aboutsummaryrefslogtreecommitdiff
path: root/gcc/gimple-low.c
diff options
context:
space:
mode:
authorTamar Christina <tnfchris@gcc.gnu.org>2017-06-09 08:10:51 +0000
committerTamar Christina <tnfchris@gcc.gnu.org>2017-06-09 08:10:51 +0000
commit903c723b9d931abb6de044135c3bd4f44559fca7 (patch)
tree501cfa4a6ed13c934e7150ad55732b9b2c606305 /gcc/gimple-low.c
parent48e692477f5e3e1e99755b1e964ddd8a51fb5775 (diff)
downloadgcc-903c723b9d931abb6de044135c3bd4f44559fca7.zip
gcc-903c723b9d931abb6de044135c3bd4f44559fca7.tar.gz
gcc-903c723b9d931abb6de044135c3bd4f44559fca7.tar.bz2
Reverted r249005 until PowerPC and AIX issues sorted.
From-SVN: r249050
Diffstat (limited to 'gcc/gimple-low.c')
-rw-r--r--gcc/gimple-low.c910
1 files changed, 7 insertions, 903 deletions
diff --git a/gcc/gimple-low.c b/gcc/gimple-low.c
index 1cc4a4d..619b9d7 100644
--- a/gcc/gimple-low.c
+++ b/gcc/gimple-low.c
@@ -30,9 +30,6 @@ along with GCC; see the file COPYING3. If not see
#include "calls.h"
#include "gimple-iterator.h"
#include "gimple-low.h"
-#include "stor-layout.h"
-#include "target.h"
-#include "gimplify.h"
/* The differences between High GIMPLE and Low GIMPLE are the
following:
@@ -75,13 +72,6 @@ static void lower_gimple_bind (gimple_stmt_iterator *, struct lower_data *);
static void lower_try_catch (gimple_stmt_iterator *, struct lower_data *);
static void lower_gimple_return (gimple_stmt_iterator *, struct lower_data *);
static void lower_builtin_setjmp (gimple_stmt_iterator *);
-static void lower_builtin_fpclassify (gimple_stmt_iterator *);
-static void lower_builtin_isnan (gimple_stmt_iterator *);
-static void lower_builtin_isinfinite (gimple_stmt_iterator *);
-static void lower_builtin_isnormal (gimple_stmt_iterator *);
-static void lower_builtin_iszero (gimple_stmt_iterator *);
-static void lower_builtin_issubnormal (gimple_stmt_iterator *);
-static void lower_builtin_isfinite (gimple_stmt_iterator *);
static void lower_builtin_posix_memalign (gimple_stmt_iterator *);
@@ -340,69 +330,18 @@ lower_stmt (gimple_stmt_iterator *gsi, struct lower_data *data)
if (decl
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
{
- switch (DECL_FUNCTION_CODE (decl))
+ if (DECL_FUNCTION_CODE (decl) == BUILT_IN_SETJMP)
{
- case BUILT_IN_SETJMP:
lower_builtin_setjmp (gsi);
data->cannot_fallthru = false;
return;
-
- case BUILT_IN_POSIX_MEMALIGN:
- if (flag_tree_bit_ccp
- && gimple_builtin_call_types_compatible_p (stmt, decl))
- {
- lower_builtin_posix_memalign (gsi);
- return;
- }
- break;
-
- case BUILT_IN_FPCLASSIFY:
- lower_builtin_fpclassify (gsi);
- data->cannot_fallthru = false;
- return;
-
- CASE_FLT_FN (BUILT_IN_ISINF):
- case BUILT_IN_ISINFD32:
- case BUILT_IN_ISINFD64:
- case BUILT_IN_ISINFD128:
- lower_builtin_isinfinite (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISNAND32:
- case BUILT_IN_ISNAND64:
- case BUILT_IN_ISNAND128:
- CASE_FLT_FN (BUILT_IN_ISNAN):
- lower_builtin_isnan (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISNORMAL:
- lower_builtin_isnormal (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISZERO:
- lower_builtin_iszero (gsi);
- data->cannot_fallthru = false;
- return;
-
- case BUILT_IN_ISSUBNORMAL:
- lower_builtin_issubnormal (gsi);
- data->cannot_fallthru = false;
- return;
-
- CASE_FLT_FN (BUILT_IN_FINITE):
- case BUILT_IN_FINITED32:
- case BUILT_IN_FINITED64:
- case BUILT_IN_FINITED128:
- case BUILT_IN_ISFINITE:
- lower_builtin_isfinite (gsi);
- data->cannot_fallthru = false;
+ }
+ else if (DECL_FUNCTION_CODE (decl) == BUILT_IN_POSIX_MEMALIGN
+ && flag_tree_bit_ccp
+ && gimple_builtin_call_types_compatible_p (stmt, decl))
+ {
+ lower_builtin_posix_memalign (gsi);
return;
-
- default:
- break;
}
}
@@ -883,841 +822,6 @@ lower_builtin_setjmp (gimple_stmt_iterator *gsi)
gsi_remove (gsi, false);
}
-/* This function will if ARG is not already a variable or SSA_NAME,
- create a new temporary TMP and bind ARG to TMP. This new binding is then
- emitted into SEQ and TMP is returned. */
-static tree
-emit_tree_and_return_var (gimple_seq *seq, tree arg)
-{
- if (TREE_CODE (arg) == SSA_NAME || VAR_P (arg))
- return arg;
-
- tree tmp = create_tmp_reg (TREE_TYPE (arg));
- gassign *stm = gimple_build_assign (tmp, arg);
- gimple_seq_add_stmt (seq, stm);
- return tmp;
-}
-
-/* This function builds an if statement that ends up using explicit branches
- instead of becoming a ternary conditional select. This function assumes you
- will fall through to the next statements after the condition for the false
- branch. The code emitted looks like:
-
- if (COND)
- RESULT_VARIABLE = TRUE_BRANCH
- GOTO EXIT_LABEL
- else
- ...
-
- SEQ is the gimple sequence/buffer to emit any new bindings to.
- RESULT_VARIABLE is the value to set if COND.
- EXIT_LABEL is the label to jump to in case COND.
- COND is condition to use in the conditional statement of the if.
- TRUE_BRANCH is the value to set RESULT_VARIABLE to if COND. */
-static void
-emit_tree_cond (gimple_seq *seq, tree result_variable, tree exit_label,
- tree cond, tree true_branch)
-{
- /* Create labels for fall through. */
- tree true_label = create_artificial_label (UNKNOWN_LOCATION);
- tree false_label = create_artificial_label (UNKNOWN_LOCATION);
- gcond *stmt = gimple_build_cond_from_tree (cond, true_label, false_label);
- gimple_seq_add_stmt (seq, stmt);
-
- /* Build the true case. */
- gimple_seq_add_stmt (seq, gimple_build_label (true_label));
- tree value = TREE_CONSTANT (true_branch)
- ? true_branch
- : emit_tree_and_return_var (seq, true_branch);
- gimple_seq_add_stmt (seq, gimple_build_assign (result_variable, value));
- gimple_seq_add_stmt (seq, gimple_build_goto (exit_label));
-
- /* Build the false case. */
- gimple_seq_add_stmt (seq, gimple_build_label (false_label));
-}
-
-/* This function returns a variable containing an reinterpreted ARG as an
- integer.
-
- SEQ is the gimple sequence/buffer to write any new bindings to.
- ARG is the floating point number to reinterpret as an integer.
- LOC is the location to use when doing folding operations. */
-static tree
-get_num_as_int (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- /* Re-interpret the float as an unsigned integer type
- with equal precision. */
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
- tree conv_arg = fold_build1_loc (loc, VIEW_CONVERT_EXPR, int_arg_type, arg);
- return emit_tree_and_return_var (seq, conv_arg);
-}
-
-/* Check if ARG which is the floating point number being classified is close
- enough to IEEE 754 format to be able to go in the early exit code. */
-static bool
-use_ieee_int_mode (tree arg)
-{
- tree type = TREE_TYPE (arg);
- machine_mode mode = TYPE_MODE (type);
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- machine_mode imode = int_mode_for_mode (mode);
- bool is_ibm_extended = MODE_COMPOSITE_P (mode);
-
- return (format->is_binary_ieee_compatible
- && FLOAT_WORDS_BIG_ENDIAN == WORDS_BIG_ENDIAN
- /* Check if there's a usable integer mode. */
- && imode != BLKmode
- && targetm.scalar_mode_supported_p (imode)
- && !is_ibm_extended);
-}
-
-/* Perform some IBM extended format fixups on ARG for use by FP functions.
- This is done by ignoring the lower 64 bits of the number.
-
- MODE is the machine mode of ARG.
- TYPE is the type of ARG.
- LOC is the location to be used in fold functions. Usually is the location
- of the definition of ARG. */
-static bool
-perform_ibm_extended_fixups (tree *arg, machine_mode *mode,
- tree *type, location_t loc)
-{
- bool is_ibm_extended = MODE_COMPOSITE_P (*mode);
- if (is_ibm_extended)
- {
- /* NaN and Inf are encoded in the high-order double value
- only. The low-order value is not significant. */
- *type = double_type_node;
- *mode = DFmode;
- *arg = fold_build1_loc (loc, NOP_EXPR, *type, *arg);
- }
-
- return is_ibm_extended;
-}
-
-/* Generates code to check if ARG is a normal number. For the FP case we check
- MIN_VALUE(ARG) <= ABS(ARG) > INF and for the INT value we check the exp and
- mantissa bits. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_normal (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const real_format *format = REAL_MODE_FORMAT (mode);
- const tree bool_type = boolean_type_node;
-
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- tree orig_arg = arg;
- machine_mode orig_mode = mode;
- if (TREE_CODE (arg) != SSA_NAME
- && (TREE_ADDRESSABLE (arg) != 0
- || (TREE_CODE (arg) != PARM_DECL
- && (!VAR_P (arg) || TREE_STATIC (arg)))))
- orig_arg = save_expr (arg);
-
- /* Perform IBM extended format fixups if required. */
- bool is_ibm_extended = perform_ibm_extended_fixups (&arg, &mode,
- &type, loc);
-
- REAL_VALUE_TYPE rinf, rmin;
- tree arg_p = fold_build1_loc (loc, ABS_EXPR, type, arg);
-
- tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
- tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
- tree const isge_fn = builtin_decl_explicit (BUILT_IN_ISGREATEREQUAL);
-
- char buf[128];
- real_inf (&rinf);
- get_min_float (REAL_MODE_FORMAT (orig_mode), buf, sizeof (buf));
- real_from_string (&rmin, buf);
-
- tree inf_exp = build_call_expr (islt_fn, 2, arg_p,
- build_real (type, rinf));
- tree min_exp = build_real (type, rmin);
- if (is_ibm_extended)
- {
- /* Testing the high end of the range is done just using
- the high double, using the same test as isfinite().
- For the subnormal end of the range we first test the
- high double, then if its magnitude is equal to the
- limit of 0x1p-969, we test whether the low double is
- non-zero and opposite sign to the high double. */
- tree gt_min = build_call_expr (isgt_fn, 2, arg_p, min_exp);
- tree eq_min = fold_build2 (EQ_EXPR, integer_type_node,
- arg_p, min_exp);
- tree as_complex = build1 (VIEW_CONVERT_EXPR,
- complex_double_type_node, orig_arg);
- tree hi_dbl = build1 (REALPART_EXPR, type, as_complex);
- tree lo_dbl = build1 (IMAGPART_EXPR, type, as_complex);
- tree zero = build_real (type, dconst0);
- tree hilt = build_call_expr (islt_fn, 2, hi_dbl, zero);
- tree lolt = build_call_expr (islt_fn, 2, lo_dbl, zero);
- tree logt = build_call_expr (isgt_fn, 2, lo_dbl, zero);
- tree ok_lo = fold_build1 (TRUTH_NOT_EXPR, integer_type_node,
- fold_build3 (COND_EXPR,
- integer_type_node,
- hilt, logt, lolt));
- eq_min = fold_build2 (TRUTH_ANDIF_EXPR, integer_type_node,
- eq_min, ok_lo);
- min_exp = fold_build2 (TRUTH_ORIF_EXPR, integer_type_node,
- gt_min, eq_min);
- }
- else
- {
- min_exp = build_call_expr (isge_fn, 2, arg_p, min_exp);
- }
-
- push_gimplify_context ();
- gimplify_expr (&min_exp, seq, NULL, is_gimple_val, fb_either);
- gimplify_expr (&inf_exp, seq, NULL, is_gimple_val, fb_either);
-
- tree res
- = fold_build2_loc (loc, BIT_AND_EXPR, bool_type,
- emit_tree_and_return_var (seq,
- gimple_boolify (min_exp)),
- emit_tree_and_return_var (seq,
- gimple_boolify (inf_exp)));
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const tree int_type = unsigned_type_node;
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- const int exp_mask = (1 << exp_bits) - 1;
-
- /* Get the number reinterpreted as an integer. */
- tree int_arg = get_num_as_int (seq, arg, loc);
-
- /* Extract exp bits from the float, where we expect the exponent to be.
- We create a new type because BIT_FIELD_REF does not allow you to
- extract less bits than the precision of the storage variable. */
- tree exp_tmp
- = fold_build3_loc (loc, BIT_FIELD_REF,
- build_nonstandard_integer_type (exp_bits, true),
- int_arg,
- build_int_cstu (int_type, exp_bits),
- build_int_cstu (int_type, format->p - 1));
- tree exp_bitfield = emit_tree_and_return_var (seq, exp_tmp);
-
- /* Re-interpret the extracted exponent bits as a 32 bit int.
- This allows us to continue doing operations as int_type. */
- tree exp
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, NOP_EXPR, int_type,
- exp_bitfield));
-
- /* exp_mask & ~1. */
- tree mask_check
- = fold_build2_loc (loc, BIT_AND_EXPR, int_type,
- build_int_cstu (int_type, exp_mask),
- fold_build1_loc (loc, BIT_NOT_EXPR, int_type,
- build_int_cstu (int_type, 1)));
-
- /* (exp + 1) & mask_check.
- Check to see if exp is not all 0 or all 1. */
- tree exp_check
- = fold_build2_loc (loc, BIT_AND_EXPR, int_type,
- emit_tree_and_return_var (seq,
- fold_build2_loc (loc, PLUS_EXPR, int_type, exp,
- build_int_cstu (int_type, 1))),
- mask_check);
-
- tree res = fold_build2_loc (loc, NE_EXPR, boolean_type_node,
- build_int_cstu (int_type, 0),
- emit_tree_and_return_var (seq, exp_check));
-
- return emit_tree_and_return_var (seq, res);
-}
-
-/* Generates code to check if ARG is a zero. For both the FP and INT case we
- check if ARG == 0 (modulo sign bit). Returns a variable containing a boolean
- which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_zero (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- machine_mode mode = TYPE_MODE (type);
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree res = fold_build2_loc (loc, EQ_EXPR, boolean_type_node, arg,
- build_real (type, dconst0));
- return emit_tree_and_return_var (seq, res);
- }
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* num << 1 == 0.
- This checks to see if the number is zero. */
- tree zero_check
- = fold_build2_loc (loc, EQ_EXPR, boolean_type_node,
- build_int_cstu (int_arg_type, 0),
- emit_tree_and_return_var (seq, int_arg));
-
- return emit_tree_and_return_var (seq, zero_check);
-}
-
-/* Generates code to check if ARG is a subnormal number. In the FP case we test
- fabs (ARG) != 0 && fabs (ARG) < MIN_VALUE (ARG) and in the INT case we check
- the exp and mantissa bits on ARG. Returns a variable containing a boolean
- which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_subnormal (gimple_seq *seq, tree arg, location_t loc)
-{
- const tree bool_type = boolean_type_node;
-
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- tree const islt_fn = builtin_decl_explicit (BUILT_IN_ISLESS);
- tree const isgt_fn = builtin_decl_explicit (BUILT_IN_ISGREATER);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE r;
- char buf[128];
- get_min_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
- real_from_string (&r, buf);
- tree subnorm = build_call_expr (islt_fn, 2, arg_p, build_real (type, r));
-
- tree zero = build_call_expr (isgt_fn, 2, arg_p,
- build_real (type, dconst0));
-
- push_gimplify_context ();
- gimplify_expr (&subnorm, seq, NULL, is_gimple_val, fb_either);
- gimplify_expr (&zero, seq, NULL, is_gimple_val, fb_either);
-
- tree res
- = fold_build2_loc (loc, BIT_AND_EXPR, bool_type,
- emit_tree_and_return_var (seq,
- gimple_boolify (subnorm)),
- emit_tree_and_return_var (seq,
- gimple_boolify (zero)));
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* Check for a zero exponent and non-zero mantissa.
- This can be done with two comparisons by first apply a
- removing the sign bit and checking if the value is larger
- than the mantissa mask. */
-
- /* This creates a mask to be used to check the mantissa value in the shifted
- integer representation of the fpnum. */
- tree significant_bit = build_int_cstu (int_arg_type, format->p - 1);
- tree mantissa_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- significant_bit),
- build_int_cstu (int_arg_type, 1));
-
- /* Check if exponent is zero and mantissa is not. */
- tree subnorm_cond_tmp
- = fold_build2_loc (loc, LE_EXPR, bool_type,
- emit_tree_and_return_var (seq, int_arg),
- mantissa_mask);
-
- tree subnorm_cond = emit_tree_and_return_var (seq, subnorm_cond_tmp);
-
- tree zero_cond
- = fold_build2_loc (loc, GT_EXPR, boolean_type_node,
- emit_tree_and_return_var (seq, int_arg),
- build_int_cstu (int_arg_type, 0));
-
- tree subnorm_check
- = fold_build2_loc (loc, BIT_AND_EXPR, boolean_type_node,
- emit_tree_and_return_var (seq, subnorm_cond),
- emit_tree_and_return_var (seq, zero_cond));
-
- return emit_tree_and_return_var (seq, subnorm_check);
-}
-
-/* Generates code to check if ARG is an infinity. In the FP case we test
- FABS(ARG) == INF and in the INT case we check the bits on the exp and
- mantissa. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_infinity (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_INFINITIES (mode))
- {
- return build_int_cst (bool_type, false);
- }
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE r;
- real_inf (&r);
- tree res = fold_build2_loc (loc, EQ_EXPR, bool_type, arg_p,
- build_real (type, r));
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- gcc_assert (format->p > 0);
-
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is 0. */
- tree inf_check
- = emit_tree_and_return_var(seq,
- fold_build2_loc (loc, EQ_EXPR, bool_type,
- emit_tree_and_return_var(seq, int_arg),
- inf_mask));
-
- return emit_tree_and_return_var (seq, inf_check);
-}
-
-/* Generates code to check if ARG is a finite number. In the FP case we check
- if FABS(ARG) <= MAX_VALUE(ARG) and in the INT case we check the exp and
- mantissa bits. Returns a variable containing a boolean which has the result
- of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_finite (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_NANS (arg) && !HONOR_INFINITIES (arg))
- {
- return build_int_cst (bool_type, true);
- }
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
-
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree const isle_fn = builtin_decl_explicit (BUILT_IN_ISLESSEQUAL);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- REAL_VALUE_TYPE rmax;
- char buf[128];
- get_max_float (REAL_MODE_FORMAT (mode), buf, sizeof (buf));
- real_from_string (&rmax, buf);
-
- tree res = build_call_expr (isle_fn, 2, arg_p, build_real (type, rmax));
-
- push_gimplify_context ();
- gimplify_expr (&res, seq, NULL, is_gimple_val, fb_either);
- pop_gimplify_context (NULL);
-
- return emit_tree_and_return_var (seq, gimple_boolify(res));
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
-
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- gcc_assert (format->p > 0);
-
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is 0. */
- tree inf_check_tmp
- = fold_build2_loc (loc, LT_EXPR, bool_type,
- emit_tree_and_return_var (seq, int_arg),
- inf_mask);
-
- tree inf_check = emit_tree_and_return_var (seq, inf_check_tmp);
-
- return emit_tree_and_return_var (seq, inf_check);
-}
-
-/* Generates code to check if ARG is a NaN. In the FP case we simply check if
- ARG != ARG and in the INT case we check the bits in the exp and mantissa.
- Returns a variable containing a boolean which has the result of the check.
-
- SEQ is the buffer to use to emit the gimple instructions into.
- LOC is the location to use during fold calls. */
-static tree
-is_nan (gimple_seq *seq, tree arg, location_t loc)
-{
- tree type = TREE_TYPE (arg);
-
- machine_mode mode = TYPE_MODE (type);
- const tree bool_type = boolean_type_node;
-
- if (!HONOR_NANS (mode))
- {
- return build_int_cst (bool_type, false);
- }
-
- const real_format *format = REAL_MODE_FORMAT (mode);
-
- /* If not using optimized route then exit early. */
- if (!use_ieee_int_mode (arg))
- {
- /* Perform IBM extended format fixups if required. */
- perform_ibm_extended_fixups (&arg, &mode, &type, loc);
-
- tree arg_p
- = emit_tree_and_return_var (seq, fold_build1_loc (loc, ABS_EXPR, type,
- arg));
- tree res
- = fold_build2_loc (loc, UNORDERED_EXPR, bool_type,arg_p, arg_p);
-
- return emit_tree_and_return_var (seq, res);
- }
-
- const HOST_WIDE_INT type_width = TYPE_PRECISION (type);
- tree int_arg_type = build_nonstandard_integer_type (type_width, true);
-
- /* This creates a mask to be used to check the exp value in the shifted
- integer representation of the fpnum. */
- const int exp_bits = (GET_MODE_SIZE (mode) * BITS_PER_UNIT) - format->p;
- tree significant_bit = build_int_cstu (int_arg_type, format->p);
- tree exp_mask
- = fold_build2_loc (loc, MINUS_EXPR, int_arg_type,
- fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- build_int_cstu (int_arg_type, 2),
- build_int_cstu (int_arg_type,
- exp_bits - 1)),
- build_int_cstu (int_arg_type, 1));
-
- /* Get the number reinterpreted as an integer.
- Shift left to remove the sign. */
- tree int_arg
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- get_num_as_int (seq, arg, loc),
- build_int_cstu (int_arg_type, 1));
-
- /* This mask checks to see if the exp has all bits set and mantissa no
- bits set. */
- tree inf_mask
- = fold_build2_loc (loc, LSHIFT_EXPR, int_arg_type,
- exp_mask, significant_bit);
-
- /* Check if exponent has all bits set and mantissa is not 0. */
- tree nan_check
- = emit_tree_and_return_var(seq,
- fold_build2_loc (loc, GT_EXPR, bool_type,
- emit_tree_and_return_var(seq, int_arg),
- inf_mask));
-
- return emit_tree_and_return_var (seq, nan_check);
-}
-
-/* Validates a single argument from the arguments list CALL at position INDEX.
- The extracted parameter is compared against the expected type CODE.
-
- A boolean is returned indicating if the parameter exist and if of the
- expected type. */
-static bool
-gimple_validate_arg (gimple* call, int index, enum tree_code code)
-{
- const tree arg = gimple_call_arg (call, index);
- if (!arg)
- return false;
- else if (code == POINTER_TYPE)
- return POINTER_TYPE_P (TREE_TYPE (arg));
- else if (code == INTEGER_TYPE)
- return INTEGRAL_TYPE_P (TREE_TYPE (arg));
- return code == TREE_CODE (TREE_TYPE (arg));
-}
-
-/* Lowers calls to __builtin_fpclassify to
- fpclassify (x) ->
- isnormal(x) ? FP_NORMAL :
- iszero (x) ? FP_ZERO :
- isnan (x) ? FP_NAN :
- isinfinite (x) ? FP_INFINITE :
- FP_SUBNORMAL.
-
- The code may use integer arithmentic if it decides
- that the produced assembly would be faster. This can only be done
- for numbers that are similar to IEEE-754 in format.
-
- This builtin will generate code to return the appropriate floating
- point classification depending on the value of the floating point
- number passed in. The possible return values must be supplied as
- int arguments to the call in the following order: FP_NAN, FP_INFINITE,
- FP_NORMAL, FP_SUBNORMAL and FP_ZERO. The ellipses is for exactly
- one floating point argument which is "type generic".
-
- GSI is the gimple iterator containing the fpclassify call to lower.
- The call will be expanded and replaced inline in the given GSI. */
-static void
-lower_builtin_fpclassify (gimple_stmt_iterator *gsi)
-{
- gimple *call = gsi_stmt (*gsi);
- location_t loc = gimple_location (call);
-
- /* Verify the required arguments in the original call. */
- if (gimple_call_num_args (call) != 6
- || !gimple_validate_arg (call, 0, INTEGER_TYPE)
- || !gimple_validate_arg (call, 1, INTEGER_TYPE)
- || !gimple_validate_arg (call, 2, INTEGER_TYPE)
- || !gimple_validate_arg (call, 3, INTEGER_TYPE)
- || !gimple_validate_arg (call, 4, INTEGER_TYPE)
- || !gimple_validate_arg (call, 5, REAL_TYPE))
- return;
-
- /* Collect the arguments from the call. */
- tree fp_nan = gimple_call_arg (call, 0);
- tree fp_infinite = gimple_call_arg (call, 1);
- tree fp_normal = gimple_call_arg (call, 2);
- tree fp_subnormal = gimple_call_arg (call, 3);
- tree fp_zero = gimple_call_arg (call, 4);
- tree arg = gimple_call_arg (call, 5);
-
- gimple_seq body = NULL;
-
- /* Create label to jump to to exit. */
- tree done_label = create_artificial_label (UNKNOWN_LOCATION);
- tree dest;
- tree orig_dest = dest = gimple_call_lhs (call);
- if (orig_dest && TREE_CODE (orig_dest) == SSA_NAME)
- dest = create_tmp_reg (TREE_TYPE (orig_dest));
-
- emit_tree_cond (&body, dest, done_label,
- is_normal (&body, arg, loc), fp_normal);
- emit_tree_cond (&body, dest, done_label,
- is_zero (&body, arg, loc), fp_zero);
- emit_tree_cond (&body, dest, done_label,
- is_nan (&body, arg, loc), fp_nan);
- emit_tree_cond (&body, dest, done_label,
- is_infinity (&body, arg, loc), fp_infinite);
-
- /* And finally, emit the default case if nothing else matches.
- This replaces the call to is_subnormal. */
- gimple_seq_add_stmt (&body, gimple_build_assign (dest, fp_subnormal));
- gimple_seq_add_stmt (&body, gimple_build_label (done_label));
-
- /* Build orig_dest = dest if necessary. */
- if (dest != orig_dest)
- {
- gimple_seq_add_stmt (&body, gimple_build_assign (orig_dest, dest));
- }
-
- gsi_insert_seq_before (gsi, body, GSI_SAME_STMT);
-
-
- /* Remove the call to __builtin_fpclassify. */
- gsi_remove (gsi, false);
-}
-
-/* Generic wrapper for the is_nan, is_normal, is_subnormal, is_zero, etc.
- All these functions have the same setup. The wrapper validates the parameter
- and also creates the branches and labels required to properly invoke.
- This has been generalize and the function to call is passed as argument FNDECL.
-
- GSI is the gimple iterator containing the fpclassify call to lower.
- The call will be expanded and replaced inline in the given GSI. */
-static void
-gen_call_fp_builtin (gimple_stmt_iterator *gsi,
- tree (*fndecl)(gimple_seq *, tree, location_t))
-{
- gimple *call = gsi_stmt (*gsi);
- location_t loc = gimple_location (call);
-
- /* Verify the required arguments in the original call. */
- if (gimple_call_num_args (call) != 1
- || !gimple_validate_arg (call, 0, REAL_TYPE))
- return;
-
- tree arg = gimple_call_arg (call, 0);
- gimple_seq body = NULL;
-
- /* Create label to jump to to exit. */
- tree done_label = create_artificial_label (UNKNOWN_LOCATION);
- tree dest;
- tree orig_dest = dest = gimple_call_lhs (call);
- tree type = TREE_TYPE (orig_dest);
- if (orig_dest && TREE_CODE (orig_dest) == SSA_NAME)
- dest = create_tmp_reg (type);
-
- tree t_true = build_int_cst (type, true);
- tree t_false = build_int_cst (type, false);
-
- emit_tree_cond (&body, dest, done_label,
- fndecl (&body, arg, loc), t_true);
-
- /* And finally, emit the default case if nothing else matches.
- This replaces the call to false. */
- gimple_seq_add_stmt (&body, gimple_build_assign (dest, t_false));
- gimple_seq_add_stmt (&body, gimple_build_label (done_label));
-
- /* Build orig_dest = dest if necessary. */
- if (dest != orig_dest)
- {
- gimple_seq_add_stmt (&body, gimple_build_assign (orig_dest, dest));
- }
-
- gsi_insert_seq_before (gsi, body, GSI_SAME_STMT);
-
- /* Remove the call to the builtin. */
- gsi_remove (gsi, false);
-}
-
-/* Lower and expand calls to __builtin_isnan in GSI. */
-static void
-lower_builtin_isnan (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_nan);
-}
-
-/* Lower and expand calls to __builtin_isinfinite in GSI. */
-static void
-lower_builtin_isinfinite (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_infinity);
-}
-
-/* Lower and expand calls to __builtin_isnormal in GSI. */
-static void
-lower_builtin_isnormal (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_normal);
-}
-
-/* Lower and expand calls to __builtin_iszero in GSI. */
-static void
-lower_builtin_iszero (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_zero);
-}
-
-/* Lower and expand calls to __builtin_issubnormal in GSI. */
-static void
-lower_builtin_issubnormal (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_subnormal);
-}
-
-/* Lower and expand calls to __builtin_isfinite in GSI. */
-static void
-lower_builtin_isfinite (gimple_stmt_iterator *gsi)
-{
- gen_call_fp_builtin (gsi, &is_finite);
-}
-
/* Lower calls to posix_memalign to
res = posix_memalign (ptr, align, size);
if (res == 0)