aboutsummaryrefslogtreecommitdiff
path: root/gcc/graphite-scop-detection.c
diff options
context:
space:
mode:
authorIan Lance Taylor <iant@golang.org>2022-02-11 15:02:44 -0800
committerIan Lance Taylor <iant@golang.org>2022-02-11 15:02:44 -0800
commit9a510fb0970d3d9a4201bce8965cabe67850386b (patch)
tree43d7fd2bbfd7ad8c9625a718a5e8718889351994 /gcc/graphite-scop-detection.c
parenta6d3012b274f38b20e2a57162106f625746af6c6 (diff)
parent8dc2499aa62f768c6395c9754b8cabc1ce25c494 (diff)
downloadgcc-9a510fb0970d3d9a4201bce8965cabe67850386b.zip
gcc-9a510fb0970d3d9a4201bce8965cabe67850386b.tar.gz
gcc-9a510fb0970d3d9a4201bce8965cabe67850386b.tar.bz2
Merge from trunk revision 8dc2499aa62f768c6395c9754b8cabc1ce25c494
Diffstat (limited to 'gcc/graphite-scop-detection.c')
-rw-r--r--gcc/graphite-scop-detection.c1671
1 files changed, 0 insertions, 1671 deletions
diff --git a/gcc/graphite-scop-detection.c b/gcc/graphite-scop-detection.c
deleted file mode 100644
index 3e729b1..0000000
--- a/gcc/graphite-scop-detection.c
+++ /dev/null
@@ -1,1671 +0,0 @@
-/* Detection of Static Control Parts (SCoP) for Graphite.
- Copyright (C) 2009-2021 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <sebastian.pop@amd.com> and
- Tobias Grosser <grosser@fim.uni-passau.de>.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify
-it under the terms of the GNU General Public License as published by
-the Free Software Foundation; either version 3, or (at your option)
-any later version.
-
-GCC is distributed in the hope that it will be useful,
-but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#define INCLUDE_ISL
-
-#include "config.h"
-
-#ifdef HAVE_isl
-
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "cfghooks.h"
-#include "domwalk.h"
-#include "tree.h"
-#include "gimple.h"
-#include "ssa.h"
-#include "fold-const.h"
-#include "gimple-iterator.h"
-#include "tree-cfg.h"
-#include "tree-ssa-loop-manip.h"
-#include "tree-ssa-loop-niter.h"
-#include "tree-ssa-loop.h"
-#include "tree-into-ssa.h"
-#include "tree-ssa.h"
-#include "cfgloop.h"
-#include "tree-data-ref.h"
-#include "tree-scalar-evolution.h"
-#include "tree-pass.h"
-#include "tree-ssa-propagate.h"
-#include "gimple-pretty-print.h"
-#include "cfganal.h"
-#include "graphite.h"
-
-class debug_printer
-{
-private:
- FILE *dump_file;
-
-public:
- void
- set_dump_file (FILE *f)
- {
- gcc_assert (f);
- dump_file = f;
- }
-
- friend debug_printer &
- operator<< (debug_printer &output, int i)
- {
- fprintf (output.dump_file, "%d", i);
- return output;
- }
- friend debug_printer &
- operator<< (debug_printer &output, const char *s)
- {
- fprintf (output.dump_file, "%s", s);
- return output;
- }
-} dp;
-
-#define DEBUG_PRINT(args) do \
- { \
- if (dump_file && (dump_flags & TDF_DETAILS)) { args; } \
- } while (0)
-
-/* Pretty print to FILE all the SCoPs in DOT format and mark them with
- different colors. If there are not enough colors, paint the
- remaining SCoPs in gray.
-
- Special nodes:
- - "*" after the node number denotes the entry of a SCoP,
- - "#" after the node number denotes the exit of a SCoP,
- - "()" around the node number denotes the entry or the
- exit nodes of the SCOP. These are not part of SCoP. */
-
-DEBUG_FUNCTION void
-dot_all_sese (FILE *file, vec<sese_l>& scops)
-{
- /* Disable debugging while printing graph. */
- dump_flags_t tmp_dump_flags = dump_flags;
- dump_flags = TDF_NONE;
-
- fprintf (file, "digraph all {\n");
-
- basic_block bb;
- FOR_ALL_BB_FN (bb, cfun)
- {
- int part_of_scop = false;
-
- /* Use HTML for every bb label. So we are able to print bbs
- which are part of two different SCoPs, with two different
- background colors. */
- fprintf (file, "%d [label=<\n <TABLE BORDER=\"0\" CELLBORDER=\"1\" ",
- bb->index);
- fprintf (file, "CELLSPACING=\"0\">\n");
-
- /* Select color for SCoP. */
- sese_l *region;
- int i;
- FOR_EACH_VEC_ELT (scops, i, region)
- {
- bool sese_in_region = bb_in_sese_p (bb, *region);
- if (sese_in_region || (region->exit->dest == bb)
- || (region->entry->dest == bb))
- {
- const char *color;
- switch (i % 17)
- {
- case 0: /* red */
- color = "#e41a1c";
- break;
- case 1: /* blue */
- color = "#377eb8";
- break;
- case 2: /* green */
- color = "#4daf4a";
- break;
- case 3: /* purple */
- color = "#984ea3";
- break;
- case 4: /* orange */
- color = "#ff7f00";
- break;
- case 5: /* yellow */
- color = "#ffff33";
- break;
- case 6: /* brown */
- color = "#a65628";
- break;
- case 7: /* rose */
- color = "#f781bf";
- break;
- case 8:
- color = "#8dd3c7";
- break;
- case 9:
- color = "#ffffb3";
- break;
- case 10:
- color = "#bebada";
- break;
- case 11:
- color = "#fb8072";
- break;
- case 12:
- color = "#80b1d3";
- break;
- case 13:
- color = "#fdb462";
- break;
- case 14:
- color = "#b3de69";
- break;
- case 15:
- color = "#fccde5";
- break;
- case 16:
- color = "#bc80bd";
- break;
- default: /* gray */
- color = "#999999";
- }
-
- fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"%s\">",
- color);
-
- if (!sese_in_region)
- fprintf (file, " (");
-
- if (bb == region->entry->dest && bb == region->exit->dest)
- fprintf (file, " %d*# ", bb->index);
- else if (bb == region->entry->dest)
- fprintf (file, " %d* ", bb->index);
- else if (bb == region->exit->dest)
- fprintf (file, " %d# ", bb->index);
- else
- fprintf (file, " %d ", bb->index);
-
- fprintf (file, "{lp_%d}", bb->loop_father->num);
-
- if (!sese_in_region)
- fprintf (file, ")");
-
- fprintf (file, "</TD></TR>\n");
- part_of_scop = true;
- }
- }
-
- if (!part_of_scop)
- {
- fprintf (file, " <TR><TD WIDTH=\"50\" BGCOLOR=\"#ffffff\">");
- fprintf (file, " %d {lp_%d} </TD></TR>\n", bb->index,
- bb->loop_father->num);
- }
- fprintf (file, " </TABLE>>, shape=box, style=\"setlinewidth(0)\"]\n");
- }
-
- FOR_ALL_BB_FN (bb, cfun)
- {
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, bb->succs)
- fprintf (file, "%d -> %d;\n", bb->index, e->dest->index);
- }
-
- fputs ("}\n\n", file);
-
- /* Enable debugging again. */
- dump_flags = tmp_dump_flags;
-}
-
-/* Display SCoP on stderr. */
-
-DEBUG_FUNCTION void
-dot_sese (sese_l& scop)
-{
- vec<sese_l> scops;
- scops.create (1);
-
- if (scop)
- scops.safe_push (scop);
-
- dot_all_sese (stderr, scops);
-
- scops.release ();
-}
-
-DEBUG_FUNCTION void
-dot_cfg ()
-{
- vec<sese_l> scops;
- scops.create (1);
- dot_all_sese (stderr, scops);
- scops.release ();
-}
-
-/* Returns a COND_EXPR statement when BB has a single predecessor, the
- edge between BB and its predecessor is not a loop exit edge, and
- the last statement of the single predecessor is a COND_EXPR. */
-
-static gcond *
-single_pred_cond_non_loop_exit (basic_block bb)
-{
- if (single_pred_p (bb))
- {
- edge e = single_pred_edge (bb);
- basic_block pred = e->src;
- gimple *stmt;
-
- if (loop_depth (pred->loop_father) > loop_depth (bb->loop_father))
- return NULL;
-
- stmt = last_stmt (pred);
-
- if (stmt && gimple_code (stmt) == GIMPLE_COND)
- return as_a<gcond *> (stmt);
- }
-
- return NULL;
-}
-
-namespace
-{
-
-/* Build the maximal scop containing LOOPs and add it to SCOPS. */
-
-class scop_detection
-{
-public:
- scop_detection () : scops (vNULL) {}
-
- ~scop_detection ()
- {
- scops.release ();
- }
-
- /* A marker for invalid sese_l. */
- static sese_l invalid_sese;
-
- /* Return the SCOPS in this SCOP_DETECTION. */
-
- vec<sese_l>
- get_scops ()
- {
- return scops;
- }
-
- /* Return an sese_l around the LOOP. */
-
- sese_l get_sese (loop_p loop);
-
- /* Merge scops at same loop depth and returns the new sese.
- Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
-
- sese_l merge_sese (sese_l first, sese_l second) const;
-
- /* Build scop outer->inner if possible. */
-
- void build_scop_depth (loop_p loop);
-
- /* Return true when BEGIN is the preheader edge of a loop with a single exit
- END. */
-
- static bool region_has_one_loop (sese_l s);
-
- /* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
-
- void add_scop (sese_l s);
-
- /* Returns true if S1 subsumes/surrounds S2. */
- static bool subsumes (sese_l s1, sese_l s2);
-
- /* Remove a SCoP which is subsumed by S1. */
- void remove_subscops (sese_l s1);
-
- /* Returns true if S1 intersects with S2. Since we already know that S1 does
- not subsume S2 or vice-versa, we only check for entry bbs. */
-
- static bool intersects (sese_l s1, sese_l s2);
-
- /* Remove one of the scops when it intersects with any other. */
-
- void remove_intersecting_scops (sese_l s1);
-
- /* Return true when a statement in SCOP cannot be represented by Graphite. */
-
- bool harmful_loop_in_region (sese_l scop) const;
-
- /* Return true only when STMT is simple enough for being handled by Graphite.
- This depends on SCOP, as the parameters are initialized relatively to
- this basic block, the linear functions are initialized based on the
- outermost loop containing STMT inside the SCOP. BB is the place where we
- try to evaluate the STMT. */
-
- bool stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
- basic_block bb) const;
-
- /* Something like "n * m" is not allowed. */
-
- static bool graphite_can_represent_init (tree e);
-
- /* Return true when SCEV can be represented in the polyhedral model.
-
- An expression can be represented, if it can be expressed as an
- affine expression. For loops (i, j) and parameters (m, n) all
- affine expressions are of the form:
-
- x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
-
- 1 i + 20 j + (-2) m + 25
-
- Something like "i * n" or "n * m" is not allowed. */
-
- static bool graphite_can_represent_scev (sese_l scop, tree scev);
-
- /* Return true when EXPR can be represented in the polyhedral model.
-
- This means an expression can be represented, if it is linear with respect
- to the loops and the strides are non parametric. LOOP is the place where
- the expr will be evaluated. SCOP defines the region we analyse. */
-
- static bool graphite_can_represent_expr (sese_l scop, loop_p loop,
- tree expr);
-
- /* Return true if the data references of STMT can be represented by Graphite.
- We try to analyze the data references in a loop contained in the SCOP. */
-
- static bool stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt);
-
- /* Remove the close phi node at GSI and replace its rhs with the rhs
- of PHI. */
-
- static void remove_duplicate_close_phi (gphi *phi, gphi_iterator *gsi);
-
- /* Returns true when Graphite can represent LOOP in SCOP.
- FIXME: For the moment, graphite cannot be used on loops that iterate using
- induction variables that wrap. */
-
- static bool can_represent_loop (loop_p loop, sese_l scop);
-
- /* Returns the number of pbbs that are in loops contained in SCOP. */
-
- static int nb_pbbs_in_loops (scop_p scop);
-
-private:
- vec<sese_l> scops;
-};
-
-sese_l scop_detection::invalid_sese (NULL, NULL);
-
-/* Return an sese_l around the LOOP. */
-
-sese_l
-scop_detection::get_sese (loop_p loop)
-{
- if (!loop)
- return invalid_sese;
-
- edge scop_begin = loop_preheader_edge (loop);
- edge scop_end = single_exit (loop);
- if (!scop_end || (scop_end->flags & (EDGE_COMPLEX|EDGE_FAKE)))
- return invalid_sese;
-
- return sese_l (scop_begin, scop_end);
-}
-
-/* Merge scops at same loop depth and returns the new sese.
- Returns a new SESE when merge was successful, INVALID_SESE otherwise. */
-
-sese_l
-scop_detection::merge_sese (sese_l first, sese_l second) const
-{
- /* In the trivial case first/second may be NULL. */
- if (!first)
- return second;
- if (!second)
- return first;
-
- DEBUG_PRINT (dp << "[scop-detection] try merging sese s1: ";
- print_sese (dump_file, first);
- dp << "[scop-detection] try merging sese s2: ";
- print_sese (dump_file, second));
-
- auto_bitmap worklist, in_sese_region;
- bitmap_set_bit (worklist, get_entry_bb (first)->index);
- bitmap_set_bit (worklist, get_exit_bb (first)->index);
- bitmap_set_bit (worklist, get_entry_bb (second)->index);
- bitmap_set_bit (worklist, get_exit_bb (second)->index);
- edge entry = NULL, exit = NULL;
-
- /* We can optimize the case of adding a loop entry dest or exit
- src to the worklist (for single-exit loops) by skipping
- directly to the exit dest / entry src. in_sese_region
- doesn't have to cover all blocks in the region but merely
- its border it acts more like a visited bitmap. */
- do
- {
- int index = bitmap_first_set_bit (worklist);
- bitmap_clear_bit (worklist, index);
- basic_block bb = BASIC_BLOCK_FOR_FN (cfun, index);
- edge_iterator ei;
- edge e;
-
- /* With fake exit edges we can end up with no possible exit. */
- if (index == EXIT_BLOCK)
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] cannot merge seses.\n");
- return invalid_sese;
- }
-
- bitmap_set_bit (in_sese_region, bb->index);
-
- basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
- FOR_EACH_EDGE (e, ei, bb->preds)
- if (e->src == dom
- && (! entry
- || dominated_by_p (CDI_DOMINATORS, entry->dest, bb)))
- {
- if (entry
- && ! bitmap_bit_p (in_sese_region, entry->src->index))
- bitmap_set_bit (worklist, entry->src->index);
- entry = e;
- }
- else if (! bitmap_bit_p (in_sese_region, e->src->index))
- bitmap_set_bit (worklist, e->src->index);
-
- basic_block pdom = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (e->dest == pdom
- && (! exit
- || dominated_by_p (CDI_POST_DOMINATORS, exit->src, bb)))
- {
- if (exit
- && ! bitmap_bit_p (in_sese_region, exit->dest->index))
- bitmap_set_bit (worklist, exit->dest->index);
- exit = e;
- }
- else if (! bitmap_bit_p (in_sese_region, e->dest->index))
- bitmap_set_bit (worklist, e->dest->index);
- }
- while (! bitmap_empty_p (worklist));
-
- sese_l combined (entry, exit);
-
- DEBUG_PRINT (dp << "[merged-sese] s1: "; print_sese (dump_file, combined));
-
- return combined;
-}
-
-/* Build scop outer->inner if possible. */
-
-void
-scop_detection::build_scop_depth (loop_p loop)
-{
- sese_l s = invalid_sese;
- loop = loop->inner;
- while (loop)
- {
- sese_l next = get_sese (loop);
- if (! next
- || harmful_loop_in_region (next))
- {
- if (s)
- add_scop (s);
- build_scop_depth (loop);
- s = invalid_sese;
- }
- else if (! s)
- s = next;
- else
- {
- sese_l combined = merge_sese (s, next);
- if (! combined
- || harmful_loop_in_region (combined))
- {
- add_scop (s);
- s = next;
- }
- else
- s = combined;
- }
- loop = loop->next;
- }
- if (s)
- add_scop (s);
-}
-
-/* Returns true when Graphite can represent LOOP in SCOP.
- FIXME: For the moment, graphite cannot be used on loops that iterate using
- induction variables that wrap. */
-
-bool
-scop_detection::can_represent_loop (loop_p loop, sese_l scop)
-{
- tree niter;
- struct tree_niter_desc niter_desc;
-
- /* We can only handle do {} while () style loops correctly. */
- edge exit = single_exit (loop);
- if (!exit
- || !single_pred_p (loop->latch)
- || exit->src != single_pred (loop->latch)
- || !empty_block_p (loop->latch))
- return false;
-
- return !(loop_preheader_edge (loop)->flags & EDGE_IRREDUCIBLE_LOOP)
- && number_of_iterations_exit (loop, single_exit (loop), &niter_desc, false)
- && niter_desc.control.no_overflow
- && (niter = number_of_latch_executions (loop))
- && !chrec_contains_undetermined (niter)
- && graphite_can_represent_expr (scop, loop, niter);
-}
-
-/* Return true when BEGIN is the preheader edge of a loop with a single exit
- END. */
-
-bool
-scop_detection::region_has_one_loop (sese_l s)
-{
- edge begin = s.entry;
- edge end = s.exit;
- /* Check for a single perfectly nested loop. */
- if (begin->dest->loop_father->inner)
- return false;
-
- /* Otherwise, check whether we have adjacent loops. */
- return (single_pred_p (end->src)
- && begin->dest->loop_father == single_pred (end->src)->loop_father);
-}
-
-/* Add to SCOPS a scop starting at SCOP_BEGIN and ending at SCOP_END. */
-
-void
-scop_detection::add_scop (sese_l s)
-{
- gcc_assert (s);
-
- /* If the exit edge is fake discard the SCoP for now as we're removing the
- fake edges again after analysis. */
- if (s.exit->flags & EDGE_FAKE)
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] Discarding infinite loop SCoP: ";
- print_sese (dump_file, s));
- return;
- }
-
- /* Include the BB with the loop-closed SSA PHI nodes, we need this
- block in the region for code-generating out-of-SSA copies.
- canonicalize_loop_closed_ssa makes sure that is in proper shape. */
- if (s.exit->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
- && loop_exit_edge_p (s.exit->src->loop_father, s.exit))
- {
- gcc_assert (single_pred_p (s.exit->dest)
- && single_succ_p (s.exit->dest)
- && sese_trivially_empty_bb_p (s.exit->dest));
- s.exit = single_succ_edge (s.exit->dest);
- }
-
- /* Do not add scops with only one loop. */
- if (region_has_one_loop (s))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] Discarding one loop SCoP: ";
- print_sese (dump_file, s));
- return;
- }
-
- if (get_exit_bb (s) == EXIT_BLOCK_PTR_FOR_FN (cfun))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Discarding SCoP exiting to return: ";
- print_sese (dump_file, s));
- return;
- }
-
- /* Remove all the scops which are subsumed by s. */
- remove_subscops (s);
-
- /* Remove intersecting scops. FIXME: It will be a good idea to keep
- the non-intersecting part of the scop already in the list. */
- remove_intersecting_scops (s);
-
- scops.safe_push (s);
- DEBUG_PRINT (dp << "[scop-detection] Adding SCoP: "; print_sese (dump_file, s));
-}
-
-/* Return true when a statement in SCOP cannot be represented by Graphite. */
-
-bool
-scop_detection::harmful_loop_in_region (sese_l scop) const
-{
- basic_block exit_bb = get_exit_bb (scop);
- basic_block entry_bb = get_entry_bb (scop);
-
- DEBUG_PRINT (dp << "[checking-harmful-bbs] ";
- print_sese (dump_file, scop));
- gcc_assert (dominated_by_p (CDI_DOMINATORS, exit_bb, entry_bb));
-
- auto_vec<basic_block> worklist;
- auto_bitmap loops;
-
- worklist.safe_push (entry_bb);
- while (! worklist.is_empty ())
- {
- basic_block bb = worklist.pop ();
- DEBUG_PRINT (dp << "Visiting bb_" << bb->index << "\n");
-
- /* The basic block should not be part of an irreducible loop. */
- if (bb->flags & BB_IRREDUCIBLE_LOOP)
- return true;
-
- /* Check for unstructured control flow: CFG not generated by structured
- if-then-else. */
- if (bb->succs->length () > 1)
- {
- edge e;
- edge_iterator ei;
- FOR_EACH_EDGE (e, ei, bb->succs)
- if (!dominated_by_p (CDI_POST_DOMINATORS, bb, e->dest)
- && !dominated_by_p (CDI_DOMINATORS, e->dest, bb))
- return true;
- }
-
- /* Collect all loops in the current region. */
- loop_p loop = bb->loop_father;
- if (loop_in_sese_p (loop, scop))
- bitmap_set_bit (loops, loop->num);
-
- /* Check for harmful statements in basic blocks part of the region. */
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
- !gsi_end_p (gsi); gsi_next (&gsi))
- if (!stmt_simple_for_scop_p (scop, gsi_stmt (gsi), bb))
- return true;
-
- for (basic_block dom = first_dom_son (CDI_DOMINATORS, bb);
- dom;
- dom = next_dom_son (CDI_DOMINATORS, dom))
- if (dom != scop.exit->dest)
- worklist.safe_push (dom);
- }
-
- /* Go through all loops and check that they are still valid in the combined
- scop. */
- unsigned j;
- bitmap_iterator bi;
- EXECUTE_IF_SET_IN_BITMAP (loops, 0, j, bi)
- {
- loop_p loop = (*current_loops->larray)[j];
- gcc_assert (loop->num == (int) j);
-
- /* Check if the loop nests are to be optimized for speed. */
- if (! loop->inner
- && ! optimize_loop_for_speed_p (loop))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] loop_"
- << loop->num << " is not on a hot path.\n");
- return true;
- }
-
- if (! can_represent_loop (loop, scop))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] cannot represent loop_"
- << loop->num << "\n");
- return true;
- }
-
- /* Check if all loop nests have at least one data reference.
- ??? This check is expensive and loops premature at this point.
- If important to retain we can pre-compute this for all innermost
- loops and reject those when we build a SESE region for a loop
- during SESE discovery. */
- if (! loop->inner
- && ! loop_nest_has_data_refs (loop))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] loop_" << loop->num
- << "does not have any data reference.\n");
- return true;
- }
- }
-
- return false;
-}
-
-/* Returns true if S1 subsumes/surrounds S2. */
-bool
-scop_detection::subsumes (sese_l s1, sese_l s2)
-{
- if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
- get_entry_bb (s1))
- && dominated_by_p (CDI_POST_DOMINATORS, s2.exit->dest,
- s1.exit->dest))
- return true;
- return false;
-}
-
-/* Remove a SCoP which is subsumed by S1. */
-void
-scop_detection::remove_subscops (sese_l s1)
-{
- int j;
- sese_l *s2;
- FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
- {
- if (subsumes (s1, *s2))
- {
- DEBUG_PRINT (dp << "Removing sub-SCoP";
- print_sese (dump_file, *s2));
- scops.unordered_remove (j);
- }
- }
-}
-
-/* Returns true if S1 intersects with S2. Since we already know that S1 does
- not subsume S2 or vice-versa, we only check for entry bbs. */
-
-bool
-scop_detection::intersects (sese_l s1, sese_l s2)
-{
- if (dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
- get_entry_bb (s1))
- && !dominated_by_p (CDI_DOMINATORS, get_entry_bb (s2),
- get_exit_bb (s1)))
- return true;
- if ((s1.exit == s2.entry) || (s2.exit == s1.entry))
- return true;
-
- return false;
-}
-
-/* Remove one of the scops when it intersects with any other. */
-
-void
-scop_detection::remove_intersecting_scops (sese_l s1)
-{
- int j;
- sese_l *s2;
- FOR_EACH_VEC_ELT_REVERSE (scops, j, s2)
- {
- if (intersects (s1, *s2))
- {
- DEBUG_PRINT (dp << "Removing intersecting SCoP";
- print_sese (dump_file, *s2);
- dp << "Intersects with:";
- print_sese (dump_file, s1));
- scops.unordered_remove (j);
- }
- }
-}
-
-/* Something like "n * m" is not allowed. */
-
-bool
-scop_detection::graphite_can_represent_init (tree e)
-{
- switch (TREE_CODE (e))
- {
- case POLYNOMIAL_CHREC:
- return graphite_can_represent_init (CHREC_LEFT (e))
- && graphite_can_represent_init (CHREC_RIGHT (e));
-
- case MULT_EXPR:
- if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
- return graphite_can_represent_init (TREE_OPERAND (e, 0))
- && tree_fits_shwi_p (TREE_OPERAND (e, 1));
- else
- return graphite_can_represent_init (TREE_OPERAND (e, 1))
- && tree_fits_shwi_p (TREE_OPERAND (e, 0));
-
- case PLUS_EXPR:
- case POINTER_PLUS_EXPR:
- case MINUS_EXPR:
- return graphite_can_represent_init (TREE_OPERAND (e, 0))
- && graphite_can_represent_init (TREE_OPERAND (e, 1));
-
- case NEGATE_EXPR:
- case BIT_NOT_EXPR:
- CASE_CONVERT:
- case NON_LVALUE_EXPR:
- return graphite_can_represent_init (TREE_OPERAND (e, 0));
-
- default:
- break;
- }
-
- return true;
-}
-
-/* Return true when SCEV can be represented in the polyhedral model.
-
- An expression can be represented, if it can be expressed as an
- affine expression. For loops (i, j) and parameters (m, n) all
- affine expressions are of the form:
-
- x1 * i + x2 * j + x3 * m + x4 * n + x5 * 1 where x1..x5 element of Z
-
- 1 i + 20 j + (-2) m + 25
-
- Something like "i * n" or "n * m" is not allowed. */
-
-bool
-scop_detection::graphite_can_represent_scev (sese_l scop, tree scev)
-{
- if (chrec_contains_undetermined (scev))
- return false;
-
- switch (TREE_CODE (scev))
- {
- case NEGATE_EXPR:
- case BIT_NOT_EXPR:
- CASE_CONVERT:
- case NON_LVALUE_EXPR:
- return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0));
-
- case PLUS_EXPR:
- case POINTER_PLUS_EXPR:
- case MINUS_EXPR:
- return graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
- && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
-
- case MULT_EXPR:
- return !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 0)))
- && !CONVERT_EXPR_CODE_P (TREE_CODE (TREE_OPERAND (scev, 1)))
- && !(chrec_contains_symbols (TREE_OPERAND (scev, 0))
- && chrec_contains_symbols (TREE_OPERAND (scev, 1)))
- && graphite_can_represent_init (scev)
- && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 0))
- && graphite_can_represent_scev (scop, TREE_OPERAND (scev, 1));
-
- case POLYNOMIAL_CHREC:
- /* Check for constant strides. With a non constant stride of
- 'n' we would have a value of 'iv * n'. Also check that the
- initial value can represented: for example 'n * m' cannot be
- represented. */
- gcc_assert (loop_in_sese_p (get_loop (cfun,
- CHREC_VARIABLE (scev)), scop));
- if (!evolution_function_right_is_integer_cst (scev)
- || !graphite_can_represent_init (scev))
- return false;
- return graphite_can_represent_scev (scop, CHREC_LEFT (scev));
-
- case ADDR_EXPR:
- /* We cannot encode addresses for ISL. */
- return false;
-
- default:
- break;
- }
-
- /* Only affine functions can be represented. */
- if (tree_contains_chrecs (scev, NULL) || !scev_is_linear_expression (scev))
- return false;
-
- return true;
-}
-
-/* Return true when EXPR can be represented in the polyhedral model.
-
- This means an expression can be represented, if it is linear with respect to
- the loops and the strides are non parametric. LOOP is the place where the
- expr will be evaluated. SCOP defines the region we analyse. */
-
-bool
-scop_detection::graphite_can_represent_expr (sese_l scop, loop_p loop,
- tree expr)
-{
- tree scev = cached_scalar_evolution_in_region (scop, loop, expr);
- return graphite_can_represent_scev (scop, scev);
-}
-
-/* Return true if the data references of STMT can be represented by Graphite.
- We try to analyze the data references in a loop contained in the SCOP. */
-
-bool
-scop_detection::stmt_has_simple_data_refs_p (sese_l scop, gimple *stmt)
-{
- edge nest = scop.entry;
- loop_p loop = loop_containing_stmt (stmt);
- if (!loop_in_sese_p (loop, scop))
- loop = NULL;
-
- auto_vec<data_reference_p> drs;
- if (! graphite_find_data_references_in_stmt (nest, loop, stmt, &drs))
- return false;
-
- int j;
- data_reference_p dr;
- FOR_EACH_VEC_ELT (drs, j, dr)
- {
- for (unsigned i = 0; i < DR_NUM_DIMENSIONS (dr); ++i)
- if (! graphite_can_represent_scev (scop, DR_ACCESS_FN (dr, i)))
- return false;
- }
-
- return true;
-}
-
-/* GIMPLE_ASM and GIMPLE_CALL may embed arbitrary side effects.
- Calls have side-effects, except those to const or pure
- functions. */
-
-static bool
-stmt_has_side_effects (gimple *stmt)
-{
- if (gimple_has_volatile_ops (stmt)
- || (gimple_code (stmt) == GIMPLE_CALL
- && !(gimple_call_flags (stmt) & (ECF_CONST | ECF_PURE)))
- || (gimple_code (stmt) == GIMPLE_ASM))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Statement has side-effects:\n";
- print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
- return true;
- }
- return false;
-}
-
-/* Return true only when STMT is simple enough for being handled by Graphite.
- This depends on SCOP, as the parameters are initialized relatively to
- this basic block, the linear functions are initialized based on the outermost
- loop containing STMT inside the SCOP. BB is the place where we try to
- evaluate the STMT. */
-
-bool
-scop_detection::stmt_simple_for_scop_p (sese_l scop, gimple *stmt,
- basic_block bb) const
-{
- gcc_assert (scop);
-
- if (is_gimple_debug (stmt))
- return true;
-
- if (stmt_has_side_effects (stmt))
- return false;
-
- if (!stmt_has_simple_data_refs_p (scop, stmt))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Graphite cannot handle data-refs in stmt:\n";
- print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS|TDF_MEMSYMS););
- return false;
- }
-
- switch (gimple_code (stmt))
- {
- case GIMPLE_LABEL:
- return true;
-
- case GIMPLE_COND:
- {
- /* We can handle all binary comparisons. Inequalities are
- also supported as they can be represented with union of
- polyhedra. */
- enum tree_code code = gimple_cond_code (stmt);
- if (!(code == LT_EXPR
- || code == GT_EXPR
- || code == LE_EXPR
- || code == GE_EXPR
- || code == EQ_EXPR
- || code == NE_EXPR))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Graphite cannot handle cond stmt:\n";
- print_gimple_stmt (dump_file, stmt, 0,
- TDF_VOPS | TDF_MEMSYMS));
- return false;
- }
-
- loop_p loop = bb->loop_father;
- for (unsigned i = 0; i < 2; ++i)
- {
- tree op = gimple_op (stmt, i);
- if (!graphite_can_represent_expr (scop, loop, op)
- /* We can only constrain on integer type. */
- || ! INTEGRAL_TYPE_P (TREE_TYPE (op)))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Graphite cannot represent stmt:\n";
- print_gimple_stmt (dump_file, stmt, 0,
- TDF_VOPS | TDF_MEMSYMS));
- return false;
- }
- }
-
- return true;
- }
-
- case GIMPLE_ASSIGN:
- case GIMPLE_CALL:
- {
- tree op, lhs = gimple_get_lhs (stmt);
- ssa_op_iter i;
- /* If we are not going to instantiate the stmt do not require
- its operands to be instantiatable at this point. */
- if (lhs
- && TREE_CODE (lhs) == SSA_NAME
- && scev_analyzable_p (lhs, scop))
- return true;
- /* Verify that if we can analyze operands at their def site we
- also can represent them when analyzed at their uses. */
- FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
- if (scev_analyzable_p (op, scop)
- && chrec_contains_undetermined
- (cached_scalar_evolution_in_region (scop,
- bb->loop_father, op)))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] "
- << "Graphite cannot code-gen stmt:\n";
- print_gimple_stmt (dump_file, stmt, 0,
- TDF_VOPS | TDF_MEMSYMS));
- return false;
- }
- return true;
- }
-
- default:
- /* These nodes cut a new scope. */
- DEBUG_PRINT (
- dp << "[scop-detection-fail] "
- << "Gimple stmt not handled in Graphite:\n";
- print_gimple_stmt (dump_file, stmt, 0, TDF_VOPS | TDF_MEMSYMS));
- return false;
- }
-}
-
-/* Returns the number of pbbs that are in loops contained in SCOP. */
-
-int
-scop_detection::nb_pbbs_in_loops (scop_p scop)
-{
- int i;
- poly_bb_p pbb;
- int res = 0;
-
- FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
- if (loop_in_sese_p (gbb_loop (PBB_BLACK_BOX (pbb)), scop->scop_info->region))
- res++;
-
- return res;
-}
-
-/* Assigns the parameter NAME an index in REGION. */
-
-static void
-assign_parameter_index_in_region (tree name, sese_info_p region)
-{
- gcc_assert (TREE_CODE (name) == SSA_NAME
- && ! defined_in_sese_p (name, region->region));
- int i;
- tree p;
- FOR_EACH_VEC_ELT (region->params, i, p)
- if (p == name)
- return;
-
- region->params.safe_push (name);
-}
-
-/* In the context of sese S, scan the expression E and translate it to
- a linear expression C. When parsing a symbolic multiplication, K
- represents the constant multiplier of an expression containing
- parameters. */
-
-static void
-scan_tree_for_params (sese_info_p s, tree e)
-{
- if (e == chrec_dont_know)
- return;
-
- switch (TREE_CODE (e))
- {
- case POLYNOMIAL_CHREC:
- scan_tree_for_params (s, CHREC_LEFT (e));
- break;
-
- case MULT_EXPR:
- if (chrec_contains_symbols (TREE_OPERAND (e, 0)))
- scan_tree_for_params (s, TREE_OPERAND (e, 0));
- else
- scan_tree_for_params (s, TREE_OPERAND (e, 1));
- break;
-
- case PLUS_EXPR:
- case POINTER_PLUS_EXPR:
- case MINUS_EXPR:
- scan_tree_for_params (s, TREE_OPERAND (e, 0));
- scan_tree_for_params (s, TREE_OPERAND (e, 1));
- break;
-
- case NEGATE_EXPR:
- case BIT_NOT_EXPR:
- CASE_CONVERT:
- case NON_LVALUE_EXPR:
- scan_tree_for_params (s, TREE_OPERAND (e, 0));
- break;
-
- case SSA_NAME:
- assign_parameter_index_in_region (e, s);
- break;
-
- case INTEGER_CST:
- case ADDR_EXPR:
- case REAL_CST:
- case COMPLEX_CST:
- case VECTOR_CST:
- break;
-
- default:
- gcc_unreachable ();
- break;
- }
-}
-
-/* Find parameters with respect to REGION in BB. We are looking in memory
- access functions, conditions and loop bounds. */
-
-static void
-find_params_in_bb (sese_info_p region, gimple_poly_bb_p gbb)
-{
- /* Find parameters in the access functions of data references. */
- int i;
- data_reference_p dr;
- FOR_EACH_VEC_ELT (GBB_DATA_REFS (gbb), i, dr)
- for (unsigned j = 0; j < DR_NUM_DIMENSIONS (dr); j++)
- scan_tree_for_params (region, DR_ACCESS_FN (dr, j));
-
- /* Find parameters in conditional statements. */
- gimple *stmt;
- FOR_EACH_VEC_ELT (GBB_CONDITIONS (gbb), i, stmt)
- {
- loop_p loop = gimple_bb (stmt)->loop_father;
- tree lhs = cached_scalar_evolution_in_region (region->region, loop,
- gimple_cond_lhs (stmt));
- tree rhs = cached_scalar_evolution_in_region (region->region, loop,
- gimple_cond_rhs (stmt));
- gcc_assert (!chrec_contains_undetermined (lhs)
- && !chrec_contains_undetermined (rhs));
-
- scan_tree_for_params (region, lhs);
- scan_tree_for_params (region, rhs);
- }
-}
-
-/* Record the parameters used in the SCOP BBs. A variable is a parameter
- in a scop if it does not vary during the execution of that scop. */
-
-static void
-find_scop_parameters (scop_p scop)
-{
- unsigned i;
- sese_info_p region = scop->scop_info;
-
- /* Parameters used in loop bounds are processed during gather_bbs. */
-
- /* Find the parameters used in data accesses. */
- poly_bb_p pbb;
- FOR_EACH_VEC_ELT (scop->pbbs, i, pbb)
- find_params_in_bb (region, PBB_BLACK_BOX (pbb));
-
- int nbp = sese_nb_params (region);
- scop_set_nb_params (scop, nbp);
-}
-
-static void
-add_write (vec<tree> *writes, tree def)
-{
- writes->safe_push (def);
- DEBUG_PRINT (dp << "Adding scalar write: ";
- print_generic_expr (dump_file, def);
- dp << "\nFrom stmt: ";
- print_gimple_stmt (dump_file,
- SSA_NAME_DEF_STMT (def), 0));
-}
-
-static void
-add_read (vec<scalar_use> *reads, tree use, gimple *use_stmt)
-{
- DEBUG_PRINT (dp << "Adding scalar read: ";
- print_generic_expr (dump_file, use);
- dp << "\nFrom stmt: ";
- print_gimple_stmt (dump_file, use_stmt, 0));
- reads->safe_push (std::make_pair (use_stmt, use));
-}
-
-
-/* Record DEF if it is used in other bbs different than DEF_BB in the SCOP. */
-
-static void
-build_cross_bb_scalars_def (scop_p scop, tree def, basic_block def_bb,
- vec<tree> *writes)
-{
- if (!is_gimple_reg (def))
- return;
-
- bool scev_analyzable = scev_analyzable_p (def, scop->scop_info->region);
-
- gimple *use_stmt;
- imm_use_iterator imm_iter;
- FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, def)
- /* Do not gather scalar variables that can be analyzed by SCEV as they can
- be generated out of the induction variables. */
- if ((! scev_analyzable
- /* But gather SESE liveouts as we otherwise fail to rewrite their
- exit PHIs. */
- || ! bb_in_sese_p (gimple_bb (use_stmt), scop->scop_info->region))
- && (def_bb != gimple_bb (use_stmt) && !is_gimple_debug (use_stmt)))
- {
- add_write (writes, def);
- break;
- }
-}
-
-/* Record USE if it is defined in other bbs different than USE_STMT
- in the SCOP. */
-
-static void
-build_cross_bb_scalars_use (scop_p scop, tree use, gimple *use_stmt,
- vec<scalar_use> *reads)
-{
- if (!is_gimple_reg (use))
- return;
-
- /* Do not gather scalar variables that can be analyzed by SCEV as they can be
- generated out of the induction variables. */
- if (scev_analyzable_p (use, scop->scop_info->region))
- return;
-
- gimple *def_stmt = SSA_NAME_DEF_STMT (use);
- if (gimple_bb (def_stmt) != gimple_bb (use_stmt))
- add_read (reads, use, use_stmt);
-}
-
-/* Generates a polyhedral black box only if the bb contains interesting
- information. */
-
-static gimple_poly_bb_p
-try_generate_gimple_bb (scop_p scop, basic_block bb)
-{
- vec<data_reference_p> drs = vNULL;
- vec<tree> writes = vNULL;
- vec<scalar_use> reads = vNULL;
-
- sese_l region = scop->scop_info->region;
- edge nest = region.entry;
- loop_p loop = bb->loop_father;
- if (!loop_in_sese_p (loop, region))
- loop = NULL;
-
- for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
- gsi_next (&gsi))
- {
- gimple *stmt = gsi_stmt (gsi);
- if (is_gimple_debug (stmt))
- continue;
-
- graphite_find_data_references_in_stmt (nest, loop, stmt, &drs);
-
- tree def = gimple_get_lhs (stmt);
- if (def)
- build_cross_bb_scalars_def (scop, def, gimple_bb (stmt), &writes);
-
- ssa_op_iter iter;
- tree use;
- FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
- build_cross_bb_scalars_use (scop, use, stmt, &reads);
- }
-
- /* Handle defs and uses in PHIs. Those need special treatment given
- that we have to present ISL with sth that looks like we've rewritten
- the IL out-of-SSA. */
- for (gphi_iterator psi = gsi_start_phis (bb); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res)
- || scev_analyzable_p (res, scop->scop_info->region))
- continue;
- /* To simulate out-of-SSA the block containing the PHI node has
- reads of the PHI destination. And to preserve SSA dependences
- we also write to it (the out-of-SSA decl and the SSA result
- are coalesced for dependence purposes which is good enough). */
- add_read (&reads, res, phi);
- add_write (&writes, res);
- }
- basic_block bb_for_succs = bb;
- if (bb_for_succs == bb_for_succs->loop_father->latch
- && bb_in_sese_p (bb_for_succs, scop->scop_info->region)
- && sese_trivially_empty_bb_p (bb_for_succs))
- bb_for_succs = NULL;
- while (bb_for_succs)
- {
- basic_block latch = NULL;
- edge_iterator ei;
- edge e;
- FOR_EACH_EDGE (e, ei, bb_for_succs->succs)
- {
- for (gphi_iterator psi = gsi_start_phis (e->dest); !gsi_end_p (psi);
- gsi_next (&psi))
- {
- gphi *phi = psi.phi ();
- tree res = gimple_phi_result (phi);
- if (virtual_operand_p (res))
- continue;
- /* To simulate out-of-SSA the predecessor of edges into PHI nodes
- has a copy from the PHI argument to the PHI destination. */
- if (! scev_analyzable_p (res, scop->scop_info->region))
- add_write (&writes, res);
- tree use = PHI_ARG_DEF_FROM_EDGE (phi, e);
- if (TREE_CODE (use) == SSA_NAME
- && ! SSA_NAME_IS_DEFAULT_DEF (use)
- && gimple_bb (SSA_NAME_DEF_STMT (use)) != bb_for_succs
- && ! scev_analyzable_p (use, scop->scop_info->region))
- add_read (&reads, use, phi);
- }
- if (e->dest == bb_for_succs->loop_father->latch
- && bb_in_sese_p (e->dest, scop->scop_info->region)
- && sese_trivially_empty_bb_p (e->dest))
- latch = e->dest;
- }
- /* Handle empty latch block PHIs here, otherwise we confuse ISL
- with extra conditional code where it then peels off the last
- iteration just because of that. It would be simplest if we
- just didn't force simple latches (thus remove the forwarder). */
- bb_for_succs = latch;
- }
-
- /* For the region exit block add reads for all live-out vars. */
- if (bb == scop->scop_info->region.exit->src)
- {
- sese_build_liveouts (scop->scop_info);
- unsigned i;
- bitmap_iterator bi;
- EXECUTE_IF_SET_IN_BITMAP (scop->scop_info->liveout, 0, i, bi)
- {
- tree use = ssa_name (i);
- add_read (&reads, use, NULL);
- }
- }
-
- if (drs.is_empty () && writes.is_empty () && reads.is_empty ())
- return NULL;
-
- return new_gimple_poly_bb (bb, drs, reads, writes);
-}
-
-/* Compute alias-sets for all data references in DRS. */
-
-static bool
-build_alias_set (scop_p scop)
-{
- int num_vertices = scop->drs.length ();
- struct graph *g = new_graph (num_vertices);
- dr_info *dr1, *dr2;
- int i, j;
- int *all_vertices;
-
- struct loop *nest
- = find_common_loop (scop->scop_info->region.entry->dest->loop_father,
- scop->scop_info->region.exit->src->loop_father);
-
- FOR_EACH_VEC_ELT (scop->drs, i, dr1)
- for (j = i+1; scop->drs.iterate (j, &dr2); j++)
- if (dr_may_alias_p (dr1->dr, dr2->dr, nest))
- {
- /* Dependences in the same alias set need to be handled
- by just looking at DR_ACCESS_FNs. */
- if (DR_NUM_DIMENSIONS (dr1->dr) == 0
- || DR_NUM_DIMENSIONS (dr1->dr) != DR_NUM_DIMENSIONS (dr2->dr)
- || ! operand_equal_p (DR_BASE_OBJECT (dr1->dr),
- DR_BASE_OBJECT (dr2->dr),
- OEP_ADDRESS_OF)
- || ! types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (dr1->dr)),
- TREE_TYPE (DR_BASE_OBJECT (dr2->dr))))
- {
- free_graph (g);
- return false;
- }
- add_edge (g, i, j);
- add_edge (g, j, i);
- }
-
- all_vertices = XNEWVEC (int, num_vertices);
- for (i = 0; i < num_vertices; i++)
- all_vertices[i] = i;
-
- scop->max_alias_set
- = graphds_dfs (g, all_vertices, num_vertices, NULL, true, NULL) + 1;
- free (all_vertices);
-
- for (i = 0; i < g->n_vertices; i++)
- scop->drs[i].alias_set = g->vertices[i].component + 1;
-
- free_graph (g);
- return true;
-}
-
-/* Gather BBs and conditions for a SCOP. */
-class gather_bbs : public dom_walker
-{
-public:
- gather_bbs (cdi_direction, scop_p, int *);
-
- virtual edge before_dom_children (basic_block);
- virtual void after_dom_children (basic_block);
-
-private:
- auto_vec<gimple *, 3> conditions, cases;
- scop_p scop;
-};
-}
-gather_bbs::gather_bbs (cdi_direction direction, scop_p scop, int *bb_to_rpo)
- : dom_walker (direction, ALL_BLOCKS, bb_to_rpo), scop (scop)
-{
-}
-
-/* Call-back for dom_walk executed before visiting the dominated
- blocks. */
-
-edge
-gather_bbs::before_dom_children (basic_block bb)
-{
- sese_info_p region = scop->scop_info;
- if (!bb_in_sese_p (bb, region->region))
- return dom_walker::STOP;
-
- /* For loops fully contained in the region record parameters in the
- loop bounds. */
- loop_p loop = bb->loop_father;
- if (loop->header == bb
- && loop_in_sese_p (loop, region->region))
- {
- tree nb_iters = number_of_latch_executions (loop);
- if (chrec_contains_symbols (nb_iters))
- {
- nb_iters = cached_scalar_evolution_in_region (region->region,
- loop, nb_iters);
- scan_tree_for_params (region, nb_iters);
- }
- }
-
- if (gcond *stmt = single_pred_cond_non_loop_exit (bb))
- {
- edge e = single_pred_edge (bb);
- /* Make sure the condition is in the region and thus was verified
- to be handled. */
- if (e != region->region.entry)
- {
- conditions.safe_push (stmt);
- if (e->flags & EDGE_TRUE_VALUE)
- cases.safe_push (stmt);
- else
- cases.safe_push (NULL);
- }
- }
-
- scop->scop_info->bbs.safe_push (bb);
-
- gimple_poly_bb_p gbb = try_generate_gimple_bb (scop, bb);
- if (!gbb)
- return NULL;
-
- GBB_CONDITIONS (gbb) = conditions.copy ();
- GBB_CONDITION_CASES (gbb) = cases.copy ();
-
- poly_bb_p pbb = new_poly_bb (scop, gbb);
- scop->pbbs.safe_push (pbb);
-
- int i;
- data_reference_p dr;
- FOR_EACH_VEC_ELT (gbb->data_refs, i, dr)
- {
- DEBUG_PRINT (dp << "Adding memory ";
- if (dr->is_read)
- dp << "read: ";
- else
- dp << "write: ";
- print_generic_expr (dump_file, dr->ref);
- dp << "\nFrom stmt: ";
- print_gimple_stmt (dump_file, dr->stmt, 0));
-
- scop->drs.safe_push (dr_info (dr, pbb));
- }
-
- return NULL;
-}
-
-/* Call-back for dom_walk executed after visiting the dominated
- blocks. */
-
-void
-gather_bbs::after_dom_children (basic_block bb)
-{
- if (!bb_in_sese_p (bb, scop->scop_info->region))
- return;
-
- if (single_pred_cond_non_loop_exit (bb))
- {
- edge e = single_pred_edge (bb);
- if (e != scop->scop_info->region.entry)
- {
- conditions.pop ();
- cases.pop ();
- }
- }
-}
-
-
-/* Compute sth like an execution order, dominator order with first executing
- edges that stay inside the current loop, delaying processing exit edges. */
-
-static int *bb_to_rpo;
-
-/* Helper for qsort, sorting after order above. */
-
-static int
-cmp_pbbs (const void *pa, const void *pb)
-{
- poly_bb_p bb1 = *((const poly_bb_p *)pa);
- poly_bb_p bb2 = *((const poly_bb_p *)pb);
- if (bb_to_rpo[bb1->black_box->bb->index]
- < bb_to_rpo[bb2->black_box->bb->index])
- return -1;
- else if (bb_to_rpo[bb1->black_box->bb->index]
- > bb_to_rpo[bb2->black_box->bb->index])
- return 1;
- else
- return 0;
-}
-
-/* Find Static Control Parts (SCoP) in the current function and pushes
- them to SCOPS. */
-
-void
-build_scops (vec<scop_p> *scops)
-{
- if (dump_file)
- dp.set_dump_file (dump_file);
-
- scop_detection sb;
- sb.build_scop_depth (current_loops->tree_root);
-
- /* Now create scops from the lightweight SESEs. */
- vec<sese_l> scops_l = sb.get_scops ();
-
- /* Domwalk needs a bb to RPO mapping. Compute it once here. */
- int *postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
- int postorder_num = pre_and_rev_post_order_compute (NULL, postorder, true);
- bb_to_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
- for (int i = 0; i < postorder_num; ++i)
- bb_to_rpo[postorder[i]] = i;
- free (postorder);
-
- int i;
- sese_l *s;
- FOR_EACH_VEC_ELT (scops_l, i, s)
- {
- scop_p scop = new_scop (s->entry, s->exit);
-
- /* Record all basic blocks and their conditions in REGION. */
- gather_bbs (CDI_DOMINATORS, scop, bb_to_rpo).walk (s->entry->dest);
-
- /* Sort pbbs after execution order for initial schedule generation. */
- scop->pbbs.qsort (cmp_pbbs);
-
- if (! build_alias_set (scop))
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] cannot handle dependences\n");
- free_scop (scop);
- continue;
- }
-
- /* Do not optimize a scop containing only PBBs that do not belong
- to any loops. */
- if (sb.nb_pbbs_in_loops (scop) == 0)
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] no data references.\n");
- free_scop (scop);
- continue;
- }
-
- unsigned max_arrays = param_graphite_max_arrays_per_scop;
- if (max_arrays > 0
- && scop->drs.length () >= max_arrays)
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] too many data references: "
- << scop->drs.length ()
- << " is larger than --param graphite-max-arrays-per-scop="
- << max_arrays << ".\n");
- free_scop (scop);
- continue;
- }
-
- find_scop_parameters (scop);
- graphite_dim_t max_dim = param_graphite_max_nb_scop_params;
- if (max_dim > 0
- && scop_nb_params (scop) > max_dim)
- {
- DEBUG_PRINT (dp << "[scop-detection-fail] too many parameters: "
- << scop_nb_params (scop)
- << " larger than --param graphite-max-nb-scop-params="
- << max_dim << ".\n");
- free_scop (scop);
- continue;
- }
-
- scops->safe_push (scop);
- }
-
- free (bb_to_rpo);
- bb_to_rpo = NULL;
- DEBUG_PRINT (dp << "number of SCoPs: " << (scops ? scops->length () : 0););
-}
-
-#endif /* HAVE_isl */