aboutsummaryrefslogtreecommitdiff
path: root/gcc/java/verify-impl.c
diff options
context:
space:
mode:
authorAndrew Haley <aph@redhat.com>2016-09-30 16:24:48 +0000
committerAndrew Haley <aph@gcc.gnu.org>2016-09-30 16:24:48 +0000
commit07b78716af6a9d7c9fd1e94d9baf94a52c873947 (patch)
tree3f22b3241c513ad168c8353805614ae1249410f4 /gcc/java/verify-impl.c
parenteae993948bae8b788c53772bcb9217c063716f93 (diff)
downloadgcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.zip
gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.gz
gcc-07b78716af6a9d7c9fd1e94d9baf94a52c873947.tar.bz2
Makefile.def: Remove libjava.
2016-09-30 Andrew Haley <aph@redhat.com> * Makefile.def: Remove libjava. * Makefile.tpl: Likewise. * Makefile.in: Regenerate. * configure.ac: Likewise. * configure: Likewise. * gcc/java: Remove. * libjava: Likewise. From-SVN: r240662
Diffstat (limited to 'gcc/java/verify-impl.c')
-rw-r--r--gcc/java/verify-impl.c3308
1 files changed, 0 insertions, 3308 deletions
diff --git a/gcc/java/verify-impl.c b/gcc/java/verify-impl.c
deleted file mode 100644
index 08f1d41..0000000
--- a/gcc/java/verify-impl.c
+++ /dev/null
@@ -1,3308 +0,0 @@
-/* Copyright (C) 2001-2016 Free Software Foundation, Inc.
-
- This file is part of libgcj.
-
-This software is copyrighted work licensed under the terms of the
-Libgcj License. Please consult the file "LIBGCJ_LICENSE" for
-details. */
-
-/* Written by Tom Tromey <tromey@redhat.com> */
-
-/* Uncomment this to enable debugging output. */
-/* #define VERIFY_DEBUG */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "verify.h"
-
-
-/* Hack to work around namespace pollution from java-tree.h. */
-#undef current_class
-
-/* This is used to mark states which are not scheduled for
- verification. */
-#define INVALID_STATE ((state *) -1)
-
-static void ATTRIBUTE_PRINTF_1
-debug_print (const char *fmt ATTRIBUTE_UNUSED, ...)
-{
-#ifdef VERIFY_DEBUG
- va_list ap;
- va_start (ap, fmt);
- vfprintf (stderr, fmt, ap);
- va_end (ap);
-#endif /* VERIFY_DEBUG */
-}
-
-/* This started as a fairly ordinary verifier, and for the most part
- it remains so. It works in the obvious way, by modeling the effect
- of each opcode as it is encountered. For most opcodes, this is a
- straightforward operation.
-
- This verifier does not do type merging. It used to, but this
- results in difficulty verifying some relatively simple code
- involving interfaces, and it pushed some verification work into the
- interpreter.
-
- Instead of merging reference types, when we reach a point where two
- flows of control merge, we simply keep the union of reference types
- from each branch. Then, when we need to verify a fact about a
- reference on the stack (e.g., that it is compatible with the
- argument type of a method), we check to ensure that all possible
- types satisfy the requirement.
-
- Another area this verifier differs from the norm is in its handling
- of subroutines. The JVM specification has some confusing things to
- say about subroutines. For instance, it makes claims about not
- allowing subroutines to merge and it rejects recursive subroutines.
- For the most part these are red herrings; we used to try to follow
- these things but they lead to problems. For example, the notion of
- "being in a subroutine" is not well-defined: is an exception
- handler in a subroutine? If you never execute the `ret' but
- instead `goto 1' do you remain in the subroutine?
-
- For clarity on what is really required for type safety, read
- "Simple Verification Technique for Complex Java Bytecode
- Subroutines" by Alessandro Coglio. Among other things this paper
- shows that recursive subroutines are not harmful to type safety.
- We implement something similar to what he proposes. Note that this
- means that this verifier will accept code that is rejected by some
- other verifiers.
-
- For those not wanting to read the paper, the basic observation is
- that we can maintain split states in subroutines. We maintain one
- state for each calling `jsr'. In other words, we re-verify a
- subroutine once for each caller, using the exact types held by the
- callers (as opposed to the old approach of merging types and
- keeping a bitmap registering what did or did not change). This
- approach lets us continue to verify correctly even when a
- subroutine is exited via `goto' or `athrow' and not `ret'.
-
- In some other areas the JVM specification is (mildly) incorrect,
- so we diverge. For instance, you cannot
- violate type safety by allocating an object with `new' and then
- failing to initialize it, no matter how one branches or where one
- stores the uninitialized reference. See "Improving the official
- specification of Java bytecode verification" by Alessandro Coglio.
-
- Note that there's no real point in enforcing that padding bytes or
- the mystery byte of invokeinterface must be 0, but we do that
- regardless.
-
- The verifier is currently neither completely lazy nor eager when it
- comes to loading classes. It tries to represent types by name when
- possible, and then loads them when it needs to verify a fact about
- the type. Checking types by name is valid because we only use
- names which come from the current class' constant pool. Since all
- such names are looked up using the same class loader, there is no
- danger that we might be fooled into comparing different types with
- the same name.
-
- In the future we plan to allow for a completely lazy mode of
- operation, where the verifier will construct a list of type
- assertions to be checked later.
-
- Some test cases for the verifier live in the "verify" module of the
- Mauve test suite. However, some of these are presently
- (2004-01-20) believed to be incorrect. (More precisely the notion
- of "correct" is not well-defined, and this verifier differs from
- others while remaining type-safe.) Some other tests live in the
- libgcj test suite.
-
- This verifier is also written to be pluggable. This means that it
- is intended for use in a variety of environments, not just libgcj.
- As a result the verifier expects a number of type and method
- declarations to be declared in "verify.h". The intent is that you
- recompile the verifier for your particular environment. This
- approach was chosen so that operations could be inlined in verify.h
- as much as possible.
-
- See the verify.h that accompanies this copy of the verifier to see
- what types, preprocessor defines, and functions must be declared.
- The interface is ad hoc, but was defined so that it could be
- implemented to connect to a pure C program.
-*/
-
-#define FLAG_INSN_START 1
-#define FLAG_BRANCH_TARGET 2
-#define FLAG_INSN_SEEN 4
-
-struct state;
-struct type;
-struct ref_intersection;
-
-typedef struct state state;
-typedef struct type type;
-typedef struct ref_intersection ref_intersection;
-
-/*typedef struct state_list state_list;*/
-
-typedef struct state_list
-{
- state *val;
- struct state_list *next;
-} state_list;
-
-typedef struct vfy_string_list
-{
- vfy_string val;
- struct vfy_string_list *next;
-} vfy_string_list;
-
-typedef struct verifier_context
-{
- /* The current PC. */
- int PC;
- /* The PC corresponding to the start of the current instruction. */
- int start_PC;
-
- /* The current state of the stack, locals, etc. */
- state *current_state;
-
- /* At each branch target we keep a linked list of all the states we
- can process at that point. We'll only have multiple states at a
- given PC if they both have different return-address types in the
- same stack or local slot. This array is indexed by PC and holds
- the list of all such states. */
- state_list **states;
-
- /* We keep a linked list of all the states which we must reverify.
- This is the head of the list. */
- state *next_verify_state;
-
- /* We keep some flags for each instruction. The values are the
- FLAG_* constants defined above. This is an array indexed by PC. */
- char *flags;
-
- /* The bytecode itself. */
- const unsigned char *bytecode;
- /* The exceptions. */
- vfy_exception *exception;
-
- /* Defining class. */
- vfy_jclass current_class;
- /* This method. */
- vfy_method *current_method;
-
- /* A linked list of utf8 objects we allocate. */
- vfy_string_list *utf8_list;
-
- /* A linked list of all ref_intersection objects we allocate. */
- ref_intersection *isect_list;
-} verifier_context;
-
-/* The current verifier's state data. This is maintained by
- {push/pop}_verifier_context to provide a shorthand form to access
- the verification state. */
-static GTY(()) verifier_context *vfr;
-
-/* Local function declarations. */
-bool type_initialized (type *t);
-int ref_count_dimensions (ref_intersection *ref);
-
-static void
-verify_fail_pc (const char *s, int pc)
-{
- vfy_fail (s, pc, vfr->current_class, vfr->current_method);
-}
-
-static void
-verify_fail (const char *s)
-{
- verify_fail_pc (s, vfr->PC);
-}
-
-/* This enum holds a list of tags for all the different types we
- need to handle. Reference types are treated specially by the
- type class. */
-typedef enum type_val
-{
- void_type,
-
- /* The values for primitive types are chosen to correspond to values
- specified to newarray. */
- boolean_type = 4,
- char_type = 5,
- float_type = 6,
- double_type = 7,
- byte_type = 8,
- short_type = 9,
- int_type = 10,
- long_type = 11,
-
- /* Used when overwriting second word of a double or long in the
- local variables. Also used after merging local variable states
- to indicate an unusable value. */
- unsuitable_type,
- return_address_type,
- /* This is the second word of a two-word value, i.e., a double or
- a long. */
- continuation_type,
-
- /* Everything after `reference_type' must be a reference type. */
- reference_type,
- null_type,
- uninitialized_reference_type
-} type_val;
-
-/* This represents a merged class type. Some verifiers (including
- earlier versions of this one) will compute the intersection of
- two class types when merging states. However, this loses
- critical information about interfaces implemented by the various
- classes. So instead we keep track of all the actual classes that
- have been merged. */
-struct ref_intersection
-{
- /* Whether or not this type has been resolved. */
- bool is_resolved;
-
- /* Actual type data. */
- union
- {
- /* For a resolved reference type, this is a pointer to the class. */
- vfy_jclass klass;
- /* For other reference types, this it the name of the class. */
- vfy_string name;
- } data;
-
- /* Link to the next reference in the intersection. */
- ref_intersection *ref_next;
-
- /* This is used to keep track of all the allocated
- ref_intersection objects, so we can free them.
- FIXME: we should allocate these in chunks. */
- ref_intersection *alloc_next;
-};
-
-static ref_intersection *
-make_ref (void)
-{
- ref_intersection *new_ref =
- (ref_intersection *) vfy_alloc (sizeof (ref_intersection));
-
- new_ref->alloc_next = vfr->isect_list;
- vfr->isect_list = new_ref;
- return new_ref;
-}
-
-static ref_intersection *
-clone_ref (ref_intersection *dup)
-{
- ref_intersection *new_ref = make_ref ();
-
- new_ref->is_resolved = dup->is_resolved;
- new_ref->data = dup->data;
- return new_ref;
-}
-
-static void
-resolve_ref (ref_intersection *ref)
-{
- if (ref->is_resolved)
- return;
- ref->data.klass = vfy_find_class (vfr->current_class, ref->data.name);
- ref->is_resolved = true;
-}
-
-static bool
-refs_equal (ref_intersection *ref1, ref_intersection *ref2)
-{
- if (! ref1->is_resolved && ! ref2->is_resolved
- && vfy_strings_equal (ref1->data.name, ref2->data.name))
- return true;
- if (! ref1->is_resolved)
- resolve_ref (ref1);
- if (! ref2->is_resolved)
- resolve_ref (ref2);
- return ref1->data.klass == ref2->data.klass;
-}
-
-/* Merge REF1 type into REF2, returning the result. This will
- return REF2 if all the classes in THIS already appear in
- REF2. */
-static ref_intersection *
-merge_refs (ref_intersection *ref1, ref_intersection *ref2)
-{
- ref_intersection *tail = ref2;
- for (; ref1 != NULL; ref1 = ref1->ref_next)
- {
- bool add = true;
- ref_intersection *iter;
- for (iter = ref2; iter != NULL; iter = iter->ref_next)
- {
- if (refs_equal (ref1, iter))
- {
- add = false;
- break;
- }
- }
-
- if (add)
- {
- ref_intersection *new_tail = clone_ref (ref1);
- new_tail->ref_next = tail;
- tail = new_tail;
- }
- }
- return tail;
-}
-
-/* See if an object of type SOURCE can be assigned to an object of
- type TARGET. This might resolve classes in one chain or the other. */
-static bool
-ref_compatible (ref_intersection *target, ref_intersection *source)
-{
- for (; target != NULL; target = target->ref_next)
- {
- ref_intersection *source_iter = source;
-
- for (; source_iter != NULL; source_iter = source_iter->ref_next)
- {
- /* Avoid resolving if possible. */
- if (! target->is_resolved
- && ! source_iter->is_resolved
- && vfy_strings_equal (target->data.name,
- source_iter->data.name))
- continue;
-
- if (! target->is_resolved)
- resolve_ref (target);
- if (! source_iter->is_resolved)
- resolve_ref (source_iter);
-
- if (! vfy_is_assignable_from (target->data.klass,
- source_iter->data.klass))
- return false;
- }
- }
-
- return true;
-}
-
-static bool
-ref_isarray (ref_intersection *ref)
-{
- /* assert (ref_next == NULL); */
- if (ref->is_resolved)
- return vfy_is_array (ref->data.klass);
- else
- return vfy_string_bytes (ref->data.name)[0] == '[';
-}
-
-static bool
-ref_isinterface (ref_intersection *ref)
-{
- /* assert (ref_next == NULL); */
- if (! ref->is_resolved)
- resolve_ref (ref);
- return vfy_is_interface (ref->data.klass);
-}
-
-static bool
-ref_isabstract (ref_intersection *ref)
-{
- /* assert (ref_next == NULL); */
- if (! ref->is_resolved)
- resolve_ref (ref);
- return vfy_is_abstract (ref->data.klass);
-}
-
-static vfy_jclass
-ref_getclass (ref_intersection *ref)
-{
- if (! ref->is_resolved)
- resolve_ref (ref);
- return ref->data.klass;
-}
-
-int
-ref_count_dimensions (ref_intersection *ref)
-{
- int ndims = 0;
- if (ref->is_resolved)
- {
- vfy_jclass k = ref->data.klass;
- while (vfy_is_array (k))
- {
- k = vfy_get_component_type (k);
- ++ndims;
- }
- }
- else
- {
- const char *p = vfy_string_bytes (ref->data.name);
- while (*p++ == '[')
- ++ndims;
- }
- return ndims;
-}
-
-/* Return the type_val corresponding to a primitive signature
- character. For instance `I' returns `int.class'. */
-static type_val
-get_type_val_for_signature (char sig)
-{
- type_val rt;
- switch (sig)
- {
- case 'Z':
- rt = boolean_type;
- break;
- case 'B':
- rt = byte_type;
- break;
- case 'C':
- rt = char_type;
- break;
- case 'S':
- rt = short_type;
- break;
- case 'I':
- rt = int_type;
- break;
- case 'J':
- rt = long_type;
- break;
- case 'F':
- rt = float_type;
- break;
- case 'D':
- rt = double_type;
- break;
- case 'V':
- rt = void_type;
- break;
- default:
- verify_fail ("invalid signature");
- return null_type;
- }
- return rt;
-}
-
-/* Return the type_val corresponding to a primitive class. */
-static type_val
-get_type_val_for_primtype (vfy_jclass k)
-{
- return get_type_val_for_signature (vfy_get_primitive_char (k));
-}
-
-/* The `type' class is used to represent a single type in the verifier. */
-struct type
-{
- /* The type key. */
- type_val key;
-
- /* For reference types, the representation of the type. */
- ref_intersection *klass;
-
- /* This is used in two situations.
-
- First, when constructing a new object, it is the PC of the
- `new' instruction which created the object. We use the special
- value UNINIT to mean that this is uninitialized. The special
- value SELF is used for the case where the current method is
- itself the <init> method. the special value EITHER is used
- when we may optionally allow either an uninitialized or
- initialized reference to match.
-
- Second, when the key is return_address_type, this holds the PC
- of the instruction following the `jsr'. */
- int pc;
-
-#define UNINIT -2
-#define SELF -1
-#define EITHER -3
-};
-
-/* Make a new instance given the type tag. We assume a generic
- `reference_type' means Object. */
-static void
-init_type_from_tag (type *t, type_val k)
-{
- t->key = k;
- /* For reference_type, if KLASS==NULL then that means we are
- looking for a generic object of any kind, including an
- uninitialized reference. */
- t->klass = NULL;
- t->pc = UNINIT;
-}
-
-/* Make a type for the given type_val tag K. */
-static type
-make_type (type_val k)
-{
- type t;
- init_type_from_tag (&t, k);
- return t;
-}
-
-/* Make a new instance given a class. */
-static void
-init_type_from_class (type *t, vfy_jclass k)
-{
- t->key = reference_type;
- t->klass = make_ref ();
- t->klass->is_resolved = true;
- t->klass->data.klass = k;
- t->klass->ref_next = NULL;
- t->pc = UNINIT;
-}
-
-static type
-make_type_from_class (vfy_jclass k)
-{
- type t;
- init_type_from_class (&t, k);
- return t;
-}
-
-static void
-init_type_from_string (type *t, vfy_string n)
-{
- t->key = reference_type;
- t->klass = make_ref ();
- t->klass->is_resolved = false;
- t->klass->data.name = n;
- t->klass->ref_next = NULL;
- t->pc = UNINIT;
-}
-
-static type
-make_type_from_string (vfy_string n)
-{
- type t;
- init_type_from_string (&t, n);
- return t;
-}
-
-/* Promote a numeric type. */
-static void
-vfy_promote_type (type *t)
-{
- if (t->key == boolean_type || t->key == char_type
- || t->key == byte_type || t->key == short_type)
- t->key = int_type;
-}
-#define promote_type vfy_promote_type
-
-/* Mark this type as the uninitialized result of `new'. */
-static void
-type_set_uninitialized (type *t, int npc)
-{
- if (t->key == reference_type)
- t->key = uninitialized_reference_type;
- else
- verify_fail ("internal error in type::uninitialized");
- t->pc = npc;
-}
-
-/* Mark this type as now initialized. */
-static void
-type_set_initialized (type *t, int npc)
-{
- if (npc != UNINIT && t->pc == npc && t->key == uninitialized_reference_type)
- {
- t->key = reference_type;
- t->pc = UNINIT;
- }
-}
-
-/* Mark this type as a particular return address. */
-static void type_set_return_address (type *t, int npc)
-{
- t->pc = npc;
-}
-
-/* Return true if this type and type OTHER are considered
- mergeable for the purposes of state merging. This is related
- to subroutine handling. For this purpose two types are
- considered unmergeable if they are both return-addresses but
- have different PCs. */
-static bool
-type_state_mergeable_p (type *t1, type *t2)
-{
- return (t1->key != return_address_type
- || t2->key != return_address_type
- || t1->pc == t2->pc);
-}
-
-/* Return true if an object of type K can be assigned to a variable
- of type T. Handle various special cases too. Might modify
- T or K. Note however that this does not perform numeric
- promotion. */
-static bool
-types_compatible (type *t, type *k)
-{
- /* Any type is compatible with the unsuitable type. */
- if (k->key == unsuitable_type)
- return true;
-
- if (t->key < reference_type || k->key < reference_type)
- return t->key == k->key;
-
- /* The `null' type is convertible to any initialized reference
- type. */
- if (t->key == null_type)
- return k->key != uninitialized_reference_type;
- if (k->key == null_type)
- return t->key != uninitialized_reference_type;
-
- /* A special case for a generic reference. */
- if (t->klass == NULL)
- return true;
- if (k->klass == NULL)
- verify_fail ("programmer error in type::compatible");
-
- /* Handle the special 'EITHER' case, which is only used in a
- special case of 'putfield'. Note that we only need to handle
- this on the LHS of a check. */
- if (! type_initialized (t) && t->pc == EITHER)
- {
- /* If the RHS is uninitialized, it must be an uninitialized
- 'this'. */
- if (! type_initialized (k) && k->pc != SELF)
- return false;
- }
- else if (type_initialized (t) != type_initialized (k))
- {
- /* An initialized type and an uninitialized type are not
- otherwise compatible. */
- return false;
- }
- else
- {
- /* Two uninitialized objects are compatible if either:
- * The PCs are identical, or
- * One PC is UNINIT. */
- if (type_initialized (t))
- {
- if (t->pc != k->pc && t->pc != UNINIT && k->pc != UNINIT)
- return false;
- }
- }
-
- return ref_compatible (t->klass, k->klass);
-}
-
-/* Return true if two types are equal. Only valid for reference
- types. */
-static bool
-types_equal (type *t1, type *t2)
-{
- if ((t1->key != reference_type && t1->key != uninitialized_reference_type)
- || (t2->key != reference_type
- && t2->key != uninitialized_reference_type))
- return false;
- /* Only single-ref types are allowed. */
- if (t1->klass->ref_next || t2->klass->ref_next)
- return false;
- return refs_equal (t1->klass, t2->klass);
-}
-
-static bool
-type_isvoid (type *t)
-{
- return t->key == void_type;
-}
-
-static bool
-type_iswide (type *t)
-{
- return t->key == long_type || t->key == double_type;
-}
-
-/* Return number of stack or local variable slots taken by this type. */
-static int
-type_depth (type *t)
-{
- return type_iswide (t) ? 2 : 1;
-}
-
-static bool
-type_isarray (type *t)
-{
- /* We treat null_type as not an array. This is ok based on the
- current uses of this method. */
- if (t->key == reference_type)
- return ref_isarray (t->klass);
- return false;
-}
-
-static bool
-type_isnull (type *t)
-{
- return t->key == null_type;
-}
-
-static bool
-type_isinterface (type *t)
-{
- if (t->key != reference_type)
- return false;
- return ref_isinterface (t->klass);
-}
-
-static bool
-type_isabstract (type *t)
-{
- if (t->key != reference_type)
- return false;
- return ref_isabstract (t->klass);
-}
-
-/* Return the element type of an array. */
-static type
-type_array_element (type *t)
-{
- type et;
- vfy_jclass k;
-
- if (t->key != reference_type)
- verify_fail ("programmer error in type::element_type()");
-
- k = vfy_get_component_type (ref_getclass (t->klass));
- if (vfy_is_primitive (k))
- init_type_from_tag (&et, get_type_val_for_primtype (k));
- else
- init_type_from_class (&et, k);
- return et;
-}
-
-/* Return the array type corresponding to an initialized
- reference. We could expand this to work for other kinds of
- types, but currently we don't need to. */
-static type
-type_to_array (type *t)
-{
- type at;
- vfy_jclass k;
-
- if (t->key != reference_type)
- verify_fail ("internal error in type::to_array()");
-
- k = ref_getclass (t->klass);
- init_type_from_class (&at, vfy_get_array_class (k));
- return at;
-}
-
-static bool
-type_isreference (type *t)
-{
- return t->key >= reference_type;
-}
-
-static int
-type_get_pc (type *t)
-{
- return t->pc;
-}
-
-bool
-type_initialized (type *t)
-{
- return t->key == reference_type || t->key == null_type;
-}
-
-static void
-type_verify_dimensions (type *t, int ndims)
-{
- /* The way this is written, we don't need to check isarray(). */
- if (t->key != reference_type)
- verify_fail ("internal error in verify_dimensions:"
- " not a reference type");
-
- if (ref_count_dimensions (t->klass) < ndims)
- verify_fail ("array type has fewer dimensions"
- " than required");
-}
-
-/* Merge OLD_TYPE into this. On error throw exception. Return
- true if the merge caused a type change. */
-static bool
-merge_types (type *t, type *old_type, bool local_semantics)
-{
- bool changed = false;
- bool refo = type_isreference (old_type);
- bool refn = type_isreference (t);
- if (refo && refn)
- {
- if (old_type->key == null_type)
- ;
- else if (t->key == null_type)
- {
- *t = *old_type;
- changed = true;
- }
- else if (type_initialized (t) != type_initialized (old_type))
- verify_fail ("merging initialized and uninitialized types");
- else
- {
- ref_intersection *merged;
- if (! type_initialized (t))
- {
- if (t->pc == UNINIT)
- t->pc = old_type->pc;
- else if (old_type->pc == UNINIT)
- ;
- else if (t->pc != old_type->pc)
- verify_fail ("merging different uninitialized types");
- }
-
- merged = merge_refs (old_type->klass, t->klass);
- if (merged != t->klass)
- {
- t->klass = merged;
- changed = true;
- }
- }
- }
- else if (refo || refn || t->key != old_type->key)
- {
- if (local_semantics)
- {
- /* If we already have an `unsuitable' type, then we
- don't need to change again. */
- if (t->key != unsuitable_type)
- {
- t->key = unsuitable_type;
- changed = true;
- }
- }
- else
- verify_fail ("unmergeable type");
- }
- return changed;
-}
-
-#ifdef VERIFY_DEBUG
-static void
-type_print (type *t)
-{
- char c = '?';
- switch (t->key)
- {
- case boolean_type: c = 'Z'; break;
- case byte_type: c = 'B'; break;
- case char_type: c = 'C'; break;
- case short_type: c = 'S'; break;
- case int_type: c = 'I'; break;
- case long_type: c = 'J'; break;
- case float_type: c = 'F'; break;
- case double_type: c = 'D'; break;
- case void_type: c = 'V'; break;
- case unsuitable_type: c = '-'; break;
- case return_address_type: c = 'r'; break;
- case continuation_type: c = '+'; break;
- case reference_type: c = 'L'; break;
- case null_type: c = '@'; break;
- case uninitialized_reference_type: c = 'U'; break;
- }
- debug_print ("%c", c);
-}
-#endif /* VERIFY_DEBUG */
-
-/* This class holds all the state information we need for a given
- location. */
-struct state
-{
- /* The current top of the stack, in terms of slots. */
- int stacktop;
- /* The current depth of the stack. This will be larger than
- STACKTOP when wide types are on the stack. */
- int stackdepth;
- /* The stack. */
- type *stack;
- /* The local variables. */
- type *locals;
- /* We keep track of the type of `this' specially. This is used to
- ensure that an instance initializer invokes another initializer
- on `this' before returning. We must keep track of this
- specially because otherwise we might be confused by code which
- assigns to locals[0] (overwriting `this') and then returns
- without really initializing. */
- type this_type;
-
- /* The PC for this state. This is only valid on states which are
- permanently attached to a given PC. For an object like
- `current_state', which is used transiently, this has no
- meaning. */
- int pc;
- /* We keep a linked list of all states requiring reverification.
- If this is the special value INVALID_STATE then this state is
- not on the list. NULL marks the end of the linked list. */
- state *next;
-};
-
-/* NO_NEXT is the PC value meaning that a new state must be
- acquired from the verification list. */
-#define NO_NEXT -1
-
-static void
-init_state_with_stack (state *s, int max_stack, int max_locals)
-{
- int i;
- s->stacktop = 0;
- s->stackdepth = 0;
- s->stack = (type *) vfy_alloc (max_stack * sizeof (type));
- for (i = 0; i < max_stack; ++i)
- init_type_from_tag (&s->stack[i], unsuitable_type);
- s->locals = (type *) vfy_alloc (max_locals * sizeof (type));
- for (i = 0; i < max_locals; ++i)
- init_type_from_tag (&s->locals[i], unsuitable_type);
- init_type_from_tag (&s->this_type, unsuitable_type);
- s->pc = NO_NEXT;
- s->next = INVALID_STATE;
-}
-
-static void
-copy_state (state *s, state *copy, int max_stack, int max_locals)
-{
- int i;
- s->stacktop = copy->stacktop;
- s->stackdepth = copy->stackdepth;
- for (i = 0; i < max_stack; ++i)
- s->stack[i] = copy->stack[i];
- for (i = 0; i < max_locals; ++i)
- s->locals[i] = copy->locals[i];
-
- s->this_type = copy->this_type;
- /* Don't modify `next' or `pc'. */
-}
-
-static void
-copy_state_with_stack (state *s, state *orig, int max_stack, int max_locals)
-{
- init_state_with_stack (s, max_stack, max_locals);
- copy_state (s, orig, max_stack, max_locals);
-}
-
-/* Allocate a new state, copying ORIG. */
-static state *
-make_state_copy (state *orig, int max_stack, int max_locals)
-{
- state *s = (state *) vfy_alloc (sizeof (state));
- copy_state_with_stack (s, orig, max_stack, max_locals);
- return s;
-}
-
-static state *
-make_state (int max_stack, int max_locals)
-{
- state *s = (state *) vfy_alloc (sizeof (state));
- init_state_with_stack (s, max_stack, max_locals);
- return s;
-}
-
-static void
-free_state (state *s)
-{
- if (s->stack != NULL)
- vfy_free (s->stack);
- if (s->locals != NULL)
- vfy_free (s->locals);
-}
-
-/* Modify this state to reflect entry to an exception handler. */
-static void
-state_set_exception (state *s, type *t, int max_stack)
-{
- int i;
- s->stackdepth = 1;
- s->stacktop = 1;
- s->stack[0] = *t;
- for (i = s->stacktop; i < max_stack; ++i)
- init_type_from_tag (&s->stack[i], unsuitable_type);
-}
-
-/* Merge STATE_OLD into this state. Destructively modifies this
- state. Returns true if the new state was in fact changed.
- Will throw an exception if the states are not mergeable. */
-static bool
-merge_states (state *s, state *state_old, int max_locals)
-{
- int i;
- bool changed = false;
-
- /* Special handling for `this'. If one or the other is
- uninitialized, then the merge is uninitialized. */
- if (type_initialized (&s->this_type))
- s->this_type = state_old->this_type;
-
- /* Merge stacks. */
- if (state_old->stacktop != s->stacktop) /* FIXME stackdepth instead? */
- verify_fail ("stack sizes differ");
- for (i = 0; i < state_old->stacktop; ++i)
- {
- if (merge_types (&s->stack[i], &state_old->stack[i], false))
- changed = true;
- }
-
- /* Merge local variables. */
- for (i = 0; i < max_locals; ++i)
- {
- if (merge_types (&s->locals[i], &state_old->locals[i], true))
- changed = true;
- }
-
- return changed;
-}
-
-/* Ensure that `this' has been initialized. */
-static void
-state_check_this_initialized (state *s)
-{
- if (type_isreference (&s->this_type) && ! type_initialized (&s->this_type))
- verify_fail ("`this' is uninitialized");
-}
-
-/* Set type of `this'. */
-static void
-state_set_this_type (state *s, type *k)
-{
- s->this_type = *k;
-}
-
-/* Mark each `new'd object we know of that was allocated at PC as
- initialized. */
-static void
-state_set_initialized (state *s, int pc, int max_locals)
-{
- int i;
- for (i = 0; i < s->stacktop; ++i)
- type_set_initialized (&s->stack[i], pc);
- for (i = 0; i < max_locals; ++i)
- type_set_initialized (&s->locals[i], pc);
- type_set_initialized (&s->this_type, pc);
-}
-
-/* This tests to see whether two states can be considered "merge
- compatible". If both states have a return-address in the same
- slot, and the return addresses are different, then they are not
- compatible and we must not try to merge them. */
-static bool
-state_mergeable_p (state *s, state *other, int max_locals)
-
-{
- int i;
-
- /* This is tricky: if the stack sizes differ, then not only are
- these not mergeable, but in fact we should give an error, as
- we've found two execution paths that reach a branch target
- with different stack depths. FIXME stackdepth instead? */
- if (s->stacktop != other->stacktop)
- verify_fail ("stack sizes differ");
-
- for (i = 0; i < s->stacktop; ++i)
- if (! type_state_mergeable_p (&s->stack[i], &other->stack[i]))
- return false;
- for (i = 0; i < max_locals; ++i)
- if (! type_state_mergeable_p (&s->locals[i], &other->locals[i]))
- return false;
- return true;
-}
-
-static void
-state_reverify (state *s)
-{
- if (s->next == INVALID_STATE)
- {
- s->next = vfr->next_verify_state;
- vfr->next_verify_state = s;
- }
-}
-
-#ifdef VERIFY_DEBUG
-static void
-debug_print_state (state *s, const char *leader, int pc, int max_stack,
- int max_locals)
-{
- int i;
- debug_print ("%s [%4d]: [stack] ", leader, pc);
- for (i = 0; i < s->stacktop; ++i)
- type_print (&s->stack[i]);
- for (; i < max_stack; ++i)
- debug_print (".");
- debug_print (" [local] ");
- for (i = 0; i < max_locals; ++i)
- type_print (&s->locals[i]);
- debug_print (" | %p\n", s);
-}
-#else
-static void
-debug_print_state (state *s ATTRIBUTE_UNUSED,
- const char *leader ATTRIBUTE_UNUSED,
- int pc ATTRIBUTE_UNUSED, int max_stack ATTRIBUTE_UNUSED,
- int max_locals ATTRIBUTE_UNUSED)
-{
-}
-#endif /* VERIFY_DEBUG */
-
-static type
-pop_raw (void)
-{
- type r;
- state *s = vfr->current_state;
- if (s->stacktop <= 0)
- verify_fail ("stack empty");
- r = s->stack[--s->stacktop];
- s->stackdepth -= type_depth (&r);
- if (s->stackdepth < 0)
- verify_fail_pc ("stack empty", vfr->start_PC);
- return r;
-}
-
-static type
-pop32 (void)
-{
- type r = pop_raw ();
- if (type_iswide (&r))
- verify_fail ("narrow pop of wide type");
- return r;
-}
-
-static type
-vfy_pop_type_t (type match)
-{
- type t;
- vfy_promote_type (&match);
- t = pop_raw ();
- if (! types_compatible (&match, &t))
- verify_fail ("incompatible type on stack");
- return t;
-}
-
-static type
-vfy_pop_type (type_val match)
-{
- type t = make_type (match);
- return vfy_pop_type_t (t);
-}
-
-#define pop_type vfy_pop_type
-#define pop_type_t vfy_pop_type_t
-
-/* Pop a reference which is guaranteed to be initialized. MATCH
- doesn't have to be a reference type; in this case this acts like
- pop_type. */
-static type
-pop_init_ref_t (type match)
-{
- type t = pop_raw ();
- if (type_isreference (&t) && ! type_initialized (&t))
- verify_fail ("initialized reference required");
- else if (! types_compatible (&match, &t))
- verify_fail ("incompatible type on stack");
- return t;
-}
-
-static type
-pop_init_ref (type_val match)
-{
- type t = make_type (match);
- return pop_init_ref_t (t);
-}
-
-/* Pop a reference type or a return address. */
-static type
-pop_ref_or_return (void)
-{
- type t = pop_raw ();
- if (! type_isreference (&t) && t.key != return_address_type)
- verify_fail ("expected reference or return address on stack");
- return t;
-}
-
-static void
-vfy_push_type_t (type t)
-{
- int depth;
- state *s = vfr->current_state;
- /* If T is a numeric type like short, promote it to int. */
- promote_type (&t);
-
- depth = type_depth (&t);
-
- if (s->stackdepth + depth > vfr->current_method->max_stack)
- verify_fail ("stack overflow");
- s->stack[s->stacktop++] = t;
- s->stackdepth += depth;
-}
-
-static void
-vfy_push_type (type_val tval)
-{
- type t = make_type (tval);
- vfy_push_type_t (t);
-}
-
-#define push_type vfy_push_type
-#define push_type_t vfy_push_type_t
-
-static void
-set_variable (int index, type t)
-{
- int depth;
- state *s = vfr->current_state;
- /* If T is a numeric type like short, promote it to int. */
- promote_type (&t);
-
- depth = type_depth (&t);
- if (index > vfr->current_method->max_locals - depth)
- verify_fail ("invalid local variable");
- s->locals[index] = t;
-
- if (depth == 2)
- init_type_from_tag (&s->locals[index + 1], continuation_type);
- if (index > 0 && type_iswide (&s->locals[index - 1]))
- init_type_from_tag (&s->locals[index - 1], unsuitable_type);
-}
-
-static type
-get_variable_t (int index, type *t)
-{
- state *s = vfr->current_state;
- int depth = type_depth (t);
- if (index > vfr->current_method->max_locals - depth)
- verify_fail ("invalid local variable");
- if (! types_compatible (t, &s->locals[index]))
- verify_fail ("incompatible type in local variable");
- if (depth == 2)
- {
- type cont = make_type (continuation_type);
- if (! types_compatible (&s->locals[index + 1], &cont))
- verify_fail ("invalid local variable");
- }
- return s->locals[index];
-}
-
-static type
-get_variable (int index, type_val v)
-{
- type t = make_type (v);
- return get_variable_t (index, &t);
-}
-
-/* Make sure ARRAY is an array type and that its elements are
- compatible with type ELEMENT. Returns the actual element type. */
-static type
-require_array_type_t (type array, type element)
-{
- type t;
- /* An odd case. Here we just pretend that everything went ok. If
- the requested element type is some kind of reference, return
- the null type instead. */
- if (type_isnull (&array))
- return type_isreference (&element) ? make_type (null_type) : element;
-
- if (! type_isarray (&array))
- verify_fail ("array required");
-
- t = type_array_element (&array);
- if (! types_compatible (&element, &t))
- {
- /* Special case for byte arrays, which must also be boolean
- arrays. */
- bool ok = true;
- if (element.key == byte_type)
- {
- type e2 = make_type (boolean_type);
- ok = types_compatible (&e2, &t);
- }
- if (! ok)
- verify_fail ("incompatible array element type");
- }
-
- /* Return T and not ELEMENT, because T might be specialized. */
- return t;
-}
-
-static type
-require_array_type (type array, type_val element)
-{
- type t = make_type (element);
- return require_array_type_t (array, t);
-}
-
-static jint
-get_byte (void)
-{
- if (vfr->PC >= vfr->current_method->code_length)
- verify_fail ("premature end of bytecode");
- return (jint) vfr->bytecode[vfr->PC++] & 0xff;
-}
-
-static jint
-get_ushort (void)
-{
- jint b1 = get_byte ();
- jint b2 = get_byte ();
- return (jint) ((b1 << 8) | b2) & 0xffff;
-}
-
-static jint
-get_short (void)
-{
- signed char b1 = (signed char) get_byte ();
- jint b2 = get_byte ();
- jshort s = (b1 << 8) | b2;
- return (jint) s;
-}
-
-static jint
-get_int (void)
-{
- jint b1 = get_byte ();
- jint b2 = get_byte ();
- jint b3 = get_byte ();
- jint b4 = get_byte ();
- jword result = (b1 << 24) | (b2 << 16) | (b3 << 8) | b4;
- /* In the compiler, 'jint' might have more than 32 bits, so we must
- sign extend. */
- return WORD_TO_INT (result);
-}
-
-static int
-compute_jump (int offset)
-{
- int npc = vfr->start_PC + offset;
- if (npc < 0 || npc >= vfr->current_method->code_length)
- verify_fail_pc ("branch out of range", vfr->start_PC);
- return npc;
-}
-
-/* Add a new state to the state list at NPC. */
-static state *
-add_new_state (int npc, state *old_state)
-{
- state_list *nlink;
- vfy_method *current_method = vfr->current_method;
- state *new_state = make_state_copy (old_state, current_method->max_stack,
- current_method->max_locals);
- debug_print ("== New state in add_new_state\n");
- debug_print_state (new_state, "New", npc, current_method->max_stack,
- current_method->max_locals);
-
- nlink = (state_list *) vfy_alloc (sizeof (state_list));
- nlink->val = new_state;
- nlink->next = vfr->states[npc];
- vfr->states[npc] = nlink;
- new_state->pc = npc;
- return new_state;
-}
-
-/* Merge the indicated state into the state at the branch target and
- schedule a new PC if there is a change. NPC is the PC of the
- branch target, and FROM_STATE is the state at the source of the
- branch. This method returns true if the destination state
- changed and requires reverification, false otherwise. */
-static void
-merge_into (int npc, state *from_state)
-{
- /* Iterate over all target states and merge our state into each,
- if applicable. FIXME one improvement we could make here is
- "state destruction". Merging a new state into an existing one
- might cause a return_address_type to be merged to
- unsuitable_type. In this case the resulting state may now be
- mergeable with other states currently held in parallel at this
- location. So in this situation we could pairwise compare and
- reduce the number of parallel states. */
- state_list *iter;
- bool applicable = false;
- for (iter = vfr->states[npc]; iter != NULL; iter = iter->next)
- {
- state *new_state = iter->val;
- vfy_method *current_method = vfr->current_method;
-
- if (state_mergeable_p (new_state, from_state,
- current_method->max_locals))
- {
- bool changed;
- applicable = true;
-
- debug_print ("== Merge states in merge_into\n");
- debug_print_state (from_state, "Frm", vfr->start_PC, current_method->max_stack,
- current_method->max_locals);
- debug_print_state (new_state, " To", npc, current_method->max_stack,
- current_method->max_locals);
- changed = merge_states (new_state, from_state,
- current_method->max_locals);
- debug_print_state (new_state, "New", npc, current_method->max_stack,
- current_method->max_locals);
-
- if (changed)
- state_reverify (new_state);
- }
- }
-
- if (! applicable)
- {
- /* Either we don't yet have a state at NPC, or we have a
- return-address type that is in conflict with all existing
- state. So, we need to create a new entry. */
- state *new_state = add_new_state (npc, from_state);
- /* A new state added in this way must always be reverified. */
- state_reverify (new_state);
- }
-}
-
-static void
-push_jump (int offset)
-{
- int npc = compute_jump (offset);
- /* According to the JVM Spec, we need to check for uninitialized
- objects here. However, this does not actually affect type
- safety, and the Eclipse java compiler generates code that
- violates this constraint. */
- merge_into (npc, vfr->current_state);
-}
-
-static void
-push_exception_jump (type t, int pc)
-{
- state s;
- /* According to the JVM Spec, we need to check for uninitialized
- objects here. However, this does not actually affect type
- safety, and the Eclipse java compiler generates code that
- violates this constraint. */
- copy_state_with_stack (&s, vfr->current_state,
- vfr->current_method->max_stack,
- vfr->current_method->max_locals);
- if (vfr->current_method->max_stack < 1)
- verify_fail ("stack overflow at exception handler");
- state_set_exception (&s, &t, vfr->current_method->max_stack);
- merge_into (pc, &s);
- /* FIXME: leak.. need free_state or GC */
-}
-
-static state *
-pop_jump (void)
-{
- state *new_state = vfr->next_verify_state;
- if (new_state == INVALID_STATE)
- verify_fail ("programmer error in pop_jump");
- if (new_state != NULL)
- {
- vfr->next_verify_state = new_state->next;
- new_state->next = INVALID_STATE;
- }
- return new_state;
-}
-
-static void
-invalidate_pc (void)
-{
- vfr->PC = NO_NEXT;
-}
-
-static void
-note_branch_target (int pc)
-{
- /* Don't check `pc <= PC', because we've advanced PC after
- fetching the target and we haven't yet checked the next
- instruction. */
- if (pc < vfr->PC && ! (vfr->flags[pc] & FLAG_INSN_START))
- verify_fail_pc ("branch not to instruction start", vfr->start_PC);
- vfr->flags[pc] |= FLAG_BRANCH_TARGET;
-}
-
-static void
-skip_padding (void)
-{
- while ((vfr->PC % 4) > 0)
- if (get_byte () != 0)
- verify_fail ("found nonzero padding byte");
-}
-
-/* Do the work for a `ret' instruction. INDEX is the index into the
- local variables. */
-static void
-handle_ret_insn (int index)
-{
- type ret = make_type (return_address_type);
- type ret_addr = get_variable_t (index, &ret);
- /* It would be nice if we could do this. However, the JVM Spec
- doesn't say that this is what happens. It is implied that
- reusing a return address is invalid, but there's no actual
- prohibition against it. */
- /* set_variable (index, unsuitable_type); */
-
- int npc = type_get_pc (&ret_addr);
- /* We might be returning to a `jsr' that is at the end of the
- bytecode. This is ok if we never return from the called
- subroutine, but if we see this here it is an error. */
- if (npc >= vfr->current_method->code_length)
- verify_fail ("fell off end");
-
- /* According to the JVM Spec, we need to check for uninitialized
- objects here. However, this does not actually affect type
- safety, and the Eclipse java compiler generates code that
- violates this constraint. */
- merge_into (npc, vfr->current_state);
- invalidate_pc ();
-}
-
-static void handle_jsr_insn (int offset)
-{
- type ret_addr;
- int npc = compute_jump (offset);
-
- /* According to the JVM Spec, we need to check for uninitialized
- objects here. However, this does not actually affect type
- safety, and the Eclipse java compiler generates code that
- violates this constraint. */
-
- /* Modify our state as appropriate for entry into a subroutine. */
- ret_addr = make_type (return_address_type);
- type_set_return_address (&ret_addr, vfr->PC);
- vfy_push_type_t (ret_addr);
- merge_into (npc, vfr->current_state);
- invalidate_pc ();
-}
-
-static vfy_jclass
-construct_primitive_array_type (type_val prim)
-{
- vfy_jclass k = NULL;
- switch (prim)
- {
- case boolean_type:
- case char_type:
- case float_type:
- case double_type:
- case byte_type:
- case short_type:
- case int_type:
- case long_type:
- k = vfy_get_primitive_type ((int) prim);
- break;
-
- /* These aren't used here but we call them out to avoid
- warnings. */
- case void_type:
- case unsuitable_type:
- case return_address_type:
- case continuation_type:
- case reference_type:
- case null_type:
- case uninitialized_reference_type:
- default:
- verify_fail ("unknown type in construct_primitive_array_type");
- }
- k = vfy_get_array_class (k);
- return k;
-}
-
-/* This pass computes the location of branch targets and also
- instruction starts. */
-static void
-branch_prepass (void)
-{
- int i, pc;
- vfr->flags = (char *) vfy_alloc (vfr->current_method->code_length);
-
- for (i = 0; i < vfr->current_method->code_length; ++i)
- vfr->flags[i] = 0;
-
- vfr->PC = 0;
- while (vfr->PC < vfr->current_method->code_length)
- {
- java_opcode opcode;
- /* Set `start_PC' early so that error checking can have the
- correct value. */
- vfr->start_PC = vfr->PC;
- vfr->flags[vfr->PC] |= FLAG_INSN_START;
-
- opcode = (java_opcode) vfr->bytecode[vfr->PC++];
- switch (opcode)
- {
- case op_nop:
- case op_aconst_null:
- case op_iconst_m1:
- case op_iconst_0:
- case op_iconst_1:
- case op_iconst_2:
- case op_iconst_3:
- case op_iconst_4:
- case op_iconst_5:
- case op_lconst_0:
- case op_lconst_1:
- case op_fconst_0:
- case op_fconst_1:
- case op_fconst_2:
- case op_dconst_0:
- case op_dconst_1:
- case op_iload_0:
- case op_iload_1:
- case op_iload_2:
- case op_iload_3:
- case op_lload_0:
- case op_lload_1:
- case op_lload_2:
- case op_lload_3:
- case op_fload_0:
- case op_fload_1:
- case op_fload_2:
- case op_fload_3:
- case op_dload_0:
- case op_dload_1:
- case op_dload_2:
- case op_dload_3:
- case op_aload_0:
- case op_aload_1:
- case op_aload_2:
- case op_aload_3:
- case op_iaload:
- case op_laload:
- case op_faload:
- case op_daload:
- case op_aaload:
- case op_baload:
- case op_caload:
- case op_saload:
- case op_istore_0:
- case op_istore_1:
- case op_istore_2:
- case op_istore_3:
- case op_lstore_0:
- case op_lstore_1:
- case op_lstore_2:
- case op_lstore_3:
- case op_fstore_0:
- case op_fstore_1:
- case op_fstore_2:
- case op_fstore_3:
- case op_dstore_0:
- case op_dstore_1:
- case op_dstore_2:
- case op_dstore_3:
- case op_astore_0:
- case op_astore_1:
- case op_astore_2:
- case op_astore_3:
- case op_iastore:
- case op_lastore:
- case op_fastore:
- case op_dastore:
- case op_aastore:
- case op_bastore:
- case op_castore:
- case op_sastore:
- case op_pop:
- case op_pop2:
- case op_dup:
- case op_dup_x1:
- case op_dup_x2:
- case op_dup2:
- case op_dup2_x1:
- case op_dup2_x2:
- case op_swap:
- case op_iadd:
- case op_isub:
- case op_imul:
- case op_idiv:
- case op_irem:
- case op_ishl:
- case op_ishr:
- case op_iushr:
- case op_iand:
- case op_ior:
- case op_ixor:
- case op_ladd:
- case op_lsub:
- case op_lmul:
- case op_ldiv:
- case op_lrem:
- case op_lshl:
- case op_lshr:
- case op_lushr:
- case op_land:
- case op_lor:
- case op_lxor:
- case op_fadd:
- case op_fsub:
- case op_fmul:
- case op_fdiv:
- case op_frem:
- case op_dadd:
- case op_dsub:
- case op_dmul:
- case op_ddiv:
- case op_drem:
- case op_ineg:
- case op_i2b:
- case op_i2c:
- case op_i2s:
- case op_lneg:
- case op_fneg:
- case op_dneg:
- case op_i2l:
- case op_i2f:
- case op_i2d:
- case op_l2i:
- case op_l2f:
- case op_l2d:
- case op_f2i:
- case op_f2l:
- case op_f2d:
- case op_d2i:
- case op_d2l:
- case op_d2f:
- case op_lcmp:
- case op_fcmpl:
- case op_fcmpg:
- case op_dcmpl:
- case op_dcmpg:
- case op_monitorenter:
- case op_monitorexit:
- case op_ireturn:
- case op_lreturn:
- case op_freturn:
- case op_dreturn:
- case op_areturn:
- case op_return:
- case op_athrow:
- case op_arraylength:
- break;
-
- case op_bipush:
- case op_ldc:
- case op_iload:
- case op_lload:
- case op_fload:
- case op_dload:
- case op_aload:
- case op_istore:
- case op_lstore:
- case op_fstore:
- case op_dstore:
- case op_astore:
- case op_ret:
- case op_newarray:
- get_byte ();
- break;
-
- case op_iinc:
- case op_sipush:
- case op_ldc_w:
- case op_ldc2_w:
- case op_getstatic:
- case op_getfield:
- case op_putfield:
- case op_putstatic:
- case op_new:
- case op_anewarray:
- case op_instanceof:
- case op_checkcast:
- case op_invokespecial:
- case op_invokestatic:
- case op_invokevirtual:
- get_short ();
- break;
-
- case op_multianewarray:
- get_short ();
- get_byte ();
- break;
-
- case op_jsr:
- case op_ifeq:
- case op_ifne:
- case op_iflt:
- case op_ifge:
- case op_ifgt:
- case op_ifle:
- case op_if_icmpeq:
- case op_if_icmpne:
- case op_if_icmplt:
- case op_if_icmpge:
- case op_if_icmpgt:
- case op_if_icmple:
- case op_if_acmpeq:
- case op_if_acmpne:
- case op_ifnull:
- case op_ifnonnull:
- case op_goto:
- note_branch_target (compute_jump (get_short ()));
- break;
-
- case op_tableswitch:
- {
- jint low, hi;
- skip_padding ();
- note_branch_target (compute_jump (get_int ()));
- low = get_int ();
- hi = get_int ();
- if (low > hi)
- verify_fail_pc ("invalid tableswitch", vfr->start_PC);
- for (i = low; i <= hi; ++i)
- note_branch_target (compute_jump (get_int ()));
- }
- break;
-
- case op_lookupswitch:
- {
- int npairs;
- skip_padding ();
- note_branch_target (compute_jump (get_int ()));
- npairs = get_int ();
- if (npairs < 0)
- verify_fail_pc ("too few pairs in lookupswitch", vfr->start_PC);
- while (npairs-- > 0)
- {
- get_int ();
- note_branch_target (compute_jump (get_int ()));
- }
- }
- break;
-
- case op_invokeinterface:
- get_short ();
- get_byte ();
- get_byte ();
- break;
-
- case op_wide:
- {
- opcode = (java_opcode) get_byte ();
- get_short ();
- if (opcode == op_iinc)
- get_short ();
- }
- break;
-
- case op_jsr_w:
- case op_goto_w:
- note_branch_target (compute_jump (get_int ()));
- break;
-
-#if 0
- /* These are unused here, but we call them out explicitly
- so that -Wswitch-enum doesn't complain. */
- case op_putfield_1:
- case op_putfield_2:
- case op_putfield_4:
- case op_putfield_8:
- case op_putfield_a:
- case op_putstatic_1:
- case op_putstatic_2:
- case op_putstatic_4:
- case op_putstatic_8:
- case op_putstatic_a:
- case op_getfield_1:
- case op_getfield_2s:
- case op_getfield_2u:
- case op_getfield_4:
- case op_getfield_8:
- case op_getfield_a:
- case op_getstatic_1:
- case op_getstatic_2s:
- case op_getstatic_2u:
- case op_getstatic_4:
- case op_getstatic_8:
- case op_getstatic_a:
-#endif /* VFY_FAST_OPCODES */
- default:
- verify_fail_pc ("unrecognized instruction in branch_prepass",
- vfr->start_PC);
- }
-
- /* See if any previous branch tried to branch to the middle of
- this instruction. */
- for (pc = vfr->start_PC + 1; pc < vfr->PC; ++pc)
- {
- if ((vfr->flags[pc] & FLAG_BRANCH_TARGET))
- verify_fail_pc ("branch to middle of instruction", pc);
- }
- }
-
- /* Verify exception handlers. */
- for (i = 0; i < vfr->current_method->exc_count; ++i)
- {
- int handler, start, end, htype;
- vfy_get_exception (vfr->exception, i, &handler, &start, &end, &htype);
- if (! (vfr->flags[handler] & FLAG_INSN_START))
- verify_fail_pc ("exception handler not at instruction start",
- handler);
- if (! (vfr->flags[start] & FLAG_INSN_START))
- verify_fail_pc ("exception start not at instruction start", start);
- if (end != vfr->current_method->code_length
- && ! (vfr->flags[end] & FLAG_INSN_START))
- verify_fail_pc ("exception end not at instruction start", end);
-
- vfr->flags[handler] |= FLAG_BRANCH_TARGET;
- }
-}
-
-static void
-check_pool_index (int index)
-{
- if (index < 0 || index >= vfy_get_constants_size (vfr->current_class))
- verify_fail_pc ("constant pool index out of range", vfr->start_PC);
-}
-
-static type
-check_class_constant (int index)
-{
- type t = { (type_val) 0, 0, 0 };
- vfy_constants *pool;
-
- check_pool_index (index);
- pool = vfy_get_constants (vfr->current_class);
- if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedClass)
- init_type_from_class (&t, vfy_get_pool_class (pool, index));
- else if (vfy_tag (pool, index) == JV_CONSTANT_Class)
- init_type_from_string (&t, vfy_get_pool_string (pool, index));
- else
- verify_fail_pc ("expected class constant", vfr->start_PC);
- return t;
-}
-
-static type
-check_constant (int index)
-{
- type t = { (type_val) 0, 0, 0 };
- vfy_constants *pool;
-
- check_pool_index (index);
- pool = vfy_get_constants (vfr->current_class);
- if (vfy_tag (pool, index) == JV_CONSTANT_ResolvedString
- || vfy_tag (pool, index) == JV_CONSTANT_String)
- init_type_from_class (&t, vfy_string_type ());
- else if (vfy_tag (pool, index) == JV_CONSTANT_Integer)
- init_type_from_tag (&t, int_type);
- else if (vfy_tag (pool, index) == JV_CONSTANT_Float)
- init_type_from_tag (&t, float_type);
- else if (vfy_tag (pool, index) == JV_CONSTANT_Class
- || vfy_tag (pool, index) == JV_CONSTANT_ResolvedClass)
- /* FIXME: should only allow this for 1.5 bytecode. */
- init_type_from_class (&t, vfy_class_type ());
- else
- verify_fail_pc ("String, int, or float constant expected", vfr->start_PC);
- return t;
-}
-
-static type
-check_wide_constant (int index)
-{
- type t = { (type_val) 0, 0, 0 };
- vfy_constants *pool;
-
- check_pool_index (index);
- pool = vfy_get_constants (vfr->current_class);
- if (vfy_tag (pool, index) == JV_CONSTANT_Long)
- init_type_from_tag (&t, long_type);
- else if (vfy_tag (pool, index) == JV_CONSTANT_Double)
- init_type_from_tag (&t, double_type);
- else
- verify_fail_pc ("long or double constant expected", vfr->start_PC);
- return t;
-}
-
-/* Helper for both field and method. These are laid out the same in
- the constant pool. */
-static type
-handle_field_or_method (int index, int expected,
- vfy_string *name, vfy_string *fmtype)
-{
- vfy_uint_16 class_index, name_and_type_index;
- vfy_uint_16 name_index, desc_index;
- vfy_constants *pool;
-
- check_pool_index (index);
- pool = vfy_get_constants (vfr->current_class);
- if (vfy_tag (pool, index) != expected)
- verify_fail_pc ("didn't see expected constant", vfr->start_PC);
- /* Once we know we have a Fieldref or Methodref we assume that it
- is correctly laid out in the constant pool. I think the code
- in defineclass.cc guarantees this. */
- vfy_load_indexes (pool, index, &class_index, &name_and_type_index);
- vfy_load_indexes (pool, name_and_type_index, &name_index, &desc_index);
-
- *name = vfy_get_pool_string (pool, name_index);
- *fmtype = vfy_get_pool_string (pool, desc_index);
-
- return check_class_constant (class_index);
-}
-
-/* Return field's type, compute class' type if requested. If
- PUTFIELD is true, use the special 'putfield' semantics. */
-static type
-check_field_constant (int index, type *class_type, bool putfield)
-{
- vfy_string name, field_type;
- const char *typec;
- type t;
-
- type ct = handle_field_or_method (index,
- JV_CONSTANT_Fieldref,
- &name, &field_type);
- if (class_type)
- *class_type = ct;
- typec = vfy_string_bytes (field_type);
- if (typec[0] == '[' || typec[0] == 'L')
- init_type_from_string (&t, field_type);
- else
- init_type_from_tag (&t, get_type_val_for_signature (typec[0]));
-
- /* We have an obscure special case here: we can use `putfield' on a
- field declared in this class, even if `this' has not yet been
- initialized. */
- if (putfield
- && ! type_initialized (&vfr->current_state->this_type)
- && vfr->current_state->this_type.pc == SELF
- && types_equal (&vfr->current_state->this_type, &ct)
- && vfy_class_has_field (vfr->current_class, name, field_type))
- /* Note that we don't actually know whether we're going to match
- against 'this' or some other object of the same type. So,
- here we set things up so that it doesn't matter. This relies
- on knowing what our caller is up to. */
- type_set_uninitialized (class_type, EITHER);
-
- return t;
-}
-
-static type
-check_method_constant (int index, bool is_interface,
- vfy_string *method_name,
- vfy_string *method_signature)
-{
- return handle_field_or_method (index,
- (is_interface
- ? JV_CONSTANT_InterfaceMethodref
- : JV_CONSTANT_Methodref),
- method_name, method_signature);
-}
-
-static const char *
-get_one_type (const char *p, type *t)
-{
- const char *start = p;
- vfy_jclass k;
- type_val rt;
- char v;
-
- int arraycount = 0;
- while (*p == '[')
- {
- ++arraycount;
- ++p;
- }
-
- v = *p++;
-
- if (v == 'L')
- {
- vfy_string name;
- while (*p != ';')
- ++p;
- ++p;
- name = vfy_get_string (start, p - start);
- *t = make_type_from_string (name);
- return p;
- }
-
- /* Casting to jchar here is ok since we are looking at an ASCII
- character. */
- rt = get_type_val_for_signature (v);
-
- if (arraycount == 0)
- {
- /* Callers of this function eventually push their arguments on
- the stack. So, promote them here. */
- type new_t = make_type (rt);
- vfy_promote_type (&new_t);
- *t = new_t;
- return p;
- }
-
- k = construct_primitive_array_type (rt);
- while (--arraycount > 0)
- k = vfy_get_array_class (k);
- *t = make_type_from_class (k);
- return p;
-}
-
-static void
-compute_argument_types (vfy_string signature, type *types)
-{
- int i;
- const char *p = vfy_string_bytes (signature);
-
- /* Skip `('. */
- ++p;
-
- i = 0;
- while (*p != ')')
- p = get_one_type (p, &types[i++]);
-}
-
-static type
-compute_return_type (vfy_string signature)
-{
- const char *p = vfy_string_bytes (signature);
- type t;
- while (*p != ')')
- ++p;
- ++p;
- get_one_type (p, &t);
- return t;
-}
-
-static void
-check_return_type (type onstack)
-{
- type rt = compute_return_type (vfy_get_signature (vfr->current_method));
- if (! types_compatible (&rt, &onstack))
- verify_fail ("incompatible return type");
-}
-
-/* Initialize the stack for the new method. Returns true if this
- method is an instance initializer. */
-static bool
-initialize_stack (void)
-{
- int arg_count, i;
- int var = 0;
- bool is_init = vfy_strings_equal (vfy_get_method_name (vfr->current_method),
- vfy_init_name());
- bool is_clinit = vfy_strings_equal (vfy_get_method_name (vfr->current_method),
- vfy_clinit_name());
-
- if (! vfy_is_static (vfr->current_method))
- {
- type kurr = make_type_from_class (vfr->current_class);
- if (is_init)
- {
- type_set_uninitialized (&kurr, SELF);
- is_init = true;
- }
- else if (is_clinit)
- verify_fail ("<clinit> method must be static");
- set_variable (0, kurr);
- state_set_this_type (vfr->current_state, &kurr);
- ++var;
- }
- else
- {
- if (is_init)
- verify_fail ("<init> method must be non-static");
- }
-
- /* We have to handle wide arguments specially here. */
- arg_count = vfy_count_arguments (vfy_get_signature (vfr->current_method));
- {
- type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type));
- compute_argument_types (vfy_get_signature (vfr->current_method), arg_types);
- for (i = 0; i < arg_count; ++i)
- {
- set_variable (var, arg_types[i]);
- ++var;
- if (type_iswide (&arg_types[i]))
- ++var;
- }
- vfy_free (arg_types);
- }
-
- return is_init;
-}
-
-static void
-verify_instructions_0 (void)
-{
- int i;
- bool this_is_init;
-
- vfr->current_state = make_state (vfr->current_method->max_stack,
- vfr->current_method->max_locals);
-
- vfr->PC = 0;
- vfr->start_PC = 0;
-
- /* True if we are verifying an instance initializer. */
- this_is_init = initialize_stack ();
-
- vfr->states = (state_list **) vfy_alloc (sizeof (state_list *)
- * vfr->current_method->code_length);
-
- for (i = 0; i < vfr->current_method->code_length; ++i)
- vfr->states[i] = NULL;
-
- vfr->next_verify_state = NULL;
-
- while (true)
- {
- java_opcode opcode;
-
- /* If the PC was invalidated, get a new one from the work list. */
- if (vfr->PC == NO_NEXT)
- {
- state *new_state = pop_jump ();
- /* If it is null, we're done. */
- if (new_state == NULL)
- break;
-
- vfr->PC = new_state->pc;
- debug_print ("== State pop from pending list\n");
- /* Set up the current state. */
- copy_state (vfr->current_state, new_state,
- vfr->current_method->max_stack, vfr->current_method->max_locals);
- }
- else
- {
- /* We only have to do this checking in the situation where
- control flow falls through from the previous instruction.
- Otherwise merging is done at the time we push the branch.
- Note that we'll catch the off-the-end problem just
- below. */
- if (vfr->PC < vfr->current_method->code_length
- && vfr->states[vfr->PC] != NULL)
- {
- /* We've already visited this instruction. So merge
- the states together. It is simplest, but not most
- efficient, to just always invalidate the PC here. */
- merge_into (vfr->PC, vfr->current_state);
- invalidate_pc ();
- continue;
- }
- }
-
- /* Control can't fall off the end of the bytecode. We need to
- check this in both cases, not just the fall-through case,
- because we don't check to see whether a `jsr' appears at
- the end of the bytecode until we process a `ret'. */
- if (vfr->PC >= vfr->current_method->code_length)
- verify_fail ("fell off end");
- vfr->flags[vfr->PC] |= FLAG_INSN_SEEN;
-
- /* We only have to keep saved state at branch targets. If
- we're at a branch target and the state here hasn't been set
- yet, we set it now. You might notice that `ret' targets
- won't necessarily have FLAG_BRANCH_TARGET set. This
- doesn't matter, since those states will be filled in by
- merge_into. */
- /* Note that other parts of the compiler assume that there is a
- label with a type map at PC=0. */
- if (vfr->states[vfr->PC] == NULL
- && (vfr->PC == 0 || (vfr->flags[vfr->PC] & FLAG_BRANCH_TARGET) != 0))
- add_new_state (vfr->PC, vfr->current_state);
-
- /* Set this before handling exceptions so that debug output is
- sane. */
- vfr->start_PC = vfr->PC;
-
- /* Update states for all active exception handlers. Ordinarily
- there are not many exception handlers. So we simply run
- through them all. */
- for (i = 0; i < vfr->current_method->exc_count; ++i)
- {
- int hpc, start, end, htype;
- vfy_get_exception (vfr->exception, i, &hpc, &start, &end, &htype);
- if (vfr->PC >= start && vfr->PC < end)
- {
- type handler = make_type_from_class (vfy_throwable_type ());
- if (htype != 0)
- handler = check_class_constant (htype);
- push_exception_jump (handler, hpc);
- }
- }
-
-
- debug_print_state (vfr->current_state, " ", vfr->PC,
- vfr->current_method->max_stack,
- vfr->current_method->max_locals);
- opcode = (java_opcode) vfr->bytecode[vfr->PC++];
- switch (opcode)
- {
- case op_nop:
- break;
-
- case op_aconst_null:
- push_type (null_type);
- break;
-
- case op_iconst_m1:
- case op_iconst_0:
- case op_iconst_1:
- case op_iconst_2:
- case op_iconst_3:
- case op_iconst_4:
- case op_iconst_5:
- push_type (int_type);
- break;
-
- case op_lconst_0:
- case op_lconst_1:
- push_type (long_type);
- break;
-
- case op_fconst_0:
- case op_fconst_1:
- case op_fconst_2:
- push_type (float_type);
- break;
-
- case op_dconst_0:
- case op_dconst_1:
- push_type (double_type);
- break;
-
- case op_bipush:
- get_byte ();
- push_type (int_type);
- break;
-
- case op_sipush:
- get_short ();
- push_type (int_type);
- break;
-
- case op_ldc:
- push_type_t (check_constant (get_byte ()));
- break;
- case op_ldc_w:
- push_type_t (check_constant (get_ushort ()));
- break;
- case op_ldc2_w:
- push_type_t (check_wide_constant (get_ushort ()));
- break;
-
- case op_iload:
- push_type_t (get_variable (get_byte (), int_type));
- break;
- case op_lload:
- push_type_t (get_variable (get_byte (), long_type));
- break;
- case op_fload:
- push_type_t (get_variable (get_byte (), float_type));
- break;
- case op_dload:
- push_type_t (get_variable (get_byte (), double_type));
- break;
- case op_aload:
- push_type_t (get_variable (get_byte (), reference_type));
- break;
-
- case op_iload_0:
- case op_iload_1:
- case op_iload_2:
- case op_iload_3:
- push_type_t (get_variable (opcode - op_iload_0, int_type));
- break;
- case op_lload_0:
- case op_lload_1:
- case op_lload_2:
- case op_lload_3:
- push_type_t (get_variable (opcode - op_lload_0, long_type));
- break;
- case op_fload_0:
- case op_fload_1:
- case op_fload_2:
- case op_fload_3:
- push_type_t (get_variable (opcode - op_fload_0, float_type));
- break;
- case op_dload_0:
- case op_dload_1:
- case op_dload_2:
- case op_dload_3:
- push_type_t (get_variable (opcode - op_dload_0, double_type));
- break;
- case op_aload_0:
- case op_aload_1:
- case op_aload_2:
- case op_aload_3:
- push_type_t (get_variable (opcode - op_aload_0, reference_type));
- break;
- case op_iaload:
- pop_type (int_type);
- push_type_t (require_array_type (pop_init_ref (reference_type),
- int_type));
- break;
- case op_laload:
- pop_type (int_type);
- push_type_t (require_array_type (pop_init_ref (reference_type),
- long_type));
- break;
- case op_faload:
- pop_type (int_type);
- push_type_t (require_array_type (pop_init_ref (reference_type),
- float_type));
- break;
- case op_daload:
- pop_type (int_type);
- push_type_t (require_array_type (pop_init_ref (reference_type),
- double_type));
- break;
- case op_aaload:
- pop_type (int_type);
- push_type_t (require_array_type (pop_init_ref (reference_type),
- reference_type));
- break;
- case op_baload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), byte_type);
- push_type (int_type);
- break;
- case op_caload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), char_type);
- push_type (int_type);
- break;
- case op_saload:
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), short_type);
- push_type (int_type);
- break;
- case op_istore:
- set_variable (get_byte (), pop_type (int_type));
- break;
- case op_lstore:
- set_variable (get_byte (), pop_type (long_type));
- break;
- case op_fstore:
- set_variable (get_byte (), pop_type (float_type));
- break;
- case op_dstore:
- set_variable (get_byte (), pop_type (double_type));
- break;
- case op_astore:
- set_variable (get_byte (), pop_ref_or_return ());
- break;
- case op_istore_0:
- case op_istore_1:
- case op_istore_2:
- case op_istore_3:
- set_variable (opcode - op_istore_0, pop_type (int_type));
- break;
- case op_lstore_0:
- case op_lstore_1:
- case op_lstore_2:
- case op_lstore_3:
- set_variable (opcode - op_lstore_0, pop_type (long_type));
- break;
- case op_fstore_0:
- case op_fstore_1:
- case op_fstore_2:
- case op_fstore_3:
- set_variable (opcode - op_fstore_0, pop_type (float_type));
- break;
- case op_dstore_0:
- case op_dstore_1:
- case op_dstore_2:
- case op_dstore_3:
- set_variable (opcode - op_dstore_0, pop_type (double_type));
- break;
- case op_astore_0:
- case op_astore_1:
- case op_astore_2:
- case op_astore_3:
- set_variable (opcode - op_astore_0, pop_ref_or_return ());
- break;
- case op_iastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), int_type);
- break;
- case op_lastore:
- pop_type (long_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), long_type);
- break;
- case op_fastore:
- pop_type (float_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), float_type);
- break;
- case op_dastore:
- pop_type (double_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), double_type);
- break;
- case op_aastore:
- pop_type (reference_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), reference_type);
- break;
- case op_bastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), byte_type);
- break;
- case op_castore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), char_type);
- break;
- case op_sastore:
- pop_type (int_type);
- pop_type (int_type);
- require_array_type (pop_init_ref (reference_type), short_type);
- break;
- case op_pop:
- pop32 ();
- break;
- case op_pop2:
- {
- type t = pop_raw ();
- if (! type_iswide (&t))
- pop32 ();
- }
- break;
- case op_dup:
- {
- type t = pop32 ();
- push_type_t (t);
- push_type_t (t);
- }
- break;
- case op_dup_x1:
- {
- type t1 = pop32 ();
- type t2 = pop32 ();
- push_type_t (t1);
- push_type_t (t2);
- push_type_t (t1);
- }
- break;
- case op_dup_x2:
- {
- type t1 = pop32 ();
- type t2 = pop_raw ();
- if (! type_iswide (&t2))
- {
- type t3 = pop32 ();
- push_type_t (t1);
- push_type_t (t3);
- }
- else
- push_type_t (t1);
- push_type_t (t2);
- push_type_t (t1);
- }
- break;
- case op_dup2:
- {
- type t = pop_raw ();
- if (! type_iswide (&t))
- {
- type t2 = pop32 ();
- push_type_t (t2);
- push_type_t (t);
- push_type_t (t2);
- }
- else
- push_type_t (t);
- push_type_t (t);
- }
- break;
- case op_dup2_x1:
- {
- type t1 = pop_raw ();
- type t2 = pop32 ();
- if (! type_iswide (&t1))
- {
- type t3 = pop32 ();
- push_type_t (t2);
- push_type_t (t1);
- push_type_t (t3);
- }
- else
- push_type_t (t1);
- push_type_t (t2);
- push_type_t (t1);
- }
- break;
- case op_dup2_x2:
- {
- type t1 = pop_raw ();
- if (type_iswide (&t1))
- {
- type t2 = pop_raw ();
- if (type_iswide (&t2))
- {
- push_type_t (t1);
- push_type_t (t2);
- }
- else
- {
- type t3 = pop32 ();
- push_type_t (t1);
- push_type_t (t3);
- push_type_t (t2);
- }
- push_type_t (t1);
- }
- else
- {
- type t2 = pop32 ();
- type t3 = pop_raw ();
- if (type_iswide (&t3))
- {
- push_type_t (t2);
- push_type_t (t1);
- }
- else
- {
- type t4 = pop32 ();
- push_type_t (t2);
- push_type_t (t1);
- push_type_t (t4);
- }
- push_type_t (t3);
- push_type_t (t2);
- push_type_t (t1);
- }
- }
- break;
- case op_swap:
- {
- type t1 = pop32 ();
- type t2 = pop32 ();
- push_type_t (t1);
- push_type_t (t2);
- }
- break;
- case op_iadd:
- case op_isub:
- case op_imul:
- case op_idiv:
- case op_irem:
- case op_ishl:
- case op_ishr:
- case op_iushr:
- case op_iand:
- case op_ior:
- case op_ixor:
- pop_type (int_type);
- push_type_t (pop_type (int_type));
- break;
- case op_ladd:
- case op_lsub:
- case op_lmul:
- case op_ldiv:
- case op_lrem:
- case op_land:
- case op_lor:
- case op_lxor:
- pop_type (long_type);
- push_type_t (pop_type (long_type));
- break;
- case op_lshl:
- case op_lshr:
- case op_lushr:
- pop_type (int_type);
- push_type_t (pop_type (long_type));
- break;
- case op_fadd:
- case op_fsub:
- case op_fmul:
- case op_fdiv:
- case op_frem:
- pop_type (float_type);
- push_type_t (pop_type (float_type));
- break;
- case op_dadd:
- case op_dsub:
- case op_dmul:
- case op_ddiv:
- case op_drem:
- pop_type (double_type);
- push_type_t (pop_type (double_type));
- break;
- case op_ineg:
- case op_i2b:
- case op_i2c:
- case op_i2s:
- push_type_t (pop_type (int_type));
- break;
- case op_lneg:
- push_type_t (pop_type (long_type));
- break;
- case op_fneg:
- push_type_t (pop_type (float_type));
- break;
- case op_dneg:
- push_type_t (pop_type (double_type));
- break;
- case op_iinc:
- get_variable (get_byte (), int_type);
- get_byte ();
- break;
- case op_i2l:
- pop_type (int_type);
- push_type (long_type);
- break;
- case op_i2f:
- pop_type (int_type);
- push_type (float_type);
- break;
- case op_i2d:
- pop_type (int_type);
- push_type (double_type);
- break;
- case op_l2i:
- pop_type (long_type);
- push_type (int_type);
- break;
- case op_l2f:
- pop_type (long_type);
- push_type (float_type);
- break;
- case op_l2d:
- pop_type (long_type);
- push_type (double_type);
- break;
- case op_f2i:
- pop_type (float_type);
- push_type (int_type);
- break;
- case op_f2l:
- pop_type (float_type);
- push_type (long_type);
- break;
- case op_f2d:
- pop_type (float_type);
- push_type (double_type);
- break;
- case op_d2i:
- pop_type (double_type);
- push_type (int_type);
- break;
- case op_d2l:
- pop_type (double_type);
- push_type (long_type);
- break;
- case op_d2f:
- pop_type (double_type);
- push_type (float_type);
- break;
- case op_lcmp:
- pop_type (long_type);
- pop_type (long_type);
- push_type (int_type);
- break;
- case op_fcmpl:
- case op_fcmpg:
- pop_type (float_type);
- pop_type (float_type);
- push_type (int_type);
- break;
- case op_dcmpl:
- case op_dcmpg:
- pop_type (double_type);
- pop_type (double_type);
- push_type (int_type);
- break;
- case op_ifeq:
- case op_ifne:
- case op_iflt:
- case op_ifge:
- case op_ifgt:
- case op_ifle:
- pop_type (int_type);
- push_jump (get_short ());
- break;
- case op_if_icmpeq:
- case op_if_icmpne:
- case op_if_icmplt:
- case op_if_icmpge:
- case op_if_icmpgt:
- case op_if_icmple:
- pop_type (int_type);
- pop_type (int_type);
- push_jump (get_short ());
- break;
- case op_if_acmpeq:
- case op_if_acmpne:
- pop_type (reference_type);
- pop_type (reference_type);
- push_jump (get_short ());
- break;
- case op_goto:
- push_jump (get_short ());
- invalidate_pc ();
- break;
- case op_jsr:
- handle_jsr_insn (get_short ());
- break;
- case op_ret:
- handle_ret_insn (get_byte ());
- break;
- case op_tableswitch:
- {
- int i;
- jint low, high;
- pop_type (int_type);
- skip_padding ();
- push_jump (get_int ());
- low = get_int ();
- high = get_int ();
- /* Already checked LOW -vs- HIGH. */
- for (i = low; i <= high; ++i)
- push_jump (get_int ());
- invalidate_pc ();
- }
- break;
-
- case op_lookupswitch:
- {
- int i;
- jint npairs, lastkey;
-
- pop_type (int_type);
- skip_padding ();
- push_jump (get_int ());
- npairs = get_int ();
- /* Already checked NPAIRS >= 0. */
- lastkey = 0;
- for (i = 0; i < npairs; ++i)
- {
- jint key = get_int ();
- if (i > 0 && key <= lastkey)
- verify_fail_pc ("lookupswitch pairs unsorted", vfr->start_PC);
- lastkey = key;
- push_jump (get_int ());
- }
- invalidate_pc ();
- }
- break;
- case op_ireturn:
- check_return_type (pop_type (int_type));
- invalidate_pc ();
- break;
- case op_lreturn:
- check_return_type (pop_type (long_type));
- invalidate_pc ();
- break;
- case op_freturn:
- check_return_type (pop_type (float_type));
- invalidate_pc ();
- break;
- case op_dreturn:
- check_return_type (pop_type (double_type));
- invalidate_pc ();
- break;
- case op_areturn:
- check_return_type (pop_init_ref (reference_type));
- invalidate_pc ();
- break;
- case op_return:
- /* We only need to check this when the return type is void,
- because all instance initializers return void. We also
- need to special-case Object constructors, as they can't
- call a superclass <init>. */
- if (this_is_init && vfr->current_class != vfy_object_type ())
- state_check_this_initialized (vfr->current_state);
- check_return_type (make_type (void_type));
- invalidate_pc ();
- break;
- case op_getstatic:
- push_type_t (check_field_constant (get_ushort (), NULL, false));
- break;
- case op_putstatic:
- pop_type_t (check_field_constant (get_ushort (), NULL, false));
- break;
- case op_getfield:
- {
- type klass;
- type field = check_field_constant (get_ushort (), &klass, false);
- pop_type_t (klass);
- push_type_t (field);
- }
- break;
- case op_putfield:
- {
- type klass;
- type field = check_field_constant (get_ushort (), &klass, true);
- pop_type_t (field);
- pop_type_t (klass);
- }
- break;
-
- case op_invokevirtual:
- case op_invokespecial:
- case op_invokestatic:
- case op_invokeinterface:
- {
- vfy_string method_name, method_signature;
- const char *namec;
- int i, arg_count;
- type rt;
- bool is_init = false;
-
- type class_type
- = check_method_constant (get_ushort (),
- opcode == op_invokeinterface,
- &method_name,
- &method_signature);
- /* NARGS is only used when we're processing
- invokeinterface. It is simplest for us to compute it
- here and then verify it later. */
- int nargs = 0;
- if (opcode == op_invokeinterface)
- {
- nargs = get_byte ();
- if (get_byte () != 0)
- verify_fail ("invokeinterface dummy byte is wrong");
- }
-
- namec = vfy_string_bytes (method_name);
-
- if (vfy_strings_equal (method_name, vfy_init_name()))
- {
- is_init = true;
- if (opcode != op_invokespecial)
- verify_fail ("can't invoke <init>");
- }
- else if (namec[0] == '<')
- verify_fail ("can't invoke method starting with `<'");
-
- arg_count = vfy_count_arguments (method_signature);
- {
- /* Pop arguments and check types. */
- type *arg_types = (type *) vfy_alloc (arg_count * sizeof (type));
-
- compute_argument_types (method_signature, arg_types);
- for (i = arg_count - 1; i >= 0; --i)
- {
- /* This is only used for verifying the byte for
- invokeinterface. */
- nargs -= type_depth (&arg_types[i]);
- pop_init_ref_t (arg_types[i]);
- }
-
- vfy_free (arg_types);
- }
-
- if (opcode == op_invokeinterface
- && nargs != 1)
- verify_fail ("wrong argument count for invokeinterface");
-
- if (opcode != op_invokestatic)
- {
- type raw;
- type t = class_type;
- if (is_init)
- {
- /* In this case the PC doesn't matter. */
- type_set_uninitialized (&t, UNINIT);
- /* FIXME: check to make sure that the <init>
- call is to the right class.
- It must either be super or an exact class
- match. */
- }
- raw = pop_raw ();
- if (! types_compatible (&t, &raw))
- verify_fail ("incompatible type on stack");
-
- if (is_init)
- state_set_initialized (vfr->current_state,
- type_get_pc (&raw), vfr->current_method->max_locals);
- }
-
- rt = compute_return_type (method_signature);
- if (! type_isvoid (&rt))
- push_type_t (rt);
- }
- break;
-
- case op_new:
- {
- type t = check_class_constant (get_ushort ());
- if (type_isarray (&t) || type_isinterface (&t)
- || type_isabstract (&t))
- verify_fail ("type is array, interface, or abstract");
- type_set_uninitialized (&t, vfr->start_PC);
- push_type_t (t);
- }
- break;
-
- case op_newarray:
- {
- int atype = get_byte ();
- vfy_jclass k;
- type t;
- /* We intentionally have chosen constants to make this
- valid. */
- if (atype < boolean_type || atype > long_type)
- verify_fail_pc ("type not primitive", vfr->start_PC);
- pop_type (int_type);
- k = construct_primitive_array_type ((type_val) atype);
- init_type_from_class (&t, k);
- push_type_t (t);
- }
- break;
- case op_anewarray:
- {
- type t;
- pop_type (int_type);
- t = check_class_constant (get_ushort ());
- push_type_t (type_to_array (&t));
- }
- break;
- case op_arraylength:
- {
- type t = pop_init_ref (reference_type);
- if (! type_isarray (&t) && ! type_isnull (&t))
- verify_fail ("array type expected");
- push_type (int_type);
- }
- break;
- case op_athrow:
- pop_type_t (make_type_from_class (vfy_throwable_type ()));
- invalidate_pc ();
- break;
- case op_checkcast:
- pop_init_ref (reference_type);
- push_type_t (check_class_constant (get_ushort ()));
- break;
- case op_instanceof:
- pop_init_ref (reference_type);
- check_class_constant (get_ushort ());
- push_type (int_type);
- break;
- case op_monitorenter:
- pop_init_ref (reference_type);
- break;
- case op_monitorexit:
- pop_init_ref (reference_type);
- break;
- case op_wide:
- {
- switch (get_byte ())
- {
- case op_iload:
- push_type_t (get_variable (get_ushort (), int_type));
- break;
- case op_lload:
- push_type_t (get_variable (get_ushort (), long_type));
- break;
- case op_fload:
- push_type_t (get_variable (get_ushort (), float_type));
- break;
- case op_dload:
- push_type_t (get_variable (get_ushort (), double_type));
- break;
- case op_aload:
- push_type_t (get_variable (get_ushort (), reference_type));
- break;
- case op_istore:
- set_variable (get_ushort (), pop_type (int_type));
- break;
- case op_lstore:
- set_variable (get_ushort (), pop_type (long_type));
- break;
- case op_fstore:
- set_variable (get_ushort (), pop_type (float_type));
- break;
- case op_dstore:
- set_variable (get_ushort (), pop_type (double_type));
- break;
- case op_astore:
- set_variable (get_ushort (), pop_init_ref (reference_type));
- break;
- case op_ret:
- handle_ret_insn (get_short ());
- break;
- case op_iinc:
- get_variable (get_ushort (), int_type);
- get_short ();
- break;
- default:
- verify_fail_pc ("unrecognized wide instruction", vfr->start_PC);
- }
- }
- break;
- case op_multianewarray:
- {
- int i;
- type atype = check_class_constant (get_ushort ());
- int dim = get_byte ();
- if (dim < 1)
- verify_fail_pc ("too few dimensions to multianewarray", vfr->start_PC);
- type_verify_dimensions (&atype, dim);
- for (i = 0; i < dim; ++i)
- pop_type (int_type);
- push_type_t (atype);
- }
- break;
- case op_ifnull:
- case op_ifnonnull:
- pop_type (reference_type);
- push_jump (get_short ());
- break;
- case op_goto_w:
- push_jump (get_int ());
- invalidate_pc ();
- break;
- case op_jsr_w:
- handle_jsr_insn (get_int ());
- break;
-
- default:
- /* Unrecognized opcode. */
- verify_fail_pc ("unrecognized instruction in verify_instructions_0",
- vfr->start_PC);
- }
- }
-}
-
-/* This turns a `type' into something suitable for use by the type map
- in the other parts of the compiler. In particular, reference types
- are mapped to Object, primitive types are unchanged, and other
- types are mapped using special functions declared in verify.h. */
-static vfy_jclass
-collapse_type (type *t)
-{
- switch (t->key)
- {
- case void_type:
- case boolean_type:
- case char_type:
- case float_type:
- case double_type:
- case byte_type:
- case short_type:
- case int_type:
- case long_type:
- return vfy_get_primitive_type (t->key);
-
- case unsuitable_type:
- case continuation_type:
- return vfy_unsuitable_type ();
-
- case return_address_type:
- return vfy_return_address_type ();
-
- case null_type:
- return vfy_null_type ();
-
- case reference_type:
- case uninitialized_reference_type:
- return vfy_object_type ();
- }
-
- gcc_unreachable ();
-}
-
-static void
-verify_instructions (void)
-{
- int i;
-
- branch_prepass ();
- verify_instructions_0 ();
-
- /* Now tell the rest of the compiler about the types we've found. */
- for (i = 0; i < vfr->current_method->code_length; ++i)
- {
- int j, slot;
- struct state *curr;
-
- if ((vfr->flags[i] & FLAG_INSN_SEEN) != 0)
- vfy_note_instruction_seen (i);
-
- if (! vfr->states[i])
- continue;
-
- curr = vfr->states[i]->val;
- vfy_note_stack_depth (vfr->current_method, i, curr->stackdepth);
-
- /* Tell the compiler about each local variable. */
- for (j = 0; j < vfr->current_method->max_locals; ++j)
- vfy_note_local_type (vfr->current_method, i, j,
- collapse_type (&curr->locals[j]));
- /* Tell the compiler about each stack slot. */
- for (slot = j = 0; j < curr->stacktop; ++j, ++slot)
- {
- vfy_note_stack_type (vfr->current_method, i, slot,
- collapse_type (&curr->stack[j]));
- if (type_iswide (&curr->stack[j]))
- {
- ++slot;
- vfy_note_stack_type (vfr->current_method, i, slot,
- vfy_unsuitable_type ());
- }
- }
- gcc_assert (slot == curr->stackdepth);
- }
-}
-
-static void
-make_verifier_context (vfy_method *m)
-{
- vfr = (verifier_context *) vfy_alloc (sizeof (struct verifier_context));
-
- vfr->current_method = m;
- vfr->bytecode = vfy_get_bytecode (m);
- vfr->exception = vfy_get_exceptions (m);
- vfr->current_class = m->defining_class;
-
- vfr->states = NULL;
- vfr->flags = NULL;
- vfr->utf8_list = NULL;
- vfr->isect_list = NULL;
-}
-
-static void
-free_verifier_context (void)
-{
- vfy_string_list *utf8_list;
- ref_intersection *isect_list;
-
- if (vfr->flags)
- vfy_free (vfr->flags);
-
- utf8_list = vfr->utf8_list;
- while (utf8_list != NULL)
- {
- vfy_string_list *n = utf8_list->next;
- vfy_free (utf8_list);
- utf8_list = n;
- }
-
- isect_list = vfr->isect_list;
- while (isect_list != NULL)
- {
- ref_intersection *next = isect_list->alloc_next;
- vfy_free (isect_list);
- isect_list = next;
- }
-
- if (vfr->states != NULL)
- {
- int i;
- for (i = 0; i < vfr->current_method->code_length; ++i)
- {
- state_list *iter = vfr->states[i];
- while (iter != NULL)
- {
- state_list *next = iter->next;
- free_state (iter->val);
- vfy_free (iter->val);
- vfy_free (iter);
- iter = next;
- }
- }
- vfy_free (vfr->states);
- }
-
- vfy_free (vfr);
-}
-
-int
-verify_method (vfy_method *meth)
-{
- debug_print ("verify_method (%s) %i\n", vfy_string_bytes (meth->name),
- meth->code_length);
-
- if (vfr != NULL)
- verify_fail ("verifier re-entered");
-
- make_verifier_context (meth);
- verify_instructions ();
- free_verifier_context ();
- vfr = NULL;
-
- return 1;
-}