diff options
author | Kaveh R. Ghazi <ghazi@caip.rutgers.edu> | 2009-12-07 15:32:43 +0000 |
---|---|---|
committer | Kaveh Ghazi <ghazi@gcc.gnu.org> | 2009-12-07 15:32:43 +0000 |
commit | d0d92baf438995061f3c86a8b85c9b431573d986 (patch) | |
tree | 8374386cd76e5ba3bcb337d91e5ac0dcf6838f84 /gcc/fortran/arith.c | |
parent | 2330bfb3f1e4aeab134177fa6bc23b70cffd39ae (diff) | |
download | gcc-d0d92baf438995061f3c86a8b85c9b431573d986.zip gcc-d0d92baf438995061f3c86a8b85c9b431573d986.tar.gz gcc-d0d92baf438995061f3c86a8b85c9b431573d986.tar.bz2 |
re PR other/40302 (GCC must hard-require MPC before release)
PR other/40302
* arith.c: Remove HAVE_mpc* checks throughout.
* expr.c: Likewise.
* gfortran.h: Likewise.
* resolve.c: Likewise.
* simplify.c: Likewise.
* target-memory.c: Likewise.
* target-memory.h: Likewise.
From-SVN: r155043
Diffstat (limited to 'gcc/fortran/arith.c')
-rw-r--r-- | gcc/fortran/arith.c | 306 |
1 files changed, 4 insertions, 302 deletions
diff --git a/gcc/fortran/arith.c b/gcc/fortran/arith.c index bd0ca61..d119d12 100644 --- a/gcc/fortran/arith.c +++ b/gcc/fortran/arith.c @@ -429,12 +429,7 @@ gfc_constant_result (bt type, int kind, locus *where) case BT_COMPLEX: gfc_set_model_kind (kind); -#ifdef HAVE_mpc mpc_init2 (result->value.complex, mpfr_get_default_prec()); -#else - mpfr_init (result->value.complex.r); - mpfr_init (result->value.complex.i); -#endif break; default: @@ -639,12 +634,7 @@ gfc_arith_uminus (gfc_expr *op1, gfc_expr **resultp) break; case BT_COMPLEX: -#ifdef HAVE_mpc mpc_neg (result->value.complex, op1->value.complex, GFC_MPC_RND_MODE); -#else - mpfr_neg (result->value.complex.r, op1->value.complex.r, GFC_RND_MODE); - mpfr_neg (result->value.complex.i, op1->value.complex.i, GFC_RND_MODE); -#endif break; default: @@ -677,16 +667,8 @@ gfc_arith_plus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) break; case BT_COMPLEX: -#ifdef HAVE_mpc mpc_add (result->value.complex, op1->value.complex, op2->value.complex, GFC_MPC_RND_MODE); -#else - mpfr_add (result->value.complex.r, op1->value.complex.r, - op2->value.complex.r, GFC_RND_MODE); - - mpfr_add (result->value.complex.i, op1->value.complex.i, - op2->value.complex.i, GFC_RND_MODE); -#endif break; default: @@ -719,16 +701,8 @@ gfc_arith_minus (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) break; case BT_COMPLEX: -#ifdef HAVE_mpc mpc_sub (result->value.complex, op1->value.complex, op2->value.complex, GFC_MPC_RND_MODE); -#else - mpfr_sub (result->value.complex.r, op1->value.complex.r, - op2->value.complex.r, GFC_RND_MODE); - - mpfr_sub (result->value.complex.i, op1->value.complex.i, - op2->value.complex.i, GFC_RND_MODE); -#endif break; default: @@ -762,26 +736,8 @@ gfc_arith_times (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) case BT_COMPLEX: gfc_set_model (mpc_realref (op1->value.complex)); -#ifdef HAVE_mpc mpc_mul (result->value.complex, op1->value.complex, op2->value.complex, GFC_MPC_RND_MODE); -#else - { - mpfr_t x, y; - mpfr_init (x); - mpfr_init (y); - - mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE); - mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE); - mpfr_sub (result->value.complex.r, x, y, GFC_RND_MODE); - - mpfr_mul (x, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE); - mpfr_mul (y, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE); - mpfr_add (result->value.complex.i, x, y, GFC_RND_MODE); - - mpfr_clears (x, y, NULL); - } -#endif break; default: @@ -829,13 +785,7 @@ gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) break; case BT_COMPLEX: - if ( -#ifdef HAVE_mpc - mpc_cmp_si_si (op2->value.complex, 0, 0) == 0 -#else - mpfr_sgn (op2->value.complex.r) == 0 - && mpfr_sgn (op2->value.complex.i) == 0 -#endif + if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0 && gfc_option.flag_range_check == 1) { rc = ARITH_DIV0; @@ -843,8 +793,6 @@ gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) } gfc_set_model (mpc_realref (op1->value.complex)); - -#ifdef HAVE_mpc if (mpc_cmp_si_si (op2->value.complex, 0, 0) == 0) { /* In Fortran, return (NaN + NaN I) for any zero divisor. See @@ -855,32 +803,6 @@ gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) else mpc_div (result->value.complex, op1->value.complex, op2->value.complex, GFC_MPC_RND_MODE); -#else - { - mpfr_t x, y, div; - mpfr_init (x); - mpfr_init (y); - mpfr_init (div); - - mpfr_mul (x, op2->value.complex.r, op2->value.complex.r, GFC_RND_MODE); - mpfr_mul (y, op2->value.complex.i, op2->value.complex.i, GFC_RND_MODE); - mpfr_add (div, x, y, GFC_RND_MODE); - - mpfr_mul (x, op1->value.complex.r, op2->value.complex.r, GFC_RND_MODE); - mpfr_mul (y, op1->value.complex.i, op2->value.complex.i, GFC_RND_MODE); - mpfr_add (result->value.complex.r, x, y, GFC_RND_MODE); - mpfr_div (result->value.complex.r, result->value.complex.r, div, - GFC_RND_MODE); - - mpfr_mul (x, op1->value.complex.i, op2->value.complex.r, GFC_RND_MODE); - mpfr_mul (y, op1->value.complex.r, op2->value.complex.i, GFC_RND_MODE); - mpfr_sub (result->value.complex.i, x, y, GFC_RND_MODE); - mpfr_div (result->value.complex.i, result->value.complex.i, div, - GFC_RND_MODE); - - mpfr_clears (x, y, div, NULL); - } -#endif break; default: @@ -893,107 +815,6 @@ gfc_arith_divide (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) return check_result (rc, op1, result, resultp); } - -/* Compute the reciprocal of a complex number (guaranteed nonzero). */ - -#if ! defined(HAVE_mpc_pow) -static void -complex_reciprocal (gfc_expr *op) -{ - gfc_set_model (mpc_realref (op->value.complex)); -#ifdef HAVE_mpc - mpc_ui_div (op->value.complex, 1, op->value.complex, GFC_MPC_RND_MODE); -#else - { - mpfr_t mod, tmp; - - mpfr_init (mod); - mpfr_init (tmp); - - mpfr_mul (mod, op->value.complex.r, op->value.complex.r, GFC_RND_MODE); - mpfr_mul (tmp, op->value.complex.i, op->value.complex.i, GFC_RND_MODE); - mpfr_add (mod, mod, tmp, GFC_RND_MODE); - - mpfr_div (op->value.complex.r, op->value.complex.r, mod, GFC_RND_MODE); - - mpfr_neg (op->value.complex.i, op->value.complex.i, GFC_RND_MODE); - mpfr_div (op->value.complex.i, op->value.complex.i, mod, GFC_RND_MODE); - - mpfr_clears (tmp, mod, NULL); - } -#endif -} -#endif /* ! HAVE_mpc_pow */ - - -/* Raise a complex number to positive power (power > 0). - This function will modify the content of power. - - Use Binary Method, which is not an optimal but a simple and reasonable - arithmetic. See section 4.6.3, "Evaluation of Powers" of Donald E. Knuth, - "Seminumerical Algorithms", Vol. 2, "The Art of Computer Programming", - 3rd Edition, 1998. */ - -#if ! defined(HAVE_mpc_pow) -static void -complex_pow (gfc_expr *result, gfc_expr *base, mpz_t power) -{ - mpfr_t x_r, x_i, tmp, re, im; - - gfc_set_model (mpc_realref (base->value.complex)); - mpfr_init (x_r); - mpfr_init (x_i); - mpfr_init (tmp); - mpfr_init (re); - mpfr_init (im); - - /* res = 1 */ -#ifdef HAVE_mpc - mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE); -#else - mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE); - mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); -#endif - - /* x = base */ - mpfr_set (x_r, mpc_realref (base->value.complex), GFC_RND_MODE); - mpfr_set (x_i, mpc_imagref (base->value.complex), GFC_RND_MODE); - - /* Macro for complex multiplication. We have to take care that - res_r/res_i and a_r/a_i can (and will) be the same variable. */ -#define CMULT(res_r,res_i,a_r,a_i,b_r,b_i) \ - mpfr_mul (re, a_r, b_r, GFC_RND_MODE), \ - mpfr_mul (tmp, a_i, b_i, GFC_RND_MODE), \ - mpfr_sub (re, re, tmp, GFC_RND_MODE), \ - \ - mpfr_mul (im, a_r, b_i, GFC_RND_MODE), \ - mpfr_mul (tmp, a_i, b_r, GFC_RND_MODE), \ - mpfr_add (res_i, im, tmp, GFC_RND_MODE), \ - mpfr_set (res_r, re, GFC_RND_MODE) - -#define res_r mpc_realref (result->value.complex) -#define res_i mpc_imagref (result->value.complex) - - /* for (; power > 0; x *= x) */ - for (; mpz_cmp_si (power, 0) > 0; CMULT(x_r,x_i,x_r,x_i,x_r,x_i)) - { - /* if (power & 1) res = res * x; */ - if (mpz_congruent_ui_p (power, 1, 2)) - CMULT(res_r,res_i,res_r,res_i,x_r,x_i); - - /* power /= 2; */ - mpz_fdiv_q_ui (power, power, 2); - } - -#undef res_r -#undef res_i -#undef CMULT - - mpfr_clears (x_r, x_i, tmp, re, im, NULL); -} -#endif /* ! HAVE_mpc_pow */ - - /* Raise a number to a power. */ static arith @@ -1028,12 +849,7 @@ arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) break; case BT_COMPLEX: -#ifdef HAVE_mpc mpc_set_ui (result->value.complex, 1, GFC_MPC_RND_MODE); -#else - mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE); - mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); -#endif break; default: @@ -1110,32 +926,8 @@ arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) break; case BT_COMPLEX: - { -#ifdef HAVE_mpc_pow_z - mpc_pow_z (result->value.complex, op1->value.complex, - op2->value.integer, GFC_MPC_RND_MODE); -#elif defined(HAVE_mpc_pow) - mpc_t apower; - gfc_set_model (mpc_realref (op1->value.complex)); - mpc_init2 (apower, mpfr_get_default_prec()); - mpc_set_z (apower, op2->value.integer, GFC_MPC_RND_MODE); - mpc_pow(result->value.complex, op1->value.complex, apower, - GFC_MPC_RND_MODE); - mpc_clear (apower); -#else - mpz_t apower; - - /* Compute op1**abs(op2) */ - mpz_init (apower); - mpz_abs (apower, op2->value.integer); - complex_pow (result, op1, apower); - mpz_clear (apower); - - /* If (op2 < 0), compute the inverse. */ - if (power_sign < 0) - complex_reciprocal (result); -#endif /* HAVE_mpc_pow */ - } + mpc_pow_z (result->value.complex, op1->value.complex, + op2->value.integer, GFC_MPC_RND_MODE); break; default: @@ -1176,63 +968,8 @@ arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp) return ARITH_PROHIBIT; } -#ifdef HAVE_mpc_pow mpc_pow (result->value.complex, op1->value.complex, op2->value.complex, GFC_MPC_RND_MODE); -#else - { - mpfr_t x, y, r, t; - - gfc_set_model (mpc_realref (op1->value.complex)); - - mpfr_init (r); - -#ifdef HAVE_mpc - mpc_abs (r, op1->value.complex, GFC_RND_MODE); -#else - mpfr_hypot (r, op1->value.complex.r, op1->value.complex.i, - GFC_RND_MODE); -#endif - if (mpfr_cmp_si (r, 0) == 0) - { -#ifdef HAVE_mpc - mpc_set_ui (result->value.complex, 0, GFC_MPC_RND_MODE); -#else - mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE); - mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); -#endif - mpfr_clear (r); - break; - } - mpfr_log (r, r, GFC_RND_MODE); - - mpfr_init (t); - -#ifdef HAVE_mpc - mpc_arg (t, op1->value.complex, GFC_RND_MODE); -#else - mpfr_atan2 (t, op1->value.complex.i, op1->value.complex.r, - GFC_RND_MODE); -#endif - - mpfr_init (x); - mpfr_init (y); - - mpfr_mul (x, mpc_realref (op2->value.complex), r, GFC_RND_MODE); - mpfr_mul (y, mpc_imagref (op2->value.complex), t, GFC_RND_MODE); - mpfr_sub (x, x, y, GFC_RND_MODE); - mpfr_exp (x, x, GFC_RND_MODE); - - mpfr_mul (y, mpc_realref (op2->value.complex), t, GFC_RND_MODE); - mpfr_mul (t, mpc_imagref (op2->value.complex), r, GFC_RND_MODE); - mpfr_add (y, y, t, GFC_RND_MODE); - mpfr_cos (t, y, GFC_RND_MODE); - mpfr_sin (y, y, GFC_RND_MODE); - mpfr_mul (mpc_realref (result->value.complex), x, t, GFC_RND_MODE); - mpfr_mul (mpc_imagref (result->value.complex), x, y, GFC_RND_MODE); - mpfr_clears (r, t, x, y, NULL); - } -#endif /* HAVE_mpc_pow */ } break; default: @@ -1350,12 +1087,7 @@ gfc_compare_expr (gfc_expr *op1, gfc_expr *op2, gfc_intrinsic_op op) static int compare_complex (gfc_expr *op1, gfc_expr *op2) { -#ifdef HAVE_mpc return mpc_cmp (op1->value.complex, op2->value.complex) == 0; -#else - return (mpfr_equal_p (op1->value.complex.r, op2->value.complex.r) - && mpfr_equal_p (op1->value.complex.i, op2->value.complex.i)); -#endif } @@ -2224,13 +1956,8 @@ gfc_convert_complex (gfc_expr *real, gfc_expr *imag, int kind) gfc_expr *e; e = gfc_constant_result (BT_COMPLEX, kind, &real->where); -#ifdef HAVE_mpc mpc_set_fr_fr (e->value.complex, real->value.real, imag->value.real, GFC_MPC_RND_MODE); -#else - mpfr_set (e->value.complex.r, real->value.real, GFC_RND_MODE); - mpfr_set (e->value.complex.i, imag->value.real, GFC_RND_MODE); -#endif return e; } @@ -2350,12 +2077,7 @@ gfc_int2complex (gfc_expr *src, int kind) result = gfc_constant_result (BT_COMPLEX, kind, &src->where); -#ifdef HAVE_mpc mpc_set_z (result->value.complex, src->value.integer, GFC_MPC_RND_MODE); -#else - mpfr_set_z (result->value.complex.r, src->value.integer, GFC_RND_MODE); - mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); -#endif if ((rc = gfc_check_real_range (mpc_realref (result->value.complex), kind)) != ARITH_OK) @@ -2433,12 +2155,7 @@ gfc_real2complex (gfc_expr *src, int kind) result = gfc_constant_result (BT_COMPLEX, kind, &src->where); -#ifdef HAVE_mpc mpc_set_fr (result->value.complex, src->value.real, GFC_MPC_RND_MODE); -#else - mpfr_set (result->value.complex.r, src->value.real, GFC_RND_MODE); - mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE); -#endif rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); @@ -2493,11 +2210,7 @@ gfc_complex2real (gfc_expr *src, int kind) result = gfc_constant_result (BT_REAL, kind, &src->where); -#ifdef HAVE_mpc mpc_real (result->value.real, src->value.complex, GFC_RND_MODE); -#else - mpfr_set (result->value.real, src->value.complex.r, GFC_RND_MODE); -#endif rc = gfc_check_real_range (result->value.real, kind); @@ -2528,12 +2241,7 @@ gfc_complex2complex (gfc_expr *src, int kind) result = gfc_constant_result (BT_COMPLEX, kind, &src->where); -#ifdef HAVE_mpc mpc_set (result->value.complex, src->value.complex, GFC_MPC_RND_MODE); -#else - mpfr_set (result->value.complex.r, src->value.complex.r, GFC_RND_MODE); - mpfr_set (result->value.complex.i, src->value.complex.i, GFC_RND_MODE); -#endif rc = gfc_check_real_range (mpc_realref (result->value.complex), kind); @@ -2698,13 +2406,7 @@ gfc_hollerith2complex (gfc_expr *src, int kind) hollerith2representation (result, src); gfc_interpret_complex (kind, (unsigned char *) result->representation.string, - result->representation.length, -#ifdef HAVE_mpc - result->value.complex -#else - result->value.complex.r, result->value.complex.i -#endif - ); + result->representation.length, result->value.complex); return result; } |