diff options
author | Sebastian Pop <sebastian.pop@amd.com> | 2008-09-02 16:31:04 +0000 |
---|---|---|
committer | Sebastian Pop <spop@gcc.gnu.org> | 2008-09-02 16:31:04 +0000 |
commit | f8bf9252655dcf10da12c8c2769d59658084f50d (patch) | |
tree | 1f3fd1f9608de8f06cfa843f8a480d295f0665d1 /gcc/graphite.c | |
parent | 57b08d04c67ff8db02f6b95e564432841384661b (diff) | |
download | gcc-f8bf9252655dcf10da12c8c2769d59658084f50d.zip gcc-f8bf9252655dcf10da12c8c2769d59658084f50d.tar.gz gcc-f8bf9252655dcf10da12c8c2769d59658084f50d.tar.bz2 |
backport: configure: Regenerate.
2008-09-02 Sebastian Pop <sebastian.pop@amd.com>
Tobias Grosser <grosser@fim.uni-passau.de>
Jan Sjodin <jan.sjodin@amd.com>
Harsha Jagasia <harsha.jagasia@amd.com>
Dwarakanath Rajagopal <dwarak.rajagopal@amd.com>
Konrad Trifunovic <konrad.trifunovic@inria.fr>
Adrien Eliche <aeliche@isty.uvsq.fr>
Merge from graphite branch.
* configure: Regenerate.
* Makefile.in: Regenerate.
* configure.ac (host_libs): Add ppl and cloog.
Add checks for PPL and CLooG.
* Makefile.def (ppl, cloog): Added modules and dependences.
* Makefile.tpl (PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC): New.
(HOST_PPLLIBS, HOST_PPLINC, HOST_CLOOGLIBS, HOST_CLOOGINC): New.
gcc/
* graphite.c: New.
* graphite.h: New.
* tree-loop-linear.c (perfect_loop_nest_depth): Export.
* doc/invoke.texi (-floop-block, -floop-interchange,
-floop-strip-mine): Document new flags.
* tree-into-ssa.c (gimple_vec): Moved...
* tree-loop-distribution.c (rdg_component): Moved...
* cfgloopmanip.c: Include tree-flow.h.
(update_dominators_in_loop): New.
(create_empty_if_region_on_edge): New.
(create_empty_loop_on_edge): New.
(loopify): Use update_dominators_in_loop.
* tree-pass.h (pass_graphite_transforms): Declared.
* configure: Regenerate.
* tree-phinodes.c (make_phi_node): Export.
(add_phi_node_to_bb): New, split from create_phi_node.
* tree-chrec.c (for_each_scev_op): New.
* tree-chrec.h (for_each_scev_op): Declared.
* tree-ssa-loop-ivopts.c (get_phi_with_result): New.
(remove_statement): Call get_phi_with_result.
* config.in (HAVE_cloog): Undef.
* gdbinit.in (pgg): New.
* timevar.def (TV_GRAPHITE_TRANSFORMS): New.
* tree-ssa-loop.c (graphite_transforms): New.
(gate_graphite_transforms): New.
(pass_graphite_transforms): New.
* configure.ac (PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC,
HAVE_cloog): Defined.
* tree-vectorizer.c (rename_variables_in_bb): Export.
* tree-data-ref.c (dr_may_alias_p): Export.
(stmt_simple_memref_p): New.
(find_data_references_in_stmt): Export.
(find_data_references_in_loop): Export.
(create_rdg_edge_for_ddr): Initialize RDGE_RELATION.
(create_rdg_edges_for_scalar): Initialize RDGE_RELATION.
(create_rdg_vertices): Export.
(build_empty_rdg): New.
(build_rdg): Call build_empty_rdg. Free dependence_relations.
* tree-data-ref.h (rdg_component): ... here.
(scop_p): New.
(struct data_reference): Add a field scop.
(DR_SCOP): New.
(find_data_references_in_loop): Declared.
(find_data_references_in_stmt): Declared.
(create_rdg_vertices): Declared.
(dr_may_alias_p): Declared.
(stmt_simple_memref_p): Declared.
(struct rdg_edge): Add a field ddr_p relation.
(build_empty_rdg): Declared.
* lambda.h (lambda_matrix): Declare a VEC of.
(find_induction_var_from_exit_cond): Declared.
(lambda_vector_compare): New.
* common.opt (fgraphite, floop-strip-mine,
floop-interchange, floop-block): New flags.
* lambda-code.c (find_induction_var_from_exit_cond): Export.
* cfgloop.c (is_loop_exit): New.
* cfgloop.h (is_loop_exit): Declared.
(create_empty_if_region_on_edge): Declared.
(create_empty_loop_on_edge): Declared.
* tree-flow.h (add_phi_node_to_bb): Declared.
(make_phi_node): Declared.
(rename_variables_in_bb): Declared.
(perfect_loop_nest_depth): Declared.
(graphite_transform_loops): Declared.
* Makefile.in (cfgloopmanip.o): Depend on TREE_FLOW_H.
(graphite.o-warn): Add -Wno-error.
(PPLLIBS, PPLINC, CLOOGLIBS, CLOOGINC): Declared.
(LIBS): Add GMPLIBS, CLOOGLIBS, PPLLIBS.
(INCLUDES): Add PPLINC, CLOOGINC.
(OBJS-common): Add graphite.o.
(graphite.o): Add rule.
* gimple.h (gimple_vec): ... here.
* tree-cfg.c (print_loops): Start printing at ENTRY_BLOCK_PTR.
* passes.c (init_optimization_passes): Schedule
pass_graphite_transforms.
testsuite/
* gcc.dg/graphite/scop-{0,1,2,3,4,5,6,7,8,9,
10,11,12,13,14,15,16,17,18}.c: New.
* gcc.dg/graphite/graphite.exp: New.
* gcc.dg/graphite/scop-matmult.c: New.
* gcc.dg/graphite/block-0.c: New.
* lib/target-supports.exp (check_effective_target_fgraphite): New.
* gfortran.dg/graphite/block-1.f90: New.
* gfortran.dg/graphite/scop-{1,2}.f: New.
* gfortran.dg/graphite/block-{1,3,4}.f90: New.
* gfortran.dg/graphite/graphite.exp: New.
Co-Authored-By: Adrien Eliche <aeliche@isty.uvsq.fr>
Co-Authored-By: Dwarakanath Rajagopal <dwarak.rajagopal@amd.com>
Co-Authored-By: Harsha Jagasia <harsha.jagasia@amd.com>
Co-Authored-By: Jan Sjodin <jan.sjodin@amd.com>
Co-Authored-By: Konrad Trifunovic <konrad.trifunovic@inria.fr>
Co-Authored-By: Tobias Grosser <grosser@fim.uni-passau.de>
From-SVN: r139893
Diffstat (limited to 'gcc/graphite.c')
-rw-r--r-- | gcc/graphite.c | 4806 |
1 files changed, 4806 insertions, 0 deletions
diff --git a/gcc/graphite.c b/gcc/graphite.c new file mode 100644 index 0000000..86b0eae --- /dev/null +++ b/gcc/graphite.c @@ -0,0 +1,4806 @@ +/* Gimple Represented as Polyhedra. + Copyright (C) 2006, 2007, 2008 Free Software Foundation, Inc. + Contributed by Sebastian Pop <sebastian.pop@inria.fr>. + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 3, or (at your option) +any later version. + +GCC is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* This pass converts GIMPLE to GRAPHITE, performs some loop + transformations and then converts the resulting representation back + to GIMPLE. + + An early description of this pass can be found in the GCC Summit'06 + paper "GRAPHITE: Polyhedral Analyses and Optimizations for GCC". + The wiki page http://gcc.gnu.org/wiki/Graphite contains pointers to + the related work. + + One important document to read is CLooG's internal manual: + http://repo.or.cz/w/cloog-ppl.git?a=blob_plain;f=doc/cloog.texi;hb=HEAD + that describes the data structure of loops used in this file, and + the functions that are used for transforming the code. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "tm.h" +#include "ggc.h" +#include "tree.h" +#include "rtl.h" +#include "basic-block.h" +#include "diagnostic.h" +#include "tree-flow.h" +#include "toplev.h" +#include "tree-dump.h" +#include "timevar.h" +#include "cfgloop.h" +#include "tree-chrec.h" +#include "tree-data-ref.h" +#include "tree-scalar-evolution.h" +#include "tree-pass.h" +#include "domwalk.h" +#include "pointer-set.h" +#include "gimple.h" + +#ifdef HAVE_cloog +#include "cloog/cloog.h" +#include "graphite.h" + +static VEC (scop_p, heap) *current_scops; + +/* Debug the list of old induction variables for this SCOP. */ + +void +debug_oldivs (scop_p scop) +{ + int i; + name_tree oldiv; + + fprintf (stderr, "Old IVs:"); + + for (i = 0; VEC_iterate (name_tree, SCOP_OLDIVS (scop), i, oldiv); i++) + { + fprintf (stderr, "("); + print_generic_expr (stderr, oldiv->t, 0); + fprintf (stderr, ", %s, %d)\n", oldiv->name, oldiv->loop->num); + } + fprintf (stderr, "\n"); +} + +/* Debug the loops around basic block GB. */ + +void +debug_loop_vec (graphite_bb_p gb) +{ + int i; + loop_p loop; + + fprintf (stderr, "Loop Vec:"); + + for (i = 0; VEC_iterate (loop_p, GBB_LOOPS (gb), i, loop); i++) + fprintf (stderr, "%d: %d, ", i, loop ? loop->num : -1); + + fprintf (stderr, "\n"); +} + +/* Push (IV, NAME) on STACK. */ + +static void +loop_iv_stack_push (loop_iv_stack stack, tree iv, const char *name) +{ + name_tree named_iv = XNEW (struct name_tree); + + named_iv->t = iv; + named_iv->name = name; + VEC_safe_push (name_tree, heap, *stack, named_iv); +} + +/* Pops an element out of STACK. */ + +static void +loop_iv_stack_pop (loop_iv_stack stack) +{ + VEC_pop (name_tree, *stack); +} + +/* Get the IV at INDEX in STACK. */ + +static tree +loop_iv_stack_get_iv (loop_iv_stack stack, int index) +{ + name_tree named_iv = VEC_index (name_tree, *stack, index); + + return named_iv->t; +} + +/* Get the IV from its NAME in STACK. */ + +static tree +loop_iv_stack_get_iv_from_name (loop_iv_stack stack, const char* name) +{ + int i; + name_tree iv; + + for (i = 0; VEC_iterate (name_tree, *stack, i, iv); i++) + if (!strcmp (name, iv->name)) + return iv->t; + + return NULL; +} + +/* Prints on stderr the contents of STACK. */ + +void +loop_iv_stack_debug (loop_iv_stack stack) +{ + int i; + name_tree iv; + bool first = true; + + fprintf (stderr, "("); + + for (i = 0; VEC_iterate (name_tree, *stack, i, iv); i++) + { + if (first) + first = false; + else + fprintf (stderr, " "); + fprintf (stderr, "%s:", iv->name); + print_generic_expr (stderr, iv->t, 0); + } + + fprintf (stderr, ")\n"); +} + +/* In SCOP, get the induction variable from NAME. OLD is the original + loop that contained the definition of NAME. */ + +static name_tree +get_old_iv_from_ssa_name (scop_p scop, loop_p old, tree name) +{ + tree var = SSA_NAME_VAR (name); + int i; + name_tree oldiv; + + for (i = 0; VEC_iterate (name_tree, SCOP_OLDIVS (scop), i, oldiv); i++) + { + loop_p current = old; + + while (current) + { + if (var == oldiv->t + && oldiv->loop == current) + return oldiv; + + current = loop_outer (current); + } + } + return NULL; + +} + +/* Returns a new loop_to_cloog_loop_str structure. */ + +static inline struct loop_to_cloog_loop_str * +new_loop_to_cloog_loop_str (int loop_num, + int loop_position, + CloogLoop *cloog_loop) +{ + struct loop_to_cloog_loop_str *result; + + result = XNEW (struct loop_to_cloog_loop_str); + result->loop_num = loop_num; + result->cloog_loop = cloog_loop; + result->loop_position = loop_position; + + return result; +} + +/* Hash function for SCOP_LOOP2CLOOG_LOOP hash table. */ + +static hashval_t +hash_loop_to_cloog_loop (const void *elt) +{ + return ((const struct loop_to_cloog_loop_str *) elt)->loop_num; +} + +/* Equality function for SCOP_LOOP2CLOOG_LOOP hash table. */ + +static int +eq_loop_to_cloog_loop (const void *el1, const void *el2) +{ + const struct loop_to_cloog_loop_str *elt1, *elt2; + + elt1 = (const struct loop_to_cloog_loop_str *) el1; + elt2 = (const struct loop_to_cloog_loop_str *) el2; + return elt1->loop_num == elt2->loop_num; +} + +/* Compares two graphite bbs and returns an integer less than, equal to, or + greater than zero if the first argument is considered to be respectively + less than, equal to, or greater than the second. + We compare using the lexicographic order of the static schedules. */ + +static int +gbb_compare (const void *p_1, const void *p_2) +{ + const struct graphite_bb *const gbb_1 + = *(const struct graphite_bb *const*) p_1; + const struct graphite_bb *const gbb_2 + = *(const struct graphite_bb *const*) p_2; + + return lambda_vector_compare (GBB_STATIC_SCHEDULE (gbb_1), + gbb_nb_loops (gbb_1) + 1, + GBB_STATIC_SCHEDULE (gbb_2), + gbb_nb_loops (gbb_2) + 1); +} + +/* Sort graphite bbs in SCOP. */ + +static void +graphite_sort_gbbs (scop_p scop) +{ + VEC (graphite_bb_p, heap) *bbs = SCOP_BBS (scop); + + qsort (VEC_address (graphite_bb_p, bbs), + VEC_length (graphite_bb_p, bbs), + sizeof (graphite_bb_p), gbb_compare); +} + +/* Dump conditions of a graphite basic block GBB on FILE. */ + +static void +dump_gbb_conditions (FILE *file, graphite_bb_p gbb) +{ + int i; + gimple stmt; + VEC (gimple, heap) *conditions = GBB_CONDITIONS (gbb); + + if (VEC_empty (gimple, conditions)) + return; + + fprintf (file, "\tbb %d\t: cond = {", GBB_BB (gbb)->index); + + for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++) + print_gimple_stmt (file, stmt, 0, 0); + + fprintf (file, "}\n"); +} + +/* Converts the graphite scheduling function into a cloog scattering + matrix. This scattering matrix is used to limit the possible cloog + output to valid programs in respect to the scheduling function. + + SCATTERING_DIMENSIONS specifies the dimensionality of the scattering + matrix. CLooG 0.14.0 and previous versions require, that all scattering + functions of one CloogProgram have the same dimensionality, therefore we + allow to specify it. (Should be removed in future versions) */ + +static CloogMatrix * +schedule_to_scattering (graphite_bb_p gb, int scattering_dimensions) +{ + int i; + scop_p scop = GBB_SCOP (gb); + + int nb_iterators = gbb_nb_loops (gb); + + /* The cloog scattering matrix consists of these colums: + 1 col = Eq/Inq, + scattering_dimensions cols = Scattering dimensions, + nb_iterators cols = bb's iterators, + scop_nb_params cols = Parameters, + 1 col = Constant 1. + + Example: + + scattering_dimensions = 5 + max_nb_iterators = 2 + nb_iterators = 1 + scop_nb_params = 2 + + Schedule: + ? i + 4 5 + + Scattering Matrix: + s1 s2 s3 s4 s5 i p1 p2 1 + 1 0 0 0 0 0 0 0 -4 = 0 + 0 1 0 0 0 -1 0 0 0 = 0 + 0 0 1 0 0 0 0 0 -5 = 0 */ + int nb_params = scop_nb_params (scop); + int nb_cols = 1 + scattering_dimensions + nb_iterators + nb_params + 1; + int col_const = nb_cols - 1; + int col_iter_offset = 1 + scattering_dimensions; + + CloogMatrix *scat = cloog_matrix_alloc (scattering_dimensions, nb_cols); + + gcc_assert (scattering_dimensions >= nb_iterators * 2 + 1); + + /* Initialize the identity matrix. */ + for (i = 0; i < scattering_dimensions; i++) + value_set_si (scat->p[i][i + 1], 1); + + /* Textual order outside the first loop */ + value_set_si (scat->p[0][col_const], -GBB_STATIC_SCHEDULE (gb)[0]); + + /* For all surrounding loops. */ + for (i = 0; i < nb_iterators; i++) + { + int schedule = GBB_STATIC_SCHEDULE (gb)[i + 1]; + + /* Iterations of this loop. */ + value_set_si (scat->p[2 * i + 1][col_iter_offset + i], -1); + + /* Textual order inside this loop. */ + value_set_si (scat->p[2 * i + 2][col_const], -schedule); + } + + return scat; +} + +/* Print the schedules of GB to FILE with INDENT white spaces before. + VERBOSITY determines how verbose the code pretty printers are. */ + +void +print_graphite_bb (FILE *file, graphite_bb_p gb, int indent, int verbosity) +{ + CloogMatrix *scattering; + int i; + loop_p loop; + fprintf (file, "\nGBB (\n"); + + print_loops_bb (file, GBB_BB (gb), indent+2, verbosity); + + if (GBB_DOMAIN (gb)) + { + fprintf (file, " (domain: \n"); + cloog_matrix_print (dump_file, GBB_DOMAIN (gb)); + fprintf (file, " )\n"); + } + + if (GBB_STATIC_SCHEDULE (gb)) + { + fprintf (file, " (static schedule: "); + print_lambda_vector (file, GBB_STATIC_SCHEDULE (gb), + gbb_nb_loops (gb) + 1); + fprintf (file, " )\n"); + } + + if (GBB_LOOPS (gb)) + { + fprintf (file, " (contained loops: \n"); + for (i = 0; VEC_iterate (loop_p, GBB_LOOPS (gb), i, loop); i++) + if (loop == NULL) + fprintf (file, " iterator %d => NULL \n", i); + else + fprintf (file, " iterator %d => loop %d \n", i, + loop->num); + fprintf (file, " )\n"); + } + + if (GBB_DATA_REFS (gb)) + dump_data_references (file, GBB_DATA_REFS (gb)); + + if (GBB_CONDITIONS (gb)) + { + fprintf (file, " (conditions: \n"); + dump_gbb_conditions (dump_file, gb); + fprintf (file, " )\n"); + } + + if (GBB_SCOP (gb) + && GBB_STATIC_SCHEDULE (gb)) + { + fprintf (file, " (scattering: \n"); + scattering = schedule_to_scattering (gb, 2 * gbb_nb_loops (gb) + 1); + cloog_matrix_print (file, scattering); + cloog_matrix_free (scattering); + fprintf (file, " )\n"); + } + + fprintf (file, ")\n"); +} + +/* Print to STDERR the schedules of GB with VERBOSITY level. */ + +void +debug_gbb (graphite_bb_p gb, int verbosity) +{ + print_graphite_bb (stderr, gb, 0, verbosity); +} + + +/* Print SCOP to FILE. VERBOSITY determines how verbose the pretty + printers are. */ + +static void +print_scop (FILE *file, scop_p scop, int verbosity) +{ + if (scop == NULL) + return; + + fprintf (file, "\nSCoP_%d_%d (\n", + SCOP_ENTRY (scop)->index, SCOP_EXIT (scop)->index); + + fprintf (file, " (cloog: \n"); + cloog_program_print (file, SCOP_PROG (scop)); + fprintf (file, " )\n"); + + if (SCOP_BBS (scop)) + { + graphite_bb_p gb; + int i; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + print_graphite_bb (file, gb, 0, verbosity); + } + + fprintf (file, ")\n"); +} + +/* Print all the SCOPs to FILE. VERBOSITY determines how verbose the + code pretty printers are. */ + +static void +print_scops (FILE *file, int verbosity) +{ + int i; + scop_p scop; + + for (i = 0; VEC_iterate (scop_p, current_scops, i, scop); i++) + print_scop (file, scop, verbosity); +} + +/* Debug SCOP. VERBOSITY determines how verbose the code pretty + printers are. */ + +void +debug_scop (scop_p scop, int verbosity) +{ + print_scop (stderr, scop, verbosity); +} + +/* Debug all SCOPs from CURRENT_SCOPS. VERBOSITY determines how + verbose the code pretty printers are. */ + +void +debug_scops (int verbosity) +{ + print_scops (stderr, verbosity); +} + +/* Return true when BB is contained in SCOP. */ + +static inline bool +bb_in_scop_p (basic_block bb, scop_p scop) +{ + return bitmap_bit_p (SCOP_BBS_B (scop), bb->index); +} + +/* Pretty print to FILE the SCOP in DOT format. */ + +static void +dot_scop_1 (FILE *file, scop_p scop) +{ + edge e; + edge_iterator ei; + basic_block bb; + basic_block entry = SCOP_ENTRY (scop); + basic_block exit = SCOP_EXIT (scop); + + fprintf (file, "digraph SCoP_%d_%d {\n", entry->index, + exit->index); + + FOR_ALL_BB (bb) + { + if (bb == entry) + fprintf (file, "%d [shape=triangle];\n", bb->index); + + if (bb == exit) + fprintf (file, "%d [shape=box];\n", bb->index); + + if (bb_in_scop_p (bb, scop)) + fprintf (file, "%d [color=red];\n", bb->index); + + FOR_EACH_EDGE (e, ei, bb->succs) + fprintf (file, "%d -> %d;\n", bb->index, e->dest->index); + } + + fputs ("}\n\n", file); +} + +/* Display SCOP using dotty. */ + +void +dot_scop (scop_p scop) +{ + dot_scop_1 (stderr, scop); +} + +/* Pretty print all SCoPs in DOT format and mark them with different colors. + If there are not enough colors, paint later SCoPs gray. + Special nodes: + - "*" after the node number: entry of a SCoP, + - "#" after the node number: exit of a SCoP, + - "()" entry or exit not part of SCoP. */ + +static void +dot_all_scops_1 (FILE *file) +{ + basic_block bb; + edge e; + edge_iterator ei; + scop_p scop; + const char* color; + int i; + + /* Disable debugging while printing graph. */ + int tmp_dump_flags = dump_flags; + dump_flags = 0; + + fprintf (file, "digraph all {\n"); + + FOR_ALL_BB (bb) + { + int part_of_scop = false; + + /* Use HTML for every bb label. So we are able to print bbs + which are part of two different SCoPs, with two different + background colors. */ + fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ", + bb->index); + fprintf (file, "CELLSPACING=\"0\">\n"); + + /* Select color for SCoP. */ + for (i = 0; VEC_iterate (scop_p, current_scops, i, scop); i++) + if (bb_in_scop_p (bb, scop) + || (SESE_EXIT (SCOP_REGION (scop)) && SCOP_EXIT (scop) == bb) + || (SESE_ENTRY (SCOP_REGION (scop)) && SCOP_ENTRY (scop) == bb)) + { + switch (i % 17) + { + case 0: /* red */ + color = "#e41a1c"; + break; + case 1: /* blue */ + color = "#377eb8"; + break; + case 2: /* green */ + color = "#4daf4a"; + break; + case 3: /* purple */ + color = "#984ea3"; + break; + case 4: /* orange */ + color = "#ff7f00"; + break; + case 5: /* yellow */ + color = "#ffff33"; + break; + case 6: /* brown */ + color = "#a65628"; + break; + case 7: /* rose */ + color = "#f781bf"; + break; + case 8: + color = "#8dd3c7"; + break; + case 9: + color = "#ffffb3"; + break; + case 10: + color = "#bebada"; + break; + case 11: + color = "#fb8072"; + break; + case 12: + color = "#80b1d3"; + break; + case 13: + color = "#fdb462"; + break; + case 14: + color = "#b3de69"; + break; + case 15: + color = "#fccde5"; + break; + case 16: + color = "#bc80bd"; + break; + default: /* gray */ + color = "#999999"; + } + + fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">", color); + + if (!bb_in_scop_p (bb, scop)) + fprintf (file, " ("); + + if (SESE_ENTRY (SCOP_REGION (scop)) + && SESE_EXIT (SCOP_REGION (scop)) + && bb == SCOP_ENTRY (scop) + && bb == SCOP_EXIT (scop)) + fprintf (file, " %d*# ", bb->index); + else if (SESE_ENTRY (SCOP_REGION (scop)) + && bb == SCOP_ENTRY (scop)) + fprintf (file, " %d* ", bb->index); + else if (SESE_EXIT (SCOP_REGION (scop)) + && bb == SCOP_EXIT (scop)) + fprintf (file, " %d# ", bb->index); + else + fprintf (file, " %d ", bb->index); + + if (!bb_in_scop_p (bb, scop)) + fprintf (file, ")"); + + fprintf (file, "</TD></TR>\n"); + + part_of_scop = true; + } + + if (!part_of_scop) + { + fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">"); + fprintf (file, " %d </TD></TR>\n", bb->index); + } + + fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n"); + } + + FOR_ALL_BB (bb) + { + FOR_EACH_EDGE (e, ei, bb->succs) + fprintf (file, "%d -> %d;\n", bb->index, e->dest->index); + } + + fputs ("}\n\n", file); + + /* Enable debugging again. */ + dump_flags = tmp_dump_flags; +} + +/* Display all SCoPs using dotty. */ + +void +dot_all_scops (void) +{ + /* When debugging, enable the following code. This cannot be used + in production compilers because it calls "system". */ +#if 0 + FILE *stream = fopen ("/tmp/allscops.dot", "w"); + gcc_assert (stream); + + dot_all_scops_1 (stream); + fclose (stream); + + system ("dotty /tmp/allscops.dot"); +#else + dot_all_scops_1 (stderr); +#endif +} + +/* Returns true when LOOP is in SCOP. */ + +static inline bool +loop_in_scop_p (struct loop *loop, scop_p scop) +{ + return (bb_in_scop_p (loop->header, scop) + && bb_in_scop_p (loop->latch, scop)); +} + +/* Returns the outermost loop in SCOP that contains BB. */ + +static struct loop * +outermost_loop_in_scop (scop_p scop, basic_block bb) +{ + struct loop *nest; + + nest = bb->loop_father; + while (loop_outer (nest) && loop_in_scop_p (loop_outer (nest), scop)) + nest = loop_outer (nest); + + return nest; +} + +/* Return true when EXPR is an affine function in LOOP with parameters + instantiated relative to outermost_loop. */ + +static bool +loop_affine_expr (struct loop *outermost_loop, struct loop *loop, tree expr) +{ + int n = outermost_loop->num; + tree scev = analyze_scalar_evolution (loop, expr); + + scev = instantiate_scev (outermost_loop, loop, scev); + + return (evolution_function_is_invariant_p (scev, n) + || evolution_function_is_affine_multivariate_p (scev, n)); +} + +/* Return true if the operand OP is simple. */ + +static bool +is_simple_operand (loop_p loop, gimple stmt, tree op) +{ + /* It is not a simple operand when it is a declaration, */ + if (DECL_P (op) + /* or a structure, */ + || AGGREGATE_TYPE_P (TREE_TYPE (op)) + /* or a memory access that cannot be analyzed by the data + reference analysis. */ + || ((handled_component_p (op) || INDIRECT_REF_P (op)) + && !stmt_simple_memref_p (loop, stmt, op))) + return false; + + return true; +} + +/* Return true only when STMT is simple enough for being handled by + Graphite. This depends on OUTERMOST_LOOP, as the parametetrs are + initialized relative to this loop. */ + +static bool +stmt_simple_for_scop_p (struct loop *outermost_loop, gimple stmt) +{ + basic_block bb = gimple_bb (stmt); + struct loop *loop = bb->loop_father; + + /* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects. + Calls have side-effects, except those to const or pure + functions. */ + if (gimple_has_volatile_ops (stmt) + || (gimple_code (stmt) == GIMPLE_CALL + && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE))) + || (gimple_code (stmt) == GIMPLE_ASM)) + return false; + + switch (gimple_code (stmt)) + { + case GIMPLE_RETURN: + case GIMPLE_LABEL: + return true; + + case GIMPLE_COND: + { + tree op; + ssa_op_iter op_iter; + enum tree_code code = gimple_cond_code (stmt); + + /* We can only handle this kind of conditional expressions. + For inequalities like "if (i != 3 * k)" we need unions of + polyhedrons. Expressions like "if (a)" or "if (a == 15)" need + them for the else branch. */ + if (!(code == LT_EXPR + || code == GT_EXPR + || code == LE_EXPR + || code == GE_EXPR)) + return false; + + if (!outermost_loop) + return false; + + FOR_EACH_SSA_TREE_OPERAND (op, stmt, op_iter, SSA_OP_ALL_USES) + if (!loop_affine_expr (outermost_loop, loop, op)) + return false; + + return true; + } + + case GIMPLE_ASSIGN: + { + enum tree_code code = gimple_assign_rhs_code (stmt); + + switch (get_gimple_rhs_class (code)) + { + case GIMPLE_UNARY_RHS: + case GIMPLE_SINGLE_RHS: + return (is_simple_operand (loop, stmt, gimple_assign_lhs (stmt)) + && is_simple_operand (loop, stmt, gimple_assign_rhs1 (stmt))); + + case GIMPLE_BINARY_RHS: + return (is_simple_operand (loop, stmt, gimple_assign_lhs (stmt)) + && is_simple_operand (loop, stmt, gimple_assign_rhs1 (stmt)) + && is_simple_operand (loop, stmt, gimple_assign_rhs2 (stmt))); + + case GIMPLE_INVALID_RHS: + default: + gcc_unreachable (); + } + } + + case GIMPLE_CALL: + { + size_t i; + size_t n = gimple_call_num_args (stmt); + tree lhs = gimple_call_lhs (stmt); + + for (i = 0; i < n; i++) + { + tree arg = gimple_call_arg (stmt, i); + + if (!(is_simple_operand (loop, stmt, lhs) + && is_simple_operand (loop, stmt, arg))) + return false; + } + + return true; + } + + default: + /* These nodes cut a new scope. */ + return false; + } + + return false; +} + +/* Returns the statement of BB that contains a harmful operation: that + can be a function call with side effects, data dependences that + cannot be computed in OUTERMOST_LOOP, the induction variables are + not linear with respect to OUTERMOST_LOOP, etc. The current open + scop should end before this statement. */ + +static gimple +harmful_stmt_in_bb (struct loop *outermost_loop, basic_block bb) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + if (!stmt_simple_for_scop_p (outermost_loop, gsi_stmt (gsi))) + return gsi_stmt (gsi); + + return NULL; +} + +/* Store the GRAPHITE representation of BB. */ + +static void +new_graphite_bb (scop_p scop, basic_block bb) +{ + struct graphite_bb *gbb = XNEW (struct graphite_bb); + + bb->aux = gbb; + GBB_BB (gbb) = bb; + GBB_SCOP (gbb) = scop; + GBB_DATA_REFS (gbb) = NULL; + GBB_DOMAIN (gbb) = NULL; + GBB_CONDITIONS (gbb) = NULL; + GBB_CONDITION_CASES (gbb) = NULL; + GBB_LOOPS (gbb) = NULL; + VEC_safe_push (graphite_bb_p, heap, SCOP_BBS (scop), gbb); + bitmap_set_bit (SCOP_BBS_B (scop), bb->index); +} + +/* Frees GBB. */ + +static void +free_graphite_bb (struct graphite_bb *gbb) +{ + if (GBB_DOMAIN (gbb)) + cloog_matrix_free (GBB_DOMAIN (gbb)); + + free_data_refs (GBB_DATA_REFS (gbb)); + VEC_free (gimple, heap, GBB_CONDITIONS (gbb)); + VEC_free (gimple, heap, GBB_CONDITION_CASES (gbb)); + VEC_free (loop_p, heap, GBB_LOOPS (gbb)); + + GBB_BB (gbb)->aux = 0; + XDELETE (gbb); +} + +/* Creates a new scop starting with ENTRY. */ + +static scop_p +new_scop (edge entry) +{ + scop_p scop = XNEW (struct scop); + + SCOP_REGION (scop) = XNEW (struct sese); + SESE_ENTRY (SCOP_REGION (scop)) = entry; + SESE_EXIT (SCOP_REGION (scop)) = NULL; + SCOP_BBS (scop) = VEC_alloc (graphite_bb_p, heap, 3); + SCOP_OLDIVS (scop) = VEC_alloc (name_tree, heap, 3); + SCOP_BBS_B (scop) = BITMAP_ALLOC (NULL); + SCOP_LOOPS (scop) = BITMAP_ALLOC (NULL); + SCOP_LOOP_NEST (scop) = VEC_alloc (loop_p, heap, 3); + SCOP_PARAMS (scop) = VEC_alloc (name_tree, heap, 3); + SCOP_PROG (scop) = cloog_program_malloc (); + cloog_program_set_names (SCOP_PROG (scop), cloog_names_malloc ()); + SCOP_LOOP2CLOOG_LOOP (scop) = htab_create (10, hash_loop_to_cloog_loop, + eq_loop_to_cloog_loop, + free); + return scop; +} + +/* Deletes SCOP. */ + +static void +free_scop (scop_p scop) +{ + int i; + name_tree p; + struct graphite_bb *gb; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + free_graphite_bb (gb); + + VEC_free (graphite_bb_p, heap, SCOP_BBS (scop)); + BITMAP_FREE (SCOP_BBS_B (scop)); + BITMAP_FREE (SCOP_LOOPS (scop)); + VEC_free (loop_p, heap, SCOP_LOOP_NEST (scop)); + VEC_free (name_tree, heap, SCOP_OLDIVS (scop)); + + for (i = 0; VEC_iterate (name_tree, SCOP_PARAMS (scop), i, p); i++) + free (p); + + VEC_free (name_tree, heap, SCOP_PARAMS (scop)); + cloog_program_free (SCOP_PROG (scop)); + htab_delete (SCOP_LOOP2CLOOG_LOOP (scop)); + XDELETE (SCOP_REGION (scop)); + XDELETE (scop); +} + +/* Deletes all scops in SCOPS. */ + +static void +free_scops (VEC (scop_p, heap) *scops) +{ + int i; + scop_p scop; + + for (i = 0; VEC_iterate (scop_p, scops, i, scop); i++) + free_scop (scop); + + VEC_free (scop_p, heap, scops); +} + +typedef enum gbb_type { + GBB_UNKNOWN, + GBB_LOOP_SING_EXIT_HEADER, + GBB_LOOP_MULT_EXIT_HEADER, + GBB_LOOP_EXIT, + GBB_COND_HEADER, + GBB_SIMPLE, + GBB_LAST +} gbb_type; + +/* Detect the type of BB. Loop headers are only marked, if they are + new. This means their loop_father is different to LAST_LOOP. + Otherwise they are treated like any other bb and their type can be + any other type. */ + +static gbb_type +get_bb_type (basic_block bb, struct loop *last_loop) +{ + VEC (basic_block, heap) *dom; + int nb_dom, nb_suc; + struct loop *loop = bb->loop_father; + + /* Check, if we entry into a new loop. */ + if (loop != last_loop) + { + if (single_exit (loop) != NULL) + return GBB_LOOP_SING_EXIT_HEADER; + else if (loop->num != 0) + return GBB_LOOP_MULT_EXIT_HEADER; + else + return GBB_COND_HEADER; + } + + dom = get_dominated_by (CDI_DOMINATORS, bb); + nb_dom = VEC_length (basic_block, dom); + VEC_free (basic_block, heap, dom); + if (nb_dom == 0) + return GBB_LAST; + + nb_suc = VEC_length (edge, bb->succs); + if (nb_dom == 1 && nb_suc == 1) + return GBB_SIMPLE; + + return GBB_COND_HEADER; +} + +/* Moves the scops from SOURCE to TARGET and clean up SOURCE. */ + +static void +move_scops (VEC (scop_p, heap) **source, VEC (scop_p, heap) **target) +{ + scop_p s; + int i; + + for (i = 0; VEC_iterate (scop_p, *source, i, s); i++) + VEC_safe_push (scop_p, heap, *target, s); + + VEC_free (scop_p, heap, *source); +} + +/* Store information needed by scopdet_* functions. */ + +struct scopdet_info +{ + /* Where the last open scop would stop if the current BB is harmful. */ + edge last; + + /* Where the next scop would start if the current BB is harmful. */ + edge next; + + /* The bb or one of its children contains open loop exits. That means + loop exit nodes that are not surrounded by a loop dominated by bb. */ + bool exits; + + /* The bb or one of its children contains only structures we can handle. */ + bool difficult; +}; + +static struct scopdet_info build_scops_1 (edge, VEC (scop_p, heap) **, + loop_p, loop_p); + +/* Checks, if a bb can be added to a SCoP. */ + +static struct scopdet_info +scopdet_edge_info (edge ee, loop_p outermost_loop, + VEC (scop_p, heap) **scops, gbb_type type, gimple *stmt) + +{ + basic_block bb = ee->dest; + struct loop *loop = bb->loop_father; + struct scopdet_info result; + + *stmt = harmful_stmt_in_bb (outermost_loop, bb); + result.difficult = (*stmt != NULL); + result.last = NULL; + + switch (type) + { + case GBB_LAST: + result.next = NULL; + result.exits = false; + result.last = ee; + break; + + case GBB_SIMPLE: + result.next = single_succ_edge (bb); + result.exits = false; + result.last = ee; + break; + + case GBB_LOOP_SING_EXIT_HEADER: + { + VEC (scop_p, heap) *tmp_scops = VEC_alloc (scop_p, heap, 3); + struct scopdet_info sinfo; + + sinfo = build_scops_1 (ee, &tmp_scops, loop, outermost_loop); + + result.last = single_exit (bb->loop_father); + + if (single_succ_p (result.last->dest) + && get_bb_type (result.last->dest, loop) == GBB_SIMPLE) + result.next = single_succ_edge (result.last->dest); + else + result.next = split_block (result.last->dest, NULL); + + /* If we do not dominate result.next, remove it. It's either + the EXIT_BLOCK_PTR, or another bb dominates it and will + call the scop detection for this bb. */ + if (!dominated_by_p (CDI_DOMINATORS, result.next->dest, bb)) + result.next = NULL; + + if (TREE_CODE (number_of_latch_executions (loop)) + == SCEV_NOT_KNOWN) + result.difficult = true; + + if (sinfo.difficult) + move_scops (&tmp_scops, scops); + else + free_scops (tmp_scops); + + result.exits = false; + result.difficult |= sinfo.difficult; + break; + } + + case GBB_LOOP_MULT_EXIT_HEADER: + { + /* XXX: Handle loop nests with the same header. */ + /* XXX: Handle iterative optimization of outermost_loop. */ + /* XXX: For now we just do not join loops with multiple exits. If the + exits lead to the same bb it may be possible to join the loop. */ + VEC (scop_p, heap) *tmp_scops = VEC_alloc (scop_p, heap, 3); + VEC (edge, heap) *exits = get_loop_exit_edges (loop); + edge e; + int i; + build_scops_1 (ee, &tmp_scops, loop, outermost_loop); + + for (i = 0; VEC_iterate (edge, exits, i, e); i++) + if (dominated_by_p (CDI_DOMINATORS, e->dest, e->src) + && e->dest->loop_father == loop_outer (loop)) + build_scops_1 (e, &tmp_scops, e->dest->loop_father, + outermost_loop); + + result.next = NULL; + result.last = NULL; + result.difficult = true; + result.exits = false; + move_scops (&tmp_scops, scops); + VEC_free (edge, heap, exits); + break; + } + case GBB_COND_HEADER: + { + VEC (scop_p, heap) *tmp_scops = VEC_alloc (scop_p, heap, 3); + struct scopdet_info sinfo; + VEC (basic_block, heap) *dominated; + int i; + basic_block dom_bb; + basic_block last_bb = NULL; + edge last_e = NULL; + edge e; + result.exits = false; + + /* First check the successors of BB, and check if it is possible to join + the different branches. */ + for (i = 0; VEC_iterate (edge, bb->succs, i, e); i++) + { + /* Ignore loop exits. They will be handled after the loop body. */ + if (is_loop_exit (loop, e->dest)) + { + result.exits = true; + continue; + } + + /* Do not follow edges that lead to the end of the + conditions block. For example, in + + | 0 + | /|\ + | 1 2 | + | | | | + | 3 4 | + | \|/ + | 6 + + the edge from 0 => 6. Only check if all paths lead to + the same node 6. */ + + if (!single_pred_p (e->dest)) + { + /* Check, if edge leads directly to the end of this + condition. */ + if (!last_bb) + { + last_bb = e->dest; + last_e = e; + } + + if (e->dest != last_bb) + result.difficult = true; + + continue; + } + + if (!dominated_by_p (CDI_DOMINATORS, e->dest, bb)) + { + result.difficult = true; + continue; + } + + sinfo = build_scops_1 (e, &tmp_scops, loop, outermost_loop); + + result.exits |= sinfo.exits; + result.last = sinfo.last; + result.difficult |= sinfo.difficult; + + /* Checks, if all branches end at the same point. + If that is true, the condition stays joinable. + Have a look at the example above. */ + if (sinfo.last && single_succ_p (sinfo.last->dest)) + { + basic_block next_tmp = single_succ (sinfo.last->dest); + + if (!last_bb) + { + last_bb = next_tmp; + last_e = single_succ_edge (sinfo.last->dest); + } + + if (next_tmp != last_bb) + result.difficult = true; + } + else + result.difficult = true; + } + + /* If the condition is joinable. */ + if (!result.exits && !result.difficult) + { + /* Only return a next pointer if we dominate this pointer. + Otherwise it will be handled by the bb dominating it. */ + if (dominated_by_p (CDI_DOMINATORS, last_bb, bb) && last_bb != bb) + result.next = last_e; + else + result.next = NULL; + + move_scops (&tmp_scops, scops); + break; + } + + /* Scan remaining bbs dominated by BB. */ + dominated = get_dominated_by (CDI_DOMINATORS, bb); + + for (i = 0; VEC_iterate (basic_block, dominated, i, dom_bb); i++) + { + /* Ignore loop exits: they will be handled after the loop body. */ + if (is_loop_exit (loop, dom_bb)) + { + result.exits = true; + continue; + } + + /* Ignore the bbs processed above. */ + if (single_pred_p (dom_bb) && single_pred (dom_bb) == bb) + continue; + + if (single_pred_p (dom_bb)) + e = single_pred_edge (dom_bb); + else + e = split_block (dom_bb, NULL); + + if (loop_depth (loop) > loop_depth (dom_bb->loop_father)) + sinfo = build_scops_1 (e, &tmp_scops, loop_outer (loop), + outermost_loop); + else + sinfo = build_scops_1 (e, &tmp_scops, loop, outermost_loop); + + + result.exits |= sinfo.exits; + result.difficult = true; + result.last = NULL; + } + + VEC_free (basic_block, heap, dominated); + + result.next = NULL; + move_scops (&tmp_scops, scops); + + break; + } + + default: + gcc_unreachable (); + } + + return result; +} + +/* Split EXIT before STMT when STMT is non NULL. */ + +static edge +split_difficult_bb (basic_block exit, edge *last, gimple stmt) +{ + if (stmt && VEC_length (edge, exit->preds) == 1) + { + edge e; + + if (stmt == gsi_stmt (gsi_after_labels (exit))) + stmt = NULL; + else + { + gimple_stmt_iterator gsi = gsi_for_stmt (stmt); + gsi_prev (&gsi); + stmt = gsi_stmt (gsi); + } + + e = split_block (exit, stmt); + set_immediate_dominator (CDI_DOMINATORS, e->dest, e->src); + set_immediate_dominator (CDI_POST_DOMINATORS, e->src, e->dest); + exit = e->dest; + + if (last) + *last = e; + + return e; + } + + return NULL; +} + +/* End SCOP with edge EXIT. */ + +static void +end_scop (scop_p scop, edge exit, bool split_entry) +{ + if (split_entry + && !single_pred_p (SCOP_ENTRY (scop)) + && exit->dest->loop_father == SCOP_ENTRY (scop)->loop_father) + SESE_ENTRY (SCOP_REGION (scop)) = split_block (SCOP_ENTRY (scop), NULL); + + SESE_EXIT (SCOP_REGION (scop)) = exit; +} + +/* Creates the SCoPs and writes entry and exit points for every SCoP. */ + +static struct scopdet_info +build_scops_1 (edge start, VEC (scop_p, heap) **scops, loop_p loop, + loop_p outermost_loop) +{ + edge current = start; + + bool in_scop = false; + scop_p open_scop = NULL; + gimple stmt; + struct scopdet_info sinfo; + + /* Initialize result. */ + struct scopdet_info result; + result.exits = false; + result.difficult = false; + result.next = NULL; + result.last = NULL; + + /* Loop over the dominance tree. If we meet a difficult bb, close + the current SCoP. Loop and condition header start a new layer, + and can only be added if all bbs in deeper layers are simple. */ + while (current != NULL) + { + sinfo = scopdet_edge_info (current, outermost_loop, scops, + get_bb_type (current->dest, loop), &stmt); + + if (!in_scop && !(sinfo.exits || sinfo.difficult)) + { + open_scop = new_scop (current); + + VEC_safe_push (scop_p, heap, *scops, open_scop); + in_scop = true; + } + else if (in_scop && (sinfo.exits || sinfo.difficult)) + { + edge exit = split_difficult_bb (current->dest, &sinfo.last, stmt); + + if (!exit) + exit = current; + + end_scop (open_scop, exit, sinfo.difficult); + in_scop = false; + } + + result.difficult |= sinfo.difficult; + result.exits |= sinfo.exits; + + current = sinfo.next; + } + + /* Finish the SCOP, if it is left open. The exit is the bb, that + postdominates sinfo.last. If no such bb exists, we use info.last + or delete the scop. */ + if (in_scop) + { + int i; + edge e; + + for (i = 0; VEC_iterate (edge, sinfo.last->dest->succs, i, e); i++) + if (dominated_by_p (CDI_POST_DOMINATORS, sinfo.last->dest, e->dest)) + { + edge exit = split_difficult_bb (e->dest, &sinfo.last, stmt); + + if (exit) + end_scop (open_scop, exit, sinfo.difficult); + else + end_scop (open_scop, e, sinfo.difficult); + + goto done; + } + + if (SCOP_ENTRY (open_scop) != sinfo.last->dest) + { + edge exit = split_difficult_bb (sinfo.last->dest, NULL, stmt); + + if (exit) + end_scop (open_scop, exit, sinfo.difficult); + else + end_scop (open_scop, sinfo.last, sinfo.difficult); + } + else + { + VEC_pop (scop_p, *scops); + free_scop (open_scop); + } + } + + done: + result.last = sinfo.last; + + return result; +} + +/* Find static control parts. */ + +static void +build_scops (void) +{ + struct loop *loop = current_loops->tree_root; + build_scops_1 (single_succ_edge (ENTRY_BLOCK_PTR), ¤t_scops, loop, loop); +} + +/* Gather the basic blocks belonging to the SCOP. */ + +static void +build_scop_bbs (scop_p scop) +{ + basic_block *stack = XNEWVEC (basic_block, n_basic_blocks + 1); + sbitmap visited = sbitmap_alloc (last_basic_block); + int sp = 0; + + sbitmap_zero (visited); + stack[sp++] = SCOP_ENTRY (scop); + + while (sp) + { + basic_block bb = stack[--sp]; + int depth = loop_depth (bb->loop_father); + int num = bb->loop_father->num; + edge_iterator ei; + edge e; + + /* Scop's exit is not in the scop. Exclude also bbs, which are + dominated by the SCoP exit. These are e.g. loop latches. */ + if (TEST_BIT (visited, bb->index) + || dominated_by_p (CDI_DOMINATORS, bb, SCOP_EXIT (scop)) + /* Every block in the scop is dominated by scop's entry. */ + || !dominated_by_p (CDI_DOMINATORS, bb, SCOP_ENTRY (scop))) + continue; + + new_graphite_bb (scop, bb); + SET_BIT (visited, bb->index); + + /* First push the blocks that have to be processed last. Note + that this means that the order in which the code is organized + below is important: do not reorder the following code. */ + FOR_EACH_EDGE (e, ei, bb->succs) + if (! TEST_BIT (visited, e->dest->index) + && (int) loop_depth (e->dest->loop_father) < depth) + stack[sp++] = e->dest; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (! TEST_BIT (visited, e->dest->index) + && (int) loop_depth (e->dest->loop_father) == depth + && e->dest->loop_father->num != num) + stack[sp++] = e->dest; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (! TEST_BIT (visited, e->dest->index) + && (int) loop_depth (e->dest->loop_father) == depth + && e->dest->loop_father->num == num + && EDGE_COUNT (e->dest->preds) > 1) + stack[sp++] = e->dest; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (! TEST_BIT (visited, e->dest->index) + && (int) loop_depth (e->dest->loop_father) == depth + && e->dest->loop_father->num == num + && EDGE_COUNT (e->dest->preds) == 1) + stack[sp++] = e->dest; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (! TEST_BIT (visited, e->dest->index) + && (int) loop_depth (e->dest->loop_father) > depth) + stack[sp++] = e->dest; + } + + free (stack); + sbitmap_free (visited); +} + + +/* Record LOOP as occuring in SCOP. */ + +static void +scop_record_loop (scop_p scop, struct loop *loop) +{ + loop_p parent; + tree induction_var; + + if (bitmap_bit_p (SCOP_LOOPS (scop), loop->num)) + return; + + parent = loop_outer (loop); + induction_var = find_induction_var_from_exit_cond (loop); + + if (!bb_in_scop_p (parent->latch, scop)) + parent = NULL; + + if (induction_var != NULL_TREE) + { + name_tree oldiv = XNEW (struct name_tree); + oldiv->t = SSA_NAME_VAR (induction_var); + if (DECL_NAME (oldiv->t)) + oldiv->name = IDENTIFIER_POINTER (DECL_NAME (oldiv->t)); + else + { + char *n = XNEWVEC (char, 16); + sprintf (n, "D.%u", DECL_UID (oldiv->t)); + oldiv->name = n; + } + oldiv->loop = loop; + + VEC_safe_push (name_tree, heap, SCOP_OLDIVS (scop), oldiv); + } + + bitmap_set_bit (SCOP_LOOPS (scop), loop->num); + VEC_safe_push (loop_p, heap, SCOP_LOOP_NEST (scop), loop); +} + +/* Build the loop nests contained in SCOP. */ + +static void +build_scop_loop_nests (scop_p scop) +{ + unsigned i; + graphite_bb_p gb; + struct loop *loop0, *loop1; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + struct loop *loop = gbb_loop (gb); + + /* Only add loops, if they are completely contained in the SCoP. */ + if (loop->header == GBB_BB (gb) + && bb_in_scop_p (loop->latch, scop)) + scop_record_loop (scop, gbb_loop (gb)); + } + + /* Make sure that the loops in the SCOP_LOOP_NEST are ordered. It + can be the case that an inner loop is inserted before an outer + loop. To avoid this, semi-sort once. */ + for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, loop0); i++) + { + if (VEC_length (loop_p, SCOP_LOOP_NEST (scop)) == i + 1) + break; + + loop1 = VEC_index (loop_p, SCOP_LOOP_NEST (scop), i + 1); + if (loop0->num > loop1->num) + { + VEC_replace (loop_p, SCOP_LOOP_NEST (scop), i, loop1); + VEC_replace (loop_p, SCOP_LOOP_NEST (scop), i + 1, loop0); + } + } +} + +/* Calculate the number of loops around GB in the current SCOP. */ + +static inline int +nb_loops_around_gb (graphite_bb_p gb) +{ + scop_p scop = GBB_SCOP (gb); + struct loop *l = gbb_loop (gb); + int d = 0; + + for (; loop_in_scop_p (l, scop); d++, l = loop_outer (l)); + + return d; +} + +/* Build for BB the static schedule. + + The STATIC_SCHEDULE is defined like this: + + A + for (i: ...) + { + for (j: ...) + { + B + C + } + + for (k: ...) + { + D + E + } + } + F + + Static schedules for A to F: + + DEPTH + 0 1 2 + A 0 + B 1 0 0 + C 1 0 1 + D 1 1 0 + E 1 1 1 + F 2 +*/ + +static void +build_scop_canonical_schedules (scop_p scop) +{ + int i, j; + graphite_bb_p gb; + int nb = scop_nb_loops (scop) + 1; + + SCOP_STATIC_SCHEDULE (scop) = lambda_vector_new (nb); + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + int offset = nb_loops_around_gb (gb); + + /* After leaving a loop, it is possible that the schedule is not + set at zero. This loop reinitializes components located + after OFFSET. */ + + for (j = offset + 1; j < nb; j++) + if (SCOP_STATIC_SCHEDULE (scop)[j]) + { + memset (&(SCOP_STATIC_SCHEDULE (scop)[j]), 0, + sizeof (int) * (nb - j)); + ++SCOP_STATIC_SCHEDULE (scop)[offset]; + break; + } + + GBB_STATIC_SCHEDULE (gb) = lambda_vector_new (offset + 1); + lambda_vector_copy (SCOP_STATIC_SCHEDULE (scop), + GBB_STATIC_SCHEDULE (gb), offset + 1); + + ++SCOP_STATIC_SCHEDULE (scop)[offset]; + } +} + +/* Build the LOOPS vector for all bbs in SCOP. */ + +static void +build_bb_loops (scop_p scop) +{ + graphite_bb_p gb; + int i; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + loop_p loop; + int depth; + + depth = nb_loops_around_gb (gb) - 1; + + GBB_LOOPS (gb) = VEC_alloc (loop_p, heap, 3); + VEC_safe_grow_cleared (loop_p, heap, GBB_LOOPS (gb), depth + 1); + + loop = GBB_BB (gb)->loop_father; + + while (scop_contains_loop (scop, loop)) + { + VEC_replace (loop_p, GBB_LOOPS (gb), depth, loop); + loop = loop_outer (loop); + depth--; + } + } +} + +/* Get the index for parameter VAR in SCOP. */ + +static int +param_index (tree var, scop_p scop) +{ + int i; + name_tree p; + name_tree nvar; + + gcc_assert (TREE_CODE (var) == SSA_NAME); + + for (i = 0; VEC_iterate (name_tree, SCOP_PARAMS (scop), i, p); i++) + if (p->t == var) + return i; + + nvar = XNEW (struct name_tree); + nvar->t = var; + nvar->name = NULL; + VEC_safe_push (name_tree, heap, SCOP_PARAMS (scop), nvar); + return VEC_length (name_tree, SCOP_PARAMS (scop)) - 1; +} + +/* Scan EXPR and translate it to an inequality vector INEQ that will + be added, or subtracted, in the constraint domain matrix C at row + R. K is the number of columns for loop iterators in C. */ + +static void +scan_tree_for_params (scop_p s, tree e, CloogMatrix *c, int r, Value k, + bool subtract) +{ + int cst_col, param_col; + + if (e == chrec_dont_know) + return; + + switch (TREE_CODE (e)) + { + case POLYNOMIAL_CHREC: + { + tree left = CHREC_LEFT (e); + tree right = CHREC_RIGHT (e); + int var = CHREC_VARIABLE (e); + + if (TREE_CODE (right) != INTEGER_CST) + return; + + if (c) + { + int loop_col = scop_gimple_loop_depth (s, get_loop (var)) + 1; + + if (subtract) + value_sub_int (c->p[r][loop_col], c->p[r][loop_col], + int_cst_value (right)); + else + value_add_int (c->p[r][loop_col], c->p[r][loop_col], + int_cst_value (right)); + } + + switch (TREE_CODE (left)) + { + case POLYNOMIAL_CHREC: + scan_tree_for_params (s, left, c, r, k, subtract); + return; + + case INTEGER_CST: + /* Constant part. */ + if (c) + { + int v = int_cst_value (left); + cst_col = c->NbColumns - 1; + + if (v < 0) + { + v = -v; + subtract = subtract ? false : true; + } + + if (subtract) + value_sub_int (c->p[r][cst_col], c->p[r][cst_col], v); + else + value_add_int (c->p[r][cst_col], c->p[r][cst_col], v); + } + return; + + default: + scan_tree_for_params (s, left, c, r, k, subtract); + return; + } + } + break; + + case MULT_EXPR: + if (chrec_contains_symbols (TREE_OPERAND (e, 0))) + { + Value val; + + gcc_assert (host_integerp (TREE_OPERAND (e, 1), 0)); + + value_init (val); + value_set_si (val, int_cst_value (TREE_OPERAND (e, 1))); + value_multiply (k, k, val); + value_clear (val); + scan_tree_for_params (s, TREE_OPERAND (e, 0), c, r, k, subtract); + } + else + { + Value val; + + gcc_assert (host_integerp (TREE_OPERAND (e, 0), 0)); + + value_init (val); + value_set_si (val, int_cst_value (TREE_OPERAND (e, 0))); + value_multiply (k, k, val); + value_clear (val); + scan_tree_for_params (s, TREE_OPERAND (e, 1), c, r, k, subtract); + } + break; + + case PLUS_EXPR: + scan_tree_for_params (s, TREE_OPERAND (e, 0), c, r, k, subtract); + scan_tree_for_params (s, TREE_OPERAND (e, 1), c, r, k, subtract); + break; + + case MINUS_EXPR: + scan_tree_for_params (s, TREE_OPERAND (e, 0), c, r, k, subtract); + value_oppose (k, k); + scan_tree_for_params (s, TREE_OPERAND (e, 1), c, r, k, subtract); + break; + + case NEGATE_EXPR: + value_oppose (k, k); + scan_tree_for_params (s, TREE_OPERAND (e, 0), c, r, k, subtract); + break; + + case SSA_NAME: + param_col = param_index (e, s); + + if (c) + { + param_col += c->NbColumns - scop_nb_params (s) - 1; + + if (subtract) + value_subtract (c->p[r][param_col], c->p[r][param_col], k); + else + value_addto (c->p[r][param_col], c->p[r][param_col], k); + } + break; + + case INTEGER_CST: + if (c) + { + int v = int_cst_value (e); + cst_col = c->NbColumns - 1; + + if (v < 0) + { + v = -v; + subtract = subtract ? false : true; + } + + if (subtract) + value_sub_int (c->p[r][cst_col], c->p[r][cst_col], v); + else + value_add_int (c->p[r][cst_col], c->p[r][cst_col], v); + } + break; + + case NOP_EXPR: + case CONVERT_EXPR: + case NON_LVALUE_EXPR: + scan_tree_for_params (s, TREE_OPERAND (e, 0), c, r, k, subtract); + break; + + default: + gcc_unreachable (); + break; + } +} + +/* Data structure for idx_record_params. */ + +struct irp_data +{ + struct loop *loop; + scop_p scop; +}; + +/* For a data reference with an ARRAY_REF as its BASE, record the + parameters occurring in IDX. DTA is passed in as complementary + information, and is used by the automatic walker function. This + function is a callback for for_each_index. */ + +static bool +idx_record_params (tree base, tree *idx, void *dta) +{ + struct irp_data *data = (struct irp_data *) dta; + + if (TREE_CODE (base) != ARRAY_REF) + return true; + + if (TREE_CODE (*idx) == SSA_NAME) + { + tree scev; + scop_p scop = data->scop; + struct loop *loop = data->loop; + + scev = analyze_scalar_evolution (loop, *idx); + scev = instantiate_scev (outermost_loop_in_scop (scop, loop->header), + loop, scev); + + { + Value one; + + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, scev, NULL, 0, one, false); + value_clear (one); + } + } + + return true; +} + +/* Find parameters with respect to SCOP in BB. We are looking in memory + access functions, conditions and loop bounds. */ + +static void +find_params_in_bb (scop_p scop, basic_block bb) +{ + int i; + data_reference_p dr; + VEC (data_reference_p, heap) *drs; + gimple_stmt_iterator gsi; + struct loop *nest = outermost_loop_in_scop (scop, bb); + + /* Find the parameters used in the memory access functions. */ + drs = VEC_alloc (data_reference_p, heap, 5); + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + find_data_references_in_stmt (nest, gsi_stmt (gsi), &drs); + + for (i = 0; VEC_iterate (data_reference_p, drs, i, dr); i++) + { + struct irp_data irp; + + irp.loop = bb->loop_father; + irp.scop = scop; + for_each_index (&dr->ref, idx_record_params, &irp); + free_data_ref (dr); + } + + VEC_free (data_reference_p, heap, drs); + + /* Find parameters in conditional statements. */ + gsi = gsi_last_bb (bb); + if (!gsi_end_p (gsi)) + { + gimple stmt = gsi_stmt (gsi); + + if (gimple_code (stmt) == GIMPLE_COND) + { + Value one; + loop_p loop = bb->loop_father; + + tree lhs, rhs; + + lhs = gimple_cond_lhs (stmt); + lhs = analyze_scalar_evolution (loop, lhs); + lhs = instantiate_scev (nest, loop, lhs); + + rhs = gimple_cond_rhs (stmt); + rhs = analyze_scalar_evolution (loop, rhs); + rhs = instantiate_scev (nest, loop, rhs); + + value_init (one); + scan_tree_for_params (scop, lhs, NULL, 0, one, false); + value_set_si (one, 1); + scan_tree_for_params (scop, rhs, NULL, 0, one, false); + value_clear (one); + } + } +} + +/* Saves in NV the name of variable P->T. */ + +static void +save_var_name (char **nv, int i, name_tree p) +{ + const char *name = get_name (SSA_NAME_VAR (p->t)); + + if (name) + { + nv[i] = XNEWVEC (char, strlen (name) + 12); + sprintf (nv[i], "%s_%12d", name, SSA_NAME_VERSION (p->t)); + } + else + { + nv[i] = XNEWVEC (char, 12); + sprintf (nv[i], "T_%12d", SSA_NAME_VERSION (p->t)); + } + + p->name = nv[i]; +} + +/* Return the maximal loop depth in SCOP. */ + +static int +scop_max_loop_depth (scop_p scop) +{ + int i; + graphite_bb_p gbb; + int max_nb_loops = 0; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gbb); i++) + { + int nb_loops = gbb_nb_loops (gbb); + if (max_nb_loops < nb_loops) + max_nb_loops = nb_loops; + } + + return max_nb_loops; +} + +/* Initialize Cloog's parameter names from the names used in GIMPLE. + Initialize Cloog's iterator names, using 'graphite_iterator_%d' + from 0 to scop_nb_loops (scop). */ + +static void +initialize_cloog_names (scop_p scop) +{ + int i, nb_params = VEC_length (name_tree, SCOP_PARAMS (scop)); + char **params = XNEWVEC (char *, nb_params); + int nb_iterators = scop_max_loop_depth (scop); + int nb_scattering= cloog_program_nb_scattdims (SCOP_PROG (scop)); + char **iterators = XNEWVEC (char *, nb_iterators * 2); + char **scattering = XNEWVEC (char *, nb_scattering); + name_tree p; + + for (i = 0; VEC_iterate (name_tree, SCOP_PARAMS (scop), i, p); i++) + save_var_name (params, i, p); + + cloog_names_set_nb_parameters (cloog_program_names (SCOP_PROG (scop)), + nb_params); + cloog_names_set_parameters (cloog_program_names (SCOP_PROG (scop)), + params); + + for (i = 0; i < nb_iterators; i++) + { + iterators[i] = XNEWVEC (char, 18 + 12); + sprintf (iterators[i], "graphite_iterator_%d", i); + } + + cloog_names_set_nb_iterators (cloog_program_names (SCOP_PROG (scop)), + nb_iterators); + cloog_names_set_iterators (cloog_program_names (SCOP_PROG (scop)), + iterators); + + for (i = 0; i < nb_scattering; i++) + { + scattering[i] = XNEWVEC (char, 2 + 12); + sprintf (scattering[i], "s_%d", i); + } + + cloog_names_set_nb_scattering (cloog_program_names (SCOP_PROG (scop)), + nb_scattering); + cloog_names_set_scattering (cloog_program_names (SCOP_PROG (scop)), + scattering); +} + +/* Record the parameters used in the SCOP. A variable is a parameter + in a scop if it does not vary during the execution of that scop. */ + +static void +find_scop_parameters (scop_p scop) +{ + graphite_bb_p gb; + unsigned i; + struct loop *loop; + Value one; + + value_init (one); + value_set_si (one, 1); + + /* Find the parameters used in the loop bounds. */ + for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, loop); i++) + { + tree nb_iters = number_of_latch_executions (loop); + + if (!chrec_contains_symbols (nb_iters)) + continue; + + nb_iters = analyze_scalar_evolution (loop, nb_iters); + nb_iters = instantiate_scev (outermost_loop_in_scop (scop, loop->header), + loop, nb_iters); + scan_tree_for_params (scop, nb_iters, NULL, 0, one, false); + } + + value_clear (one); + + /* Find the parameters used in data accesses. */ + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + find_params_in_bb (scop, GBB_BB (gb)); +} + +/* Build the context constraints for SCOP: constraints and relations + on parameters. */ + +static void +build_scop_context (scop_p scop) +{ + int nb_params = scop_nb_params (scop); + CloogMatrix *matrix = cloog_matrix_alloc (1, nb_params + 2); + + /* Insert '0 >= 0' in the context matrix, as it is not allowed to be + empty. */ + + value_set_si (matrix->p[0][0], 1); + + value_set_si (matrix->p[0][nb_params + 1], 0); + + cloog_program_set_context (SCOP_PROG (scop), + cloog_domain_matrix2domain (matrix)); + cloog_matrix_free (matrix); +} + +/* Returns a graphite_bb from BB. */ + +static inline graphite_bb_p +gbb_from_bb (basic_block bb) +{ + return (graphite_bb_p) bb->aux; +} + +/* Add DOMAIN to all the basic blocks in LOOP. */ + +static void +add_bb_domains (struct loop *loop, CloogMatrix *domain) +{ + basic_block *bbs = get_loop_body (loop); + unsigned i; + + for (i = 0; i < loop->num_nodes; i++) + if (bbs[i]->loop_father == loop) + { + graphite_bb_p gbb = gbb_from_bb (bbs[i]); + GBB_DOMAIN (gbb) = cloog_matrix_copy (domain); + } + + free (bbs); +} + +/* Builds the constraint matrix for LOOP in SCOP. NB_OUTER_LOOPS is the + number of loops surrounding LOOP in SCOP. OUTER_CSTR gives the + constraints matrix for the surrounding loops. */ + +static void +build_loop_iteration_domains (scop_p scop, struct loop *loop, + CloogMatrix *outer_cstr, int nb_outer_loops) +{ + int i, j, row; + CloogMatrix *cstr; + + int nb_rows = outer_cstr->NbRows + 1; + int nb_cols = outer_cstr->NbColumns + 1; + + /* Last column of CSTR is the column of constants. */ + int cst_col = nb_cols - 1; + + /* The column for the current loop is just after the columns of + other outer loops. */ + int loop_col = nb_outer_loops + 1; + + tree nb_iters = number_of_latch_executions (loop); + + /* When the number of iterations is a constant or a parameter, we + add a constraint for the upper bound of the loop. So add a row + to the constraint matrix before allocating it. */ + if (TREE_CODE (nb_iters) == INTEGER_CST + || !chrec_contains_undetermined (nb_iters)) + nb_rows++; + + cstr = cloog_matrix_alloc (nb_rows, nb_cols); + + /* Copy the outer constraints. */ + for (i = 0; i < outer_cstr->NbRows; i++) + { + /* Copy the eq/ineq and loops columns. */ + for (j = 0; j < loop_col; j++) + value_assign (cstr->p[i][j], outer_cstr->p[i][j]); + + /* Leave an empty column in CSTR for the current loop, and then + copy the parameter columns. */ + for (j = loop_col; j < outer_cstr->NbColumns; j++) + value_assign (cstr->p[i][j + 1], outer_cstr->p[i][j]); + } + + /* 0 <= loop_i */ + row = outer_cstr->NbRows; + value_set_si (cstr->p[row][0], 1); + value_set_si (cstr->p[row][loop_col], 1); + + /* loop_i <= nb_iters */ + if (TREE_CODE (nb_iters) == INTEGER_CST) + { + row++; + value_set_si (cstr->p[row][0], 1); + value_set_si (cstr->p[row][loop_col], -1); + + value_set_si (cstr->p[row][cst_col], + int_cst_value (nb_iters)); + } + else if (!chrec_contains_undetermined (nb_iters)) + { + /* Otherwise nb_iters contains parameters: scan the nb_iters + expression and build its matrix representation. */ + Value one; + + row++; + value_set_si (cstr->p[row][0], 1); + value_set_si (cstr->p[row][loop_col], -1); + nb_iters = analyze_scalar_evolution (loop, nb_iters); + nb_iters = + instantiate_scev (outermost_loop_in_scop (scop, loop->header), + loop, nb_iters); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, nb_iters, cstr, row, one, false); + value_clear (one); + } + else + gcc_unreachable (); + + if (loop->inner && loop_in_scop_p (loop->inner, scop)) + build_loop_iteration_domains (scop, loop->inner, cstr, nb_outer_loops + 1); + + /* Only go to the next loops, if we are not at the outermost layer. These + have to be handled seperately, as we can be sure, that the chain at this + layer will be connected. */ + if (nb_outer_loops != 0 && loop->next && loop_in_scop_p (loop->next, scop)) + build_loop_iteration_domains (scop, loop->next, outer_cstr, nb_outer_loops); + + add_bb_domains (loop, cstr); + + cloog_matrix_free (cstr); +} + +/* Add conditions to the domain of GB. */ + +static void +add_conditions_to_domain (graphite_bb_p gb) +{ + unsigned int i,j; + gimple stmt; + VEC (gimple, heap) *conditions = GBB_CONDITIONS (gb); + CloogMatrix *domain = GBB_DOMAIN (gb); + scop_p scop = GBB_SCOP (gb); + + unsigned nb_rows; + unsigned nb_cols; + unsigned nb_new_rows = 0; + unsigned row; + + if (VEC_empty (gimple, conditions)) + return; + + if (domain) + { + nb_rows = domain->NbRows; + nb_cols = domain->NbColumns; + } + else + { + nb_rows = 0; + nb_cols = scop_nb_params (scop) + 2; + } + + /* Count number of necessary new rows to add the conditions to the + domain. */ + for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++) + { + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + { + enum tree_code code = gimple_cond_code (stmt); + + switch (code) + { + case NE_EXPR: + case EQ_EXPR: + /* NE and EQ statements are not supported right know. */ + gcc_unreachable (); + break; + case LT_EXPR: + case GT_EXPR: + case LE_EXPR: + case GE_EXPR: + nb_new_rows++; + break; + default: + gcc_unreachable (); + break; + } + break; + } + case SWITCH_EXPR: + /* Switch statements are not supported right know. */ + gcc_unreachable (); + break; + + default: + gcc_unreachable (); + break; + } + } + + + /* Enlarge the matrix. */ + { + CloogMatrix *new_domain; + new_domain = cloog_matrix_alloc (nb_rows + nb_new_rows, nb_cols); + + for (i = 0; i < nb_rows; i++) + for (j = 0; j < nb_cols; j++) + value_assign (new_domain->p[i][j], domain->p[i][j]); + + cloog_matrix_free (domain); + domain = new_domain; + GBB_DOMAIN (gb) = new_domain; + } + + /* Add the conditions to the new enlarged domain matrix. */ + row = nb_rows; + for (i = 0; VEC_iterate (gimple, conditions, i, stmt); i++) + { + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + { + Value one; + enum tree_code code; + tree left; + tree right; + loop_p loop = GBB_BB (gb)->loop_father; + loop_p outermost = outermost_loop_in_scop (scop, GBB_BB (gb)); + + left = gimple_cond_lhs (stmt); + right = gimple_cond_rhs (stmt); + + left = analyze_scalar_evolution (loop, left); + right = analyze_scalar_evolution (loop, right); + left = instantiate_scev (outermost, loop, left); + right = instantiate_scev (outermost, loop, right); + + code = gimple_cond_code (stmt); + + /* The conditions for ELSE-branches are inverted. */ + if (VEC_index (gimple, gb->condition_cases, i) == NULL) + code = invert_tree_comparison (code, false); + + switch (code) + { + case NE_EXPR: + /* NE statements are not supported right know. */ + gcc_unreachable (); + break; + case EQ_EXPR: + value_set_si (domain->p[row][0], 1); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, true); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, false); + row++; + value_set_si (domain->p[row][0], 1); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, false); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, true); + value_clear (one); + row++; + break; + case LT_EXPR: + value_set_si (domain->p[row][0], 1); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, true); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, false); + value_sub_int (domain->p[row][nb_cols - 1], + domain->p[row][nb_cols - 1], 1); + value_clear (one); + row++; + break; + case GT_EXPR: + value_set_si (domain->p[row][0], 1); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, false); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, true); + value_sub_int (domain->p[row][nb_cols - 1], + domain->p[row][nb_cols - 1], 1); + value_clear (one); + row++; + break; + case LE_EXPR: + value_set_si (domain->p[row][0], 1); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, true); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, false); + value_clear (one); + row++; + break; + case GE_EXPR: + value_set_si (domain->p[row][0], 1); + value_init (one); + value_set_si (one, 1); + scan_tree_for_params (scop, left, domain, row, one, false); + value_set_si (one, 1); + scan_tree_for_params (scop, right, domain, row, one, true); + value_clear (one); + row++; + break; + default: + gcc_unreachable (); + break; + } + break; + } + case GIMPLE_SWITCH: + /* Switch statements are not supported right know. */ + gcc_unreachable (); + break; + + default: + gcc_unreachable (); + break; + } + } +} + +/* Helper recursive function. */ + +static void +build_scop_conditions_1 (VEC (gimple, heap) **conditions, + VEC (gimple, heap) **cases, basic_block bb, + scop_p scop) +{ + int i, j; + graphite_bb_p gbb; + gimple_stmt_iterator gsi; + basic_block bb_child, bb_iter; + VEC (basic_block, heap) *dom; + + /* Make sure we are in the SCoP. */ + if (!bb_in_scop_p (bb, scop)) + return; + + /* Record conditions in graphite_bb. */ + gbb = gbb_from_bb (bb); + GBB_CONDITIONS (gbb) = VEC_copy (gimple, heap, *conditions); + GBB_CONDITION_CASES (gbb) = VEC_copy (gimple, heap, *cases); + + add_conditions_to_domain (gbb); + + dom = get_dominated_by (CDI_DOMINATORS, bb); + + for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + VEC (edge, gc) *edges; + edge e; + + switch (gimple_code (stmt)) + { + case GIMPLE_COND: + edges = bb->succs; + for (i = 0; VEC_iterate (edge, edges, i, e); i++) + if ((dominated_by_p (CDI_DOMINATORS, e->dest, bb)) + && VEC_length (edge, e->dest->preds) == 1) + { + /* Remove the scanned block from the dominator successors. */ + for (j = 0; VEC_iterate (basic_block, dom, j, bb_iter); j++) + if (bb_iter == e->dest) + { + VEC_unordered_remove (basic_block, dom, j); + break; + } + + /* Recursively scan the then or else part. */ + if (e->flags & EDGE_TRUE_VALUE) + VEC_safe_push (gimple, heap, *cases, stmt); + else if (e->flags & EDGE_FALSE_VALUE) + VEC_safe_push (gimple, heap, *cases, NULL); + else + gcc_unreachable (); + + VEC_safe_push (gimple, heap, *conditions, stmt); + build_scop_conditions_1 (conditions, cases, e->dest, scop); + VEC_pop (gimple, *conditions); + VEC_pop (gimple, *cases); + } + break; + + case GIMPLE_SWITCH: + { + unsigned i; + gimple_stmt_iterator gsi_search_gimple_label; + + for (i = 0; i < gimple_switch_num_labels (stmt); ++i) + { + basic_block bb_iter; + size_t k; + size_t n_cases = VEC_length (gimple, *conditions); + unsigned n = gimple_switch_num_labels (stmt); + + bb_child = label_to_block + (CASE_LABEL (gimple_switch_label (stmt, i))); + + /* Do not handle multiple values for the same block. */ + for (k = 0; k < n; k++) + if (i != k + && label_to_block + (CASE_LABEL (gimple_switch_label (stmt, k))) == bb_child) + break; + + if (k != n) + continue; + + /* Switch cases with more than one predecessor are not + handled. */ + if (VEC_length (edge, bb_child->preds) != 1) + continue; + + /* Recursively scan the corresponding 'case' block. */ + + for (gsi_search_gimple_label = gsi_start_bb (bb_child); + !gsi_end_p (gsi_search_gimple_label); + gsi_next (&gsi_search_gimple_label)) + { + gimple stmt_gimple_label + = gsi_stmt (gsi_search_gimple_label); + + if (gimple_code (stmt_gimple_label) == GIMPLE_LABEL) + { + tree t = gimple_label_label (stmt_gimple_label); + + if (t == gimple_switch_label (stmt, i)) + VEC_replace (gimple, *cases, n_cases, + stmt_gimple_label); + else + gcc_unreachable (); + } + } + + build_scop_conditions_1 (conditions, cases, bb_child, scop); + + /* Remove the scanned block from the dominator successors. */ + for (j = 0; VEC_iterate (basic_block, dom, j, bb_iter); j++) + if (bb_iter == bb_child) + { + VEC_unordered_remove (basic_block, dom, j); + break; + } + } + + VEC_pop (gimple, *conditions); + VEC_pop (gimple, *cases); + break; + } + default: + break; + } + } + + /* Scan all immediate dominated successors. */ + for (i = 0; VEC_iterate (basic_block, dom, i, bb_child); i++) + build_scop_conditions_1 (conditions, cases, bb_child, scop); + + VEC_free (basic_block, heap, dom); +} + +/* Record all 'if' and 'switch' conditions in each gbb of SCOP. */ + +static void +build_scop_conditions (scop_p scop) +{ + VEC (gimple, heap) *conditions = NULL; + VEC (gimple, heap) *cases = NULL; + + build_scop_conditions_1 (&conditions, &cases, SCOP_ENTRY (scop), scop); + + VEC_free (gimple, heap, conditions); + VEC_free (gimple, heap, cases); +} + +/* Build the current domain matrix: the loops belonging to the current + SCOP, and that vary for the execution of the current basic block. + Returns false if there is no loop in SCOP. */ + +static bool +build_scop_iteration_domain (scop_p scop) +{ + struct loop *loop; + CloogMatrix *outer_cstr; + int i; + + /* Build cloog loop for all loops, that are in the uppermost loop layer of + this SCoP. */ + for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, loop); i++) + if (!loop_in_scop_p (loop_outer (loop), scop)) + { + /* The outermost constraints is a matrix that has: + -first column: eq/ineq boolean + -last column: a constant + -scop_nb_params columns for the parameters used in the scop. */ + outer_cstr = cloog_matrix_alloc (0, scop_nb_params (scop) + 2); + build_loop_iteration_domains (scop, loop, outer_cstr, 0); + cloog_matrix_free (outer_cstr); + } + + return (i != 0); +} + +/* Initializes an equation CY of the access matrix using the + information for a subscript from ACCESS_FUN, relatively to the loop + indexes from LOOP_NEST and parameter indexes from PARAMS. NDIM is + the dimension of the array access, i.e. the number of + subscripts. Returns true when the operation succeeds. */ + +static bool +build_access_matrix_with_af (tree access_fun, lambda_vector cy, + scop_p scop, int ndim) +{ + switch (TREE_CODE (access_fun)) + { + case POLYNOMIAL_CHREC: + { + tree left = CHREC_LEFT (access_fun); + tree right = CHREC_RIGHT (access_fun); + int var; + + if (TREE_CODE (right) != INTEGER_CST) + return false; + + var = loop_iteration_vector_dim (CHREC_VARIABLE (access_fun), scop); + cy[var] = int_cst_value (right); + + switch (TREE_CODE (left)) + { + case POLYNOMIAL_CHREC: + return build_access_matrix_with_af (left, cy, scop, ndim); + + case INTEGER_CST: + cy[ndim - 1] = int_cst_value (left); + return true; + + default: + /* FIXME: access_fn can have parameters. */ + return false; + } + } + case INTEGER_CST: + cy[ndim - 1] = int_cst_value (access_fun); + return true; + + default: + /* FIXME: access_fn can have parameters. */ + return false; + } +} + +/* Initialize the access matrix in the data reference REF with respect + to the loop nesting LOOP_NEST. Return true when the operation + succeeded. */ + +static bool +build_access_matrix (data_reference_p ref, graphite_bb_p gb) +{ + int i, ndim = DR_NUM_DIMENSIONS (ref); + struct access_matrix *am = GGC_NEW (struct access_matrix); + + AM_MATRIX (am) = VEC_alloc (lambda_vector, heap, ndim); + DR_SCOP (ref) = GBB_SCOP (gb); + + for (i = 0; i < ndim; i++) + { + lambda_vector v = lambda_vector_new (ref_nb_loops (ref)); + scop_p scop = GBB_SCOP (gb); + tree af = DR_ACCESS_FN (ref, i); + + if (!build_access_matrix_with_af (af, v, scop, ref_nb_loops (ref))) + return false; + + VEC_safe_push (lambda_vector, heap, AM_MATRIX (am), v); + } + + DR_ACCESS_MATRIX (ref) = am; + return true; +} + +/* Build the access matrices for the data references in the SCOP. */ + +static void +build_scop_data_accesses (scop_p scop) +{ + int i; + graphite_bb_p gb; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + int j; + gimple_stmt_iterator gsi; + data_reference_p dr; + struct loop *nest = outermost_loop_in_scop (scop, GBB_BB (gb)); + + /* On each statement of the basic block, gather all the occurences + to read/write memory. */ + GBB_DATA_REFS (gb) = VEC_alloc (data_reference_p, heap, 5); + for (gsi = gsi_start_bb (GBB_BB (gb)); !gsi_end_p (gsi); gsi_next (&gsi)) + find_data_references_in_stmt (nest, gsi_stmt (gsi), + &GBB_DATA_REFS (gb)); + + /* FIXME: Construction of access matrix is disabled until some + pass, like the data dependence analysis, is using it. */ + continue; + + /* Construct the access matrix for each data ref, with respect to + the loop nest of the current BB in the considered SCOP. */ + for (j = 0; + VEC_iterate (data_reference_p, GBB_DATA_REFS (gb), j, dr); + j++) + { + bool res = build_access_matrix (dr, gb); + + /* FIXME: At this point the DRs should always have an affine + form. For the moment this fails as build_access_matrix + does not build matrices with parameters. */ + gcc_assert (res); + } + } +} + +/* Converts a GMP constant value to a tree and returns it. */ + +static tree +gmp_cst_to_tree (Value v) +{ + return build_int_cst (integer_type_node, value_get_si (v)); +} + +/* Returns the tree variable from the name NAME that was given in + Cloog representation. All the parameters are stored in PARAMS, and + all the loop induction variables are stored in IVSTACK. + + FIXME: This is a hack, and Cloog should be fixed to not work with + variable names represented as "char *string", but with void + pointers that could be casted back to a tree. The only problem in + doing that is that Cloog's pretty printer still assumes that + variable names are char *strings. The solution would be to have a + function pointer for pretty-printing that can be redirected to be + print_generic_stmt in our case, or fprintf by default. + ??? Too ugly to live. */ + +static tree +clast_name_to_gcc (const char *name, VEC (name_tree, heap) *params, + loop_iv_stack ivstack) +{ + int i; + name_tree t; + tree iv; + + for (i = 0; VEC_iterate (name_tree, params, i, t); i++) + if (!strcmp (name, t->name)) + return t->t; + + iv = loop_iv_stack_get_iv_from_name (ivstack, name); + if (iv) + return iv; + + gcc_unreachable (); +} + +/* Converts a Cloog AST expression E back to a GCC expression tree. */ + +static tree +clast_to_gcc_expression (struct clast_expr *e, + VEC (name_tree, heap) *params, + loop_iv_stack ivstack) +{ + tree type = integer_type_node; + + gcc_assert (e); + + switch (e->type) + { + case expr_term: + { + struct clast_term *t = (struct clast_term *) e; + + if (t->var) + { + if (value_one_p (t->val)) + return clast_name_to_gcc (t->var, params, ivstack); + + else if (value_mone_p (t->val)) + return fold_build1 (NEGATE_EXPR, type, + clast_name_to_gcc (t->var, params, ivstack)); + else + return fold_build2 (MULT_EXPR, type, + gmp_cst_to_tree (t->val), + clast_name_to_gcc (t->var, params, ivstack)); + } + else + return gmp_cst_to_tree (t->val); + } + + case expr_red: + { + struct clast_reduction *r = (struct clast_reduction *) e; + tree left, right; + + switch (r->type) + { + case clast_red_sum: + if (r->n == 1) + return clast_to_gcc_expression (r->elts[0], params, ivstack); + + else + { + gcc_assert (r->n >= 1 + && r->elts[0]->type == expr_term + && r->elts[1]->type == expr_term); + + left = clast_to_gcc_expression (r->elts[0], params, ivstack); + right = clast_to_gcc_expression (r->elts[1], params, ivstack); + return fold_build2 (PLUS_EXPR, type, left, right); + } + + break; + + case clast_red_min: + if (r->n == 1) + return clast_to_gcc_expression (r->elts[0], params, ivstack); + + else if (r->n == 2) + { + left = clast_to_gcc_expression (r->elts[0], params, ivstack); + right = clast_to_gcc_expression (r->elts[1], params, ivstack); + return fold_build2 (MIN_EXPR, type, left, right); + } + + else + gcc_unreachable(); + + break; + + case clast_red_max: + if (r->n == 1) + return clast_to_gcc_expression (r->elts[0], params, ivstack); + + else if (r->n == 2) + { + left = clast_to_gcc_expression (r->elts[0], params, ivstack); + right = clast_to_gcc_expression (r->elts[1], params, ivstack); + return fold_build2 (MAX_EXPR, type, left, right); + } + + else + gcc_unreachable(); + + break; + + default: + gcc_unreachable (); + } + break; + } + + case expr_bin: + { + struct clast_binary *b = (struct clast_binary *) e; + struct clast_expr *lhs = (struct clast_expr *) b->LHS; + struct clast_expr *rhs = (struct clast_expr *) b->RHS; + tree tl = clast_to_gcc_expression (lhs, params, ivstack); + + /* FIXME: The next statement produces a warning: Cloog assumes + that the RHS is a constant, but this is a "void *" pointer + that should be casted into a Value, but this cast cannot be + done as Value is a GMP type, that is an array. Cloog must + be fixed for removing this warning. */ + tree tr = gmp_cst_to_tree (rhs); + + switch (b->type) + { + case clast_bin_fdiv: + return fold_build2 (FLOOR_DIV_EXPR, type, tl, tr); + + case clast_bin_cdiv: + return fold_build2 (CEIL_DIV_EXPR, type, tl, tr); + + case clast_bin_div: + return fold_build2 (EXACT_DIV_EXPR, type, tl, tr); + + case clast_bin_mod: + return fold_build2 (TRUNC_MOD_EXPR, type, tl, tr); + + default: + gcc_unreachable (); + } + } + + default: + gcc_unreachable (); + } + + return NULL_TREE; +} + +/* Translates a clast equation CLEQ to a tree. */ + +static tree +graphite_translate_clast_equation (scop_p scop, + struct clast_equation *cleq, + loop_iv_stack ivstack) +{ + enum tree_code comp; + tree lhs = clast_to_gcc_expression (cleq->LHS, SCOP_PARAMS (scop), ivstack); + tree rhs = clast_to_gcc_expression (cleq->RHS, SCOP_PARAMS (scop), ivstack); + + if (cleq->sign == 0) + comp = EQ_EXPR; + + else if (cleq->sign > 0) + comp = GE_EXPR; + + else + comp = LE_EXPR; + + return fold_build2 (comp, integer_type_node, lhs, rhs); +} + +/* Creates the test for the condition in STMT. */ + +static tree +graphite_create_guard_cond_expr (scop_p scop, struct clast_guard *stmt, + loop_iv_stack ivstack) +{ + tree cond = NULL; + int i; + + for (i = 0; i < stmt->n; i++) + { + tree eq = graphite_translate_clast_equation (scop, &stmt->eq[i], ivstack); + + if (cond) + cond = fold_build2 (TRUTH_AND_EXPR, integer_type_node, cond, eq); + else + cond = eq; + } + + return cond; +} + +/* Creates a new if region corresponding to Cloog's guard. */ + +static edge +graphite_create_new_guard (scop_p scop, edge entry_edge, + struct clast_guard *stmt, + loop_iv_stack ivstack) +{ + tree cond_expr = graphite_create_guard_cond_expr (scop, stmt, ivstack); + edge exit_edge = create_empty_if_region_on_edge (entry_edge, cond_expr); + return exit_edge; +} + + +/* Creates a new LOOP corresponding to Cloog's STMT. Inserts an induction + variable for the new LOOP. New LOOP is attached to CFG starting at + ENTRY_EDGE. LOOP is inserted into the loop tree and becomes the child + loop of the OUTER_LOOP. */ + +static struct loop * +graphite_create_new_loop (scop_p scop, edge entry_edge, + struct clast_for *stmt, loop_iv_stack ivstack, + loop_p outer) +{ + struct loop *loop; + tree ivvar; + tree stride, lowb, upb; + tree iv_before; + + gcc_assert (stmt->LB + && stmt->UB); + + stride = gmp_cst_to_tree (stmt->stride); + lowb = clast_to_gcc_expression (stmt->LB, SCOP_PARAMS (scop), ivstack); + ivvar = create_tmp_var (integer_type_node, "graphiteIV"); + add_referenced_var (ivvar); + + upb = clast_to_gcc_expression (stmt->UB, SCOP_PARAMS (scop), ivstack); + loop = create_empty_loop_on_edge (entry_edge, lowb, stride, upb, ivvar, + &iv_before, outer ? outer + : entry_edge->src->loop_father); + + loop_iv_stack_push (ivstack, iv_before, stmt->iterator); + + return loop; +} + +/* Remove all the edges from EDGES except the edge KEEP. */ + +static void +remove_all_edges_1 (VEC (edge, gc) *edges, edge keep) +{ + edge e; + edge_iterator ei; + + for (ei = ei_start (edges); (e = ei_safe_edge (ei)); ) + { + if (e != keep) + { + remove_edge (e); + e = ei_safe_edge (ei); + } + else + ei_next (&ei); + } +} + +/* Remove all the edges from BB except the edge KEEP. */ + +static void +remove_all_edges (basic_block bb, edge keep) +{ + remove_all_edges_1 (bb->succs, keep); + remove_all_edges_1 (bb->preds, keep); +} + +/* Rename the SSA_NAMEs used in STMT and that appear in IVSTACK. */ + +static void +graphite_rename_ivs_stmt (gimple stmt, graphite_bb_p gbb, scop_p scop, + loop_p old, loop_iv_stack ivstack) +{ + ssa_op_iter iter; + use_operand_p use_p; + + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) + { + tree use = USE_FROM_PTR (use_p); + tree new_iv = NULL; + name_tree old_iv = get_old_iv_from_ssa_name (scop, old, use); + + if (old_iv) + new_iv = loop_iv_stack_get_iv (ivstack, + gbb_loop_index (gbb, old_iv->loop)); + + if (new_iv) + SET_USE (use_p, new_iv); + } +} + +/* Returns true if SSA_NAME is a parameter of SCOP. */ + +static bool +is_parameter (scop_p scop, tree ssa_name) +{ + int i; + VEC (name_tree, heap) *params = SCOP_PARAMS (scop); + name_tree param; + + for (i = 0; VEC_iterate (name_tree, params, i, param); i++) + if (param->t == ssa_name) + return true; + + return false; +} + +/* Returns true if NAME is an old induction variable in SCOP. OLD is + the original loop that contained the definition of NAME. */ + +static bool +is_old_iv (scop_p scop, loop_p old, tree name) +{ + return get_old_iv_from_ssa_name (scop, old, name) != NULL; + +} + +static void expand_scalar_variables_stmt (gimple, graphite_bb_p, scop_p, loop_p, + loop_iv_stack); + +/* Constructs a tree which only contains old_ivs and parameters. Any + other variables that are defined outside GBB will be eliminated by + using their definitions in the constructed tree. OLD_LOOP_FATHER + is the original loop that contained GBB. */ + +static tree +expand_scalar_variables_expr (tree type, tree op0, enum tree_code code, + tree op1, graphite_bb_p gbb, scop_p scop, + loop_p old_loop_father, loop_iv_stack ivstack) +{ + if (TREE_CODE_CLASS (code) == tcc_constant + && code == INTEGER_CST) + return op0; + + if (TREE_CODE_CLASS (code) == tcc_unary) + { + tree op0_type = TREE_TYPE (op0); + enum tree_code op0_code = TREE_CODE (op0); + tree op0_expr = + expand_scalar_variables_expr (op0_type, op0, op0_code, + NULL, gbb, scop, old_loop_father, + ivstack); + + return fold_build1 (code, type, op0_expr); + } + + if (TREE_CODE_CLASS (code) == tcc_binary) + { + tree op0_type = TREE_TYPE (op0); + enum tree_code op0_code = TREE_CODE (op0); + tree op0_expr = + expand_scalar_variables_expr (op0_type, op0, op0_code, + NULL, gbb, scop, old_loop_father, + ivstack); + tree op1_type = TREE_TYPE (op1); + enum tree_code op1_code = TREE_CODE (op1); + tree op1_expr = + expand_scalar_variables_expr (op1_type, op1, op1_code, + NULL, gbb, scop, old_loop_father, + ivstack); + + return fold_build2 (code, type, op0_expr, op1_expr); + } + + if (code == SSA_NAME) + { + tree var0, var1; + gimple def_stmt; + enum tree_code subcode; + + if(is_parameter (scop, op0) || + is_old_iv (scop, old_loop_father, op0)) + return op0; + + def_stmt = SSA_NAME_DEF_STMT (op0); + + if (gimple_bb (def_stmt) == GBB_BB (gbb)) + { + /* If the defining statement is in the basic block already + we do not need to create a new expression for it, we + only need to ensure its operands are expanded. */ + expand_scalar_variables_stmt (def_stmt, gbb, scop, + old_loop_father, ivstack); + return op0; + + } + else + { + if (gimple_code (def_stmt) != GIMPLE_ASSIGN) + return op0; + + var0 = gimple_assign_rhs1 (def_stmt); + subcode = gimple_assign_rhs_code (def_stmt); + var1 = gimple_assign_rhs2 (def_stmt); + + return expand_scalar_variables_expr (type, var0, subcode, var1, + gbb, scop, old_loop_father, + ivstack); + } + } + + gcc_unreachable (); + return NULL; +} + +/* Replicates any uses of non-parameters and non-old-ivs variablesthat + are defind outside GBB with code that is inserted in GBB. + OLD_LOOP_FATHER is the original loop that contained STMT. */ + +static void +expand_scalar_variables_stmt (gimple stmt, graphite_bb_p gbb, scop_p scop, + loop_p old_loop_father, loop_iv_stack ivstack) +{ + ssa_op_iter iter; + use_operand_p use_p; + basic_block bb = GBB_BB (gbb); + + FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE) + { + tree use = USE_FROM_PTR (use_p); + tree type = TREE_TYPE (use); + enum tree_code code = TREE_CODE (use); + tree use_expr = expand_scalar_variables_expr (type, use, code, NULL, + gbb, scop, old_loop_father, + ivstack); + if (use_expr != use) + { + gimple_stmt_iterator gsi = gsi_after_labels (bb); + tree new_use = + force_gimple_operand_gsi (&gsi, use_expr, true, NULL, + true, GSI_NEW_STMT); + SET_USE (use_p, new_use); + } + } +} + +/* Copies the definitions outside of GBB of variables that are not + induction variables nor parameters. GBB must only contain + "external" references to these types of variables. OLD_LOOP_FATHER + is the original loop that contained GBB. */ + +static void +expand_scalar_variables (graphite_bb_p gbb, scop_p scop, + loop_p old_loop_father, loop_iv_stack ivstack) +{ + basic_block bb = GBB_BB (gbb); + gimple_stmt_iterator gsi; + + for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) + { + gimple stmt = gsi_stmt (gsi); + expand_scalar_variables_stmt (stmt, gbb, scop, old_loop_father, + ivstack); + gsi_next (&gsi); + } +} + +/* Rename all the SSA_NAMEs from block GBB that appear in IVSTACK in + terms of new induction variables. OLD_LOOP_FATHER is the original + loop that contained GBB. */ + +static void +graphite_rename_ivs (graphite_bb_p gbb, scop_p scop, loop_p old_loop_father, + loop_iv_stack ivstack) +{ + basic_block bb = GBB_BB (gbb); + gimple_stmt_iterator gsi; + + for (gsi = gsi_after_labels (bb); !gsi_end_p (gsi);) + { + gimple stmt = gsi_stmt (gsi); + + if (gimple_get_lhs (stmt) + && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME + && get_old_iv_from_ssa_name (scop, old_loop_father, + gimple_get_lhs (stmt))) + gsi_remove (&gsi, false); + else + { + graphite_rename_ivs_stmt (stmt, gbb, scop, old_loop_father, ivstack); + gsi_next (&gsi); + } + } +} + +/* Move all the PHI nodes from block FROM to block TO. + OLD_LOOP_FATHER is the original loop that contained FROM. */ + +static void +move_phi_nodes (scop_p scop, loop_p old_loop_father, basic_block from, + basic_block to) +{ + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (from); !gsi_end_p (gsi);) + { + gimple phi = gsi_stmt (gsi); + tree op = gimple_phi_result (phi); + + if (get_old_iv_from_ssa_name (scop, old_loop_father, op) == NULL) + { + gimple new_phi = make_phi_node (op, 0); + add_phi_node_to_bb (new_phi, to); + } + remove_phi_node (&gsi, false); + } +} + +/* Remove condition from BB. */ + +static void +remove_condition (basic_block bb) +{ + gimple last = last_stmt (bb); + + if (last && gimple_code (last) == GIMPLE_COND) + { + gimple_stmt_iterator gsi = gsi_last_bb (bb); + gsi_remove (&gsi, true); + } +} + +/* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */ + +static edge +get_true_edge_from_guard_bb (basic_block bb) +{ + edge e; + edge_iterator ei; + + FOR_EACH_EDGE (e, ei, bb->succs) + if (e->flags & EDGE_TRUE_VALUE) + return e; + + gcc_unreachable (); + return NULL; +} + +/* Translates a CLAST statement STMT to GCC representation. NEXT_E is + the edge where new generated code should be attached. BB_EXIT is the last + basic block that defines the scope of code generation. CONTEXT_LOOP is the + loop in which the generated code will be placed (might be NULL). */ + +static edge +translate_clast (scop_p scop, struct loop *context_loop, + struct clast_stmt *stmt, edge next_e, loop_iv_stack ivstack) +{ + if (!stmt) + return next_e; + + if (CLAST_STMT_IS_A (stmt, stmt_root)) + return translate_clast (scop, context_loop, stmt->next, next_e, ivstack); + + if (CLAST_STMT_IS_A (stmt, stmt_user)) + { + CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement; + graphite_bb_p gbb = (graphite_bb_p) cloog_statement_usr (cs); + basic_block bb = gbb->bb; + loop_p old_loop_father = bb->loop_father; + + if (bb == ENTRY_BLOCK_PTR) + return next_e; + + remove_condition (bb); + expand_scalar_variables (gbb, scop, old_loop_father, ivstack); + remove_all_edges (bb, next_e); + move_phi_nodes (scop, old_loop_father, bb, next_e->src); + redirect_edge_succ_nodup (next_e, bb); + + if (context_loop) + { + remove_bb_from_loops (bb); + add_bb_to_loop (bb, context_loop); + } + + set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); + mark_virtual_ops_in_bb (bb); + next_e = make_edge (bb, + context_loop ? context_loop->latch : EXIT_BLOCK_PTR, + EDGE_FALLTHRU);; + graphite_rename_ivs (gbb, scop, old_loop_father, ivstack); + return translate_clast (scop, context_loop, stmt->next, next_e, ivstack); + } + + if (CLAST_STMT_IS_A (stmt, stmt_for)) + { + struct loop *loop + = graphite_create_new_loop (scop, next_e, (struct clast_for *) stmt, + ivstack, context_loop ? context_loop + : get_loop (0)); + edge last_e = single_exit (loop); + + next_e = translate_clast (scop, loop, ((struct clast_for *) stmt)->body, + single_pred_edge (loop->latch), ivstack); + redirect_edge_succ_nodup (next_e, loop->latch); + + set_immediate_dominator (CDI_DOMINATORS, next_e->dest, next_e->src); + loop_iv_stack_pop (ivstack); + + return translate_clast (scop, context_loop, stmt->next, last_e, ivstack); + } + + if (CLAST_STMT_IS_A (stmt, stmt_guard)) + { + edge last_e = graphite_create_new_guard (scop, next_e, + ((struct clast_guard *) stmt), + ivstack); + edge true_e = get_true_edge_from_guard_bb (next_e->dest); + next_e = translate_clast (scop, context_loop, + ((struct clast_guard *) stmt)->then, + true_e, ivstack); + redirect_edge_succ_nodup (next_e, last_e->src); + return translate_clast (scop, context_loop, stmt->next, last_e, ivstack); + } + + if (CLAST_STMT_IS_A (stmt, stmt_block)) + { + next_e = translate_clast (scop, context_loop, + ((struct clast_block *) stmt)->body, + next_e, ivstack); + return translate_clast (scop, context_loop, stmt->next, next_e, ivstack); + } + + gcc_unreachable (); +} + +/* Build cloog program for SCoP. */ + +static void +build_cloog_prog (scop_p scop) +{ + int i; + int max_nb_loops = scop_max_loop_depth (scop); + graphite_bb_p gbb; + CloogLoop *loop_list = NULL; + CloogBlockList *block_list = NULL; + CloogDomainList *scattering = NULL; + CloogProgram *prog = SCOP_PROG (scop); + int nbs = 2 * max_nb_loops + 1; + int *scaldims = (int *) xmalloc (nbs * (sizeof (int))); + + cloog_program_set_nb_scattdims (prog, nbs); + initialize_cloog_names (scop); + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gbb); i++) + { + /* Build new block. */ + CloogMatrix *domain = GBB_DOMAIN (gbb); + CloogStatement *stmt = cloog_statement_alloc (GBB_BB (gbb)->index); + CloogBlock *block = cloog_block_alloc (stmt, 0, NULL, + nb_loops_around_gb (gbb)); + cloog_statement_set_usr (stmt, gbb); + + /* Add empty domain to all bbs, which do not yet have a domain, as they + are not part of any loop. */ + if (domain == NULL) + { + domain = cloog_matrix_alloc (0, scop_nb_params (scop) + 2); + GBB_DOMAIN (gbb) = domain; + } + + /* Build loop list. */ + { + CloogLoop *new_loop_list = cloog_loop_malloc (); + cloog_loop_set_next (new_loop_list, loop_list); + cloog_loop_set_domain (new_loop_list, + cloog_domain_matrix2domain (domain)); + cloog_loop_set_block (new_loop_list, block); + loop_list = new_loop_list; + } + + /* Build block list. */ + { + CloogBlockList *new_block_list = cloog_block_list_malloc (); + + cloog_block_list_set_next (new_block_list, block_list); + cloog_block_list_set_block (new_block_list, block); + block_list = new_block_list; + } + + /* Build scattering list. */ + { + /* XXX: Replace with cloog_domain_list_alloc(), when available. */ + CloogDomainList *new_scattering + = (CloogDomainList *) xmalloc (sizeof (CloogDomainList)); + CloogMatrix *scat_mat = schedule_to_scattering (gbb, nbs); + + cloog_set_next_domain (new_scattering, scattering); + cloog_set_domain (new_scattering, + cloog_domain_matrix2domain (scat_mat)); + scattering = new_scattering; + cloog_matrix_free (scat_mat); + } + } + + cloog_program_set_loop (prog, loop_list); + cloog_program_set_blocklist (prog, block_list); + + for (i = 0; i < nbs; i++) + scaldims[i] = 0 ; + + cloog_program_set_scaldims (prog, scaldims); + + /* Extract scalar dimensions to simplify the code generation problem. */ + cloog_program_extract_scalars (prog, scattering); + + /* Apply scattering. */ + cloog_program_scatter (prog, scattering); + + /* Iterators corresponding to scalar dimensions have to be extracted. */ + cloog_names_scalarize (cloog_program_names (prog), nbs, + cloog_program_scaldims (prog)); + + /* Free blocklist. */ + { + CloogBlockList *next = cloog_program_blocklist (prog); + + while (next) + { + CloogBlockList *toDelete = next; + next = cloog_block_list_next (next); + cloog_block_list_set_next (toDelete, NULL); + cloog_block_list_set_block (toDelete, NULL); + cloog_block_list_free (toDelete); + } + cloog_program_set_blocklist (prog, NULL); + } +} + +/* Return the options that will be used in GLOOG. */ + +static CloogOptions * +set_cloog_options (void) +{ + CloogOptions *options = cloog_options_malloc (); + + /* Change cloog output language to C. If we do use FORTRAN instead, cloog + will stop e.g. with "ERROR: unbounded loops not allowed in FORTRAN.", if + we pass an incomplete program to cloog. */ + options->language = LANGUAGE_C; + + /* Enable complex equality spreading: removes dummy statements + (assignments) in the generated code which repeats the + substitution equations for statements. This is useless for + GLooG. */ + options->esp = 1; + + /* Enable C pretty-printing mode: normalizes the substitution + equations for statements. */ + options->cpp = 1; + + /* Allow cloog to build strides with a stride width different to one. + This example has stride = 4: + + for (i = 0; i < 20; i += 4) + A */ + options->strides = 1; + + /* Disable optimizations and make cloog generate source code closer to the + input. This is useful for debugging, but later we want the optimized + code. + + XXX: We can not disable optimizations, as loop blocking is not working + without them. */ + if (0) + { + options->f = -1; + options->l = INT_MAX; + } + + return options; +} + +/* Prints STMT to STDERR. */ + +void +debug_clast_stmt (struct clast_stmt *stmt) +{ + CloogOptions *options = set_cloog_options (); + + pprint (stderr, stmt, 0, options); +} + +/* Find the right transform for the SCOP, and return a Cloog AST + representing the new form of the program. */ + +static struct clast_stmt * +find_transform (scop_p scop) +{ + CloogProgram *prog; + struct clast_stmt *stmt; + CloogOptions *options = set_cloog_options (); + + /* Connect new cloog prog generation to graphite. */ + build_cloog_prog (scop); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Cloog Input [\n"); + cloog_program_print (dump_file, SCOP_PROG(scop)); + fprintf (dump_file, "]\n"); + } + + prog = cloog_program_generate (SCOP_PROG (scop), options); + stmt = cloog_clast_create (prog, options); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Cloog Output[\n"); + pprint (dump_file, stmt, 0, options); + cloog_program_dump_cloog (dump_file, prog); + fprintf (dump_file, "]\n"); + } + + cloog_options_free (options); + return stmt; +} + +/* Return a vector of all the virtual phi nodes in the current + function. */ + +static VEC (gimple, heap) * +collect_virtual_phis (void) +{ + gimple_stmt_iterator si; + gimple_vec phis = VEC_alloc (gimple, heap, 3); + basic_block bb; + + FOR_EACH_BB (bb) + for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si)) + /* The phis we moved will have 0 arguments because the + original edges were removed. */ + if (gimple_phi_num_args (gsi_stmt (si)) == 0) + VEC_safe_push (gimple, heap, phis, gsi_stmt (si)); + + /* Deallocate if we did not find any. */ + if (VEC_length (gimple, phis) == 0) + { + VEC_free (gimple, heap, phis); + phis = NULL; + } + + return phis; +} + +/* Find a virtual definition for variable VAR in BB. */ + +static tree +find_vdef_for_var_in_bb (basic_block bb, tree var) +{ + gimple_stmt_iterator gsi; + gimple phi; + def_operand_p def_var; + vuse_vec_p vv; + ssa_op_iter op_iter; + + for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) + FOR_EACH_SSA_VDEF_OPERAND (def_var, vv, gsi_stmt (gsi), op_iter) + if (SSA_NAME_VAR (*def_var) == var) + return *def_var; + + for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi)) + FOR_EACH_SSA_DEF_OPERAND (def_var, gsi_stmt (gsi), op_iter, SSA_OP_DEF) + if (SSA_NAME_VAR (*def_var) == var) + return *def_var; + + for (gsi = gsi_start_phis (bb); !gsi_end_p(gsi); gsi_next (&gsi)) + { + phi = gsi_stmt (gsi); + if (SSA_NAME_VAR (PHI_RESULT (phi)) == var) + return PHI_RESULT (phi); + } + + return NULL; +} + +/* Recursive helper. */ + +static tree +find_vdef_for_var_1 (basic_block bb, struct pointer_set_t *visited, tree var) +{ + tree result = NULL; + edge_iterator ei; + edge pred_edge; + + if (pointer_set_contains (visited, bb)) + return NULL; + + pointer_set_insert (visited, bb); + result = find_vdef_for_var_in_bb (bb, var); + + if (!result) + FOR_EACH_EDGE (pred_edge, ei, bb->preds) + if (!result) + result = find_vdef_for_var_1 (pred_edge->src, visited, var); + + return result; +} + +/* Finds a virtual definition for variable VAR. */ + +static tree +find_vdef_for_var (basic_block bb, tree var) +{ + struct pointer_set_t *visited = pointer_set_create (); + tree def = find_vdef_for_var_1 (bb, visited, var); + + pointer_set_destroy (visited); + return def; +} + +/* Update the virtual phis after loop bodies are moved to new + loops. */ + +static void +patch_phis_for_virtual_defs (void) +{ + int i; + gimple phi; + VEC (gimple, heap) *virtual_phis = collect_virtual_phis (); + + for (i = 0; VEC_iterate (gimple, virtual_phis, i, phi); i++) + { + basic_block bb = gimple_bb (phi); + edge_iterator ei; + edge pred_edge; + gimple_stmt_iterator gsi; + gimple new_phi; + tree phi_result = PHI_RESULT (phi); + tree var = SSA_NAME_VAR (phi_result); + + new_phi = create_phi_node (phi_result, bb); + SSA_NAME_DEF_STMT (phi_result) = new_phi; + + FOR_EACH_EDGE (pred_edge, ei, bb->preds) + { + tree def = find_vdef_for_var (pred_edge->src, var); + + if (def) + add_phi_arg (new_phi, def, pred_edge); + else + add_phi_arg (new_phi, gimple_default_def (cfun, var), pred_edge); + } + + gsi = gsi_for_stmt (phi); + remove_phi_node (&gsi, false); + } +} + +/* Mark the original loops of SCOP for removal, replacing their header + field with NULL. */ + +static void +mark_old_loops (scop_p scop) +{ + int i; + struct loop *loop; + + for (i = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), i, loop); i++) + { + loop->header = NULL; + loop->latch = NULL; + } +} + +/* Scan the loops and remove the ones that have been marked for + removal. */ + +static void +remove_dead_loops (void) +{ + struct loop *loop, *ploop; + loop_iterator li; + + FOR_EACH_LOOP (li, loop, LI_FROM_INNERMOST) + { + /* Remove only those loops that we marked to be removed with + mark_old_loops. */ + if (loop->header) + continue; + + while (loop->inner) + { + ploop = loop->inner; + flow_loop_tree_node_remove (ploop); + flow_loop_tree_node_add (loop_outer (loop), ploop); + } + + /* Remove the loop and free its data. */ + delete_loop (loop); + } +} + +/* Returns true when it is possible to generate code for this STMT. + For the moment we cannot generate code when Cloog decides to + duplicate a statement, as we do not do a copy, but a move. + USED_BASIC_BLOCKS records the blocks that have already been seen. + We return false if we have to generate code twice for the same + block. */ + +static bool +can_generate_code_stmt (struct clast_stmt *stmt, + struct pointer_set_t *used_basic_blocks) +{ + if (!stmt) + return true; + + if (CLAST_STMT_IS_A (stmt, stmt_root)) + return can_generate_code_stmt (stmt->next, used_basic_blocks); + + if (CLAST_STMT_IS_A (stmt, stmt_user)) + { + CloogStatement *cs = ((struct clast_user_stmt *) stmt)->statement; + graphite_bb_p gbb = (graphite_bb_p) cloog_statement_usr (cs); + + if (pointer_set_contains (used_basic_blocks, gbb)) + return false; + pointer_set_insert (used_basic_blocks, gbb); + return can_generate_code_stmt (stmt->next, used_basic_blocks); + } + + if (CLAST_STMT_IS_A (stmt, stmt_for)) + return can_generate_code_stmt (((struct clast_for *) stmt)->body, + used_basic_blocks) + && can_generate_code_stmt (stmt->next, used_basic_blocks); + + if (CLAST_STMT_IS_A (stmt, stmt_guard)) + return can_generate_code_stmt (((struct clast_guard *) stmt)->then, + used_basic_blocks); + + if (CLAST_STMT_IS_A (stmt, stmt_block)) + return can_generate_code_stmt (((struct clast_block *) stmt)->body, + used_basic_blocks) + && can_generate_code_stmt (stmt->next, used_basic_blocks); + + return false; +} + +/* Returns true when it is possible to generate code for this STMT. */ + +static bool +can_generate_code (struct clast_stmt *stmt) +{ + bool result; + struct pointer_set_t *used_basic_blocks = pointer_set_create (); + + result = can_generate_code_stmt (stmt, used_basic_blocks); + pointer_set_destroy (used_basic_blocks); + return result; +} + +/* Skip any definition that is a phi node with a single phi def. */ + +static tree +skip_phi_defs (tree ssa_name) +{ + tree result = ssa_name; + gimple def_stmt = SSA_NAME_DEF_STMT (ssa_name); + + if (gimple_code (def_stmt) == GIMPLE_PHI + && gimple_phi_num_args (def_stmt) == 1) + result = skip_phi_defs (gimple_phi_arg(def_stmt,0)->def); + + return result; +} + +/* Returns a VEC containing the phi-arg defs coming from SCOP_EXIT in + the destination block of SCOP_EXIT. */ + +static VEC (tree, heap) * +collect_scop_exit_phi_args (edge scop_exit) +{ + VEC (tree, heap) *phi_args = VEC_alloc (tree, heap, 1); + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (scop_exit->dest); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple phi = gsi_stmt (gsi); + tree phi_arg = skip_phi_defs(PHI_ARG_DEF_FROM_EDGE (phi, scop_exit)); + + VEC_safe_push (tree, heap, phi_args, phi_arg); + } + + return phi_args; +} + +/* Patches (adds) PHI_ARGS to the phi nodes in SCOP_EXIT destination. */ + +static void +patch_scop_exit_phi_args (edge scop_exit, + VEC (tree, heap) *phi_args) +{ + int i = 0; + gimple_stmt_iterator gsi; + + for (gsi = gsi_start_phis (scop_exit->dest); !gsi_end_p (gsi); + gsi_next (&gsi), i++) + { + tree def = VEC_index (tree, phi_args, i); + gimple phi = gsi_stmt (gsi); + + gcc_assert (PHI_ARG_DEF_FROM_EDGE (phi, scop_exit) == NULL); + + add_phi_arg (phi, def, scop_exit); + } +} + +/* GIMPLE Loop Generator: generates loops from STMT in GIMPLE form for + the given SCOP. */ + +static void +gloog (scop_p scop, struct clast_stmt *stmt) +{ + edge new_scop_exit_edge = NULL; + basic_block scop_exit = SCOP_EXIT (scop); + VEC (tree, heap)* phi_args = + collect_scop_exit_phi_args (SESE_EXIT (SCOP_REGION (scop))); + VEC (name_tree, heap) *ivstack = VEC_alloc (name_tree, heap, 10); + edge construction_edge = SESE_ENTRY (SCOP_REGION (scop)); + basic_block old_scop_exit_idom = get_immediate_dominator (CDI_DOMINATORS, + scop_exit); + + if (!can_generate_code (stmt)) + { + cloog_clast_free (stmt); + return; + } + + new_scop_exit_edge = translate_clast (scop, + construction_edge->src->loop_father, + stmt, construction_edge, &ivstack); + redirect_edge_succ (new_scop_exit_edge, scop_exit); + if (!old_scop_exit_idom + || !dominated_by_p (CDI_DOMINATORS, SCOP_ENTRY (scop), + old_scop_exit_idom) + || SCOP_ENTRY (scop) == old_scop_exit_idom) + set_immediate_dominator (CDI_DOMINATORS, + new_scop_exit_edge->dest, + new_scop_exit_edge->src); + + cloog_clast_free (stmt); + + if (new_scop_exit_edge->dest == EXIT_BLOCK_PTR) + new_scop_exit_edge->flags = 0; + + find_unreachable_blocks (); + delete_unreachable_blocks (); + patch_phis_for_virtual_defs (); + patch_scop_exit_phi_args (new_scop_exit_edge, phi_args); + mark_old_loops (scop); + remove_dead_loops (); + rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa); + +#ifdef ENABLE_CHECKING + verify_loop_structure (); + verify_dominators (CDI_DOMINATORS); + verify_ssa (false); +#endif +} + +/* Returns the number of data references in SCOP. */ + +static int +nb_data_refs_in_scop (scop_p scop) +{ + int i; + graphite_bb_p gbb; + int res = 0; + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gbb); i++) + res += VEC_length (data_reference_p, GBB_DATA_REFS (gbb)); + + return res; +} + +/* Check if a graphite bb can be ignored in graphite. We ignore all + bbs, that only contain code, that will be eliminated later. + + TODO: - Move PHI nodes and scalar variables out of these bbs, that only + remain conditions and induction variables. */ + +static bool +gbb_can_be_ignored (graphite_bb_p gb) +{ + gimple_stmt_iterator gsi; + scop_p scop = GBB_SCOP (gb); + loop_p loop = GBB_BB (gb)->loop_father; + + if (VEC_length (data_reference_p, GBB_DATA_REFS(gb))) + return false; + + /* Check statements. */ + for (gsi = gsi_start_bb (GBB_BB (gb)); !gsi_end_p (gsi); gsi_next (&gsi)) + { + gimple stmt = gsi_stmt (gsi); + switch (gimple_code (stmt)) + { + /* Control flow expressions can be ignored, as they are + represented in the iteration domains and will be + regenerated by graphite. */ + case GIMPLE_COND: + case GIMPLE_GOTO: + case GIMPLE_SWITCH: + break; + + /* Scalar variables can be ignored, if we can regenerate + them later using their scalar evolution function. + XXX: Just a heuristic, that needs further investigation. */ + case GIMPLE_ASSIGN: + { + tree var = gimple_assign_lhs (stmt); + var = analyze_scalar_evolution (loop, var); + var = instantiate_scev (outermost_loop_in_scop (scop, + GBB_BB (gb)), + loop, var); + if (TREE_CODE (var) == SCEV_NOT_KNOWN) + return false; + break; + } + /* Otherwise not ignoreable. */ + default: + return false; + } + } + + return true; +} + +/* Remove all ignoreable gbbs from SCOP. */ + +static void +scop_remove_ignoreable_gbbs (scop_p scop) +{ + graphite_bb_p gb; + int i; + + int max_schedule = scop_max_loop_depth (scop) + 1; + lambda_vector last_schedule = lambda_vector_new (max_schedule); + lambda_vector_clear (last_schedule, max_schedule); + + /* Update schedules. */ + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + int nb_loops = gbb_nb_loops (gb); + + if (GBB_STATIC_SCHEDULE (gb) [nb_loops] == 0) + last_schedule [nb_loops] = 0; + + if (gbb_can_be_ignored (gb)) + { + /* Mark gbb for remove. */ + bitmap_clear_bit (SCOP_BBS_B (scop), gb->bb->index); + GBB_SCOP (gb) = NULL; + last_schedule [nb_loops]--; + } + else + lambda_vector_add (GBB_STATIC_SCHEDULE (gb), last_schedule, + GBB_STATIC_SCHEDULE (gb), nb_loops + 1); + } + + /* Remove gbbs. */ + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + if (GBB_SCOP (gb) == NULL) + { + VEC_unordered_remove (graphite_bb_p, SCOP_BBS (scop), i); + free_graphite_bb (gb); + /* XXX: Hackish? But working. */ + i--; + } + + graphite_sort_gbbs (scop); +} + +/* Move the loop at index LOOP and insert it before index NEW_LOOP_POS. + This transformartion is only valid, if the loop nest between i and k is + perfectly nested. Therefore we do not need to change the static schedule. + + Example: + + for (i = 0; i < 50; i++) + for (j ...) + for (k = 5; k < 100; k++) + A + + To move k before i use: + + graphite_trans_bb_move_loop (A, 2, 0) + + for (k = 5; k < 100; k++) + for (i = 0; i < 50; i++) + for (j ...) + A + + And to move k back: + + graphite_trans_bb_move_loop (A, 0, 2) + + This function does not check the validity of interchanging loops. + This should be checked before calling this function. */ + +static void +graphite_trans_bb_move_loop (graphite_bb_p gb, int loop, + int new_loop_pos) +{ + CloogMatrix *domain = GBB_DOMAIN (gb); + int row, j; + loop_p tmp_loop_p; + + gcc_assert (loop < gbb_nb_loops (gb) + && new_loop_pos < gbb_nb_loops (gb)); + + /* Update LOOPS vector. */ + tmp_loop_p = VEC_index (loop_p, GBB_LOOPS (gb), loop); + VEC_ordered_remove (loop_p, GBB_LOOPS (gb), loop); + VEC_safe_insert (loop_p, heap, GBB_LOOPS (gb), new_loop_pos, tmp_loop_p); + + /* Move the domain columns. */ + if (loop < new_loop_pos) + for (row = 0; row < domain->NbRows; row++) + { + Value tmp; + value_init (tmp); + value_assign (tmp, domain->p[row][loop + 1]); + + for (j = loop ; j < new_loop_pos - 1; j++) + value_assign (domain->p[row][j + 1], domain->p[row][j + 2]); + + value_assign (domain->p[row][new_loop_pos], tmp); + value_clear (tmp); + } + else + for (row = 0; row < domain->NbRows; row++) + { + Value tmp; + value_init (tmp); + value_assign (tmp, domain->p[row][loop + 1]); + + for (j = loop ; j > new_loop_pos; j--) + value_assign (domain->p[row][j + 1], domain->p[row][j]); + + value_assign (domain->p[row][new_loop_pos + 1], tmp); + value_clear (tmp); + } +} + +/* Get the index of the column representing constants in the DOMAIN + matrix. */ + +static int +const_column_index (CloogMatrix *domain) +{ + return domain->NbColumns - 1; +} + + +/* Get the first index that is positive or negative, determined + following the value of POSITIVE, in matrix DOMAIN in COLUMN. */ + +static int +get_first_matching_sign_row_index (CloogMatrix *domain, int column, + bool positive) +{ + int row; + + for (row = 0; row < domain->NbRows; row++) + { + int val = value_get_si (domain->p[row][column]); + + if (val > 0 && positive) + return row; + + else if (val < 0 && !positive) + return row; + } + + gcc_unreachable (); +} + +/* Get the lower bound of COLUMN in matrix DOMAIN. */ + +static int +get_lower_bound_row (CloogMatrix *domain, int column) +{ + return get_first_matching_sign_row_index (domain, column, true); +} + +/* Get the upper bound of COLUMN in matrix DOMAIN. */ + +static int +get_upper_bound_row (CloogMatrix *domain, int column) +{ + return get_first_matching_sign_row_index (domain, column, false); +} + +/* Get the lower bound of LOOP. */ + +static void +get_lower_bound (CloogMatrix *domain, int loop, Value lower_bound_result) +{ + int lower_bound_row = get_lower_bound_row (domain, loop); + value_init (lower_bound_result); + value_assign (lower_bound_result, + domain->p[lower_bound_row][const_column_index(domain)]); +} + +/* Get the upper bound of LOOP. */ + +static void +get_upper_bound (CloogMatrix *domain, int loop, Value upper_bound_result) +{ + int upper_bound_row = get_upper_bound_row (domain, loop); + value_init (upper_bound_result); + value_assign (upper_bound_result, + domain->p[upper_bound_row][const_column_index(domain)]); +} + +/* Strip mines the loop of BB at the position LOOP_DEPTH with STRIDE. + Always valid, but not always a performance improvement. */ + +static void +graphite_trans_bb_strip_mine (graphite_bb_p gb, int loop_depth, int stride) +{ + int row, col; + + CloogMatrix *domain = GBB_DOMAIN (gb); + CloogMatrix *new_domain = cloog_matrix_alloc (domain->NbRows + 3, + domain->NbColumns + 1); + + int col_loop_old = loop_depth + 2; + int col_loop_strip = col_loop_old - 1; + + Value old_lower_bound; + Value old_upper_bound; + + + gcc_assert (loop_depth <= gbb_nb_loops (gb) - 1); + + VEC_safe_insert (loop_p, heap, GBB_LOOPS (gb), loop_depth, NULL); + + GBB_DOMAIN (gb) = new_domain; + + /* + nrows = 4, ncols = 4 + eq i j c + 1 1 0 0 + 1 -1 0 99 + 1 0 1 0 + 1 0 -1 99 + */ + + /* Move domain. */ + for (row = 0; row < domain->NbRows; row++) + for (col = 0; col < domain->NbColumns; col++) + if (col <= loop_depth) + { + value_assign (new_domain->p[row][col], domain->p[row][col]); + } + else + { + value_assign (new_domain->p[row][col + 1], domain->p[row][col]); + } + + + /* + nrows = 6, ncols = 5 + outer inner + eq i jj j c + 1 1 0 0 0 + 1 -1 0 0 99 + 1 0 0 1 0 + 1 0 0 -1 99 + 0 0 0 0 0 + 0 0 0 0 0 + 0 0 0 0 0 + */ + + row = domain->NbRows; + + /* Add outer loop. */ + + get_lower_bound (new_domain, col_loop_old, old_lower_bound); + get_upper_bound (new_domain, col_loop_old, old_upper_bound); + + /* Set Lower Bound */ + value_set_si (new_domain->p[row][0], 1); + value_set_si (new_domain->p[row][col_loop_strip], 1); + value_assign (new_domain->p[row][const_column_index (new_domain)], + old_lower_bound); + row++; + + + /* + 6 5 + eq i jj j c + 1 1 0 0 0 + 1 -1 0 0 99 + 1 0 0 1 0 - + 1 0 0 -1 99 | copy old lower bound + 1 0 1 0 0 <- + 0 0 0 0 0 + 0 0 0 0 0 + */ + + { + Value new_upper_bound; + Value strip_size_value; + + value_init (new_upper_bound); + + value_init (strip_size_value); + value_set_si (strip_size_value, (int) stride); + + + value_pdivision(new_upper_bound,old_upper_bound,strip_size_value); + value_add_int (new_upper_bound, new_upper_bound, 1); + + /* Set Upper Bound */ + value_set_si (new_domain->p[row][0], 1); + value_set_si (new_domain->p[row][col_loop_strip], -1); + value_assign (new_domain->p[row][const_column_index (new_domain)], + new_upper_bound); + row++; + } + /* + 6 5 + eq i jj j c + 1 1 0 0 0 + 1 -1 0 0 99 + 1 0 0 1 0 + 1 0 0 -1 99 + 1 0 1 0 0 + 1 0 -1 0 25 (divide old upper bound with stride) + 0 0 0 0 0 + */ + + { + row = get_lower_bound_row (new_domain, col_loop_old); + /* Add local variable to keep linear representation. */ + value_set_si (new_domain->p[row][0], 1); + value_set_si (new_domain->p[row][const_column_index (new_domain)],0); + value_set_si (new_domain->p[row][col_loop_old], 1); + value_set_si (new_domain->p[row][col_loop_strip], -1*((int)stride)); + } + + /* + 6 5 + eq i jj j c + 1 1 0 0 0 + 1 -1 0 0 99 + 1 0 -1 1 0 + 1 0 0 -1 99 + 1 0 1 0 0 + 1 0 -1 0 25 (divide old upper bound with stride) + 0 0 0 0 0 + */ + + { + row = new_domain->NbRows-1; + + value_set_si (new_domain->p[row][0], 1); + value_set_si (new_domain->p[row][col_loop_old], -1); + value_set_si (new_domain->p[row][col_loop_strip], stride); + value_set_si (new_domain->p[row][const_column_index (new_domain)], + stride-1); + } + + /* + 6 5 + eq i jj j c + 1 1 0 0 0 i >= 0 + 1 -1 0 0 99 99 >= i + 1 0 -4 1 0 j >= 4*jj + 1 0 0 -1 99 99 >= j + 1 0 1 0 0 jj >= 0 + 1 0 -1 0 25 25 >= jj + 0 0 4 -1 3 jj+3 >= j + */ + + cloog_matrix_free (domain); + + /* Update static schedule. */ + { + int i; + int nb_loops = gbb_nb_loops (gb); + lambda_vector new_schedule = lambda_vector_new (nb_loops + 1); + + for (i = 0; i <= loop_depth; i++) + new_schedule[i] = GBB_STATIC_SCHEDULE (gb)[i]; + + for (i = loop_depth + 1; i <= nb_loops - 2; i++) + new_schedule[i + 2] = GBB_STATIC_SCHEDULE (gb)[i]; + + GBB_STATIC_SCHEDULE (gb) = new_schedule; + } +} + +/* Returns true when the strip mining of LOOP_INDEX by STRIDE is + profitable or undecidable. GB is the statement around which the + loops will be strip mined. */ + +static bool +strip_mine_profitable_p (graphite_bb_p gb, int stride, + int loop_index) +{ + bool res = true; + edge exit = NULL; + tree niter; + loop_p loop; + long niter_val; + + loop = VEC_index (loop_p, GBB_LOOPS (gb), loop_index); + exit = single_exit (loop); + + niter = find_loop_niter (loop, &exit); + if (niter == chrec_dont_know + || TREE_CODE (niter) != INTEGER_CST) + return true; + + niter_val = int_cst_value (niter); + + if (niter_val < stride) + { + res = false; + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\nStrip Mining is not profitable for loop %d:", + loop_index); + fprintf (dump_file, "number of iterations is too low.\n"); + } + } + + return res; +} + +/* Determines when the interchange of LOOP_A and LOOP_B belonging to + SCOP is legal. */ + +static bool +is_interchange_valid (scop_p scop, int loop_a, int loop_b) +{ + bool res; + VEC (ddr_p, heap) *dependence_relations; + VEC (data_reference_p, heap) *datarefs; + + struct loop *nest = VEC_index (loop_p, SCOP_LOOP_NEST (scop), loop_a); + int depth = perfect_loop_nest_depth (nest); + lambda_trans_matrix trans; + + gcc_assert (loop_a < loop_b); + + dependence_relations = VEC_alloc (ddr_p, heap, 10 * 10); + datarefs = VEC_alloc (data_reference_p, heap, 10); + + if (!compute_data_dependences_for_loop (nest, true, &datarefs, + &dependence_relations)) + return false; + + if (dump_file && (dump_flags & TDF_DETAILS)) + dump_ddrs (dump_file, dependence_relations); + + trans = lambda_trans_matrix_new (depth, depth); + lambda_matrix_id (LTM_MATRIX (trans), depth); + + lambda_matrix_row_exchange (LTM_MATRIX (trans), 0, loop_b - loop_a); + + if (!lambda_transform_legal_p (trans, depth, dependence_relations)) + { + lambda_matrix_row_exchange (LTM_MATRIX (trans), 0, loop_b - loop_a); + res = false; + } + else + res = true; + + free_dependence_relations (dependence_relations); + free_data_refs (datarefs); + return res; +} + +/* Loop block the LOOPS innermost loops of GB with stride size STRIDE. + + Example + + for (i = 0; i <= 50; i++=4) + for (k = 0; k <= 100; k++=4) + for (l = 0; l <= 200; l++=4) + A + + To strip mine the two inner most loops with stride = 4 call: + + graphite_trans_bb_block (A, 4, 2) + + for (i = 0; i <= 50; i++) + for (kk = 0; kk <= 100; kk+=4) + for (ll = 0; ll <= 200; ll+=4) + for (k = kk; k <= min (100, kk + 3); k++) + for (l = ll; l <= min (200, ll + 3); l++) + A +*/ + +static bool +graphite_trans_bb_block (graphite_bb_p gb, int stride, int loops) +{ + int i, j; + int nb_loops = gbb_nb_loops (gb); + int start = nb_loops - loops; + scop_p scop = GBB_SCOP (gb); + + gcc_assert (scop_contains_loop (scop, gbb_loop (gb))); + + for (i = start ; i < nb_loops; i++) + for (j = i + 1; j < nb_loops; j++) + if (!is_interchange_valid (scop, i, j)) + { + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "\nInterchange not valid for loops %d and %d:\n", i, j); + return false; + } + else if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, + "\nInterchange valid for loops %d and %d:\n", i, j); + + /* Check if strip mining is profitable for every loop. */ + for (i = 0; i < nb_loops - start; i++) + if (!strip_mine_profitable_p (gb, stride, start + i)) + return false; + + /* Strip mine loops. */ + for (i = 0; i < nb_loops - start; i++) + graphite_trans_bb_strip_mine (gb, start + 2 * i, stride); + + /* Interchange loops. */ + for (i = 1; i < nb_loops - start; i++) + graphite_trans_bb_move_loop (gb, start + 2 * i, start + i); + + return true; +} + +/* Loop block LOOPS innermost loops of a loop nest. BBS represent the + basic blocks that belong to the loop nest to be blocked. */ + +static bool +graphite_trans_loop_block (VEC (graphite_bb_p, heap) *bbs, int loops) +{ + graphite_bb_p gb; + int i; + bool transform_done = false; + + /* TODO: - Calculate the stride size automatically. */ + int stride_size = 64; + + for (i = 0; VEC_iterate (graphite_bb_p, bbs, i, gb); i++) + transform_done |= graphite_trans_bb_block (gb, stride_size, loops); + + return transform_done; +} + +/* Loop block all basic blocks of SCOP. */ + +static bool +graphite_trans_scop_block (scop_p scop) +{ + graphite_bb_p gb; + int i, j; + int last_nb_loops; + int nb_loops; + bool perfect = true; + bool transform_done = false; + + VEC (graphite_bb_p, heap) *bbs = VEC_alloc (graphite_bb_p, heap, 3); + int max_schedule = scop_max_loop_depth (scop) + 1; + lambda_vector last_schedule = lambda_vector_new (max_schedule); + + if (VEC_length (graphite_bb_p, SCOP_BBS (scop)) == 0) + return transform_done; + + /* Get the data of the first bb. */ + gb = VEC_index (graphite_bb_p, SCOP_BBS (scop), 0); + last_nb_loops = gbb_nb_loops (gb); + lambda_vector_copy (GBB_STATIC_SCHEDULE (gb), last_schedule, + last_nb_loops + 1); + VEC_safe_push (graphite_bb_p, heap, bbs, gb); + + for (i = 0; VEC_iterate (graphite_bb_p, SCOP_BBS (scop), i, gb); i++) + { + /* We did the first bb before. */ + if (i == 0) + continue; + + nb_loops = gbb_nb_loops (gb); + + /* If the number of loops is unchanged and only the last element of the + schedule changes, we stay in the loop nest. */ + if (nb_loops == last_nb_loops + && (last_schedule [nb_loops + 1] + != GBB_STATIC_SCHEDULE (gb)[nb_loops + 1])) + { + VEC_safe_push (graphite_bb_p, heap, bbs, gb); + continue; + } + + /* Otherwise, we left the innermost loop. So check, if the last bb was in + a perfect loop nest and how many loops are contained in this perfect + loop nest. + + Count the number of zeros from the end of the schedule. They are the + number of surrounding loops. + + Example: + last_bb 2 3 2 0 0 0 0 3 + bb 2 4 0 + <------ j = 4 + + last_bb 2 3 2 0 0 0 0 3 + bb 2 3 2 0 1 + <-- j = 2 + + If there is no zero, there were other bbs in outer loops and the loop + nest is not perfect. */ + for (j = last_nb_loops - 1; j >= 0; j--) + { + if (last_schedule [j] != 0 + || (j <= nb_loops && GBB_STATIC_SCHEDULE (gb)[j] == 1)) + { + j--; + break; + } + } + + j++; + + /* Found perfect loop nest. */ + if (perfect && last_nb_loops - j > 0) + transform_done |= graphite_trans_loop_block (bbs, last_nb_loops - j); + + /* Check if we start with a new loop. + + Example: + + last_bb 2 3 2 0 0 0 0 3 + bb 2 3 2 0 0 1 0 + + Here we start with the loop "2 3 2 0 0 1" + + last_bb 2 3 2 0 0 0 0 3 + bb 2 3 2 0 0 1 + + But here not, so the loop nest can never be perfect. */ + + perfect = (GBB_STATIC_SCHEDULE (gb)[nb_loops] == 0); + + /* Update the last_bb infos. We do not do that for the bbs in the same + loop, as the data we use is not changed. */ + last_nb_loops = nb_loops; + lambda_vector_copy (GBB_STATIC_SCHEDULE (gb), last_schedule, + nb_loops + 1); + VEC_truncate (graphite_bb_p, bbs, 0); + VEC_safe_push (graphite_bb_p, heap, bbs, gb); + } + + /* Check if the last loop nest was perfect. It is the same check as above, + but the comparison with the next bb is missing. */ + for (j = last_nb_loops - 1; j >= 0; j--) + if (last_schedule [j] != 0) + { + j--; + break; + } + + j++; + + /* Found perfect loop nest. */ + if (last_nb_loops - j > 0) + transform_done |= graphite_trans_loop_block (bbs, last_nb_loops - j); + VEC_free (graphite_bb_p, heap, bbs); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\nLoop blocked.\n"); + + return transform_done; +} + +/* Apply graphite transformations to all the basic blocks of SCOP. */ + +static bool +graphite_apply_transformations (scop_p scop) +{ + bool transform_done = false; + + /* Sort the list of bbs. Keep them always sorted. */ + graphite_sort_gbbs (scop); + scop_remove_ignoreable_gbbs (scop); + + if (flag_loop_block) + transform_done = graphite_trans_scop_block (scop); + +#if 0 && ENABLE_CHECKING + /* When the compiler is configured with ENABLE_CHECKING, always + generate code, even if we did not apply any transformation. This + provides better code coverage of the backend code generator. + + This also allows to check the performance for an identity + transform: GIMPLE -> GRAPHITE -> GIMPLE; and the output of CLooG + is never an identity: if CLooG optimizations are not disabled, + the CLooG output is always optimized in control flow. */ + transform_done = true; +#endif + + return transform_done; +} + +/* We limit all SCoPs to SCoPs, that are completely surrounded by a loop. + + Example: + + for (i | + { | + for (j | SCoP 1 + for (k | + } | + + * SCoP frontier, as this line is not surrounded by any loop. * + + for (l | SCoP 2 + + This is necessary as scalar evolution and parameter detection need a + outermost loop to initialize parameters correctly. + + TODO: FIX scalar evolution and parameter detection to allow mor flexible + SCoP frontiers. */ + +static void +limit_scops (void) +{ + VEC (scop_p, heap) *new_scops = VEC_alloc (scop_p, heap, 3); + int i; + scop_p scop; + + for (i = 0; VEC_iterate (scop_p, current_scops, i, scop); i++) + { + int j; + loop_p loop; + build_scop_bbs (scop); + build_scop_loop_nests (scop); + + for (j = 0; VEC_iterate (loop_p, SCOP_LOOP_NEST (scop), j, loop); j++) + if (!loop_in_scop_p (loop_outer (loop), scop)) + { + scop_p n_scop = new_scop (loop_preheader_edge (loop)); + end_scop (n_scop, single_exit (loop), false); + VEC_safe_push (scop_p, heap, new_scops, n_scop); + } + } + + free_scops (current_scops); + current_scops = new_scops; +} + +/* Perform a set of linear transforms on the loops of the current + function. */ + +void +graphite_transform_loops (void) +{ + int i; + scop_p scop; + + if (number_of_loops () <= 1) + return; + + current_scops = VEC_alloc (scop_p, heap, 3); + + calculate_dominance_info (CDI_DOMINATORS); + calculate_dominance_info (CDI_POST_DOMINATORS); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "Graphite loop transformations \n"); + + cloog_initialize (); + build_scops (); + limit_scops (); + + if (dump_file && (dump_flags & TDF_DETAILS)) + fprintf (dump_file, "\nnumber of SCoPs: %d\n", + VEC_length (scop_p, current_scops)); + + for (i = 0; VEC_iterate (scop_p, current_scops, i, scop); i++) + { + build_scop_bbs (scop); + build_scop_loop_nests (scop); + build_scop_canonical_schedules (scop); + build_bb_loops (scop); + find_scop_parameters (scop); + build_scop_context (scop); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "\n(In SCoP %d:\n", i); + fprintf (dump_file, "\nnumber of bbs: %d\n", + VEC_length (graphite_bb_p, SCOP_BBS (scop))); + fprintf (dump_file, "\nnumber of loops: %d)\n", + VEC_length (loop_p, SCOP_LOOP_NEST (scop))); + } + + if (!build_scop_iteration_domain (scop)) + continue; + + build_scop_conditions (scop); + build_scop_data_accesses (scop); + + if (dump_file && (dump_flags & TDF_DETAILS)) + { + int nbrefs = nb_data_refs_in_scop (scop); + fprintf (dump_file, "\nnumber of data refs: %d\n", nbrefs); + } + + if (graphite_apply_transformations (scop)) + gloog (scop, find_transform (scop)); + } + + /* Cleanup. */ + free_scops (current_scops); + cloog_finalize (); +} + +#else /* If Cloog is not available: #ifndef HAVE_cloog. */ + +void +graphite_transform_loops (void) +{ + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "Graphite loop optimizations cannot be used.\n"); + fprintf (dump_file, "GCC has not been configured with the required " + "libraries for Graphite loop optimizations."); + } + sorry ("Graphite loop optimizations cannot be used"); +} + +#endif |