- lle = lambda_linear_expression_new (depth, 2 * depth,
- lambda_obstack);
- LLE_INVARIANT_COEFFICIENTS (lle)[i] = 1;
- if (extra != 0)
- LLE_CONSTANT (lle) = extra;
- LLE_DENOMINATOR (lle) = 1;
- }
- }
- }
- break;
- default:
- return NULL;
- }
-
- return lle;
-}
-
-/* Return the depth of the loopnest NEST */
-
-static int
-depth_of_nest (struct loop *nest)
-{
- size_t depth = 0;
- while (nest)
- {
- depth++;
- nest = nest->inner;
- }
- return depth;
-}
-
-
-/* Return true if OP is invariant in LOOP and all outer loops. */
-
-static bool
-invariant_in_loop_and_outer_loops (struct loop *loop, tree op)
-{
- if (is_gimple_min_invariant (op))
- return true;
- if (loop_depth (loop) == 0)
- return true;
- if (!expr_invariant_in_loop_p (loop, op))
- return false;
- if (!invariant_in_loop_and_outer_loops (loop_outer (loop), op))
- return false;
- return true;
-}
-
-/* Generate a lambda loop from a gcc loop LOOP. Return the new lambda loop,
- or NULL if it could not be converted.
- DEPTH is the depth of the loop.
- INVARIANTS is a pointer to the array of loop invariants.
- The induction variable for this loop should be stored in the parameter
- OURINDUCTIONVAR.
- OUTERINDUCTIONVARS is an array of induction variables for outer loops. */
-
-static lambda_loop
-gcc_loop_to_lambda_loop (struct loop *loop, int depth,
- VEC(tree,heap) ** invariants,
- tree * ourinductionvar,
- VEC(tree,heap) * outerinductionvars,
- VEC(tree,heap) ** lboundvars,
- VEC(tree,heap) ** uboundvars,
- VEC(int,heap) ** steps,
- struct obstack * lambda_obstack)
-{
- gimple phi;
- gimple exit_cond;
- tree access_fn, inductionvar;
- tree step;
- lambda_loop lloop = NULL;
- lambda_linear_expression lbound, ubound;
- tree test_lhs, test_rhs;
- int stepint;
- int extra = 0;
- tree lboundvar, uboundvar, uboundresult;
-
- /* Find out induction var and exit condition. */
- inductionvar = find_induction_var_from_exit_cond (loop);
- exit_cond = get_loop_exit_condition (loop);
-
- if (inductionvar == NULL || exit_cond == NULL)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot determine exit condition or induction variable for loop.\n");
- return NULL;
- }
-
- if (SSA_NAME_DEF_STMT (inductionvar) == NULL)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot find PHI node for induction variable\n");
-
- return NULL;
- }
-
- phi = SSA_NAME_DEF_STMT (inductionvar);
- if (gimple_code (phi) != GIMPLE_PHI)
- {
- tree op = SINGLE_SSA_TREE_OPERAND (phi, SSA_OP_USE);
- if (!op)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot find PHI node for induction variable\n");
-
- return NULL;
- }
-
- phi = SSA_NAME_DEF_STMT (op);
- if (gimple_code (phi) != GIMPLE_PHI)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot find PHI node for induction variable\n");
- return NULL;
- }
- }
-
- /* The induction variable name/version we want to put in the array is the
- result of the induction variable phi node. */
- *ourinductionvar = PHI_RESULT (phi);
- access_fn = instantiate_parameters
- (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
- if (access_fn == chrec_dont_know)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Access function for induction variable phi is unknown\n");
-
- return NULL;
- }
-
- step = evolution_part_in_loop_num (access_fn, loop->num);
- if (!step || step == chrec_dont_know)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot determine step of loop.\n");
-
- return NULL;
- }
- if (TREE_CODE (step) != INTEGER_CST)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Step of loop is not integer.\n");
- return NULL;
- }
-
- stepint = TREE_INT_CST_LOW (step);
-
- /* Only want phis for induction vars, which will have two
- arguments. */
- if (gimple_phi_num_args (phi) != 2)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: PHI node for induction variable has >2 arguments\n");
- return NULL;
- }
-
- /* Another induction variable check. One argument's source should be
- in the loop, one outside the loop. */
- if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src)
- && flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 1)->src))
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: PHI edges both inside loop, or both outside loop.\n");
-
- return NULL;
- }
-
- if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, 0)->src))
- {
- lboundvar = PHI_ARG_DEF (phi, 1);
- lbound = gcc_tree_to_linear_expression (depth, lboundvar,
- outerinductionvars, *invariants,
- 0, lambda_obstack);
- }
- else
- {
- lboundvar = PHI_ARG_DEF (phi, 0);
- lbound = gcc_tree_to_linear_expression (depth, lboundvar,
- outerinductionvars, *invariants,
- 0, lambda_obstack);
- }
-
- if (!lbound)
- {
-
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot convert lower bound to linear expression\n");
-
- return NULL;
- }
- /* One part of the test may be a loop invariant tree. */
- VEC_reserve (tree, heap, *invariants, 1);
- test_lhs = gimple_cond_lhs (exit_cond);
- test_rhs = gimple_cond_rhs (exit_cond);
-
- if (TREE_CODE (test_rhs) == SSA_NAME
- && invariant_in_loop_and_outer_loops (loop, test_rhs))
- VEC_quick_push (tree, *invariants, test_rhs);
- else if (TREE_CODE (test_lhs) == SSA_NAME
- && invariant_in_loop_and_outer_loops (loop, test_lhs))
- VEC_quick_push (tree, *invariants, test_lhs);
-
- /* The non-induction variable part of the test is the upper bound variable.
- */
- if (test_lhs == inductionvar)
- uboundvar = test_rhs;
- else
- uboundvar = test_lhs;
-
- /* We only size the vectors assuming we have, at max, 2 times as many
- invariants as we do loops (one for each bound).
- This is just an arbitrary number, but it has to be matched against the
- code below. */
- gcc_assert (VEC_length (tree, *invariants) <= (unsigned int) (2 * depth));
-
-
- /* We might have some leftover. */
- if (gimple_cond_code (exit_cond) == LT_EXPR)
- extra = -1 * stepint;
- else if (gimple_cond_code (exit_cond) == NE_EXPR)
- extra = -1 * stepint;
- else if (gimple_cond_code (exit_cond) == GT_EXPR)
- extra = -1 * stepint;
- else if (gimple_cond_code (exit_cond) == EQ_EXPR)
- extra = 1 * stepint;
-
- ubound = gcc_tree_to_linear_expression (depth, uboundvar,
- outerinductionvars,
- *invariants, extra, lambda_obstack);
- uboundresult = build2 (PLUS_EXPR, TREE_TYPE (uboundvar), uboundvar,
- build_int_cst (TREE_TYPE (uboundvar), extra));
- VEC_safe_push (tree, heap, *uboundvars, uboundresult);
- VEC_safe_push (tree, heap, *lboundvars, lboundvar);
- VEC_safe_push (int, heap, *steps, stepint);
- if (!ubound)
- {
- if (dump_file && (dump_flags & TDF_DETAILS))
- fprintf (dump_file,
- "Unable to convert loop: Cannot convert upper bound to linear expression\n");
- return NULL;
- }
-
- lloop = lambda_loop_new (lambda_obstack);
- LL_STEP (lloop) = stepint;
- LL_LOWER_BOUND (lloop) = lbound;
- LL_UPPER_BOUND (lloop) = ubound;
- return lloop;
-}
-
-/* Given a LOOP, find the induction variable it is testing against in the exit
- condition. Return the induction variable if found, NULL otherwise. */
-
-tree
-find_induction_var_from_exit_cond (struct loop *loop)
-{
- gimple expr = get_loop_exit_condition (loop);
- tree ivarop;
- tree test_lhs, test_rhs;
- if (expr == NULL)
- return NULL_TREE;
- if (gimple_code (expr) != GIMPLE_COND)
- return NULL_TREE;
- test_lhs = gimple_cond_lhs (expr);
- test_rhs = gimple_cond_rhs (expr);
-
- /* Find the side that is invariant in this loop. The ivar must be the other
- side. */
-
- if (expr_invariant_in_loop_p (loop, test_lhs))
- ivarop = test_rhs;
- else if (expr_invariant_in_loop_p (loop, test_rhs))
- ivarop = test_lhs;
- else
- return NULL_TREE;
-
- if (TREE_CODE (ivarop) != SSA_NAME)
- return NULL_TREE;
- return ivarop;
-}
-
-DEF_VEC_P(lambda_loop);
-DEF_VEC_ALLOC_P(lambda_loop,heap);
-
-/* Generate a lambda loopnest from a gcc loopnest LOOP_NEST.
- Return the new loop nest.
- INDUCTIONVARS is a pointer to an array of induction variables for the
- loopnest that will be filled in during this process.
- INVARIANTS is a pointer to an array of invariants that will be filled in
- during this process. */
-
-lambda_loopnest
-gcc_loopnest_to_lambda_loopnest (struct loop *loop_nest,
- VEC(tree,heap) **inductionvars,
- VEC(tree,heap) **invariants,
- struct obstack * lambda_obstack)
-{
- lambda_loopnest ret = NULL;
- struct loop *temp = loop_nest;
- int depth = depth_of_nest (loop_nest);
- size_t i;
- VEC(lambda_loop,heap) *loops = NULL;
- VEC(tree,heap) *uboundvars = NULL;
- VEC(tree,heap) *lboundvars = NULL;
- VEC(int,heap) *steps = NULL;
- lambda_loop newloop;
- tree inductionvar = NULL;
- bool perfect_nest = perfect_nest_p (loop_nest);
-
- if (!perfect_nest && !can_convert_to_perfect_nest (loop_nest))
- goto fail;
-
- while (temp)
- {
- newloop = gcc_loop_to_lambda_loop (temp, depth, invariants,
- &inductionvar, *inductionvars,
- &lboundvars, &uboundvars,
- &steps, lambda_obstack);
- if (!newloop)
- goto fail;
-
- VEC_safe_push (tree, heap, *inductionvars, inductionvar);
- VEC_safe_push (lambda_loop, heap, loops, newloop);
- temp = temp->inner;
- }
-
- if (!perfect_nest)
- {
- if (!perfect_nestify (loop_nest, lboundvars, uboundvars, steps,
- *inductionvars))
- {
- if (dump_file)
- fprintf (dump_file,
- "Not a perfect loop nest and couldn't convert to one.\n");
- goto fail;
- }
- else if (dump_file)
- fprintf (dump_file,
- "Successfully converted loop nest to perfect loop nest.\n");
- }
-
- ret = lambda_loopnest_new (depth, 2 * depth, lambda_obstack);
-
- FOR_EACH_VEC_ELT (lambda_loop, loops, i, newloop)
- LN_LOOPS (ret)[i] = newloop;
-
- fail:
- VEC_free (lambda_loop, heap, loops);
- VEC_free (tree, heap, uboundvars);
- VEC_free (tree, heap, lboundvars);
- VEC_free (int, heap, steps);
-
- return ret;
-}
-
-/* Convert a lambda body vector LBV to a gcc tree, and return the new tree.
- STMTS_TO_INSERT is a pointer to a tree where the statements we need to be
- inserted for us are stored. INDUCTION_VARS is the array of induction
- variables for the loop this LBV is from. TYPE is the tree type to use for
- the variables and trees involved. */
-
-static tree
-lbv_to_gcc_expression (lambda_body_vector lbv,
- tree type, VEC(tree,heap) *induction_vars,
- gimple_seq *stmts_to_insert)
-{
- int k;
- tree resvar;
- tree expr = build_linear_expr (type, LBV_COEFFICIENTS (lbv), induction_vars);
-
- k = LBV_DENOMINATOR (lbv);
- gcc_assert (k != 0);
- if (k != 1)
- expr = fold_build2 (CEIL_DIV_EXPR, type, expr, build_int_cst (type, k));
-
- resvar = create_tmp_var (type, "lbvtmp");
- add_referenced_var (resvar);
- return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
-}
-
-/* Convert a linear expression from coefficient and constant form to a
- gcc tree.
- Return the tree that represents the final value of the expression.
- LLE is the linear expression to convert.
- OFFSET is the linear offset to apply to the expression.
- TYPE is the tree type to use for the variables and math.
- INDUCTION_VARS is a vector of induction variables for the loops.
- INVARIANTS is a vector of the loop nest invariants.
- WRAP specifies what tree code to wrap the results in, if there is more than
- one (it is either MAX_EXPR, or MIN_EXPR).
- STMTS_TO_INSERT Is a pointer to the statement list we fill in with
- statements that need to be inserted for the linear expression. */
-
-static tree
-lle_to_gcc_expression (lambda_linear_expression lle,
- lambda_linear_expression offset,
- tree type,
- VEC(tree,heap) *induction_vars,
- VEC(tree,heap) *invariants,
- enum tree_code wrap, gimple_seq *stmts_to_insert)
-{
- int k;
- tree resvar;
- tree expr = NULL_TREE;
- VEC(tree,heap) *results = NULL;
-
- gcc_assert (wrap == MAX_EXPR || wrap == MIN_EXPR);
-
- /* Build up the linear expressions. */
- for (; lle != NULL; lle = LLE_NEXT (lle))
- {
- expr = build_linear_expr (type, LLE_COEFFICIENTS (lle), induction_vars);
- expr = fold_build2 (PLUS_EXPR, type, expr,
- build_linear_expr (type,
- LLE_INVARIANT_COEFFICIENTS (lle),
- invariants));
-
- k = LLE_CONSTANT (lle);
- if (k)
- expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
-
- k = LLE_CONSTANT (offset);
- if (k)
- expr = fold_build2 (PLUS_EXPR, type, expr, build_int_cst (type, k));
-
- k = LLE_DENOMINATOR (lle);
- if (k != 1)
- expr = fold_build2 (wrap == MAX_EXPR ? CEIL_DIV_EXPR : FLOOR_DIV_EXPR,
- type, expr, build_int_cst (type, k));
-
- expr = fold (expr);
- VEC_safe_push (tree, heap, results, expr);
- }
-
- gcc_assert (expr);
-
- /* We may need to wrap the results in a MAX_EXPR or MIN_EXPR. */
- if (VEC_length (tree, results) > 1)
- {
- size_t i;
- tree op;
-
- expr = VEC_index (tree, results, 0);
- for (i = 1; VEC_iterate (tree, results, i, op); i++)
- expr = fold_build2 (wrap, type, expr, op);
- }
-
- VEC_free (tree, heap, results);
-
- resvar = create_tmp_var (type, "lletmp");
- add_referenced_var (resvar);
- return force_gimple_operand (fold (expr), stmts_to_insert, true, resvar);
-}
-
-/* Remove the induction variable defined at IV_STMT. */
-
-void
-remove_iv (gimple iv_stmt)
-{
- gimple_stmt_iterator si = gsi_for_stmt (iv_stmt);
-
- if (gimple_code (iv_stmt) == GIMPLE_PHI)
- {
- unsigned i;
-
- for (i = 0; i < gimple_phi_num_args (iv_stmt); i++)
- {
- gimple stmt;
- imm_use_iterator imm_iter;
- tree arg = gimple_phi_arg_def (iv_stmt, i);
- bool used = false;
-
- if (TREE_CODE (arg) != SSA_NAME)
- continue;
-
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, arg)
- if (stmt != iv_stmt && !is_gimple_debug (stmt))
- used = true;
-
- if (!used)
- remove_iv (SSA_NAME_DEF_STMT (arg));
- }
-
- remove_phi_node (&si, true);
- }
- else
- {
- gsi_remove (&si, true);
- release_defs (iv_stmt);
- }
-}
-
-/* Transform a lambda loopnest NEW_LOOPNEST, which had TRANSFORM applied to
- it, back into gcc code. This changes the
- loops, their induction variables, and their bodies, so that they
- match the transformed loopnest.
- OLD_LOOPNEST is the loopnest before we've replaced it with the new
- loopnest.
- OLD_IVS is a vector of induction variables from the old loopnest.
- INVARIANTS is a vector of loop invariants from the old loopnest.
- NEW_LOOPNEST is the new lambda loopnest to replace OLD_LOOPNEST with.
- TRANSFORM is the matrix transform that was applied to OLD_LOOPNEST to get
- NEW_LOOPNEST. */
-
-void
-lambda_loopnest_to_gcc_loopnest (struct loop *old_loopnest,
- VEC(tree,heap) *old_ivs,
- VEC(tree,heap) *invariants,
- VEC(gimple,heap) **remove_ivs,
- lambda_loopnest new_loopnest,
- lambda_trans_matrix transform,
- struct obstack * lambda_obstack)
-{
- struct loop *temp;
- size_t i = 0;
- unsigned j;
- size_t depth = 0;
- VEC(tree,heap) *new_ivs = NULL;
- tree oldiv;
- gimple_stmt_iterator bsi;
-
- transform = lambda_trans_matrix_inverse (transform, lambda_obstack);
-
- if (dump_file)
- {
- fprintf (dump_file, "Inverse of transformation matrix:\n");
- print_lambda_trans_matrix (dump_file, transform);
- }
- depth = depth_of_nest (old_loopnest);
- temp = old_loopnest;
-
- while (temp)
- {
- lambda_loop newloop;
- basic_block bb;
- edge exit;
- tree ivvar, ivvarinced;
- gimple exitcond;
- gimple_seq stmts;
- enum tree_code testtype;
- tree newupperbound, newlowerbound;
- lambda_linear_expression offset;
- tree type;
- bool insert_after;
- gimple inc_stmt;
-
- oldiv = VEC_index (tree, old_ivs, i);
- type = TREE_TYPE (oldiv);
-
- /* First, build the new induction variable temporary */
-
- ivvar = create_tmp_var (type, "lnivtmp");
- add_referenced_var (ivvar);
-
- VEC_safe_push (tree, heap, new_ivs, ivvar);
-
- newloop = LN_LOOPS (new_loopnest)[i];
-
- /* Linear offset is a bit tricky to handle. Punt on the unhandled
- cases for now. */
- offset = LL_LINEAR_OFFSET (newloop);
-
- gcc_assert (LLE_DENOMINATOR (offset) == 1 &&
- lambda_vector_zerop (LLE_COEFFICIENTS (offset), depth));
-
- /* Now build the new lower bounds, and insert the statements
- necessary to generate it on the loop preheader. */
- stmts = NULL;
- newlowerbound = lle_to_gcc_expression (LL_LOWER_BOUND (newloop),
- LL_LINEAR_OFFSET (newloop),
- type,
- new_ivs,
- invariants, MAX_EXPR, &stmts);
-
- if (stmts)
- {
- gsi_insert_seq_on_edge (loop_preheader_edge (temp), stmts);
- gsi_commit_edge_inserts ();
- }
- /* Build the new upper bound and insert its statements in the
- basic block of the exit condition */
- stmts = NULL;
- newupperbound = lle_to_gcc_expression (LL_UPPER_BOUND (newloop),
- LL_LINEAR_OFFSET (newloop),
- type,
- new_ivs,
- invariants, MIN_EXPR, &stmts);
- exit = single_exit (temp);
- exitcond = get_loop_exit_condition (temp);
- bb = gimple_bb (exitcond);
- bsi = gsi_after_labels (bb);
- if (stmts)
- gsi_insert_seq_before (&bsi, stmts, GSI_NEW_STMT);
-
- /* Create the new iv. */
-
- standard_iv_increment_position (temp, &bsi, &insert_after);
- create_iv (newlowerbound,
- build_int_cst (type, LL_STEP (newloop)),
- ivvar, temp, &bsi, insert_after, &ivvar,
- NULL);
-
- /* Unfortunately, the incremented ivvar that create_iv inserted may not
- dominate the block containing the exit condition.
- So we simply create our own incremented iv to use in the new exit
- test, and let redundancy elimination sort it out. */
- inc_stmt = gimple_build_assign_with_ops (PLUS_EXPR, SSA_NAME_VAR (ivvar),
- ivvar,
- build_int_cst (type, LL_STEP (newloop)));
-
- ivvarinced = make_ssa_name (SSA_NAME_VAR (ivvar), inc_stmt);
- gimple_assign_set_lhs (inc_stmt, ivvarinced);
- bsi = gsi_for_stmt (exitcond);
- gsi_insert_before (&bsi, inc_stmt, GSI_SAME_STMT);
-
- /* Replace the exit condition with the new upper bound
- comparison. */
-
- testtype = LL_STEP (newloop) >= 0 ? LE_EXPR : GE_EXPR;
-
- /* We want to build a conditional where true means exit the loop, and
- false means continue the loop.
- So swap the testtype if this isn't the way things are.*/
-
- if (exit->flags & EDGE_FALSE_VALUE)
- testtype = swap_tree_comparison (testtype);
-
- gimple_cond_set_condition (exitcond, testtype, newupperbound, ivvarinced);
- update_stmt (exitcond);
- VEC_replace (tree, new_ivs, i, ivvar);
-
- i++;
- temp = temp->inner;
- }
-
- /* Rewrite uses of the old ivs so that they are now specified in terms of
- the new ivs. */
-
- FOR_EACH_VEC_ELT (tree, old_ivs, i, oldiv)
- {
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- tree oldiv_def;
- gimple oldiv_stmt = SSA_NAME_DEF_STMT (oldiv);
- gimple stmt;
-
- if (gimple_code (oldiv_stmt) == GIMPLE_PHI)
- oldiv_def = PHI_RESULT (oldiv_stmt);
- else
- oldiv_def = SINGLE_SSA_TREE_OPERAND (oldiv_stmt, SSA_OP_DEF);
- gcc_assert (oldiv_def != NULL_TREE);
-
- FOR_EACH_IMM_USE_STMT (stmt, imm_iter, oldiv_def)
- {
- tree newiv;
- gimple_seq stmts;
- lambda_body_vector lbv, newlbv;
-
- if (is_gimple_debug (stmt))
- continue;
-
- /* Compute the new expression for the induction
- variable. */
- depth = VEC_length (tree, new_ivs);
- lbv = lambda_body_vector_new (depth, lambda_obstack);
- LBV_COEFFICIENTS (lbv)[i] = 1;
-
- newlbv = lambda_body_vector_compute_new (transform, lbv,
- lambda_obstack);
-
- stmts = NULL;
- newiv = lbv_to_gcc_expression (newlbv, TREE_TYPE (oldiv),
- new_ivs, &stmts);
-
- if (stmts && gimple_code (stmt) != GIMPLE_PHI)
- {
- bsi = gsi_for_stmt (stmt);
- gsi_insert_seq_before (&bsi, stmts, GSI_SAME_STMT);
- }
-
- FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
- propagate_value (use_p, newiv);
-
- if (stmts && gimple_code (stmt) == GIMPLE_PHI)
- for (j = 0; j < gimple_phi_num_args (stmt); j++)
- if (gimple_phi_arg_def (stmt, j) == newiv)
- gsi_insert_seq_on_edge (gimple_phi_arg_edge (stmt, j), stmts);
-
- update_stmt (stmt);
- }
-
- /* Remove the now unused induction variable. */
- VEC_safe_push (gimple, heap, *remove_ivs, oldiv_stmt);
- }
- VEC_free (tree, heap, new_ivs);
-}
-
-/* Return TRUE if this is not interesting statement from the perspective of
- determining if we have a perfect loop nest. */
-
-static bool
-not_interesting_stmt (gimple stmt)
-{
- /* Note that COND_EXPR's aren't interesting because if they were exiting the
- loop, we would have already failed the number of exits tests. */
- if (gimple_code (stmt) == GIMPLE_LABEL
- || gimple_code (stmt) == GIMPLE_GOTO
- || gimple_code (stmt) == GIMPLE_COND
- || is_gimple_debug (stmt))
- return true;
- return false;
-}
-
-/* Return TRUE if PHI uses DEF for it's in-the-loop edge for LOOP. */
-
-static bool
-phi_loop_edge_uses_def (struct loop *loop, gimple phi, tree def)
-{
- unsigned i;
- for (i = 0; i < gimple_phi_num_args (phi); i++)
- if (flow_bb_inside_loop_p (loop, gimple_phi_arg_edge (phi, i)->src))
- if (PHI_ARG_DEF (phi, i) == def)
- return true;
- return false;
-}
-
-/* Return TRUE if STMT is a use of PHI_RESULT. */
-
-static bool
-stmt_uses_phi_result (gimple stmt, tree phi_result)
-{
- tree use = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_USE);
-
- /* This is conservatively true, because we only want SIMPLE bumpers
- of the form x +- constant for our pass. */
- return (use == phi_result);
-}
-
-/* STMT is a bumper stmt for LOOP if the version it defines is used in the
- in-loop-edge in a phi node, and the operand it uses is the result of that
- phi node.
- I.E. i_29 = i_3 + 1
- i_3 = PHI (0, i_29); */
-
-static bool
-stmt_is_bumper_for_loop (struct loop *loop, gimple stmt)
-{
- gimple use;
- tree def;
- imm_use_iterator iter;
- use_operand_p use_p;
-
- def = SINGLE_SSA_TREE_OPERAND (stmt, SSA_OP_DEF);
- if (!def)
- return false;
-
- FOR_EACH_IMM_USE_FAST (use_p, iter, def)
- {
- use = USE_STMT (use_p);
- if (gimple_code (use) == GIMPLE_PHI)
- {
- if (phi_loop_edge_uses_def (loop, use, def))
- if (stmt_uses_phi_result (stmt, PHI_RESULT (use)))
- return true;
- }
- }
- return false;
-}
-
-
-/* Return true if LOOP is a perfect loop nest.
- Perfect loop nests are those loop nests where all code occurs in the
- innermost loop body.
- If S is a program statement, then
-
- i.e.
- DO I = 1, 20
- S1
- DO J = 1, 20
- ...
- END DO
- END DO
- is not a perfect loop nest because of S1.
-
- DO I = 1, 20
- DO J = 1, 20
- S1
- ...
- END DO
- END DO
- is a perfect loop nest.
-
- Since we don't have high level loops anymore, we basically have to walk our
- statements and ignore those that are there because the loop needs them (IE
- the induction variable increment, and jump back to the top of the loop). */
-
-bool
-perfect_nest_p (struct loop *loop)
-{
- basic_block *bbs;
- size_t i;
- gimple exit_cond;
-
- /* Loops at depth 0 are perfect nests. */
- if (!loop->inner)
- return true;
-
- bbs = get_loop_body (loop);
- exit_cond = get_loop_exit_condition (loop);
-
- for (i = 0; i < loop->num_nodes; i++)
- {
- if (bbs[i]->loop_father == loop)
- {
- gimple_stmt_iterator bsi;
-
- for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- gimple stmt = gsi_stmt (bsi);
-
- if (gimple_code (stmt) == GIMPLE_COND
- && exit_cond != stmt)
- goto non_perfectly_nested;
-
- if (stmt == exit_cond
- || not_interesting_stmt (stmt)
- || stmt_is_bumper_for_loop (loop, stmt))
- continue;
-
- non_perfectly_nested:
- free (bbs);
- return false;
- }
- }
- }
-
- free (bbs);
-
- return perfect_nest_p (loop->inner);
-}
-
-/* Replace the USES of X in STMT, or uses with the same step as X with Y.
- YINIT is the initial value of Y, REPLACEMENTS is a hash table to
- avoid creating duplicate temporaries and FIRSTBSI is statement
- iterator where new temporaries should be inserted at the beginning
- of body basic block. */
-
-static void
-replace_uses_equiv_to_x_with_y (struct loop *loop, gimple stmt, tree x,
- int xstep, tree y, tree yinit,
- htab_t replacements,
- gimple_stmt_iterator *firstbsi)
-{
- ssa_op_iter iter;
- use_operand_p use_p;
-
- FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
- {
- tree use = USE_FROM_PTR (use_p);
- tree step = NULL_TREE;
- tree scev, init, val, var;
- gimple setstmt;
- struct tree_map *h, in;
- void **loc;
-
- /* Replace uses of X with Y right away. */
- if (use == x)
- {
- SET_USE (use_p, y);
- continue;
- }
-
- scev = instantiate_parameters (loop,
- analyze_scalar_evolution (loop, use));
-
- if (scev == NULL || scev == chrec_dont_know)
- continue;
-
- step = evolution_part_in_loop_num (scev, loop->num);
- if (step == NULL
- || step == chrec_dont_know
- || TREE_CODE (step) != INTEGER_CST
- || int_cst_value (step) != xstep)
- continue;
-
- /* Use REPLACEMENTS hash table to cache already created
- temporaries. */
- in.hash = htab_hash_pointer (use);
- in.base.from = use;
- h = (struct tree_map *) htab_find_with_hash (replacements, &in, in.hash);
- if (h != NULL)
- {
- SET_USE (use_p, h->to);
- continue;
- }
-
- /* USE which has the same step as X should be replaced
- with a temporary set to Y + YINIT - INIT. */
- init = initial_condition_in_loop_num (scev, loop->num);
- gcc_assert (init != NULL && init != chrec_dont_know);
- if (TREE_TYPE (use) == TREE_TYPE (y))
- {
- val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), init, yinit);
- val = fold_build2 (PLUS_EXPR, TREE_TYPE (y), y, val);
- if (val == y)
- {
- /* If X has the same type as USE, the same step
- and same initial value, it can be replaced by Y. */
- SET_USE (use_p, y);
- continue;
- }
- }
- else
- {
- val = fold_build2 (MINUS_EXPR, TREE_TYPE (y), y, yinit);
- val = fold_convert (TREE_TYPE (use), val);
- val = fold_build2 (PLUS_EXPR, TREE_TYPE (use), val, init);
- }
-
- /* Create a temporary variable and insert it at the beginning
- of the loop body basic block, right after the PHI node
- which sets Y. */
- var = create_tmp_var (TREE_TYPE (use), "perfecttmp");
- add_referenced_var (var);
- val = force_gimple_operand_gsi (firstbsi, val, false, NULL,
- true, GSI_SAME_STMT);
- setstmt = gimple_build_assign (var, val);
- var = make_ssa_name (var, setstmt);
- gimple_assign_set_lhs (setstmt, var);
- gsi_insert_before (firstbsi, setstmt, GSI_SAME_STMT);
- update_stmt (setstmt);
- SET_USE (use_p, var);
- h = ggc_alloc_tree_map ();
- h->hash = in.hash;
- h->base.from = use;
- h->to = var;
- loc = htab_find_slot_with_hash (replacements, h, in.hash, INSERT);
- gcc_assert ((*(struct tree_map **)loc) == NULL);
- *(struct tree_map **) loc = h;
- }
-}
-
-/* Return true if STMT is an exit PHI for LOOP */
-
-static bool
-exit_phi_for_loop_p (struct loop *loop, gimple stmt)
-{
- if (gimple_code (stmt) != GIMPLE_PHI
- || gimple_phi_num_args (stmt) != 1
- || gimple_bb (stmt) != single_exit (loop)->dest)
- return false;
-
- return true;
-}
-
-/* Return true if STMT can be put back into the loop INNER, by
- copying it to the beginning of that loop and changing the uses. */
-
-static bool
-can_put_in_inner_loop (struct loop *inner, gimple stmt)
-{
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- gcc_assert (is_gimple_assign (stmt));
- if (gimple_vuse (stmt)
- || !stmt_invariant_in_loop_p (inner, stmt))
- return false;
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
- {
- if (!exit_phi_for_loop_p (inner, USE_STMT (use_p)))
- {
- basic_block immbb = gimple_bb (USE_STMT (use_p));
-
- if (!flow_bb_inside_loop_p (inner, immbb))
- return false;
- }
- }
- return true;
-}
-
-/* Return true if STMT can be put *after* the inner loop of LOOP. */
-
-static bool
-can_put_after_inner_loop (struct loop *loop, gimple stmt)
-{
- imm_use_iterator imm_iter;
- use_operand_p use_p;
-
- if (gimple_vuse (stmt))
- return false;
-
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_assign_lhs (stmt))
- {
- if (!exit_phi_for_loop_p (loop, USE_STMT (use_p)))
- {
- basic_block immbb = gimple_bb (USE_STMT (use_p));
-
- if (!dominated_by_p (CDI_DOMINATORS,
- immbb,
- loop->inner->header)
- && !can_put_in_inner_loop (loop->inner, stmt))
- return false;
- }
- }
- return true;
-}
-
-/* Return true when the induction variable IV is simple enough to be
- re-synthesized. */
-
-static bool
-can_duplicate_iv (tree iv, struct loop *loop)
-{
- tree scev = instantiate_parameters
- (loop, analyze_scalar_evolution (loop, iv));
-
- if (!automatically_generated_chrec_p (scev))
- {
- tree step = evolution_part_in_loop_num (scev, loop->num);
-
- if (step && step != chrec_dont_know && TREE_CODE (step) == INTEGER_CST)
- return true;
- }
-
- return false;
-}
-
-/* If this is a scalar operation that can be put back into the inner
- loop, or after the inner loop, through copying, then do so. This
- works on the theory that any amount of scalar code we have to
- reduplicate into or after the loops is less expensive that the win
- we get from rearranging the memory walk the loop is doing so that
- it has better cache behavior. */
-
-static bool
-cannot_convert_modify_to_perfect_nest (gimple stmt, struct loop *loop)
-{
- use_operand_p use_a, use_b;
- imm_use_iterator imm_iter;
- ssa_op_iter op_iter, op_iter1;
- tree op0 = gimple_assign_lhs (stmt);
-
- /* The statement should not define a variable used in the inner
- loop. */
- if (TREE_CODE (op0) == SSA_NAME
- && !can_duplicate_iv (op0, loop))
- FOR_EACH_IMM_USE_FAST (use_a, imm_iter, op0)
- if (gimple_bb (USE_STMT (use_a))->loop_father == loop->inner)
- return true;
-
- FOR_EACH_SSA_USE_OPERAND (use_a, stmt, op_iter, SSA_OP_USE)
- {
- gimple node;
- tree op = USE_FROM_PTR (use_a);
-
- /* The variables should not be used in both loops. */
- if (!can_duplicate_iv (op, loop))
- FOR_EACH_IMM_USE_FAST (use_b, imm_iter, op)
- if (gimple_bb (USE_STMT (use_b))->loop_father == loop->inner)
- return true;
-
- /* The statement should not use the value of a scalar that was
- modified in the loop. */
- node = SSA_NAME_DEF_STMT (op);
- if (gimple_code (node) == GIMPLE_PHI)
- FOR_EACH_PHI_ARG (use_b, node, op_iter1, SSA_OP_USE)
- {
- tree arg = USE_FROM_PTR (use_b);
-
- if (TREE_CODE (arg) == SSA_NAME)
- {
- gimple arg_stmt = SSA_NAME_DEF_STMT (arg);
-
- if (gimple_bb (arg_stmt)
- && (gimple_bb (arg_stmt)->loop_father == loop->inner))
- return true;
- }
- }
- }
-
- return false;
-}
-/* Return true when BB contains statements that can harm the transform
- to a perfect loop nest. */
-
-static bool
-cannot_convert_bb_to_perfect_nest (basic_block bb, struct loop *loop)
-{
- gimple_stmt_iterator bsi;
- gimple exit_condition = get_loop_exit_condition (loop);
-
- for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- gimple stmt = gsi_stmt (bsi);
-
- if (stmt == exit_condition
- || not_interesting_stmt (stmt)
- || stmt_is_bumper_for_loop (loop, stmt))
- continue;
-
- if (is_gimple_assign (stmt))
- {
- if (cannot_convert_modify_to_perfect_nest (stmt, loop))
- return true;
-
- if (can_duplicate_iv (gimple_assign_lhs (stmt), loop))
- continue;
-
- if (can_put_in_inner_loop (loop->inner, stmt)
- || can_put_after_inner_loop (loop, stmt))
- continue;
- }
-
- /* If the bb of a statement we care about isn't dominated by the
- header of the inner loop, then we can't handle this case
- right now. This test ensures that the statement comes
- completely *after* the inner loop. */
- if (!dominated_by_p (CDI_DOMINATORS,
- gimple_bb (stmt),
- loop->inner->header))
- return true;
- }
-
- return false;
-}
-
-
-/* Return TRUE if LOOP is an imperfect nest that we can convert to a
- perfect one. At the moment, we only handle imperfect nests of
- depth 2, where all of the statements occur after the inner loop. */
-
-static bool
-can_convert_to_perfect_nest (struct loop *loop)
-{
- basic_block *bbs;
- size_t i;
- gimple_stmt_iterator si;
-
- /* Can't handle triply nested+ loops yet. */
- if (!loop->inner || loop->inner->inner)
- return false;
-
- bbs = get_loop_body (loop);
- for (i = 0; i < loop->num_nodes; i++)
- if (bbs[i]->loop_father == loop
- && cannot_convert_bb_to_perfect_nest (bbs[i], loop))
- goto fail;
-
- /* We also need to make sure the loop exit only has simple copy phis in it,
- otherwise we don't know how to transform it into a perfect nest. */
- for (si = gsi_start_phis (single_exit (loop)->dest);
- !gsi_end_p (si);
- gsi_next (&si))
- if (gimple_phi_num_args (gsi_stmt (si)) != 1)
- goto fail;
-
- free (bbs);
- return true;
-
- fail:
- free (bbs);
- return false;
-}
-
-
-DEF_VEC_I(source_location);
-DEF_VEC_ALLOC_I(source_location,heap);
-
-/* Transform the loop nest into a perfect nest, if possible.
- LOOP is the loop nest to transform into a perfect nest
- LBOUNDS are the lower bounds for the loops to transform
- UBOUNDS are the upper bounds for the loops to transform
- STEPS is the STEPS for the loops to transform.
- LOOPIVS is the induction variables for the loops to transform.
-
- Basically, for the case of
-
- FOR (i = 0; i < 50; i++)
- {
- FOR (j =0; j < 50; j++)
- {
- <whatever>
- }
- <some code>
- }
-
- This function will transform it into a perfect loop nest by splitting the
- outer loop into two loops, like so:
-
- FOR (i = 0; i < 50; i++)
- {
- FOR (j = 0; j < 50; j++)
- {
- <whatever>
- }
- }
-
- FOR (i = 0; i < 50; i ++)
- {
- <some code>
- }
-
- Return FALSE if we can't make this loop into a perfect nest. */
-
-static bool
-perfect_nestify (struct loop *loop,
- VEC(tree,heap) *lbounds,
- VEC(tree,heap) *ubounds,
- VEC(int,heap) *steps,
- VEC(tree,heap) *loopivs)
-{
- basic_block *bbs;
- gimple exit_condition;
- gimple cond_stmt;
- basic_block preheaderbb, headerbb, bodybb, latchbb, olddest;
- int i;
- gimple_stmt_iterator bsi, firstbsi;
- bool insert_after;
- edge e;
- struct loop *newloop;
- gimple phi;
- tree uboundvar;
- gimple stmt;
- tree oldivvar, ivvar, ivvarinced;
- VEC(tree,heap) *phis = NULL;
- VEC(source_location,heap) *locations = NULL;
- htab_t replacements = NULL;
-
- /* Create the new loop. */
- olddest = single_exit (loop)->dest;
- preheaderbb = split_edge (single_exit (loop));
- headerbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
-
- /* Push the exit phi nodes that we are moving. */
- for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); gsi_next (&bsi))
- {
- phi = gsi_stmt (bsi);
- VEC_reserve (tree, heap, phis, 2);
- VEC_reserve (source_location, heap, locations, 1);
- VEC_quick_push (tree, phis, PHI_RESULT (phi));
- VEC_quick_push (tree, phis, PHI_ARG_DEF (phi, 0));
- VEC_quick_push (source_location, locations,
- gimple_phi_arg_location (phi, 0));
- }
- e = redirect_edge_and_branch (single_succ_edge (preheaderbb), headerbb);
-
- /* Remove the exit phis from the old basic block. */
- for (bsi = gsi_start_phis (olddest); !gsi_end_p (bsi); )
- remove_phi_node (&bsi, false);
-
- /* and add them back to the new basic block. */
- while (VEC_length (tree, phis) != 0)
- {
- tree def;
- tree phiname;
- source_location locus;
- def = VEC_pop (tree, phis);
- phiname = VEC_pop (tree, phis);
- locus = VEC_pop (source_location, locations);
- phi = create_phi_node (phiname, preheaderbb);
- add_phi_arg (phi, def, single_pred_edge (preheaderbb), locus);
- }
- flush_pending_stmts (e);
- VEC_free (tree, heap, phis);
-
- bodybb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
- latchbb = create_empty_bb (EXIT_BLOCK_PTR->prev_bb);
- make_edge (headerbb, bodybb, EDGE_FALLTHRU);
- cond_stmt = gimple_build_cond (NE_EXPR, integer_one_node, integer_zero_node,
- NULL_TREE, NULL_TREE);
- bsi = gsi_start_bb (bodybb);
- gsi_insert_after (&bsi, cond_stmt, GSI_NEW_STMT);
- e = make_edge (bodybb, olddest, EDGE_FALSE_VALUE);
- make_edge (bodybb, latchbb, EDGE_TRUE_VALUE);
- make_edge (latchbb, headerbb, EDGE_FALLTHRU);
-
- /* Update the loop structures. */
- newloop = duplicate_loop (loop, olddest->loop_father);
- newloop->header = headerbb;
- newloop->latch = latchbb;
- add_bb_to_loop (latchbb, newloop);
- add_bb_to_loop (bodybb, newloop);
- add_bb_to_loop (headerbb, newloop);
- set_immediate_dominator (CDI_DOMINATORS, bodybb, headerbb);
- set_immediate_dominator (CDI_DOMINATORS, headerbb, preheaderbb);
- set_immediate_dominator (CDI_DOMINATORS, preheaderbb,
- single_exit (loop)->src);
- set_immediate_dominator (CDI_DOMINATORS, latchbb, bodybb);
- set_immediate_dominator (CDI_DOMINATORS, olddest,
- recompute_dominator (CDI_DOMINATORS, olddest));
- /* Create the new iv. */
- oldivvar = VEC_index (tree, loopivs, 0);
- ivvar = create_tmp_var (TREE_TYPE (oldivvar), "perfectiv");
- add_referenced_var (ivvar);
- standard_iv_increment_position (newloop, &bsi, &insert_after);
- create_iv (VEC_index (tree, lbounds, 0),
- build_int_cst (TREE_TYPE (oldivvar), VEC_index (int, steps, 0)),
- ivvar, newloop, &bsi, insert_after, &ivvar, &ivvarinced);
-
- /* Create the new upper bound. This may be not just a variable, so we copy
- it to one just in case. */
-
- exit_condition = get_loop_exit_condition (newloop);
- uboundvar = create_tmp_var (TREE_TYPE (VEC_index (tree, ubounds, 0)),
- "uboundvar");
- add_referenced_var (uboundvar);
- stmt = gimple_build_assign (uboundvar, VEC_index (tree, ubounds, 0));
- uboundvar = make_ssa_name (uboundvar, stmt);
- gimple_assign_set_lhs (stmt, uboundvar);
-
- if (insert_after)
- gsi_insert_after (&bsi, stmt, GSI_SAME_STMT);
- else
- gsi_insert_before (&bsi, stmt, GSI_SAME_STMT);
- update_stmt (stmt);
- gimple_cond_set_condition (exit_condition, GE_EXPR, uboundvar, ivvarinced);
- update_stmt (exit_condition);
- replacements = htab_create_ggc (20, tree_map_hash,
- tree_map_eq, NULL);
- bbs = get_loop_body_in_dom_order (loop);
- /* Now move the statements, and replace the induction variable in the moved
- statements with the correct loop induction variable. */
- oldivvar = VEC_index (tree, loopivs, 0);
- firstbsi = gsi_start_bb (bodybb);
- for (i = loop->num_nodes - 1; i >= 0 ; i--)
- {
- gimple_stmt_iterator tobsi = gsi_last_bb (bodybb);
- if (bbs[i]->loop_father == loop)
- {
- /* If this is true, we are *before* the inner loop.
- If this isn't true, we are *after* it.
-
- The only time can_convert_to_perfect_nest returns true when we
- have statements before the inner loop is if they can be moved
- into the inner loop.
-
- The only time can_convert_to_perfect_nest returns true when we
- have statements after the inner loop is if they can be moved into
- the new split loop. */
-
- if (dominated_by_p (CDI_DOMINATORS, loop->inner->header, bbs[i]))
- {
- gimple_stmt_iterator header_bsi
- = gsi_after_labels (loop->inner->header);
-
- for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
- {
- gimple stmt = gsi_stmt (bsi);
-
- if (stmt == exit_condition
- || not_interesting_stmt (stmt)
- || stmt_is_bumper_for_loop (loop, stmt))
- {
- gsi_next (&bsi);
- continue;
- }
-
- gsi_move_before (&bsi, &header_bsi);
- }
- }
- else
- {
- /* Note that the bsi only needs to be explicitly incremented
- when we don't move something, since it is automatically
- incremented when we do. */
- for (bsi = gsi_start_bb (bbs[i]); !gsi_end_p (bsi);)
- {
- gimple stmt = gsi_stmt (bsi);
-
- if (stmt == exit_condition
- || not_interesting_stmt (stmt)
- || stmt_is_bumper_for_loop (loop, stmt))
- {
- gsi_next (&bsi);
- continue;
- }
-
- replace_uses_equiv_to_x_with_y
- (loop, stmt, oldivvar, VEC_index (int, steps, 0), ivvar,
- VEC_index (tree, lbounds, 0), replacements, &firstbsi);
-
- gsi_move_before (&bsi, &tobsi);
-
- /* If the statement has any virtual operands, they may
- need to be rewired because the original loop may
- still reference them. */
- if (gimple_vuse (stmt))
- mark_sym_for_renaming (gimple_vop (cfun));
- }
- }
-
- }
- }
-
- free (bbs);
- htab_delete (replacements);
- return perfect_nest_p (loop);
-}
-
-/* Return true if TRANS is a legal transformation matrix that respects
- the dependence vectors in DISTS and DIRS. The conservative answer
- is false.
-
- "Wolfe proves that a unimodular transformation represented by the
- matrix T is legal when applied to a loop nest with a set of
- lexicographically non-negative distance vectors RDG if and only if
- for each vector d in RDG, (T.d >= 0) is lexicographically positive.
- i.e.: if and only if it transforms the lexicographically positive
- distance vectors to lexicographically positive vectors. Note that
- a unimodular matrix must transform the zero vector (and only it) to
- the zero vector." S.Muchnick. */
-
-bool
-lambda_transform_legal_p (lambda_trans_matrix trans,
- int nb_loops,
- VEC (ddr_p, heap) *dependence_relations)
-{
- unsigned int i, j;
- lambda_vector distres;
- struct data_dependence_relation *ddr;
-
- gcc_assert (LTM_COLSIZE (trans) == nb_loops
- && LTM_ROWSIZE (trans) == nb_loops);
-
- /* When there are no dependences, the transformation is correct. */
- if (VEC_length (ddr_p, dependence_relations) == 0)
- return true;
-
- ddr = VEC_index (ddr_p, dependence_relations, 0);
- if (ddr == NULL)
- return true;
-
- /* When there is an unknown relation in the dependence_relations, we
- know that it is no worth looking at this loop nest: give up. */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- return false;
-
- distres = lambda_vector_new (nb_loops);
-
- /* For each distance vector in the dependence graph. */
- FOR_EACH_VEC_ELT (ddr_p, dependence_relations, i, ddr)
- {
- /* Don't care about relations for which we know that there is no
- dependence, nor about read-read (aka. output-dependences):
- these data accesses can happen in any order. */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_known
- || (DR_IS_READ (DDR_A (ddr)) && DR_IS_READ (DDR_B (ddr))))
- continue;
-
- /* Conservatively answer: "this transformation is not valid". */
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- return false;
-
- /* If the dependence could not be captured by a distance vector,
- conservatively answer that the transform is not valid. */
- if (DDR_NUM_DIST_VECTS (ddr) == 0)
- return false;
-
- /* Compute trans.dist_vect */
- for (j = 0; j < DDR_NUM_DIST_VECTS (ddr); j++)
- {
- lambda_matrix_vector_mult (LTM_MATRIX (trans), nb_loops, nb_loops,
- DDR_DIST_VECT (ddr, j), distres);
-
- if (!lambda_vector_lexico_pos (distres, nb_loops))
- return false;
- }
- }
- return true;
-}
-
-
-/* Collects parameters from affine function ACCESS_FUNCTION, and push
- them in PARAMETERS. */
-
-static void
-lambda_collect_parameters_from_af (tree access_function,
- struct pointer_set_t *param_set,
- VEC (tree, heap) **parameters)
-{
- if (access_function == NULL)
- return;
-
- if (TREE_CODE (access_function) == SSA_NAME
- && pointer_set_contains (param_set, access_function) == 0)
- {
- pointer_set_insert (param_set, access_function);
- VEC_safe_push (tree, heap, *parameters, access_function);
- }
- else
- {
- int i, num_operands = tree_operand_length (access_function);
-
- for (i = 0; i < num_operands; i++)
- lambda_collect_parameters_from_af (TREE_OPERAND (access_function, i),
- param_set, parameters);
- }
-}
-
-/* Collects parameters from DATAREFS, and push them in PARAMETERS. */
-
-void
-lambda_collect_parameters (VEC (data_reference_p, heap) *datarefs,
- VEC (tree, heap) **parameters)
-{
- unsigned i, j;
- struct pointer_set_t *parameter_set = pointer_set_create ();
- data_reference_p data_reference;
-
- FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, data_reference)
- for (j = 0; j < DR_NUM_DIMENSIONS (data_reference); j++)
- lambda_collect_parameters_from_af (DR_ACCESS_FN (data_reference, j),
- parameter_set, parameters);
- pointer_set_destroy (parameter_set);
-}
-
-/* Translates BASE_EXPR to vector CY. AM is needed for inferring
- indexing positions in the data access vector. CST is the analyzed
- integer constant. */
-
-static bool
-av_for_af_base (tree base_expr, lambda_vector cy, struct access_matrix *am,
- int cst)
-{
- bool result = true;
-
- switch (TREE_CODE (base_expr))
- {
- case INTEGER_CST:
- /* Constant part. */
- cy[AM_CONST_COLUMN_INDEX (am)] += int_cst_value (base_expr) * cst;
- return true;
-
- case SSA_NAME:
- {
- int param_index =
- access_matrix_get_index_for_parameter (base_expr, am);
-
- if (param_index >= 0)
- {
- cy[param_index] = cst + cy[param_index];
- return true;
- }
-
- return false;
- }
-
- case PLUS_EXPR:
- return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
- && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, cst);
-
- case MINUS_EXPR:
- return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, cst)
- && av_for_af_base (TREE_OPERAND (base_expr, 1), cy, am, -1 * cst);
-
- case MULT_EXPR:
- if (TREE_CODE (TREE_OPERAND (base_expr, 0)) == INTEGER_CST)
- result = av_for_af_base (TREE_OPERAND (base_expr, 1),
- cy, am, cst *
- int_cst_value (TREE_OPERAND (base_expr, 0)));
- else if (TREE_CODE (TREE_OPERAND (base_expr, 1)) == INTEGER_CST)
- result = av_for_af_base (TREE_OPERAND (base_expr, 0),
- cy, am, cst *
- int_cst_value (TREE_OPERAND (base_expr, 1)));
- else
- result = false;
-
- return result;
-
- case NEGATE_EXPR:
- return av_for_af_base (TREE_OPERAND (base_expr, 0), cy, am, -1 * cst);
-
- default:
- return false;
- }
-
- return result;
-}
-
-/* Translates ACCESS_FUN to vector CY. AM is needed for inferring
- indexing positions in the data access vector. */
-
-static bool
-av_for_af (tree access_fun, lambda_vector cy, struct access_matrix *am)
-{
- switch (TREE_CODE (access_fun))
- {
- case POLYNOMIAL_CHREC:
- {
- tree left = CHREC_LEFT (access_fun);
- tree right = CHREC_RIGHT (access_fun);
- unsigned var;
-
- if (TREE_CODE (right) != INTEGER_CST)
- return false;
-
- var = am_vector_index_for_loop (am, CHREC_VARIABLE (access_fun));
- cy[var] = int_cst_value (right);
-
- if (TREE_CODE (left) == POLYNOMIAL_CHREC)
- return av_for_af (left, cy, am);
- else
- return av_for_af_base (left, cy, am, 1);
- }
-
- case INTEGER_CST:
- /* Constant part. */
- return av_for_af_base (access_fun, cy, am, 1);
-
- default:
- return false;
- }
-}
-
-/* Initializes the access matrix for DATA_REFERENCE. */
-
-static bool
-build_access_matrix (data_reference_p data_reference,
- VEC (tree, heap) *parameters,
- VEC (loop_p, heap) *nest,
- struct obstack * lambda_obstack)
-{
- struct access_matrix *am = (struct access_matrix *)
- obstack_alloc(lambda_obstack, sizeof (struct access_matrix));
- unsigned i, ndim = DR_NUM_DIMENSIONS (data_reference);
- unsigned nivs = VEC_length (loop_p, nest);
- unsigned lambda_nb_columns;
-
- AM_LOOP_NEST (am) = nest;
- AM_NB_INDUCTION_VARS (am) = nivs;
- AM_PARAMETERS (am) = parameters;
-
- lambda_nb_columns = AM_NB_COLUMNS (am);
- AM_MATRIX (am) = VEC_alloc (lambda_vector, gc, ndim);
-
- for (i = 0; i < ndim; i++)
- {
- lambda_vector access_vector = lambda_vector_new (lambda_nb_columns);
- tree access_function = DR_ACCESS_FN (data_reference, i);
-
- if (!av_for_af (access_function, access_vector, am))
- return false;
-
- VEC_quick_push (lambda_vector, AM_MATRIX (am), access_vector);
- }
-
- DR_ACCESS_MATRIX (data_reference) = am;
- return true;
-}
-
-/* Returns false when one of the access matrices cannot be built. */
-
-bool
-lambda_compute_access_matrices (VEC (data_reference_p, heap) *datarefs,
- VEC (tree, heap) *parameters,
- VEC (loop_p, heap) *nest,
- struct obstack * lambda_obstack)
-{
- data_reference_p dataref;
- unsigned ix;
-
- FOR_EACH_VEC_ELT (data_reference_p, datarefs, ix, dataref)
- if (!build_access_matrix (dataref, parameters, nest, lambda_obstack))
- return false;
-
- return true;
-}