diff options
author | Martin Liska <mliska@suse.cz> | 2022-01-14 16:56:44 +0100 |
---|---|---|
committer | Martin Liska <mliska@suse.cz> | 2022-01-17 22:12:04 +0100 |
commit | 5c69acb32329d49e58c26fa41ae74229a52b9106 (patch) | |
tree | ddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/fortran/trans-array.cc | |
parent | 490e23032baaece71f2ec09fa1805064b150fbc2 (diff) | |
download | gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.zip gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.bz2 |
Rename .c files to .cc files.
gcc/ada/ChangeLog:
* adadecode.c: Moved to...
* adadecode.cc: ...here.
* affinity.c: Moved to...
* affinity.cc: ...here.
* argv-lynxos178-raven-cert.c: Moved to...
* argv-lynxos178-raven-cert.cc: ...here.
* argv.c: Moved to...
* argv.cc: ...here.
* aux-io.c: Moved to...
* aux-io.cc: ...here.
* cio.c: Moved to...
* cio.cc: ...here.
* cstreams.c: Moved to...
* cstreams.cc: ...here.
* env.c: Moved to...
* env.cc: ...here.
* exit.c: Moved to...
* exit.cc: ...here.
* expect.c: Moved to...
* expect.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* gcc-interface/cuintp.c: Moved to...
* gcc-interface/cuintp.cc: ...here.
* gcc-interface/decl.c: Moved to...
* gcc-interface/decl.cc: ...here.
* gcc-interface/misc.c: Moved to...
* gcc-interface/misc.cc: ...here.
* gcc-interface/targtyps.c: Moved to...
* gcc-interface/targtyps.cc: ...here.
* gcc-interface/trans.c: Moved to...
* gcc-interface/trans.cc: ...here.
* gcc-interface/utils.c: Moved to...
* gcc-interface/utils.cc: ...here.
* gcc-interface/utils2.c: Moved to...
* gcc-interface/utils2.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* initialize.c: Moved to...
* initialize.cc: ...here.
* libgnarl/thread.c: Moved to...
* libgnarl/thread.cc: ...here.
* link.c: Moved to...
* link.cc: ...here.
* locales.c: Moved to...
* locales.cc: ...here.
* mkdir.c: Moved to...
* mkdir.cc: ...here.
* raise.c: Moved to...
* raise.cc: ...here.
* rtfinal.c: Moved to...
* rtfinal.cc: ...here.
* rtinit.c: Moved to...
* rtinit.cc: ...here.
* seh_init.c: Moved to...
* seh_init.cc: ...here.
* sigtramp-armdroid.c: Moved to...
* sigtramp-armdroid.cc: ...here.
* sigtramp-ios.c: Moved to...
* sigtramp-ios.cc: ...here.
* sigtramp-qnx.c: Moved to...
* sigtramp-qnx.cc: ...here.
* sigtramp-vxworks.c: Moved to...
* sigtramp-vxworks.cc: ...here.
* socket.c: Moved to...
* socket.cc: ...here.
* tracebak.c: Moved to...
* tracebak.cc: ...here.
* version.c: Moved to...
* version.cc: ...here.
* vx_stack_info.c: Moved to...
* vx_stack_info.cc: ...here.
gcc/ChangeLog:
* adjust-alignment.c: Moved to...
* adjust-alignment.cc: ...here.
* alias.c: Moved to...
* alias.cc: ...here.
* alloc-pool.c: Moved to...
* alloc-pool.cc: ...here.
* asan.c: Moved to...
* asan.cc: ...here.
* attribs.c: Moved to...
* attribs.cc: ...here.
* auto-inc-dec.c: Moved to...
* auto-inc-dec.cc: ...here.
* auto-profile.c: Moved to...
* auto-profile.cc: ...here.
* bb-reorder.c: Moved to...
* bb-reorder.cc: ...here.
* bitmap.c: Moved to...
* bitmap.cc: ...here.
* btfout.c: Moved to...
* btfout.cc: ...here.
* builtins.c: Moved to...
* builtins.cc: ...here.
* caller-save.c: Moved to...
* caller-save.cc: ...here.
* calls.c: Moved to...
* calls.cc: ...here.
* ccmp.c: Moved to...
* ccmp.cc: ...here.
* cfg.c: Moved to...
* cfg.cc: ...here.
* cfganal.c: Moved to...
* cfganal.cc: ...here.
* cfgbuild.c: Moved to...
* cfgbuild.cc: ...here.
* cfgcleanup.c: Moved to...
* cfgcleanup.cc: ...here.
* cfgexpand.c: Moved to...
* cfgexpand.cc: ...here.
* cfghooks.c: Moved to...
* cfghooks.cc: ...here.
* cfgloop.c: Moved to...
* cfgloop.cc: ...here.
* cfgloopanal.c: Moved to...
* cfgloopanal.cc: ...here.
* cfgloopmanip.c: Moved to...
* cfgloopmanip.cc: ...here.
* cfgrtl.c: Moved to...
* cfgrtl.cc: ...here.
* cgraph.c: Moved to...
* cgraph.cc: ...here.
* cgraphbuild.c: Moved to...
* cgraphbuild.cc: ...here.
* cgraphclones.c: Moved to...
* cgraphclones.cc: ...here.
* cgraphunit.c: Moved to...
* cgraphunit.cc: ...here.
* collect-utils.c: Moved to...
* collect-utils.cc: ...here.
* collect2-aix.c: Moved to...
* collect2-aix.cc: ...here.
* collect2.c: Moved to...
* collect2.cc: ...here.
* combine-stack-adj.c: Moved to...
* combine-stack-adj.cc: ...here.
* combine.c: Moved to...
* combine.cc: ...here.
* common/common-targhooks.c: Moved to...
* common/common-targhooks.cc: ...here.
* common/config/aarch64/aarch64-common.c: Moved to...
* common/config/aarch64/aarch64-common.cc: ...here.
* common/config/alpha/alpha-common.c: Moved to...
* common/config/alpha/alpha-common.cc: ...here.
* common/config/arc/arc-common.c: Moved to...
* common/config/arc/arc-common.cc: ...here.
* common/config/arm/arm-common.c: Moved to...
* common/config/arm/arm-common.cc: ...here.
* common/config/avr/avr-common.c: Moved to...
* common/config/avr/avr-common.cc: ...here.
* common/config/bfin/bfin-common.c: Moved to...
* common/config/bfin/bfin-common.cc: ...here.
* common/config/bpf/bpf-common.c: Moved to...
* common/config/bpf/bpf-common.cc: ...here.
* common/config/c6x/c6x-common.c: Moved to...
* common/config/c6x/c6x-common.cc: ...here.
* common/config/cr16/cr16-common.c: Moved to...
* common/config/cr16/cr16-common.cc: ...here.
* common/config/cris/cris-common.c: Moved to...
* common/config/cris/cris-common.cc: ...here.
* common/config/csky/csky-common.c: Moved to...
* common/config/csky/csky-common.cc: ...here.
* common/config/default-common.c: Moved to...
* common/config/default-common.cc: ...here.
* common/config/epiphany/epiphany-common.c: Moved to...
* common/config/epiphany/epiphany-common.cc: ...here.
* common/config/fr30/fr30-common.c: Moved to...
* common/config/fr30/fr30-common.cc: ...here.
* common/config/frv/frv-common.c: Moved to...
* common/config/frv/frv-common.cc: ...here.
* common/config/gcn/gcn-common.c: Moved to...
* common/config/gcn/gcn-common.cc: ...here.
* common/config/h8300/h8300-common.c: Moved to...
* common/config/h8300/h8300-common.cc: ...here.
* common/config/i386/i386-common.c: Moved to...
* common/config/i386/i386-common.cc: ...here.
* common/config/ia64/ia64-common.c: Moved to...
* common/config/ia64/ia64-common.cc: ...here.
* common/config/iq2000/iq2000-common.c: Moved to...
* common/config/iq2000/iq2000-common.cc: ...here.
* common/config/lm32/lm32-common.c: Moved to...
* common/config/lm32/lm32-common.cc: ...here.
* common/config/m32r/m32r-common.c: Moved to...
* common/config/m32r/m32r-common.cc: ...here.
* common/config/m68k/m68k-common.c: Moved to...
* common/config/m68k/m68k-common.cc: ...here.
* common/config/mcore/mcore-common.c: Moved to...
* common/config/mcore/mcore-common.cc: ...here.
* common/config/microblaze/microblaze-common.c: Moved to...
* common/config/microblaze/microblaze-common.cc: ...here.
* common/config/mips/mips-common.c: Moved to...
* common/config/mips/mips-common.cc: ...here.
* common/config/mmix/mmix-common.c: Moved to...
* common/config/mmix/mmix-common.cc: ...here.
* common/config/mn10300/mn10300-common.c: Moved to...
* common/config/mn10300/mn10300-common.cc: ...here.
* common/config/msp430/msp430-common.c: Moved to...
* common/config/msp430/msp430-common.cc: ...here.
* common/config/nds32/nds32-common.c: Moved to...
* common/config/nds32/nds32-common.cc: ...here.
* common/config/nios2/nios2-common.c: Moved to...
* common/config/nios2/nios2-common.cc: ...here.
* common/config/nvptx/nvptx-common.c: Moved to...
* common/config/nvptx/nvptx-common.cc: ...here.
* common/config/or1k/or1k-common.c: Moved to...
* common/config/or1k/or1k-common.cc: ...here.
* common/config/pa/pa-common.c: Moved to...
* common/config/pa/pa-common.cc: ...here.
* common/config/pdp11/pdp11-common.c: Moved to...
* common/config/pdp11/pdp11-common.cc: ...here.
* common/config/pru/pru-common.c: Moved to...
* common/config/pru/pru-common.cc: ...here.
* common/config/riscv/riscv-common.c: Moved to...
* common/config/riscv/riscv-common.cc: ...here.
* common/config/rs6000/rs6000-common.c: Moved to...
* common/config/rs6000/rs6000-common.cc: ...here.
* common/config/rx/rx-common.c: Moved to...
* common/config/rx/rx-common.cc: ...here.
* common/config/s390/s390-common.c: Moved to...
* common/config/s390/s390-common.cc: ...here.
* common/config/sh/sh-common.c: Moved to...
* common/config/sh/sh-common.cc: ...here.
* common/config/sparc/sparc-common.c: Moved to...
* common/config/sparc/sparc-common.cc: ...here.
* common/config/tilegx/tilegx-common.c: Moved to...
* common/config/tilegx/tilegx-common.cc: ...here.
* common/config/tilepro/tilepro-common.c: Moved to...
* common/config/tilepro/tilepro-common.cc: ...here.
* common/config/v850/v850-common.c: Moved to...
* common/config/v850/v850-common.cc: ...here.
* common/config/vax/vax-common.c: Moved to...
* common/config/vax/vax-common.cc: ...here.
* common/config/visium/visium-common.c: Moved to...
* common/config/visium/visium-common.cc: ...here.
* common/config/xstormy16/xstormy16-common.c: Moved to...
* common/config/xstormy16/xstormy16-common.cc: ...here.
* common/config/xtensa/xtensa-common.c: Moved to...
* common/config/xtensa/xtensa-common.cc: ...here.
* compare-elim.c: Moved to...
* compare-elim.cc: ...here.
* config/aarch64/aarch64-bti-insert.c: Moved to...
* config/aarch64/aarch64-bti-insert.cc: ...here.
* config/aarch64/aarch64-builtins.c: Moved to...
* config/aarch64/aarch64-builtins.cc: ...here.
* config/aarch64/aarch64-c.c: Moved to...
* config/aarch64/aarch64-c.cc: ...here.
* config/aarch64/aarch64-d.c: Moved to...
* config/aarch64/aarch64-d.cc: ...here.
* config/aarch64/aarch64.c: Moved to...
* config/aarch64/aarch64.cc: ...here.
* config/aarch64/cortex-a57-fma-steering.c: Moved to...
* config/aarch64/cortex-a57-fma-steering.cc: ...here.
* config/aarch64/driver-aarch64.c: Moved to...
* config/aarch64/driver-aarch64.cc: ...here.
* config/aarch64/falkor-tag-collision-avoidance.c: Moved to...
* config/aarch64/falkor-tag-collision-avoidance.cc: ...here.
* config/aarch64/host-aarch64-darwin.c: Moved to...
* config/aarch64/host-aarch64-darwin.cc: ...here.
* config/alpha/alpha.c: Moved to...
* config/alpha/alpha.cc: ...here.
* config/alpha/driver-alpha.c: Moved to...
* config/alpha/driver-alpha.cc: ...here.
* config/arc/arc-c.c: Moved to...
* config/arc/arc-c.cc: ...here.
* config/arc/arc.c: Moved to...
* config/arc/arc.cc: ...here.
* config/arc/driver-arc.c: Moved to...
* config/arc/driver-arc.cc: ...here.
* config/arm/aarch-common.c: Moved to...
* config/arm/aarch-common.cc: ...here.
* config/arm/arm-builtins.c: Moved to...
* config/arm/arm-builtins.cc: ...here.
* config/arm/arm-c.c: Moved to...
* config/arm/arm-c.cc: ...here.
* config/arm/arm-d.c: Moved to...
* config/arm/arm-d.cc: ...here.
* config/arm/arm.c: Moved to...
* config/arm/arm.cc: ...here.
* config/arm/driver-arm.c: Moved to...
* config/arm/driver-arm.cc: ...here.
* config/avr/avr-c.c: Moved to...
* config/avr/avr-c.cc: ...here.
* config/avr/avr-devices.c: Moved to...
* config/avr/avr-devices.cc: ...here.
* config/avr/avr-log.c: Moved to...
* config/avr/avr-log.cc: ...here.
* config/avr/avr.c: Moved to...
* config/avr/avr.cc: ...here.
* config/avr/driver-avr.c: Moved to...
* config/avr/driver-avr.cc: ...here.
* config/avr/gen-avr-mmcu-specs.c: Moved to...
* config/avr/gen-avr-mmcu-specs.cc: ...here.
* config/avr/gen-avr-mmcu-texi.c: Moved to...
* config/avr/gen-avr-mmcu-texi.cc: ...here.
* config/bfin/bfin.c: Moved to...
* config/bfin/bfin.cc: ...here.
* config/bpf/bpf.c: Moved to...
* config/bpf/bpf.cc: ...here.
* config/bpf/coreout.c: Moved to...
* config/bpf/coreout.cc: ...here.
* config/c6x/c6x.c: Moved to...
* config/c6x/c6x.cc: ...here.
* config/cr16/cr16.c: Moved to...
* config/cr16/cr16.cc: ...here.
* config/cris/cris.c: Moved to...
* config/cris/cris.cc: ...here.
* config/csky/csky.c: Moved to...
* config/csky/csky.cc: ...here.
* config/darwin-c.c: Moved to...
* config/darwin-c.cc: ...here.
* config/darwin-d.c: Moved to...
* config/darwin-d.cc: ...here.
* config/darwin-driver.c: Moved to...
* config/darwin-driver.cc: ...here.
* config/darwin-f.c: Moved to...
* config/darwin-f.cc: ...here.
* config/darwin.c: Moved to...
* config/darwin.cc: ...here.
* config/default-c.c: Moved to...
* config/default-c.cc: ...here.
* config/default-d.c: Moved to...
* config/default-d.cc: ...here.
* config/dragonfly-d.c: Moved to...
* config/dragonfly-d.cc: ...here.
* config/epiphany/epiphany.c: Moved to...
* config/epiphany/epiphany.cc: ...here.
* config/epiphany/mode-switch-use.c: Moved to...
* config/epiphany/mode-switch-use.cc: ...here.
* config/epiphany/resolve-sw-modes.c: Moved to...
* config/epiphany/resolve-sw-modes.cc: ...here.
* config/fr30/fr30.c: Moved to...
* config/fr30/fr30.cc: ...here.
* config/freebsd-d.c: Moved to...
* config/freebsd-d.cc: ...here.
* config/frv/frv.c: Moved to...
* config/frv/frv.cc: ...here.
* config/ft32/ft32.c: Moved to...
* config/ft32/ft32.cc: ...here.
* config/gcn/driver-gcn.c: Moved to...
* config/gcn/driver-gcn.cc: ...here.
* config/gcn/gcn-run.c: Moved to...
* config/gcn/gcn-run.cc: ...here.
* config/gcn/gcn-tree.c: Moved to...
* config/gcn/gcn-tree.cc: ...here.
* config/gcn/gcn.c: Moved to...
* config/gcn/gcn.cc: ...here.
* config/gcn/mkoffload.c: Moved to...
* config/gcn/mkoffload.cc: ...here.
* config/glibc-c.c: Moved to...
* config/glibc-c.cc: ...here.
* config/glibc-d.c: Moved to...
* config/glibc-d.cc: ...here.
* config/h8300/h8300.c: Moved to...
* config/h8300/h8300.cc: ...here.
* config/host-darwin.c: Moved to...
* config/host-darwin.cc: ...here.
* config/host-hpux.c: Moved to...
* config/host-hpux.cc: ...here.
* config/host-linux.c: Moved to...
* config/host-linux.cc: ...here.
* config/host-netbsd.c: Moved to...
* config/host-netbsd.cc: ...here.
* config/host-openbsd.c: Moved to...
* config/host-openbsd.cc: ...here.
* config/host-solaris.c: Moved to...
* config/host-solaris.cc: ...here.
* config/i386/djgpp.c: Moved to...
* config/i386/djgpp.cc: ...here.
* config/i386/driver-i386.c: Moved to...
* config/i386/driver-i386.cc: ...here.
* config/i386/driver-mingw32.c: Moved to...
* config/i386/driver-mingw32.cc: ...here.
* config/i386/gnu-property.c: Moved to...
* config/i386/gnu-property.cc: ...here.
* config/i386/host-cygwin.c: Moved to...
* config/i386/host-cygwin.cc: ...here.
* config/i386/host-i386-darwin.c: Moved to...
* config/i386/host-i386-darwin.cc: ...here.
* config/i386/host-mingw32.c: Moved to...
* config/i386/host-mingw32.cc: ...here.
* config/i386/i386-builtins.c: Moved to...
* config/i386/i386-builtins.cc: ...here.
* config/i386/i386-c.c: Moved to...
* config/i386/i386-c.cc: ...here.
* config/i386/i386-d.c: Moved to...
* config/i386/i386-d.cc: ...here.
* config/i386/i386-expand.c: Moved to...
* config/i386/i386-expand.cc: ...here.
* config/i386/i386-features.c: Moved to...
* config/i386/i386-features.cc: ...here.
* config/i386/i386-options.c: Moved to...
* config/i386/i386-options.cc: ...here.
* config/i386/i386.c: Moved to...
* config/i386/i386.cc: ...here.
* config/i386/intelmic-mkoffload.c: Moved to...
* config/i386/intelmic-mkoffload.cc: ...here.
* config/i386/msformat-c.c: Moved to...
* config/i386/msformat-c.cc: ...here.
* config/i386/winnt-cxx.c: Moved to...
* config/i386/winnt-cxx.cc: ...here.
* config/i386/winnt-d.c: Moved to...
* config/i386/winnt-d.cc: ...here.
* config/i386/winnt-stubs.c: Moved to...
* config/i386/winnt-stubs.cc: ...here.
* config/i386/winnt.c: Moved to...
* config/i386/winnt.cc: ...here.
* config/i386/x86-tune-sched-atom.c: Moved to...
* config/i386/x86-tune-sched-atom.cc: ...here.
* config/i386/x86-tune-sched-bd.c: Moved to...
* config/i386/x86-tune-sched-bd.cc: ...here.
* config/i386/x86-tune-sched-core.c: Moved to...
* config/i386/x86-tune-sched-core.cc: ...here.
* config/i386/x86-tune-sched.c: Moved to...
* config/i386/x86-tune-sched.cc: ...here.
* config/ia64/ia64-c.c: Moved to...
* config/ia64/ia64-c.cc: ...here.
* config/ia64/ia64.c: Moved to...
* config/ia64/ia64.cc: ...here.
* config/iq2000/iq2000.c: Moved to...
* config/iq2000/iq2000.cc: ...here.
* config/linux.c: Moved to...
* config/linux.cc: ...here.
* config/lm32/lm32.c: Moved to...
* config/lm32/lm32.cc: ...here.
* config/m32c/m32c-pragma.c: Moved to...
* config/m32c/m32c-pragma.cc: ...here.
* config/m32c/m32c.c: Moved to...
* config/m32c/m32c.cc: ...here.
* config/m32r/m32r.c: Moved to...
* config/m32r/m32r.cc: ...here.
* config/m68k/m68k.c: Moved to...
* config/m68k/m68k.cc: ...here.
* config/mcore/mcore.c: Moved to...
* config/mcore/mcore.cc: ...here.
* config/microblaze/microblaze-c.c: Moved to...
* config/microblaze/microblaze-c.cc: ...here.
* config/microblaze/microblaze.c: Moved to...
* config/microblaze/microblaze.cc: ...here.
* config/mips/driver-native.c: Moved to...
* config/mips/driver-native.cc: ...here.
* config/mips/frame-header-opt.c: Moved to...
* config/mips/frame-header-opt.cc: ...here.
* config/mips/mips-d.c: Moved to...
* config/mips/mips-d.cc: ...here.
* config/mips/mips.c: Moved to...
* config/mips/mips.cc: ...here.
* config/mmix/mmix.c: Moved to...
* config/mmix/mmix.cc: ...here.
* config/mn10300/mn10300.c: Moved to...
* config/mn10300/mn10300.cc: ...here.
* config/moxie/moxie.c: Moved to...
* config/moxie/moxie.cc: ...here.
* config/msp430/driver-msp430.c: Moved to...
* config/msp430/driver-msp430.cc: ...here.
* config/msp430/msp430-c.c: Moved to...
* config/msp430/msp430-c.cc: ...here.
* config/msp430/msp430-devices.c: Moved to...
* config/msp430/msp430-devices.cc: ...here.
* config/msp430/msp430.c: Moved to...
* config/msp430/msp430.cc: ...here.
* config/nds32/nds32-cost.c: Moved to...
* config/nds32/nds32-cost.cc: ...here.
* config/nds32/nds32-fp-as-gp.c: Moved to...
* config/nds32/nds32-fp-as-gp.cc: ...here.
* config/nds32/nds32-intrinsic.c: Moved to...
* config/nds32/nds32-intrinsic.cc: ...here.
* config/nds32/nds32-isr.c: Moved to...
* config/nds32/nds32-isr.cc: ...here.
* config/nds32/nds32-md-auxiliary.c: Moved to...
* config/nds32/nds32-md-auxiliary.cc: ...here.
* config/nds32/nds32-memory-manipulation.c: Moved to...
* config/nds32/nds32-memory-manipulation.cc: ...here.
* config/nds32/nds32-pipelines-auxiliary.c: Moved to...
* config/nds32/nds32-pipelines-auxiliary.cc: ...here.
* config/nds32/nds32-predicates.c: Moved to...
* config/nds32/nds32-predicates.cc: ...here.
* config/nds32/nds32-relax-opt.c: Moved to...
* config/nds32/nds32-relax-opt.cc: ...here.
* config/nds32/nds32-utils.c: Moved to...
* config/nds32/nds32-utils.cc: ...here.
* config/nds32/nds32.c: Moved to...
* config/nds32/nds32.cc: ...here.
* config/netbsd-d.c: Moved to...
* config/netbsd-d.cc: ...here.
* config/netbsd.c: Moved to...
* config/netbsd.cc: ...here.
* config/nios2/nios2.c: Moved to...
* config/nios2/nios2.cc: ...here.
* config/nvptx/mkoffload.c: Moved to...
* config/nvptx/mkoffload.cc: ...here.
* config/nvptx/nvptx-c.c: Moved to...
* config/nvptx/nvptx-c.cc: ...here.
* config/nvptx/nvptx.c: Moved to...
* config/nvptx/nvptx.cc: ...here.
* config/openbsd-d.c: Moved to...
* config/openbsd-d.cc: ...here.
* config/or1k/or1k.c: Moved to...
* config/or1k/or1k.cc: ...here.
* config/pa/pa-d.c: Moved to...
* config/pa/pa-d.cc: ...here.
* config/pa/pa.c: Moved to...
* config/pa/pa.cc: ...here.
* config/pdp11/pdp11.c: Moved to...
* config/pdp11/pdp11.cc: ...here.
* config/pru/pru-passes.c: Moved to...
* config/pru/pru-passes.cc: ...here.
* config/pru/pru-pragma.c: Moved to...
* config/pru/pru-pragma.cc: ...here.
* config/pru/pru.c: Moved to...
* config/pru/pru.cc: ...here.
* config/riscv/riscv-builtins.c: Moved to...
* config/riscv/riscv-builtins.cc: ...here.
* config/riscv/riscv-c.c: Moved to...
* config/riscv/riscv-c.cc: ...here.
* config/riscv/riscv-d.c: Moved to...
* config/riscv/riscv-d.cc: ...here.
* config/riscv/riscv-shorten-memrefs.c: Moved to...
* config/riscv/riscv-shorten-memrefs.cc: ...here.
* config/riscv/riscv-sr.c: Moved to...
* config/riscv/riscv-sr.cc: ...here.
* config/riscv/riscv.c: Moved to...
* config/riscv/riscv.cc: ...here.
* config/rl78/rl78-c.c: Moved to...
* config/rl78/rl78-c.cc: ...here.
* config/rl78/rl78.c: Moved to...
* config/rl78/rl78.cc: ...here.
* config/rs6000/driver-rs6000.c: Moved to...
* config/rs6000/driver-rs6000.cc: ...here.
* config/rs6000/host-darwin.c: Moved to...
* config/rs6000/host-darwin.cc: ...here.
* config/rs6000/host-ppc64-darwin.c: Moved to...
* config/rs6000/host-ppc64-darwin.cc: ...here.
* config/rs6000/rbtree.c: Moved to...
* config/rs6000/rbtree.cc: ...here.
* config/rs6000/rs6000-c.c: Moved to...
* config/rs6000/rs6000-c.cc: ...here.
* config/rs6000/rs6000-call.c: Moved to...
* config/rs6000/rs6000-call.cc: ...here.
* config/rs6000/rs6000-d.c: Moved to...
* config/rs6000/rs6000-d.cc: ...here.
* config/rs6000/rs6000-gen-builtins.c: Moved to...
* config/rs6000/rs6000-gen-builtins.cc: ...here.
* config/rs6000/rs6000-linux.c: Moved to...
* config/rs6000/rs6000-linux.cc: ...here.
* config/rs6000/rs6000-logue.c: Moved to...
* config/rs6000/rs6000-logue.cc: ...here.
* config/rs6000/rs6000-p8swap.c: Moved to...
* config/rs6000/rs6000-p8swap.cc: ...here.
* config/rs6000/rs6000-pcrel-opt.c: Moved to...
* config/rs6000/rs6000-pcrel-opt.cc: ...here.
* config/rs6000/rs6000-string.c: Moved to...
* config/rs6000/rs6000-string.cc: ...here.
* config/rs6000/rs6000.c: Moved to...
* config/rs6000/rs6000.cc: ...here.
* config/rx/rx.c: Moved to...
* config/rx/rx.cc: ...here.
* config/s390/driver-native.c: Moved to...
* config/s390/driver-native.cc: ...here.
* config/s390/s390-c.c: Moved to...
* config/s390/s390-c.cc: ...here.
* config/s390/s390-d.c: Moved to...
* config/s390/s390-d.cc: ...here.
* config/s390/s390.c: Moved to...
* config/s390/s390.cc: ...here.
* config/sh/divtab-sh4-300.c: Moved to...
* config/sh/divtab-sh4-300.cc: ...here.
* config/sh/divtab-sh4.c: Moved to...
* config/sh/divtab-sh4.cc: ...here.
* config/sh/divtab.c: Moved to...
* config/sh/divtab.cc: ...here.
* config/sh/sh-c.c: Moved to...
* config/sh/sh-c.cc: ...here.
* config/sh/sh.c: Moved to...
* config/sh/sh.cc: ...here.
* config/sol2-c.c: Moved to...
* config/sol2-c.cc: ...here.
* config/sol2-cxx.c: Moved to...
* config/sol2-cxx.cc: ...here.
* config/sol2-d.c: Moved to...
* config/sol2-d.cc: ...here.
* config/sol2-stubs.c: Moved to...
* config/sol2-stubs.cc: ...here.
* config/sol2.c: Moved to...
* config/sol2.cc: ...here.
* config/sparc/driver-sparc.c: Moved to...
* config/sparc/driver-sparc.cc: ...here.
* config/sparc/sparc-c.c: Moved to...
* config/sparc/sparc-c.cc: ...here.
* config/sparc/sparc-d.c: Moved to...
* config/sparc/sparc-d.cc: ...here.
* config/sparc/sparc.c: Moved to...
* config/sparc/sparc.cc: ...here.
* config/stormy16/stormy16.c: Moved to...
* config/stormy16/stormy16.cc: ...here.
* config/tilegx/mul-tables.c: Moved to...
* config/tilegx/mul-tables.cc: ...here.
* config/tilegx/tilegx-c.c: Moved to...
* config/tilegx/tilegx-c.cc: ...here.
* config/tilegx/tilegx.c: Moved to...
* config/tilegx/tilegx.cc: ...here.
* config/tilepro/mul-tables.c: Moved to...
* config/tilepro/mul-tables.cc: ...here.
* config/tilepro/tilepro-c.c: Moved to...
* config/tilepro/tilepro-c.cc: ...here.
* config/tilepro/tilepro.c: Moved to...
* config/tilepro/tilepro.cc: ...here.
* config/v850/v850-c.c: Moved to...
* config/v850/v850-c.cc: ...here.
* config/v850/v850.c: Moved to...
* config/v850/v850.cc: ...here.
* config/vax/vax.c: Moved to...
* config/vax/vax.cc: ...here.
* config/visium/visium.c: Moved to...
* config/visium/visium.cc: ...here.
* config/vms/vms-c.c: Moved to...
* config/vms/vms-c.cc: ...here.
* config/vms/vms-f.c: Moved to...
* config/vms/vms-f.cc: ...here.
* config/vms/vms.c: Moved to...
* config/vms/vms.cc: ...here.
* config/vxworks-c.c: Moved to...
* config/vxworks-c.cc: ...here.
* config/vxworks.c: Moved to...
* config/vxworks.cc: ...here.
* config/winnt-c.c: Moved to...
* config/winnt-c.cc: ...here.
* config/xtensa/xtensa.c: Moved to...
* config/xtensa/xtensa.cc: ...here.
* context.c: Moved to...
* context.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* coverage.c: Moved to...
* coverage.cc: ...here.
* cppbuiltin.c: Moved to...
* cppbuiltin.cc: ...here.
* cppdefault.c: Moved to...
* cppdefault.cc: ...here.
* cprop.c: Moved to...
* cprop.cc: ...here.
* cse.c: Moved to...
* cse.cc: ...here.
* cselib.c: Moved to...
* cselib.cc: ...here.
* ctfc.c: Moved to...
* ctfc.cc: ...here.
* ctfout.c: Moved to...
* ctfout.cc: ...here.
* data-streamer-in.c: Moved to...
* data-streamer-in.cc: ...here.
* data-streamer-out.c: Moved to...
* data-streamer-out.cc: ...here.
* data-streamer.c: Moved to...
* data-streamer.cc: ...here.
* dbgcnt.c: Moved to...
* dbgcnt.cc: ...here.
* dbxout.c: Moved to...
* dbxout.cc: ...here.
* dce.c: Moved to...
* dce.cc: ...here.
* ddg.c: Moved to...
* ddg.cc: ...here.
* debug.c: Moved to...
* debug.cc: ...here.
* df-core.c: Moved to...
* df-core.cc: ...here.
* df-problems.c: Moved to...
* df-problems.cc: ...here.
* df-scan.c: Moved to...
* df-scan.cc: ...here.
* dfp.c: Moved to...
* dfp.cc: ...here.
* diagnostic-color.c: Moved to...
* diagnostic-color.cc: ...here.
* diagnostic-show-locus.c: Moved to...
* diagnostic-show-locus.cc: ...here.
* diagnostic-spec.c: Moved to...
* diagnostic-spec.cc: ...here.
* diagnostic.c: Moved to...
* diagnostic.cc: ...here.
* dojump.c: Moved to...
* dojump.cc: ...here.
* dominance.c: Moved to...
* dominance.cc: ...here.
* domwalk.c: Moved to...
* domwalk.cc: ...here.
* double-int.c: Moved to...
* double-int.cc: ...here.
* dse.c: Moved to...
* dse.cc: ...here.
* dumpfile.c: Moved to...
* dumpfile.cc: ...here.
* dwarf2asm.c: Moved to...
* dwarf2asm.cc: ...here.
* dwarf2cfi.c: Moved to...
* dwarf2cfi.cc: ...here.
* dwarf2ctf.c: Moved to...
* dwarf2ctf.cc: ...here.
* dwarf2out.c: Moved to...
* dwarf2out.cc: ...here.
* early-remat.c: Moved to...
* early-remat.cc: ...here.
* edit-context.c: Moved to...
* edit-context.cc: ...here.
* emit-rtl.c: Moved to...
* emit-rtl.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* et-forest.c: Moved to...
* et-forest.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* explow.c: Moved to...
* explow.cc: ...here.
* expmed.c: Moved to...
* expmed.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* fibonacci_heap.c: Moved to...
* fibonacci_heap.cc: ...here.
* file-find.c: Moved to...
* file-find.cc: ...here.
* file-prefix-map.c: Moved to...
* file-prefix-map.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* fixed-value.c: Moved to...
* fixed-value.cc: ...here.
* fold-const-call.c: Moved to...
* fold-const-call.cc: ...here.
* fold-const.c: Moved to...
* fold-const.cc: ...here.
* fp-test.c: Moved to...
* fp-test.cc: ...here.
* function-tests.c: Moved to...
* function-tests.cc: ...here.
* function.c: Moved to...
* function.cc: ...here.
* fwprop.c: Moved to...
* fwprop.cc: ...here.
* gcc-ar.c: Moved to...
* gcc-ar.cc: ...here.
* gcc-main.c: Moved to...
* gcc-main.cc: ...here.
* gcc-rich-location.c: Moved to...
* gcc-rich-location.cc: ...here.
* gcc.c: Moved to...
* gcc.cc: ...here.
* gcov-dump.c: Moved to...
* gcov-dump.cc: ...here.
* gcov-io.c: Moved to...
* gcov-io.cc: ...here.
* gcov-tool.c: Moved to...
* gcov-tool.cc: ...here.
* gcov.c: Moved to...
* gcov.cc: ...here.
* gcse-common.c: Moved to...
* gcse-common.cc: ...here.
* gcse.c: Moved to...
* gcse.cc: ...here.
* genattr-common.c: Moved to...
* genattr-common.cc: ...here.
* genattr.c: Moved to...
* genattr.cc: ...here.
* genattrtab.c: Moved to...
* genattrtab.cc: ...here.
* genautomata.c: Moved to...
* genautomata.cc: ...here.
* gencfn-macros.c: Moved to...
* gencfn-macros.cc: ...here.
* gencheck.c: Moved to...
* gencheck.cc: ...here.
* genchecksum.c: Moved to...
* genchecksum.cc: ...here.
* gencodes.c: Moved to...
* gencodes.cc: ...here.
* genconditions.c: Moved to...
* genconditions.cc: ...here.
* genconfig.c: Moved to...
* genconfig.cc: ...here.
* genconstants.c: Moved to...
* genconstants.cc: ...here.
* genemit.c: Moved to...
* genemit.cc: ...here.
* genenums.c: Moved to...
* genenums.cc: ...here.
* generic-match-head.c: Moved to...
* generic-match-head.cc: ...here.
* genextract.c: Moved to...
* genextract.cc: ...here.
* genflags.c: Moved to...
* genflags.cc: ...here.
* gengenrtl.c: Moved to...
* gengenrtl.cc: ...here.
* gengtype-parse.c: Moved to...
* gengtype-parse.cc: ...here.
* gengtype-state.c: Moved to...
* gengtype-state.cc: ...here.
* gengtype.c: Moved to...
* gengtype.cc: ...here.
* genhooks.c: Moved to...
* genhooks.cc: ...here.
* genmatch.c: Moved to...
* genmatch.cc: ...here.
* genmddeps.c: Moved to...
* genmddeps.cc: ...here.
* genmddump.c: Moved to...
* genmddump.cc: ...here.
* genmodes.c: Moved to...
* genmodes.cc: ...here.
* genopinit.c: Moved to...
* genopinit.cc: ...here.
* genoutput.c: Moved to...
* genoutput.cc: ...here.
* genpeep.c: Moved to...
* genpeep.cc: ...here.
* genpreds.c: Moved to...
* genpreds.cc: ...here.
* genrecog.c: Moved to...
* genrecog.cc: ...here.
* gensupport.c: Moved to...
* gensupport.cc: ...here.
* gentarget-def.c: Moved to...
* gentarget-def.cc: ...here.
* genversion.c: Moved to...
* genversion.cc: ...here.
* ggc-common.c: Moved to...
* ggc-common.cc: ...here.
* ggc-none.c: Moved to...
* ggc-none.cc: ...here.
* ggc-page.c: Moved to...
* ggc-page.cc: ...here.
* ggc-tests.c: Moved to...
* ggc-tests.cc: ...here.
* gimple-builder.c: Moved to...
* gimple-builder.cc: ...here.
* gimple-expr.c: Moved to...
* gimple-expr.cc: ...here.
* gimple-fold.c: Moved to...
* gimple-fold.cc: ...here.
* gimple-iterator.c: Moved to...
* gimple-iterator.cc: ...here.
* gimple-laddress.c: Moved to...
* gimple-laddress.cc: ...here.
* gimple-loop-jam.c: Moved to...
* gimple-loop-jam.cc: ...here.
* gimple-low.c: Moved to...
* gimple-low.cc: ...here.
* gimple-match-head.c: Moved to...
* gimple-match-head.cc: ...here.
* gimple-pretty-print.c: Moved to...
* gimple-pretty-print.cc: ...here.
* gimple-ssa-backprop.c: Moved to...
* gimple-ssa-backprop.cc: ...here.
* gimple-ssa-evrp-analyze.c: Moved to...
* gimple-ssa-evrp-analyze.cc: ...here.
* gimple-ssa-evrp.c: Moved to...
* gimple-ssa-evrp.cc: ...here.
* gimple-ssa-isolate-paths.c: Moved to...
* gimple-ssa-isolate-paths.cc: ...here.
* gimple-ssa-nonnull-compare.c: Moved to...
* gimple-ssa-nonnull-compare.cc: ...here.
* gimple-ssa-split-paths.c: Moved to...
* gimple-ssa-split-paths.cc: ...here.
* gimple-ssa-sprintf.c: Moved to...
* gimple-ssa-sprintf.cc: ...here.
* gimple-ssa-store-merging.c: Moved to...
* gimple-ssa-store-merging.cc: ...here.
* gimple-ssa-strength-reduction.c: Moved to...
* gimple-ssa-strength-reduction.cc: ...here.
* gimple-ssa-warn-alloca.c: Moved to...
* gimple-ssa-warn-alloca.cc: ...here.
* gimple-ssa-warn-restrict.c: Moved to...
* gimple-ssa-warn-restrict.cc: ...here.
* gimple-streamer-in.c: Moved to...
* gimple-streamer-in.cc: ...here.
* gimple-streamer-out.c: Moved to...
* gimple-streamer-out.cc: ...here.
* gimple-walk.c: Moved to...
* gimple-walk.cc: ...here.
* gimple-warn-recursion.c: Moved to...
* gimple-warn-recursion.cc: ...here.
* gimple.c: Moved to...
* gimple.cc: ...here.
* gimplify-me.c: Moved to...
* gimplify-me.cc: ...here.
* gimplify.c: Moved to...
* gimplify.cc: ...here.
* godump.c: Moved to...
* godump.cc: ...here.
* graph.c: Moved to...
* graph.cc: ...here.
* graphds.c: Moved to...
* graphds.cc: ...here.
* graphite-dependences.c: Moved to...
* graphite-dependences.cc: ...here.
* graphite-isl-ast-to-gimple.c: Moved to...
* graphite-isl-ast-to-gimple.cc: ...here.
* graphite-optimize-isl.c: Moved to...
* graphite-optimize-isl.cc: ...here.
* graphite-poly.c: Moved to...
* graphite-poly.cc: ...here.
* graphite-scop-detection.c: Moved to...
* graphite-scop-detection.cc: ...here.
* graphite-sese-to-poly.c: Moved to...
* graphite-sese-to-poly.cc: ...here.
* graphite.c: Moved to...
* graphite.cc: ...here.
* haifa-sched.c: Moved to...
* haifa-sched.cc: ...here.
* hash-map-tests.c: Moved to...
* hash-map-tests.cc: ...here.
* hash-set-tests.c: Moved to...
* hash-set-tests.cc: ...here.
* hash-table.c: Moved to...
* hash-table.cc: ...here.
* hooks.c: Moved to...
* hooks.cc: ...here.
* host-default.c: Moved to...
* host-default.cc: ...here.
* hw-doloop.c: Moved to...
* hw-doloop.cc: ...here.
* hwint.c: Moved to...
* hwint.cc: ...here.
* ifcvt.c: Moved to...
* ifcvt.cc: ...here.
* inchash.c: Moved to...
* inchash.cc: ...here.
* incpath.c: Moved to...
* incpath.cc: ...here.
* init-regs.c: Moved to...
* init-regs.cc: ...here.
* input.c: Moved to...
* input.cc: ...here.
* internal-fn.c: Moved to...
* internal-fn.cc: ...here.
* intl.c: Moved to...
* intl.cc: ...here.
* ipa-comdats.c: Moved to...
* ipa-comdats.cc: ...here.
* ipa-cp.c: Moved to...
* ipa-cp.cc: ...here.
* ipa-devirt.c: Moved to...
* ipa-devirt.cc: ...here.
* ipa-fnsummary.c: Moved to...
* ipa-fnsummary.cc: ...here.
* ipa-icf-gimple.c: Moved to...
* ipa-icf-gimple.cc: ...here.
* ipa-icf.c: Moved to...
* ipa-icf.cc: ...here.
* ipa-inline-analysis.c: Moved to...
* ipa-inline-analysis.cc: ...here.
* ipa-inline-transform.c: Moved to...
* ipa-inline-transform.cc: ...here.
* ipa-inline.c: Moved to...
* ipa-inline.cc: ...here.
* ipa-modref-tree.c: Moved to...
* ipa-modref-tree.cc: ...here.
* ipa-modref.c: Moved to...
* ipa-modref.cc: ...here.
* ipa-param-manipulation.c: Moved to...
* ipa-param-manipulation.cc: ...here.
* ipa-polymorphic-call.c: Moved to...
* ipa-polymorphic-call.cc: ...here.
* ipa-predicate.c: Moved to...
* ipa-predicate.cc: ...here.
* ipa-profile.c: Moved to...
* ipa-profile.cc: ...here.
* ipa-prop.c: Moved to...
* ipa-prop.cc: ...here.
* ipa-pure-const.c: Moved to...
* ipa-pure-const.cc: ...here.
* ipa-ref.c: Moved to...
* ipa-ref.cc: ...here.
* ipa-reference.c: Moved to...
* ipa-reference.cc: ...here.
* ipa-split.c: Moved to...
* ipa-split.cc: ...here.
* ipa-sra.c: Moved to...
* ipa-sra.cc: ...here.
* ipa-utils.c: Moved to...
* ipa-utils.cc: ...here.
* ipa-visibility.c: Moved to...
* ipa-visibility.cc: ...here.
* ipa.c: Moved to...
* ipa.cc: ...here.
* ira-build.c: Moved to...
* ira-build.cc: ...here.
* ira-color.c: Moved to...
* ira-color.cc: ...here.
* ira-conflicts.c: Moved to...
* ira-conflicts.cc: ...here.
* ira-costs.c: Moved to...
* ira-costs.cc: ...here.
* ira-emit.c: Moved to...
* ira-emit.cc: ...here.
* ira-lives.c: Moved to...
* ira-lives.cc: ...here.
* ira.c: Moved to...
* ira.cc: ...here.
* jump.c: Moved to...
* jump.cc: ...here.
* langhooks.c: Moved to...
* langhooks.cc: ...here.
* lcm.c: Moved to...
* lcm.cc: ...here.
* lists.c: Moved to...
* lists.cc: ...here.
* loop-doloop.c: Moved to...
* loop-doloop.cc: ...here.
* loop-init.c: Moved to...
* loop-init.cc: ...here.
* loop-invariant.c: Moved to...
* loop-invariant.cc: ...here.
* loop-iv.c: Moved to...
* loop-iv.cc: ...here.
* loop-unroll.c: Moved to...
* loop-unroll.cc: ...here.
* lower-subreg.c: Moved to...
* lower-subreg.cc: ...here.
* lra-assigns.c: Moved to...
* lra-assigns.cc: ...here.
* lra-coalesce.c: Moved to...
* lra-coalesce.cc: ...here.
* lra-constraints.c: Moved to...
* lra-constraints.cc: ...here.
* lra-eliminations.c: Moved to...
* lra-eliminations.cc: ...here.
* lra-lives.c: Moved to...
* lra-lives.cc: ...here.
* lra-remat.c: Moved to...
* lra-remat.cc: ...here.
* lra-spills.c: Moved to...
* lra-spills.cc: ...here.
* lra.c: Moved to...
* lra.cc: ...here.
* lto-cgraph.c: Moved to...
* lto-cgraph.cc: ...here.
* lto-compress.c: Moved to...
* lto-compress.cc: ...here.
* lto-opts.c: Moved to...
* lto-opts.cc: ...here.
* lto-section-in.c: Moved to...
* lto-section-in.cc: ...here.
* lto-section-out.c: Moved to...
* lto-section-out.cc: ...here.
* lto-streamer-in.c: Moved to...
* lto-streamer-in.cc: ...here.
* lto-streamer-out.c: Moved to...
* lto-streamer-out.cc: ...here.
* lto-streamer.c: Moved to...
* lto-streamer.cc: ...here.
* lto-wrapper.c: Moved to...
* lto-wrapper.cc: ...here.
* main.c: Moved to...
* main.cc: ...here.
* mcf.c: Moved to...
* mcf.cc: ...here.
* mode-switching.c: Moved to...
* mode-switching.cc: ...here.
* modulo-sched.c: Moved to...
* modulo-sched.cc: ...here.
* multiple_target.c: Moved to...
* multiple_target.cc: ...here.
* omp-expand.c: Moved to...
* omp-expand.cc: ...here.
* omp-general.c: Moved to...
* omp-general.cc: ...here.
* omp-low.c: Moved to...
* omp-low.cc: ...here.
* omp-offload.c: Moved to...
* omp-offload.cc: ...here.
* omp-simd-clone.c: Moved to...
* omp-simd-clone.cc: ...here.
* opt-suggestions.c: Moved to...
* opt-suggestions.cc: ...here.
* optabs-libfuncs.c: Moved to...
* optabs-libfuncs.cc: ...here.
* optabs-query.c: Moved to...
* optabs-query.cc: ...here.
* optabs-tree.c: Moved to...
* optabs-tree.cc: ...here.
* optabs.c: Moved to...
* optabs.cc: ...here.
* opts-common.c: Moved to...
* opts-common.cc: ...here.
* opts-global.c: Moved to...
* opts-global.cc: ...here.
* opts.c: Moved to...
* opts.cc: ...here.
* passes.c: Moved to...
* passes.cc: ...here.
* plugin.c: Moved to...
* plugin.cc: ...here.
* postreload-gcse.c: Moved to...
* postreload-gcse.cc: ...here.
* postreload.c: Moved to...
* postreload.cc: ...here.
* predict.c: Moved to...
* predict.cc: ...here.
* prefix.c: Moved to...
* prefix.cc: ...here.
* pretty-print.c: Moved to...
* pretty-print.cc: ...here.
* print-rtl-function.c: Moved to...
* print-rtl-function.cc: ...here.
* print-rtl.c: Moved to...
* print-rtl.cc: ...here.
* print-tree.c: Moved to...
* print-tree.cc: ...here.
* profile-count.c: Moved to...
* profile-count.cc: ...here.
* profile.c: Moved to...
* profile.cc: ...here.
* read-md.c: Moved to...
* read-md.cc: ...here.
* read-rtl-function.c: Moved to...
* read-rtl-function.cc: ...here.
* read-rtl.c: Moved to...
* read-rtl.cc: ...here.
* real.c: Moved to...
* real.cc: ...here.
* realmpfr.c: Moved to...
* realmpfr.cc: ...here.
* recog.c: Moved to...
* recog.cc: ...here.
* ree.c: Moved to...
* ree.cc: ...here.
* reg-stack.c: Moved to...
* reg-stack.cc: ...here.
* regcprop.c: Moved to...
* regcprop.cc: ...here.
* reginfo.c: Moved to...
* reginfo.cc: ...here.
* regrename.c: Moved to...
* regrename.cc: ...here.
* regstat.c: Moved to...
* regstat.cc: ...here.
* reload.c: Moved to...
* reload.cc: ...here.
* reload1.c: Moved to...
* reload1.cc: ...here.
* reorg.c: Moved to...
* reorg.cc: ...here.
* resource.c: Moved to...
* resource.cc: ...here.
* rtl-error.c: Moved to...
* rtl-error.cc: ...here.
* rtl-tests.c: Moved to...
* rtl-tests.cc: ...here.
* rtl.c: Moved to...
* rtl.cc: ...here.
* rtlanal.c: Moved to...
* rtlanal.cc: ...here.
* rtlhash.c: Moved to...
* rtlhash.cc: ...here.
* rtlhooks.c: Moved to...
* rtlhooks.cc: ...here.
* rtx-vector-builder.c: Moved to...
* rtx-vector-builder.cc: ...here.
* run-rtl-passes.c: Moved to...
* run-rtl-passes.cc: ...here.
* sancov.c: Moved to...
* sancov.cc: ...here.
* sanopt.c: Moved to...
* sanopt.cc: ...here.
* sbitmap.c: Moved to...
* sbitmap.cc: ...here.
* sched-deps.c: Moved to...
* sched-deps.cc: ...here.
* sched-ebb.c: Moved to...
* sched-ebb.cc: ...here.
* sched-rgn.c: Moved to...
* sched-rgn.cc: ...here.
* sel-sched-dump.c: Moved to...
* sel-sched-dump.cc: ...here.
* sel-sched-ir.c: Moved to...
* sel-sched-ir.cc: ...here.
* sel-sched.c: Moved to...
* sel-sched.cc: ...here.
* selftest-diagnostic.c: Moved to...
* selftest-diagnostic.cc: ...here.
* selftest-rtl.c: Moved to...
* selftest-rtl.cc: ...here.
* selftest-run-tests.c: Moved to...
* selftest-run-tests.cc: ...here.
* selftest.c: Moved to...
* selftest.cc: ...here.
* sese.c: Moved to...
* sese.cc: ...here.
* shrink-wrap.c: Moved to...
* shrink-wrap.cc: ...here.
* simplify-rtx.c: Moved to...
* simplify-rtx.cc: ...here.
* sparseset.c: Moved to...
* sparseset.cc: ...here.
* spellcheck-tree.c: Moved to...
* spellcheck-tree.cc: ...here.
* spellcheck.c: Moved to...
* spellcheck.cc: ...here.
* sreal.c: Moved to...
* sreal.cc: ...here.
* stack-ptr-mod.c: Moved to...
* stack-ptr-mod.cc: ...here.
* statistics.c: Moved to...
* statistics.cc: ...here.
* stmt.c: Moved to...
* stmt.cc: ...here.
* stor-layout.c: Moved to...
* stor-layout.cc: ...here.
* store-motion.c: Moved to...
* store-motion.cc: ...here.
* streamer-hooks.c: Moved to...
* streamer-hooks.cc: ...here.
* stringpool.c: Moved to...
* stringpool.cc: ...here.
* substring-locations.c: Moved to...
* substring-locations.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* target-globals.c: Moved to...
* target-globals.cc: ...here.
* targhooks.c: Moved to...
* targhooks.cc: ...here.
* timevar.c: Moved to...
* timevar.cc: ...here.
* toplev.c: Moved to...
* toplev.cc: ...here.
* tracer.c: Moved to...
* tracer.cc: ...here.
* trans-mem.c: Moved to...
* trans-mem.cc: ...here.
* tree-affine.c: Moved to...
* tree-affine.cc: ...here.
* tree-call-cdce.c: Moved to...
* tree-call-cdce.cc: ...here.
* tree-cfg.c: Moved to...
* tree-cfg.cc: ...here.
* tree-cfgcleanup.c: Moved to...
* tree-cfgcleanup.cc: ...here.
* tree-chrec.c: Moved to...
* tree-chrec.cc: ...here.
* tree-complex.c: Moved to...
* tree-complex.cc: ...here.
* tree-data-ref.c: Moved to...
* tree-data-ref.cc: ...here.
* tree-dfa.c: Moved to...
* tree-dfa.cc: ...here.
* tree-diagnostic.c: Moved to...
* tree-diagnostic.cc: ...here.
* tree-dump.c: Moved to...
* tree-dump.cc: ...here.
* tree-eh.c: Moved to...
* tree-eh.cc: ...here.
* tree-emutls.c: Moved to...
* tree-emutls.cc: ...here.
* tree-if-conv.c: Moved to...
* tree-if-conv.cc: ...here.
* tree-inline.c: Moved to...
* tree-inline.cc: ...here.
* tree-into-ssa.c: Moved to...
* tree-into-ssa.cc: ...here.
* tree-iterator.c: Moved to...
* tree-iterator.cc: ...here.
* tree-loop-distribution.c: Moved to...
* tree-loop-distribution.cc: ...here.
* tree-nested.c: Moved to...
* tree-nested.cc: ...here.
* tree-nrv.c: Moved to...
* tree-nrv.cc: ...here.
* tree-object-size.c: Moved to...
* tree-object-size.cc: ...here.
* tree-outof-ssa.c: Moved to...
* tree-outof-ssa.cc: ...here.
* tree-parloops.c: Moved to...
* tree-parloops.cc: ...here.
* tree-phinodes.c: Moved to...
* tree-phinodes.cc: ...here.
* tree-predcom.c: Moved to...
* tree-predcom.cc: ...here.
* tree-pretty-print.c: Moved to...
* tree-pretty-print.cc: ...here.
* tree-profile.c: Moved to...
* tree-profile.cc: ...here.
* tree-scalar-evolution.c: Moved to...
* tree-scalar-evolution.cc: ...here.
* tree-sra.c: Moved to...
* tree-sra.cc: ...here.
* tree-ssa-address.c: Moved to...
* tree-ssa-address.cc: ...here.
* tree-ssa-alias.c: Moved to...
* tree-ssa-alias.cc: ...here.
* tree-ssa-ccp.c: Moved to...
* tree-ssa-ccp.cc: ...here.
* tree-ssa-coalesce.c: Moved to...
* tree-ssa-coalesce.cc: ...here.
* tree-ssa-copy.c: Moved to...
* tree-ssa-copy.cc: ...here.
* tree-ssa-dce.c: Moved to...
* tree-ssa-dce.cc: ...here.
* tree-ssa-dom.c: Moved to...
* tree-ssa-dom.cc: ...here.
* tree-ssa-dse.c: Moved to...
* tree-ssa-dse.cc: ...here.
* tree-ssa-forwprop.c: Moved to...
* tree-ssa-forwprop.cc: ...here.
* tree-ssa-ifcombine.c: Moved to...
* tree-ssa-ifcombine.cc: ...here.
* tree-ssa-live.c: Moved to...
* tree-ssa-live.cc: ...here.
* tree-ssa-loop-ch.c: Moved to...
* tree-ssa-loop-ch.cc: ...here.
* tree-ssa-loop-im.c: Moved to...
* tree-ssa-loop-im.cc: ...here.
* tree-ssa-loop-ivcanon.c: Moved to...
* tree-ssa-loop-ivcanon.cc: ...here.
* tree-ssa-loop-ivopts.c: Moved to...
* tree-ssa-loop-ivopts.cc: ...here.
* tree-ssa-loop-manip.c: Moved to...
* tree-ssa-loop-manip.cc: ...here.
* tree-ssa-loop-niter.c: Moved to...
* tree-ssa-loop-niter.cc: ...here.
* tree-ssa-loop-prefetch.c: Moved to...
* tree-ssa-loop-prefetch.cc: ...here.
* tree-ssa-loop-split.c: Moved to...
* tree-ssa-loop-split.cc: ...here.
* tree-ssa-loop-unswitch.c: Moved to...
* tree-ssa-loop-unswitch.cc: ...here.
* tree-ssa-loop.c: Moved to...
* tree-ssa-loop.cc: ...here.
* tree-ssa-math-opts.c: Moved to...
* tree-ssa-math-opts.cc: ...here.
* tree-ssa-operands.c: Moved to...
* tree-ssa-operands.cc: ...here.
* tree-ssa-phiopt.c: Moved to...
* tree-ssa-phiopt.cc: ...here.
* tree-ssa-phiprop.c: Moved to...
* tree-ssa-phiprop.cc: ...here.
* tree-ssa-pre.c: Moved to...
* tree-ssa-pre.cc: ...here.
* tree-ssa-propagate.c: Moved to...
* tree-ssa-propagate.cc: ...here.
* tree-ssa-reassoc.c: Moved to...
* tree-ssa-reassoc.cc: ...here.
* tree-ssa-sccvn.c: Moved to...
* tree-ssa-sccvn.cc: ...here.
* tree-ssa-scopedtables.c: Moved to...
* tree-ssa-scopedtables.cc: ...here.
* tree-ssa-sink.c: Moved to...
* tree-ssa-sink.cc: ...here.
* tree-ssa-strlen.c: Moved to...
* tree-ssa-strlen.cc: ...here.
* tree-ssa-structalias.c: Moved to...
* tree-ssa-structalias.cc: ...here.
* tree-ssa-tail-merge.c: Moved to...
* tree-ssa-tail-merge.cc: ...here.
* tree-ssa-ter.c: Moved to...
* tree-ssa-ter.cc: ...here.
* tree-ssa-threadbackward.c: Moved to...
* tree-ssa-threadbackward.cc: ...here.
* tree-ssa-threadedge.c: Moved to...
* tree-ssa-threadedge.cc: ...here.
* tree-ssa-threadupdate.c: Moved to...
* tree-ssa-threadupdate.cc: ...here.
* tree-ssa-uncprop.c: Moved to...
* tree-ssa-uncprop.cc: ...here.
* tree-ssa-uninit.c: Moved to...
* tree-ssa-uninit.cc: ...here.
* tree-ssa.c: Moved to...
* tree-ssa.cc: ...here.
* tree-ssanames.c: Moved to...
* tree-ssanames.cc: ...here.
* tree-stdarg.c: Moved to...
* tree-stdarg.cc: ...here.
* tree-streamer-in.c: Moved to...
* tree-streamer-in.cc: ...here.
* tree-streamer-out.c: Moved to...
* tree-streamer-out.cc: ...here.
* tree-streamer.c: Moved to...
* tree-streamer.cc: ...here.
* tree-switch-conversion.c: Moved to...
* tree-switch-conversion.cc: ...here.
* tree-tailcall.c: Moved to...
* tree-tailcall.cc: ...here.
* tree-vect-data-refs.c: Moved to...
* tree-vect-data-refs.cc: ...here.
* tree-vect-generic.c: Moved to...
* tree-vect-generic.cc: ...here.
* tree-vect-loop-manip.c: Moved to...
* tree-vect-loop-manip.cc: ...here.
* tree-vect-loop.c: Moved to...
* tree-vect-loop.cc: ...here.
* tree-vect-patterns.c: Moved to...
* tree-vect-patterns.cc: ...here.
* tree-vect-slp-patterns.c: Moved to...
* tree-vect-slp-patterns.cc: ...here.
* tree-vect-slp.c: Moved to...
* tree-vect-slp.cc: ...here.
* tree-vect-stmts.c: Moved to...
* tree-vect-stmts.cc: ...here.
* tree-vector-builder.c: Moved to...
* tree-vector-builder.cc: ...here.
* tree-vectorizer.c: Moved to...
* tree-vectorizer.cc: ...here.
* tree-vrp.c: Moved to...
* tree-vrp.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* tsan.c: Moved to...
* tsan.cc: ...here.
* typed-splay-tree.c: Moved to...
* typed-splay-tree.cc: ...here.
* ubsan.c: Moved to...
* ubsan.cc: ...here.
* valtrack.c: Moved to...
* valtrack.cc: ...here.
* value-prof.c: Moved to...
* value-prof.cc: ...here.
* var-tracking.c: Moved to...
* var-tracking.cc: ...here.
* varasm.c: Moved to...
* varasm.cc: ...here.
* varpool.c: Moved to...
* varpool.cc: ...here.
* vec-perm-indices.c: Moved to...
* vec-perm-indices.cc: ...here.
* vec.c: Moved to...
* vec.cc: ...here.
* vmsdbgout.c: Moved to...
* vmsdbgout.cc: ...here.
* vr-values.c: Moved to...
* vr-values.cc: ...here.
* vtable-verify.c: Moved to...
* vtable-verify.cc: ...here.
* web.c: Moved to...
* web.cc: ...here.
* xcoffout.c: Moved to...
* xcoffout.cc: ...here.
gcc/c-family/ChangeLog:
* c-ada-spec.c: Moved to...
* c-ada-spec.cc: ...here.
* c-attribs.c: Moved to...
* c-attribs.cc: ...here.
* c-common.c: Moved to...
* c-common.cc: ...here.
* c-cppbuiltin.c: Moved to...
* c-cppbuiltin.cc: ...here.
* c-dump.c: Moved to...
* c-dump.cc: ...here.
* c-format.c: Moved to...
* c-format.cc: ...here.
* c-gimplify.c: Moved to...
* c-gimplify.cc: ...here.
* c-indentation.c: Moved to...
* c-indentation.cc: ...here.
* c-lex.c: Moved to...
* c-lex.cc: ...here.
* c-omp.c: Moved to...
* c-omp.cc: ...here.
* c-opts.c: Moved to...
* c-opts.cc: ...here.
* c-pch.c: Moved to...
* c-pch.cc: ...here.
* c-ppoutput.c: Moved to...
* c-ppoutput.cc: ...here.
* c-pragma.c: Moved to...
* c-pragma.cc: ...here.
* c-pretty-print.c: Moved to...
* c-pretty-print.cc: ...here.
* c-semantics.c: Moved to...
* c-semantics.cc: ...here.
* c-ubsan.c: Moved to...
* c-ubsan.cc: ...here.
* c-warn.c: Moved to...
* c-warn.cc: ...here.
* cppspec.c: Moved to...
* cppspec.cc: ...here.
* stub-objc.c: Moved to...
* stub-objc.cc: ...here.
gcc/c/ChangeLog:
* c-aux-info.c: Moved to...
* c-aux-info.cc: ...here.
* c-convert.c: Moved to...
* c-convert.cc: ...here.
* c-decl.c: Moved to...
* c-decl.cc: ...here.
* c-errors.c: Moved to...
* c-errors.cc: ...here.
* c-fold.c: Moved to...
* c-fold.cc: ...here.
* c-lang.c: Moved to...
* c-lang.cc: ...here.
* c-objc-common.c: Moved to...
* c-objc-common.cc: ...here.
* c-parser.c: Moved to...
* c-parser.cc: ...here.
* c-typeck.c: Moved to...
* c-typeck.cc: ...here.
* gccspec.c: Moved to...
* gccspec.cc: ...here.
* gimple-parser.c: Moved to...
* gimple-parser.cc: ...here.
gcc/cp/ChangeLog:
* call.c: Moved to...
* call.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constexpr.c: Moved to...
* constexpr.cc: ...here.
* cp-gimplify.c: Moved to...
* cp-gimplify.cc: ...here.
* cp-lang.c: Moved to...
* cp-lang.cc: ...here.
* cp-objcp-common.c: Moved to...
* cp-objcp-common.cc: ...here.
* cp-ubsan.c: Moved to...
* cp-ubsan.cc: ...here.
* cvt.c: Moved to...
* cvt.cc: ...here.
* cxx-pretty-print.c: Moved to...
* cxx-pretty-print.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* decl2.c: Moved to...
* decl2.cc: ...here.
* dump.c: Moved to...
* dump.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* friend.c: Moved to...
* friend.cc: ...here.
* g++spec.c: Moved to...
* g++spec.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lambda.c: Moved to...
* lambda.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* mangle.c: Moved to...
* mangle.cc: ...here.
* method.c: Moved to...
* method.cc: ...here.
* name-lookup.c: Moved to...
* name-lookup.cc: ...here.
* optimize.c: Moved to...
* optimize.cc: ...here.
* parser.c: Moved to...
* parser.cc: ...here.
* pt.c: Moved to...
* pt.cc: ...here.
* ptree.c: Moved to...
* ptree.cc: ...here.
* rtti.c: Moved to...
* rtti.cc: ...here.
* search.c: Moved to...
* search.cc: ...here.
* semantics.c: Moved to...
* semantics.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* typeck.c: Moved to...
* typeck.cc: ...here.
* typeck2.c: Moved to...
* typeck2.cc: ...here.
* vtable-class-hierarchy.c: Moved to...
* vtable-class-hierarchy.cc: ...here.
gcc/fortran/ChangeLog:
* arith.c: Moved to...
* arith.cc: ...here.
* array.c: Moved to...
* array.cc: ...here.
* bbt.c: Moved to...
* bbt.cc: ...here.
* check.c: Moved to...
* check.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constructor.c: Moved to...
* constructor.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* cpp.c: Moved to...
* cpp.cc: ...here.
* data.c: Moved to...
* data.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* dependency.c: Moved to...
* dependency.cc: ...here.
* dump-parse-tree.c: Moved to...
* dump-parse-tree.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* f95-lang.c: Moved to...
* f95-lang.cc: ...here.
* frontend-passes.c: Moved to...
* frontend-passes.cc: ...here.
* gfortranspec.c: Moved to...
* gfortranspec.cc: ...here.
* interface.c: Moved to...
* interface.cc: ...here.
* intrinsic.c: Moved to...
* intrinsic.cc: ...here.
* io.c: Moved to...
* io.cc: ...here.
* iresolve.c: Moved to...
* iresolve.cc: ...here.
* match.c: Moved to...
* match.cc: ...here.
* matchexp.c: Moved to...
* matchexp.cc: ...here.
* misc.c: Moved to...
* misc.cc: ...here.
* module.c: Moved to...
* module.cc: ...here.
* openmp.c: Moved to...
* openmp.cc: ...here.
* options.c: Moved to...
* options.cc: ...here.
* parse.c: Moved to...
* parse.cc: ...here.
* primary.c: Moved to...
* primary.cc: ...here.
* resolve.c: Moved to...
* resolve.cc: ...here.
* scanner.c: Moved to...
* scanner.cc: ...here.
* simplify.c: Moved to...
* simplify.cc: ...here.
* st.c: Moved to...
* st.cc: ...here.
* symbol.c: Moved to...
* symbol.cc: ...here.
* target-memory.c: Moved to...
* target-memory.cc: ...here.
* trans-array.c: Moved to...
* trans-array.cc: ...here.
* trans-common.c: Moved to...
* trans-common.cc: ...here.
* trans-const.c: Moved to...
* trans-const.cc: ...here.
* trans-decl.c: Moved to...
* trans-decl.cc: ...here.
* trans-expr.c: Moved to...
* trans-expr.cc: ...here.
* trans-intrinsic.c: Moved to...
* trans-intrinsic.cc: ...here.
* trans-io.c: Moved to...
* trans-io.cc: ...here.
* trans-openmp.c: Moved to...
* trans-openmp.cc: ...here.
* trans-stmt.c: Moved to...
* trans-stmt.cc: ...here.
* trans-types.c: Moved to...
* trans-types.cc: ...here.
* trans.c: Moved to...
* trans.cc: ...here.
gcc/go/ChangeLog:
* go-backend.c: Moved to...
* go-backend.cc: ...here.
* go-lang.c: Moved to...
* go-lang.cc: ...here.
* gospec.c: Moved to...
* gospec.cc: ...here.
gcc/jit/ChangeLog:
* dummy-frontend.c: Moved to...
* dummy-frontend.cc: ...here.
* jit-builtins.c: Moved to...
* jit-builtins.cc: ...here.
* jit-logging.c: Moved to...
* jit-logging.cc: ...here.
* jit-playback.c: Moved to...
* jit-playback.cc: ...here.
* jit-recording.c: Moved to...
* jit-recording.cc: ...here.
* jit-result.c: Moved to...
* jit-result.cc: ...here.
* jit-spec.c: Moved to...
* jit-spec.cc: ...here.
* jit-tempdir.c: Moved to...
* jit-tempdir.cc: ...here.
* jit-w32.c: Moved to...
* jit-w32.cc: ...here.
* libgccjit.c: Moved to...
* libgccjit.cc: ...here.
gcc/lto/ChangeLog:
* common.c: Moved to...
* common.cc: ...here.
* lto-common.c: Moved to...
* lto-common.cc: ...here.
* lto-dump.c: Moved to...
* lto-dump.cc: ...here.
* lto-lang.c: Moved to...
* lto-lang.cc: ...here.
* lto-object.c: Moved to...
* lto-object.cc: ...here.
* lto-partition.c: Moved to...
* lto-partition.cc: ...here.
* lto-symtab.c: Moved to...
* lto-symtab.cc: ...here.
* lto.c: Moved to...
* lto.cc: ...here.
gcc/objc/ChangeLog:
* objc-act.c: Moved to...
* objc-act.cc: ...here.
* objc-encoding.c: Moved to...
* objc-encoding.cc: ...here.
* objc-gnu-runtime-abi-01.c: Moved to...
* objc-gnu-runtime-abi-01.cc: ...here.
* objc-lang.c: Moved to...
* objc-lang.cc: ...here.
* objc-map.c: Moved to...
* objc-map.cc: ...here.
* objc-next-runtime-abi-01.c: Moved to...
* objc-next-runtime-abi-01.cc: ...here.
* objc-next-runtime-abi-02.c: Moved to...
* objc-next-runtime-abi-02.cc: ...here.
* objc-runtime-shared-support.c: Moved to...
* objc-runtime-shared-support.cc: ...here.
gcc/objcp/ChangeLog:
* objcp-decl.c: Moved to...
* objcp-decl.cc: ...here.
* objcp-lang.c: Moved to...
* objcp-lang.cc: ...here.
libcpp/ChangeLog:
* charset.c: Moved to...
* charset.cc: ...here.
* directives.c: Moved to...
* directives.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* files.c: Moved to...
* files.cc: ...here.
* identifiers.c: Moved to...
* identifiers.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* line-map.c: Moved to...
* line-map.cc: ...here.
* macro.c: Moved to...
* macro.cc: ...here.
* makeucnid.c: Moved to...
* makeucnid.cc: ...here.
* mkdeps.c: Moved to...
* mkdeps.cc: ...here.
* pch.c: Moved to...
* pch.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* traditional.c: Moved to...
* traditional.cc: ...here.
Diffstat (limited to 'gcc/fortran/trans-array.cc')
-rw-r--r-- | gcc/fortran/trans-array.cc | 11714 |
1 files changed, 11714 insertions, 0 deletions
diff --git a/gcc/fortran/trans-array.cc b/gcc/fortran/trans-array.cc new file mode 100644 index 0000000..a77f331 --- /dev/null +++ b/gcc/fortran/trans-array.cc @@ -0,0 +1,11714 @@ +/* Array translation routines + Copyright (C) 2002-2022 Free Software Foundation, Inc. + Contributed by Paul Brook <paul@nowt.org> + and Steven Bosscher <s.bosscher@student.tudelft.nl> + +This file is part of GCC. + +GCC is free software; you can redistribute it and/or modify it under +the terms of the GNU General Public License as published by the Free +Software Foundation; either version 3, or (at your option) any later +version. + +GCC is distributed in the hope that it will be useful, but WITHOUT ANY +WARRANTY; without even the implied warranty of MERCHANTABILITY or +FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +for more details. + +You should have received a copy of the GNU General Public License +along with GCC; see the file COPYING3. If not see +<http://www.gnu.org/licenses/>. */ + +/* trans-array.c-- Various array related code, including scalarization, + allocation, initialization and other support routines. */ + +/* How the scalarizer works. + In gfortran, array expressions use the same core routines as scalar + expressions. + First, a Scalarization State (SS) chain is built. This is done by walking + the expression tree, and building a linear list of the terms in the + expression. As the tree is walked, scalar subexpressions are translated. + + The scalarization parameters are stored in a gfc_loopinfo structure. + First the start and stride of each term is calculated by + gfc_conv_ss_startstride. During this process the expressions for the array + descriptors and data pointers are also translated. + + If the expression is an assignment, we must then resolve any dependencies. + In Fortran all the rhs values of an assignment must be evaluated before + any assignments take place. This can require a temporary array to store the + values. We also require a temporary when we are passing array expressions + or vector subscripts as procedure parameters. + + Array sections are passed without copying to a temporary. These use the + scalarizer to determine the shape of the section. The flag + loop->array_parameter tells the scalarizer that the actual values and loop + variables will not be required. + + The function gfc_conv_loop_setup generates the scalarization setup code. + It determines the range of the scalarizing loop variables. If a temporary + is required, this is created and initialized. Code for scalar expressions + taken outside the loop is also generated at this time. Next the offset and + scaling required to translate from loop variables to array indices for each + term is calculated. + + A call to gfc_start_scalarized_body marks the start of the scalarized + expression. This creates a scope and declares the loop variables. Before + calling this gfc_make_ss_chain_used must be used to indicate which terms + will be used inside this loop. + + The scalar gfc_conv_* functions are then used to build the main body of the + scalarization loop. Scalarization loop variables and precalculated scalar + values are automatically substituted. Note that gfc_advance_se_ss_chain + must be used, rather than changing the se->ss directly. + + For assignment expressions requiring a temporary two sub loops are + generated. The first stores the result of the expression in the temporary, + the second copies it to the result. A call to + gfc_trans_scalarized_loop_boundary marks the end of the main loop code and + the start of the copying loop. The temporary may be less than full rank. + + Finally gfc_trans_scalarizing_loops is called to generate the implicit do + loops. The loops are added to the pre chain of the loopinfo. The post + chain may still contain cleanup code. + + After the loop code has been added into its parent scope gfc_cleanup_loop + is called to free all the SS allocated by the scalarizer. */ + +#include "config.h" +#include "system.h" +#include "coretypes.h" +#include "options.h" +#include "tree.h" +#include "gfortran.h" +#include "gimple-expr.h" +#include "trans.h" +#include "fold-const.h" +#include "constructor.h" +#include "trans-types.h" +#include "trans-array.h" +#include "trans-const.h" +#include "dependency.h" + +static bool gfc_get_array_constructor_size (mpz_t *, gfc_constructor_base); + +/* The contents of this structure aren't actually used, just the address. */ +static gfc_ss gfc_ss_terminator_var; +gfc_ss * const gfc_ss_terminator = &gfc_ss_terminator_var; + + +static tree +gfc_array_dataptr_type (tree desc) +{ + return (GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (desc))); +} + +/* Build expressions to access members of the CFI descriptor. */ +#define CFI_FIELD_BASE_ADDR 0 +#define CFI_FIELD_ELEM_LEN 1 +#define CFI_FIELD_VERSION 2 +#define CFI_FIELD_RANK 3 +#define CFI_FIELD_ATTRIBUTE 4 +#define CFI_FIELD_TYPE 5 +#define CFI_FIELD_DIM 6 + +#define CFI_DIM_FIELD_LOWER_BOUND 0 +#define CFI_DIM_FIELD_EXTENT 1 +#define CFI_DIM_FIELD_SM 2 + +static tree +gfc_get_cfi_descriptor_field (tree desc, unsigned field_idx) +{ + tree type = TREE_TYPE (desc); + gcc_assert (TREE_CODE (type) == RECORD_TYPE + && TYPE_FIELDS (type) + && (strcmp ("base_addr", + IDENTIFIER_POINTER (DECL_NAME (TYPE_FIELDS (type)))) + == 0)); + tree field = gfc_advance_chain (TYPE_FIELDS (type), field_idx); + gcc_assert (field != NULL_TREE); + + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); +} + +tree +gfc_get_cfi_desc_base_addr (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_BASE_ADDR); +} + +tree +gfc_get_cfi_desc_elem_len (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_ELEM_LEN); +} + +tree +gfc_get_cfi_desc_version (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_VERSION); +} + +tree +gfc_get_cfi_desc_rank (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_RANK); +} + +tree +gfc_get_cfi_desc_type (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_TYPE); +} + +tree +gfc_get_cfi_desc_attribute (tree desc) +{ + return gfc_get_cfi_descriptor_field (desc, CFI_FIELD_ATTRIBUTE); +} + +static tree +gfc_get_cfi_dim_item (tree desc, tree idx, unsigned field_idx) +{ + tree tmp = gfc_get_cfi_descriptor_field (desc, CFI_FIELD_DIM); + tmp = gfc_build_array_ref (tmp, idx, NULL); + tree field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), field_idx); + gcc_assert (field != NULL_TREE); + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + tmp, field, NULL_TREE); +} + +tree +gfc_get_cfi_dim_lbound (tree desc, tree idx) +{ + return gfc_get_cfi_dim_item (desc, idx, CFI_DIM_FIELD_LOWER_BOUND); +} + +tree +gfc_get_cfi_dim_extent (tree desc, tree idx) +{ + return gfc_get_cfi_dim_item (desc, idx, CFI_DIM_FIELD_EXTENT); +} + +tree +gfc_get_cfi_dim_sm (tree desc, tree idx) +{ + return gfc_get_cfi_dim_item (desc, idx, CFI_DIM_FIELD_SM); +} + +#undef CFI_FIELD_BASE_ADDR +#undef CFI_FIELD_ELEM_LEN +#undef CFI_FIELD_VERSION +#undef CFI_FIELD_RANK +#undef CFI_FIELD_ATTRIBUTE +#undef CFI_FIELD_TYPE +#undef CFI_FIELD_DIM + +#undef CFI_DIM_FIELD_LOWER_BOUND +#undef CFI_DIM_FIELD_EXTENT +#undef CFI_DIM_FIELD_SM + +/* Build expressions to access the members of an array descriptor. + It's surprisingly easy to mess up here, so never access + an array descriptor by "brute force", always use these + functions. This also avoids problems if we change the format + of an array descriptor. + + To understand these magic numbers, look at the comments + before gfc_build_array_type() in trans-types.c. + + The code within these defines should be the only code which knows the format + of an array descriptor. + + Any code just needing to read obtain the bounds of an array should use + gfc_conv_array_* rather than the following functions as these will return + know constant values, and work with arrays which do not have descriptors. + + Don't forget to #undef these! */ + +#define DATA_FIELD 0 +#define OFFSET_FIELD 1 +#define DTYPE_FIELD 2 +#define SPAN_FIELD 3 +#define DIMENSION_FIELD 4 +#define CAF_TOKEN_FIELD 5 + +#define STRIDE_SUBFIELD 0 +#define LBOUND_SUBFIELD 1 +#define UBOUND_SUBFIELD 2 + +static tree +gfc_get_descriptor_field (tree desc, unsigned field_idx) +{ + tree type = TREE_TYPE (desc); + gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); + + tree field = gfc_advance_chain (TYPE_FIELDS (type), field_idx); + gcc_assert (field != NULL_TREE); + + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + desc, field, NULL_TREE); +} + +/* This provides READ-ONLY access to the data field. The field itself + doesn't have the proper type. */ + +tree +gfc_conv_descriptor_data_get (tree desc) +{ + tree type = TREE_TYPE (desc); + if (TREE_CODE (type) == REFERENCE_TYPE) + gcc_unreachable (); + + tree field = gfc_get_descriptor_field (desc, DATA_FIELD); + return fold_convert (GFC_TYPE_ARRAY_DATAPTR_TYPE (type), field); +} + +/* This provides WRITE access to the data field. + + TUPLES_P is true if we are generating tuples. + + This function gets called through the following macros: + gfc_conv_descriptor_data_set + gfc_conv_descriptor_data_set. */ + +void +gfc_conv_descriptor_data_set (stmtblock_t *block, tree desc, tree value) +{ + tree field = gfc_get_descriptor_field (desc, DATA_FIELD); + gfc_add_modify (block, field, fold_convert (TREE_TYPE (field), value)); +} + + +/* This provides address access to the data field. This should only be + used by array allocation, passing this on to the runtime. */ + +tree +gfc_conv_descriptor_data_addr (tree desc) +{ + tree field = gfc_get_descriptor_field (desc, DATA_FIELD); + return gfc_build_addr_expr (NULL_TREE, field); +} + +static tree +gfc_conv_descriptor_offset (tree desc) +{ + tree field = gfc_get_descriptor_field (desc, OFFSET_FIELD); + gcc_assert (TREE_TYPE (field) == gfc_array_index_type); + return field; +} + +tree +gfc_conv_descriptor_offset_get (tree desc) +{ + return gfc_conv_descriptor_offset (desc); +} + +void +gfc_conv_descriptor_offset_set (stmtblock_t *block, tree desc, + tree value) +{ + tree t = gfc_conv_descriptor_offset (desc); + gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); +} + + +tree +gfc_conv_descriptor_dtype (tree desc) +{ + tree field = gfc_get_descriptor_field (desc, DTYPE_FIELD); + gcc_assert (TREE_TYPE (field) == get_dtype_type_node ()); + return field; +} + +static tree +gfc_conv_descriptor_span (tree desc) +{ + tree field = gfc_get_descriptor_field (desc, SPAN_FIELD); + gcc_assert (TREE_TYPE (field) == gfc_array_index_type); + return field; +} + +tree +gfc_conv_descriptor_span_get (tree desc) +{ + return gfc_conv_descriptor_span (desc); +} + +void +gfc_conv_descriptor_span_set (stmtblock_t *block, tree desc, + tree value) +{ + tree t = gfc_conv_descriptor_span (desc); + gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); +} + + +tree +gfc_conv_descriptor_rank (tree desc) +{ + tree tmp; + tree dtype; + + dtype = gfc_conv_descriptor_dtype (desc); + tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), GFC_DTYPE_RANK); + gcc_assert (tmp != NULL_TREE + && TREE_TYPE (tmp) == signed_char_type_node); + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), + dtype, tmp, NULL_TREE); +} + + +/* Return the element length from the descriptor dtype field. */ + +tree +gfc_conv_descriptor_elem_len (tree desc) +{ + tree tmp; + tree dtype; + + dtype = gfc_conv_descriptor_dtype (desc); + tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), + GFC_DTYPE_ELEM_LEN); + gcc_assert (tmp != NULL_TREE + && TREE_TYPE (tmp) == size_type_node); + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), + dtype, tmp, NULL_TREE); +} + + +tree +gfc_conv_descriptor_attribute (tree desc) +{ + tree tmp; + tree dtype; + + dtype = gfc_conv_descriptor_dtype (desc); + tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), + GFC_DTYPE_ATTRIBUTE); + gcc_assert (tmp!= NULL_TREE + && TREE_TYPE (tmp) == short_integer_type_node); + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), + dtype, tmp, NULL_TREE); +} + +tree +gfc_conv_descriptor_type (tree desc) +{ + tree tmp; + tree dtype; + + dtype = gfc_conv_descriptor_dtype (desc); + tmp = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (dtype)), GFC_DTYPE_TYPE); + gcc_assert (tmp!= NULL_TREE + && TREE_TYPE (tmp) == signed_char_type_node); + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), + dtype, tmp, NULL_TREE); +} + +tree +gfc_get_descriptor_dimension (tree desc) +{ + tree field = gfc_get_descriptor_field (desc, DIMENSION_FIELD); + gcc_assert (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE + && TREE_CODE (TREE_TYPE (TREE_TYPE (field))) == RECORD_TYPE); + return field; +} + + +static tree +gfc_conv_descriptor_dimension (tree desc, tree dim) +{ + tree tmp; + + tmp = gfc_get_descriptor_dimension (desc); + + return gfc_build_array_ref (tmp, dim, NULL); +} + + +tree +gfc_conv_descriptor_token (tree desc) +{ + gcc_assert (flag_coarray == GFC_FCOARRAY_LIB); + tree field = gfc_get_descriptor_field (desc, CAF_TOKEN_FIELD); + /* Should be a restricted pointer - except in the finalization wrapper. */ + gcc_assert (TREE_TYPE (field) == prvoid_type_node + || TREE_TYPE (field) == pvoid_type_node); + return field; +} + +static tree +gfc_conv_descriptor_subfield (tree desc, tree dim, unsigned field_idx) +{ + tree tmp = gfc_conv_descriptor_dimension (desc, dim); + tree field = gfc_advance_chain (TYPE_FIELDS (TREE_TYPE (tmp)), field_idx); + gcc_assert (field != NULL_TREE); + + return fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (field), + tmp, field, NULL_TREE); +} + +static tree +gfc_conv_descriptor_stride (tree desc, tree dim) +{ + tree field = gfc_conv_descriptor_subfield (desc, dim, STRIDE_SUBFIELD); + gcc_assert (TREE_TYPE (field) == gfc_array_index_type); + return field; +} + +tree +gfc_conv_descriptor_stride_get (tree desc, tree dim) +{ + tree type = TREE_TYPE (desc); + gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); + if (integer_zerop (dim) + && (GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ALLOCATABLE + ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_SHAPE_CONT + ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_ASSUMED_RANK_CONT + ||GFC_TYPE_ARRAY_AKIND (type) == GFC_ARRAY_POINTER_CONT)) + return gfc_index_one_node; + + return gfc_conv_descriptor_stride (desc, dim); +} + +void +gfc_conv_descriptor_stride_set (stmtblock_t *block, tree desc, + tree dim, tree value) +{ + tree t = gfc_conv_descriptor_stride (desc, dim); + gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); +} + +static tree +gfc_conv_descriptor_lbound (tree desc, tree dim) +{ + tree field = gfc_conv_descriptor_subfield (desc, dim, LBOUND_SUBFIELD); + gcc_assert (TREE_TYPE (field) == gfc_array_index_type); + return field; +} + +tree +gfc_conv_descriptor_lbound_get (tree desc, tree dim) +{ + return gfc_conv_descriptor_lbound (desc, dim); +} + +void +gfc_conv_descriptor_lbound_set (stmtblock_t *block, tree desc, + tree dim, tree value) +{ + tree t = gfc_conv_descriptor_lbound (desc, dim); + gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); +} + +static tree +gfc_conv_descriptor_ubound (tree desc, tree dim) +{ + tree field = gfc_conv_descriptor_subfield (desc, dim, UBOUND_SUBFIELD); + gcc_assert (TREE_TYPE (field) == gfc_array_index_type); + return field; +} + +tree +gfc_conv_descriptor_ubound_get (tree desc, tree dim) +{ + return gfc_conv_descriptor_ubound (desc, dim); +} + +void +gfc_conv_descriptor_ubound_set (stmtblock_t *block, tree desc, + tree dim, tree value) +{ + tree t = gfc_conv_descriptor_ubound (desc, dim); + gfc_add_modify (block, t, fold_convert (TREE_TYPE (t), value)); +} + +/* Build a null array descriptor constructor. */ + +tree +gfc_build_null_descriptor (tree type) +{ + tree field; + tree tmp; + + gcc_assert (GFC_DESCRIPTOR_TYPE_P (type)); + gcc_assert (DATA_FIELD == 0); + field = TYPE_FIELDS (type); + + /* Set a NULL data pointer. */ + tmp = build_constructor_single (type, field, null_pointer_node); + TREE_CONSTANT (tmp) = 1; + /* All other fields are ignored. */ + + return tmp; +} + + +/* Modify a descriptor such that the lbound of a given dimension is the value + specified. This also updates ubound and offset accordingly. */ + +void +gfc_conv_shift_descriptor_lbound (stmtblock_t* block, tree desc, + int dim, tree new_lbound) +{ + tree offs, ubound, lbound, stride; + tree diff, offs_diff; + + new_lbound = fold_convert (gfc_array_index_type, new_lbound); + + offs = gfc_conv_descriptor_offset_get (desc); + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]); + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]); + stride = gfc_conv_descriptor_stride_get (desc, gfc_rank_cst[dim]); + + /* Get difference (new - old) by which to shift stuff. */ + diff = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + new_lbound, lbound); + + /* Shift ubound and offset accordingly. This has to be done before + updating the lbound, as they depend on the lbound expression! */ + ubound = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + ubound, diff); + gfc_conv_descriptor_ubound_set (block, desc, gfc_rank_cst[dim], ubound); + offs_diff = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + diff, stride); + offs = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + offs, offs_diff); + gfc_conv_descriptor_offset_set (block, desc, offs); + + /* Finally set lbound to value we want. */ + gfc_conv_descriptor_lbound_set (block, desc, gfc_rank_cst[dim], new_lbound); +} + + +/* Obtain offsets for trans-types.c(gfc_get_array_descr_info). */ + +void +gfc_get_descriptor_offsets_for_info (const_tree desc_type, tree *data_off, + tree *dtype_off, tree *span_off, + tree *dim_off, tree *dim_size, + tree *stride_suboff, tree *lower_suboff, + tree *upper_suboff) +{ + tree field; + tree type; + + type = TYPE_MAIN_VARIANT (desc_type); + field = gfc_advance_chain (TYPE_FIELDS (type), DATA_FIELD); + *data_off = byte_position (field); + field = gfc_advance_chain (TYPE_FIELDS (type), DTYPE_FIELD); + *dtype_off = byte_position (field); + field = gfc_advance_chain (TYPE_FIELDS (type), SPAN_FIELD); + *span_off = byte_position (field); + field = gfc_advance_chain (TYPE_FIELDS (type), DIMENSION_FIELD); + *dim_off = byte_position (field); + type = TREE_TYPE (TREE_TYPE (field)); + *dim_size = TYPE_SIZE_UNIT (type); + field = gfc_advance_chain (TYPE_FIELDS (type), STRIDE_SUBFIELD); + *stride_suboff = byte_position (field); + field = gfc_advance_chain (TYPE_FIELDS (type), LBOUND_SUBFIELD); + *lower_suboff = byte_position (field); + field = gfc_advance_chain (TYPE_FIELDS (type), UBOUND_SUBFIELD); + *upper_suboff = byte_position (field); +} + + +/* Cleanup those #defines. */ + +#undef DATA_FIELD +#undef OFFSET_FIELD +#undef DTYPE_FIELD +#undef SPAN_FIELD +#undef DIMENSION_FIELD +#undef CAF_TOKEN_FIELD +#undef STRIDE_SUBFIELD +#undef LBOUND_SUBFIELD +#undef UBOUND_SUBFIELD + + +/* Mark a SS chain as used. Flags specifies in which loops the SS is used. + flags & 1 = Main loop body. + flags & 2 = temp copy loop. */ + +void +gfc_mark_ss_chain_used (gfc_ss * ss, unsigned flags) +{ + for (; ss != gfc_ss_terminator; ss = ss->next) + ss->info->useflags = flags; +} + + +/* Free a gfc_ss chain. */ + +void +gfc_free_ss_chain (gfc_ss * ss) +{ + gfc_ss *next; + + while (ss != gfc_ss_terminator) + { + gcc_assert (ss != NULL); + next = ss->next; + gfc_free_ss (ss); + ss = next; + } +} + + +static void +free_ss_info (gfc_ss_info *ss_info) +{ + int n; + + ss_info->refcount--; + if (ss_info->refcount > 0) + return; + + gcc_assert (ss_info->refcount == 0); + + switch (ss_info->type) + { + case GFC_SS_SECTION: + for (n = 0; n < GFC_MAX_DIMENSIONS; n++) + if (ss_info->data.array.subscript[n]) + gfc_free_ss_chain (ss_info->data.array.subscript[n]); + break; + + default: + break; + } + + free (ss_info); +} + + +/* Free a SS. */ + +void +gfc_free_ss (gfc_ss * ss) +{ + free_ss_info (ss->info); + free (ss); +} + + +/* Creates and initializes an array type gfc_ss struct. */ + +gfc_ss * +gfc_get_array_ss (gfc_ss *next, gfc_expr *expr, int dimen, gfc_ss_type type) +{ + gfc_ss *ss; + gfc_ss_info *ss_info; + int i; + + ss_info = gfc_get_ss_info (); + ss_info->refcount++; + ss_info->type = type; + ss_info->expr = expr; + + ss = gfc_get_ss (); + ss->info = ss_info; + ss->next = next; + ss->dimen = dimen; + for (i = 0; i < ss->dimen; i++) + ss->dim[i] = i; + + return ss; +} + + +/* Creates and initializes a temporary type gfc_ss struct. */ + +gfc_ss * +gfc_get_temp_ss (tree type, tree string_length, int dimen) +{ + gfc_ss *ss; + gfc_ss_info *ss_info; + int i; + + ss_info = gfc_get_ss_info (); + ss_info->refcount++; + ss_info->type = GFC_SS_TEMP; + ss_info->string_length = string_length; + ss_info->data.temp.type = type; + + ss = gfc_get_ss (); + ss->info = ss_info; + ss->next = gfc_ss_terminator; + ss->dimen = dimen; + for (i = 0; i < ss->dimen; i++) + ss->dim[i] = i; + + return ss; +} + + +/* Creates and initializes a scalar type gfc_ss struct. */ + +gfc_ss * +gfc_get_scalar_ss (gfc_ss *next, gfc_expr *expr) +{ + gfc_ss *ss; + gfc_ss_info *ss_info; + + ss_info = gfc_get_ss_info (); + ss_info->refcount++; + ss_info->type = GFC_SS_SCALAR; + ss_info->expr = expr; + + ss = gfc_get_ss (); + ss->info = ss_info; + ss->next = next; + + return ss; +} + + +/* Free all the SS associated with a loop. */ + +void +gfc_cleanup_loop (gfc_loopinfo * loop) +{ + gfc_loopinfo *loop_next, **ploop; + gfc_ss *ss; + gfc_ss *next; + + ss = loop->ss; + while (ss != gfc_ss_terminator) + { + gcc_assert (ss != NULL); + next = ss->loop_chain; + gfc_free_ss (ss); + ss = next; + } + + /* Remove reference to self in the parent loop. */ + if (loop->parent) + for (ploop = &loop->parent->nested; *ploop; ploop = &(*ploop)->next) + if (*ploop == loop) + { + *ploop = loop->next; + break; + } + + /* Free non-freed nested loops. */ + for (loop = loop->nested; loop; loop = loop_next) + { + loop_next = loop->next; + gfc_cleanup_loop (loop); + free (loop); + } +} + + +static void +set_ss_loop (gfc_ss *ss, gfc_loopinfo *loop) +{ + int n; + + for (; ss != gfc_ss_terminator; ss = ss->next) + { + ss->loop = loop; + + if (ss->info->type == GFC_SS_SCALAR + || ss->info->type == GFC_SS_REFERENCE + || ss->info->type == GFC_SS_TEMP) + continue; + + for (n = 0; n < GFC_MAX_DIMENSIONS; n++) + if (ss->info->data.array.subscript[n] != NULL) + set_ss_loop (ss->info->data.array.subscript[n], loop); + } +} + + +/* Associate a SS chain with a loop. */ + +void +gfc_add_ss_to_loop (gfc_loopinfo * loop, gfc_ss * head) +{ + gfc_ss *ss; + gfc_loopinfo *nested_loop; + + if (head == gfc_ss_terminator) + return; + + set_ss_loop (head, loop); + + ss = head; + for (; ss && ss != gfc_ss_terminator; ss = ss->next) + { + if (ss->nested_ss) + { + nested_loop = ss->nested_ss->loop; + + /* More than one ss can belong to the same loop. Hence, we add the + loop to the chain only if it is different from the previously + added one, to avoid duplicate nested loops. */ + if (nested_loop != loop->nested) + { + gcc_assert (nested_loop->parent == NULL); + nested_loop->parent = loop; + + gcc_assert (nested_loop->next == NULL); + nested_loop->next = loop->nested; + loop->nested = nested_loop; + } + else + gcc_assert (nested_loop->parent == loop); + } + + if (ss->next == gfc_ss_terminator) + ss->loop_chain = loop->ss; + else + ss->loop_chain = ss->next; + } + gcc_assert (ss == gfc_ss_terminator); + loop->ss = head; +} + + +/* Returns true if the expression is an array pointer. */ + +static bool +is_pointer_array (tree expr) +{ + if (expr == NULL_TREE + || !GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (expr)) + || GFC_CLASS_TYPE_P (TREE_TYPE (expr))) + return false; + + if (TREE_CODE (expr) == VAR_DECL + && GFC_DECL_PTR_ARRAY_P (expr)) + return true; + + if (TREE_CODE (expr) == PARM_DECL + && GFC_DECL_PTR_ARRAY_P (expr)) + return true; + + if (TREE_CODE (expr) == INDIRECT_REF + && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 0))) + return true; + + /* The field declaration is marked as an pointer array. */ + if (TREE_CODE (expr) == COMPONENT_REF + && GFC_DECL_PTR_ARRAY_P (TREE_OPERAND (expr, 1)) + && !GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 1)))) + return true; + + return false; +} + + +/* If the symbol or expression reference a CFI descriptor, return the + pointer to the converted gfc descriptor. If an array reference is + present as the last argument, check that it is the one applied to + the CFI descriptor in the expression. Note that the CFI object is + always the symbol in the expression! */ + +static bool +get_CFI_desc (gfc_symbol *sym, gfc_expr *expr, + tree *desc, gfc_array_ref *ar) +{ + tree tmp; + + if (!is_CFI_desc (sym, expr)) + return false; + + if (expr && ar) + { + if (!(expr->ref && expr->ref->type == REF_ARRAY) + || (&expr->ref->u.ar != ar)) + return false; + } + + if (sym == NULL) + tmp = expr->symtree->n.sym->backend_decl; + else + tmp = sym->backend_decl; + + if (tmp && DECL_LANG_SPECIFIC (tmp) && GFC_DECL_SAVED_DESCRIPTOR (tmp)) + tmp = GFC_DECL_SAVED_DESCRIPTOR (tmp); + + *desc = tmp; + return true; +} + + +/* Return the span of an array. */ + +tree +gfc_get_array_span (tree desc, gfc_expr *expr) +{ + tree tmp; + + if (is_pointer_array (desc) + || (get_CFI_desc (NULL, expr, &desc, NULL) + && (POINTER_TYPE_P (TREE_TYPE (desc)) + ? GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (desc))) + : GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))))) + { + if (POINTER_TYPE_P (TREE_TYPE (desc))) + desc = build_fold_indirect_ref_loc (input_location, desc); + + /* This will have the span field set. */ + tmp = gfc_conv_descriptor_span_get (desc); + } + else if (expr->ts.type == BT_ASSUMED) + { + if (DECL_LANG_SPECIFIC (desc) && GFC_DECL_SAVED_DESCRIPTOR (desc)) + desc = GFC_DECL_SAVED_DESCRIPTOR (desc); + if (POINTER_TYPE_P (TREE_TYPE (desc))) + desc = build_fold_indirect_ref_loc (input_location, desc); + tmp = gfc_conv_descriptor_span_get (desc); + } + else if (TREE_CODE (desc) == COMPONENT_REF + && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)) + && GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (desc, 0)))) + { + /* The descriptor is a class _data field and so use the vtable + size for the receiving span field. */ + tmp = gfc_get_vptr_from_expr (desc); + tmp = gfc_vptr_size_get (tmp); + } + else if (expr && expr->expr_type == EXPR_VARIABLE + && expr->symtree->n.sym->ts.type == BT_CLASS + && expr->ref->type == REF_COMPONENT + && expr->ref->next->type == REF_ARRAY + && expr->ref->next->next == NULL + && CLASS_DATA (expr->symtree->n.sym)->attr.dimension) + { + /* Dummys come in sometimes with the descriptor detached from + the class field or declaration. */ + tmp = gfc_class_vptr_get (expr->symtree->n.sym->backend_decl); + tmp = gfc_vptr_size_get (tmp); + } + else + { + /* If none of the fancy stuff works, the span is the element + size of the array. Attempt to deal with unbounded character + types if possible. Otherwise, return NULL_TREE. */ + tmp = gfc_get_element_type (TREE_TYPE (desc)); + if (tmp && TREE_CODE (tmp) == ARRAY_TYPE && TYPE_STRING_FLAG (tmp)) + { + gcc_assert (expr->ts.type == BT_CHARACTER); + + tmp = gfc_get_character_len_in_bytes (tmp); + + if (tmp == NULL_TREE || integer_zerop (tmp)) + { + tree bs; + + tmp = gfc_get_expr_charlen (expr); + tmp = fold_convert (gfc_array_index_type, tmp); + bs = build_int_cst (gfc_array_index_type, expr->ts.kind); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, bs); + } + + tmp = (tmp && !integer_zerop (tmp)) + ? (fold_convert (gfc_array_index_type, tmp)) : (NULL_TREE); + } + else + tmp = fold_convert (gfc_array_index_type, + size_in_bytes (tmp)); + } + return tmp; +} + + +/* Generate an initializer for a static pointer or allocatable array. */ + +void +gfc_trans_static_array_pointer (gfc_symbol * sym) +{ + tree type; + + gcc_assert (TREE_STATIC (sym->backend_decl)); + /* Just zero the data member. */ + type = TREE_TYPE (sym->backend_decl); + DECL_INITIAL (sym->backend_decl) = gfc_build_null_descriptor (type); +} + + +/* If the bounds of SE's loop have not yet been set, see if they can be + determined from array spec AS, which is the array spec of a called + function. MAPPING maps the callee's dummy arguments to the values + that the caller is passing. Add any initialization and finalization + code to SE. */ + +void +gfc_set_loop_bounds_from_array_spec (gfc_interface_mapping * mapping, + gfc_se * se, gfc_array_spec * as) +{ + int n, dim, total_dim; + gfc_se tmpse; + gfc_ss *ss; + tree lower; + tree upper; + tree tmp; + + total_dim = 0; + + if (!as || as->type != AS_EXPLICIT) + return; + + for (ss = se->ss; ss; ss = ss->parent) + { + total_dim += ss->loop->dimen; + for (n = 0; n < ss->loop->dimen; n++) + { + /* The bound is known, nothing to do. */ + if (ss->loop->to[n] != NULL_TREE) + continue; + + dim = ss->dim[n]; + gcc_assert (dim < as->rank); + gcc_assert (ss->loop->dimen <= as->rank); + + /* Evaluate the lower bound. */ + gfc_init_se (&tmpse, NULL); + gfc_apply_interface_mapping (mapping, &tmpse, as->lower[dim]); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + gfc_add_block_to_block (&se->post, &tmpse.post); + lower = fold_convert (gfc_array_index_type, tmpse.expr); + + /* ...and the upper bound. */ + gfc_init_se (&tmpse, NULL); + gfc_apply_interface_mapping (mapping, &tmpse, as->upper[dim]); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + gfc_add_block_to_block (&se->post, &tmpse.post); + upper = fold_convert (gfc_array_index_type, tmpse.expr); + + /* Set the upper bound of the loop to UPPER - LOWER. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, upper, lower); + tmp = gfc_evaluate_now (tmp, &se->pre); + ss->loop->to[n] = tmp; + } + } + + gcc_assert (total_dim == as->rank); +} + + +/* Generate code to allocate an array temporary, or create a variable to + hold the data. If size is NULL, zero the descriptor so that the + callee will allocate the array. If DEALLOC is true, also generate code to + free the array afterwards. + + If INITIAL is not NULL, it is packed using internal_pack and the result used + as data instead of allocating a fresh, unitialized area of memory. + + Initialization code is added to PRE and finalization code to POST. + DYNAMIC is true if the caller may want to extend the array later + using realloc. This prevents us from putting the array on the stack. */ + +static void +gfc_trans_allocate_array_storage (stmtblock_t * pre, stmtblock_t * post, + gfc_array_info * info, tree size, tree nelem, + tree initial, bool dynamic, bool dealloc) +{ + tree tmp; + tree desc; + bool onstack; + + desc = info->descriptor; + info->offset = gfc_index_zero_node; + if (size == NULL_TREE || integer_zerop (size)) + { + /* A callee allocated array. */ + gfc_conv_descriptor_data_set (pre, desc, null_pointer_node); + onstack = FALSE; + } + else + { + /* Allocate the temporary. */ + onstack = !dynamic && initial == NULL_TREE + && (flag_stack_arrays + || gfc_can_put_var_on_stack (size)); + + if (onstack) + { + /* Make a temporary variable to hold the data. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (nelem), + nelem, gfc_index_one_node); + tmp = gfc_evaluate_now (tmp, pre); + tmp = build_range_type (gfc_array_index_type, gfc_index_zero_node, + tmp); + tmp = build_array_type (gfc_get_element_type (TREE_TYPE (desc)), + tmp); + tmp = gfc_create_var (tmp, "A"); + /* If we're here only because of -fstack-arrays we have to + emit a DECL_EXPR to make the gimplifier emit alloca calls. */ + if (!gfc_can_put_var_on_stack (size)) + gfc_add_expr_to_block (pre, + fold_build1_loc (input_location, + DECL_EXPR, TREE_TYPE (tmp), + tmp)); + tmp = gfc_build_addr_expr (NULL_TREE, tmp); + gfc_conv_descriptor_data_set (pre, desc, tmp); + } + else + { + /* Allocate memory to hold the data or call internal_pack. */ + if (initial == NULL_TREE) + { + tmp = gfc_call_malloc (pre, NULL, size); + tmp = gfc_evaluate_now (tmp, pre); + } + else + { + tree packed; + tree source_data; + tree was_packed; + stmtblock_t do_copying; + + tmp = TREE_TYPE (initial); /* Pointer to descriptor. */ + gcc_assert (TREE_CODE (tmp) == POINTER_TYPE); + tmp = TREE_TYPE (tmp); /* The descriptor itself. */ + tmp = gfc_get_element_type (tmp); + packed = gfc_create_var (build_pointer_type (tmp), "data"); + + tmp = build_call_expr_loc (input_location, + gfor_fndecl_in_pack, 1, initial); + tmp = fold_convert (TREE_TYPE (packed), tmp); + gfc_add_modify (pre, packed, tmp); + + tmp = build_fold_indirect_ref_loc (input_location, + initial); + source_data = gfc_conv_descriptor_data_get (tmp); + + /* internal_pack may return source->data without any allocation + or copying if it is already packed. If that's the case, we + need to allocate and copy manually. */ + + gfc_start_block (&do_copying); + tmp = gfc_call_malloc (&do_copying, NULL, size); + tmp = fold_convert (TREE_TYPE (packed), tmp); + gfc_add_modify (&do_copying, packed, tmp); + tmp = gfc_build_memcpy_call (packed, source_data, size); + gfc_add_expr_to_block (&do_copying, tmp); + + was_packed = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, packed, + source_data); + tmp = gfc_finish_block (&do_copying); + tmp = build3_v (COND_EXPR, was_packed, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (pre, tmp); + + tmp = fold_convert (pvoid_type_node, packed); + } + + gfc_conv_descriptor_data_set (pre, desc, tmp); + } + } + info->data = gfc_conv_descriptor_data_get (desc); + + /* The offset is zero because we create temporaries with a zero + lower bound. */ + gfc_conv_descriptor_offset_set (pre, desc, gfc_index_zero_node); + + if (dealloc && !onstack) + { + /* Free the temporary. */ + tmp = gfc_conv_descriptor_data_get (desc); + tmp = gfc_call_free (tmp); + gfc_add_expr_to_block (post, tmp); + } +} + + +/* Get the scalarizer array dimension corresponding to actual array dimension + given by ARRAY_DIM. + + For example, if SS represents the array ref a(1,:,:,1), it is a + bidimensional scalarizer array, and the result would be 0 for ARRAY_DIM=1, + and 1 for ARRAY_DIM=2. + If SS represents transpose(a(:,1,1,:)), it is again a bidimensional + scalarizer array, and the result would be 1 for ARRAY_DIM=0 and 0 for + ARRAY_DIM=3. + If SS represents sum(a(:,:,:,1), dim=1), it is a 2+1-dimensional scalarizer + array. If called on the inner ss, the result would be respectively 0,1,2 for + ARRAY_DIM=0,1,2. If called on the outer ss, the result would be 0,1 + for ARRAY_DIM=1,2. */ + +static int +get_scalarizer_dim_for_array_dim (gfc_ss *ss, int array_dim) +{ + int array_ref_dim; + int n; + + array_ref_dim = 0; + + for (; ss; ss = ss->parent) + for (n = 0; n < ss->dimen; n++) + if (ss->dim[n] < array_dim) + array_ref_dim++; + + return array_ref_dim; +} + + +static gfc_ss * +innermost_ss (gfc_ss *ss) +{ + while (ss->nested_ss != NULL) + ss = ss->nested_ss; + + return ss; +} + + + +/* Get the array reference dimension corresponding to the given loop dimension. + It is different from the true array dimension given by the dim array in + the case of a partial array reference (i.e. a(:,:,1,:) for example) + It is different from the loop dimension in the case of a transposed array. + */ + +static int +get_array_ref_dim_for_loop_dim (gfc_ss *ss, int loop_dim) +{ + return get_scalarizer_dim_for_array_dim (innermost_ss (ss), + ss->dim[loop_dim]); +} + + +/* Use the information in the ss to obtain the required information about + the type and size of an array temporary, when the lhs in an assignment + is a class expression. */ + +static tree +get_class_info_from_ss (stmtblock_t * pre, gfc_ss *ss, tree *eltype) +{ + gfc_ss *lhs_ss; + gfc_ss *rhs_ss; + tree tmp; + tree tmp2; + tree vptr; + tree rhs_class_expr = NULL_TREE; + tree lhs_class_expr = NULL_TREE; + bool unlimited_rhs = false; + bool unlimited_lhs = false; + bool rhs_function = false; + gfc_symbol *vtab; + + /* The second element in the loop chain contains the source for the + temporary; ie. the rhs of the assignment. */ + rhs_ss = ss->loop->ss->loop_chain; + + if (rhs_ss != gfc_ss_terminator + && rhs_ss->info + && rhs_ss->info->expr + && rhs_ss->info->expr->ts.type == BT_CLASS + && rhs_ss->info->data.array.descriptor) + { + if (rhs_ss->info->expr->expr_type != EXPR_VARIABLE) + rhs_class_expr + = gfc_get_class_from_expr (rhs_ss->info->data.array.descriptor); + else + rhs_class_expr = gfc_get_class_from_gfc_expr (rhs_ss->info->expr); + unlimited_rhs = UNLIMITED_POLY (rhs_ss->info->expr); + if (rhs_ss->info->expr->expr_type == EXPR_FUNCTION) + rhs_function = true; + } + + /* For an assignment the lhs is the next element in the loop chain. + If we have a class rhs, this had better be a class variable + expression! */ + lhs_ss = rhs_ss->loop_chain; + if (lhs_ss != gfc_ss_terminator + && lhs_ss->info + && lhs_ss->info->expr + && lhs_ss->info->expr->expr_type ==EXPR_VARIABLE + && lhs_ss->info->expr->ts.type == BT_CLASS) + { + tmp = lhs_ss->info->data.array.descriptor; + unlimited_lhs = UNLIMITED_POLY (rhs_ss->info->expr); + } + else + tmp = NULL_TREE; + + /* Get the lhs class expression. */ + if (tmp != NULL_TREE && lhs_ss->loop_chain == gfc_ss_terminator) + lhs_class_expr = gfc_get_class_from_expr (tmp); + else + return rhs_class_expr; + + gcc_assert (GFC_CLASS_TYPE_P (TREE_TYPE (lhs_class_expr))); + + /* Set the lhs vptr and, if necessary, the _len field. */ + if (rhs_class_expr) + { + /* Both lhs and rhs are class expressions. */ + tmp = gfc_class_vptr_get (lhs_class_expr); + gfc_add_modify (pre, tmp, + fold_convert (TREE_TYPE (tmp), + gfc_class_vptr_get (rhs_class_expr))); + if (unlimited_lhs) + { + tmp = gfc_class_len_get (lhs_class_expr); + if (unlimited_rhs) + tmp2 = gfc_class_len_get (rhs_class_expr); + else + tmp2 = build_int_cst (TREE_TYPE (tmp), 0); + gfc_add_modify (pre, tmp, tmp2); + } + + if (rhs_function) + { + tmp = gfc_class_data_get (rhs_class_expr); + gfc_conv_descriptor_offset_set (pre, tmp, gfc_index_zero_node); + } + } + else + { + /* lhs is class and rhs is intrinsic or derived type. */ + *eltype = TREE_TYPE (rhs_ss->info->data.array.descriptor); + *eltype = gfc_get_element_type (*eltype); + vtab = gfc_find_vtab (&rhs_ss->info->expr->ts); + vptr = vtab->backend_decl; + if (vptr == NULL_TREE) + vptr = gfc_get_symbol_decl (vtab); + vptr = gfc_build_addr_expr (NULL_TREE, vptr); + tmp = gfc_class_vptr_get (lhs_class_expr); + gfc_add_modify (pre, tmp, + fold_convert (TREE_TYPE (tmp), vptr)); + + if (unlimited_lhs) + { + tmp = gfc_class_len_get (lhs_class_expr); + if (rhs_ss->info + && rhs_ss->info->expr + && rhs_ss->info->expr->ts.type == BT_CHARACTER) + tmp2 = build_int_cst (TREE_TYPE (tmp), + rhs_ss->info->expr->ts.kind); + else + tmp2 = build_int_cst (TREE_TYPE (tmp), 0); + gfc_add_modify (pre, tmp, tmp2); + } + } + + return rhs_class_expr; +} + + + +/* Generate code to create and initialize the descriptor for a temporary + array. This is used for both temporaries needed by the scalarizer, and + functions returning arrays. Adjusts the loop variables to be + zero-based, and calculates the loop bounds for callee allocated arrays. + Allocate the array unless it's callee allocated (we have a callee + allocated array if 'callee_alloc' is true, or if loop->to[n] is + NULL_TREE for any n). Also fills in the descriptor, data and offset + fields of info if known. Returns the size of the array, or NULL for a + callee allocated array. + + 'eltype' == NULL signals that the temporary should be a class object. + The 'initial' expression is used to obtain the size of the dynamic + type; otherwise the allocation and initialization proceeds as for any + other expression + + PRE, POST, INITIAL, DYNAMIC and DEALLOC are as for + gfc_trans_allocate_array_storage. */ + +tree +gfc_trans_create_temp_array (stmtblock_t * pre, stmtblock_t * post, gfc_ss * ss, + tree eltype, tree initial, bool dynamic, + bool dealloc, bool callee_alloc, locus * where) +{ + gfc_loopinfo *loop; + gfc_ss *s; + gfc_array_info *info; + tree from[GFC_MAX_DIMENSIONS], to[GFC_MAX_DIMENSIONS]; + tree type; + tree desc; + tree tmp; + tree size; + tree nelem; + tree cond; + tree or_expr; + tree elemsize; + tree class_expr = NULL_TREE; + int n, dim, tmp_dim; + int total_dim = 0; + + /* This signals a class array for which we need the size of the + dynamic type. Generate an eltype and then the class expression. */ + if (eltype == NULL_TREE && initial) + { + gcc_assert (POINTER_TYPE_P (TREE_TYPE (initial))); + class_expr = build_fold_indirect_ref_loc (input_location, initial); + /* Obtain the structure (class) expression. */ + class_expr = gfc_get_class_from_expr (class_expr); + gcc_assert (class_expr); + } + + /* Otherwise, some expressions, such as class functions, arising from + dependency checking in assignments come here with class element type. + The descriptor can be obtained from the ss->info and then converted + to the class object. */ + if (class_expr == NULL_TREE && GFC_CLASS_TYPE_P (eltype)) + class_expr = get_class_info_from_ss (pre, ss, &eltype); + + /* If the dynamic type is not available, use the declared type. */ + if (eltype && GFC_CLASS_TYPE_P (eltype)) + eltype = gfc_get_element_type (TREE_TYPE (TYPE_FIELDS (eltype))); + + if (class_expr == NULL_TREE) + elemsize = fold_convert (gfc_array_index_type, + TYPE_SIZE_UNIT (eltype)); + else + { + /* Unlimited polymorphic entities are initialised with NULL vptr. They + can be tested for by checking if the len field is present. If so + test the vptr before using the vtable size. */ + tmp = gfc_class_vptr_get (class_expr); + tmp = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + tmp, build_int_cst (TREE_TYPE (tmp), 0)); + elemsize = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, + tmp, + gfc_class_vtab_size_get (class_expr), + gfc_index_zero_node); + elemsize = gfc_evaluate_now (elemsize, pre); + elemsize = gfc_resize_class_size_with_len (pre, class_expr, elemsize); + /* Casting the data as a character of the dynamic length ensures that + assignment of elements works when needed. */ + eltype = gfc_get_character_type_len (1, elemsize); + } + + memset (from, 0, sizeof (from)); + memset (to, 0, sizeof (to)); + + info = &ss->info->data.array; + + gcc_assert (ss->dimen > 0); + gcc_assert (ss->loop->dimen == ss->dimen); + + if (warn_array_temporaries && where) + gfc_warning (OPT_Warray_temporaries, + "Creating array temporary at %L", where); + + /* Set the lower bound to zero. */ + for (s = ss; s; s = s->parent) + { + loop = s->loop; + + total_dim += loop->dimen; + for (n = 0; n < loop->dimen; n++) + { + dim = s->dim[n]; + + /* Callee allocated arrays may not have a known bound yet. */ + if (loop->to[n]) + loop->to[n] = gfc_evaluate_now ( + fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop->to[n], loop->from[n]), + pre); + loop->from[n] = gfc_index_zero_node; + + /* We have just changed the loop bounds, we must clear the + corresponding specloop, so that delta calculation is not skipped + later in gfc_set_delta. */ + loop->specloop[n] = NULL; + + /* We are constructing the temporary's descriptor based on the loop + dimensions. As the dimensions may be accessed in arbitrary order + (think of transpose) the size taken from the n'th loop may not map + to the n'th dimension of the array. We need to reconstruct loop + infos in the right order before using it to set the descriptor + bounds. */ + tmp_dim = get_scalarizer_dim_for_array_dim (ss, dim); + from[tmp_dim] = loop->from[n]; + to[tmp_dim] = loop->to[n]; + + info->delta[dim] = gfc_index_zero_node; + info->start[dim] = gfc_index_zero_node; + info->end[dim] = gfc_index_zero_node; + info->stride[dim] = gfc_index_one_node; + } + } + + /* Initialize the descriptor. */ + type = + gfc_get_array_type_bounds (eltype, total_dim, 0, from, to, 1, + GFC_ARRAY_UNKNOWN, true); + desc = gfc_create_var (type, "atmp"); + GFC_DECL_PACKED_ARRAY (desc) = 1; + + /* Emit a DECL_EXPR for the variable sized array type in + GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type + sizes works correctly. */ + tree arraytype = TREE_TYPE (GFC_TYPE_ARRAY_DATAPTR_TYPE (type)); + if (! TYPE_NAME (arraytype)) + TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, + NULL_TREE, arraytype); + gfc_add_expr_to_block (pre, build1 (DECL_EXPR, + arraytype, TYPE_NAME (arraytype))); + + if (class_expr != NULL_TREE) + { + tree class_data; + tree dtype; + + /* Create a class temporary. */ + tmp = gfc_create_var (TREE_TYPE (class_expr), "ctmp"); + gfc_add_modify (pre, tmp, class_expr); + + /* Assign the new descriptor to the _data field. This allows the + vptr _copy to be used for scalarized assignment since the class + temporary can be found from the descriptor. */ + class_data = gfc_class_data_get (tmp); + tmp = fold_build1_loc (input_location, VIEW_CONVERT_EXPR, + TREE_TYPE (desc), desc); + gfc_add_modify (pre, class_data, tmp); + + /* Take the dtype from the class expression. */ + dtype = gfc_conv_descriptor_dtype (gfc_class_data_get (class_expr)); + tmp = gfc_conv_descriptor_dtype (class_data); + gfc_add_modify (pre, tmp, dtype); + + /* Point desc to the class _data field. */ + desc = class_data; + } + else + { + /* Fill in the array dtype. */ + tmp = gfc_conv_descriptor_dtype (desc); + gfc_add_modify (pre, tmp, gfc_get_dtype (TREE_TYPE (desc))); + } + + info->descriptor = desc; + size = gfc_index_one_node; + + /* + Fill in the bounds and stride. This is a packed array, so: + + size = 1; + for (n = 0; n < rank; n++) + { + stride[n] = size + delta = ubound[n] + 1 - lbound[n]; + size = size * delta; + } + size = size * sizeof(element); + */ + + or_expr = NULL_TREE; + + /* If there is at least one null loop->to[n], it is a callee allocated + array. */ + for (n = 0; n < total_dim; n++) + if (to[n] == NULL_TREE) + { + size = NULL_TREE; + break; + } + + if (size == NULL_TREE) + for (s = ss; s; s = s->parent) + for (n = 0; n < s->loop->dimen; n++) + { + dim = get_scalarizer_dim_for_array_dim (ss, s->dim[n]); + + /* For a callee allocated array express the loop bounds in terms + of the descriptor fields. */ + tmp = fold_build2_loc (input_location, + MINUS_EXPR, gfc_array_index_type, + gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]), + gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim])); + s->loop->to[n] = tmp; + } + else + { + for (n = 0; n < total_dim; n++) + { + /* Store the stride and bound components in the descriptor. */ + gfc_conv_descriptor_stride_set (pre, desc, gfc_rank_cst[n], size); + + gfc_conv_descriptor_lbound_set (pre, desc, gfc_rank_cst[n], + gfc_index_zero_node); + + gfc_conv_descriptor_ubound_set (pre, desc, gfc_rank_cst[n], to[n]); + + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + to[n], gfc_index_one_node); + + /* Check whether the size for this dimension is negative. */ + cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node, + tmp, gfc_index_zero_node); + cond = gfc_evaluate_now (cond, pre); + + if (n == 0) + or_expr = cond; + else + or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, or_expr, cond); + + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + size = gfc_evaluate_now (size, pre); + } + } + + /* Get the size of the array. */ + if (size && !callee_alloc) + { + /* If or_expr is true, then the extent in at least one + dimension is zero and the size is set to zero. */ + size = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, + or_expr, gfc_index_zero_node, size); + + nelem = size; + size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + size, elemsize); + } + else + { + nelem = size; + size = NULL_TREE; + } + + /* Set the span. */ + tmp = fold_convert (gfc_array_index_type, elemsize); + gfc_conv_descriptor_span_set (pre, desc, tmp); + + gfc_trans_allocate_array_storage (pre, post, info, size, nelem, initial, + dynamic, dealloc); + + while (ss->parent) + ss = ss->parent; + + if (ss->dimen > ss->loop->temp_dim) + ss->loop->temp_dim = ss->dimen; + + return size; +} + + +/* Return the number of iterations in a loop that starts at START, + ends at END, and has step STEP. */ + +static tree +gfc_get_iteration_count (tree start, tree end, tree step) +{ + tree tmp; + tree type; + + type = TREE_TYPE (step); + tmp = fold_build2_loc (input_location, MINUS_EXPR, type, end, start); + tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, type, tmp, step); + tmp = fold_build2_loc (input_location, PLUS_EXPR, type, tmp, + build_int_cst (type, 1)); + tmp = fold_build2_loc (input_location, MAX_EXPR, type, tmp, + build_int_cst (type, 0)); + return fold_convert (gfc_array_index_type, tmp); +} + + +/* Extend the data in array DESC by EXTRA elements. */ + +static void +gfc_grow_array (stmtblock_t * pblock, tree desc, tree extra) +{ + tree arg0, arg1; + tree tmp; + tree size; + tree ubound; + + if (integer_zerop (extra)) + return; + + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[0]); + + /* Add EXTRA to the upper bound. */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + ubound, extra); + gfc_conv_descriptor_ubound_set (pblock, desc, gfc_rank_cst[0], tmp); + + /* Get the value of the current data pointer. */ + arg0 = gfc_conv_descriptor_data_get (desc); + + /* Calculate the new array size. */ + size = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc))); + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + ubound, gfc_index_one_node); + arg1 = fold_build2_loc (input_location, MULT_EXPR, size_type_node, + fold_convert (size_type_node, tmp), + fold_convert (size_type_node, size)); + + /* Call the realloc() function. */ + tmp = gfc_call_realloc (pblock, arg0, arg1); + gfc_conv_descriptor_data_set (pblock, desc, tmp); +} + + +/* Return true if the bounds of iterator I can only be determined + at run time. */ + +static inline bool +gfc_iterator_has_dynamic_bounds (gfc_iterator * i) +{ + return (i->start->expr_type != EXPR_CONSTANT + || i->end->expr_type != EXPR_CONSTANT + || i->step->expr_type != EXPR_CONSTANT); +} + + +/* Split the size of constructor element EXPR into the sum of two terms, + one of which can be determined at compile time and one of which must + be calculated at run time. Set *SIZE to the former and return true + if the latter might be nonzero. */ + +static bool +gfc_get_array_constructor_element_size (mpz_t * size, gfc_expr * expr) +{ + if (expr->expr_type == EXPR_ARRAY) + return gfc_get_array_constructor_size (size, expr->value.constructor); + else if (expr->rank > 0) + { + /* Calculate everything at run time. */ + mpz_set_ui (*size, 0); + return true; + } + else + { + /* A single element. */ + mpz_set_ui (*size, 1); + return false; + } +} + + +/* Like gfc_get_array_constructor_element_size, but applied to the whole + of array constructor C. */ + +static bool +gfc_get_array_constructor_size (mpz_t * size, gfc_constructor_base base) +{ + gfc_constructor *c; + gfc_iterator *i; + mpz_t val; + mpz_t len; + bool dynamic; + + mpz_set_ui (*size, 0); + mpz_init (len); + mpz_init (val); + + dynamic = false; + for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) + { + i = c->iterator; + if (i && gfc_iterator_has_dynamic_bounds (i)) + dynamic = true; + else + { + dynamic |= gfc_get_array_constructor_element_size (&len, c->expr); + if (i) + { + /* Multiply the static part of the element size by the + number of iterations. */ + mpz_sub (val, i->end->value.integer, i->start->value.integer); + mpz_fdiv_q (val, val, i->step->value.integer); + mpz_add_ui (val, val, 1); + if (mpz_sgn (val) > 0) + mpz_mul (len, len, val); + else + mpz_set_ui (len, 0); + } + mpz_add (*size, *size, len); + } + } + mpz_clear (len); + mpz_clear (val); + return dynamic; +} + + +/* Make sure offset is a variable. */ + +static void +gfc_put_offset_into_var (stmtblock_t * pblock, tree * poffset, + tree * offsetvar) +{ + /* We should have already created the offset variable. We cannot + create it here because we may be in an inner scope. */ + gcc_assert (*offsetvar != NULL_TREE); + gfc_add_modify (pblock, *offsetvar, *poffset); + *poffset = *offsetvar; + TREE_USED (*offsetvar) = 1; +} + + +/* Variables needed for bounds-checking. */ +static bool first_len; +static tree first_len_val; +static bool typespec_chararray_ctor; + +static void +gfc_trans_array_ctor_element (stmtblock_t * pblock, tree desc, + tree offset, gfc_se * se, gfc_expr * expr) +{ + tree tmp; + + gfc_conv_expr (se, expr); + + /* Store the value. */ + tmp = build_fold_indirect_ref_loc (input_location, + gfc_conv_descriptor_data_get (desc)); + tmp = gfc_build_array_ref (tmp, offset, NULL); + + if (expr->ts.type == BT_CHARACTER) + { + int i = gfc_validate_kind (BT_CHARACTER, expr->ts.kind, false); + tree esize; + + esize = size_in_bytes (gfc_get_element_type (TREE_TYPE (desc))); + esize = fold_convert (gfc_charlen_type_node, esize); + esize = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + TREE_TYPE (esize), esize, + build_int_cst (TREE_TYPE (esize), + gfc_character_kinds[i].bit_size / 8)); + + gfc_conv_string_parameter (se); + if (POINTER_TYPE_P (TREE_TYPE (tmp))) + { + /* The temporary is an array of pointers. */ + se->expr = fold_convert (TREE_TYPE (tmp), se->expr); + gfc_add_modify (&se->pre, tmp, se->expr); + } + else + { + /* The temporary is an array of string values. */ + tmp = gfc_build_addr_expr (gfc_get_pchar_type (expr->ts.kind), tmp); + /* We know the temporary and the value will be the same length, + so can use memcpy. */ + gfc_trans_string_copy (&se->pre, esize, tmp, expr->ts.kind, + se->string_length, se->expr, expr->ts.kind); + } + if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && !typespec_chararray_ctor) + { + if (first_len) + { + gfc_add_modify (&se->pre, first_len_val, + fold_convert (TREE_TYPE (first_len_val), + se->string_length)); + first_len = false; + } + else + { + /* Verify that all constructor elements are of the same + length. */ + tree rhs = fold_convert (TREE_TYPE (first_len_val), + se->string_length); + tree cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, first_len_val, + rhs); + gfc_trans_runtime_check + (true, false, cond, &se->pre, &expr->where, + "Different CHARACTER lengths (%ld/%ld) in array constructor", + fold_convert (long_integer_type_node, first_len_val), + fold_convert (long_integer_type_node, se->string_length)); + } + } + } + else if (GFC_CLASS_TYPE_P (TREE_TYPE (se->expr)) + && !GFC_CLASS_TYPE_P (gfc_get_element_type (TREE_TYPE (desc)))) + { + /* Assignment of a CLASS array constructor to a derived type array. */ + if (expr->expr_type == EXPR_FUNCTION) + se->expr = gfc_evaluate_now (se->expr, pblock); + se->expr = gfc_class_data_get (se->expr); + se->expr = build_fold_indirect_ref_loc (input_location, se->expr); + se->expr = fold_convert (TREE_TYPE (tmp), se->expr); + gfc_add_modify (&se->pre, tmp, se->expr); + } + else + { + /* TODO: Should the frontend already have done this conversion? */ + se->expr = fold_convert (TREE_TYPE (tmp), se->expr); + gfc_add_modify (&se->pre, tmp, se->expr); + } + + gfc_add_block_to_block (pblock, &se->pre); + gfc_add_block_to_block (pblock, &se->post); +} + + +/* Add the contents of an array to the constructor. DYNAMIC is as for + gfc_trans_array_constructor_value. */ + +static void +gfc_trans_array_constructor_subarray (stmtblock_t * pblock, + tree type ATTRIBUTE_UNUSED, + tree desc, gfc_expr * expr, + tree * poffset, tree * offsetvar, + bool dynamic) +{ + gfc_se se; + gfc_ss *ss; + gfc_loopinfo loop; + stmtblock_t body; + tree tmp; + tree size; + int n; + + /* We need this to be a variable so we can increment it. */ + gfc_put_offset_into_var (pblock, poffset, offsetvar); + + gfc_init_se (&se, NULL); + + /* Walk the array expression. */ + ss = gfc_walk_expr (expr); + gcc_assert (ss != gfc_ss_terminator); + + /* Initialize the scalarizer. */ + gfc_init_loopinfo (&loop); + gfc_add_ss_to_loop (&loop, ss); + + /* Initialize the loop. */ + gfc_conv_ss_startstride (&loop); + gfc_conv_loop_setup (&loop, &expr->where); + + /* Make sure the constructed array has room for the new data. */ + if (dynamic) + { + /* Set SIZE to the total number of elements in the subarray. */ + size = gfc_index_one_node; + for (n = 0; n < loop.dimen; n++) + { + tmp = gfc_get_iteration_count (loop.from[n], loop.to[n], + gfc_index_one_node); + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + } + + /* Grow the constructed array by SIZE elements. */ + gfc_grow_array (&loop.pre, desc, size); + } + + /* Make the loop body. */ + gfc_mark_ss_chain_used (ss, 1); + gfc_start_scalarized_body (&loop, &body); + gfc_copy_loopinfo_to_se (&se, &loop); + se.ss = ss; + + gfc_trans_array_ctor_element (&body, desc, *poffset, &se, expr); + gcc_assert (se.ss == gfc_ss_terminator); + + /* Increment the offset. */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + *poffset, gfc_index_one_node); + gfc_add_modify (&body, *poffset, tmp); + + /* Finish the loop. */ + gfc_trans_scalarizing_loops (&loop, &body); + gfc_add_block_to_block (&loop.pre, &loop.post); + tmp = gfc_finish_block (&loop.pre); + gfc_add_expr_to_block (pblock, tmp); + + gfc_cleanup_loop (&loop); +} + + +/* Assign the values to the elements of an array constructor. DYNAMIC + is true if descriptor DESC only contains enough data for the static + size calculated by gfc_get_array_constructor_size. When true, memory + for the dynamic parts must be allocated using realloc. */ + +static void +gfc_trans_array_constructor_value (stmtblock_t * pblock, tree type, + tree desc, gfc_constructor_base base, + tree * poffset, tree * offsetvar, + bool dynamic) +{ + tree tmp; + tree start = NULL_TREE; + tree end = NULL_TREE; + tree step = NULL_TREE; + stmtblock_t body; + gfc_se se; + mpz_t size; + gfc_constructor *c; + + tree shadow_loopvar = NULL_TREE; + gfc_saved_var saved_loopvar; + + mpz_init (size); + for (c = gfc_constructor_first (base); c; c = gfc_constructor_next (c)) + { + /* If this is an iterator or an array, the offset must be a variable. */ + if ((c->iterator || c->expr->rank > 0) && INTEGER_CST_P (*poffset)) + gfc_put_offset_into_var (pblock, poffset, offsetvar); + + /* Shadowing the iterator avoids changing its value and saves us from + keeping track of it. Further, it makes sure that there's always a + backend-decl for the symbol, even if there wasn't one before, + e.g. in the case of an iterator that appears in a specification + expression in an interface mapping. */ + if (c->iterator) + { + gfc_symbol *sym; + tree type; + + /* Evaluate loop bounds before substituting the loop variable + in case they depend on it. Such a case is invalid, but it is + not more expensive to do the right thing here. + See PR 44354. */ + gfc_init_se (&se, NULL); + gfc_conv_expr_val (&se, c->iterator->start); + gfc_add_block_to_block (pblock, &se.pre); + start = gfc_evaluate_now (se.expr, pblock); + + gfc_init_se (&se, NULL); + gfc_conv_expr_val (&se, c->iterator->end); + gfc_add_block_to_block (pblock, &se.pre); + end = gfc_evaluate_now (se.expr, pblock); + + gfc_init_se (&se, NULL); + gfc_conv_expr_val (&se, c->iterator->step); + gfc_add_block_to_block (pblock, &se.pre); + step = gfc_evaluate_now (se.expr, pblock); + + sym = c->iterator->var->symtree->n.sym; + type = gfc_typenode_for_spec (&sym->ts); + + shadow_loopvar = gfc_create_var (type, "shadow_loopvar"); + gfc_shadow_sym (sym, shadow_loopvar, &saved_loopvar); + } + + gfc_start_block (&body); + + if (c->expr->expr_type == EXPR_ARRAY) + { + /* Array constructors can be nested. */ + gfc_trans_array_constructor_value (&body, type, desc, + c->expr->value.constructor, + poffset, offsetvar, dynamic); + } + else if (c->expr->rank > 0) + { + gfc_trans_array_constructor_subarray (&body, type, desc, c->expr, + poffset, offsetvar, dynamic); + } + else + { + /* This code really upsets the gimplifier so don't bother for now. */ + gfc_constructor *p; + HOST_WIDE_INT n; + HOST_WIDE_INT size; + + p = c; + n = 0; + while (p && !(p->iterator || p->expr->expr_type != EXPR_CONSTANT)) + { + p = gfc_constructor_next (p); + n++; + } + if (n < 4) + { + /* Scalar values. */ + gfc_init_se (&se, NULL); + gfc_trans_array_ctor_element (&body, desc, *poffset, + &se, c->expr); + + *poffset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + *poffset, gfc_index_one_node); + } + else + { + /* Collect multiple scalar constants into a constructor. */ + vec<constructor_elt, va_gc> *v = NULL; + tree init; + tree bound; + tree tmptype; + HOST_WIDE_INT idx = 0; + + p = c; + /* Count the number of consecutive scalar constants. */ + while (p && !(p->iterator + || p->expr->expr_type != EXPR_CONSTANT)) + { + gfc_init_se (&se, NULL); + gfc_conv_constant (&se, p->expr); + + if (c->expr->ts.type != BT_CHARACTER) + se.expr = fold_convert (type, se.expr); + /* For constant character array constructors we build + an array of pointers. */ + else if (POINTER_TYPE_P (type)) + se.expr = gfc_build_addr_expr + (gfc_get_pchar_type (p->expr->ts.kind), + se.expr); + + CONSTRUCTOR_APPEND_ELT (v, + build_int_cst (gfc_array_index_type, + idx++), + se.expr); + c = p; + p = gfc_constructor_next (p); + } + + bound = size_int (n - 1); + /* Create an array type to hold them. */ + tmptype = build_range_type (gfc_array_index_type, + gfc_index_zero_node, bound); + tmptype = build_array_type (type, tmptype); + + init = build_constructor (tmptype, v); + TREE_CONSTANT (init) = 1; + TREE_STATIC (init) = 1; + /* Create a static variable to hold the data. */ + tmp = gfc_create_var (tmptype, "data"); + TREE_STATIC (tmp) = 1; + TREE_CONSTANT (tmp) = 1; + TREE_READONLY (tmp) = 1; + DECL_INITIAL (tmp) = init; + init = tmp; + + /* Use BUILTIN_MEMCPY to assign the values. */ + tmp = gfc_conv_descriptor_data_get (desc); + tmp = build_fold_indirect_ref_loc (input_location, + tmp); + tmp = gfc_build_array_ref (tmp, *poffset, NULL); + tmp = gfc_build_addr_expr (NULL_TREE, tmp); + init = gfc_build_addr_expr (NULL_TREE, init); + + size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (type)); + bound = build_int_cst (size_type_node, n * size); + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MEMCPY), + 3, tmp, init, bound); + gfc_add_expr_to_block (&body, tmp); + + *poffset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, *poffset, + build_int_cst (gfc_array_index_type, n)); + } + if (!INTEGER_CST_P (*poffset)) + { + gfc_add_modify (&body, *offsetvar, *poffset); + *poffset = *offsetvar; + } + } + + /* The frontend should already have done any expansions + at compile-time. */ + if (!c->iterator) + { + /* Pass the code as is. */ + tmp = gfc_finish_block (&body); + gfc_add_expr_to_block (pblock, tmp); + } + else + { + /* Build the implied do-loop. */ + stmtblock_t implied_do_block; + tree cond; + tree exit_label; + tree loopbody; + tree tmp2; + + loopbody = gfc_finish_block (&body); + + /* Create a new block that holds the implied-do loop. A temporary + loop-variable is used. */ + gfc_start_block(&implied_do_block); + + /* Initialize the loop. */ + gfc_add_modify (&implied_do_block, shadow_loopvar, start); + + /* If this array expands dynamically, and the number of iterations + is not constant, we won't have allocated space for the static + part of C->EXPR's size. Do that now. */ + if (dynamic && gfc_iterator_has_dynamic_bounds (c->iterator)) + { + /* Get the number of iterations. */ + tmp = gfc_get_iteration_count (shadow_loopvar, end, step); + + /* Get the static part of C->EXPR's size. */ + gfc_get_array_constructor_element_size (&size, c->expr); + tmp2 = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind); + + /* Grow the array by TMP * TMP2 elements. */ + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, tmp2); + gfc_grow_array (&implied_do_block, desc, tmp); + } + + /* Generate the loop body. */ + exit_label = gfc_build_label_decl (NULL_TREE); + gfc_start_block (&body); + + /* Generate the exit condition. Depending on the sign of + the step variable we have to generate the correct + comparison. */ + tmp = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + step, build_int_cst (TREE_TYPE (step), 0)); + cond = fold_build3_loc (input_location, COND_EXPR, + logical_type_node, tmp, + fold_build2_loc (input_location, GT_EXPR, + logical_type_node, shadow_loopvar, end), + fold_build2_loc (input_location, LT_EXPR, + logical_type_node, shadow_loopvar, end)); + tmp = build1_v (GOTO_EXPR, exit_label); + TREE_USED (exit_label) = 1; + tmp = build3_v (COND_EXPR, cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&body, tmp); + + /* The main loop body. */ + gfc_add_expr_to_block (&body, loopbody); + + /* Increase loop variable by step. */ + tmp = fold_build2_loc (input_location, PLUS_EXPR, + TREE_TYPE (shadow_loopvar), shadow_loopvar, + step); + gfc_add_modify (&body, shadow_loopvar, tmp); + + /* Finish the loop. */ + tmp = gfc_finish_block (&body); + tmp = build1_v (LOOP_EXPR, tmp); + gfc_add_expr_to_block (&implied_do_block, tmp); + + /* Add the exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&implied_do_block, tmp); + + /* Finish the implied-do loop. */ + tmp = gfc_finish_block(&implied_do_block); + gfc_add_expr_to_block(pblock, tmp); + + gfc_restore_sym (c->iterator->var->symtree->n.sym, &saved_loopvar); + } + } + mpz_clear (size); +} + + +/* The array constructor code can create a string length with an operand + in the form of a temporary variable. This variable will retain its + context (current_function_decl). If we store this length tree in a + gfc_charlen structure which is shared by a variable in another + context, the resulting gfc_charlen structure with a variable in a + different context, we could trip the assertion in expand_expr_real_1 + when it sees that a variable has been created in one context and + referenced in another. + + If this might be the case, we create a new gfc_charlen structure and + link it into the current namespace. */ + +static void +store_backend_decl (gfc_charlen **clp, tree len, bool force_new_cl) +{ + if (force_new_cl) + { + gfc_charlen *new_cl = gfc_new_charlen (gfc_current_ns, *clp); + *clp = new_cl; + } + (*clp)->backend_decl = len; +} + +/* A catch-all to obtain the string length for anything that is not + a substring of non-constant length, a constant, array or variable. */ + +static void +get_array_ctor_all_strlen (stmtblock_t *block, gfc_expr *e, tree *len) +{ + gfc_se se; + + /* Don't bother if we already know the length is a constant. */ + if (*len && INTEGER_CST_P (*len)) + return; + + if (!e->ref && e->ts.u.cl && e->ts.u.cl->length + && e->ts.u.cl->length->expr_type == EXPR_CONSTANT) + { + /* This is easy. */ + gfc_conv_const_charlen (e->ts.u.cl); + *len = e->ts.u.cl->backend_decl; + } + else + { + /* Otherwise, be brutal even if inefficient. */ + gfc_init_se (&se, NULL); + + /* No function call, in case of side effects. */ + se.no_function_call = 1; + if (e->rank == 0) + gfc_conv_expr (&se, e); + else + gfc_conv_expr_descriptor (&se, e); + + /* Fix the value. */ + *len = gfc_evaluate_now (se.string_length, &se.pre); + + gfc_add_block_to_block (block, &se.pre); + gfc_add_block_to_block (block, &se.post); + + store_backend_decl (&e->ts.u.cl, *len, true); + } +} + + +/* Figure out the string length of a variable reference expression. + Used by get_array_ctor_strlen. */ + +static void +get_array_ctor_var_strlen (stmtblock_t *block, gfc_expr * expr, tree * len) +{ + gfc_ref *ref; + gfc_typespec *ts; + mpz_t char_len; + gfc_se se; + + /* Don't bother if we already know the length is a constant. */ + if (*len && INTEGER_CST_P (*len)) + return; + + ts = &expr->symtree->n.sym->ts; + for (ref = expr->ref; ref; ref = ref->next) + { + switch (ref->type) + { + case REF_ARRAY: + /* Array references don't change the string length. */ + if (ts->deferred) + get_array_ctor_all_strlen (block, expr, len); + break; + + case REF_COMPONENT: + /* Use the length of the component. */ + ts = &ref->u.c.component->ts; + break; + + case REF_SUBSTRING: + if (ref->u.ss.end == NULL + || ref->u.ss.start->expr_type != EXPR_CONSTANT + || ref->u.ss.end->expr_type != EXPR_CONSTANT) + { + /* Note that this might evaluate expr. */ + get_array_ctor_all_strlen (block, expr, len); + return; + } + mpz_init_set_ui (char_len, 1); + mpz_add (char_len, char_len, ref->u.ss.end->value.integer); + mpz_sub (char_len, char_len, ref->u.ss.start->value.integer); + *len = gfc_conv_mpz_to_tree_type (char_len, gfc_charlen_type_node); + mpz_clear (char_len); + return; + + case REF_INQUIRY: + break; + + default: + gcc_unreachable (); + } + } + + /* A last ditch attempt that is sometimes needed for deferred characters. */ + if (!ts->u.cl->backend_decl) + { + gfc_init_se (&se, NULL); + if (expr->rank) + gfc_conv_expr_descriptor (&se, expr); + else + gfc_conv_expr (&se, expr); + gcc_assert (se.string_length != NULL_TREE); + gfc_add_block_to_block (block, &se.pre); + ts->u.cl->backend_decl = se.string_length; + } + + *len = ts->u.cl->backend_decl; +} + + +/* Figure out the string length of a character array constructor. + If len is NULL, don't calculate the length; this happens for recursive calls + when a sub-array-constructor is an element but not at the first position, + so when we're not interested in the length. + Returns TRUE if all elements are character constants. */ + +bool +get_array_ctor_strlen (stmtblock_t *block, gfc_constructor_base base, tree * len) +{ + gfc_constructor *c; + bool is_const; + + is_const = TRUE; + + if (gfc_constructor_first (base) == NULL) + { + if (len) + *len = build_int_cstu (gfc_charlen_type_node, 0); + return is_const; + } + + /* Loop over all constructor elements to find out is_const, but in len we + want to store the length of the first, not the last, element. We can + of course exit the loop as soon as is_const is found to be false. */ + for (c = gfc_constructor_first (base); + c && is_const; c = gfc_constructor_next (c)) + { + switch (c->expr->expr_type) + { + case EXPR_CONSTANT: + if (len && !(*len && INTEGER_CST_P (*len))) + *len = build_int_cstu (gfc_charlen_type_node, + c->expr->value.character.length); + break; + + case EXPR_ARRAY: + if (!get_array_ctor_strlen (block, c->expr->value.constructor, len)) + is_const = false; + break; + + case EXPR_VARIABLE: + is_const = false; + if (len) + get_array_ctor_var_strlen (block, c->expr, len); + break; + + default: + is_const = false; + if (len) + get_array_ctor_all_strlen (block, c->expr, len); + break; + } + + /* After the first iteration, we don't want the length modified. */ + len = NULL; + } + + return is_const; +} + +/* Check whether the array constructor C consists entirely of constant + elements, and if so returns the number of those elements, otherwise + return zero. Note, an empty or NULL array constructor returns zero. */ + +unsigned HOST_WIDE_INT +gfc_constant_array_constructor_p (gfc_constructor_base base) +{ + unsigned HOST_WIDE_INT nelem = 0; + + gfc_constructor *c = gfc_constructor_first (base); + while (c) + { + if (c->iterator + || c->expr->rank > 0 + || c->expr->expr_type != EXPR_CONSTANT) + return 0; + c = gfc_constructor_next (c); + nelem++; + } + return nelem; +} + + +/* Given EXPR, the constant array constructor specified by an EXPR_ARRAY, + and the tree type of it's elements, TYPE, return a static constant + variable that is compile-time initialized. */ + +tree +gfc_build_constant_array_constructor (gfc_expr * expr, tree type) +{ + tree tmptype, init, tmp; + HOST_WIDE_INT nelem; + gfc_constructor *c; + gfc_array_spec as; + gfc_se se; + int i; + vec<constructor_elt, va_gc> *v = NULL; + + /* First traverse the constructor list, converting the constants + to tree to build an initializer. */ + nelem = 0; + c = gfc_constructor_first (expr->value.constructor); + while (c) + { + gfc_init_se (&se, NULL); + gfc_conv_constant (&se, c->expr); + if (c->expr->ts.type != BT_CHARACTER) + se.expr = fold_convert (type, se.expr); + else if (POINTER_TYPE_P (type)) + se.expr = gfc_build_addr_expr (gfc_get_pchar_type (c->expr->ts.kind), + se.expr); + CONSTRUCTOR_APPEND_ELT (v, build_int_cst (gfc_array_index_type, nelem), + se.expr); + c = gfc_constructor_next (c); + nelem++; + } + + /* Next determine the tree type for the array. We use the gfortran + front-end's gfc_get_nodesc_array_type in order to create a suitable + GFC_ARRAY_TYPE_P that may be used by the scalarizer. */ + + memset (&as, 0, sizeof (gfc_array_spec)); + + as.rank = expr->rank; + as.type = AS_EXPLICIT; + if (!expr->shape) + { + as.lower[0] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0); + as.upper[0] = gfc_get_int_expr (gfc_default_integer_kind, + NULL, nelem - 1); + } + else + for (i = 0; i < expr->rank; i++) + { + int tmp = (int) mpz_get_si (expr->shape[i]); + as.lower[i] = gfc_get_int_expr (gfc_default_integer_kind, NULL, 0); + as.upper[i] = gfc_get_int_expr (gfc_default_integer_kind, + NULL, tmp - 1); + } + + tmptype = gfc_get_nodesc_array_type (type, &as, PACKED_STATIC, true); + + /* as is not needed anymore. */ + for (i = 0; i < as.rank + as.corank; i++) + { + gfc_free_expr (as.lower[i]); + gfc_free_expr (as.upper[i]); + } + + init = build_constructor (tmptype, v); + + TREE_CONSTANT (init) = 1; + TREE_STATIC (init) = 1; + + tmp = build_decl (input_location, VAR_DECL, create_tmp_var_name ("A"), + tmptype); + DECL_ARTIFICIAL (tmp) = 1; + DECL_IGNORED_P (tmp) = 1; + TREE_STATIC (tmp) = 1; + TREE_CONSTANT (tmp) = 1; + TREE_READONLY (tmp) = 1; + DECL_INITIAL (tmp) = init; + pushdecl (tmp); + + return tmp; +} + + +/* Translate a constant EXPR_ARRAY array constructor for the scalarizer. + This mostly initializes the scalarizer state info structure with the + appropriate values to directly use the array created by the function + gfc_build_constant_array_constructor. */ + +static void +trans_constant_array_constructor (gfc_ss * ss, tree type) +{ + gfc_array_info *info; + tree tmp; + int i; + + tmp = gfc_build_constant_array_constructor (ss->info->expr, type); + + info = &ss->info->data.array; + + info->descriptor = tmp; + info->data = gfc_build_addr_expr (NULL_TREE, tmp); + info->offset = gfc_index_zero_node; + + for (i = 0; i < ss->dimen; i++) + { + info->delta[i] = gfc_index_zero_node; + info->start[i] = gfc_index_zero_node; + info->end[i] = gfc_index_zero_node; + info->stride[i] = gfc_index_one_node; + } +} + + +static int +get_rank (gfc_loopinfo *loop) +{ + int rank; + + rank = 0; + for (; loop; loop = loop->parent) + rank += loop->dimen; + + return rank; +} + + +/* Helper routine of gfc_trans_array_constructor to determine if the + bounds of the loop specified by LOOP are constant and simple enough + to use with trans_constant_array_constructor. Returns the + iteration count of the loop if suitable, and NULL_TREE otherwise. */ + +static tree +constant_array_constructor_loop_size (gfc_loopinfo * l) +{ + gfc_loopinfo *loop; + tree size = gfc_index_one_node; + tree tmp; + int i, total_dim; + + total_dim = get_rank (l); + + for (loop = l; loop; loop = loop->parent) + { + for (i = 0; i < loop->dimen; i++) + { + /* If the bounds aren't constant, return NULL_TREE. */ + if (!INTEGER_CST_P (loop->from[i]) || !INTEGER_CST_P (loop->to[i])) + return NULL_TREE; + if (!integer_zerop (loop->from[i])) + { + /* Only allow nonzero "from" in one-dimensional arrays. */ + if (total_dim != 1) + return NULL_TREE; + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop->to[i], loop->from[i]); + } + else + tmp = loop->to[i]; + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, tmp, gfc_index_one_node); + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + } + } + + return size; +} + + +static tree * +get_loop_upper_bound_for_array (gfc_ss *array, int array_dim) +{ + gfc_ss *ss; + int n; + + gcc_assert (array->nested_ss == NULL); + + for (ss = array; ss; ss = ss->parent) + for (n = 0; n < ss->loop->dimen; n++) + if (array_dim == get_array_ref_dim_for_loop_dim (ss, n)) + return &(ss->loop->to[n]); + + gcc_unreachable (); +} + + +static gfc_loopinfo * +outermost_loop (gfc_loopinfo * loop) +{ + while (loop->parent != NULL) + loop = loop->parent; + + return loop; +} + + +/* Array constructors are handled by constructing a temporary, then using that + within the scalarization loop. This is not optimal, but seems by far the + simplest method. */ + +static void +trans_array_constructor (gfc_ss * ss, locus * where) +{ + gfc_constructor_base c; + tree offset; + tree offsetvar; + tree desc; + tree type; + tree tmp; + tree *loop_ubound0; + bool dynamic; + bool old_first_len, old_typespec_chararray_ctor; + tree old_first_len_val; + gfc_loopinfo *loop, *outer_loop; + gfc_ss_info *ss_info; + gfc_expr *expr; + gfc_ss *s; + tree neg_len; + char *msg; + + /* Save the old values for nested checking. */ + old_first_len = first_len; + old_first_len_val = first_len_val; + old_typespec_chararray_ctor = typespec_chararray_ctor; + + loop = ss->loop; + outer_loop = outermost_loop (loop); + ss_info = ss->info; + expr = ss_info->expr; + + /* Do bounds-checking here and in gfc_trans_array_ctor_element only if no + typespec was given for the array constructor. */ + typespec_chararray_ctor = (expr->ts.type == BT_CHARACTER + && expr->ts.u.cl + && expr->ts.u.cl->length_from_typespec); + + if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + && expr->ts.type == BT_CHARACTER && !typespec_chararray_ctor) + { + first_len_val = gfc_create_var (gfc_charlen_type_node, "len"); + first_len = true; + } + + gcc_assert (ss->dimen == ss->loop->dimen); + + c = expr->value.constructor; + if (expr->ts.type == BT_CHARACTER) + { + bool const_string; + bool force_new_cl = false; + + /* get_array_ctor_strlen walks the elements of the constructor, if a + typespec was given, we already know the string length and want the one + specified there. */ + if (typespec_chararray_ctor && expr->ts.u.cl->length + && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT) + { + gfc_se length_se; + + const_string = false; + gfc_init_se (&length_se, NULL); + gfc_conv_expr_type (&length_se, expr->ts.u.cl->length, + gfc_charlen_type_node); + ss_info->string_length = length_se.expr; + + /* Check if the character length is negative. If it is, then + set LEN = 0. */ + neg_len = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, ss_info->string_length, + build_zero_cst (TREE_TYPE + (ss_info->string_length))); + /* Print a warning if bounds checking is enabled. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + msg = xasprintf ("Negative character length treated as LEN = 0"); + gfc_trans_runtime_check (false, true, neg_len, &length_se.pre, + where, msg); + free (msg); + } + + ss_info->string_length + = fold_build3_loc (input_location, COND_EXPR, + gfc_charlen_type_node, neg_len, + build_zero_cst + (TREE_TYPE (ss_info->string_length)), + ss_info->string_length); + ss_info->string_length = gfc_evaluate_now (ss_info->string_length, + &length_se.pre); + gfc_add_block_to_block (&outer_loop->pre, &length_se.pre); + gfc_add_block_to_block (&outer_loop->post, &length_se.post); + } + else + { + const_string = get_array_ctor_strlen (&outer_loop->pre, c, + &ss_info->string_length); + force_new_cl = true; + } + + /* Complex character array constructors should have been taken care of + and not end up here. */ + gcc_assert (ss_info->string_length); + + store_backend_decl (&expr->ts.u.cl, ss_info->string_length, force_new_cl); + + type = gfc_get_character_type_len (expr->ts.kind, ss_info->string_length); + if (const_string) + type = build_pointer_type (type); + } + else + type = gfc_typenode_for_spec (expr->ts.type == BT_CLASS + ? &CLASS_DATA (expr)->ts : &expr->ts); + + /* See if the constructor determines the loop bounds. */ + dynamic = false; + + loop_ubound0 = get_loop_upper_bound_for_array (ss, 0); + + if (expr->shape && get_rank (loop) > 1 && *loop_ubound0 == NULL_TREE) + { + /* We have a multidimensional parameter. */ + for (s = ss; s; s = s->parent) + { + int n; + for (n = 0; n < s->loop->dimen; n++) + { + s->loop->from[n] = gfc_index_zero_node; + s->loop->to[n] = gfc_conv_mpz_to_tree (expr->shape[s->dim[n]], + gfc_index_integer_kind); + s->loop->to[n] = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + s->loop->to[n], + gfc_index_one_node); + } + } + } + + if (*loop_ubound0 == NULL_TREE) + { + mpz_t size; + + /* We should have a 1-dimensional, zero-based loop. */ + gcc_assert (loop->parent == NULL && loop->nested == NULL); + gcc_assert (loop->dimen == 1); + gcc_assert (integer_zerop (loop->from[0])); + + /* Split the constructor size into a static part and a dynamic part. + Allocate the static size up-front and record whether the dynamic + size might be nonzero. */ + mpz_init (size); + dynamic = gfc_get_array_constructor_size (&size, c); + mpz_sub_ui (size, size, 1); + loop->to[0] = gfc_conv_mpz_to_tree (size, gfc_index_integer_kind); + mpz_clear (size); + } + + /* Special case constant array constructors. */ + if (!dynamic) + { + unsigned HOST_WIDE_INT nelem = gfc_constant_array_constructor_p (c); + if (nelem > 0) + { + tree size = constant_array_constructor_loop_size (loop); + if (size && compare_tree_int (size, nelem) == 0) + { + trans_constant_array_constructor (ss, type); + goto finish; + } + } + } + + gfc_trans_create_temp_array (&outer_loop->pre, &outer_loop->post, ss, type, + NULL_TREE, dynamic, true, false, where); + + desc = ss_info->data.array.descriptor; + offset = gfc_index_zero_node; + offsetvar = gfc_create_var_np (gfc_array_index_type, "offset"); + suppress_warning (offsetvar); + TREE_USED (offsetvar) = 0; + gfc_trans_array_constructor_value (&outer_loop->pre, type, desc, c, + &offset, &offsetvar, dynamic); + + /* If the array grows dynamically, the upper bound of the loop variable + is determined by the array's final upper bound. */ + if (dynamic) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + offsetvar, gfc_index_one_node); + tmp = gfc_evaluate_now (tmp, &outer_loop->pre); + gfc_conv_descriptor_ubound_set (&loop->pre, desc, gfc_rank_cst[0], tmp); + if (*loop_ubound0 && VAR_P (*loop_ubound0)) + gfc_add_modify (&outer_loop->pre, *loop_ubound0, tmp); + else + *loop_ubound0 = tmp; + } + + if (TREE_USED (offsetvar)) + pushdecl (offsetvar); + else + gcc_assert (INTEGER_CST_P (offset)); + +#if 0 + /* Disable bound checking for now because it's probably broken. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + gcc_unreachable (); + } +#endif + +finish: + /* Restore old values of globals. */ + first_len = old_first_len; + first_len_val = old_first_len_val; + typespec_chararray_ctor = old_typespec_chararray_ctor; +} + + +/* INFO describes a GFC_SS_SECTION in loop LOOP, and this function is + called after evaluating all of INFO's vector dimensions. Go through + each such vector dimension and see if we can now fill in any missing + loop bounds. */ + +static void +set_vector_loop_bounds (gfc_ss * ss) +{ + gfc_loopinfo *loop, *outer_loop; + gfc_array_info *info; + gfc_se se; + tree tmp; + tree desc; + tree zero; + int n; + int dim; + + outer_loop = outermost_loop (ss->loop); + + info = &ss->info->data.array; + + for (; ss; ss = ss->parent) + { + loop = ss->loop; + + for (n = 0; n < loop->dimen; n++) + { + dim = ss->dim[n]; + if (info->ref->u.ar.dimen_type[dim] != DIMEN_VECTOR + || loop->to[n] != NULL) + continue; + + /* Loop variable N indexes vector dimension DIM, and we don't + yet know the upper bound of loop variable N. Set it to the + difference between the vector's upper and lower bounds. */ + gcc_assert (loop->from[n] == gfc_index_zero_node); + gcc_assert (info->subscript[dim] + && info->subscript[dim]->info->type == GFC_SS_VECTOR); + + gfc_init_se (&se, NULL); + desc = info->subscript[dim]->info->data.array.descriptor; + zero = gfc_rank_cst[0]; + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + gfc_conv_descriptor_ubound_get (desc, zero), + gfc_conv_descriptor_lbound_get (desc, zero)); + tmp = gfc_evaluate_now (tmp, &outer_loop->pre); + loop->to[n] = tmp; + } + } +} + + +/* Tells whether a scalar argument to an elemental procedure is saved out + of a scalarization loop as a value or as a reference. */ + +bool +gfc_scalar_elemental_arg_saved_as_reference (gfc_ss_info * ss_info) +{ + if (ss_info->type != GFC_SS_REFERENCE) + return false; + + if (ss_info->data.scalar.needs_temporary) + return false; + + /* If the actual argument can be absent (in other words, it can + be a NULL reference), don't try to evaluate it; pass instead + the reference directly. */ + if (ss_info->can_be_null_ref) + return true; + + /* If the expression is of polymorphic type, it's actual size is not known, + so we avoid copying it anywhere. */ + if (ss_info->data.scalar.dummy_arg + && gfc_dummy_arg_get_typespec (*ss_info->data.scalar.dummy_arg).type + == BT_CLASS + && ss_info->expr->ts.type == BT_CLASS) + return true; + + /* If the expression is a data reference of aggregate type, + and the data reference is not used on the left hand side, + avoid a copy by saving a reference to the content. */ + if (!ss_info->data.scalar.needs_temporary + && (ss_info->expr->ts.type == BT_DERIVED + || ss_info->expr->ts.type == BT_CLASS) + && gfc_expr_is_variable (ss_info->expr)) + return true; + + /* Otherwise the expression is evaluated to a temporary variable before the + scalarization loop. */ + return false; +} + + +/* Add the pre and post chains for all the scalar expressions in a SS chain + to loop. This is called after the loop parameters have been calculated, + but before the actual scalarizing loops. */ + +static void +gfc_add_loop_ss_code (gfc_loopinfo * loop, gfc_ss * ss, bool subscript, + locus * where) +{ + gfc_loopinfo *nested_loop, *outer_loop; + gfc_se se; + gfc_ss_info *ss_info; + gfc_array_info *info; + gfc_expr *expr; + int n; + + /* Don't evaluate the arguments for realloc_lhs_loop_for_fcn_call; otherwise, + arguments could get evaluated multiple times. */ + if (ss->is_alloc_lhs) + return; + + outer_loop = outermost_loop (loop); + + /* TODO: This can generate bad code if there are ordering dependencies, + e.g., a callee allocated function and an unknown size constructor. */ + gcc_assert (ss != NULL); + + for (; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + gcc_assert (ss); + + /* Cross loop arrays are handled from within the most nested loop. */ + if (ss->nested_ss != NULL) + continue; + + ss_info = ss->info; + expr = ss_info->expr; + info = &ss_info->data.array; + + switch (ss_info->type) + { + case GFC_SS_SCALAR: + /* Scalar expression. Evaluate this now. This includes elemental + dimension indices, but not array section bounds. */ + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, expr); + gfc_add_block_to_block (&outer_loop->pre, &se.pre); + + if (expr->ts.type != BT_CHARACTER + && !gfc_is_alloc_class_scalar_function (expr)) + { + /* Move the evaluation of scalar expressions outside the + scalarization loop, except for WHERE assignments. */ + if (subscript) + se.expr = convert(gfc_array_index_type, se.expr); + if (!ss_info->where) + se.expr = gfc_evaluate_now (se.expr, &outer_loop->pre); + gfc_add_block_to_block (&outer_loop->pre, &se.post); + } + else + gfc_add_block_to_block (&outer_loop->post, &se.post); + + ss_info->data.scalar.value = se.expr; + ss_info->string_length = se.string_length; + break; + + case GFC_SS_REFERENCE: + /* Scalar argument to elemental procedure. */ + gfc_init_se (&se, NULL); + if (gfc_scalar_elemental_arg_saved_as_reference (ss_info)) + gfc_conv_expr_reference (&se, expr); + else + { + /* Evaluate the argument outside the loop and pass + a reference to the value. */ + gfc_conv_expr (&se, expr); + } + + /* Ensure that a pointer to the string is stored. */ + if (expr->ts.type == BT_CHARACTER) + gfc_conv_string_parameter (&se); + + gfc_add_block_to_block (&outer_loop->pre, &se.pre); + gfc_add_block_to_block (&outer_loop->post, &se.post); + if (gfc_is_class_scalar_expr (expr)) + /* This is necessary because the dynamic type will always be + large than the declared type. In consequence, assigning + the value to a temporary could segfault. + OOP-TODO: see if this is generally correct or is the value + has to be written to an allocated temporary, whose address + is passed via ss_info. */ + ss_info->data.scalar.value = se.expr; + else + ss_info->data.scalar.value = gfc_evaluate_now (se.expr, + &outer_loop->pre); + + ss_info->string_length = se.string_length; + break; + + case GFC_SS_SECTION: + /* Add the expressions for scalar and vector subscripts. */ + for (n = 0; n < GFC_MAX_DIMENSIONS; n++) + if (info->subscript[n]) + gfc_add_loop_ss_code (loop, info->subscript[n], true, where); + + set_vector_loop_bounds (ss); + break; + + case GFC_SS_VECTOR: + /* Get the vector's descriptor and store it in SS. */ + gfc_init_se (&se, NULL); + gfc_conv_expr_descriptor (&se, expr); + gfc_add_block_to_block (&outer_loop->pre, &se.pre); + gfc_add_block_to_block (&outer_loop->post, &se.post); + info->descriptor = se.expr; + break; + + case GFC_SS_INTRINSIC: + gfc_add_intrinsic_ss_code (loop, ss); + break; + + case GFC_SS_FUNCTION: + /* Array function return value. We call the function and save its + result in a temporary for use inside the loop. */ + gfc_init_se (&se, NULL); + se.loop = loop; + se.ss = ss; + if (gfc_is_class_array_function (expr)) + expr->must_finalize = 1; + gfc_conv_expr (&se, expr); + gfc_add_block_to_block (&outer_loop->pre, &se.pre); + gfc_add_block_to_block (&outer_loop->post, &se.post); + ss_info->string_length = se.string_length; + break; + + case GFC_SS_CONSTRUCTOR: + if (expr->ts.type == BT_CHARACTER + && ss_info->string_length == NULL + && expr->ts.u.cl + && expr->ts.u.cl->length + && expr->ts.u.cl->length->expr_type == EXPR_CONSTANT) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, expr->ts.u.cl->length, + gfc_charlen_type_node); + ss_info->string_length = se.expr; + gfc_add_block_to_block (&outer_loop->pre, &se.pre); + gfc_add_block_to_block (&outer_loop->post, &se.post); + } + trans_array_constructor (ss, where); + break; + + case GFC_SS_TEMP: + case GFC_SS_COMPONENT: + /* Do nothing. These are handled elsewhere. */ + break; + + default: + gcc_unreachable (); + } + } + + if (!subscript) + for (nested_loop = loop->nested; nested_loop; + nested_loop = nested_loop->next) + gfc_add_loop_ss_code (nested_loop, nested_loop->ss, subscript, where); +} + + +/* Translate expressions for the descriptor and data pointer of a SS. */ +/*GCC ARRAYS*/ + +static void +gfc_conv_ss_descriptor (stmtblock_t * block, gfc_ss * ss, int base) +{ + gfc_se se; + gfc_ss_info *ss_info; + gfc_array_info *info; + tree tmp; + + ss_info = ss->info; + info = &ss_info->data.array; + + /* Get the descriptor for the array to be scalarized. */ + gcc_assert (ss_info->expr->expr_type == EXPR_VARIABLE); + gfc_init_se (&se, NULL); + se.descriptor_only = 1; + gfc_conv_expr_lhs (&se, ss_info->expr); + gfc_add_block_to_block (block, &se.pre); + info->descriptor = se.expr; + ss_info->string_length = se.string_length; + + if (base) + { + if (ss_info->expr->ts.type == BT_CHARACTER && !ss_info->expr->ts.deferred + && ss_info->expr->ts.u.cl->length == NULL) + { + /* Emit a DECL_EXPR for the variable sized array type in + GFC_TYPE_ARRAY_DATAPTR_TYPE so the gimplification of its type + sizes works correctly. */ + tree arraytype = TREE_TYPE ( + GFC_TYPE_ARRAY_DATAPTR_TYPE (TREE_TYPE (info->descriptor))); + if (! TYPE_NAME (arraytype)) + TYPE_NAME (arraytype) = build_decl (UNKNOWN_LOCATION, TYPE_DECL, + NULL_TREE, arraytype); + gfc_add_expr_to_block (block, build1 (DECL_EXPR, arraytype, + TYPE_NAME (arraytype))); + } + /* Also the data pointer. */ + tmp = gfc_conv_array_data (se.expr); + /* If this is a variable or address or a class array, use it directly. + Otherwise we must evaluate it now to avoid breaking dependency + analysis by pulling the expressions for elemental array indices + inside the loop. */ + if (!(DECL_P (tmp) + || (TREE_CODE (tmp) == ADDR_EXPR + && DECL_P (TREE_OPERAND (tmp, 0))) + || (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se.expr)) + && TREE_CODE (se.expr) == COMPONENT_REF + && GFC_CLASS_TYPE_P (TREE_TYPE (TREE_OPERAND (se.expr, 0)))))) + tmp = gfc_evaluate_now (tmp, block); + info->data = tmp; + + tmp = gfc_conv_array_offset (se.expr); + info->offset = gfc_evaluate_now (tmp, block); + + /* Make absolutely sure that the saved_offset is indeed saved + so that the variable is still accessible after the loops + are translated. */ + info->saved_offset = info->offset; + } +} + + +/* Initialize a gfc_loopinfo structure. */ + +void +gfc_init_loopinfo (gfc_loopinfo * loop) +{ + int n; + + memset (loop, 0, sizeof (gfc_loopinfo)); + gfc_init_block (&loop->pre); + gfc_init_block (&loop->post); + + /* Initially scalarize in order and default to no loop reversal. */ + for (n = 0; n < GFC_MAX_DIMENSIONS; n++) + { + loop->order[n] = n; + loop->reverse[n] = GFC_INHIBIT_REVERSE; + } + + loop->ss = gfc_ss_terminator; +} + + +/* Copies the loop variable info to a gfc_se structure. Does not copy the SS + chain. */ + +void +gfc_copy_loopinfo_to_se (gfc_se * se, gfc_loopinfo * loop) +{ + se->loop = loop; +} + + +/* Return an expression for the data pointer of an array. */ + +tree +gfc_conv_array_data (tree descriptor) +{ + tree type; + + type = TREE_TYPE (descriptor); + if (GFC_ARRAY_TYPE_P (type)) + { + if (TREE_CODE (type) == POINTER_TYPE) + return descriptor; + else + { + /* Descriptorless arrays. */ + return gfc_build_addr_expr (NULL_TREE, descriptor); + } + } + else + return gfc_conv_descriptor_data_get (descriptor); +} + + +/* Return an expression for the base offset of an array. */ + +tree +gfc_conv_array_offset (tree descriptor) +{ + tree type; + + type = TREE_TYPE (descriptor); + if (GFC_ARRAY_TYPE_P (type)) + return GFC_TYPE_ARRAY_OFFSET (type); + else + return gfc_conv_descriptor_offset_get (descriptor); +} + + +/* Get an expression for the array stride. */ + +tree +gfc_conv_array_stride (tree descriptor, int dim) +{ + tree tmp; + tree type; + + type = TREE_TYPE (descriptor); + + /* For descriptorless arrays use the array size. */ + tmp = GFC_TYPE_ARRAY_STRIDE (type, dim); + if (tmp != NULL_TREE) + return tmp; + + tmp = gfc_conv_descriptor_stride_get (descriptor, gfc_rank_cst[dim]); + return tmp; +} + + +/* Like gfc_conv_array_stride, but for the lower bound. */ + +tree +gfc_conv_array_lbound (tree descriptor, int dim) +{ + tree tmp; + tree type; + + type = TREE_TYPE (descriptor); + + tmp = GFC_TYPE_ARRAY_LBOUND (type, dim); + if (tmp != NULL_TREE) + return tmp; + + tmp = gfc_conv_descriptor_lbound_get (descriptor, gfc_rank_cst[dim]); + return tmp; +} + + +/* Like gfc_conv_array_stride, but for the upper bound. */ + +tree +gfc_conv_array_ubound (tree descriptor, int dim) +{ + tree tmp; + tree type; + + type = TREE_TYPE (descriptor); + + tmp = GFC_TYPE_ARRAY_UBOUND (type, dim); + if (tmp != NULL_TREE) + return tmp; + + /* This should only ever happen when passing an assumed shape array + as an actual parameter. The value will never be used. */ + if (GFC_ARRAY_TYPE_P (TREE_TYPE (descriptor))) + return gfc_index_zero_node; + + tmp = gfc_conv_descriptor_ubound_get (descriptor, gfc_rank_cst[dim]); + return tmp; +} + + +/* Generate code to perform an array index bound check. */ + +static tree +trans_array_bound_check (gfc_se * se, gfc_ss *ss, tree index, int n, + locus * where, bool check_upper) +{ + tree fault; + tree tmp_lo, tmp_up; + tree descriptor; + char *msg; + const char * name = NULL; + + if (!(gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)) + return index; + + descriptor = ss->info->data.array.descriptor; + + index = gfc_evaluate_now (index, &se->pre); + + /* We find a name for the error message. */ + name = ss->info->expr->symtree->n.sym->name; + gcc_assert (name != NULL); + + if (VAR_P (descriptor)) + name = IDENTIFIER_POINTER (DECL_NAME (descriptor)); + + /* If upper bound is present, include both bounds in the error message. */ + if (check_upper) + { + tmp_lo = gfc_conv_array_lbound (descriptor, n); + tmp_up = gfc_conv_array_ubound (descriptor, n); + + if (name) + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "outside of expected range (%%ld:%%ld)", n+1, name); + else + msg = xasprintf ("Index '%%ld' of dimension %d " + "outside of expected range (%%ld:%%ld)", n+1); + + fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + index, tmp_lo); + gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, + fold_convert (long_integer_type_node, index), + fold_convert (long_integer_type_node, tmp_lo), + fold_convert (long_integer_type_node, tmp_up)); + fault = fold_build2_loc (input_location, GT_EXPR, logical_type_node, + index, tmp_up); + gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, + fold_convert (long_integer_type_node, index), + fold_convert (long_integer_type_node, tmp_lo), + fold_convert (long_integer_type_node, tmp_up)); + free (msg); + } + else + { + tmp_lo = gfc_conv_array_lbound (descriptor, n); + + if (name) + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "below lower bound of %%ld", n+1, name); + else + msg = xasprintf ("Index '%%ld' of dimension %d " + "below lower bound of %%ld", n+1); + + fault = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + index, tmp_lo); + gfc_trans_runtime_check (true, false, fault, &se->pre, where, msg, + fold_convert (long_integer_type_node, index), + fold_convert (long_integer_type_node, tmp_lo)); + free (msg); + } + + return index; +} + + +/* Return the offset for an index. Performs bound checking for elemental + dimensions. Single element references are processed separately. + DIM is the array dimension, I is the loop dimension. */ + +static tree +conv_array_index_offset (gfc_se * se, gfc_ss * ss, int dim, int i, + gfc_array_ref * ar, tree stride) +{ + gfc_array_info *info; + tree index; + tree desc; + tree data; + + info = &ss->info->data.array; + + /* Get the index into the array for this dimension. */ + if (ar) + { + gcc_assert (ar->type != AR_ELEMENT); + switch (ar->dimen_type[dim]) + { + case DIMEN_THIS_IMAGE: + gcc_unreachable (); + break; + case DIMEN_ELEMENT: + /* Elemental dimension. */ + gcc_assert (info->subscript[dim] + && info->subscript[dim]->info->type == GFC_SS_SCALAR); + /* We've already translated this value outside the loop. */ + index = info->subscript[dim]->info->data.scalar.value; + + index = trans_array_bound_check (se, ss, index, dim, &ar->where, + ar->as->type != AS_ASSUMED_SIZE + || dim < ar->dimen - 1); + break; + + case DIMEN_VECTOR: + gcc_assert (info && se->loop); + gcc_assert (info->subscript[dim] + && info->subscript[dim]->info->type == GFC_SS_VECTOR); + desc = info->subscript[dim]->info->data.array.descriptor; + + /* Get a zero-based index into the vector. */ + index = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + se->loop->loopvar[i], se->loop->from[i]); + + /* Multiply the index by the stride. */ + index = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + index, gfc_conv_array_stride (desc, 0)); + + /* Read the vector to get an index into info->descriptor. */ + data = build_fold_indirect_ref_loc (input_location, + gfc_conv_array_data (desc)); + index = gfc_build_array_ref (data, index, NULL); + index = gfc_evaluate_now (index, &se->pre); + index = fold_convert (gfc_array_index_type, index); + + /* Do any bounds checking on the final info->descriptor index. */ + index = trans_array_bound_check (se, ss, index, dim, &ar->where, + ar->as->type != AS_ASSUMED_SIZE + || dim < ar->dimen - 1); + break; + + case DIMEN_RANGE: + /* Scalarized dimension. */ + gcc_assert (info && se->loop); + + /* Multiply the loop variable by the stride and delta. */ + index = se->loop->loopvar[i]; + if (!integer_onep (info->stride[dim])) + index = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, index, + info->stride[dim]); + if (!integer_zerop (info->delta[dim])) + index = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, index, + info->delta[dim]); + break; + + default: + gcc_unreachable (); + } + } + else + { + /* Temporary array or derived type component. */ + gcc_assert (se->loop); + index = se->loop->loopvar[se->loop->order[i]]; + + /* Pointer functions can have stride[0] different from unity. + Use the stride returned by the function call and stored in + the descriptor for the temporary. */ + if (se->ss && se->ss->info->type == GFC_SS_FUNCTION + && se->ss->info->expr + && se->ss->info->expr->symtree + && se->ss->info->expr->symtree->n.sym->result + && se->ss->info->expr->symtree->n.sym->result->attr.pointer) + stride = gfc_conv_descriptor_stride_get (info->descriptor, + gfc_rank_cst[dim]); + + if (info->delta[dim] && !integer_zerop (info->delta[dim])) + index = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, index, info->delta[dim]); + } + + /* Multiply by the stride. */ + if (stride != NULL && !integer_onep (stride)) + index = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + index, stride); + + return index; +} + + +/* Build a scalarized array reference using the vptr 'size'. */ + +static bool +build_class_array_ref (gfc_se *se, tree base, tree index) +{ + tree size; + tree decl = NULL_TREE; + tree tmp; + gfc_expr *expr = se->ss->info->expr; + gfc_expr *class_expr; + gfc_typespec *ts; + gfc_symbol *sym; + + tmp = !VAR_P (base) ? gfc_get_class_from_expr (base) : NULL_TREE; + + if (tmp != NULL_TREE) + decl = tmp; + else + { + /* The base expression does not contain a class component, either + because it is a temporary array or array descriptor. Class + array functions are correctly resolved above. */ + if (!expr + || (expr->ts.type != BT_CLASS + && !gfc_is_class_array_ref (expr, NULL))) + return false; + + /* Obtain the expression for the class entity or component that is + followed by an array reference, which is not an element, so that + the span of the array can be obtained. */ + class_expr = gfc_find_and_cut_at_last_class_ref (expr, false, &ts); + + if (!ts) + return false; + + sym = (!class_expr && expr) ? expr->symtree->n.sym : NULL; + if (sym && sym->attr.function + && sym == sym->result + && sym->backend_decl == current_function_decl) + /* The temporary is the data field of the class data component + of the current function. */ + decl = gfc_get_fake_result_decl (sym, 0); + else if (sym) + { + if (decl == NULL_TREE) + decl = expr->symtree->n.sym->backend_decl; + /* For class arrays the tree containing the class is stored in + GFC_DECL_SAVED_DESCRIPTOR of the sym's backend_decl. + For all others it's sym's backend_decl directly. */ + if (DECL_LANG_SPECIFIC (decl) && GFC_DECL_SAVED_DESCRIPTOR (decl)) + decl = GFC_DECL_SAVED_DESCRIPTOR (decl); + } + else + decl = gfc_get_class_from_gfc_expr (class_expr); + + if (POINTER_TYPE_P (TREE_TYPE (decl))) + decl = build_fold_indirect_ref_loc (input_location, decl); + + if (!GFC_CLASS_TYPE_P (TREE_TYPE (decl))) + return false; + } + + se->class_vptr = gfc_evaluate_now (gfc_class_vptr_get (decl), &se->pre); + + size = gfc_class_vtab_size_get (decl); + /* For unlimited polymorphic entities then _len component needs to be + multiplied with the size. */ + size = gfc_resize_class_size_with_len (&se->pre, decl, size); + size = fold_convert (TREE_TYPE (index), size); + + /* Return the element in the se expression. */ + se->expr = gfc_build_spanned_array_ref (base, index, size); + return true; +} + + +/* Build a scalarized reference to an array. */ + +static void +gfc_conv_scalarized_array_ref (gfc_se * se, gfc_array_ref * ar) +{ + gfc_array_info *info; + tree decl = NULL_TREE; + tree index; + tree base; + gfc_ss *ss; + gfc_expr *expr; + int n; + + ss = se->ss; + expr = ss->info->expr; + info = &ss->info->data.array; + if (ar) + n = se->loop->order[0]; + else + n = 0; + + index = conv_array_index_offset (se, ss, ss->dim[n], n, ar, info->stride0); + /* Add the offset for this dimension to the stored offset for all other + dimensions. */ + if (info->offset && !integer_zerop (info->offset)) + index = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + index, info->offset); + + base = build_fold_indirect_ref_loc (input_location, info->data); + + /* Use the vptr 'size' field to access the element of a class array. */ + if (build_class_array_ref (se, base, index)) + return; + + if (get_CFI_desc (NULL, expr, &decl, ar)) + decl = build_fold_indirect_ref_loc (input_location, decl); + + /* A pointer array component can be detected from its field decl. Fix + the descriptor, mark the resulting variable decl and pass it to + gfc_build_array_ref. */ + if (is_pointer_array (info->descriptor) + || (expr && expr->ts.deferred && info->descriptor + && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (info->descriptor)))) + { + if (TREE_CODE (info->descriptor) == COMPONENT_REF) + decl = info->descriptor; + else if (TREE_CODE (info->descriptor) == INDIRECT_REF) + decl = TREE_OPERAND (info->descriptor, 0); + + if (decl == NULL_TREE) + decl = info->descriptor; + } + + se->expr = gfc_build_array_ref (base, index, decl); +} + + +/* Translate access of temporary array. */ + +void +gfc_conv_tmp_array_ref (gfc_se * se) +{ + se->string_length = se->ss->info->string_length; + gfc_conv_scalarized_array_ref (se, NULL); + gfc_advance_se_ss_chain (se); +} + +/* Add T to the offset pair *OFFSET, *CST_OFFSET. */ + +static void +add_to_offset (tree *cst_offset, tree *offset, tree t) +{ + if (TREE_CODE (t) == INTEGER_CST) + *cst_offset = int_const_binop (PLUS_EXPR, *cst_offset, t); + else + { + if (!integer_zerop (*offset)) + *offset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, *offset, t); + else + *offset = t; + } +} + + +static tree +build_array_ref (tree desc, tree offset, tree decl, tree vptr) +{ + tree tmp; + tree type; + tree cdesc; + + /* For class arrays the class declaration is stored in the saved + descriptor. */ + if (INDIRECT_REF_P (desc) + && DECL_LANG_SPECIFIC (TREE_OPERAND (desc, 0)) + && GFC_DECL_SAVED_DESCRIPTOR (TREE_OPERAND (desc, 0))) + cdesc = gfc_class_data_get (GFC_DECL_SAVED_DESCRIPTOR ( + TREE_OPERAND (desc, 0))); + else + cdesc = desc; + + /* Class container types do not always have the GFC_CLASS_TYPE_P + but the canonical type does. */ + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (cdesc)) + && TREE_CODE (cdesc) == COMPONENT_REF) + { + type = TREE_TYPE (TREE_OPERAND (cdesc, 0)); + if (TYPE_CANONICAL (type) + && GFC_CLASS_TYPE_P (TYPE_CANONICAL (type))) + vptr = gfc_class_vptr_get (TREE_OPERAND (cdesc, 0)); + } + + tmp = gfc_conv_array_data (desc); + tmp = build_fold_indirect_ref_loc (input_location, tmp); + tmp = gfc_build_array_ref (tmp, offset, decl, vptr); + return tmp; +} + + +/* Build an array reference. se->expr already holds the array descriptor. + This should be either a variable, indirect variable reference or component + reference. For arrays which do not have a descriptor, se->expr will be + the data pointer. + a(i, j, k) = base[offset + i * stride[0] + j * stride[1] + k * stride[2]]*/ + +void +gfc_conv_array_ref (gfc_se * se, gfc_array_ref * ar, gfc_expr *expr, + locus * where) +{ + int n; + tree offset, cst_offset; + tree tmp; + tree stride; + tree decl = NULL_TREE; + gfc_se indexse; + gfc_se tmpse; + gfc_symbol * sym = expr->symtree->n.sym; + char *var_name = NULL; + + if (ar->dimen == 0) + { + gcc_assert (ar->codimen || sym->attr.select_rank_temporary + || (ar->as && ar->as->corank)); + + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) + se->expr = build_fold_indirect_ref (gfc_conv_array_data (se->expr)); + else + { + if (GFC_ARRAY_TYPE_P (TREE_TYPE (se->expr)) + && TREE_CODE (TREE_TYPE (se->expr)) == POINTER_TYPE) + se->expr = build_fold_indirect_ref_loc (input_location, se->expr); + + /* Use the actual tree type and not the wrapped coarray. */ + if (!se->want_pointer) + se->expr = fold_convert (TYPE_MAIN_VARIANT (TREE_TYPE (se->expr)), + se->expr); + } + + return; + } + + /* Handle scalarized references separately. */ + if (ar->type != AR_ELEMENT) + { + gfc_conv_scalarized_array_ref (se, ar); + gfc_advance_se_ss_chain (se); + return; + } + + if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + size_t len; + gfc_ref *ref; + + len = strlen (sym->name) + 1; + for (ref = expr->ref; ref; ref = ref->next) + { + if (ref->type == REF_ARRAY && &ref->u.ar == ar) + break; + if (ref->type == REF_COMPONENT) + len += 2 + strlen (ref->u.c.component->name); + } + + var_name = XALLOCAVEC (char, len); + strcpy (var_name, sym->name); + + for (ref = expr->ref; ref; ref = ref->next) + { + if (ref->type == REF_ARRAY && &ref->u.ar == ar) + break; + if (ref->type == REF_COMPONENT) + { + strcat (var_name, "%%"); + strcat (var_name, ref->u.c.component->name); + } + } + } + + decl = se->expr; + if (IS_CLASS_ARRAY (sym) && sym->attr.dummy && ar->as->type != AS_DEFERRED) + decl = sym->backend_decl; + + cst_offset = offset = gfc_index_zero_node; + add_to_offset (&cst_offset, &offset, gfc_conv_array_offset (decl)); + + /* Calculate the offsets from all the dimensions. Make sure to associate + the final offset so that we form a chain of loop invariant summands. */ + for (n = ar->dimen - 1; n >= 0; n--) + { + /* Calculate the index for this dimension. */ + gfc_init_se (&indexse, se); + gfc_conv_expr_type (&indexse, ar->start[n], gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &indexse.pre); + + if ((gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) && ! expr->no_bounds_check) + { + /* Check array bounds. */ + tree cond; + char *msg; + + /* Evaluate the indexse.expr only once. */ + indexse.expr = save_expr (indexse.expr); + + /* Lower bound. */ + tmp = gfc_conv_array_lbound (decl, n); + if (sym->attr.temporary) + { + gfc_init_se (&tmpse, se); + gfc_conv_expr_type (&tmpse, ar->as->lower[n], + gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + tmp = tmpse.expr; + } + + cond = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + indexse.expr, tmp); + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "below lower bound of %%ld", n+1, var_name); + gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg, + fold_convert (long_integer_type_node, + indexse.expr), + fold_convert (long_integer_type_node, tmp)); + free (msg); + + /* Upper bound, but not for the last dimension of assumed-size + arrays. */ + if (n < ar->dimen - 1 || ar->as->type != AS_ASSUMED_SIZE) + { + tmp = gfc_conv_array_ubound (decl, n); + if (sym->attr.temporary) + { + gfc_init_se (&tmpse, se); + gfc_conv_expr_type (&tmpse, ar->as->upper[n], + gfc_array_index_type); + gfc_add_block_to_block (&se->pre, &tmpse.pre); + tmp = tmpse.expr; + } + + cond = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, indexse.expr, tmp); + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "above upper bound of %%ld", n+1, var_name); + gfc_trans_runtime_check (true, false, cond, &se->pre, where, msg, + fold_convert (long_integer_type_node, + indexse.expr), + fold_convert (long_integer_type_node, tmp)); + free (msg); + } + } + + /* Multiply the index by the stride. */ + stride = gfc_conv_array_stride (decl, n); + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + indexse.expr, stride); + + /* And add it to the total. */ + add_to_offset (&cst_offset, &offset, tmp); + } + + if (!integer_zerop (cst_offset)) + offset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, offset, cst_offset); + + /* A pointer array component can be detected from its field decl. Fix + the descriptor, mark the resulting variable decl and pass it to + build_array_ref. */ + decl = NULL_TREE; + if (get_CFI_desc (sym, expr, &decl, ar)) + decl = build_fold_indirect_ref_loc (input_location, decl); + if (!expr->ts.deferred && !sym->attr.codimension + && is_pointer_array (se->expr)) + { + if (TREE_CODE (se->expr) == COMPONENT_REF) + decl = se->expr; + else if (TREE_CODE (se->expr) == INDIRECT_REF) + decl = TREE_OPERAND (se->expr, 0); + else + decl = se->expr; + } + else if (expr->ts.deferred + || (sym->ts.type == BT_CHARACTER + && sym->attr.select_type_temporary)) + { + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (se->expr))) + { + decl = se->expr; + if (TREE_CODE (decl) == INDIRECT_REF) + decl = TREE_OPERAND (decl, 0); + } + else + decl = sym->backend_decl; + } + else if (sym->ts.type == BT_CLASS) + { + if (UNLIMITED_POLY (sym)) + { + gfc_expr *class_expr = gfc_find_and_cut_at_last_class_ref (expr); + gfc_init_se (&tmpse, NULL); + gfc_conv_expr (&tmpse, class_expr); + if (!se->class_vptr) + se->class_vptr = gfc_class_vptr_get (tmpse.expr); + gfc_free_expr (class_expr); + decl = tmpse.expr; + } + else + decl = NULL_TREE; + } + + se->expr = build_array_ref (se->expr, offset, decl, se->class_vptr); +} + + +/* Add the offset corresponding to array's ARRAY_DIM dimension and loop's + LOOP_DIM dimension (if any) to array's offset. */ + +static void +add_array_offset (stmtblock_t *pblock, gfc_loopinfo *loop, gfc_ss *ss, + gfc_array_ref *ar, int array_dim, int loop_dim) +{ + gfc_se se; + gfc_array_info *info; + tree stride, index; + + info = &ss->info->data.array; + + gfc_init_se (&se, NULL); + se.loop = loop; + se.expr = info->descriptor; + stride = gfc_conv_array_stride (info->descriptor, array_dim); + index = conv_array_index_offset (&se, ss, array_dim, loop_dim, ar, stride); + gfc_add_block_to_block (pblock, &se.pre); + + info->offset = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + info->offset, index); + info->offset = gfc_evaluate_now (info->offset, pblock); +} + + +/* Generate the code to be executed immediately before entering a + scalarization loop. */ + +static void +gfc_trans_preloop_setup (gfc_loopinfo * loop, int dim, int flag, + stmtblock_t * pblock) +{ + tree stride; + gfc_ss_info *ss_info; + gfc_array_info *info; + gfc_ss_type ss_type; + gfc_ss *ss, *pss; + gfc_loopinfo *ploop; + gfc_array_ref *ar; + int i; + + /* This code will be executed before entering the scalarization loop + for this dimension. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + ss_info = ss->info; + + if ((ss_info->useflags & flag) == 0) + continue; + + ss_type = ss_info->type; + if (ss_type != GFC_SS_SECTION + && ss_type != GFC_SS_FUNCTION + && ss_type != GFC_SS_CONSTRUCTOR + && ss_type != GFC_SS_COMPONENT) + continue; + + info = &ss_info->data.array; + + gcc_assert (dim < ss->dimen); + gcc_assert (ss->dimen == loop->dimen); + + if (info->ref) + ar = &info->ref->u.ar; + else + ar = NULL; + + if (dim == loop->dimen - 1 && loop->parent != NULL) + { + /* If we are in the outermost dimension of this loop, the previous + dimension shall be in the parent loop. */ + gcc_assert (ss->parent != NULL); + + pss = ss->parent; + ploop = loop->parent; + + /* ss and ss->parent are about the same array. */ + gcc_assert (ss_info == pss->info); + } + else + { + ploop = loop; + pss = ss; + } + + if (dim == loop->dimen - 1) + i = 0; + else + i = dim + 1; + + /* For the time being, there is no loop reordering. */ + gcc_assert (i == ploop->order[i]); + i = ploop->order[i]; + + if (dim == loop->dimen - 1 && loop->parent == NULL) + { + stride = gfc_conv_array_stride (info->descriptor, + innermost_ss (ss)->dim[i]); + + /* Calculate the stride of the innermost loop. Hopefully this will + allow the backend optimizers to do their stuff more effectively. + */ + info->stride0 = gfc_evaluate_now (stride, pblock); + + /* For the outermost loop calculate the offset due to any + elemental dimensions. It will have been initialized with the + base offset of the array. */ + if (info->ref) + { + for (i = 0; i < ar->dimen; i++) + { + if (ar->dimen_type[i] != DIMEN_ELEMENT) + continue; + + add_array_offset (pblock, loop, ss, ar, i, /* unused */ -1); + } + } + } + else + /* Add the offset for the previous loop dimension. */ + add_array_offset (pblock, ploop, ss, ar, pss->dim[i], i); + + /* Remember this offset for the second loop. */ + if (dim == loop->temp_dim - 1 && loop->parent == NULL) + info->saved_offset = info->offset; + } +} + + +/* Start a scalarized expression. Creates a scope and declares loop + variables. */ + +void +gfc_start_scalarized_body (gfc_loopinfo * loop, stmtblock_t * pbody) +{ + int dim; + int n; + int flags; + + gcc_assert (!loop->array_parameter); + + for (dim = loop->dimen - 1; dim >= 0; dim--) + { + n = loop->order[dim]; + + gfc_start_block (&loop->code[n]); + + /* Create the loop variable. */ + loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "S"); + + if (dim < loop->temp_dim) + flags = 3; + else + flags = 1; + /* Calculate values that will be constant within this loop. */ + gfc_trans_preloop_setup (loop, dim, flags, &loop->code[n]); + } + gfc_start_block (pbody); +} + + +/* Generates the actual loop code for a scalarization loop. */ + +static void +gfc_trans_scalarized_loop_end (gfc_loopinfo * loop, int n, + stmtblock_t * pbody) +{ + stmtblock_t block; + tree cond; + tree tmp; + tree loopbody; + tree exit_label; + tree stmt; + tree init; + tree incr; + + if ((ompws_flags & (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS + | OMPWS_SCALARIZER_BODY)) + == (OMPWS_WORKSHARE_FLAG | OMPWS_SCALARIZER_WS) + && n == loop->dimen - 1) + { + /* We create an OMP_FOR construct for the outermost scalarized loop. */ + init = make_tree_vec (1); + cond = make_tree_vec (1); + incr = make_tree_vec (1); + + /* Cycle statement is implemented with a goto. Exit statement must not + be present for this loop. */ + exit_label = gfc_build_label_decl (NULL_TREE); + TREE_USED (exit_label) = 1; + + /* Label for cycle statements (if needed). */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (pbody, tmp); + + stmt = make_node (OMP_FOR); + + TREE_TYPE (stmt) = void_type_node; + OMP_FOR_BODY (stmt) = loopbody = gfc_finish_block (pbody); + + OMP_FOR_CLAUSES (stmt) = build_omp_clause (input_location, + OMP_CLAUSE_SCHEDULE); + OMP_CLAUSE_SCHEDULE_KIND (OMP_FOR_CLAUSES (stmt)) + = OMP_CLAUSE_SCHEDULE_STATIC; + if (ompws_flags & OMPWS_NOWAIT) + OMP_CLAUSE_CHAIN (OMP_FOR_CLAUSES (stmt)) + = build_omp_clause (input_location, OMP_CLAUSE_NOWAIT); + + /* Initialize the loopvar. */ + TREE_VEC_ELT (init, 0) = build2_v (MODIFY_EXPR, loop->loopvar[n], + loop->from[n]); + OMP_FOR_INIT (stmt) = init; + /* The exit condition. */ + TREE_VEC_ELT (cond, 0) = build2_loc (input_location, LE_EXPR, + logical_type_node, + loop->loopvar[n], loop->to[n]); + SET_EXPR_LOCATION (TREE_VEC_ELT (cond, 0), input_location); + OMP_FOR_COND (stmt) = cond; + /* Increment the loopvar. */ + tmp = build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + loop->loopvar[n], gfc_index_one_node); + TREE_VEC_ELT (incr, 0) = fold_build2_loc (input_location, MODIFY_EXPR, + void_type_node, loop->loopvar[n], tmp); + OMP_FOR_INCR (stmt) = incr; + + ompws_flags &= ~OMPWS_CURR_SINGLEUNIT; + gfc_add_expr_to_block (&loop->code[n], stmt); + } + else + { + bool reverse_loop = (loop->reverse[n] == GFC_REVERSE_SET) + && (loop->temp_ss == NULL); + + loopbody = gfc_finish_block (pbody); + + if (reverse_loop) + std::swap (loop->from[n], loop->to[n]); + + /* Initialize the loopvar. */ + if (loop->loopvar[n] != loop->from[n]) + gfc_add_modify (&loop->code[n], loop->loopvar[n], loop->from[n]); + + exit_label = gfc_build_label_decl (NULL_TREE); + + /* Generate the loop body. */ + gfc_init_block (&block); + + /* The exit condition. */ + cond = fold_build2_loc (input_location, reverse_loop ? LT_EXPR : GT_EXPR, + logical_type_node, loop->loopvar[n], loop->to[n]); + tmp = build1_v (GOTO_EXPR, exit_label); + TREE_USED (exit_label) = 1; + tmp = build3_v (COND_EXPR, cond, tmp, build_empty_stmt (input_location)); + gfc_add_expr_to_block (&block, tmp); + + /* The main body. */ + gfc_add_expr_to_block (&block, loopbody); + + /* Increment the loopvar. */ + tmp = fold_build2_loc (input_location, + reverse_loop ? MINUS_EXPR : PLUS_EXPR, + gfc_array_index_type, loop->loopvar[n], + gfc_index_one_node); + + gfc_add_modify (&block, loop->loopvar[n], tmp); + + /* Build the loop. */ + tmp = gfc_finish_block (&block); + tmp = build1_v (LOOP_EXPR, tmp); + gfc_add_expr_to_block (&loop->code[n], tmp); + + /* Add the exit label. */ + tmp = build1_v (LABEL_EXPR, exit_label); + gfc_add_expr_to_block (&loop->code[n], tmp); + } + +} + + +/* Finishes and generates the loops for a scalarized expression. */ + +void +gfc_trans_scalarizing_loops (gfc_loopinfo * loop, stmtblock_t * body) +{ + int dim; + int n; + gfc_ss *ss; + stmtblock_t *pblock; + tree tmp; + + pblock = body; + /* Generate the loops. */ + for (dim = 0; dim < loop->dimen; dim++) + { + n = loop->order[dim]; + gfc_trans_scalarized_loop_end (loop, n, pblock); + loop->loopvar[n] = NULL_TREE; + pblock = &loop->code[n]; + } + + tmp = gfc_finish_block (pblock); + gfc_add_expr_to_block (&loop->pre, tmp); + + /* Clear all the used flags. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + if (ss->parent == NULL) + ss->info->useflags = 0; +} + + +/* Finish the main body of a scalarized expression, and start the secondary + copying body. */ + +void +gfc_trans_scalarized_loop_boundary (gfc_loopinfo * loop, stmtblock_t * body) +{ + int dim; + int n; + stmtblock_t *pblock; + gfc_ss *ss; + + pblock = body; + /* We finish as many loops as are used by the temporary. */ + for (dim = 0; dim < loop->temp_dim - 1; dim++) + { + n = loop->order[dim]; + gfc_trans_scalarized_loop_end (loop, n, pblock); + loop->loopvar[n] = NULL_TREE; + pblock = &loop->code[n]; + } + + /* We don't want to finish the outermost loop entirely. */ + n = loop->order[loop->temp_dim - 1]; + gfc_trans_scalarized_loop_end (loop, n, pblock); + + /* Restore the initial offsets. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + gfc_ss_type ss_type; + gfc_ss_info *ss_info; + + ss_info = ss->info; + + if ((ss_info->useflags & 2) == 0) + continue; + + ss_type = ss_info->type; + if (ss_type != GFC_SS_SECTION + && ss_type != GFC_SS_FUNCTION + && ss_type != GFC_SS_CONSTRUCTOR + && ss_type != GFC_SS_COMPONENT) + continue; + + ss_info->data.array.offset = ss_info->data.array.saved_offset; + } + + /* Restart all the inner loops we just finished. */ + for (dim = loop->temp_dim - 2; dim >= 0; dim--) + { + n = loop->order[dim]; + + gfc_start_block (&loop->code[n]); + + loop->loopvar[n] = gfc_create_var (gfc_array_index_type, "Q"); + + gfc_trans_preloop_setup (loop, dim, 2, &loop->code[n]); + } + + /* Start a block for the secondary copying code. */ + gfc_start_block (body); +} + + +/* Precalculate (either lower or upper) bound of an array section. + BLOCK: Block in which the (pre)calculation code will go. + BOUNDS[DIM]: Where the bound value will be stored once evaluated. + VALUES[DIM]: Specified bound (NULL <=> unspecified). + DESC: Array descriptor from which the bound will be picked if unspecified + (either lower or upper bound according to LBOUND). */ + +static void +evaluate_bound (stmtblock_t *block, tree *bounds, gfc_expr ** values, + tree desc, int dim, bool lbound, bool deferred) +{ + gfc_se se; + gfc_expr * input_val = values[dim]; + tree *output = &bounds[dim]; + + + if (input_val) + { + /* Specified section bound. */ + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, input_val, gfc_array_index_type); + gfc_add_block_to_block (block, &se.pre); + *output = se.expr; + } + else if (deferred && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) + { + /* The gfc_conv_array_lbound () routine returns a constant zero for + deferred length arrays, which in the scalarizer wreaks havoc, when + copying to a (newly allocated) one-based array. + Keep returning the actual result in sync for both bounds. */ + *output = lbound ? gfc_conv_descriptor_lbound_get (desc, + gfc_rank_cst[dim]): + gfc_conv_descriptor_ubound_get (desc, + gfc_rank_cst[dim]); + } + else + { + /* No specific bound specified so use the bound of the array. */ + *output = lbound ? gfc_conv_array_lbound (desc, dim) : + gfc_conv_array_ubound (desc, dim); + } + *output = gfc_evaluate_now (*output, block); +} + + +/* Calculate the lower bound of an array section. */ + +static void +gfc_conv_section_startstride (stmtblock_t * block, gfc_ss * ss, int dim) +{ + gfc_expr *stride = NULL; + tree desc; + gfc_se se; + gfc_array_info *info; + gfc_array_ref *ar; + + gcc_assert (ss->info->type == GFC_SS_SECTION); + + info = &ss->info->data.array; + ar = &info->ref->u.ar; + + if (ar->dimen_type[dim] == DIMEN_VECTOR) + { + /* We use a zero-based index to access the vector. */ + info->start[dim] = gfc_index_zero_node; + info->end[dim] = NULL; + info->stride[dim] = gfc_index_one_node; + return; + } + + gcc_assert (ar->dimen_type[dim] == DIMEN_RANGE + || ar->dimen_type[dim] == DIMEN_THIS_IMAGE); + desc = info->descriptor; + stride = ar->stride[dim]; + + + /* Calculate the start of the range. For vector subscripts this will + be the range of the vector. */ + evaluate_bound (block, info->start, ar->start, desc, dim, true, + ar->as->type == AS_DEFERRED); + + /* Similarly calculate the end. Although this is not used in the + scalarizer, it is needed when checking bounds and where the end + is an expression with side-effects. */ + evaluate_bound (block, info->end, ar->end, desc, dim, false, + ar->as->type == AS_DEFERRED); + + + /* Calculate the stride. */ + if (stride == NULL) + info->stride[dim] = gfc_index_one_node; + else + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, stride, gfc_array_index_type); + gfc_add_block_to_block (block, &se.pre); + info->stride[dim] = gfc_evaluate_now (se.expr, block); + } +} + + +/* Calculates the range start and stride for a SS chain. Also gets the + descriptor and data pointer. The range of vector subscripts is the size + of the vector. Array bounds are also checked. */ + +void +gfc_conv_ss_startstride (gfc_loopinfo * loop) +{ + int n; + tree tmp; + gfc_ss *ss; + tree desc; + + gfc_loopinfo * const outer_loop = outermost_loop (loop); + + loop->dimen = 0; + /* Determine the rank of the loop. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + switch (ss->info->type) + { + case GFC_SS_SECTION: + case GFC_SS_CONSTRUCTOR: + case GFC_SS_FUNCTION: + case GFC_SS_COMPONENT: + loop->dimen = ss->dimen; + goto done; + + /* As usual, lbound and ubound are exceptions!. */ + case GFC_SS_INTRINSIC: + switch (ss->info->expr->value.function.isym->id) + { + case GFC_ISYM_LBOUND: + case GFC_ISYM_UBOUND: + case GFC_ISYM_LCOBOUND: + case GFC_ISYM_UCOBOUND: + case GFC_ISYM_SHAPE: + case GFC_ISYM_THIS_IMAGE: + loop->dimen = ss->dimen; + goto done; + + default: + break; + } + + default: + break; + } + } + + /* We should have determined the rank of the expression by now. If + not, that's bad news. */ + gcc_unreachable (); + +done: + /* Loop over all the SS in the chain. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + gfc_ss_info *ss_info; + gfc_array_info *info; + gfc_expr *expr; + + ss_info = ss->info; + expr = ss_info->expr; + info = &ss_info->data.array; + + if (expr && expr->shape && !info->shape) + info->shape = expr->shape; + + switch (ss_info->type) + { + case GFC_SS_SECTION: + /* Get the descriptor for the array. If it is a cross loops array, + we got the descriptor already in the outermost loop. */ + if (ss->parent == NULL) + gfc_conv_ss_descriptor (&outer_loop->pre, ss, + !loop->array_parameter); + + for (n = 0; n < ss->dimen; n++) + gfc_conv_section_startstride (&outer_loop->pre, ss, ss->dim[n]); + break; + + case GFC_SS_INTRINSIC: + switch (expr->value.function.isym->id) + { + /* Fall through to supply start and stride. */ + case GFC_ISYM_LBOUND: + case GFC_ISYM_UBOUND: + /* This is the variant without DIM=... */ + gcc_assert (expr->value.function.actual->next->expr == NULL); + /* Fall through. */ + + case GFC_ISYM_SHAPE: + { + gfc_expr *arg; + + arg = expr->value.function.actual->expr; + if (arg->rank == -1) + { + gfc_se se; + tree rank, tmp; + + /* The rank (hence the return value's shape) is unknown, + we have to retrieve it. */ + gfc_init_se (&se, NULL); + se.descriptor_only = 1; + gfc_conv_expr (&se, arg); + /* This is a bare variable, so there is no preliminary + or cleanup code. */ + gcc_assert (se.pre.head == NULL_TREE + && se.post.head == NULL_TREE); + rank = gfc_conv_descriptor_rank (se.expr); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + fold_convert (gfc_array_index_type, + rank), + gfc_index_one_node); + info->end[0] = gfc_evaluate_now (tmp, &outer_loop->pre); + info->start[0] = gfc_index_zero_node; + info->stride[0] = gfc_index_one_node; + continue; + } + /* Otherwise fall through GFC_SS_FUNCTION. */ + gcc_fallthrough (); + } + case GFC_ISYM_LCOBOUND: + case GFC_ISYM_UCOBOUND: + case GFC_ISYM_THIS_IMAGE: + break; + + default: + continue; + } + + /* FALLTHRU */ + case GFC_SS_CONSTRUCTOR: + case GFC_SS_FUNCTION: + for (n = 0; n < ss->dimen; n++) + { + int dim = ss->dim[n]; + + info->start[dim] = gfc_index_zero_node; + info->end[dim] = gfc_index_zero_node; + info->stride[dim] = gfc_index_one_node; + } + break; + + default: + break; + } + } + + /* The rest is just runtime bounds checking. */ + if (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS) + { + stmtblock_t block; + tree lbound, ubound; + tree end; + tree size[GFC_MAX_DIMENSIONS]; + tree stride_pos, stride_neg, non_zerosized, tmp2, tmp3; + gfc_array_info *info; + char *msg; + int dim; + + gfc_start_block (&block); + + for (n = 0; n < loop->dimen; n++) + size[n] = NULL_TREE; + + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + stmtblock_t inner; + gfc_ss_info *ss_info; + gfc_expr *expr; + locus *expr_loc; + const char *expr_name; + + ss_info = ss->info; + if (ss_info->type != GFC_SS_SECTION) + continue; + + /* Catch allocatable lhs in f2003. */ + if (flag_realloc_lhs && ss->no_bounds_check) + continue; + + expr = ss_info->expr; + expr_loc = &expr->where; + expr_name = expr->symtree->name; + + gfc_start_block (&inner); + + /* TODO: range checking for mapped dimensions. */ + info = &ss_info->data.array; + + /* This code only checks ranges. Elemental and vector + dimensions are checked later. */ + for (n = 0; n < loop->dimen; n++) + { + bool check_upper; + + dim = ss->dim[n]; + if (info->ref->u.ar.dimen_type[dim] != DIMEN_RANGE) + continue; + + if (dim == info->ref->u.ar.dimen - 1 + && info->ref->u.ar.as->type == AS_ASSUMED_SIZE) + check_upper = false; + else + check_upper = true; + + /* Zero stride is not allowed. */ + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + info->stride[dim], gfc_index_zero_node); + msg = xasprintf ("Zero stride is not allowed, for dimension %d " + "of array '%s'", dim + 1, expr_name); + gfc_trans_runtime_check (true, false, tmp, &inner, + expr_loc, msg); + free (msg); + + desc = info->descriptor; + + /* This is the run-time equivalent of resolve.c's + check_dimension(). The logical is more readable there + than it is here, with all the trees. */ + lbound = gfc_conv_array_lbound (desc, dim); + end = info->end[dim]; + if (check_upper) + ubound = gfc_conv_array_ubound (desc, dim); + else + ubound = NULL; + + /* non_zerosized is true when the selected range is not + empty. */ + stride_pos = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, info->stride[dim], + gfc_index_zero_node); + tmp = fold_build2_loc (input_location, LE_EXPR, logical_type_node, + info->start[dim], end); + stride_pos = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, stride_pos, tmp); + + stride_neg = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, + info->stride[dim], gfc_index_zero_node); + tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + info->start[dim], end); + stride_neg = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + stride_neg, tmp); + non_zerosized = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, + stride_pos, stride_neg); + + /* Check the start of the range against the lower and upper + bounds of the array, if the range is not empty. + If upper bound is present, include both bounds in the + error message. */ + if (check_upper) + { + tmp = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, + info->start[dim], lbound); + tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + non_zerosized, tmp); + tmp2 = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, + info->start[dim], ubound); + tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + non_zerosized, tmp2); + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "outside of expected range (%%ld:%%ld)", + dim + 1, expr_name); + gfc_trans_runtime_check (true, false, tmp, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, info->start[dim]), + fold_convert (long_integer_type_node, lbound), + fold_convert (long_integer_type_node, ubound)); + gfc_trans_runtime_check (true, false, tmp2, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, info->start[dim]), + fold_convert (long_integer_type_node, lbound), + fold_convert (long_integer_type_node, ubound)); + free (msg); + } + else + { + tmp = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, + info->start[dim], lbound); + tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, non_zerosized, tmp); + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "below lower bound of %%ld", + dim + 1, expr_name); + gfc_trans_runtime_check (true, false, tmp, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, info->start[dim]), + fold_convert (long_integer_type_node, lbound)); + free (msg); + } + + /* Compute the last element of the range, which is not + necessarily "end" (think 0:5:3, which doesn't contain 5) + and check it against both lower and upper bounds. */ + + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, end, + info->start[dim]); + tmp = fold_build2_loc (input_location, TRUNC_MOD_EXPR, + gfc_array_index_type, tmp, + info->stride[dim]); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, end, tmp); + tmp2 = fold_build2_loc (input_location, LT_EXPR, + logical_type_node, tmp, lbound); + tmp2 = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, non_zerosized, tmp2); + if (check_upper) + { + tmp3 = fold_build2_loc (input_location, GT_EXPR, + logical_type_node, tmp, ubound); + tmp3 = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, non_zerosized, tmp3); + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "outside of expected range (%%ld:%%ld)", + dim + 1, expr_name); + gfc_trans_runtime_check (true, false, tmp2, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, tmp), + fold_convert (long_integer_type_node, ubound), + fold_convert (long_integer_type_node, lbound)); + gfc_trans_runtime_check (true, false, tmp3, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, tmp), + fold_convert (long_integer_type_node, ubound), + fold_convert (long_integer_type_node, lbound)); + free (msg); + } + else + { + msg = xasprintf ("Index '%%ld' of dimension %d of array '%s' " + "below lower bound of %%ld", + dim + 1, expr_name); + gfc_trans_runtime_check (true, false, tmp2, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, tmp), + fold_convert (long_integer_type_node, lbound)); + free (msg); + } + + /* Check the section sizes match. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, end, + info->start[dim]); + tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, + gfc_array_index_type, tmp, + info->stride[dim]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, tmp); + tmp = fold_build2_loc (input_location, MAX_EXPR, + gfc_array_index_type, tmp, + build_int_cst (gfc_array_index_type, 0)); + /* We remember the size of the first section, and check all the + others against this. */ + if (size[n]) + { + tmp3 = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, tmp, size[n]); + msg = xasprintf ("Array bound mismatch for dimension %d " + "of array '%s' (%%ld/%%ld)", + dim + 1, expr_name); + + gfc_trans_runtime_check (true, false, tmp3, &inner, + expr_loc, msg, + fold_convert (long_integer_type_node, tmp), + fold_convert (long_integer_type_node, size[n])); + + free (msg); + } + else + size[n] = gfc_evaluate_now (tmp, &inner); + } + + tmp = gfc_finish_block (&inner); + + /* For optional arguments, only check bounds if the argument is + present. */ + if ((expr->symtree->n.sym->attr.optional + || expr->symtree->n.sym->attr.not_always_present) + && expr->symtree->n.sym->attr.dummy) + tmp = build3_v (COND_EXPR, + gfc_conv_expr_present (expr->symtree->n.sym), + tmp, build_empty_stmt (input_location)); + + gfc_add_expr_to_block (&block, tmp); + + } + + tmp = gfc_finish_block (&block); + gfc_add_expr_to_block (&outer_loop->pre, tmp); + } + + for (loop = loop->nested; loop; loop = loop->next) + gfc_conv_ss_startstride (loop); +} + +/* Return true if both symbols could refer to the same data object. Does + not take account of aliasing due to equivalence statements. */ + +static int +symbols_could_alias (gfc_symbol *lsym, gfc_symbol *rsym, bool lsym_pointer, + bool lsym_target, bool rsym_pointer, bool rsym_target) +{ + /* Aliasing isn't possible if the symbols have different base types. */ + if (gfc_compare_types (&lsym->ts, &rsym->ts) == 0) + return 0; + + /* Pointers can point to other pointers and target objects. */ + + if ((lsym_pointer && (rsym_pointer || rsym_target)) + || (rsym_pointer && (lsym_pointer || lsym_target))) + return 1; + + /* Special case: Argument association, cf. F90 12.4.1.6, F2003 12.4.1.7 + and F2008 12.5.2.13 items 3b and 4b. The pointer case (a) is already + checked above. */ + if (lsym_target && rsym_target + && ((lsym->attr.dummy && !lsym->attr.contiguous + && (!lsym->attr.dimension || lsym->as->type == AS_ASSUMED_SHAPE)) + || (rsym->attr.dummy && !rsym->attr.contiguous + && (!rsym->attr.dimension + || rsym->as->type == AS_ASSUMED_SHAPE)))) + return 1; + + return 0; +} + + +/* Return true if the two SS could be aliased, i.e. both point to the same data + object. */ +/* TODO: resolve aliases based on frontend expressions. */ + +static int +gfc_could_be_alias (gfc_ss * lss, gfc_ss * rss) +{ + gfc_ref *lref; + gfc_ref *rref; + gfc_expr *lexpr, *rexpr; + gfc_symbol *lsym; + gfc_symbol *rsym; + bool lsym_pointer, lsym_target, rsym_pointer, rsym_target; + + lexpr = lss->info->expr; + rexpr = rss->info->expr; + + lsym = lexpr->symtree->n.sym; + rsym = rexpr->symtree->n.sym; + + lsym_pointer = lsym->attr.pointer; + lsym_target = lsym->attr.target; + rsym_pointer = rsym->attr.pointer; + rsym_target = rsym->attr.target; + + if (symbols_could_alias (lsym, rsym, lsym_pointer, lsym_target, + rsym_pointer, rsym_target)) + return 1; + + if (rsym->ts.type != BT_DERIVED && rsym->ts.type != BT_CLASS + && lsym->ts.type != BT_DERIVED && lsym->ts.type != BT_CLASS) + return 0; + + /* For derived types we must check all the component types. We can ignore + array references as these will have the same base type as the previous + component ref. */ + for (lref = lexpr->ref; lref != lss->info->data.array.ref; lref = lref->next) + { + if (lref->type != REF_COMPONENT) + continue; + + lsym_pointer = lsym_pointer || lref->u.c.sym->attr.pointer; + lsym_target = lsym_target || lref->u.c.sym->attr.target; + + if (symbols_could_alias (lref->u.c.sym, rsym, lsym_pointer, lsym_target, + rsym_pointer, rsym_target)) + return 1; + + if ((lsym_pointer && (rsym_pointer || rsym_target)) + || (rsym_pointer && (lsym_pointer || lsym_target))) + { + if (gfc_compare_types (&lref->u.c.component->ts, + &rsym->ts)) + return 1; + } + + for (rref = rexpr->ref; rref != rss->info->data.array.ref; + rref = rref->next) + { + if (rref->type != REF_COMPONENT) + continue; + + rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer; + rsym_target = lsym_target || rref->u.c.sym->attr.target; + + if (symbols_could_alias (lref->u.c.sym, rref->u.c.sym, + lsym_pointer, lsym_target, + rsym_pointer, rsym_target)) + return 1; + + if ((lsym_pointer && (rsym_pointer || rsym_target)) + || (rsym_pointer && (lsym_pointer || lsym_target))) + { + if (gfc_compare_types (&lref->u.c.component->ts, + &rref->u.c.sym->ts)) + return 1; + if (gfc_compare_types (&lref->u.c.sym->ts, + &rref->u.c.component->ts)) + return 1; + if (gfc_compare_types (&lref->u.c.component->ts, + &rref->u.c.component->ts)) + return 1; + } + } + } + + lsym_pointer = lsym->attr.pointer; + lsym_target = lsym->attr.target; + + for (rref = rexpr->ref; rref != rss->info->data.array.ref; rref = rref->next) + { + if (rref->type != REF_COMPONENT) + break; + + rsym_pointer = rsym_pointer || rref->u.c.sym->attr.pointer; + rsym_target = lsym_target || rref->u.c.sym->attr.target; + + if (symbols_could_alias (rref->u.c.sym, lsym, + lsym_pointer, lsym_target, + rsym_pointer, rsym_target)) + return 1; + + if ((lsym_pointer && (rsym_pointer || rsym_target)) + || (rsym_pointer && (lsym_pointer || lsym_target))) + { + if (gfc_compare_types (&lsym->ts, &rref->u.c.component->ts)) + return 1; + } + } + + return 0; +} + + +/* Resolve array data dependencies. Creates a temporary if required. */ +/* TODO: Calc dependencies with gfc_expr rather than gfc_ss, and move to + dependency.c. */ + +void +gfc_conv_resolve_dependencies (gfc_loopinfo * loop, gfc_ss * dest, + gfc_ss * rss) +{ + gfc_ss *ss; + gfc_ref *lref; + gfc_ref *rref; + gfc_ss_info *ss_info; + gfc_expr *dest_expr; + gfc_expr *ss_expr; + int nDepend = 0; + int i, j; + + loop->temp_ss = NULL; + dest_expr = dest->info->expr; + + for (ss = rss; ss != gfc_ss_terminator; ss = ss->next) + { + ss_info = ss->info; + ss_expr = ss_info->expr; + + if (ss_info->array_outer_dependency) + { + nDepend = 1; + break; + } + + if (ss_info->type != GFC_SS_SECTION) + { + if (flag_realloc_lhs + && dest_expr != ss_expr + && gfc_is_reallocatable_lhs (dest_expr) + && ss_expr->rank) + nDepend = gfc_check_dependency (dest_expr, ss_expr, true); + + /* Check for cases like c(:)(1:2) = c(2)(2:3) */ + if (!nDepend && dest_expr->rank > 0 + && dest_expr->ts.type == BT_CHARACTER + && ss_expr->expr_type == EXPR_VARIABLE) + + nDepend = gfc_check_dependency (dest_expr, ss_expr, false); + + if (ss_info->type == GFC_SS_REFERENCE + && gfc_check_dependency (dest_expr, ss_expr, false)) + ss_info->data.scalar.needs_temporary = 1; + + if (nDepend) + break; + else + continue; + } + + if (dest_expr->symtree->n.sym != ss_expr->symtree->n.sym) + { + if (gfc_could_be_alias (dest, ss) + || gfc_are_equivalenced_arrays (dest_expr, ss_expr)) + { + nDepend = 1; + break; + } + } + else + { + lref = dest_expr->ref; + rref = ss_expr->ref; + + nDepend = gfc_dep_resolver (lref, rref, &loop->reverse[0]); + + if (nDepend == 1) + break; + + for (i = 0; i < dest->dimen; i++) + for (j = 0; j < ss->dimen; j++) + if (i != j + && dest->dim[i] == ss->dim[j]) + { + /* If we don't access array elements in the same order, + there is a dependency. */ + nDepend = 1; + goto temporary; + } +#if 0 + /* TODO : loop shifting. */ + if (nDepend == 1) + { + /* Mark the dimensions for LOOP SHIFTING */ + for (n = 0; n < loop->dimen; n++) + { + int dim = dest->data.info.dim[n]; + + if (lref->u.ar.dimen_type[dim] == DIMEN_VECTOR) + depends[n] = 2; + else if (! gfc_is_same_range (&lref->u.ar, + &rref->u.ar, dim, 0)) + depends[n] = 1; + } + + /* Put all the dimensions with dependencies in the + innermost loops. */ + dim = 0; + for (n = 0; n < loop->dimen; n++) + { + gcc_assert (loop->order[n] == n); + if (depends[n]) + loop->order[dim++] = n; + } + for (n = 0; n < loop->dimen; n++) + { + if (! depends[n]) + loop->order[dim++] = n; + } + + gcc_assert (dim == loop->dimen); + break; + } +#endif + } + } + +temporary: + + if (nDepend == 1) + { + tree base_type = gfc_typenode_for_spec (&dest_expr->ts); + if (GFC_ARRAY_TYPE_P (base_type) + || GFC_DESCRIPTOR_TYPE_P (base_type)) + base_type = gfc_get_element_type (base_type); + loop->temp_ss = gfc_get_temp_ss (base_type, dest->info->string_length, + loop->dimen); + gfc_add_ss_to_loop (loop, loop->temp_ss); + } + else + loop->temp_ss = NULL; +} + + +/* Browse through each array's information from the scalarizer and set the loop + bounds according to the "best" one (per dimension), i.e. the one which + provides the most information (constant bounds, shape, etc.). */ + +static void +set_loop_bounds (gfc_loopinfo *loop) +{ + int n, dim, spec_dim; + gfc_array_info *info; + gfc_array_info *specinfo; + gfc_ss *ss; + tree tmp; + gfc_ss **loopspec; + bool dynamic[GFC_MAX_DIMENSIONS]; + mpz_t *cshape; + mpz_t i; + bool nonoptional_arr; + + gfc_loopinfo * const outer_loop = outermost_loop (loop); + + loopspec = loop->specloop; + + mpz_init (i); + for (n = 0; n < loop->dimen; n++) + { + loopspec[n] = NULL; + dynamic[n] = false; + + /* If there are both optional and nonoptional array arguments, scalarize + over the nonoptional; otherwise, it does not matter as then all + (optional) arrays have to be present per F2008, 125.2.12p3(6). */ + + nonoptional_arr = false; + + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + if (ss->info->type != GFC_SS_SCALAR && ss->info->type != GFC_SS_TEMP + && ss->info->type != GFC_SS_REFERENCE && !ss->info->can_be_null_ref) + { + nonoptional_arr = true; + break; + } + + /* We use one SS term, and use that to determine the bounds of the + loop for this dimension. We try to pick the simplest term. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + gfc_ss_type ss_type; + + ss_type = ss->info->type; + if (ss_type == GFC_SS_SCALAR + || ss_type == GFC_SS_TEMP + || ss_type == GFC_SS_REFERENCE + || (ss->info->can_be_null_ref && nonoptional_arr)) + continue; + + info = &ss->info->data.array; + dim = ss->dim[n]; + + if (loopspec[n] != NULL) + { + specinfo = &loopspec[n]->info->data.array; + spec_dim = loopspec[n]->dim[n]; + } + else + { + /* Silence uninitialized warnings. */ + specinfo = NULL; + spec_dim = 0; + } + + if (info->shape) + { + /* The frontend has worked out the size for us. */ + if (!loopspec[n] + || !specinfo->shape + || !integer_zerop (specinfo->start[spec_dim])) + /* Prefer zero-based descriptors if possible. */ + loopspec[n] = ss; + continue; + } + + if (ss_type == GFC_SS_CONSTRUCTOR) + { + gfc_constructor_base base; + /* An unknown size constructor will always be rank one. + Higher rank constructors will either have known shape, + or still be wrapped in a call to reshape. */ + gcc_assert (loop->dimen == 1); + + /* Always prefer to use the constructor bounds if the size + can be determined at compile time. Prefer not to otherwise, + since the general case involves realloc, and it's better to + avoid that overhead if possible. */ + base = ss->info->expr->value.constructor; + dynamic[n] = gfc_get_array_constructor_size (&i, base); + if (!dynamic[n] || !loopspec[n]) + loopspec[n] = ss; + continue; + } + + /* Avoid using an allocatable lhs in an assignment, since + there might be a reallocation coming. */ + if (loopspec[n] && ss->is_alloc_lhs) + continue; + + if (!loopspec[n]) + loopspec[n] = ss; + /* Criteria for choosing a loop specifier (most important first): + doesn't need realloc + stride of one + known stride + known lower bound + known upper bound + */ + else if (loopspec[n]->info->type == GFC_SS_CONSTRUCTOR && dynamic[n]) + loopspec[n] = ss; + else if (integer_onep (info->stride[dim]) + && !integer_onep (specinfo->stride[spec_dim])) + loopspec[n] = ss; + else if (INTEGER_CST_P (info->stride[dim]) + && !INTEGER_CST_P (specinfo->stride[spec_dim])) + loopspec[n] = ss; + else if (INTEGER_CST_P (info->start[dim]) + && !INTEGER_CST_P (specinfo->start[spec_dim]) + && integer_onep (info->stride[dim]) + == integer_onep (specinfo->stride[spec_dim]) + && INTEGER_CST_P (info->stride[dim]) + == INTEGER_CST_P (specinfo->stride[spec_dim])) + loopspec[n] = ss; + /* We don't work out the upper bound. + else if (INTEGER_CST_P (info->finish[n]) + && ! INTEGER_CST_P (specinfo->finish[n])) + loopspec[n] = ss; */ + } + + /* We should have found the scalarization loop specifier. If not, + that's bad news. */ + gcc_assert (loopspec[n]); + + info = &loopspec[n]->info->data.array; + dim = loopspec[n]->dim[n]; + + /* Set the extents of this range. */ + cshape = info->shape; + if (cshape && INTEGER_CST_P (info->start[dim]) + && INTEGER_CST_P (info->stride[dim])) + { + loop->from[n] = info->start[dim]; + mpz_set (i, cshape[get_array_ref_dim_for_loop_dim (loopspec[n], n)]); + mpz_sub_ui (i, i, 1); + /* To = from + (size - 1) * stride. */ + tmp = gfc_conv_mpz_to_tree (i, gfc_index_integer_kind); + if (!integer_onep (info->stride[dim])) + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, + info->stride[dim]); + loop->to[n] = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + loop->from[n], tmp); + } + else + { + loop->from[n] = info->start[dim]; + switch (loopspec[n]->info->type) + { + case GFC_SS_CONSTRUCTOR: + /* The upper bound is calculated when we expand the + constructor. */ + gcc_assert (loop->to[n] == NULL_TREE); + break; + + case GFC_SS_SECTION: + /* Use the end expression if it exists and is not constant, + so that it is only evaluated once. */ + loop->to[n] = info->end[dim]; + break; + + case GFC_SS_FUNCTION: + /* The loop bound will be set when we generate the call. */ + gcc_assert (loop->to[n] == NULL_TREE); + break; + + case GFC_SS_INTRINSIC: + { + gfc_expr *expr = loopspec[n]->info->expr; + + /* The {l,u}bound of an assumed rank. */ + if (expr->value.function.isym->id == GFC_ISYM_SHAPE) + gcc_assert (expr->value.function.actual->expr->rank == -1); + else + gcc_assert ((expr->value.function.isym->id == GFC_ISYM_LBOUND + || expr->value.function.isym->id == GFC_ISYM_UBOUND) + && expr->value.function.actual->next->expr == NULL + && expr->value.function.actual->expr->rank == -1); + + loop->to[n] = info->end[dim]; + break; + } + + case GFC_SS_COMPONENT: + { + if (info->end[dim] != NULL_TREE) + { + loop->to[n] = info->end[dim]; + break; + } + else + gcc_unreachable (); + } + + default: + gcc_unreachable (); + } + } + + /* Transform everything so we have a simple incrementing variable. */ + if (integer_onep (info->stride[dim])) + info->delta[dim] = gfc_index_zero_node; + else + { + /* Set the delta for this section. */ + info->delta[dim] = gfc_evaluate_now (loop->from[n], &outer_loop->pre); + /* Number of iterations is (end - start + step) / step. + with start = 0, this simplifies to + last = end / step; + for (i = 0; i<=last; i++){...}; */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, loop->to[n], + loop->from[n]); + tmp = fold_build2_loc (input_location, FLOOR_DIV_EXPR, + gfc_array_index_type, tmp, info->stride[dim]); + tmp = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, + tmp, build_int_cst (gfc_array_index_type, -1)); + loop->to[n] = gfc_evaluate_now (tmp, &outer_loop->pre); + /* Make the loop variable start at 0. */ + loop->from[n] = gfc_index_zero_node; + } + } + mpz_clear (i); + + for (loop = loop->nested; loop; loop = loop->next) + set_loop_bounds (loop); +} + + +/* Initialize the scalarization loop. Creates the loop variables. Determines + the range of the loop variables. Creates a temporary if required. + Also generates code for scalar expressions which have been + moved outside the loop. */ + +void +gfc_conv_loop_setup (gfc_loopinfo * loop, locus * where) +{ + gfc_ss *tmp_ss; + tree tmp; + + set_loop_bounds (loop); + + /* Add all the scalar code that can be taken out of the loops. + This may include calculating the loop bounds, so do it before + allocating the temporary. */ + gfc_add_loop_ss_code (loop, loop->ss, false, where); + + tmp_ss = loop->temp_ss; + /* If we want a temporary then create it. */ + if (tmp_ss != NULL) + { + gfc_ss_info *tmp_ss_info; + + tmp_ss_info = tmp_ss->info; + gcc_assert (tmp_ss_info->type == GFC_SS_TEMP); + gcc_assert (loop->parent == NULL); + + /* Make absolutely sure that this is a complete type. */ + if (tmp_ss_info->string_length) + tmp_ss_info->data.temp.type + = gfc_get_character_type_len_for_eltype + (TREE_TYPE (tmp_ss_info->data.temp.type), + tmp_ss_info->string_length); + + tmp = tmp_ss_info->data.temp.type; + memset (&tmp_ss_info->data.array, 0, sizeof (gfc_array_info)); + tmp_ss_info->type = GFC_SS_SECTION; + + gcc_assert (tmp_ss->dimen != 0); + + gfc_trans_create_temp_array (&loop->pre, &loop->post, tmp_ss, tmp, + NULL_TREE, false, true, false, where); + } + + /* For array parameters we don't have loop variables, so don't calculate the + translations. */ + if (!loop->array_parameter) + gfc_set_delta (loop); +} + + +/* Calculates how to transform from loop variables to array indices for each + array: once loop bounds are chosen, sets the difference (DELTA field) between + loop bounds and array reference bounds, for each array info. */ + +void +gfc_set_delta (gfc_loopinfo *loop) +{ + gfc_ss *ss, **loopspec; + gfc_array_info *info; + tree tmp; + int n, dim; + + gfc_loopinfo * const outer_loop = outermost_loop (loop); + + loopspec = loop->specloop; + + /* Calculate the translation from loop variables to array indices. */ + for (ss = loop->ss; ss != gfc_ss_terminator; ss = ss->loop_chain) + { + gfc_ss_type ss_type; + + ss_type = ss->info->type; + if (ss_type != GFC_SS_SECTION + && ss_type != GFC_SS_COMPONENT + && ss_type != GFC_SS_CONSTRUCTOR) + continue; + + info = &ss->info->data.array; + + for (n = 0; n < ss->dimen; n++) + { + /* If we are specifying the range the delta is already set. */ + if (loopspec[n] != ss) + { + dim = ss->dim[n]; + + /* Calculate the offset relative to the loop variable. + First multiply by the stride. */ + tmp = loop->from[n]; + if (!integer_onep (info->stride[dim])) + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + tmp, info->stride[dim]); + + /* Then subtract this from our starting value. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + info->start[dim], tmp); + + info->delta[dim] = gfc_evaluate_now (tmp, &outer_loop->pre); + } + } + } + + for (loop = loop->nested; loop; loop = loop->next) + gfc_set_delta (loop); +} + + +/* Calculate the size of a given array dimension from the bounds. This + is simply (ubound - lbound + 1) if this expression is positive + or 0 if it is negative (pick either one if it is zero). Optionally + (if or_expr is present) OR the (expression != 0) condition to it. */ + +tree +gfc_conv_array_extent_dim (tree lbound, tree ubound, tree* or_expr) +{ + tree res; + tree cond; + + /* Calculate (ubound - lbound + 1). */ + res = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + ubound, lbound); + res = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, res, + gfc_index_one_node); + + /* Check whether the size for this dimension is negative. */ + cond = fold_build2_loc (input_location, LE_EXPR, logical_type_node, res, + gfc_index_zero_node); + res = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, cond, + gfc_index_zero_node, res); + + /* Build OR expression. */ + if (or_expr) + *or_expr = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, *or_expr, cond); + + return res; +} + + +/* For an array descriptor, get the total number of elements. This is just + the product of the extents along from_dim to to_dim. */ + +static tree +gfc_conv_descriptor_size_1 (tree desc, int from_dim, int to_dim) +{ + tree res; + int dim; + + res = gfc_index_one_node; + + for (dim = from_dim; dim < to_dim; ++dim) + { + tree lbound; + tree ubound; + tree extent; + + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[dim]); + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[dim]); + + extent = gfc_conv_array_extent_dim (lbound, ubound, NULL); + res = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + res, extent); + } + + return res; +} + + +/* Full size of an array. */ + +tree +gfc_conv_descriptor_size (tree desc, int rank) +{ + return gfc_conv_descriptor_size_1 (desc, 0, rank); +} + + +/* Size of a coarray for all dimensions but the last. */ + +tree +gfc_conv_descriptor_cosize (tree desc, int rank, int corank) +{ + return gfc_conv_descriptor_size_1 (desc, rank, rank + corank - 1); +} + + +/* Fills in an array descriptor, and returns the size of the array. + The size will be a simple_val, ie a variable or a constant. Also + calculates the offset of the base. The pointer argument overflow, + which should be of integer type, will increase in value if overflow + occurs during the size calculation. Returns the size of the array. + { + stride = 1; + offset = 0; + for (n = 0; n < rank; n++) + { + a.lbound[n] = specified_lower_bound; + offset = offset + a.lbond[n] * stride; + size = 1 - lbound; + a.ubound[n] = specified_upper_bound; + a.stride[n] = stride; + size = size >= 0 ? ubound + size : 0; //size = ubound + 1 - lbound + overflow += size == 0 ? 0: (MAX/size < stride ? 1: 0); + stride = stride * size; + } + for (n = rank; n < rank+corank; n++) + (Set lcobound/ucobound as above.) + element_size = sizeof (array element); + if (!rank) + return element_size + stride = (size_t) stride; + overflow += element_size == 0 ? 0: (MAX/element_size < stride ? 1: 0); + stride = stride * element_size; + return (stride); + } */ +/*GCC ARRAYS*/ + +static tree +gfc_array_init_size (tree descriptor, int rank, int corank, tree * poffset, + gfc_expr ** lower, gfc_expr ** upper, stmtblock_t * pblock, + stmtblock_t * descriptor_block, tree * overflow, + tree expr3_elem_size, tree *nelems, gfc_expr *expr3, + tree expr3_desc, bool e3_has_nodescriptor, gfc_expr *expr, + tree *element_size) +{ + tree type; + tree tmp; + tree size; + tree offset; + tree stride; + tree or_expr; + tree thencase; + tree elsecase; + tree cond; + tree var; + stmtblock_t thenblock; + stmtblock_t elseblock; + gfc_expr *ubound; + gfc_se se; + int n; + + type = TREE_TYPE (descriptor); + + stride = gfc_index_one_node; + offset = gfc_index_zero_node; + + /* Set the dtype before the alloc, because registration of coarrays needs + it initialized. */ + if (expr->ts.type == BT_CHARACTER + && expr->ts.deferred + && VAR_P (expr->ts.u.cl->backend_decl)) + { + type = gfc_typenode_for_spec (&expr->ts); + tmp = gfc_conv_descriptor_dtype (descriptor); + gfc_add_modify (pblock, tmp, gfc_get_dtype_rank_type (rank, type)); + } + else if (expr->ts.type == BT_CHARACTER + && expr->ts.deferred + && TREE_CODE (descriptor) == COMPONENT_REF) + { + /* Deferred character components have their string length tucked away + in a hidden field of the derived type. Obtain that and use it to + set the dtype. The charlen backend decl is zero because the field + type is zero length. */ + gfc_ref *ref; + tmp = NULL_TREE; + for (ref = expr->ref; ref; ref = ref->next) + if (ref->type == REF_COMPONENT + && gfc_deferred_strlen (ref->u.c.component, &tmp)) + break; + gcc_assert (tmp != NULL_TREE); + tmp = fold_build3_loc (input_location, COMPONENT_REF, TREE_TYPE (tmp), + TREE_OPERAND (descriptor, 0), tmp, NULL_TREE); + tmp = fold_convert (gfc_charlen_type_node, tmp); + type = gfc_get_character_type_len (expr->ts.kind, tmp); + tmp = gfc_conv_descriptor_dtype (descriptor); + gfc_add_modify (pblock, tmp, gfc_get_dtype_rank_type (rank, type)); + } + else + { + tmp = gfc_conv_descriptor_dtype (descriptor); + gfc_add_modify (pblock, tmp, gfc_get_dtype (type)); + } + + or_expr = logical_false_node; + + for (n = 0; n < rank; n++) + { + tree conv_lbound; + tree conv_ubound; + + /* We have 3 possibilities for determining the size of the array: + lower == NULL => lbound = 1, ubound = upper[n] + upper[n] = NULL => lbound = 1, ubound = lower[n] + upper[n] != NULL => lbound = lower[n], ubound = upper[n] */ + ubound = upper[n]; + + /* Set lower bound. */ + gfc_init_se (&se, NULL); + if (expr3_desc != NULL_TREE) + { + if (e3_has_nodescriptor) + /* The lbound of nondescriptor arrays like array constructors, + nonallocatable/nonpointer function results/variables, + start at zero, but when allocating it, the standard expects + the array to start at one. */ + se.expr = gfc_index_one_node; + else + se.expr = gfc_conv_descriptor_lbound_get (expr3_desc, + gfc_rank_cst[n]); + } + else if (lower == NULL) + se.expr = gfc_index_one_node; + else + { + gcc_assert (lower[n]); + if (ubound) + { + gfc_conv_expr_type (&se, lower[n], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + } + else + { + se.expr = gfc_index_one_node; + ubound = lower[n]; + } + } + gfc_conv_descriptor_lbound_set (descriptor_block, descriptor, + gfc_rank_cst[n], se.expr); + conv_lbound = se.expr; + + /* Work out the offset for this component. */ + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + se.expr, stride); + offset = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, offset, tmp); + + /* Set upper bound. */ + gfc_init_se (&se, NULL); + if (expr3_desc != NULL_TREE) + { + if (e3_has_nodescriptor) + { + /* The lbound of nondescriptor arrays like array constructors, + nonallocatable/nonpointer function results/variables, + start at zero, but when allocating it, the standard expects + the array to start at one. Therefore fix the upper bound to be + (desc.ubound - desc.lbound) + 1. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + gfc_conv_descriptor_ubound_get ( + expr3_desc, gfc_rank_cst[n]), + gfc_conv_descriptor_lbound_get ( + expr3_desc, gfc_rank_cst[n])); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, tmp, + gfc_index_one_node); + se.expr = gfc_evaluate_now (tmp, pblock); + } + else + se.expr = gfc_conv_descriptor_ubound_get (expr3_desc, + gfc_rank_cst[n]); + } + else + { + gcc_assert (ubound); + gfc_conv_expr_type (&se, ubound, gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + if (ubound->expr_type == EXPR_FUNCTION) + se.expr = gfc_evaluate_now (se.expr, pblock); + } + gfc_conv_descriptor_ubound_set (descriptor_block, descriptor, + gfc_rank_cst[n], se.expr); + conv_ubound = se.expr; + + /* Store the stride. */ + gfc_conv_descriptor_stride_set (descriptor_block, descriptor, + gfc_rank_cst[n], stride); + + /* Calculate size and check whether extent is negative. */ + size = gfc_conv_array_extent_dim (conv_lbound, conv_ubound, &or_expr); + size = gfc_evaluate_now (size, pblock); + + /* Check whether multiplying the stride by the number of + elements in this dimension would overflow. We must also check + whether the current dimension has zero size in order to avoid + division by zero. + */ + tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + gfc_array_index_type, + fold_convert (gfc_array_index_type, + TYPE_MAX_VALUE (gfc_array_index_type)), + size); + cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR, + logical_type_node, tmp, stride), + PRED_FORTRAN_OVERFLOW); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, + integer_one_node, integer_zero_node); + cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, size, + gfc_index_zero_node), + PRED_FORTRAN_SIZE_ZERO); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, + integer_zero_node, tmp); + tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, + *overflow, tmp); + *overflow = gfc_evaluate_now (tmp, pblock); + + /* Multiply the stride by the number of elements in this dimension. */ + stride = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, stride, size); + stride = gfc_evaluate_now (stride, pblock); + } + + for (n = rank; n < rank + corank; n++) + { + ubound = upper[n]; + + /* Set lower bound. */ + gfc_init_se (&se, NULL); + if (lower == NULL || lower[n] == NULL) + { + gcc_assert (n == rank + corank - 1); + se.expr = gfc_index_one_node; + } + else + { + if (ubound || n == rank + corank - 1) + { + gfc_conv_expr_type (&se, lower[n], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + } + else + { + se.expr = gfc_index_one_node; + ubound = lower[n]; + } + } + gfc_conv_descriptor_lbound_set (descriptor_block, descriptor, + gfc_rank_cst[n], se.expr); + + if (n < rank + corank - 1) + { + gfc_init_se (&se, NULL); + gcc_assert (ubound); + gfc_conv_expr_type (&se, ubound, gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + gfc_conv_descriptor_ubound_set (descriptor_block, descriptor, + gfc_rank_cst[n], se.expr); + } + } + + /* The stride is the number of elements in the array, so multiply by the + size of an element to get the total size. Obviously, if there is a + SOURCE expression (expr3) we must use its element size. */ + if (expr3_elem_size != NULL_TREE) + tmp = expr3_elem_size; + else if (expr3 != NULL) + { + if (expr3->ts.type == BT_CLASS) + { + gfc_se se_sz; + gfc_expr *sz = gfc_copy_expr (expr3); + gfc_add_vptr_component (sz); + gfc_add_size_component (sz); + gfc_init_se (&se_sz, NULL); + gfc_conv_expr (&se_sz, sz); + gfc_free_expr (sz); + tmp = se_sz.expr; + } + else + { + tmp = gfc_typenode_for_spec (&expr3->ts); + tmp = TYPE_SIZE_UNIT (tmp); + } + } + else + tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); + + /* Convert to size_t. */ + *element_size = fold_convert (size_type_node, tmp); + + if (rank == 0) + return *element_size; + + *nelems = gfc_evaluate_now (stride, pblock); + stride = fold_convert (size_type_node, stride); + + /* First check for overflow. Since an array of type character can + have zero element_size, we must check for that before + dividing. */ + tmp = fold_build2_loc (input_location, TRUNC_DIV_EXPR, + size_type_node, + TYPE_MAX_VALUE (size_type_node), *element_size); + cond = gfc_unlikely (fold_build2_loc (input_location, LT_EXPR, + logical_type_node, tmp, stride), + PRED_FORTRAN_OVERFLOW); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, + integer_one_node, integer_zero_node); + cond = gfc_unlikely (fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, *element_size, + build_int_cst (size_type_node, 0)), + PRED_FORTRAN_SIZE_ZERO); + tmp = fold_build3_loc (input_location, COND_EXPR, integer_type_node, cond, + integer_zero_node, tmp); + tmp = fold_build2_loc (input_location, PLUS_EXPR, integer_type_node, + *overflow, tmp); + *overflow = gfc_evaluate_now (tmp, pblock); + + size = fold_build2_loc (input_location, MULT_EXPR, size_type_node, + stride, *element_size); + + if (poffset != NULL) + { + offset = gfc_evaluate_now (offset, pblock); + *poffset = offset; + } + + if (integer_zerop (or_expr)) + return size; + if (integer_onep (or_expr)) + return build_int_cst (size_type_node, 0); + + var = gfc_create_var (TREE_TYPE (size), "size"); + gfc_start_block (&thenblock); + gfc_add_modify (&thenblock, var, build_int_cst (size_type_node, 0)); + thencase = gfc_finish_block (&thenblock); + + gfc_start_block (&elseblock); + gfc_add_modify (&elseblock, var, size); + elsecase = gfc_finish_block (&elseblock); + + tmp = gfc_evaluate_now (or_expr, pblock); + tmp = build3_v (COND_EXPR, tmp, thencase, elsecase); + gfc_add_expr_to_block (pblock, tmp); + + return var; +} + + +/* Retrieve the last ref from the chain. This routine is specific to + gfc_array_allocate ()'s needs. */ + +bool +retrieve_last_ref (gfc_ref **ref_in, gfc_ref **prev_ref_in) +{ + gfc_ref *ref, *prev_ref; + + ref = *ref_in; + /* Prevent warnings for uninitialized variables. */ + prev_ref = *prev_ref_in; + while (ref && ref->next != NULL) + { + gcc_assert (ref->type != REF_ARRAY || ref->u.ar.type == AR_ELEMENT + || (ref->u.ar.dimen == 0 && ref->u.ar.codimen > 0)); + prev_ref = ref; + ref = ref->next; + } + + if (ref == NULL || ref->type != REF_ARRAY) + return false; + + *ref_in = ref; + *prev_ref_in = prev_ref; + return true; +} + +/* Initializes the descriptor and generates a call to _gfor_allocate. Does + the work for an ALLOCATE statement. */ +/*GCC ARRAYS*/ + +bool +gfc_array_allocate (gfc_se * se, gfc_expr * expr, tree status, tree errmsg, + tree errlen, tree label_finish, tree expr3_elem_size, + tree *nelems, gfc_expr *expr3, tree e3_arr_desc, + bool e3_has_nodescriptor) +{ + tree tmp; + tree pointer; + tree offset = NULL_TREE; + tree token = NULL_TREE; + tree size; + tree msg; + tree error = NULL_TREE; + tree overflow; /* Boolean storing whether size calculation overflows. */ + tree var_overflow = NULL_TREE; + tree cond; + tree set_descriptor; + tree not_prev_allocated = NULL_TREE; + tree element_size = NULL_TREE; + stmtblock_t set_descriptor_block; + stmtblock_t elseblock; + gfc_expr **lower; + gfc_expr **upper; + gfc_ref *ref, *prev_ref = NULL, *coref; + bool allocatable, coarray, dimension, alloc_w_e3_arr_spec = false, + non_ulimate_coarray_ptr_comp; + + ref = expr->ref; + + /* Find the last reference in the chain. */ + if (!retrieve_last_ref (&ref, &prev_ref)) + return false; + + /* Take the allocatable and coarray properties solely from the expr-ref's + attributes and not from source=-expression. */ + if (!prev_ref) + { + allocatable = expr->symtree->n.sym->attr.allocatable; + dimension = expr->symtree->n.sym->attr.dimension; + non_ulimate_coarray_ptr_comp = false; + } + else + { + allocatable = prev_ref->u.c.component->attr.allocatable; + /* Pointer components in coarrayed derived types must be treated + specially in that they are registered without a check if the are + already associated. This does not hold for ultimate coarray + pointers. */ + non_ulimate_coarray_ptr_comp = (prev_ref->u.c.component->attr.pointer + && !prev_ref->u.c.component->attr.codimension); + dimension = prev_ref->u.c.component->attr.dimension; + } + + /* For allocatable/pointer arrays in derived types, one of the refs has to be + a coarray. In this case it does not matter whether we are on this_image + or not. */ + coarray = false; + for (coref = expr->ref; coref; coref = coref->next) + if (coref->type == REF_ARRAY && coref->u.ar.codimen > 0) + { + coarray = true; + break; + } + + if (!dimension) + gcc_assert (coarray); + + if (ref->u.ar.type == AR_FULL && expr3 != NULL) + { + gfc_ref *old_ref = ref; + /* F08:C633: Array shape from expr3. */ + ref = expr3->ref; + + /* Find the last reference in the chain. */ + if (!retrieve_last_ref (&ref, &prev_ref)) + { + if (expr3->expr_type == EXPR_FUNCTION + && gfc_expr_attr (expr3).dimension) + ref = old_ref; + else + return false; + } + alloc_w_e3_arr_spec = true; + } + + /* Figure out the size of the array. */ + switch (ref->u.ar.type) + { + case AR_ELEMENT: + if (!coarray) + { + lower = NULL; + upper = ref->u.ar.start; + break; + } + /* Fall through. */ + + case AR_SECTION: + lower = ref->u.ar.start; + upper = ref->u.ar.end; + break; + + case AR_FULL: + gcc_assert (ref->u.ar.as->type == AS_EXPLICIT + || alloc_w_e3_arr_spec); + + lower = ref->u.ar.as->lower; + upper = ref->u.ar.as->upper; + break; + + default: + gcc_unreachable (); + break; + } + + overflow = integer_zero_node; + + if (expr->ts.type == BT_CHARACTER + && TREE_CODE (se->string_length) == COMPONENT_REF + && expr->ts.u.cl->backend_decl != se->string_length + && VAR_P (expr->ts.u.cl->backend_decl)) + gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, + fold_convert (TREE_TYPE (expr->ts.u.cl->backend_decl), + se->string_length)); + + gfc_init_block (&set_descriptor_block); + /* Take the corank only from the actual ref and not from the coref. The + later will mislead the generation of the array dimensions for allocatable/ + pointer components in derived types. */ + size = gfc_array_init_size (se->expr, alloc_w_e3_arr_spec ? expr->rank + : ref->u.ar.as->rank, + coarray ? ref->u.ar.as->corank : 0, + &offset, lower, upper, + &se->pre, &set_descriptor_block, &overflow, + expr3_elem_size, nelems, expr3, e3_arr_desc, + e3_has_nodescriptor, expr, &element_size); + + if (dimension) + { + var_overflow = gfc_create_var (integer_type_node, "overflow"); + gfc_add_modify (&se->pre, var_overflow, overflow); + + if (status == NULL_TREE) + { + /* Generate the block of code handling overflow. */ + msg = gfc_build_addr_expr (pchar_type_node, + gfc_build_localized_cstring_const + ("Integer overflow when calculating the amount of " + "memory to allocate")); + error = build_call_expr_loc (input_location, + gfor_fndecl_runtime_error, 1, msg); + } + else + { + tree status_type = TREE_TYPE (status); + stmtblock_t set_status_block; + + gfc_start_block (&set_status_block); + gfc_add_modify (&set_status_block, status, + build_int_cst (status_type, LIBERROR_ALLOCATION)); + error = gfc_finish_block (&set_status_block); + } + } + + /* Allocate memory to store the data. */ + if (POINTER_TYPE_P (TREE_TYPE (se->expr))) + se->expr = build_fold_indirect_ref_loc (input_location, se->expr); + + if (coarray && flag_coarray == GFC_FCOARRAY_LIB) + { + pointer = non_ulimate_coarray_ptr_comp ? se->expr + : gfc_conv_descriptor_data_get (se->expr); + token = gfc_conv_descriptor_token (se->expr); + token = gfc_build_addr_expr (NULL_TREE, token); + } + else + pointer = gfc_conv_descriptor_data_get (se->expr); + STRIP_NOPS (pointer); + + if (allocatable) + { + not_prev_allocated = gfc_create_var (logical_type_node, + "not_prev_allocated"); + tmp = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, pointer, + build_int_cst (TREE_TYPE (pointer), 0)); + + gfc_add_modify (&se->pre, not_prev_allocated, tmp); + } + + gfc_start_block (&elseblock); + + /* The allocatable variant takes the old pointer as first argument. */ + if (allocatable) + gfc_allocate_allocatable (&elseblock, pointer, size, token, + status, errmsg, errlen, label_finish, expr, + coref != NULL ? coref->u.ar.as->corank : 0); + else if (non_ulimate_coarray_ptr_comp && token) + /* The token is set only for GFC_FCOARRAY_LIB mode. */ + gfc_allocate_using_caf_lib (&elseblock, pointer, size, token, status, + errmsg, errlen, + GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY); + else + gfc_allocate_using_malloc (&elseblock, pointer, size, status); + + if (dimension) + { + cond = gfc_unlikely (fold_build2_loc (input_location, NE_EXPR, + logical_type_node, var_overflow, integer_zero_node), + PRED_FORTRAN_OVERFLOW); + tmp = fold_build3_loc (input_location, COND_EXPR, void_type_node, cond, + error, gfc_finish_block (&elseblock)); + } + else + tmp = gfc_finish_block (&elseblock); + + gfc_add_expr_to_block (&se->pre, tmp); + + /* Update the array descriptor with the offset and the span. */ + if (dimension) + { + gfc_conv_descriptor_offset_set (&set_descriptor_block, se->expr, offset); + tmp = fold_convert (gfc_array_index_type, element_size); + gfc_conv_descriptor_span_set (&set_descriptor_block, se->expr, tmp); + } + + set_descriptor = gfc_finish_block (&set_descriptor_block); + if (status != NULL_TREE) + { + cond = fold_build2_loc (input_location, EQ_EXPR, + logical_type_node, status, + build_int_cst (TREE_TYPE (status), 0)); + + if (not_prev_allocated != NULL_TREE) + cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, cond, not_prev_allocated); + + gfc_add_expr_to_block (&se->pre, + fold_build3_loc (input_location, COND_EXPR, void_type_node, + cond, + set_descriptor, + build_empty_stmt (input_location))); + } + else + gfc_add_expr_to_block (&se->pre, set_descriptor); + + return true; +} + + +/* Create an array constructor from an initialization expression. + We assume the frontend already did any expansions and conversions. */ + +tree +gfc_conv_array_initializer (tree type, gfc_expr * expr) +{ + gfc_constructor *c; + tree tmp; + gfc_se se; + tree index, range; + vec<constructor_elt, va_gc> *v = NULL; + + if (expr->expr_type == EXPR_VARIABLE + && expr->symtree->n.sym->attr.flavor == FL_PARAMETER + && expr->symtree->n.sym->value) + expr = expr->symtree->n.sym->value; + + switch (expr->expr_type) + { + case EXPR_CONSTANT: + case EXPR_STRUCTURE: + /* A single scalar or derived type value. Create an array with all + elements equal to that value. */ + gfc_init_se (&se, NULL); + + if (expr->expr_type == EXPR_CONSTANT) + gfc_conv_constant (&se, expr); + else + gfc_conv_structure (&se, expr, 1); + + CONSTRUCTOR_APPEND_ELT (v, build2 (RANGE_EXPR, gfc_array_index_type, + TYPE_MIN_VALUE (TYPE_DOMAIN (type)), + TYPE_MAX_VALUE (TYPE_DOMAIN (type))), + se.expr); + break; + + case EXPR_ARRAY: + /* Create a vector of all the elements. */ + for (c = gfc_constructor_first (expr->value.constructor); + c && c->expr; c = gfc_constructor_next (c)) + { + if (c->iterator) + { + /* Problems occur when we get something like + integer :: a(lots) = (/(i, i=1, lots)/) */ + gfc_fatal_error ("The number of elements in the array " + "constructor at %L requires an increase of " + "the allowed %d upper limit. See " + "%<-fmax-array-constructor%> option", + &expr->where, flag_max_array_constructor); + return NULL_TREE; + } + if (mpz_cmp_si (c->offset, 0) != 0) + index = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind); + else + index = NULL_TREE; + + if (mpz_cmp_si (c->repeat, 1) > 0) + { + tree tmp1, tmp2; + mpz_t maxval; + + mpz_init (maxval); + mpz_add (maxval, c->offset, c->repeat); + mpz_sub_ui (maxval, maxval, 1); + tmp2 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); + if (mpz_cmp_si (c->offset, 0) != 0) + { + mpz_add_ui (maxval, c->offset, 1); + tmp1 = gfc_conv_mpz_to_tree (maxval, gfc_index_integer_kind); + } + else + tmp1 = gfc_conv_mpz_to_tree (c->offset, gfc_index_integer_kind); + + range = fold_build2 (RANGE_EXPR, gfc_array_index_type, tmp1, tmp2); + mpz_clear (maxval); + } + else + range = NULL; + + gfc_init_se (&se, NULL); + switch (c->expr->expr_type) + { + case EXPR_CONSTANT: + gfc_conv_constant (&se, c->expr); + + /* See gfortran.dg/charlen_15.f90 for instance. */ + if (TREE_CODE (se.expr) == STRING_CST + && TREE_CODE (type) == ARRAY_TYPE) + { + tree atype = type; + while (TREE_CODE (TREE_TYPE (atype)) == ARRAY_TYPE) + atype = TREE_TYPE (atype); + gcc_checking_assert (TREE_CODE (TREE_TYPE (atype)) + == INTEGER_TYPE); + gcc_checking_assert (TREE_TYPE (TREE_TYPE (se.expr)) + == TREE_TYPE (atype)); + if (tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (se.expr))) + > tree_to_uhwi (TYPE_SIZE_UNIT (atype))) + { + unsigned HOST_WIDE_INT size + = tree_to_uhwi (TYPE_SIZE_UNIT (atype)); + const char *p = TREE_STRING_POINTER (se.expr); + + se.expr = build_string (size, p); + } + TREE_TYPE (se.expr) = atype; + } + break; + + case EXPR_STRUCTURE: + gfc_conv_structure (&se, c->expr, 1); + break; + + default: + /* Catch those occasional beasts that do not simplify + for one reason or another, assuming that if they are + standard defying the frontend will catch them. */ + gfc_conv_expr (&se, c->expr); + break; + } + + if (range == NULL_TREE) + CONSTRUCTOR_APPEND_ELT (v, index, se.expr); + else + { + if (index != NULL_TREE) + CONSTRUCTOR_APPEND_ELT (v, index, se.expr); + CONSTRUCTOR_APPEND_ELT (v, range, se.expr); + } + } + break; + + case EXPR_NULL: + return gfc_build_null_descriptor (type); + + default: + gcc_unreachable (); + } + + /* Create a constructor from the list of elements. */ + tmp = build_constructor (type, v); + TREE_CONSTANT (tmp) = 1; + return tmp; +} + + +/* Generate code to evaluate non-constant coarray cobounds. */ + +void +gfc_trans_array_cobounds (tree type, stmtblock_t * pblock, + const gfc_symbol *sym) +{ + int dim; + tree ubound; + tree lbound; + gfc_se se; + gfc_array_spec *as; + + as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as; + + for (dim = as->rank; dim < as->rank + as->corank; dim++) + { + /* Evaluate non-constant array bound expressions. */ + lbound = GFC_TYPE_ARRAY_LBOUND (type, dim); + if (as->lower[dim] && !INTEGER_CST_P (lbound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + gfc_add_modify (pblock, lbound, se.expr); + } + ubound = GFC_TYPE_ARRAY_UBOUND (type, dim); + if (as->upper[dim] && !INTEGER_CST_P (ubound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + gfc_add_modify (pblock, ubound, se.expr); + } + } +} + + +/* Generate code to evaluate non-constant array bounds. Sets *poffset and + returns the size (in elements) of the array. */ + +tree +gfc_trans_array_bounds (tree type, gfc_symbol * sym, tree * poffset, + stmtblock_t * pblock) +{ + gfc_array_spec *as; + tree size; + tree stride; + tree offset; + tree ubound; + tree lbound; + tree tmp; + gfc_se se; + + int dim; + + as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as; + + size = gfc_index_one_node; + offset = gfc_index_zero_node; + for (dim = 0; dim < as->rank; dim++) + { + /* Evaluate non-constant array bound expressions. */ + lbound = GFC_TYPE_ARRAY_LBOUND (type, dim); + if (as->lower[dim] && !INTEGER_CST_P (lbound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->lower[dim], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + gfc_add_modify (pblock, lbound, se.expr); + } + ubound = GFC_TYPE_ARRAY_UBOUND (type, dim); + if (as->upper[dim] && !INTEGER_CST_P (ubound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->upper[dim], gfc_array_index_type); + gfc_add_block_to_block (pblock, &se.pre); + gfc_add_modify (pblock, ubound, se.expr); + } + /* The offset of this dimension. offset = offset - lbound * stride. */ + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + lbound, size); + offset = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + offset, tmp); + + /* The size of this dimension, and the stride of the next. */ + if (dim + 1 < as->rank) + stride = GFC_TYPE_ARRAY_STRIDE (type, dim + 1); + else + stride = GFC_TYPE_ARRAY_SIZE (type); + + if (ubound != NULL_TREE && !(stride && INTEGER_CST_P (stride))) + { + /* Calculate stride = size * (ubound + 1 - lbound). */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, lbound); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, ubound, tmp); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + if (stride) + gfc_add_modify (pblock, stride, tmp); + else + stride = gfc_evaluate_now (tmp, pblock); + + /* Make sure that negative size arrays are translated + to being zero size. */ + tmp = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + stride, gfc_index_zero_node); + tmp = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, tmp, + stride, gfc_index_zero_node); + gfc_add_modify (pblock, stride, tmp); + } + + size = stride; + } + + gfc_trans_array_cobounds (type, pblock, sym); + gfc_trans_vla_type_sizes (sym, pblock); + + *poffset = offset; + return size; +} + + +/* Generate code to initialize/allocate an array variable. */ + +void +gfc_trans_auto_array_allocation (tree decl, gfc_symbol * sym, + gfc_wrapped_block * block) +{ + stmtblock_t init; + tree type; + tree tmp = NULL_TREE; + tree size; + tree offset; + tree space; + tree inittree; + bool onstack; + + gcc_assert (!(sym->attr.pointer || sym->attr.allocatable)); + + /* Do nothing for USEd variables. */ + if (sym->attr.use_assoc) + return; + + type = TREE_TYPE (decl); + gcc_assert (GFC_ARRAY_TYPE_P (type)); + onstack = TREE_CODE (type) != POINTER_TYPE; + + gfc_init_block (&init); + + /* Evaluate character string length. */ + if (sym->ts.type == BT_CHARACTER + && onstack && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) + { + gfc_conv_string_length (sym->ts.u.cl, NULL, &init); + + gfc_trans_vla_type_sizes (sym, &init); + + /* Emit a DECL_EXPR for this variable, which will cause the + gimplifier to allocate storage, and all that good stuff. */ + tmp = fold_build1_loc (input_location, DECL_EXPR, TREE_TYPE (decl), decl); + gfc_add_expr_to_block (&init, tmp); + } + + if (onstack) + { + gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); + return; + } + + type = TREE_TYPE (type); + + gcc_assert (!sym->attr.use_assoc); + gcc_assert (!TREE_STATIC (decl)); + gcc_assert (!sym->module); + + if (sym->ts.type == BT_CHARACTER + && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) + gfc_conv_string_length (sym->ts.u.cl, NULL, &init); + + size = gfc_trans_array_bounds (type, sym, &offset, &init); + + /* Don't actually allocate space for Cray Pointees. */ + if (sym->attr.cray_pointee) + { + if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type))) + gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); + + gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); + return; + } + + if (flag_stack_arrays) + { + gcc_assert (TREE_CODE (TREE_TYPE (decl)) == POINTER_TYPE); + space = build_decl (gfc_get_location (&sym->declared_at), + VAR_DECL, create_tmp_var_name ("A"), + TREE_TYPE (TREE_TYPE (decl))); + gfc_trans_vla_type_sizes (sym, &init); + } + else + { + /* The size is the number of elements in the array, so multiply by the + size of an element to get the total size. */ + tmp = TYPE_SIZE_UNIT (gfc_get_element_type (type)); + size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + size, fold_convert (gfc_array_index_type, tmp)); + + /* Allocate memory to hold the data. */ + tmp = gfc_call_malloc (&init, TREE_TYPE (decl), size); + gfc_add_modify (&init, decl, tmp); + + /* Free the temporary. */ + tmp = gfc_call_free (decl); + space = NULL_TREE; + } + + /* Set offset of the array. */ + if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type))) + gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); + + /* Automatic arrays should not have initializers. */ + gcc_assert (!sym->value); + + inittree = gfc_finish_block (&init); + + if (space) + { + tree addr; + pushdecl (space); + + /* Don't create new scope, emit the DECL_EXPR in exactly the scope + where also space is located. */ + gfc_init_block (&init); + tmp = fold_build1_loc (input_location, DECL_EXPR, + TREE_TYPE (space), space); + gfc_add_expr_to_block (&init, tmp); + addr = fold_build1_loc (gfc_get_location (&sym->declared_at), + ADDR_EXPR, TREE_TYPE (decl), space); + gfc_add_modify (&init, decl, addr); + gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); + tmp = NULL_TREE; + } + gfc_add_init_cleanup (block, inittree, tmp); +} + + +/* Generate entry and exit code for g77 calling convention arrays. */ + +void +gfc_trans_g77_array (gfc_symbol * sym, gfc_wrapped_block * block) +{ + tree parm; + tree type; + locus loc; + tree offset; + tree tmp; + tree stmt; + stmtblock_t init; + + gfc_save_backend_locus (&loc); + gfc_set_backend_locus (&sym->declared_at); + + /* Descriptor type. */ + parm = sym->backend_decl; + type = TREE_TYPE (parm); + gcc_assert (GFC_ARRAY_TYPE_P (type)); + + gfc_start_block (&init); + + if (sym->ts.type == BT_CHARACTER + && VAR_P (sym->ts.u.cl->backend_decl)) + gfc_conv_string_length (sym->ts.u.cl, NULL, &init); + + /* Evaluate the bounds of the array. */ + gfc_trans_array_bounds (type, sym, &offset, &init); + + /* Set the offset. */ + if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type))) + gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); + + /* Set the pointer itself if we aren't using the parameter directly. */ + if (TREE_CODE (parm) != PARM_DECL) + { + tmp = GFC_DECL_SAVED_DESCRIPTOR (parm); + if (sym->ts.type == BT_CLASS) + { + tmp = build_fold_indirect_ref_loc (input_location, tmp); + tmp = gfc_class_data_get (tmp); + tmp = gfc_conv_descriptor_data_get (tmp); + } + tmp = convert (TREE_TYPE (parm), tmp); + gfc_add_modify (&init, parm, tmp); + } + stmt = gfc_finish_block (&init); + + gfc_restore_backend_locus (&loc); + + /* Add the initialization code to the start of the function. */ + + if ((sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.optional) + || sym->attr.optional + || sym->attr.not_always_present) + { + tree nullify; + if (TREE_CODE (parm) != PARM_DECL) + nullify = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, + parm, null_pointer_node); + else + nullify = build_empty_stmt (input_location); + tmp = gfc_conv_expr_present (sym, true); + stmt = build3_v (COND_EXPR, tmp, stmt, nullify); + } + + gfc_add_init_cleanup (block, stmt, NULL_TREE); +} + + +/* Modify the descriptor of an array parameter so that it has the + correct lower bound. Also move the upper bound accordingly. + If the array is not packed, it will be copied into a temporary. + For each dimension we set the new lower and upper bounds. Then we copy the + stride and calculate the offset for this dimension. We also work out + what the stride of a packed array would be, and see it the two match. + If the array need repacking, we set the stride to the values we just + calculated, recalculate the offset and copy the array data. + Code is also added to copy the data back at the end of the function. + */ + +void +gfc_trans_dummy_array_bias (gfc_symbol * sym, tree tmpdesc, + gfc_wrapped_block * block) +{ + tree size; + tree type; + tree offset; + locus loc; + stmtblock_t init; + tree stmtInit, stmtCleanup; + tree lbound; + tree ubound; + tree dubound; + tree dlbound; + tree dumdesc; + tree tmp; + tree stride, stride2; + tree stmt_packed; + tree stmt_unpacked; + tree partial; + gfc_se se; + int n; + int checkparm; + int no_repack; + bool optional_arg; + gfc_array_spec *as; + bool is_classarray = IS_CLASS_ARRAY (sym); + + /* Do nothing for pointer and allocatable arrays. */ + if ((sym->ts.type != BT_CLASS && sym->attr.pointer) + || (sym->ts.type == BT_CLASS && CLASS_DATA (sym)->attr.class_pointer) + || sym->attr.allocatable + || (is_classarray && CLASS_DATA (sym)->attr.allocatable)) + return; + + if (!is_classarray && sym->attr.dummy && gfc_is_nodesc_array (sym)) + { + gfc_trans_g77_array (sym, block); + return; + } + + loc.nextc = NULL; + gfc_save_backend_locus (&loc); + /* loc.nextc is not set by save_backend_locus but the location routines + depend on it. */ + if (loc.nextc == NULL) + loc.nextc = loc.lb->line; + gfc_set_backend_locus (&sym->declared_at); + + /* Descriptor type. */ + type = TREE_TYPE (tmpdesc); + gcc_assert (GFC_ARRAY_TYPE_P (type)); + dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); + if (is_classarray) + /* For a class array the dummy array descriptor is in the _class + component. */ + dumdesc = gfc_class_data_get (dumdesc); + else + dumdesc = build_fold_indirect_ref_loc (input_location, dumdesc); + as = IS_CLASS_ARRAY (sym) ? CLASS_DATA (sym)->as : sym->as; + gfc_start_block (&init); + + if (sym->ts.type == BT_CHARACTER + && VAR_P (sym->ts.u.cl->backend_decl)) + gfc_conv_string_length (sym->ts.u.cl, NULL, &init); + + /* TODO: Fix the exclusion of class arrays from extent checking. */ + checkparm = (as->type == AS_EXPLICIT && !is_classarray + && (gfc_option.rtcheck & GFC_RTCHECK_BOUNDS)); + + no_repack = !(GFC_DECL_PACKED_ARRAY (tmpdesc) + || GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)); + + if (GFC_DECL_PARTIAL_PACKED_ARRAY (tmpdesc)) + { + /* For non-constant shape arrays we only check if the first dimension + is contiguous. Repacking higher dimensions wouldn't gain us + anything as we still don't know the array stride. */ + partial = gfc_create_var (logical_type_node, "partial"); + TREE_USED (partial) = 1; + tmp = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]); + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, tmp, + gfc_index_one_node); + gfc_add_modify (&init, partial, tmp); + } + else + partial = NULL_TREE; + + /* The naming of stmt_unpacked and stmt_packed may be counter-intuitive + here, however I think it does the right thing. */ + if (no_repack) + { + /* Set the first stride. */ + stride = gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[0]); + stride = gfc_evaluate_now (stride, &init); + + tmp = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + stride, gfc_index_zero_node); + tmp = fold_build3_loc (input_location, COND_EXPR, gfc_array_index_type, + tmp, gfc_index_one_node, stride); + stride = GFC_TYPE_ARRAY_STRIDE (type, 0); + gfc_add_modify (&init, stride, tmp); + + /* Allow the user to disable array repacking. */ + stmt_unpacked = NULL_TREE; + } + else + { + gcc_assert (integer_onep (GFC_TYPE_ARRAY_STRIDE (type, 0))); + /* A library call to repack the array if necessary. */ + tmp = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); + stmt_unpacked = build_call_expr_loc (input_location, + gfor_fndecl_in_pack, 1, tmp); + + stride = gfc_index_one_node; + + if (warn_array_temporaries) + gfc_warning (OPT_Warray_temporaries, + "Creating array temporary at %L", &loc); + } + + /* This is for the case where the array data is used directly without + calling the repack function. */ + if (no_repack || partial != NULL_TREE) + stmt_packed = gfc_conv_descriptor_data_get (dumdesc); + else + stmt_packed = NULL_TREE; + + /* Assign the data pointer. */ + if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) + { + /* Don't repack unknown shape arrays when the first stride is 1. */ + tmp = fold_build3_loc (input_location, COND_EXPR, TREE_TYPE (stmt_packed), + partial, stmt_packed, stmt_unpacked); + } + else + tmp = stmt_packed != NULL_TREE ? stmt_packed : stmt_unpacked; + gfc_add_modify (&init, tmpdesc, fold_convert (type, tmp)); + + offset = gfc_index_zero_node; + size = gfc_index_one_node; + + /* Evaluate the bounds of the array. */ + for (n = 0; n < as->rank; n++) + { + if (checkparm || !as->upper[n]) + { + /* Get the bounds of the actual parameter. */ + dubound = gfc_conv_descriptor_ubound_get (dumdesc, gfc_rank_cst[n]); + dlbound = gfc_conv_descriptor_lbound_get (dumdesc, gfc_rank_cst[n]); + } + else + { + dubound = NULL_TREE; + dlbound = NULL_TREE; + } + + lbound = GFC_TYPE_ARRAY_LBOUND (type, n); + if (!INTEGER_CST_P (lbound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->lower[n], + gfc_array_index_type); + gfc_add_block_to_block (&init, &se.pre); + gfc_add_modify (&init, lbound, se.expr); + } + + ubound = GFC_TYPE_ARRAY_UBOUND (type, n); + /* Set the desired upper bound. */ + if (as->upper[n]) + { + /* We know what we want the upper bound to be. */ + if (!INTEGER_CST_P (ubound)) + { + gfc_init_se (&se, NULL); + gfc_conv_expr_type (&se, as->upper[n], + gfc_array_index_type); + gfc_add_block_to_block (&init, &se.pre); + gfc_add_modify (&init, ubound, se.expr); + } + + /* Check the sizes match. */ + if (checkparm) + { + /* Check (ubound(a) - lbound(a) == ubound(b) - lbound(b)). */ + char * msg; + tree temp; + + temp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, ubound, lbound); + temp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, temp); + stride2 = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, dubound, + dlbound); + stride2 = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, stride2); + tmp = fold_build2_loc (input_location, NE_EXPR, + gfc_array_index_type, temp, stride2); + msg = xasprintf ("Dimension %d of array '%s' has extent " + "%%ld instead of %%ld", n+1, sym->name); + + gfc_trans_runtime_check (true, false, tmp, &init, &loc, msg, + fold_convert (long_integer_type_node, temp), + fold_convert (long_integer_type_node, stride2)); + + free (msg); + } + } + else + { + /* For assumed shape arrays move the upper bound by the same amount + as the lower bound. */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, dubound, dlbound); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, tmp, lbound); + gfc_add_modify (&init, ubound, tmp); + } + /* The offset of this dimension. offset = offset - lbound * stride. */ + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + lbound, stride); + offset = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, offset, tmp); + + /* The size of this dimension, and the stride of the next. */ + if (n + 1 < as->rank) + { + stride = GFC_TYPE_ARRAY_STRIDE (type, n + 1); + + if (no_repack || partial != NULL_TREE) + stmt_unpacked = + gfc_conv_descriptor_stride_get (dumdesc, gfc_rank_cst[n+1]); + + /* Figure out the stride if not a known constant. */ + if (!INTEGER_CST_P (stride)) + { + if (no_repack) + stmt_packed = NULL_TREE; + else + { + /* Calculate stride = size * (ubound + 1 - lbound). */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, lbound); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, ubound, tmp); + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + stmt_packed = size; + } + + /* Assign the stride. */ + if (stmt_packed != NULL_TREE && stmt_unpacked != NULL_TREE) + tmp = fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, partial, + stmt_unpacked, stmt_packed); + else + tmp = (stmt_packed != NULL_TREE) ? stmt_packed : stmt_unpacked; + gfc_add_modify (&init, stride, tmp); + } + } + else + { + stride = GFC_TYPE_ARRAY_SIZE (type); + + if (stride && !INTEGER_CST_P (stride)) + { + /* Calculate size = stride * (ubound + 1 - lbound). */ + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, lbound); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + ubound, tmp); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + GFC_TYPE_ARRAY_STRIDE (type, n), tmp); + gfc_add_modify (&init, stride, tmp); + } + } + } + + gfc_trans_array_cobounds (type, &init, sym); + + /* Set the offset. */ + if (VAR_P (GFC_TYPE_ARRAY_OFFSET (type))) + gfc_add_modify (&init, GFC_TYPE_ARRAY_OFFSET (type), offset); + + gfc_trans_vla_type_sizes (sym, &init); + + stmtInit = gfc_finish_block (&init); + + /* Only do the entry/initialization code if the arg is present. */ + dumdesc = GFC_DECL_SAVED_DESCRIPTOR (tmpdesc); + optional_arg = (sym->attr.optional + || (sym->ns->proc_name->attr.entry_master + && sym->attr.dummy)); + if (optional_arg) + { + tree zero_init = fold_convert (TREE_TYPE (tmpdesc), null_pointer_node); + zero_init = fold_build2_loc (input_location, MODIFY_EXPR, void_type_node, + tmpdesc, zero_init); + tmp = gfc_conv_expr_present (sym, true); + stmtInit = build3_v (COND_EXPR, tmp, stmtInit, zero_init); + } + + /* Cleanup code. */ + if (no_repack) + stmtCleanup = NULL_TREE; + else + { + stmtblock_t cleanup; + gfc_start_block (&cleanup); + + if (sym->attr.intent != INTENT_IN) + { + /* Copy the data back. */ + tmp = build_call_expr_loc (input_location, + gfor_fndecl_in_unpack, 2, dumdesc, tmpdesc); + gfc_add_expr_to_block (&cleanup, tmp); + } + + /* Free the temporary. */ + tmp = gfc_call_free (tmpdesc); + gfc_add_expr_to_block (&cleanup, tmp); + + stmtCleanup = gfc_finish_block (&cleanup); + + /* Only do the cleanup if the array was repacked. */ + if (is_classarray) + /* For a class array the dummy array descriptor is in the _class + component. */ + tmp = gfc_class_data_get (dumdesc); + else + tmp = build_fold_indirect_ref_loc (input_location, dumdesc); + tmp = gfc_conv_descriptor_data_get (tmp); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + tmp, tmpdesc); + stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup, + build_empty_stmt (input_location)); + + if (optional_arg) + { + tmp = gfc_conv_expr_present (sym); + stmtCleanup = build3_v (COND_EXPR, tmp, stmtCleanup, + build_empty_stmt (input_location)); + } + } + + /* We don't need to free any memory allocated by internal_pack as it will + be freed at the end of the function by pop_context. */ + gfc_add_init_cleanup (block, stmtInit, stmtCleanup); + + gfc_restore_backend_locus (&loc); +} + + +/* Calculate the overall offset, including subreferences. */ +void +gfc_get_dataptr_offset (stmtblock_t *block, tree parm, tree desc, tree offset, + bool subref, gfc_expr *expr) +{ + tree tmp; + tree field; + tree stride; + tree index; + gfc_ref *ref; + gfc_se start; + int n; + + /* If offset is NULL and this is not a subreferenced array, there is + nothing to do. */ + if (offset == NULL_TREE) + { + if (subref) + offset = gfc_index_zero_node; + else + return; + } + + tmp = build_array_ref (desc, offset, NULL, NULL); + + /* Offset the data pointer for pointer assignments from arrays with + subreferences; e.g. my_integer => my_type(:)%integer_component. */ + if (subref) + { + /* Go past the array reference. */ + for (ref = expr->ref; ref; ref = ref->next) + if (ref->type == REF_ARRAY && + ref->u.ar.type != AR_ELEMENT) + { + ref = ref->next; + break; + } + + /* Calculate the offset for each subsequent subreference. */ + for (; ref; ref = ref->next) + { + switch (ref->type) + { + case REF_COMPONENT: + field = ref->u.c.component->backend_decl; + gcc_assert (field && TREE_CODE (field) == FIELD_DECL); + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (field), + tmp, field, NULL_TREE); + break; + + case REF_SUBSTRING: + gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE); + gfc_init_se (&start, NULL); + gfc_conv_expr_type (&start, ref->u.ss.start, gfc_charlen_type_node); + gfc_add_block_to_block (block, &start.pre); + tmp = gfc_build_array_ref (tmp, start.expr, NULL); + break; + + case REF_ARRAY: + gcc_assert (TREE_CODE (TREE_TYPE (tmp)) == ARRAY_TYPE + && ref->u.ar.type == AR_ELEMENT); + + /* TODO - Add bounds checking. */ + stride = gfc_index_one_node; + index = gfc_index_zero_node; + for (n = 0; n < ref->u.ar.dimen; n++) + { + tree itmp; + tree jtmp; + + /* Update the index. */ + gfc_init_se (&start, NULL); + gfc_conv_expr_type (&start, ref->u.ar.start[n], gfc_array_index_type); + itmp = gfc_evaluate_now (start.expr, block); + gfc_init_se (&start, NULL); + gfc_conv_expr_type (&start, ref->u.ar.as->lower[n], gfc_array_index_type); + jtmp = gfc_evaluate_now (start.expr, block); + itmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, itmp, jtmp); + itmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, itmp, stride); + index = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, itmp, index); + index = gfc_evaluate_now (index, block); + + /* Update the stride. */ + gfc_init_se (&start, NULL); + gfc_conv_expr_type (&start, ref->u.ar.as->upper[n], gfc_array_index_type); + itmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, start.expr, + jtmp); + itmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + gfc_index_one_node, itmp); + stride = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, stride, itmp); + stride = gfc_evaluate_now (stride, block); + } + + /* Apply the index to obtain the array element. */ + tmp = gfc_build_array_ref (tmp, index, NULL); + break; + + case REF_INQUIRY: + switch (ref->u.i) + { + case INQUIRY_RE: + tmp = fold_build1_loc (input_location, REALPART_EXPR, + TREE_TYPE (TREE_TYPE (tmp)), tmp); + break; + + case INQUIRY_IM: + tmp = fold_build1_loc (input_location, IMAGPART_EXPR, + TREE_TYPE (TREE_TYPE (tmp)), tmp); + break; + + default: + break; + } + break; + + default: + gcc_unreachable (); + break; + } + } + } + + /* Set the target data pointer. */ + offset = gfc_build_addr_expr (gfc_array_dataptr_type (desc), tmp); + gfc_conv_descriptor_data_set (block, parm, offset); +} + + +/* gfc_conv_expr_descriptor needs the string length an expression + so that the size of the temporary can be obtained. This is done + by adding up the string lengths of all the elements in the + expression. Function with non-constant expressions have their + string lengths mapped onto the actual arguments using the + interface mapping machinery in trans-expr.c. */ +static void +get_array_charlen (gfc_expr *expr, gfc_se *se) +{ + gfc_interface_mapping mapping; + gfc_formal_arglist *formal; + gfc_actual_arglist *arg; + gfc_se tse; + gfc_expr *e; + + if (expr->ts.u.cl->length + && gfc_is_constant_expr (expr->ts.u.cl->length)) + { + if (!expr->ts.u.cl->backend_decl) + gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); + return; + } + + switch (expr->expr_type) + { + case EXPR_ARRAY: + + /* This is somewhat brutal. The expression for the first + element of the array is evaluated and assigned to a + new string length for the original expression. */ + e = gfc_constructor_first (expr->value.constructor)->expr; + + gfc_init_se (&tse, NULL); + + /* Avoid evaluating trailing array references since all we need is + the string length. */ + if (e->rank) + tse.descriptor_only = 1; + if (e->rank && e->expr_type != EXPR_VARIABLE) + gfc_conv_expr_descriptor (&tse, e); + else + gfc_conv_expr (&tse, e); + + gfc_add_block_to_block (&se->pre, &tse.pre); + gfc_add_block_to_block (&se->post, &tse.post); + + if (!expr->ts.u.cl->backend_decl || !VAR_P (expr->ts.u.cl->backend_decl)) + { + expr->ts.u.cl = gfc_new_charlen (gfc_current_ns, NULL); + expr->ts.u.cl->backend_decl = + gfc_create_var (gfc_charlen_type_node, "sln"); + } + + gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, + tse.string_length); + + /* Make sure that deferred length components point to the hidden + string_length component. */ + if (TREE_CODE (tse.expr) == COMPONENT_REF + && TREE_CODE (tse.string_length) == COMPONENT_REF + && TREE_OPERAND (tse.expr, 0) == TREE_OPERAND (tse.string_length, 0)) + e->ts.u.cl->backend_decl = expr->ts.u.cl->backend_decl; + + return; + + case EXPR_OP: + get_array_charlen (expr->value.op.op1, se); + + /* For parentheses the expression ts.u.cl should be identical. */ + if (expr->value.op.op == INTRINSIC_PARENTHESES) + { + if (expr->value.op.op1->ts.u.cl != expr->ts.u.cl) + expr->ts.u.cl->backend_decl + = expr->value.op.op1->ts.u.cl->backend_decl; + return; + } + + expr->ts.u.cl->backend_decl = + gfc_create_var (gfc_charlen_type_node, "sln"); + + if (expr->value.op.op2) + { + get_array_charlen (expr->value.op.op2, se); + + gcc_assert (expr->value.op.op == INTRINSIC_CONCAT); + + /* Add the string lengths and assign them to the expression + string length backend declaration. */ + gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, + fold_build2_loc (input_location, PLUS_EXPR, + gfc_charlen_type_node, + expr->value.op.op1->ts.u.cl->backend_decl, + expr->value.op.op2->ts.u.cl->backend_decl)); + } + else + gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, + expr->value.op.op1->ts.u.cl->backend_decl); + break; + + case EXPR_FUNCTION: + if (expr->value.function.esym == NULL + || expr->ts.u.cl->length->expr_type == EXPR_CONSTANT) + { + gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); + break; + } + + /* Map expressions involving the dummy arguments onto the actual + argument expressions. */ + gfc_init_interface_mapping (&mapping); + formal = gfc_sym_get_dummy_args (expr->symtree->n.sym); + arg = expr->value.function.actual; + + /* Set se = NULL in the calls to the interface mapping, to suppress any + backend stuff. */ + for (; arg != NULL; arg = arg->next, formal = formal ? formal->next : NULL) + { + if (!arg->expr) + continue; + if (formal->sym) + gfc_add_interface_mapping (&mapping, formal->sym, NULL, arg->expr); + } + + gfc_init_se (&tse, NULL); + + /* Build the expression for the character length and convert it. */ + gfc_apply_interface_mapping (&mapping, &tse, expr->ts.u.cl->length); + + gfc_add_block_to_block (&se->pre, &tse.pre); + gfc_add_block_to_block (&se->post, &tse.post); + tse.expr = fold_convert (gfc_charlen_type_node, tse.expr); + tse.expr = fold_build2_loc (input_location, MAX_EXPR, + TREE_TYPE (tse.expr), tse.expr, + build_zero_cst (TREE_TYPE (tse.expr))); + expr->ts.u.cl->backend_decl = tse.expr; + gfc_free_interface_mapping (&mapping); + break; + + default: + gfc_conv_string_length (expr->ts.u.cl, expr, &se->pre); + break; + } +} + + +/* Helper function to check dimensions. */ +static bool +transposed_dims (gfc_ss *ss) +{ + int n; + + for (n = 0; n < ss->dimen; n++) + if (ss->dim[n] != n) + return true; + return false; +} + + +/* Convert the last ref of a scalar coarray from an AR_ELEMENT to an + AR_FULL, suitable for the scalarizer. */ + +static gfc_ss * +walk_coarray (gfc_expr *e) +{ + gfc_ss *ss; + + gcc_assert (gfc_get_corank (e) > 0); + + ss = gfc_walk_expr (e); + + /* Fix scalar coarray. */ + if (ss == gfc_ss_terminator) + { + gfc_ref *ref; + + ref = e->ref; + while (ref) + { + if (ref->type == REF_ARRAY + && ref->u.ar.codimen > 0) + break; + + ref = ref->next; + } + + gcc_assert (ref != NULL); + if (ref->u.ar.type == AR_ELEMENT) + ref->u.ar.type = AR_SECTION; + ss = gfc_reverse_ss (gfc_walk_array_ref (ss, e, ref)); + } + + return ss; +} + + +/* Convert an array for passing as an actual argument. Expressions and + vector subscripts are evaluated and stored in a temporary, which is then + passed. For whole arrays the descriptor is passed. For array sections + a modified copy of the descriptor is passed, but using the original data. + + This function is also used for array pointer assignments, and there + are three cases: + + - se->want_pointer && !se->direct_byref + EXPR is an actual argument. On exit, se->expr contains a + pointer to the array descriptor. + + - !se->want_pointer && !se->direct_byref + EXPR is an actual argument to an intrinsic function or the + left-hand side of a pointer assignment. On exit, se->expr + contains the descriptor for EXPR. + + - !se->want_pointer && se->direct_byref + EXPR is the right-hand side of a pointer assignment and + se->expr is the descriptor for the previously-evaluated + left-hand side. The function creates an assignment from + EXPR to se->expr. + + + The se->force_tmp flag disables the non-copying descriptor optimization + that is used for transpose. It may be used in cases where there is an + alias between the transpose argument and another argument in the same + function call. */ + +void +gfc_conv_expr_descriptor (gfc_se *se, gfc_expr *expr) +{ + gfc_ss *ss; + gfc_ss_type ss_type; + gfc_ss_info *ss_info; + gfc_loopinfo loop; + gfc_array_info *info; + int need_tmp; + int n; + tree tmp; + tree desc; + stmtblock_t block; + tree start; + int full; + bool subref_array_target = false; + bool deferred_array_component = false; + gfc_expr *arg, *ss_expr; + + if (se->want_coarray) + ss = walk_coarray (expr); + else + ss = gfc_walk_expr (expr); + + gcc_assert (ss != NULL); + gcc_assert (ss != gfc_ss_terminator); + + ss_info = ss->info; + ss_type = ss_info->type; + ss_expr = ss_info->expr; + + /* Special case: TRANSPOSE which needs no temporary. */ + while (expr->expr_type == EXPR_FUNCTION && expr->value.function.isym + && (arg = gfc_get_noncopying_intrinsic_argument (expr)) != NULL) + { + /* This is a call to transpose which has already been handled by the + scalarizer, so that we just need to get its argument's descriptor. */ + gcc_assert (expr->value.function.isym->id == GFC_ISYM_TRANSPOSE); + expr = expr->value.function.actual->expr; + } + + if (!se->direct_byref) + se->unlimited_polymorphic = UNLIMITED_POLY (expr); + + /* Special case things we know we can pass easily. */ + switch (expr->expr_type) + { + case EXPR_VARIABLE: + /* If we have a linear array section, we can pass it directly. + Otherwise we need to copy it into a temporary. */ + + gcc_assert (ss_type == GFC_SS_SECTION); + gcc_assert (ss_expr == expr); + info = &ss_info->data.array; + + /* Get the descriptor for the array. */ + gfc_conv_ss_descriptor (&se->pre, ss, 0); + desc = info->descriptor; + + /* The charlen backend decl for deferred character components cannot + be used because it is fixed at zero. Instead, the hidden string + length component is used. */ + if (expr->ts.type == BT_CHARACTER + && expr->ts.deferred + && TREE_CODE (desc) == COMPONENT_REF) + deferred_array_component = true; + + subref_array_target = (is_subref_array (expr) + && (se->direct_byref + || expr->ts.type == BT_CHARACTER)); + need_tmp = (gfc_ref_needs_temporary_p (expr->ref) + && !subref_array_target); + + if (se->force_tmp) + need_tmp = 1; + else if (se->force_no_tmp) + need_tmp = 0; + + if (need_tmp) + full = 0; + else if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) + { + /* Create a new descriptor if the array doesn't have one. */ + full = 0; + } + else if (info->ref->u.ar.type == AR_FULL || se->descriptor_only) + full = 1; + else if (se->direct_byref) + full = 0; + else if (info->ref->u.ar.dimen == 0 && !info->ref->next) + full = 1; + else if (info->ref->u.ar.type == AR_SECTION && se->want_pointer) + full = 0; + else + full = gfc_full_array_ref_p (info->ref, NULL); + + if (full && !transposed_dims (ss)) + { + if (se->direct_byref && !se->byref_noassign) + { + /* Copy the descriptor for pointer assignments. */ + gfc_add_modify (&se->pre, se->expr, desc); + + /* Add any offsets from subreferences. */ + gfc_get_dataptr_offset (&se->pre, se->expr, desc, NULL_TREE, + subref_array_target, expr); + + /* ....and set the span field. */ + tmp = gfc_conv_descriptor_span_get (desc); + gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp); + } + else if (se->want_pointer) + { + /* We pass full arrays directly. This means that pointers and + allocatable arrays should also work. */ + se->expr = gfc_build_addr_expr (NULL_TREE, desc); + } + else + { + se->expr = desc; + } + + if (expr->ts.type == BT_CHARACTER && !deferred_array_component) + se->string_length = gfc_get_expr_charlen (expr); + /* The ss_info string length is returned set to the value of the + hidden string length component. */ + else if (deferred_array_component) + se->string_length = ss_info->string_length; + + gfc_free_ss_chain (ss); + return; + } + break; + + case EXPR_FUNCTION: + /* A transformational function return value will be a temporary + array descriptor. We still need to go through the scalarizer + to create the descriptor. Elemental functions are handled as + arbitrary expressions, i.e. copy to a temporary. */ + + if (se->direct_byref) + { + gcc_assert (ss_type == GFC_SS_FUNCTION && ss_expr == expr); + + /* For pointer assignments pass the descriptor directly. */ + if (se->ss == NULL) + se->ss = ss; + else + gcc_assert (se->ss == ss); + + if (!is_pointer_array (se->expr)) + { + tmp = gfc_get_element_type (TREE_TYPE (se->expr)); + tmp = fold_convert (gfc_array_index_type, + size_in_bytes (tmp)); + gfc_conv_descriptor_span_set (&se->pre, se->expr, tmp); + } + + se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); + gfc_conv_expr (se, expr); + + gfc_free_ss_chain (ss); + return; + } + + if (ss_expr != expr || ss_type != GFC_SS_FUNCTION) + { + if (ss_expr != expr) + /* Elemental function. */ + gcc_assert ((expr->value.function.esym != NULL + && expr->value.function.esym->attr.elemental) + || (expr->value.function.isym != NULL + && expr->value.function.isym->elemental) + || (gfc_expr_attr (expr).proc_pointer + && gfc_expr_attr (expr).elemental) + || gfc_inline_intrinsic_function_p (expr)); + + need_tmp = 1; + if (expr->ts.type == BT_CHARACTER + && expr->ts.u.cl->length->expr_type != EXPR_CONSTANT) + get_array_charlen (expr, se); + + info = NULL; + } + else + { + /* Transformational function. */ + info = &ss_info->data.array; + need_tmp = 0; + } + break; + + case EXPR_ARRAY: + /* Constant array constructors don't need a temporary. */ + if (ss_type == GFC_SS_CONSTRUCTOR + && expr->ts.type != BT_CHARACTER + && gfc_constant_array_constructor_p (expr->value.constructor)) + { + need_tmp = 0; + info = &ss_info->data.array; + } + else + { + need_tmp = 1; + info = NULL; + } + break; + + default: + /* Something complicated. Copy it into a temporary. */ + need_tmp = 1; + info = NULL; + break; + } + + /* If we are creating a temporary, we don't need to bother about aliases + anymore. */ + if (need_tmp) + se->force_tmp = 0; + + gfc_init_loopinfo (&loop); + + /* Associate the SS with the loop. */ + gfc_add_ss_to_loop (&loop, ss); + + /* Tell the scalarizer not to bother creating loop variables, etc. */ + if (!need_tmp) + loop.array_parameter = 1; + else + /* The right-hand side of a pointer assignment mustn't use a temporary. */ + gcc_assert (!se->direct_byref); + + /* Do we need bounds checking or not? */ + ss->no_bounds_check = expr->no_bounds_check; + + /* Setup the scalarizing loops and bounds. */ + gfc_conv_ss_startstride (&loop); + + if (need_tmp) + { + if (expr->ts.type == BT_CHARACTER + && (!expr->ts.u.cl->backend_decl || expr->expr_type == EXPR_ARRAY)) + get_array_charlen (expr, se); + + /* Tell the scalarizer to make a temporary. */ + loop.temp_ss = gfc_get_temp_ss (gfc_typenode_for_spec (&expr->ts), + ((expr->ts.type == BT_CHARACTER) + ? expr->ts.u.cl->backend_decl + : NULL), + loop.dimen); + + se->string_length = loop.temp_ss->info->string_length; + gcc_assert (loop.temp_ss->dimen == loop.dimen); + gfc_add_ss_to_loop (&loop, loop.temp_ss); + } + + gfc_conv_loop_setup (&loop, & expr->where); + + if (need_tmp) + { + /* Copy into a temporary and pass that. We don't need to copy the data + back because expressions and vector subscripts must be INTENT_IN. */ + /* TODO: Optimize passing function return values. */ + gfc_se lse; + gfc_se rse; + bool deep_copy; + + /* Start the copying loops. */ + gfc_mark_ss_chain_used (loop.temp_ss, 1); + gfc_mark_ss_chain_used (ss, 1); + gfc_start_scalarized_body (&loop, &block); + + /* Copy each data element. */ + gfc_init_se (&lse, NULL); + gfc_copy_loopinfo_to_se (&lse, &loop); + gfc_init_se (&rse, NULL); + gfc_copy_loopinfo_to_se (&rse, &loop); + + lse.ss = loop.temp_ss; + rse.ss = ss; + + gfc_conv_scalarized_array_ref (&lse, NULL); + if (expr->ts.type == BT_CHARACTER) + { + gfc_conv_expr (&rse, expr); + if (POINTER_TYPE_P (TREE_TYPE (rse.expr))) + rse.expr = build_fold_indirect_ref_loc (input_location, + rse.expr); + } + else + gfc_conv_expr_val (&rse, expr); + + gfc_add_block_to_block (&block, &rse.pre); + gfc_add_block_to_block (&block, &lse.pre); + + lse.string_length = rse.string_length; + + deep_copy = !se->data_not_needed + && (expr->expr_type == EXPR_VARIABLE + || expr->expr_type == EXPR_ARRAY); + tmp = gfc_trans_scalar_assign (&lse, &rse, expr->ts, + deep_copy, false); + gfc_add_expr_to_block (&block, tmp); + + /* Finish the copying loops. */ + gfc_trans_scalarizing_loops (&loop, &block); + + desc = loop.temp_ss->info->data.array.descriptor; + } + else if (expr->expr_type == EXPR_FUNCTION && !transposed_dims (ss)) + { + desc = info->descriptor; + se->string_length = ss_info->string_length; + } + else + { + /* We pass sections without copying to a temporary. Make a new + descriptor and point it at the section we want. The loop variable + limits will be the limits of the section. + A function may decide to repack the array to speed up access, but + we're not bothered about that here. */ + int dim, ndim, codim; + tree parm; + tree parmtype; + tree dtype; + tree stride; + tree from; + tree to; + tree base; + tree offset; + + ndim = info->ref ? info->ref->u.ar.dimen : ss->dimen; + + if (se->want_coarray) + { + gfc_array_ref *ar = &info->ref->u.ar; + + codim = gfc_get_corank (expr); + for (n = 0; n < codim - 1; n++) + { + /* Make sure we are not lost somehow. */ + gcc_assert (ar->dimen_type[n + ndim] == DIMEN_THIS_IMAGE); + + /* Make sure the call to gfc_conv_section_startstride won't + generate unnecessary code to calculate stride. */ + gcc_assert (ar->stride[n + ndim] == NULL); + + gfc_conv_section_startstride (&loop.pre, ss, n + ndim); + loop.from[n + loop.dimen] = info->start[n + ndim]; + loop.to[n + loop.dimen] = info->end[n + ndim]; + } + + gcc_assert (n == codim - 1); + evaluate_bound (&loop.pre, info->start, ar->start, + info->descriptor, n + ndim, true, + ar->as->type == AS_DEFERRED); + loop.from[n + loop.dimen] = info->start[n + ndim]; + } + else + codim = 0; + + /* Set the string_length for a character array. */ + if (expr->ts.type == BT_CHARACTER) + { + if (deferred_array_component) + se->string_length = ss_info->string_length; + else + se->string_length = gfc_get_expr_charlen (expr); + + if (VAR_P (se->string_length) + && expr->ts.u.cl->backend_decl == se->string_length) + tmp = ss_info->string_length; + else + tmp = se->string_length; + + if (expr->ts.deferred && VAR_P (expr->ts.u.cl->backend_decl)) + gfc_add_modify (&se->pre, expr->ts.u.cl->backend_decl, tmp); + else + expr->ts.u.cl->backend_decl = tmp; + } + + /* If we have an array section, are assigning or passing an array + section argument make sure that the lower bound is 1. References + to the full array should otherwise keep the original bounds. */ + if (!info->ref || info->ref->u.ar.type != AR_FULL) + for (dim = 0; dim < loop.dimen; dim++) + if (!integer_onep (loop.from[dim])) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, gfc_index_one_node, + loop.from[dim]); + loop.to[dim] = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + loop.to[dim], tmp); + loop.from[dim] = gfc_index_one_node; + } + + desc = info->descriptor; + if (se->direct_byref && !se->byref_noassign) + { + /* For pointer assignments we fill in the destination. */ + parm = se->expr; + parmtype = TREE_TYPE (parm); + } + else + { + /* Otherwise make a new one. */ + if (expr->ts.type == BT_CHARACTER) + parmtype = gfc_typenode_for_spec (&expr->ts); + else + parmtype = gfc_get_element_type (TREE_TYPE (desc)); + + parmtype = gfc_get_array_type_bounds (parmtype, loop.dimen, codim, + loop.from, loop.to, 0, + GFC_ARRAY_UNKNOWN, false); + parm = gfc_create_var (parmtype, "parm"); + + /* When expression is a class object, then add the class' handle to + the parm_decl. */ + if (expr->ts.type == BT_CLASS && expr->expr_type == EXPR_VARIABLE) + { + gfc_expr *class_expr = gfc_find_and_cut_at_last_class_ref (expr); + gfc_se classse; + + /* class_expr can be NULL, when no _class ref is in expr. + We must not fix this here with a gfc_fix_class_ref (). */ + if (class_expr) + { + gfc_init_se (&classse, NULL); + gfc_conv_expr (&classse, class_expr); + gfc_free_expr (class_expr); + + gcc_assert (classse.pre.head == NULL_TREE + && classse.post.head == NULL_TREE); + gfc_allocate_lang_decl (parm); + GFC_DECL_SAVED_DESCRIPTOR (parm) = classse.expr; + } + } + } + + /* Set the span field. */ + tmp = gfc_get_array_span (desc, expr); + if (tmp) + gfc_conv_descriptor_span_set (&loop.pre, parm, tmp); + + /* The following can be somewhat confusing. We have two + descriptors, a new one and the original array. + {parm, parmtype, dim} refer to the new one. + {desc, type, n, loop} refer to the original, which maybe + a descriptorless array. + The bounds of the scalarization are the bounds of the section. + We don't have to worry about numeric overflows when calculating + the offsets because all elements are within the array data. */ + + /* Set the dtype. */ + tmp = gfc_conv_descriptor_dtype (parm); + if (se->unlimited_polymorphic) + dtype = gfc_get_dtype (TREE_TYPE (desc), &loop.dimen); + else if (expr->ts.type == BT_ASSUMED) + { + tree tmp2 = desc; + if (DECL_LANG_SPECIFIC (tmp2) && GFC_DECL_SAVED_DESCRIPTOR (tmp2)) + tmp2 = GFC_DECL_SAVED_DESCRIPTOR (tmp2); + if (POINTER_TYPE_P (TREE_TYPE (tmp2))) + tmp2 = build_fold_indirect_ref_loc (input_location, tmp2); + dtype = gfc_conv_descriptor_dtype (tmp2); + } + else + dtype = gfc_get_dtype (parmtype); + gfc_add_modify (&loop.pre, tmp, dtype); + + /* The 1st element in the section. */ + base = gfc_index_zero_node; + + /* The offset from the 1st element in the section. */ + offset = gfc_index_zero_node; + + for (n = 0; n < ndim; n++) + { + stride = gfc_conv_array_stride (desc, n); + + /* Work out the 1st element in the section. */ + if (info->ref + && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) + { + gcc_assert (info->subscript[n] + && info->subscript[n]->info->type == GFC_SS_SCALAR); + start = info->subscript[n]->info->data.scalar.value; + } + else + { + /* Evaluate and remember the start of the section. */ + start = info->start[n]; + stride = gfc_evaluate_now (stride, &loop.pre); + } + + tmp = gfc_conv_array_lbound (desc, n); + tmp = fold_build2_loc (input_location, MINUS_EXPR, TREE_TYPE (tmp), + start, tmp); + tmp = fold_build2_loc (input_location, MULT_EXPR, TREE_TYPE (tmp), + tmp, stride); + base = fold_build2_loc (input_location, PLUS_EXPR, TREE_TYPE (tmp), + base, tmp); + + if (info->ref + && info->ref->u.ar.dimen_type[n] == DIMEN_ELEMENT) + { + /* For elemental dimensions, we only need the 1st + element in the section. */ + continue; + } + + /* Vector subscripts need copying and are handled elsewhere. */ + if (info->ref) + gcc_assert (info->ref->u.ar.dimen_type[n] == DIMEN_RANGE); + + /* look for the corresponding scalarizer dimension: dim. */ + for (dim = 0; dim < ndim; dim++) + if (ss->dim[dim] == n) + break; + + /* loop exited early: the DIM being looked for has been found. */ + gcc_assert (dim < ndim); + + /* Set the new lower bound. */ + from = loop.from[dim]; + to = loop.to[dim]; + + gfc_conv_descriptor_lbound_set (&loop.pre, parm, + gfc_rank_cst[dim], from); + + /* Set the new upper bound. */ + gfc_conv_descriptor_ubound_set (&loop.pre, parm, + gfc_rank_cst[dim], to); + + /* Multiply the stride by the section stride to get the + total stride. */ + stride = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + stride, info->stride[n]); + + tmp = fold_build2_loc (input_location, MULT_EXPR, + TREE_TYPE (offset), stride, from); + offset = fold_build2_loc (input_location, MINUS_EXPR, + TREE_TYPE (offset), offset, tmp); + + /* Store the new stride. */ + gfc_conv_descriptor_stride_set (&loop.pre, parm, + gfc_rank_cst[dim], stride); + } + + for (n = loop.dimen; n < loop.dimen + codim; n++) + { + from = loop.from[n]; + to = loop.to[n]; + gfc_conv_descriptor_lbound_set (&loop.pre, parm, + gfc_rank_cst[n], from); + if (n < loop.dimen + codim - 1) + gfc_conv_descriptor_ubound_set (&loop.pre, parm, + gfc_rank_cst[n], to); + } + + if (se->data_not_needed) + gfc_conv_descriptor_data_set (&loop.pre, parm, + gfc_index_zero_node); + else + /* Point the data pointer at the 1st element in the section. */ + gfc_get_dataptr_offset (&loop.pre, parm, desc, base, + subref_array_target, expr); + + gfc_conv_descriptor_offset_set (&loop.pre, parm, offset); + + desc = parm; + } + + /* For class arrays add the class tree into the saved descriptor to + enable getting of _vptr and the like. */ + if (expr->expr_type == EXPR_VARIABLE && VAR_P (desc) + && IS_CLASS_ARRAY (expr->symtree->n.sym)) + { + gfc_allocate_lang_decl (desc); + GFC_DECL_SAVED_DESCRIPTOR (desc) = + DECL_LANG_SPECIFIC (expr->symtree->n.sym->backend_decl) ? + GFC_DECL_SAVED_DESCRIPTOR (expr->symtree->n.sym->backend_decl) + : expr->symtree->n.sym->backend_decl; + } + else if (expr->expr_type == EXPR_ARRAY && VAR_P (desc) + && IS_CLASS_ARRAY (expr)) + { + tree vtype; + gfc_allocate_lang_decl (desc); + tmp = gfc_create_var (expr->ts.u.derived->backend_decl, "class"); + GFC_DECL_SAVED_DESCRIPTOR (desc) = tmp; + vtype = gfc_class_vptr_get (tmp); + gfc_add_modify (&se->pre, vtype, + gfc_build_addr_expr (TREE_TYPE (vtype), + gfc_find_vtab (&expr->ts)->backend_decl)); + } + if (!se->direct_byref || se->byref_noassign) + { + /* Get a pointer to the new descriptor. */ + if (se->want_pointer) + se->expr = gfc_build_addr_expr (NULL_TREE, desc); + else + se->expr = desc; + } + + gfc_add_block_to_block (&se->pre, &loop.pre); + gfc_add_block_to_block (&se->post, &loop.post); + + /* Cleanup the scalarizer. */ + gfc_cleanup_loop (&loop); +} + + +/* Calculate the array size (number of elements); if dim != NULL_TREE, + return size for that dim (dim=0..rank-1; only for GFC_DESCRIPTOR_TYPE_P). */ +tree +gfc_tree_array_size (stmtblock_t *block, tree desc, gfc_expr *expr, tree dim) +{ + if (GFC_ARRAY_TYPE_P (TREE_TYPE (desc))) + { + gcc_assert (dim == NULL_TREE); + return GFC_TYPE_ARRAY_SIZE (TREE_TYPE (desc)); + } + tree size, tmp, rank = NULL_TREE, cond = NULL_TREE; + symbol_attribute attr = gfc_expr_attr (expr); + gfc_array_spec *as = gfc_get_full_arrayspec_from_expr (expr); + gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))); + if ((!attr.pointer && !attr.allocatable && as && as->type == AS_ASSUMED_RANK) + || !dim) + { + if (expr->rank < 0) + rank = fold_convert (signed_char_type_node, + gfc_conv_descriptor_rank (desc)); + else + rank = build_int_cst (signed_char_type_node, expr->rank); + } + + if (dim || expr->rank == 1) + { + if (!dim) + dim = gfc_index_zero_node; + tree ubound = gfc_conv_descriptor_ubound_get (desc, dim); + tree lbound = gfc_conv_descriptor_lbound_get (desc, dim); + + size = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, ubound, lbound); + size = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + size, gfc_index_one_node); + /* if (!allocatable && !pointer && assumed rank) + size = (idx == rank && ubound[rank-1] == -1 ? -1 : size; + else + size = max (0, size); */ + size = fold_build2_loc (input_location, MAX_EXPR, gfc_array_index_type, + size, gfc_index_zero_node); + if (!attr.pointer && !attr.allocatable + && as && as->type == AS_ASSUMED_RANK) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, signed_char_type_node, + rank, build_int_cst (signed_char_type_node, 1)); + cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + fold_convert (signed_char_type_node, dim), + tmp); + tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + gfc_conv_descriptor_ubound_get (desc, dim), + build_int_cst (gfc_array_index_type, -1)); + cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, + cond, tmp); + tmp = build_int_cst (gfc_array_index_type, -1); + size = build3_loc (input_location, COND_EXPR, gfc_array_index_type, + cond, tmp, size); + } + return size; + } + + /* size = 1. */ + size = gfc_create_var (gfc_array_index_type, "size"); + gfc_add_modify (block, size, build_int_cst (TREE_TYPE (size), 1)); + tree extent = gfc_create_var (gfc_array_index_type, "extent"); + + stmtblock_t cond_block, loop_body; + gfc_init_block (&cond_block); + gfc_init_block (&loop_body); + + /* Loop: for (i = 0; i < rank; ++i). */ + tree idx = gfc_create_var (signed_char_type_node, "idx"); + /* Loop body. */ + /* #if (assumed-rank + !allocatable && !pointer) + if (idx == rank - 1 && dim[idx].ubound == -1) + extent = -1; + else + #endif + extent = gfc->dim[i].ubound - gfc->dim[i].lbound + 1 + if (extent < 0) + extent = 0 + size *= extent. */ + cond = NULL_TREE; + if (!attr.pointer && !attr.allocatable && as && as->type == AS_ASSUMED_RANK) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, signed_char_type_node, + rank, build_int_cst (signed_char_type_node, 1)); + cond = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + idx, tmp); + tmp = fold_build2_loc (input_location, EQ_EXPR, boolean_type_node, + gfc_conv_descriptor_ubound_get (desc, idx), + build_int_cst (gfc_array_index_type, -1)); + cond = fold_build2_loc (input_location, TRUTH_AND_EXPR, boolean_type_node, + cond, tmp); + } + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + gfc_conv_descriptor_ubound_get (desc, idx), + gfc_conv_descriptor_lbound_get (desc, idx)); + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + tmp, gfc_index_one_node); + gfc_add_modify (&cond_block, extent, tmp); + tmp = fold_build2_loc (input_location, LT_EXPR, boolean_type_node, + extent, gfc_index_zero_node); + tmp = build3_v (COND_EXPR, tmp, + fold_build2_loc (input_location, MODIFY_EXPR, + gfc_array_index_type, + extent, gfc_index_zero_node), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&cond_block, tmp); + tmp = gfc_finish_block (&cond_block); + if (cond) + tmp = build3_v (COND_EXPR, cond, + fold_build2_loc (input_location, MODIFY_EXPR, + gfc_array_index_type, extent, + build_int_cst (gfc_array_index_type, -1)), + tmp); + gfc_add_expr_to_block (&loop_body, tmp); + /* size *= extent. */ + gfc_add_modify (&loop_body, size, + fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + size, extent)); + /* Generate loop. */ + gfc_simple_for_loop (block, idx, build_int_cst (TREE_TYPE (idx), 0), rank, LT_EXPR, + build_int_cst (TREE_TYPE (idx), 1), + gfc_finish_block (&loop_body)); + return size; +} + +/* Helper function for gfc_conv_array_parameter if array size needs to be + computed. */ + +static void +array_parameter_size (stmtblock_t *block, tree desc, gfc_expr *expr, tree *size) +{ + tree elem; + *size = gfc_tree_array_size (block, desc, expr, NULL); + elem = TYPE_SIZE_UNIT (gfc_get_element_type (TREE_TYPE (desc))); + *size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + *size, fold_convert (gfc_array_index_type, elem)); +} + +/* Helper function - return true if the argument is a pointer. */ + +static bool +is_pointer (gfc_expr *e) +{ + gfc_symbol *sym; + + if (e->expr_type != EXPR_VARIABLE || e->symtree == NULL) + return false; + + sym = e->symtree->n.sym; + if (sym == NULL) + return false; + + return sym->attr.pointer || sym->attr.proc_pointer; +} + +/* Convert an array for passing as an actual parameter. */ + +void +gfc_conv_array_parameter (gfc_se * se, gfc_expr * expr, bool g77, + const gfc_symbol *fsym, const char *proc_name, + tree *size) +{ + tree ptr; + tree desc; + tree tmp = NULL_TREE; + tree stmt; + tree parent = DECL_CONTEXT (current_function_decl); + bool full_array_var; + bool this_array_result; + bool contiguous; + bool no_pack; + bool array_constructor; + bool good_allocatable; + bool ultimate_ptr_comp; + bool ultimate_alloc_comp; + gfc_symbol *sym; + stmtblock_t block; + gfc_ref *ref; + + ultimate_ptr_comp = false; + ultimate_alloc_comp = false; + + for (ref = expr->ref; ref; ref = ref->next) + { + if (ref->next == NULL) + break; + + if (ref->type == REF_COMPONENT) + { + ultimate_ptr_comp = ref->u.c.component->attr.pointer; + ultimate_alloc_comp = ref->u.c.component->attr.allocatable; + } + } + + full_array_var = false; + contiguous = false; + + if (expr->expr_type == EXPR_VARIABLE && ref && !ultimate_ptr_comp) + full_array_var = gfc_full_array_ref_p (ref, &contiguous); + + sym = full_array_var ? expr->symtree->n.sym : NULL; + + /* The symbol should have an array specification. */ + gcc_assert (!sym || sym->as || ref->u.ar.as); + + if (expr->expr_type == EXPR_ARRAY && expr->ts.type == BT_CHARACTER) + { + get_array_ctor_strlen (&se->pre, expr->value.constructor, &tmp); + expr->ts.u.cl->backend_decl = tmp; + se->string_length = tmp; + } + + /* Is this the result of the enclosing procedure? */ + this_array_result = (full_array_var && sym->attr.flavor == FL_PROCEDURE); + if (this_array_result + && (sym->backend_decl != current_function_decl) + && (sym->backend_decl != parent)) + this_array_result = false; + + /* Passing address of the array if it is not pointer or assumed-shape. */ + if (full_array_var && g77 && !this_array_result + && sym->ts.type != BT_DERIVED && sym->ts.type != BT_CLASS) + { + tmp = gfc_get_symbol_decl (sym); + + if (sym->ts.type == BT_CHARACTER) + se->string_length = sym->ts.u.cl->backend_decl; + + if (!sym->attr.pointer + && sym->as + && sym->as->type != AS_ASSUMED_SHAPE + && sym->as->type != AS_DEFERRED + && sym->as->type != AS_ASSUMED_RANK + && !sym->attr.allocatable) + { + /* Some variables are declared directly, others are declared as + pointers and allocated on the heap. */ + if (sym->attr.dummy || POINTER_TYPE_P (TREE_TYPE (tmp))) + se->expr = tmp; + else + se->expr = gfc_build_addr_expr (NULL_TREE, tmp); + if (size) + array_parameter_size (&se->pre, tmp, expr, size); + return; + } + + if (sym->attr.allocatable) + { + if (sym->attr.dummy || sym->attr.result) + { + gfc_conv_expr_descriptor (se, expr); + tmp = se->expr; + } + if (size) + array_parameter_size (&se->pre, tmp, expr, size); + se->expr = gfc_conv_array_data (tmp); + return; + } + } + + /* A convenient reduction in scope. */ + contiguous = g77 && !this_array_result && contiguous; + + /* There is no need to pack and unpack the array, if it is contiguous + and not a deferred- or assumed-shape array, or if it is simply + contiguous. */ + no_pack = ((sym && sym->as + && !sym->attr.pointer + && sym->as->type != AS_DEFERRED + && sym->as->type != AS_ASSUMED_RANK + && sym->as->type != AS_ASSUMED_SHAPE) + || + (ref && ref->u.ar.as + && ref->u.ar.as->type != AS_DEFERRED + && ref->u.ar.as->type != AS_ASSUMED_RANK + && ref->u.ar.as->type != AS_ASSUMED_SHAPE) + || + gfc_is_simply_contiguous (expr, false, true)); + + no_pack = contiguous && no_pack; + + /* If we have an EXPR_OP or a function returning an explicit-shaped + or allocatable array, an array temporary will be generated which + does not need to be packed / unpacked if passed to an + explicit-shape dummy array. */ + + if (g77) + { + if (expr->expr_type == EXPR_OP) + no_pack = 1; + else if (expr->expr_type == EXPR_FUNCTION && expr->value.function.esym) + { + gfc_symbol *result = expr->value.function.esym->result; + if (result->attr.dimension + && (result->as->type == AS_EXPLICIT + || result->attr.allocatable + || result->attr.contiguous)) + no_pack = 1; + } + } + + /* Array constructors are always contiguous and do not need packing. */ + array_constructor = g77 && !this_array_result && expr->expr_type == EXPR_ARRAY; + + /* Same is true of contiguous sections from allocatable variables. */ + good_allocatable = contiguous + && expr->symtree + && expr->symtree->n.sym->attr.allocatable; + + /* Or ultimate allocatable components. */ + ultimate_alloc_comp = contiguous && ultimate_alloc_comp; + + if (no_pack || array_constructor || good_allocatable || ultimate_alloc_comp) + { + gfc_conv_expr_descriptor (se, expr); + /* Deallocate the allocatable components of structures that are + not variable. */ + if ((expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS) + && expr->ts.u.derived->attr.alloc_comp + && expr->expr_type != EXPR_VARIABLE) + { + tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, se->expr, expr->rank); + + /* The components shall be deallocated before their containing entity. */ + gfc_prepend_expr_to_block (&se->post, tmp); + } + if (expr->ts.type == BT_CHARACTER && expr->expr_type != EXPR_FUNCTION) + se->string_length = expr->ts.u.cl->backend_decl; + if (size) + array_parameter_size (&se->pre, se->expr, expr, size); + se->expr = gfc_conv_array_data (se->expr); + return; + } + + if (this_array_result) + { + /* Result of the enclosing function. */ + gfc_conv_expr_descriptor (se, expr); + if (size) + array_parameter_size (&se->pre, se->expr, expr, size); + se->expr = gfc_build_addr_expr (NULL_TREE, se->expr); + + if (g77 && TREE_TYPE (TREE_TYPE (se->expr)) != NULL_TREE + && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (TREE_TYPE (se->expr)))) + se->expr = gfc_conv_array_data (build_fold_indirect_ref_loc (input_location, + se->expr)); + + return; + } + else + { + /* Every other type of array. */ + se->want_pointer = 1; + gfc_conv_expr_descriptor (se, expr); + + if (size) + array_parameter_size (&se->pre, + build_fold_indirect_ref_loc (input_location, + se->expr), + expr, size); + } + + /* Deallocate the allocatable components of structures that are + not variable, for descriptorless arguments. + Arguments with a descriptor are handled in gfc_conv_procedure_call. */ + if (g77 && (expr->ts.type == BT_DERIVED || expr->ts.type == BT_CLASS) + && expr->ts.u.derived->attr.alloc_comp + && expr->expr_type != EXPR_VARIABLE) + { + tmp = build_fold_indirect_ref_loc (input_location, se->expr); + tmp = gfc_deallocate_alloc_comp (expr->ts.u.derived, tmp, expr->rank); + + /* The components shall be deallocated before their containing entity. */ + gfc_prepend_expr_to_block (&se->post, tmp); + } + + if (g77 || (fsym && fsym->attr.contiguous + && !gfc_is_simply_contiguous (expr, false, true))) + { + tree origptr = NULL_TREE; + + desc = se->expr; + + /* For contiguous arrays, save the original value of the descriptor. */ + if (!g77) + { + origptr = gfc_create_var (pvoid_type_node, "origptr"); + tmp = build_fold_indirect_ref_loc (input_location, desc); + tmp = gfc_conv_array_data (tmp); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (origptr), origptr, + fold_convert (TREE_TYPE (origptr), tmp)); + gfc_add_expr_to_block (&se->pre, tmp); + } + + /* Repack the array. */ + if (warn_array_temporaries) + { + if (fsym) + gfc_warning (OPT_Warray_temporaries, + "Creating array temporary at %L for argument %qs", + &expr->where, fsym->name); + else + gfc_warning (OPT_Warray_temporaries, + "Creating array temporary at %L", &expr->where); + } + + /* When optmizing, we can use gfc_conv_subref_array_arg for + making the packing and unpacking operation visible to the + optimizers. */ + + if (g77 && flag_inline_arg_packing && expr->expr_type == EXPR_VARIABLE + && !is_pointer (expr) && ! gfc_has_dimen_vector_ref (expr) + && !(expr->symtree->n.sym->as + && expr->symtree->n.sym->as->type == AS_ASSUMED_RANK) + && (fsym == NULL || fsym->ts.type != BT_ASSUMED)) + { + gfc_conv_subref_array_arg (se, expr, g77, + fsym ? fsym->attr.intent : INTENT_INOUT, + false, fsym, proc_name, sym, true); + return; + } + + ptr = build_call_expr_loc (input_location, + gfor_fndecl_in_pack, 1, desc); + + if (fsym && fsym->attr.optional && sym && sym->attr.optional) + { + tmp = gfc_conv_expr_present (sym); + ptr = build3_loc (input_location, COND_EXPR, TREE_TYPE (se->expr), + tmp, fold_convert (TREE_TYPE (se->expr), ptr), + fold_convert (TREE_TYPE (se->expr), null_pointer_node)); + } + + ptr = gfc_evaluate_now (ptr, &se->pre); + + /* Use the packed data for the actual argument, except for contiguous arrays, + where the descriptor's data component is set. */ + if (g77) + se->expr = ptr; + else + { + tmp = build_fold_indirect_ref_loc (input_location, desc); + + gfc_ss * ss = gfc_walk_expr (expr); + if (!transposed_dims (ss)) + gfc_conv_descriptor_data_set (&se->pre, tmp, ptr); + else + { + tree old_field, new_field; + + /* The original descriptor has transposed dims so we can't reuse + it directly; we have to create a new one. */ + tree old_desc = tmp; + tree new_desc = gfc_create_var (TREE_TYPE (old_desc), "arg_desc"); + + old_field = gfc_conv_descriptor_dtype (old_desc); + new_field = gfc_conv_descriptor_dtype (new_desc); + gfc_add_modify (&se->pre, new_field, old_field); + + old_field = gfc_conv_descriptor_offset (old_desc); + new_field = gfc_conv_descriptor_offset (new_desc); + gfc_add_modify (&se->pre, new_field, old_field); + + for (int i = 0; i < expr->rank; i++) + { + old_field = gfc_conv_descriptor_dimension (old_desc, + gfc_rank_cst[get_array_ref_dim_for_loop_dim (ss, i)]); + new_field = gfc_conv_descriptor_dimension (new_desc, + gfc_rank_cst[i]); + gfc_add_modify (&se->pre, new_field, old_field); + } + + if (flag_coarray == GFC_FCOARRAY_LIB + && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (old_desc)) + && GFC_TYPE_ARRAY_AKIND (TREE_TYPE (old_desc)) + == GFC_ARRAY_ALLOCATABLE) + { + old_field = gfc_conv_descriptor_token (old_desc); + new_field = gfc_conv_descriptor_token (new_desc); + gfc_add_modify (&se->pre, new_field, old_field); + } + + gfc_conv_descriptor_data_set (&se->pre, new_desc, ptr); + se->expr = gfc_build_addr_expr (NULL_TREE, new_desc); + } + gfc_free_ss (ss); + } + + if (gfc_option.rtcheck & GFC_RTCHECK_ARRAY_TEMPS) + { + char * msg; + + if (fsym && proc_name) + msg = xasprintf ("An array temporary was created for argument " + "'%s' of procedure '%s'", fsym->name, proc_name); + else + msg = xasprintf ("An array temporary was created"); + + tmp = build_fold_indirect_ref_loc (input_location, + desc); + tmp = gfc_conv_array_data (tmp); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + fold_convert (TREE_TYPE (tmp), ptr), tmp); + + if (fsym && fsym->attr.optional && sym && sym->attr.optional) + tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + gfc_conv_expr_present (sym), tmp); + + gfc_trans_runtime_check (false, true, tmp, &se->pre, + &expr->where, msg); + free (msg); + } + + gfc_start_block (&block); + + /* Copy the data back. */ + if (fsym == NULL || fsym->attr.intent != INTENT_IN) + { + tmp = build_call_expr_loc (input_location, + gfor_fndecl_in_unpack, 2, desc, ptr); + gfc_add_expr_to_block (&block, tmp); + } + + /* Free the temporary. */ + tmp = gfc_call_free (ptr); + gfc_add_expr_to_block (&block, tmp); + + stmt = gfc_finish_block (&block); + + gfc_init_block (&block); + /* Only if it was repacked. This code needs to be executed before the + loop cleanup code. */ + tmp = build_fold_indirect_ref_loc (input_location, + desc); + tmp = gfc_conv_array_data (tmp); + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + fold_convert (TREE_TYPE (tmp), ptr), tmp); + + if (fsym && fsym->attr.optional && sym && sym->attr.optional) + tmp = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, + gfc_conv_expr_present (sym), tmp); + + tmp = build3_v (COND_EXPR, tmp, stmt, build_empty_stmt (input_location)); + + gfc_add_expr_to_block (&block, tmp); + gfc_add_block_to_block (&block, &se->post); + + gfc_init_block (&se->post); + + /* Reset the descriptor pointer. */ + if (!g77) + { + tmp = build_fold_indirect_ref_loc (input_location, desc); + gfc_conv_descriptor_data_set (&se->post, tmp, origptr); + } + + gfc_add_block_to_block (&se->post, &block); + } +} + + +/* This helper function calculates the size in words of a full array. */ + +tree +gfc_full_array_size (stmtblock_t *block, tree decl, int rank) +{ + tree idx; + tree nelems; + tree tmp; + idx = gfc_rank_cst[rank - 1]; + nelems = gfc_conv_descriptor_ubound_get (decl, idx); + tmp = gfc_conv_descriptor_lbound_get (decl, idx); + tmp = fold_build2_loc (input_location, MINUS_EXPR, gfc_array_index_type, + nelems, tmp); + tmp = fold_build2_loc (input_location, PLUS_EXPR, gfc_array_index_type, + tmp, gfc_index_one_node); + tmp = gfc_evaluate_now (tmp, block); + + nelems = gfc_conv_descriptor_stride_get (decl, idx); + tmp = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + nelems, tmp); + return gfc_evaluate_now (tmp, block); +} + + +/* Allocate dest to the same size as src, and copy src -> dest. + If no_malloc is set, only the copy is done. */ + +static tree +duplicate_allocatable (tree dest, tree src, tree type, int rank, + bool no_malloc, bool no_memcpy, tree str_sz, + tree add_when_allocated) +{ + tree tmp; + tree size; + tree nelems; + tree null_cond; + tree null_data; + stmtblock_t block; + + /* If the source is null, set the destination to null. Then, + allocate memory to the destination. */ + gfc_init_block (&block); + + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest))) + { + gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node)); + null_data = gfc_finish_block (&block); + + gfc_init_block (&block); + if (str_sz != NULL_TREE) + size = str_sz; + else + size = TYPE_SIZE_UNIT (TREE_TYPE (type)); + + if (!no_malloc) + { + tmp = gfc_call_malloc (&block, type, size); + gfc_add_modify (&block, dest, fold_convert (type, tmp)); + } + + if (!no_memcpy) + { + tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); + tmp = build_call_expr_loc (input_location, tmp, 3, dest, src, + fold_convert (size_type_node, size)); + gfc_add_expr_to_block (&block, tmp); + } + } + else + { + gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); + null_data = gfc_finish_block (&block); + + gfc_init_block (&block); + if (rank) + nelems = gfc_full_array_size (&block, src, rank); + else + nelems = gfc_index_one_node; + + if (str_sz != NULL_TREE) + tmp = fold_convert (gfc_array_index_type, str_sz); + else + tmp = fold_convert (gfc_array_index_type, + TYPE_SIZE_UNIT (gfc_get_element_type (type))); + size = fold_build2_loc (input_location, MULT_EXPR, gfc_array_index_type, + nelems, tmp); + if (!no_malloc) + { + tmp = TREE_TYPE (gfc_conv_descriptor_data_get (src)); + tmp = gfc_call_malloc (&block, tmp, size); + gfc_conv_descriptor_data_set (&block, dest, tmp); + } + + /* We know the temporary and the value will be the same length, + so can use memcpy. */ + if (!no_memcpy) + { + tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); + tmp = build_call_expr_loc (input_location, tmp, 3, + gfc_conv_descriptor_data_get (dest), + gfc_conv_descriptor_data_get (src), + fold_convert (size_type_node, size)); + gfc_add_expr_to_block (&block, tmp); + } + } + + gfc_add_expr_to_block (&block, add_when_allocated); + tmp = gfc_finish_block (&block); + + /* Null the destination if the source is null; otherwise do + the allocate and copy. */ + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src))) + null_cond = src; + else + null_cond = gfc_conv_descriptor_data_get (src); + + null_cond = convert (pvoid_type_node, null_cond); + null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + null_cond, null_pointer_node); + return build3_v (COND_EXPR, null_cond, tmp, null_data); +} + + +/* Allocate dest to the same size as src, and copy data src -> dest. */ + +tree +gfc_duplicate_allocatable (tree dest, tree src, tree type, int rank, + tree add_when_allocated) +{ + return duplicate_allocatable (dest, src, type, rank, false, false, + NULL_TREE, add_when_allocated); +} + + +/* Copy data src -> dest. */ + +tree +gfc_copy_allocatable_data (tree dest, tree src, tree type, int rank) +{ + return duplicate_allocatable (dest, src, type, rank, true, false, + NULL_TREE, NULL_TREE); +} + +/* Allocate dest to the same size as src, but don't copy anything. */ + +tree +gfc_duplicate_allocatable_nocopy (tree dest, tree src, tree type, int rank) +{ + return duplicate_allocatable (dest, src, type, rank, false, true, + NULL_TREE, NULL_TREE); +} + + +static tree +duplicate_allocatable_coarray (tree dest, tree dest_tok, tree src, + tree type, int rank) +{ + tree tmp; + tree size; + tree nelems; + tree null_cond; + tree null_data; + stmtblock_t block, globalblock; + + /* If the source is null, set the destination to null. Then, + allocate memory to the destination. */ + gfc_init_block (&block); + gfc_init_block (&globalblock); + + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest))) + { + gfc_se se; + symbol_attribute attr; + tree dummy_desc; + + gfc_init_se (&se, NULL); + gfc_clear_attr (&attr); + attr.allocatable = 1; + dummy_desc = gfc_conv_scalar_to_descriptor (&se, dest, attr); + gfc_add_block_to_block (&globalblock, &se.pre); + size = TYPE_SIZE_UNIT (TREE_TYPE (type)); + + gfc_add_modify (&block, dest, fold_convert (type, null_pointer_node)); + gfc_allocate_using_caf_lib (&block, dummy_desc, size, + gfc_build_addr_expr (NULL_TREE, dest_tok), + NULL_TREE, NULL_TREE, NULL_TREE, + GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY); + null_data = gfc_finish_block (&block); + + gfc_init_block (&block); + + gfc_allocate_using_caf_lib (&block, dummy_desc, + fold_convert (size_type_node, size), + gfc_build_addr_expr (NULL_TREE, dest_tok), + NULL_TREE, NULL_TREE, NULL_TREE, + GFC_CAF_COARRAY_ALLOC); + + tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); + tmp = build_call_expr_loc (input_location, tmp, 3, dest, src, + fold_convert (size_type_node, size)); + gfc_add_expr_to_block (&block, tmp); + } + else + { + /* Set the rank or unitialized memory access may be reported. */ + tmp = gfc_conv_descriptor_rank (dest); + gfc_add_modify (&globalblock, tmp, build_int_cst (TREE_TYPE (tmp), rank)); + + if (rank) + nelems = gfc_full_array_size (&block, src, rank); + else + nelems = integer_one_node; + + tmp = fold_convert (size_type_node, + TYPE_SIZE_UNIT (gfc_get_element_type (type))); + size = fold_build2_loc (input_location, MULT_EXPR, size_type_node, + fold_convert (size_type_node, nelems), tmp); + + gfc_conv_descriptor_data_set (&block, dest, null_pointer_node); + gfc_allocate_using_caf_lib (&block, dest, fold_convert (size_type_node, + size), + gfc_build_addr_expr (NULL_TREE, dest_tok), + NULL_TREE, NULL_TREE, NULL_TREE, + GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY); + null_data = gfc_finish_block (&block); + + gfc_init_block (&block); + gfc_allocate_using_caf_lib (&block, dest, + fold_convert (size_type_node, size), + gfc_build_addr_expr (NULL_TREE, dest_tok), + NULL_TREE, NULL_TREE, NULL_TREE, + GFC_CAF_COARRAY_ALLOC); + + tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); + tmp = build_call_expr_loc (input_location, tmp, 3, + gfc_conv_descriptor_data_get (dest), + gfc_conv_descriptor_data_get (src), + fold_convert (size_type_node, size)); + gfc_add_expr_to_block (&block, tmp); + } + + tmp = gfc_finish_block (&block); + + /* Null the destination if the source is null; otherwise do + the register and copy. */ + if (!GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (src))) + null_cond = src; + else + null_cond = gfc_conv_descriptor_data_get (src); + + null_cond = convert (pvoid_type_node, null_cond); + null_cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + null_cond, null_pointer_node); + gfc_add_expr_to_block (&globalblock, build3_v (COND_EXPR, null_cond, tmp, + null_data)); + return gfc_finish_block (&globalblock); +} + + +/* Helper function to abstract whether coarray processing is enabled. */ + +static bool +caf_enabled (int caf_mode) +{ + return (caf_mode & GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY) + == GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY; +} + + +/* Helper function to abstract whether coarray processing is enabled + and we are in a derived type coarray. */ + +static bool +caf_in_coarray (int caf_mode) +{ + static const int pat = GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY + | GFC_STRUCTURE_CAF_MODE_IN_COARRAY; + return (caf_mode & pat) == pat; +} + + +/* Helper function to abstract whether coarray is to deallocate only. */ + +bool +gfc_caf_is_dealloc_only (int caf_mode) +{ + return (caf_mode & GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY) + == GFC_STRUCTURE_CAF_MODE_DEALLOC_ONLY; +} + + +/* Recursively traverse an object of derived type, generating code to + deallocate, nullify or copy allocatable components. This is the work horse + function for the functions named in this enum. */ + +enum {DEALLOCATE_ALLOC_COMP = 1, NULLIFY_ALLOC_COMP, + COPY_ALLOC_COMP, COPY_ONLY_ALLOC_COMP, REASSIGN_CAF_COMP, + ALLOCATE_PDT_COMP, DEALLOCATE_PDT_COMP, CHECK_PDT_DUMMY, + BCAST_ALLOC_COMP}; + +static gfc_actual_arglist *pdt_param_list; + +static tree +structure_alloc_comps (gfc_symbol * der_type, tree decl, + tree dest, int rank, int purpose, int caf_mode, + gfc_co_subroutines_args *args) +{ + gfc_component *c; + gfc_loopinfo loop; + stmtblock_t fnblock; + stmtblock_t loopbody; + stmtblock_t tmpblock; + tree decl_type; + tree tmp; + tree comp; + tree dcmp; + tree nelems; + tree index; + tree var; + tree cdecl; + tree ctype; + tree vref, dref; + tree null_cond = NULL_TREE; + tree add_when_allocated; + tree dealloc_fndecl; + tree caf_token; + gfc_symbol *vtab; + int caf_dereg_mode; + symbol_attribute *attr; + bool deallocate_called; + + gfc_init_block (&fnblock); + + decl_type = TREE_TYPE (decl); + + if ((POINTER_TYPE_P (decl_type)) + || (TREE_CODE (decl_type) == REFERENCE_TYPE && rank == 0)) + { + decl = build_fold_indirect_ref_loc (input_location, decl); + /* Deref dest in sync with decl, but only when it is not NULL. */ + if (dest) + dest = build_fold_indirect_ref_loc (input_location, dest); + + /* Update the decl_type because it got dereferenced. */ + decl_type = TREE_TYPE (decl); + } + + /* If this is an array of derived types with allocatable components + build a loop and recursively call this function. */ + if (TREE_CODE (decl_type) == ARRAY_TYPE + || (GFC_DESCRIPTOR_TYPE_P (decl_type) && rank != 0)) + { + tmp = gfc_conv_array_data (decl); + var = build_fold_indirect_ref_loc (input_location, tmp); + + /* Get the number of elements - 1 and set the counter. */ + if (GFC_DESCRIPTOR_TYPE_P (decl_type)) + { + /* Use the descriptor for an allocatable array. Since this + is a full array reference, we only need the descriptor + information from dimension = rank. */ + tmp = gfc_full_array_size (&fnblock, decl, rank); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, tmp, + gfc_index_one_node); + + null_cond = gfc_conv_descriptor_data_get (decl); + null_cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, null_cond, + build_int_cst (TREE_TYPE (null_cond), 0)); + } + else + { + /* Otherwise use the TYPE_DOMAIN information. */ + tmp = array_type_nelts (decl_type); + tmp = fold_convert (gfc_array_index_type, tmp); + } + + /* Remember that this is, in fact, the no. of elements - 1. */ + nelems = gfc_evaluate_now (tmp, &fnblock); + index = gfc_create_var (gfc_array_index_type, "S"); + + /* Build the body of the loop. */ + gfc_init_block (&loopbody); + + vref = gfc_build_array_ref (var, index, NULL); + + if (purpose == COPY_ALLOC_COMP || purpose == COPY_ONLY_ALLOC_COMP) + { + tmp = build_fold_indirect_ref_loc (input_location, + gfc_conv_array_data (dest)); + dref = gfc_build_array_ref (tmp, index, NULL); + tmp = structure_alloc_comps (der_type, vref, dref, rank, + COPY_ALLOC_COMP, caf_mode, args); + } + else + tmp = structure_alloc_comps (der_type, vref, NULL_TREE, rank, purpose, + caf_mode, args); + + gfc_add_expr_to_block (&loopbody, tmp); + + /* Build the loop and return. */ + gfc_init_loopinfo (&loop); + loop.dimen = 1; + loop.from[0] = gfc_index_zero_node; + loop.loopvar[0] = index; + loop.to[0] = nelems; + gfc_trans_scalarizing_loops (&loop, &loopbody); + gfc_add_block_to_block (&fnblock, &loop.pre); + + tmp = gfc_finish_block (&fnblock); + /* When copying allocateable components, the above implements the + deep copy. Nevertheless is a deep copy only allowed, when the current + component is allocated, for which code will be generated in + gfc_duplicate_allocatable (), where the deep copy code is just added + into the if's body, by adding tmp (the deep copy code) as last + argument to gfc_duplicate_allocatable (). */ + if (purpose == COPY_ALLOC_COMP + && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (dest))) + tmp = gfc_duplicate_allocatable (dest, decl, decl_type, rank, + tmp); + else if (null_cond != NULL_TREE) + tmp = build3_v (COND_EXPR, null_cond, tmp, + build_empty_stmt (input_location)); + + return tmp; + } + + if (purpose == DEALLOCATE_ALLOC_COMP && der_type->attr.pdt_type) + { + tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank, + DEALLOCATE_PDT_COMP, 0, args); + gfc_add_expr_to_block (&fnblock, tmp); + } + else if (purpose == ALLOCATE_PDT_COMP && der_type->attr.alloc_comp) + { + tmp = structure_alloc_comps (der_type, decl, NULL_TREE, rank, + NULLIFY_ALLOC_COMP, 0, args); + gfc_add_expr_to_block (&fnblock, tmp); + } + + /* Otherwise, act on the components or recursively call self to + act on a chain of components. */ + for (c = der_type->components; c; c = c->next) + { + bool cmp_has_alloc_comps = (c->ts.type == BT_DERIVED + || c->ts.type == BT_CLASS) + && c->ts.u.derived->attr.alloc_comp; + bool same_type = (c->ts.type == BT_DERIVED && der_type == c->ts.u.derived) + || (c->ts.type == BT_CLASS && der_type == CLASS_DATA (c)->ts.u.derived); + + bool is_pdt_type = c->ts.type == BT_DERIVED + && c->ts.u.derived->attr.pdt_type; + + cdecl = c->backend_decl; + ctype = TREE_TYPE (cdecl); + + switch (purpose) + { + + case BCAST_ALLOC_COMP: + + tree ubound; + tree cdesc; + stmtblock_t derived_type_block; + + gfc_init_block (&tmpblock); + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + + /* Shortcut to get the attributes of the component. */ + if (c->ts.type == BT_CLASS) + { + attr = &CLASS_DATA (c)->attr; + if (attr->class_pointer) + continue; + } + else + { + attr = &c->attr; + if (attr->pointer) + continue; + } + + add_when_allocated = NULL_TREE; + if (cmp_has_alloc_comps + && !c->attr.pointer && !c->attr.proc_pointer) + { + if (c->ts.type == BT_CLASS) + { + rank = CLASS_DATA (c)->as ? CLASS_DATA (c)->as->rank : 0; + add_when_allocated + = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived, + comp, NULL_TREE, rank, purpose, + caf_mode, args); + } + else + { + rank = c->as ? c->as->rank : 0; + add_when_allocated = structure_alloc_comps (c->ts.u.derived, + comp, NULL_TREE, + rank, purpose, + caf_mode, args); + } + } + + gfc_init_block (&derived_type_block); + if (add_when_allocated) + gfc_add_expr_to_block (&derived_type_block, add_when_allocated); + tmp = gfc_finish_block (&derived_type_block); + gfc_add_expr_to_block (&tmpblock, tmp); + + /* Convert the component into a rank 1 descriptor type. */ + if (attr->dimension) + { + tmp = gfc_get_element_type (TREE_TYPE (comp)); + ubound = gfc_full_array_size (&tmpblock, comp, + c->ts.type == BT_CLASS + ? CLASS_DATA (c)->as->rank + : c->as->rank); + } + else + { + tmp = TREE_TYPE (comp); + ubound = build_int_cst (gfc_array_index_type, 1); + } + + cdesc = gfc_get_array_type_bounds (tmp, 1, 0, &gfc_index_one_node, + &ubound, 1, + GFC_ARRAY_ALLOCATABLE, false); + + cdesc = gfc_create_var (cdesc, "cdesc"); + DECL_ARTIFICIAL (cdesc) = 1; + + gfc_add_modify (&tmpblock, gfc_conv_descriptor_dtype (cdesc), + gfc_get_dtype_rank_type (1, tmp)); + gfc_conv_descriptor_lbound_set (&tmpblock, cdesc, + gfc_index_zero_node, + gfc_index_one_node); + gfc_conv_descriptor_stride_set (&tmpblock, cdesc, + gfc_index_zero_node, + gfc_index_one_node); + gfc_conv_descriptor_ubound_set (&tmpblock, cdesc, + gfc_index_zero_node, ubound); + + if (attr->dimension) + comp = gfc_conv_descriptor_data_get (comp); + else + { + gfc_se se; + + gfc_init_se (&se, NULL); + + comp = gfc_conv_scalar_to_descriptor (&se, comp, + c->ts.type == BT_CLASS + ? CLASS_DATA (c)->attr + : c->attr); + comp = gfc_build_addr_expr (NULL_TREE, comp); + gfc_add_block_to_block (&tmpblock, &se.pre); + } + + gfc_conv_descriptor_data_set (&tmpblock, cdesc, comp); + + tree fndecl; + + fndecl = build_call_expr_loc (input_location, + gfor_fndecl_co_broadcast, 5, + gfc_build_addr_expr (pvoid_type_node,cdesc), + args->image_index, + null_pointer_node, null_pointer_node, + null_pointer_node); + + gfc_add_expr_to_block (&tmpblock, fndecl); + gfc_add_block_to_block (&fnblock, &tmpblock); + + break; + + case DEALLOCATE_ALLOC_COMP: + + gfc_init_block (&tmpblock); + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + + /* Shortcut to get the attributes of the component. */ + if (c->ts.type == BT_CLASS) + { + attr = &CLASS_DATA (c)->attr; + if (attr->class_pointer) + continue; + } + else + { + attr = &c->attr; + if (attr->pointer) + continue; + } + + if ((c->ts.type == BT_DERIVED && !c->attr.pointer) + || (c->ts.type == BT_CLASS && !CLASS_DATA (c)->attr.class_pointer)) + /* Call the finalizer, which will free the memory and nullify the + pointer of an array. */ + deallocate_called = gfc_add_comp_finalizer_call (&tmpblock, comp, c, + caf_enabled (caf_mode)) + && attr->dimension; + else + deallocate_called = false; + + /* Add the _class ref for classes. */ + if (c->ts.type == BT_CLASS && attr->allocatable) + comp = gfc_class_data_get (comp); + + add_when_allocated = NULL_TREE; + if (cmp_has_alloc_comps + && !c->attr.pointer && !c->attr.proc_pointer + && !same_type + && !deallocate_called) + { + /* Add checked deallocation of the components. This code is + obviously added because the finalizer is not trusted to free + all memory. */ + if (c->ts.type == BT_CLASS) + { + rank = CLASS_DATA (c)->as ? CLASS_DATA (c)->as->rank : 0; + add_when_allocated + = structure_alloc_comps (CLASS_DATA (c)->ts.u.derived, + comp, NULL_TREE, rank, purpose, + caf_mode, args); + } + else + { + rank = c->as ? c->as->rank : 0; + add_when_allocated = structure_alloc_comps (c->ts.u.derived, + comp, NULL_TREE, + rank, purpose, + caf_mode, args); + } + } + + if (attr->allocatable && !same_type + && (!attr->codimension || caf_enabled (caf_mode))) + { + /* Handle all types of components besides components of the + same_type as the current one, because those would create an + endless loop. */ + caf_dereg_mode + = (caf_in_coarray (caf_mode) || attr->codimension) + ? (gfc_caf_is_dealloc_only (caf_mode) + ? GFC_CAF_COARRAY_DEALLOCATE_ONLY + : GFC_CAF_COARRAY_DEREGISTER) + : GFC_CAF_COARRAY_NOCOARRAY; + + caf_token = NULL_TREE; + /* Coarray components are handled directly by + deallocate_with_status. */ + if (!attr->codimension + && caf_dereg_mode != GFC_CAF_COARRAY_NOCOARRAY) + { + if (c->caf_token) + caf_token = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (c->caf_token), + decl, c->caf_token, NULL_TREE); + else if (attr->dimension && !attr->proc_pointer) + caf_token = gfc_conv_descriptor_token (comp); + } + if (attr->dimension && !attr->codimension && !attr->proc_pointer) + /* When this is an array but not in conjunction with a coarray + then add the data-ref. For coarray'ed arrays the data-ref + is added by deallocate_with_status. */ + comp = gfc_conv_descriptor_data_get (comp); + + tmp = gfc_deallocate_with_status (comp, NULL_TREE, NULL_TREE, + NULL_TREE, NULL_TREE, true, + NULL, caf_dereg_mode, + add_when_allocated, caf_token); + + gfc_add_expr_to_block (&tmpblock, tmp); + } + else if (attr->allocatable && !attr->codimension + && !deallocate_called) + { + /* Case of recursive allocatable derived types. */ + tree is_allocated; + tree ubound; + tree cdesc; + stmtblock_t dealloc_block; + + gfc_init_block (&dealloc_block); + if (add_when_allocated) + gfc_add_expr_to_block (&dealloc_block, add_when_allocated); + + /* Convert the component into a rank 1 descriptor type. */ + if (attr->dimension) + { + tmp = gfc_get_element_type (TREE_TYPE (comp)); + ubound = gfc_full_array_size (&dealloc_block, comp, + c->ts.type == BT_CLASS + ? CLASS_DATA (c)->as->rank + : c->as->rank); + } + else + { + tmp = TREE_TYPE (comp); + ubound = build_int_cst (gfc_array_index_type, 1); + } + + cdesc = gfc_get_array_type_bounds (tmp, 1, 0, &gfc_index_one_node, + &ubound, 1, + GFC_ARRAY_ALLOCATABLE, false); + + cdesc = gfc_create_var (cdesc, "cdesc"); + DECL_ARTIFICIAL (cdesc) = 1; + + gfc_add_modify (&dealloc_block, gfc_conv_descriptor_dtype (cdesc), + gfc_get_dtype_rank_type (1, tmp)); + gfc_conv_descriptor_lbound_set (&dealloc_block, cdesc, + gfc_index_zero_node, + gfc_index_one_node); + gfc_conv_descriptor_stride_set (&dealloc_block, cdesc, + gfc_index_zero_node, + gfc_index_one_node); + gfc_conv_descriptor_ubound_set (&dealloc_block, cdesc, + gfc_index_zero_node, ubound); + + if (attr->dimension) + comp = gfc_conv_descriptor_data_get (comp); + + gfc_conv_descriptor_data_set (&dealloc_block, cdesc, comp); + + /* Now call the deallocator. */ + vtab = gfc_find_vtab (&c->ts); + if (vtab->backend_decl == NULL) + gfc_get_symbol_decl (vtab); + tmp = gfc_build_addr_expr (NULL_TREE, vtab->backend_decl); + dealloc_fndecl = gfc_vptr_deallocate_get (tmp); + dealloc_fndecl = build_fold_indirect_ref_loc (input_location, + dealloc_fndecl); + tmp = build_int_cst (TREE_TYPE (comp), 0); + is_allocated = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, tmp, + comp); + cdesc = gfc_build_addr_expr (NULL_TREE, cdesc); + + tmp = build_call_expr_loc (input_location, + dealloc_fndecl, 1, + cdesc); + gfc_add_expr_to_block (&dealloc_block, tmp); + + tmp = gfc_finish_block (&dealloc_block); + + tmp = fold_build3_loc (input_location, COND_EXPR, + void_type_node, is_allocated, tmp, + build_empty_stmt (input_location)); + + gfc_add_expr_to_block (&tmpblock, tmp); + } + else if (add_when_allocated) + gfc_add_expr_to_block (&tmpblock, add_when_allocated); + + if (c->ts.type == BT_CLASS && attr->allocatable + && (!attr->codimension || !caf_enabled (caf_mode))) + { + /* Finally, reset the vptr to the declared type vtable and, if + necessary reset the _len field. + + First recover the reference to the component and obtain + the vptr. */ + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + tmp = gfc_class_vptr_get (comp); + + if (UNLIMITED_POLY (c)) + { + /* Both vptr and _len field should be nulled. */ + gfc_add_modify (&tmpblock, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + tmp = gfc_class_len_get (comp); + gfc_add_modify (&tmpblock, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + } + else + { + /* Build the vtable address and set the vptr with it. */ + tree vtab; + gfc_symbol *vtable; + vtable = gfc_find_derived_vtab (c->ts.u.derived); + vtab = vtable->backend_decl; + if (vtab == NULL_TREE) + vtab = gfc_get_symbol_decl (vtable); + vtab = gfc_build_addr_expr (NULL, vtab); + vtab = fold_convert (TREE_TYPE (tmp), vtab); + gfc_add_modify (&tmpblock, tmp, vtab); + } + } + + /* Now add the deallocation of this component. */ + gfc_add_block_to_block (&fnblock, &tmpblock); + break; + + case NULLIFY_ALLOC_COMP: + /* Nullify + - allocatable components (regular or in class) + - components that have allocatable components + - pointer components when in a coarray. + Skip everything else especially proc_pointers, which may come + coupled with the regular pointer attribute. */ + if (c->attr.proc_pointer + || !(c->attr.allocatable || (c->ts.type == BT_CLASS + && CLASS_DATA (c)->attr.allocatable) + || (cmp_has_alloc_comps + && ((c->ts.type == BT_DERIVED && !c->attr.pointer) + || (c->ts.type == BT_CLASS + && !CLASS_DATA (c)->attr.class_pointer))) + || (caf_in_coarray (caf_mode) && c->attr.pointer))) + continue; + + /* Process class components first, because they always have the + pointer-attribute set which would be caught wrong else. */ + if (c->ts.type == BT_CLASS + && (CLASS_DATA (c)->attr.allocatable + || CLASS_DATA (c)->attr.class_pointer)) + { + tree vptr_decl; + + /* Allocatable CLASS components. */ + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + + vptr_decl = gfc_class_vptr_get (comp); + + comp = gfc_class_data_get (comp); + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp))) + gfc_conv_descriptor_data_set (&fnblock, comp, + null_pointer_node); + else + { + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + void_type_node, comp, + build_int_cst (TREE_TYPE (comp), 0)); + gfc_add_expr_to_block (&fnblock, tmp); + } + + /* The dynamic type of a disassociated pointer or unallocated + allocatable variable is its declared type. An unlimited + polymorphic entity has no declared type. */ + if (!UNLIMITED_POLY (c)) + { + vtab = gfc_find_derived_vtab (c->ts.u.derived); + if (!vtab->backend_decl) + gfc_get_symbol_decl (vtab); + tmp = gfc_build_addr_expr (NULL_TREE, vtab->backend_decl); + } + else + tmp = build_int_cst (TREE_TYPE (vptr_decl), 0); + + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + void_type_node, vptr_decl, tmp); + gfc_add_expr_to_block (&fnblock, tmp); + + cmp_has_alloc_comps = false; + } + /* Coarrays need the component to be nulled before the api-call + is made. */ + else if (c->attr.pointer || c->attr.allocatable) + { + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + if (c->attr.dimension || c->attr.codimension) + gfc_conv_descriptor_data_set (&fnblock, comp, + null_pointer_node); + else + gfc_add_modify (&fnblock, comp, + build_int_cst (TREE_TYPE (comp), 0)); + if (gfc_deferred_strlen (c, &comp)) + { + comp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (comp), + decl, comp, NULL_TREE); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (comp), comp, + build_int_cst (TREE_TYPE (comp), 0)); + gfc_add_expr_to_block (&fnblock, tmp); + } + cmp_has_alloc_comps = false; + } + + if (flag_coarray == GFC_FCOARRAY_LIB && caf_in_coarray (caf_mode)) + { + /* Register a component of a derived type coarray with the + coarray library. Do not register ultimate component + coarrays here. They are treated like regular coarrays and + are either allocated on all images or on none. */ + tree token; + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + if (c->attr.dimension) + { + /* Set the dtype, because caf_register needs it. */ + gfc_add_modify (&fnblock, gfc_conv_descriptor_dtype (comp), + gfc_get_dtype (TREE_TYPE (comp))); + tmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + token = gfc_conv_descriptor_token (tmp); + } + else + { + gfc_se se; + + gfc_init_se (&se, NULL); + token = fold_build3_loc (input_location, COMPONENT_REF, + pvoid_type_node, decl, c->caf_token, + NULL_TREE); + comp = gfc_conv_scalar_to_descriptor (&se, comp, + c->ts.type == BT_CLASS + ? CLASS_DATA (c)->attr + : c->attr); + gfc_add_block_to_block (&fnblock, &se.pre); + } + + gfc_allocate_using_caf_lib (&fnblock, comp, size_zero_node, + gfc_build_addr_expr (NULL_TREE, + token), + NULL_TREE, NULL_TREE, NULL_TREE, + GFC_CAF_COARRAY_ALLOC_REGISTER_ONLY); + } + + if (cmp_has_alloc_comps) + { + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + rank = c->as ? c->as->rank : 0; + tmp = structure_alloc_comps (c->ts.u.derived, comp, NULL_TREE, + rank, purpose, caf_mode, args); + gfc_add_expr_to_block (&fnblock, tmp); + } + break; + + case REASSIGN_CAF_COMP: + if (caf_enabled (caf_mode) + && (c->attr.codimension + || (c->ts.type == BT_CLASS + && (CLASS_DATA (c)->attr.coarray_comp + || caf_in_coarray (caf_mode))) + || (c->ts.type == BT_DERIVED + && (c->ts.u.derived->attr.coarray_comp + || caf_in_coarray (caf_mode)))) + && !same_type) + { + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + dest, cdecl, NULL_TREE); + + if (c->attr.codimension) + { + if (c->ts.type == BT_CLASS) + { + comp = gfc_class_data_get (comp); + dcmp = gfc_class_data_get (dcmp); + } + gfc_conv_descriptor_data_set (&fnblock, dcmp, + gfc_conv_descriptor_data_get (comp)); + } + else + { + tmp = structure_alloc_comps (c->ts.u.derived, comp, dcmp, + rank, purpose, caf_mode + | GFC_STRUCTURE_CAF_MODE_IN_COARRAY, + args); + gfc_add_expr_to_block (&fnblock, tmp); + } + } + break; + + case COPY_ALLOC_COMP: + if (c->attr.pointer || c->attr.proc_pointer) + continue; + + /* We need source and destination components. */ + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, decl, + cdecl, NULL_TREE); + dcmp = fold_build3_loc (input_location, COMPONENT_REF, ctype, dest, + cdecl, NULL_TREE); + dcmp = fold_convert (TREE_TYPE (comp), dcmp); + + if (c->ts.type == BT_CLASS && CLASS_DATA (c)->attr.allocatable) + { + tree ftn_tree; + tree size; + tree dst_data; + tree src_data; + tree null_data; + + dst_data = gfc_class_data_get (dcmp); + src_data = gfc_class_data_get (comp); + size = fold_convert (size_type_node, + gfc_class_vtab_size_get (comp)); + + if (CLASS_DATA (c)->attr.dimension) + { + nelems = gfc_conv_descriptor_size (src_data, + CLASS_DATA (c)->as->rank); + size = fold_build2_loc (input_location, MULT_EXPR, + size_type_node, size, + fold_convert (size_type_node, + nelems)); + } + else + nelems = build_int_cst (size_type_node, 1); + + if (CLASS_DATA (c)->attr.dimension + || CLASS_DATA (c)->attr.codimension) + { + src_data = gfc_conv_descriptor_data_get (src_data); + dst_data = gfc_conv_descriptor_data_get (dst_data); + } + + gfc_init_block (&tmpblock); + + gfc_add_modify (&tmpblock, gfc_class_vptr_get (dcmp), + gfc_class_vptr_get (comp)); + + /* Copy the unlimited '_len' field. If it is greater than zero + (ie. a character(_len)), multiply it by size and use this + for the malloc call. */ + if (UNLIMITED_POLY (c)) + { + gfc_add_modify (&tmpblock, gfc_class_len_get (dcmp), + gfc_class_len_get (comp)); + size = gfc_resize_class_size_with_len (&tmpblock, comp, size); + } + + /* Coarray component have to have the same allocation status and + shape/type-parameter/effective-type on the LHS and RHS of an + intrinsic assignment. Hence, we did not deallocated them - and + do not allocate them here. */ + if (!CLASS_DATA (c)->attr.codimension) + { + ftn_tree = builtin_decl_explicit (BUILT_IN_MALLOC); + tmp = build_call_expr_loc (input_location, ftn_tree, 1, size); + gfc_add_modify (&tmpblock, dst_data, + fold_convert (TREE_TYPE (dst_data), tmp)); + } + + tmp = gfc_copy_class_to_class (comp, dcmp, nelems, + UNLIMITED_POLY (c)); + gfc_add_expr_to_block (&tmpblock, tmp); + tmp = gfc_finish_block (&tmpblock); + + gfc_init_block (&tmpblock); + gfc_add_modify (&tmpblock, dst_data, + fold_convert (TREE_TYPE (dst_data), + null_pointer_node)); + null_data = gfc_finish_block (&tmpblock); + + null_cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, src_data, + null_pointer_node); + + gfc_add_expr_to_block (&fnblock, build3_v (COND_EXPR, null_cond, + tmp, null_data)); + continue; + } + + /* To implement guarded deep copy, i.e., deep copy only allocatable + components that are really allocated, the deep copy code has to + be generated first and then added to the if-block in + gfc_duplicate_allocatable (). */ + if (cmp_has_alloc_comps && !c->attr.proc_pointer && !same_type) + { + rank = c->as ? c->as->rank : 0; + tmp = fold_convert (TREE_TYPE (dcmp), comp); + gfc_add_modify (&fnblock, dcmp, tmp); + add_when_allocated = structure_alloc_comps (c->ts.u.derived, + comp, dcmp, + rank, purpose, + caf_mode, args); + } + else + add_when_allocated = NULL_TREE; + + if (gfc_deferred_strlen (c, &tmp)) + { + tree len, size; + len = tmp; + tmp = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (len), + decl, len, NULL_TREE); + len = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (len), + dest, len, NULL_TREE); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (len), len, tmp); + gfc_add_expr_to_block (&fnblock, tmp); + size = size_of_string_in_bytes (c->ts.kind, len); + /* This component cannot have allocatable components, + therefore add_when_allocated of duplicate_allocatable () + is always NULL. */ + tmp = duplicate_allocatable (dcmp, comp, ctype, rank, + false, false, size, NULL_TREE); + gfc_add_expr_to_block (&fnblock, tmp); + } + else if (c->attr.pdt_array) + { + tmp = duplicate_allocatable (dcmp, comp, ctype, + c->as ? c->as->rank : 0, + false, false, NULL_TREE, NULL_TREE); + gfc_add_expr_to_block (&fnblock, tmp); + } + else if ((c->attr.allocatable) + && !c->attr.proc_pointer && !same_type + && (!(cmp_has_alloc_comps && c->as) || c->attr.codimension + || caf_in_coarray (caf_mode))) + { + rank = c->as ? c->as->rank : 0; + if (c->attr.codimension) + tmp = gfc_copy_allocatable_data (dcmp, comp, ctype, rank); + else if (flag_coarray == GFC_FCOARRAY_LIB + && caf_in_coarray (caf_mode)) + { + tree dst_tok; + if (c->as) + dst_tok = gfc_conv_descriptor_token (dcmp); + else + { + /* For a scalar allocatable component the caf_token is + the next component. */ + if (!c->caf_token) + c->caf_token = c->next->backend_decl; + dst_tok = fold_build3_loc (input_location, + COMPONENT_REF, + pvoid_type_node, dest, + c->caf_token, + NULL_TREE); + } + tmp = duplicate_allocatable_coarray (dcmp, dst_tok, comp, + ctype, rank); + } + else + tmp = gfc_duplicate_allocatable (dcmp, comp, ctype, rank, + add_when_allocated); + gfc_add_expr_to_block (&fnblock, tmp); + } + else + if (cmp_has_alloc_comps || is_pdt_type) + gfc_add_expr_to_block (&fnblock, add_when_allocated); + + break; + + case ALLOCATE_PDT_COMP: + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + + /* Set the PDT KIND and LEN fields. */ + if (c->attr.pdt_kind || c->attr.pdt_len) + { + gfc_se tse; + gfc_expr *c_expr = NULL; + gfc_actual_arglist *param = pdt_param_list; + gfc_init_se (&tse, NULL); + for (; param; param = param->next) + if (param->name && !strcmp (c->name, param->name)) + c_expr = param->expr; + + if (!c_expr) + c_expr = c->initializer; + + if (c_expr) + { + gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp)); + gfc_add_modify (&fnblock, comp, tse.expr); + } + } + + if (c->attr.pdt_string) + { + gfc_se tse; + gfc_init_se (&tse, NULL); + tree strlen = NULL_TREE; + gfc_expr *e = gfc_copy_expr (c->ts.u.cl->length); + /* Convert the parameterized string length to its value. The + string length is stored in a hidden field in the same way as + deferred string lengths. */ + gfc_insert_parameter_exprs (e, pdt_param_list); + if (gfc_deferred_strlen (c, &strlen) && strlen != NULL_TREE) + { + gfc_conv_expr_type (&tse, e, + TREE_TYPE (strlen)); + strlen = fold_build3_loc (input_location, COMPONENT_REF, + TREE_TYPE (strlen), + decl, strlen, NULL_TREE); + gfc_add_modify (&fnblock, strlen, tse.expr); + c->ts.u.cl->backend_decl = strlen; + } + gfc_free_expr (e); + + /* Scalar parameterized strings can be allocated now. */ + if (!c->as) + { + tmp = fold_convert (gfc_array_index_type, strlen); + tmp = size_of_string_in_bytes (c->ts.kind, tmp); + tmp = gfc_evaluate_now (tmp, &fnblock); + tmp = gfc_call_malloc (&fnblock, TREE_TYPE (comp), tmp); + gfc_add_modify (&fnblock, comp, tmp); + } + } + + /* Allocate parameterized arrays of parameterized derived types. */ + if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT) + && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) + && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type))) + continue; + + if (c->ts.type == BT_CLASS) + comp = gfc_class_data_get (comp); + + if (c->attr.pdt_array) + { + gfc_se tse; + int i; + tree size = gfc_index_one_node; + tree offset = gfc_index_zero_node; + tree lower, upper; + gfc_expr *e; + + /* This chunk takes the expressions for 'lower' and 'upper' + in the arrayspec and substitutes in the expressions for + the parameters from 'pdt_param_list'. The descriptor + fields can then be filled from the values so obtained. */ + gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (comp))); + for (i = 0; i < c->as->rank; i++) + { + gfc_init_se (&tse, NULL); + e = gfc_copy_expr (c->as->lower[i]); + gfc_insert_parameter_exprs (e, pdt_param_list); + gfc_conv_expr_type (&tse, e, gfc_array_index_type); + gfc_free_expr (e); + lower = tse.expr; + gfc_conv_descriptor_lbound_set (&fnblock, comp, + gfc_rank_cst[i], + lower); + e = gfc_copy_expr (c->as->upper[i]); + gfc_insert_parameter_exprs (e, pdt_param_list); + gfc_conv_expr_type (&tse, e, gfc_array_index_type); + gfc_free_expr (e); + upper = tse.expr; + gfc_conv_descriptor_ubound_set (&fnblock, comp, + gfc_rank_cst[i], + upper); + gfc_conv_descriptor_stride_set (&fnblock, comp, + gfc_rank_cst[i], + size); + size = gfc_evaluate_now (size, &fnblock); + offset = fold_build2_loc (input_location, + MINUS_EXPR, + gfc_array_index_type, + offset, size); + offset = gfc_evaluate_now (offset, &fnblock); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + upper, lower); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + tmp, gfc_index_one_node); + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + } + gfc_conv_descriptor_offset_set (&fnblock, comp, offset); + if (c->ts.type == BT_CLASS) + { + tmp = gfc_get_vptr_from_expr (comp); + if (POINTER_TYPE_P (TREE_TYPE (tmp))) + tmp = build_fold_indirect_ref_loc (input_location, tmp); + tmp = gfc_vptr_size_get (tmp); + } + else + tmp = TYPE_SIZE_UNIT (gfc_get_element_type (ctype)); + tmp = fold_convert (gfc_array_index_type, tmp); + size = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, size, tmp); + size = gfc_evaluate_now (size, &fnblock); + tmp = gfc_call_malloc (&fnblock, NULL, size); + gfc_conv_descriptor_data_set (&fnblock, comp, tmp); + tmp = gfc_conv_descriptor_dtype (comp); + gfc_add_modify (&fnblock, tmp, gfc_get_dtype (ctype)); + + if (c->initializer && c->initializer->rank) + { + gfc_init_se (&tse, NULL); + e = gfc_copy_expr (c->initializer); + gfc_insert_parameter_exprs (e, pdt_param_list); + gfc_conv_expr_descriptor (&tse, e); + gfc_add_block_to_block (&fnblock, &tse.pre); + gfc_free_expr (e); + tmp = builtin_decl_explicit (BUILT_IN_MEMCPY); + tmp = build_call_expr_loc (input_location, tmp, 3, + gfc_conv_descriptor_data_get (comp), + gfc_conv_descriptor_data_get (tse.expr), + fold_convert (size_type_node, size)); + gfc_add_expr_to_block (&fnblock, tmp); + gfc_add_block_to_block (&fnblock, &tse.post); + } + } + + /* Recurse in to PDT components. */ + if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) + && c->ts.u.derived && c->ts.u.derived->attr.pdt_type + && !(c->attr.pointer || c->attr.allocatable)) + { + bool is_deferred = false; + gfc_actual_arglist *tail = c->param_list; + + for (; tail; tail = tail->next) + if (!tail->expr) + is_deferred = true; + + tail = is_deferred ? pdt_param_list : c->param_list; + tmp = gfc_allocate_pdt_comp (c->ts.u.derived, comp, + c->as ? c->as->rank : 0, + tail); + gfc_add_expr_to_block (&fnblock, tmp); + } + + break; + + case DEALLOCATE_PDT_COMP: + /* Deallocate array or parameterized string length components + of parameterized derived types. */ + if (!(c->attr.pdt_array && c->as && c->as->type == AS_EXPLICIT) + && !c->attr.pdt_string + && !((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) + && (c->ts.u.derived && c->ts.u.derived->attr.pdt_type))) + continue; + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + if (c->ts.type == BT_CLASS) + comp = gfc_class_data_get (comp); + + /* Recurse in to PDT components. */ + if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) + && c->ts.u.derived && c->ts.u.derived->attr.pdt_type + && (!c->attr.pointer && !c->attr.allocatable)) + { + tmp = gfc_deallocate_pdt_comp (c->ts.u.derived, comp, + c->as ? c->as->rank : 0); + gfc_add_expr_to_block (&fnblock, tmp); + } + + if (c->attr.pdt_array) + { + tmp = gfc_conv_descriptor_data_get (comp); + null_cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + tmp = gfc_call_free (tmp); + tmp = build3_v (COND_EXPR, null_cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fnblock, tmp); + gfc_conv_descriptor_data_set (&fnblock, comp, null_pointer_node); + } + else if (c->attr.pdt_string) + { + null_cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, comp, + build_int_cst (TREE_TYPE (comp), 0)); + tmp = gfc_call_free (comp); + tmp = build3_v (COND_EXPR, null_cond, tmp, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fnblock, tmp); + tmp = fold_convert (TREE_TYPE (comp), null_pointer_node); + gfc_add_modify (&fnblock, comp, tmp); + } + + break; + + case CHECK_PDT_DUMMY: + + comp = fold_build3_loc (input_location, COMPONENT_REF, ctype, + decl, cdecl, NULL_TREE); + if (c->ts.type == BT_CLASS) + comp = gfc_class_data_get (comp); + + /* Recurse in to PDT components. */ + if ((c->ts.type == BT_DERIVED || c->ts.type == BT_CLASS) + && c->ts.u.derived && c->ts.u.derived->attr.pdt_type) + { + tmp = gfc_check_pdt_dummy (c->ts.u.derived, comp, + c->as ? c->as->rank : 0, + pdt_param_list); + gfc_add_expr_to_block (&fnblock, tmp); + } + + if (!c->attr.pdt_len) + continue; + else + { + gfc_se tse; + gfc_expr *c_expr = NULL; + gfc_actual_arglist *param = pdt_param_list; + + gfc_init_se (&tse, NULL); + for (; param; param = param->next) + if (!strcmp (c->name, param->name) + && param->spec_type == SPEC_EXPLICIT) + c_expr = param->expr; + + if (c_expr) + { + tree error, cond, cname; + gfc_conv_expr_type (&tse, c_expr, TREE_TYPE (comp)); + cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + comp, tse.expr); + cname = gfc_build_cstring_const (c->name); + cname = gfc_build_addr_expr (pchar_type_node, cname); + error = gfc_trans_runtime_error (true, NULL, + "The value of the PDT LEN " + "parameter '%s' does not " + "agree with that in the " + "dummy declaration", + cname); + tmp = fold_build3_loc (input_location, COND_EXPR, + void_type_node, cond, error, + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fnblock, tmp); + } + } + break; + + default: + gcc_unreachable (); + break; + } + } + + return gfc_finish_block (&fnblock); +} + +/* Recursively traverse an object of derived type, generating code to + nullify allocatable components. */ + +tree +gfc_nullify_alloc_comp (gfc_symbol * der_type, tree decl, int rank, + int caf_mode) +{ + return structure_alloc_comps (der_type, decl, NULL_TREE, rank, + NULLIFY_ALLOC_COMP, + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL); +} + + +/* Recursively traverse an object of derived type, generating code to + deallocate allocatable components. */ + +tree +gfc_deallocate_alloc_comp (gfc_symbol * der_type, tree decl, int rank, + int caf_mode) +{ + return structure_alloc_comps (der_type, decl, NULL_TREE, rank, + DEALLOCATE_ALLOC_COMP, + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY | caf_mode, NULL); +} + +tree +gfc_bcast_alloc_comp (gfc_symbol *derived, gfc_expr *expr, int rank, + tree image_index, tree stat, tree errmsg, + tree errmsg_len) +{ + tree tmp, array; + gfc_se argse; + stmtblock_t block, post_block; + gfc_co_subroutines_args args; + + args.image_index = image_index; + args.stat = stat; + args.errmsg = errmsg; + args.errmsg_len = errmsg_len; + + if (rank == 0) + { + gfc_start_block (&block); + gfc_init_block (&post_block); + gfc_init_se (&argse, NULL); + gfc_conv_expr (&argse, expr); + gfc_add_block_to_block (&block, &argse.pre); + gfc_add_block_to_block (&post_block, &argse.post); + array = argse.expr; + } + else + { + gfc_init_se (&argse, NULL); + argse.want_pointer = 1; + gfc_conv_expr_descriptor (&argse, expr); + array = argse.expr; + } + + tmp = structure_alloc_comps (derived, array, NULL_TREE, rank, + BCAST_ALLOC_COMP, + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, &args); + return tmp; +} + +/* Recursively traverse an object of derived type, generating code to + deallocate allocatable components. But do not deallocate coarrays. + To be used for intrinsic assignment, which may not change the allocation + status of coarrays. */ + +tree +gfc_deallocate_alloc_comp_no_caf (gfc_symbol * der_type, tree decl, int rank) +{ + return structure_alloc_comps (der_type, decl, NULL_TREE, rank, + DEALLOCATE_ALLOC_COMP, 0, NULL); +} + + +tree +gfc_reassign_alloc_comp_caf (gfc_symbol *der_type, tree decl, tree dest) +{ + return structure_alloc_comps (der_type, decl, dest, 0, REASSIGN_CAF_COMP, + GFC_STRUCTURE_CAF_MODE_ENABLE_COARRAY, NULL); +} + + +/* Recursively traverse an object of derived type, generating code to + copy it and its allocatable components. */ + +tree +gfc_copy_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank, + int caf_mode) +{ + return structure_alloc_comps (der_type, decl, dest, rank, COPY_ALLOC_COMP, + caf_mode, NULL); +} + + +/* Recursively traverse an object of derived type, generating code to + copy only its allocatable components. */ + +tree +gfc_copy_only_alloc_comp (gfc_symbol * der_type, tree decl, tree dest, int rank) +{ + return structure_alloc_comps (der_type, decl, dest, rank, + COPY_ONLY_ALLOC_COMP, 0, NULL); +} + + +/* Recursively traverse an object of parameterized derived type, generating + code to allocate parameterized components. */ + +tree +gfc_allocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank, + gfc_actual_arglist *param_list) +{ + tree res; + gfc_actual_arglist *old_param_list = pdt_param_list; + pdt_param_list = param_list; + res = structure_alloc_comps (der_type, decl, NULL_TREE, rank, + ALLOCATE_PDT_COMP, 0, NULL); + pdt_param_list = old_param_list; + return res; +} + +/* Recursively traverse an object of parameterized derived type, generating + code to deallocate parameterized components. */ + +tree +gfc_deallocate_pdt_comp (gfc_symbol * der_type, tree decl, int rank) +{ + return structure_alloc_comps (der_type, decl, NULL_TREE, rank, + DEALLOCATE_PDT_COMP, 0, NULL); +} + + +/* Recursively traverse a dummy of parameterized derived type to check the + values of LEN parameters. */ + +tree +gfc_check_pdt_dummy (gfc_symbol * der_type, tree decl, int rank, + gfc_actual_arglist *param_list) +{ + tree res; + gfc_actual_arglist *old_param_list = pdt_param_list; + pdt_param_list = param_list; + res = structure_alloc_comps (der_type, decl, NULL_TREE, rank, + CHECK_PDT_DUMMY, 0, NULL); + pdt_param_list = old_param_list; + return res; +} + + +/* Returns the value of LBOUND for an expression. This could be broken out + from gfc_conv_intrinsic_bound but this seemed to be simpler. This is + called by gfc_alloc_allocatable_for_assignment. */ +static tree +get_std_lbound (gfc_expr *expr, tree desc, int dim, bool assumed_size) +{ + tree lbound; + tree ubound; + tree stride; + tree cond, cond1, cond3, cond4; + tree tmp; + gfc_ref *ref; + + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) + { + tmp = gfc_rank_cst[dim]; + lbound = gfc_conv_descriptor_lbound_get (desc, tmp); + ubound = gfc_conv_descriptor_ubound_get (desc, tmp); + stride = gfc_conv_descriptor_stride_get (desc, tmp); + cond1 = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + ubound, lbound); + cond3 = fold_build2_loc (input_location, GE_EXPR, logical_type_node, + stride, gfc_index_zero_node); + cond3 = fold_build2_loc (input_location, TRUTH_AND_EXPR, + logical_type_node, cond3, cond1); + cond4 = fold_build2_loc (input_location, LT_EXPR, logical_type_node, + stride, gfc_index_zero_node); + if (assumed_size) + cond = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + tmp, build_int_cst (gfc_array_index_type, + expr->rank - 1)); + else + cond = logical_false_node; + + cond1 = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, cond3, cond4); + cond = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, cond, cond1); + + return fold_build3_loc (input_location, COND_EXPR, + gfc_array_index_type, cond, + lbound, gfc_index_one_node); + } + + if (expr->expr_type == EXPR_FUNCTION) + { + /* A conversion function, so use the argument. */ + gcc_assert (expr->value.function.isym + && expr->value.function.isym->conversion); + expr = expr->value.function.actual->expr; + } + + if (expr->expr_type == EXPR_VARIABLE) + { + tmp = TREE_TYPE (expr->symtree->n.sym->backend_decl); + for (ref = expr->ref; ref; ref = ref->next) + { + if (ref->type == REF_COMPONENT + && ref->u.c.component->as + && ref->next + && ref->next->u.ar.type == AR_FULL) + tmp = TREE_TYPE (ref->u.c.component->backend_decl); + } + return GFC_TYPE_ARRAY_LBOUND(tmp, dim); + } + + return gfc_index_one_node; +} + + +/* Returns true if an expression represents an lhs that can be reallocated + on assignment. */ + +bool +gfc_is_reallocatable_lhs (gfc_expr *expr) +{ + gfc_ref * ref; + gfc_symbol *sym; + + if (!expr->ref) + return false; + + sym = expr->symtree->n.sym; + + if (sym->attr.associate_var && !expr->ref) + return false; + + /* An allocatable class variable with no reference. */ + if (sym->ts.type == BT_CLASS + && !sym->attr.associate_var + && CLASS_DATA (sym)->attr.allocatable + && expr->ref + && ((expr->ref->type == REF_ARRAY && expr->ref->u.ar.type == AR_FULL + && expr->ref->next == NULL) + || (expr->ref->type == REF_COMPONENT + && strcmp (expr->ref->u.c.component->name, "_data") == 0 + && (expr->ref->next == NULL + || (expr->ref->next->type == REF_ARRAY + && expr->ref->next->u.ar.type == AR_FULL + && expr->ref->next->next == NULL))))) + return true; + + /* An allocatable variable. */ + if (sym->attr.allocatable + && !sym->attr.associate_var + && expr->ref + && expr->ref->type == REF_ARRAY + && expr->ref->u.ar.type == AR_FULL) + return true; + + /* All that can be left are allocatable components. */ + if ((sym->ts.type != BT_DERIVED + && sym->ts.type != BT_CLASS) + || !sym->ts.u.derived->attr.alloc_comp) + return false; + + /* Find a component ref followed by an array reference. */ + for (ref = expr->ref; ref; ref = ref->next) + if (ref->next + && ref->type == REF_COMPONENT + && ref->next->type == REF_ARRAY + && !ref->next->next) + break; + + if (!ref) + return false; + + /* Return true if valid reallocatable lhs. */ + if (ref->u.c.component->attr.allocatable + && ref->next->u.ar.type == AR_FULL) + return true; + + return false; +} + + +static tree +concat_str_length (gfc_expr* expr) +{ + tree type; + tree len1; + tree len2; + gfc_se se; + + type = gfc_typenode_for_spec (&expr->value.op.op1->ts); + len1 = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); + if (len1 == NULL_TREE) + { + if (expr->value.op.op1->expr_type == EXPR_OP) + len1 = concat_str_length (expr->value.op.op1); + else if (expr->value.op.op1->expr_type == EXPR_CONSTANT) + len1 = build_int_cst (gfc_charlen_type_node, + expr->value.op.op1->value.character.length); + else if (expr->value.op.op1->ts.u.cl->length) + { + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, expr->value.op.op1->ts.u.cl->length); + len1 = se.expr; + } + else + { + /* Last resort! */ + gfc_init_se (&se, NULL); + se.want_pointer = 1; + se.descriptor_only = 1; + gfc_conv_expr (&se, expr->value.op.op1); + len1 = se.string_length; + } + } + + type = gfc_typenode_for_spec (&expr->value.op.op2->ts); + len2 = TYPE_MAX_VALUE (TYPE_DOMAIN (type)); + if (len2 == NULL_TREE) + { + if (expr->value.op.op2->expr_type == EXPR_OP) + len2 = concat_str_length (expr->value.op.op2); + else if (expr->value.op.op2->expr_type == EXPR_CONSTANT) + len2 = build_int_cst (gfc_charlen_type_node, + expr->value.op.op2->value.character.length); + else if (expr->value.op.op2->ts.u.cl->length) + { + gfc_init_se (&se, NULL); + gfc_conv_expr (&se, expr->value.op.op2->ts.u.cl->length); + len2 = se.expr; + } + else + { + /* Last resort! */ + gfc_init_se (&se, NULL); + se.want_pointer = 1; + se.descriptor_only = 1; + gfc_conv_expr (&se, expr->value.op.op2); + len2 = se.string_length; + } + } + + gcc_assert(len1 && len2); + len1 = fold_convert (gfc_charlen_type_node, len1); + len2 = fold_convert (gfc_charlen_type_node, len2); + + return fold_build2_loc (input_location, PLUS_EXPR, + gfc_charlen_type_node, len1, len2); +} + + +/* Allocate the lhs of an assignment to an allocatable array, otherwise + reallocate it. */ + +tree +gfc_alloc_allocatable_for_assignment (gfc_loopinfo *loop, + gfc_expr *expr1, + gfc_expr *expr2) +{ + stmtblock_t realloc_block; + stmtblock_t alloc_block; + stmtblock_t fblock; + gfc_ss *rss; + gfc_ss *lss; + gfc_array_info *linfo; + tree realloc_expr; + tree alloc_expr; + tree size1; + tree size2; + tree elemsize1; + tree elemsize2; + tree array1; + tree cond_null; + tree cond; + tree tmp; + tree tmp2; + tree lbound; + tree ubound; + tree desc; + tree old_desc; + tree desc2; + tree offset; + tree jump_label1; + tree jump_label2; + tree neq_size; + tree lbd; + tree class_expr2 = NULL_TREE; + int n; + int dim; + gfc_array_spec * as; + bool coarray = (flag_coarray == GFC_FCOARRAY_LIB + && gfc_caf_attr (expr1, true).codimension); + tree token; + gfc_se caf_se; + + /* x = f(...) with x allocatable. In this case, expr1 is the rhs. + Find the lhs expression in the loop chain and set expr1 and + expr2 accordingly. */ + if (expr1->expr_type == EXPR_FUNCTION && expr2 == NULL) + { + expr2 = expr1; + /* Find the ss for the lhs. */ + lss = loop->ss; + for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain) + if (lss->info->expr && lss->info->expr->expr_type == EXPR_VARIABLE) + break; + if (lss == gfc_ss_terminator) + return NULL_TREE; + expr1 = lss->info->expr; + } + + /* Bail out if this is not a valid allocate on assignment. */ + if (!gfc_is_reallocatable_lhs (expr1) + || (expr2 && !expr2->rank)) + return NULL_TREE; + + /* Find the ss for the lhs. */ + lss = loop->ss; + for (; lss && lss != gfc_ss_terminator; lss = lss->loop_chain) + if (lss->info->expr == expr1) + break; + + if (lss == gfc_ss_terminator) + return NULL_TREE; + + linfo = &lss->info->data.array; + + /* Find an ss for the rhs. For operator expressions, we see the + ss's for the operands. Any one of these will do. */ + rss = loop->ss; + for (; rss && rss != gfc_ss_terminator; rss = rss->loop_chain) + if (rss->info->expr != expr1 && rss != loop->temp_ss) + break; + + if (expr2 && rss == gfc_ss_terminator) + return NULL_TREE; + + /* Ensure that the string length from the current scope is used. */ + if (expr2->ts.type == BT_CHARACTER + && expr2->expr_type == EXPR_FUNCTION + && !expr2->value.function.isym) + expr2->ts.u.cl->backend_decl = rss->info->string_length; + + gfc_start_block (&fblock); + + /* Since the lhs is allocatable, this must be a descriptor type. + Get the data and array size. */ + desc = linfo->descriptor; + gcc_assert (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))); + array1 = gfc_conv_descriptor_data_get (desc); + + if (expr2) + desc2 = rss->info->data.array.descriptor; + else + desc2 = NULL_TREE; + + /* Get the old lhs element size for deferred character and class expr1. */ + if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) + { + if (expr1->ts.u.cl->backend_decl + && VAR_P (expr1->ts.u.cl->backend_decl)) + elemsize1 = expr1->ts.u.cl->backend_decl; + else + elemsize1 = lss->info->string_length; + } + else if (expr1->ts.type == BT_CLASS) + { + /* Unfortunately, the lhs vptr is set too early in many cases. + Play it safe by using the descriptor element length. */ + tmp = gfc_conv_descriptor_elem_len (desc); + elemsize1 = fold_convert (gfc_array_index_type, tmp); + } + else + elemsize1 = NULL_TREE; + if (elemsize1 != NULL_TREE) + elemsize1 = gfc_evaluate_now (elemsize1, &fblock); + + /* Get the new lhs size in bytes. */ + if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) + { + if (expr2->ts.deferred) + { + if (expr2->ts.u.cl->backend_decl + && VAR_P (expr2->ts.u.cl->backend_decl)) + tmp = expr2->ts.u.cl->backend_decl; + else + tmp = rss->info->string_length; + } + else + { + tmp = expr2->ts.u.cl->backend_decl; + if (!tmp && expr2->expr_type == EXPR_OP + && expr2->value.op.op == INTRINSIC_CONCAT) + { + tmp = concat_str_length (expr2); + expr2->ts.u.cl->backend_decl = gfc_evaluate_now (tmp, &fblock); + } + else if (!tmp && expr2->ts.u.cl->length) + { + gfc_se tmpse; + gfc_init_se (&tmpse, NULL); + gfc_conv_expr_type (&tmpse, expr2->ts.u.cl->length, + gfc_charlen_type_node); + tmp = tmpse.expr; + expr2->ts.u.cl->backend_decl = gfc_evaluate_now (tmp, &fblock); + } + tmp = fold_convert (TREE_TYPE (expr1->ts.u.cl->backend_decl), tmp); + } + + if (expr1->ts.u.cl->backend_decl + && VAR_P (expr1->ts.u.cl->backend_decl)) + gfc_add_modify (&fblock, expr1->ts.u.cl->backend_decl, tmp); + else + gfc_add_modify (&fblock, lss->info->string_length, tmp); + + if (expr1->ts.kind > 1) + tmp = fold_build2_loc (input_location, MULT_EXPR, + TREE_TYPE (tmp), + tmp, build_int_cst (TREE_TYPE (tmp), + expr1->ts.kind)); + } + else if (expr1->ts.type == BT_CHARACTER && expr1->ts.u.cl->backend_decl) + { + tmp = TYPE_SIZE_UNIT (TREE_TYPE (gfc_typenode_for_spec (&expr1->ts))); + tmp = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, tmp, + expr1->ts.u.cl->backend_decl); + } + else if (UNLIMITED_POLY (expr1) && expr2->ts.type != BT_CLASS) + tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr2->ts)); + else if (expr1->ts.type == BT_CLASS && expr2->ts.type == BT_CLASS) + { + tmp = expr2->rank ? gfc_get_class_from_expr (desc2) : NULL_TREE; + if (tmp == NULL_TREE && expr2->expr_type == EXPR_VARIABLE) + tmp = class_expr2 = gfc_get_class_from_gfc_expr (expr2); + + if (tmp != NULL_TREE) + tmp = gfc_class_vtab_size_get (tmp); + else + tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&CLASS_DATA (expr2)->ts)); + } + else + tmp = TYPE_SIZE_UNIT (gfc_typenode_for_spec (&expr2->ts)); + elemsize2 = fold_convert (gfc_array_index_type, tmp); + elemsize2 = gfc_evaluate_now (elemsize2, &fblock); + + /* 7.4.1.3 "If variable is an allocated allocatable variable, it is + deallocated if expr is an array of different shape or any of the + corresponding length type parameter values of variable and expr + differ." This assures F95 compatibility. */ + jump_label1 = gfc_build_label_decl (NULL_TREE); + jump_label2 = gfc_build_label_decl (NULL_TREE); + + /* Allocate if data is NULL. */ + cond_null = fold_build2_loc (input_location, EQ_EXPR, logical_type_node, + array1, build_int_cst (TREE_TYPE (array1), 0)); + + if (expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) + { + tmp = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + lss->info->string_length, + rss->info->string_length); + cond_null = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, tmp, cond_null); + cond_null= gfc_evaluate_now (cond_null, &fblock); + } + else + cond_null= gfc_evaluate_now (cond_null, &fblock); + + tmp = build3_v (COND_EXPR, cond_null, + build1_v (GOTO_EXPR, jump_label1), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fblock, tmp); + + /* Get arrayspec if expr is a full array. */ + if (expr2 && expr2->expr_type == EXPR_FUNCTION + && expr2->value.function.isym + && expr2->value.function.isym->conversion) + { + /* For conversion functions, take the arg. */ + gfc_expr *arg = expr2->value.function.actual->expr; + as = gfc_get_full_arrayspec_from_expr (arg); + } + else if (expr2) + as = gfc_get_full_arrayspec_from_expr (expr2); + else + as = NULL; + + /* If the lhs shape is not the same as the rhs jump to setting the + bounds and doing the reallocation....... */ + for (n = 0; n < expr1->rank; n++) + { + /* Check the shape. */ + lbound = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); + ubound = gfc_conv_descriptor_ubound_get (desc, gfc_rank_cst[n]); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop->to[n], loop->from[n]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + tmp, lbound); + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + tmp, ubound); + cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + tmp, gfc_index_zero_node); + tmp = build3_v (COND_EXPR, cond, + build1_v (GOTO_EXPR, jump_label1), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fblock, tmp); + } + + /* ...else if the element lengths are not the same also go to + setting the bounds and doing the reallocation.... */ + if (elemsize1 != NULL_TREE) + { + cond = fold_build2_loc (input_location, NE_EXPR, + logical_type_node, + elemsize1, elemsize2); + tmp = build3_v (COND_EXPR, cond, + build1_v (GOTO_EXPR, jump_label1), + build_empty_stmt (input_location)); + gfc_add_expr_to_block (&fblock, tmp); + } + + /* ....else jump past the (re)alloc code. */ + tmp = build1_v (GOTO_EXPR, jump_label2); + gfc_add_expr_to_block (&fblock, tmp); + + /* Add the label to start automatic (re)allocation. */ + tmp = build1_v (LABEL_EXPR, jump_label1); + gfc_add_expr_to_block (&fblock, tmp); + + /* If the lhs has not been allocated, its bounds will not have been + initialized and so its size is set to zero. */ + size1 = gfc_create_var (gfc_array_index_type, NULL); + gfc_init_block (&alloc_block); + gfc_add_modify (&alloc_block, size1, gfc_index_zero_node); + gfc_init_block (&realloc_block); + gfc_add_modify (&realloc_block, size1, + gfc_conv_descriptor_size (desc, expr1->rank)); + tmp = build3_v (COND_EXPR, cond_null, + gfc_finish_block (&alloc_block), + gfc_finish_block (&realloc_block)); + gfc_add_expr_to_block (&fblock, tmp); + + /* Get the rhs size and fix it. */ + size2 = gfc_index_one_node; + for (n = 0; n < expr2->rank; n++) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop->to[n], loop->from[n]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + tmp, gfc_index_one_node); + size2 = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + tmp, size2); + } + size2 = gfc_evaluate_now (size2, &fblock); + + cond = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + size1, size2); + + /* If the lhs is deferred length, assume that the element size + changes and force a reallocation. */ + if (expr1->ts.deferred) + neq_size = gfc_evaluate_now (logical_true_node, &fblock); + else + neq_size = gfc_evaluate_now (cond, &fblock); + + /* Deallocation of allocatable components will have to occur on + reallocation. Fix the old descriptor now. */ + if ((expr1->ts.type == BT_DERIVED) + && expr1->ts.u.derived->attr.alloc_comp) + old_desc = gfc_evaluate_now (desc, &fblock); + else + old_desc = NULL_TREE; + + /* Now modify the lhs descriptor and the associated scalarizer + variables. F2003 7.4.1.3: "If variable is or becomes an + unallocated allocatable variable, then it is allocated with each + deferred type parameter equal to the corresponding type parameters + of expr , with the shape of expr , and with each lower bound equal + to the corresponding element of LBOUND(expr)." + Reuse size1 to keep a dimension-by-dimension track of the + stride of the new array. */ + size1 = gfc_index_one_node; + offset = gfc_index_zero_node; + + for (n = 0; n < expr2->rank; n++) + { + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + loop->to[n], loop->from[n]); + tmp = fold_build2_loc (input_location, PLUS_EXPR, + gfc_array_index_type, + tmp, gfc_index_one_node); + + lbound = gfc_index_one_node; + ubound = tmp; + + if (as) + { + lbd = get_std_lbound (expr2, desc2, n, + as->type == AS_ASSUMED_SIZE); + ubound = fold_build2_loc (input_location, + MINUS_EXPR, + gfc_array_index_type, + ubound, lbound); + ubound = fold_build2_loc (input_location, + PLUS_EXPR, + gfc_array_index_type, + ubound, lbd); + lbound = lbd; + } + + gfc_conv_descriptor_lbound_set (&fblock, desc, + gfc_rank_cst[n], + lbound); + gfc_conv_descriptor_ubound_set (&fblock, desc, + gfc_rank_cst[n], + ubound); + gfc_conv_descriptor_stride_set (&fblock, desc, + gfc_rank_cst[n], + size1); + lbound = gfc_conv_descriptor_lbound_get (desc, + gfc_rank_cst[n]); + tmp2 = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + lbound, size1); + offset = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, + offset, tmp2); + size1 = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + tmp, size1); + } + + /* Set the lhs descriptor and scalarizer offsets. For rank > 1, + the array offset is saved and the info.offset is used for a + running offset. Use the saved_offset instead. */ + tmp = gfc_conv_descriptor_offset (desc); + gfc_add_modify (&fblock, tmp, offset); + if (linfo->saved_offset + && VAR_P (linfo->saved_offset)) + gfc_add_modify (&fblock, linfo->saved_offset, tmp); + + /* Now set the deltas for the lhs. */ + for (n = 0; n < expr1->rank; n++) + { + tmp = gfc_conv_descriptor_lbound_get (desc, gfc_rank_cst[n]); + dim = lss->dim[n]; + tmp = fold_build2_loc (input_location, MINUS_EXPR, + gfc_array_index_type, tmp, + loop->from[dim]); + if (linfo->delta[dim] && VAR_P (linfo->delta[dim])) + gfc_add_modify (&fblock, linfo->delta[dim], tmp); + } + + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) + gfc_conv_descriptor_span_set (&fblock, desc, elemsize2); + + size2 = fold_build2_loc (input_location, MULT_EXPR, + gfc_array_index_type, + elemsize2, size2); + size2 = fold_convert (size_type_node, size2); + size2 = fold_build2_loc (input_location, MAX_EXPR, size_type_node, + size2, size_one_node); + size2 = gfc_evaluate_now (size2, &fblock); + + /* For deferred character length, the 'size' field of the dtype might + have changed so set the dtype. */ + if (GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)) + && expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) + { + tree type; + tmp = gfc_conv_descriptor_dtype (desc); + if (expr2->ts.u.cl->backend_decl) + type = gfc_typenode_for_spec (&expr2->ts); + else + type = gfc_typenode_for_spec (&expr1->ts); + + gfc_add_modify (&fblock, tmp, + gfc_get_dtype_rank_type (expr1->rank,type)); + } + else if (expr1->ts.type == BT_CLASS) + { + tree type; + tmp = gfc_conv_descriptor_dtype (desc); + + if (expr2->ts.type != BT_CLASS) + type = gfc_typenode_for_spec (&expr2->ts); + else + type = gfc_get_character_type_len (1, elemsize2); + + gfc_add_modify (&fblock, tmp, + gfc_get_dtype_rank_type (expr2->rank,type)); + /* Set the _len field as well... */ + if (UNLIMITED_POLY (expr1)) + { + tmp = gfc_class_len_get (TREE_OPERAND (desc, 0)); + if (expr2->ts.type == BT_CHARACTER) + gfc_add_modify (&fblock, tmp, + fold_convert (TREE_TYPE (tmp), + TYPE_SIZE_UNIT (type))); + else + gfc_add_modify (&fblock, tmp, + build_int_cst (TREE_TYPE (tmp), 0)); + } + /* ...and the vptr. */ + tmp = gfc_class_vptr_get (TREE_OPERAND (desc, 0)); + if (expr2->ts.type == BT_CLASS && !VAR_P (desc2) + && TREE_CODE (desc2) == COMPONENT_REF) + { + tmp2 = gfc_get_class_from_expr (desc2); + tmp2 = gfc_class_vptr_get (tmp2); + } + else if (expr2->ts.type == BT_CLASS && class_expr2 != NULL_TREE) + tmp2 = gfc_class_vptr_get (class_expr2); + else + { + tmp2 = gfc_get_symbol_decl (gfc_find_vtab (&expr2->ts)); + tmp2 = gfc_build_addr_expr (TREE_TYPE (tmp), tmp2); + } + + gfc_add_modify (&fblock, tmp, fold_convert (TREE_TYPE (tmp), tmp2)); + } + else if (coarray && GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc))) + { + gfc_add_modify (&fblock, gfc_conv_descriptor_dtype (desc), + gfc_get_dtype (TREE_TYPE (desc))); + } + + /* Realloc expression. Note that the scalarizer uses desc.data + in the array reference - (*desc.data)[<element>]. */ + gfc_init_block (&realloc_block); + gfc_init_se (&caf_se, NULL); + + if (coarray) + { + token = gfc_get_ultimate_alloc_ptr_comps_caf_token (&caf_se, expr1); + if (token == NULL_TREE) + { + tmp = gfc_get_tree_for_caf_expr (expr1); + if (POINTER_TYPE_P (TREE_TYPE (tmp))) + tmp = build_fold_indirect_ref (tmp); + gfc_get_caf_token_offset (&caf_se, &token, NULL, tmp, NULL_TREE, + expr1); + token = gfc_build_addr_expr (NULL_TREE, token); + } + + gfc_add_block_to_block (&realloc_block, &caf_se.pre); + } + if ((expr1->ts.type == BT_DERIVED) + && expr1->ts.u.derived->attr.alloc_comp) + { + tmp = gfc_deallocate_alloc_comp_no_caf (expr1->ts.u.derived, old_desc, + expr1->rank); + gfc_add_expr_to_block (&realloc_block, tmp); + } + + if (!coarray) + { + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_REALLOC), 2, + fold_convert (pvoid_type_node, array1), + size2); + gfc_conv_descriptor_data_set (&realloc_block, + desc, tmp); + } + else + { + tmp = build_call_expr_loc (input_location, + gfor_fndecl_caf_deregister, 5, token, + build_int_cst (integer_type_node, + GFC_CAF_COARRAY_DEALLOCATE_ONLY), + null_pointer_node, null_pointer_node, + integer_zero_node); + gfc_add_expr_to_block (&realloc_block, tmp); + tmp = build_call_expr_loc (input_location, + gfor_fndecl_caf_register, + 7, size2, + build_int_cst (integer_type_node, + GFC_CAF_COARRAY_ALLOC_ALLOCATE_ONLY), + token, gfc_build_addr_expr (NULL_TREE, desc), + null_pointer_node, null_pointer_node, + integer_zero_node); + gfc_add_expr_to_block (&realloc_block, tmp); + } + + if ((expr1->ts.type == BT_DERIVED) + && expr1->ts.u.derived->attr.alloc_comp) + { + tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc, + expr1->rank); + gfc_add_expr_to_block (&realloc_block, tmp); + } + + gfc_add_block_to_block (&realloc_block, &caf_se.post); + realloc_expr = gfc_finish_block (&realloc_block); + + /* Reallocate if sizes or dynamic types are different. */ + if (elemsize1) + { + tmp = fold_build2_loc (input_location, NE_EXPR, logical_type_node, + elemsize1, elemsize2); + tmp = gfc_evaluate_now (tmp, &fblock); + neq_size = fold_build2_loc (input_location, TRUTH_OR_EXPR, + logical_type_node, neq_size, tmp); + } + tmp = build3_v (COND_EXPR, neq_size, realloc_expr, + build_empty_stmt (input_location)); + + realloc_expr = tmp; + + /* Malloc expression. */ + gfc_init_block (&alloc_block); + if (!coarray) + { + tmp = build_call_expr_loc (input_location, + builtin_decl_explicit (BUILT_IN_MALLOC), + 1, size2); + gfc_conv_descriptor_data_set (&alloc_block, + desc, tmp); + } + else + { + tmp = build_call_expr_loc (input_location, + gfor_fndecl_caf_register, + 7, size2, + build_int_cst (integer_type_node, + GFC_CAF_COARRAY_ALLOC), + token, gfc_build_addr_expr (NULL_TREE, desc), + null_pointer_node, null_pointer_node, + integer_zero_node); + gfc_add_expr_to_block (&alloc_block, tmp); + } + + + /* We already set the dtype in the case of deferred character + length arrays and class lvalues. */ + if (!(GFC_DESCRIPTOR_TYPE_P (TREE_TYPE (desc)) + && ((expr1->ts.type == BT_CHARACTER && expr1->ts.deferred) + || coarray)) + && expr1->ts.type != BT_CLASS) + { + tmp = gfc_conv_descriptor_dtype (desc); + gfc_add_modify (&alloc_block, tmp, gfc_get_dtype (TREE_TYPE (desc))); + } + + if ((expr1->ts.type == BT_DERIVED) + && expr1->ts.u.derived->attr.alloc_comp) + { + tmp = gfc_nullify_alloc_comp (expr1->ts.u.derived, desc, + expr1->rank); + gfc_add_expr_to_block (&alloc_block, tmp); + } + alloc_expr = gfc_finish_block (&alloc_block); + + /* Malloc if not allocated; realloc otherwise. */ + tmp = build3_v (COND_EXPR, cond_null, alloc_expr, realloc_expr); + gfc_add_expr_to_block (&fblock, tmp); + + /* Make sure that the scalarizer data pointer is updated. */ + if (linfo->data && VAR_P (linfo->data)) + { + tmp = gfc_conv_descriptor_data_get (desc); + gfc_add_modify (&fblock, linfo->data, tmp); + } + + /* Add the label for same shape lhs and rhs. */ + tmp = build1_v (LABEL_EXPR, jump_label2); + gfc_add_expr_to_block (&fblock, tmp); + + return gfc_finish_block (&fblock); +} + + +/* NULLIFY an allocatable/pointer array on function entry, free it on exit. + Do likewise, recursively if necessary, with the allocatable components of + derived types. This function is also called for assumed-rank arrays, which + are always dummy arguments. */ + +void +gfc_trans_deferred_array (gfc_symbol * sym, gfc_wrapped_block * block) +{ + tree type; + tree tmp; + tree descriptor; + stmtblock_t init; + stmtblock_t cleanup; + locus loc; + int rank; + bool sym_has_alloc_comp, has_finalizer; + + sym_has_alloc_comp = (sym->ts.type == BT_DERIVED + || sym->ts.type == BT_CLASS) + && sym->ts.u.derived->attr.alloc_comp; + has_finalizer = sym->ts.type == BT_CLASS || sym->ts.type == BT_DERIVED + ? gfc_is_finalizable (sym->ts.u.derived, NULL) : false; + + /* Make sure the frontend gets these right. */ + gcc_assert (sym->attr.pointer || sym->attr.allocatable || sym_has_alloc_comp + || has_finalizer + || (sym->as->type == AS_ASSUMED_RANK && sym->attr.dummy)); + + gfc_save_backend_locus (&loc); + gfc_set_backend_locus (&sym->declared_at); + gfc_init_block (&init); + + gcc_assert (VAR_P (sym->backend_decl) + || TREE_CODE (sym->backend_decl) == PARM_DECL); + + if (sym->ts.type == BT_CHARACTER + && !INTEGER_CST_P (sym->ts.u.cl->backend_decl)) + { + gfc_conv_string_length (sym->ts.u.cl, NULL, &init); + gfc_trans_vla_type_sizes (sym, &init); + } + + /* Dummy, use associated and result variables don't need anything special. */ + if (sym->attr.dummy || sym->attr.use_assoc || sym->attr.result) + { + gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); + gfc_restore_backend_locus (&loc); + return; + } + + descriptor = sym->backend_decl; + + /* Although static, derived types with default initializers and + allocatable components must not be nulled wholesale; instead they + are treated component by component. */ + if (TREE_STATIC (descriptor) && !sym_has_alloc_comp && !has_finalizer) + { + /* SAVEd variables are not freed on exit. */ + gfc_trans_static_array_pointer (sym); + + gfc_add_init_cleanup (block, gfc_finish_block (&init), NULL_TREE); + gfc_restore_backend_locus (&loc); + return; + } + + /* Get the descriptor type. */ + type = TREE_TYPE (sym->backend_decl); + + if ((sym_has_alloc_comp || (has_finalizer && sym->ts.type != BT_CLASS)) + && !(sym->attr.pointer || sym->attr.allocatable)) + { + if (!sym->attr.save + && !(TREE_STATIC (sym->backend_decl) && sym->attr.is_main_program)) + { + if (sym->value == NULL + || !gfc_has_default_initializer (sym->ts.u.derived)) + { + rank = sym->as ? sym->as->rank : 0; + tmp = gfc_nullify_alloc_comp (sym->ts.u.derived, + descriptor, rank); + gfc_add_expr_to_block (&init, tmp); + } + else + gfc_init_default_dt (sym, &init, false); + } + } + else if (!GFC_DESCRIPTOR_TYPE_P (type)) + { + /* If the backend_decl is not a descriptor, we must have a pointer + to one. */ + descriptor = build_fold_indirect_ref_loc (input_location, + sym->backend_decl); + type = TREE_TYPE (descriptor); + } + + /* NULLIFY the data pointer, for non-saved allocatables. */ + if (GFC_DESCRIPTOR_TYPE_P (type) && !sym->attr.save && sym->attr.allocatable) + { + gfc_conv_descriptor_data_set (&init, descriptor, null_pointer_node); + if (flag_coarray == GFC_FCOARRAY_LIB && sym->attr.codimension) + { + /* Declare the variable static so its array descriptor stays present + after leaving the scope. It may still be accessed through another + image. This may happen, for example, with the caf_mpi + implementation. */ + TREE_STATIC (descriptor) = 1; + tmp = gfc_conv_descriptor_token (descriptor); + gfc_add_modify (&init, tmp, fold_convert (TREE_TYPE (tmp), + null_pointer_node)); + } + } + + /* Set initial TKR for pointers and allocatables */ + if (GFC_DESCRIPTOR_TYPE_P (type) + && (sym->attr.pointer || sym->attr.allocatable)) + { + tree etype; + + gcc_assert (sym->as && sym->as->rank>=0); + tmp = gfc_conv_descriptor_dtype (descriptor); + etype = gfc_get_element_type (type); + tmp = fold_build2_loc (input_location, MODIFY_EXPR, + TREE_TYPE (tmp), tmp, + gfc_get_dtype_rank_type (sym->as->rank, etype)); + gfc_add_expr_to_block (&init, tmp); + } + gfc_restore_backend_locus (&loc); + gfc_init_block (&cleanup); + + /* Allocatable arrays need to be freed when they go out of scope. + The allocatable components of pointers must not be touched. */ + if (!sym->attr.allocatable && has_finalizer && sym->ts.type != BT_CLASS + && !sym->attr.pointer && !sym->attr.artificial && !sym->attr.save + && !sym->ns->proc_name->attr.is_main_program) + { + gfc_expr *e; + sym->attr.referenced = 1; + e = gfc_lval_expr_from_sym (sym); + gfc_add_finalizer_call (&cleanup, e); + gfc_free_expr (e); + } + else if ((!sym->attr.allocatable || !has_finalizer) + && sym_has_alloc_comp && !(sym->attr.function || sym->attr.result) + && !sym->attr.pointer && !sym->attr.save + && !sym->ns->proc_name->attr.is_main_program) + { + int rank; + rank = sym->as ? sym->as->rank : 0; + tmp = gfc_deallocate_alloc_comp (sym->ts.u.derived, descriptor, rank); + gfc_add_expr_to_block (&cleanup, tmp); + } + + if (sym->attr.allocatable && (sym->attr.dimension || sym->attr.codimension) + && !sym->attr.save && !sym->attr.result + && !sym->ns->proc_name->attr.is_main_program) + { + gfc_expr *e; + e = has_finalizer ? gfc_lval_expr_from_sym (sym) : NULL; + tmp = gfc_deallocate_with_status (sym->backend_decl, NULL_TREE, NULL_TREE, + NULL_TREE, NULL_TREE, true, e, + sym->attr.codimension + ? GFC_CAF_COARRAY_DEREGISTER + : GFC_CAF_COARRAY_NOCOARRAY); + if (e) + gfc_free_expr (e); + gfc_add_expr_to_block (&cleanup, tmp); + } + + gfc_add_init_cleanup (block, gfc_finish_block (&init), + gfc_finish_block (&cleanup)); +} + +/************ Expression Walking Functions ******************/ + +/* Walk a variable reference. + + Possible extension - multiple component subscripts. + x(:,:) = foo%a(:)%b(:) + Transforms to + forall (i=..., j=...) + x(i,j) = foo%a(j)%b(i) + end forall + This adds a fair amount of complexity because you need to deal with more + than one ref. Maybe handle in a similar manner to vector subscripts. + Maybe not worth the effort. */ + + +static gfc_ss * +gfc_walk_variable_expr (gfc_ss * ss, gfc_expr * expr) +{ + gfc_ref *ref; + + gfc_fix_class_refs (expr); + + for (ref = expr->ref; ref; ref = ref->next) + if (ref->type == REF_ARRAY && ref->u.ar.type != AR_ELEMENT) + break; + + return gfc_walk_array_ref (ss, expr, ref); +} + + +gfc_ss * +gfc_walk_array_ref (gfc_ss * ss, gfc_expr * expr, gfc_ref * ref) +{ + gfc_array_ref *ar; + gfc_ss *newss; + int n; + + for (; ref; ref = ref->next) + { + if (ref->type == REF_SUBSTRING) + { + ss = gfc_get_scalar_ss (ss, ref->u.ss.start); + if (ref->u.ss.end) + ss = gfc_get_scalar_ss (ss, ref->u.ss.end); + } + + /* We're only interested in array sections from now on. */ + if (ref->type != REF_ARRAY) + continue; + + ar = &ref->u.ar; + + switch (ar->type) + { + case AR_ELEMENT: + for (n = ar->dimen - 1; n >= 0; n--) + ss = gfc_get_scalar_ss (ss, ar->start[n]); + break; + + case AR_FULL: + newss = gfc_get_array_ss (ss, expr, ar->as->rank, GFC_SS_SECTION); + newss->info->data.array.ref = ref; + + /* Make sure array is the same as array(:,:), this way + we don't need to special case all the time. */ + ar->dimen = ar->as->rank; + for (n = 0; n < ar->dimen; n++) + { + ar->dimen_type[n] = DIMEN_RANGE; + + gcc_assert (ar->start[n] == NULL); + gcc_assert (ar->end[n] == NULL); + gcc_assert (ar->stride[n] == NULL); + } + ss = newss; + break; + + case AR_SECTION: + newss = gfc_get_array_ss (ss, expr, 0, GFC_SS_SECTION); + newss->info->data.array.ref = ref; + + /* We add SS chains for all the subscripts in the section. */ + for (n = 0; n < ar->dimen; n++) + { + gfc_ss *indexss; + + switch (ar->dimen_type[n]) + { + case DIMEN_ELEMENT: + /* Add SS for elemental (scalar) subscripts. */ + gcc_assert (ar->start[n]); + indexss = gfc_get_scalar_ss (gfc_ss_terminator, ar->start[n]); + indexss->loop_chain = gfc_ss_terminator; + newss->info->data.array.subscript[n] = indexss; + break; + + case DIMEN_RANGE: + /* We don't add anything for sections, just remember this + dimension for later. */ + newss->dim[newss->dimen] = n; + newss->dimen++; + break; + + case DIMEN_VECTOR: + /* Create a GFC_SS_VECTOR index in which we can store + the vector's descriptor. */ + indexss = gfc_get_array_ss (gfc_ss_terminator, ar->start[n], + 1, GFC_SS_VECTOR); + indexss->loop_chain = gfc_ss_terminator; + newss->info->data.array.subscript[n] = indexss; + newss->dim[newss->dimen] = n; + newss->dimen++; + break; + + default: + /* We should know what sort of section it is by now. */ + gcc_unreachable (); + } + } + /* We should have at least one non-elemental dimension, + unless we are creating a descriptor for a (scalar) coarray. */ + gcc_assert (newss->dimen > 0 + || newss->info->data.array.ref->u.ar.as->corank > 0); + ss = newss; + break; + + default: + /* We should know what sort of section it is by now. */ + gcc_unreachable (); + } + + } + return ss; +} + + +/* Walk an expression operator. If only one operand of a binary expression is + scalar, we must also add the scalar term to the SS chain. */ + +static gfc_ss * +gfc_walk_op_expr (gfc_ss * ss, gfc_expr * expr) +{ + gfc_ss *head; + gfc_ss *head2; + + head = gfc_walk_subexpr (ss, expr->value.op.op1); + if (expr->value.op.op2 == NULL) + head2 = head; + else + head2 = gfc_walk_subexpr (head, expr->value.op.op2); + + /* All operands are scalar. Pass back and let the caller deal with it. */ + if (head2 == ss) + return head2; + + /* All operands require scalarization. */ + if (head != ss && (expr->value.op.op2 == NULL || head2 != head)) + return head2; + + /* One of the operands needs scalarization, the other is scalar. + Create a gfc_ss for the scalar expression. */ + if (head == ss) + { + /* First operand is scalar. We build the chain in reverse order, so + add the scalar SS after the second operand. */ + head = head2; + while (head && head->next != ss) + head = head->next; + /* Check we haven't somehow broken the chain. */ + gcc_assert (head); + head->next = gfc_get_scalar_ss (ss, expr->value.op.op1); + } + else /* head2 == head */ + { + gcc_assert (head2 == head); + /* Second operand is scalar. */ + head2 = gfc_get_scalar_ss (head2, expr->value.op.op2); + } + + return head2; +} + + +/* Reverse a SS chain. */ + +gfc_ss * +gfc_reverse_ss (gfc_ss * ss) +{ + gfc_ss *next; + gfc_ss *head; + + gcc_assert (ss != NULL); + + head = gfc_ss_terminator; + while (ss != gfc_ss_terminator) + { + next = ss->next; + /* Check we didn't somehow break the chain. */ + gcc_assert (next != NULL); + ss->next = head; + head = ss; + ss = next; + } + + return (head); +} + + +/* Given an expression referring to a procedure, return the symbol of its + interface. We can't get the procedure symbol directly as we have to handle + the case of (deferred) type-bound procedures. */ + +gfc_symbol * +gfc_get_proc_ifc_for_expr (gfc_expr *procedure_ref) +{ + gfc_symbol *sym; + gfc_ref *ref; + + if (procedure_ref == NULL) + return NULL; + + /* Normal procedure case. */ + if (procedure_ref->expr_type == EXPR_FUNCTION + && procedure_ref->value.function.esym) + sym = procedure_ref->value.function.esym; + else + sym = procedure_ref->symtree->n.sym; + + /* Typebound procedure case. */ + for (ref = procedure_ref->ref; ref; ref = ref->next) + { + if (ref->type == REF_COMPONENT + && ref->u.c.component->attr.proc_pointer) + sym = ref->u.c.component->ts.interface; + else + sym = NULL; + } + + return sym; +} + + +/* Given an expression referring to an intrinsic function call, + return the intrinsic symbol. */ + +gfc_intrinsic_sym * +gfc_get_intrinsic_for_expr (gfc_expr *call) +{ + if (call == NULL) + return NULL; + + /* Normal procedure case. */ + if (call->expr_type == EXPR_FUNCTION) + return call->value.function.isym; + else + return NULL; +} + + +/* Indicates whether an argument to an intrinsic function should be used in + scalarization. It is usually the case, except for some intrinsics + requiring the value to be constant, and using the value at compile time only. + As the value is not used at runtime in those cases, we don’t produce code + for it, and it should not be visible to the scalarizer. + FUNCTION is the intrinsic function being called, ACTUAL_ARG is the actual + argument being examined in that call, and ARG_NUM the index number + of ACTUAL_ARG in the list of arguments. + The intrinsic procedure’s dummy argument associated with ACTUAL_ARG is + identified using the name in ACTUAL_ARG if it is present (that is: if it’s + a keyword argument), otherwise using ARG_NUM. */ + +static bool +arg_evaluated_for_scalarization (gfc_intrinsic_sym *function, + gfc_dummy_arg *dummy_arg) +{ + if (function != NULL && dummy_arg != NULL) + { + switch (function->id) + { + case GFC_ISYM_INDEX: + case GFC_ISYM_LEN_TRIM: + case GFC_ISYM_MASKL: + case GFC_ISYM_MASKR: + case GFC_ISYM_SCAN: + case GFC_ISYM_VERIFY: + if (strcmp ("kind", gfc_dummy_arg_get_name (*dummy_arg)) == 0) + return false; + /* Fallthrough. */ + + default: + break; + } + } + + return true; +} + + +/* Walk the arguments of an elemental function. + PROC_EXPR is used to check whether an argument is permitted to be absent. If + it is NULL, we don't do the check and the argument is assumed to be present. +*/ + +gfc_ss * +gfc_walk_elemental_function_args (gfc_ss * ss, gfc_actual_arglist *arg, + gfc_intrinsic_sym *intrinsic_sym, + gfc_ss_type type) +{ + int scalar; + gfc_ss *head; + gfc_ss *tail; + gfc_ss *newss; + + head = gfc_ss_terminator; + tail = NULL; + + scalar = 1; + for (; arg; arg = arg->next) + { + gfc_dummy_arg * const dummy_arg = arg->associated_dummy; + if (!arg->expr + || arg->expr->expr_type == EXPR_NULL + || !arg_evaluated_for_scalarization (intrinsic_sym, dummy_arg)) + continue; + + newss = gfc_walk_subexpr (head, arg->expr); + if (newss == head) + { + /* Scalar argument. */ + gcc_assert (type == GFC_SS_SCALAR || type == GFC_SS_REFERENCE); + newss = gfc_get_scalar_ss (head, arg->expr); + newss->info->type = type; + if (dummy_arg) + newss->info->data.scalar.dummy_arg = dummy_arg; + } + else + scalar = 0; + + if (dummy_arg != NULL + && gfc_dummy_arg_is_optional (*dummy_arg) + && arg->expr->expr_type == EXPR_VARIABLE + && (gfc_expr_attr (arg->expr).optional + || gfc_expr_attr (arg->expr).allocatable + || gfc_expr_attr (arg->expr).pointer)) + newss->info->can_be_null_ref = true; + + head = newss; + if (!tail) + { + tail = head; + while (tail->next != gfc_ss_terminator) + tail = tail->next; + } + } + + if (scalar) + { + /* If all the arguments are scalar we don't need the argument SS. */ + gfc_free_ss_chain (head); + /* Pass it back. */ + return ss; + } + + /* Add it onto the existing chain. */ + tail->next = ss; + return head; +} + + +/* Walk a function call. Scalar functions are passed back, and taken out of + scalarization loops. For elemental functions we walk their arguments. + The result of functions returning arrays is stored in a temporary outside + the loop, so that the function is only called once. Hence we do not need + to walk their arguments. */ + +static gfc_ss * +gfc_walk_function_expr (gfc_ss * ss, gfc_expr * expr) +{ + gfc_intrinsic_sym *isym; + gfc_symbol *sym; + gfc_component *comp = NULL; + + isym = expr->value.function.isym; + + /* Handle intrinsic functions separately. */ + if (isym) + return gfc_walk_intrinsic_function (ss, expr, isym); + + sym = expr->value.function.esym; + if (!sym) + sym = expr->symtree->n.sym; + + if (gfc_is_class_array_function (expr)) + return gfc_get_array_ss (ss, expr, + CLASS_DATA (expr->value.function.esym->result)->as->rank, + GFC_SS_FUNCTION); + + /* A function that returns arrays. */ + comp = gfc_get_proc_ptr_comp (expr); + if ((!comp && gfc_return_by_reference (sym) && sym->result->attr.dimension) + || (comp && comp->attr.dimension)) + return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_FUNCTION); + + /* Walk the parameters of an elemental function. For now we always pass + by reference. */ + if (sym->attr.elemental || (comp && comp->attr.elemental)) + { + gfc_ss *old_ss = ss; + + ss = gfc_walk_elemental_function_args (old_ss, + expr->value.function.actual, + gfc_get_intrinsic_for_expr (expr), + GFC_SS_REFERENCE); + if (ss != old_ss + && (comp + || sym->attr.proc_pointer + || sym->attr.if_source != IFSRC_DECL + || sym->attr.array_outer_dependency)) + ss->info->array_outer_dependency = 1; + } + + /* Scalar functions are OK as these are evaluated outside the scalarization + loop. Pass back and let the caller deal with it. */ + return ss; +} + + +/* An array temporary is constructed for array constructors. */ + +static gfc_ss * +gfc_walk_array_constructor (gfc_ss * ss, gfc_expr * expr) +{ + return gfc_get_array_ss (ss, expr, expr->rank, GFC_SS_CONSTRUCTOR); +} + + +/* Walk an expression. Add walked expressions to the head of the SS chain. + A wholly scalar expression will not be added. */ + +gfc_ss * +gfc_walk_subexpr (gfc_ss * ss, gfc_expr * expr) +{ + gfc_ss *head; + + switch (expr->expr_type) + { + case EXPR_VARIABLE: + head = gfc_walk_variable_expr (ss, expr); + return head; + + case EXPR_OP: + head = gfc_walk_op_expr (ss, expr); + return head; + + case EXPR_FUNCTION: + head = gfc_walk_function_expr (ss, expr); + return head; + + case EXPR_CONSTANT: + case EXPR_NULL: + case EXPR_STRUCTURE: + /* Pass back and let the caller deal with it. */ + break; + + case EXPR_ARRAY: + head = gfc_walk_array_constructor (ss, expr); + return head; + + case EXPR_SUBSTRING: + /* Pass back and let the caller deal with it. */ + break; + + default: + gfc_internal_error ("bad expression type during walk (%d)", + expr->expr_type); + } + return ss; +} + + +/* Entry point for expression walking. + A return value equal to the passed chain means this is + a scalar expression. It is up to the caller to take whatever action is + necessary to translate these. */ + +gfc_ss * +gfc_walk_expr (gfc_expr * expr) +{ + gfc_ss *res; + + res = gfc_walk_subexpr (gfc_ss_terminator, expr); + return gfc_reverse_ss (res); +} |