diff options
author | Martin Liska <mliska@suse.cz> | 2022-01-14 16:56:44 +0100 |
---|---|---|
committer | Martin Liska <mliska@suse.cz> | 2022-01-17 22:12:04 +0100 |
commit | 5c69acb32329d49e58c26fa41ae74229a52b9106 (patch) | |
tree | ddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/fold-const.c | |
parent | 490e23032baaece71f2ec09fa1805064b150fbc2 (diff) | |
download | gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.zip gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.bz2 |
Rename .c files to .cc files.
gcc/ada/ChangeLog:
* adadecode.c: Moved to...
* adadecode.cc: ...here.
* affinity.c: Moved to...
* affinity.cc: ...here.
* argv-lynxos178-raven-cert.c: Moved to...
* argv-lynxos178-raven-cert.cc: ...here.
* argv.c: Moved to...
* argv.cc: ...here.
* aux-io.c: Moved to...
* aux-io.cc: ...here.
* cio.c: Moved to...
* cio.cc: ...here.
* cstreams.c: Moved to...
* cstreams.cc: ...here.
* env.c: Moved to...
* env.cc: ...here.
* exit.c: Moved to...
* exit.cc: ...here.
* expect.c: Moved to...
* expect.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* gcc-interface/cuintp.c: Moved to...
* gcc-interface/cuintp.cc: ...here.
* gcc-interface/decl.c: Moved to...
* gcc-interface/decl.cc: ...here.
* gcc-interface/misc.c: Moved to...
* gcc-interface/misc.cc: ...here.
* gcc-interface/targtyps.c: Moved to...
* gcc-interface/targtyps.cc: ...here.
* gcc-interface/trans.c: Moved to...
* gcc-interface/trans.cc: ...here.
* gcc-interface/utils.c: Moved to...
* gcc-interface/utils.cc: ...here.
* gcc-interface/utils2.c: Moved to...
* gcc-interface/utils2.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* initialize.c: Moved to...
* initialize.cc: ...here.
* libgnarl/thread.c: Moved to...
* libgnarl/thread.cc: ...here.
* link.c: Moved to...
* link.cc: ...here.
* locales.c: Moved to...
* locales.cc: ...here.
* mkdir.c: Moved to...
* mkdir.cc: ...here.
* raise.c: Moved to...
* raise.cc: ...here.
* rtfinal.c: Moved to...
* rtfinal.cc: ...here.
* rtinit.c: Moved to...
* rtinit.cc: ...here.
* seh_init.c: Moved to...
* seh_init.cc: ...here.
* sigtramp-armdroid.c: Moved to...
* sigtramp-armdroid.cc: ...here.
* sigtramp-ios.c: Moved to...
* sigtramp-ios.cc: ...here.
* sigtramp-qnx.c: Moved to...
* sigtramp-qnx.cc: ...here.
* sigtramp-vxworks.c: Moved to...
* sigtramp-vxworks.cc: ...here.
* socket.c: Moved to...
* socket.cc: ...here.
* tracebak.c: Moved to...
* tracebak.cc: ...here.
* version.c: Moved to...
* version.cc: ...here.
* vx_stack_info.c: Moved to...
* vx_stack_info.cc: ...here.
gcc/ChangeLog:
* adjust-alignment.c: Moved to...
* adjust-alignment.cc: ...here.
* alias.c: Moved to...
* alias.cc: ...here.
* alloc-pool.c: Moved to...
* alloc-pool.cc: ...here.
* asan.c: Moved to...
* asan.cc: ...here.
* attribs.c: Moved to...
* attribs.cc: ...here.
* auto-inc-dec.c: Moved to...
* auto-inc-dec.cc: ...here.
* auto-profile.c: Moved to...
* auto-profile.cc: ...here.
* bb-reorder.c: Moved to...
* bb-reorder.cc: ...here.
* bitmap.c: Moved to...
* bitmap.cc: ...here.
* btfout.c: Moved to...
* btfout.cc: ...here.
* builtins.c: Moved to...
* builtins.cc: ...here.
* caller-save.c: Moved to...
* caller-save.cc: ...here.
* calls.c: Moved to...
* calls.cc: ...here.
* ccmp.c: Moved to...
* ccmp.cc: ...here.
* cfg.c: Moved to...
* cfg.cc: ...here.
* cfganal.c: Moved to...
* cfganal.cc: ...here.
* cfgbuild.c: Moved to...
* cfgbuild.cc: ...here.
* cfgcleanup.c: Moved to...
* cfgcleanup.cc: ...here.
* cfgexpand.c: Moved to...
* cfgexpand.cc: ...here.
* cfghooks.c: Moved to...
* cfghooks.cc: ...here.
* cfgloop.c: Moved to...
* cfgloop.cc: ...here.
* cfgloopanal.c: Moved to...
* cfgloopanal.cc: ...here.
* cfgloopmanip.c: Moved to...
* cfgloopmanip.cc: ...here.
* cfgrtl.c: Moved to...
* cfgrtl.cc: ...here.
* cgraph.c: Moved to...
* cgraph.cc: ...here.
* cgraphbuild.c: Moved to...
* cgraphbuild.cc: ...here.
* cgraphclones.c: Moved to...
* cgraphclones.cc: ...here.
* cgraphunit.c: Moved to...
* cgraphunit.cc: ...here.
* collect-utils.c: Moved to...
* collect-utils.cc: ...here.
* collect2-aix.c: Moved to...
* collect2-aix.cc: ...here.
* collect2.c: Moved to...
* collect2.cc: ...here.
* combine-stack-adj.c: Moved to...
* combine-stack-adj.cc: ...here.
* combine.c: Moved to...
* combine.cc: ...here.
* common/common-targhooks.c: Moved to...
* common/common-targhooks.cc: ...here.
* common/config/aarch64/aarch64-common.c: Moved to...
* common/config/aarch64/aarch64-common.cc: ...here.
* common/config/alpha/alpha-common.c: Moved to...
* common/config/alpha/alpha-common.cc: ...here.
* common/config/arc/arc-common.c: Moved to...
* common/config/arc/arc-common.cc: ...here.
* common/config/arm/arm-common.c: Moved to...
* common/config/arm/arm-common.cc: ...here.
* common/config/avr/avr-common.c: Moved to...
* common/config/avr/avr-common.cc: ...here.
* common/config/bfin/bfin-common.c: Moved to...
* common/config/bfin/bfin-common.cc: ...here.
* common/config/bpf/bpf-common.c: Moved to...
* common/config/bpf/bpf-common.cc: ...here.
* common/config/c6x/c6x-common.c: Moved to...
* common/config/c6x/c6x-common.cc: ...here.
* common/config/cr16/cr16-common.c: Moved to...
* common/config/cr16/cr16-common.cc: ...here.
* common/config/cris/cris-common.c: Moved to...
* common/config/cris/cris-common.cc: ...here.
* common/config/csky/csky-common.c: Moved to...
* common/config/csky/csky-common.cc: ...here.
* common/config/default-common.c: Moved to...
* common/config/default-common.cc: ...here.
* common/config/epiphany/epiphany-common.c: Moved to...
* common/config/epiphany/epiphany-common.cc: ...here.
* common/config/fr30/fr30-common.c: Moved to...
* common/config/fr30/fr30-common.cc: ...here.
* common/config/frv/frv-common.c: Moved to...
* common/config/frv/frv-common.cc: ...here.
* common/config/gcn/gcn-common.c: Moved to...
* common/config/gcn/gcn-common.cc: ...here.
* common/config/h8300/h8300-common.c: Moved to...
* common/config/h8300/h8300-common.cc: ...here.
* common/config/i386/i386-common.c: Moved to...
* common/config/i386/i386-common.cc: ...here.
* common/config/ia64/ia64-common.c: Moved to...
* common/config/ia64/ia64-common.cc: ...here.
* common/config/iq2000/iq2000-common.c: Moved to...
* common/config/iq2000/iq2000-common.cc: ...here.
* common/config/lm32/lm32-common.c: Moved to...
* common/config/lm32/lm32-common.cc: ...here.
* common/config/m32r/m32r-common.c: Moved to...
* common/config/m32r/m32r-common.cc: ...here.
* common/config/m68k/m68k-common.c: Moved to...
* common/config/m68k/m68k-common.cc: ...here.
* common/config/mcore/mcore-common.c: Moved to...
* common/config/mcore/mcore-common.cc: ...here.
* common/config/microblaze/microblaze-common.c: Moved to...
* common/config/microblaze/microblaze-common.cc: ...here.
* common/config/mips/mips-common.c: Moved to...
* common/config/mips/mips-common.cc: ...here.
* common/config/mmix/mmix-common.c: Moved to...
* common/config/mmix/mmix-common.cc: ...here.
* common/config/mn10300/mn10300-common.c: Moved to...
* common/config/mn10300/mn10300-common.cc: ...here.
* common/config/msp430/msp430-common.c: Moved to...
* common/config/msp430/msp430-common.cc: ...here.
* common/config/nds32/nds32-common.c: Moved to...
* common/config/nds32/nds32-common.cc: ...here.
* common/config/nios2/nios2-common.c: Moved to...
* common/config/nios2/nios2-common.cc: ...here.
* common/config/nvptx/nvptx-common.c: Moved to...
* common/config/nvptx/nvptx-common.cc: ...here.
* common/config/or1k/or1k-common.c: Moved to...
* common/config/or1k/or1k-common.cc: ...here.
* common/config/pa/pa-common.c: Moved to...
* common/config/pa/pa-common.cc: ...here.
* common/config/pdp11/pdp11-common.c: Moved to...
* common/config/pdp11/pdp11-common.cc: ...here.
* common/config/pru/pru-common.c: Moved to...
* common/config/pru/pru-common.cc: ...here.
* common/config/riscv/riscv-common.c: Moved to...
* common/config/riscv/riscv-common.cc: ...here.
* common/config/rs6000/rs6000-common.c: Moved to...
* common/config/rs6000/rs6000-common.cc: ...here.
* common/config/rx/rx-common.c: Moved to...
* common/config/rx/rx-common.cc: ...here.
* common/config/s390/s390-common.c: Moved to...
* common/config/s390/s390-common.cc: ...here.
* common/config/sh/sh-common.c: Moved to...
* common/config/sh/sh-common.cc: ...here.
* common/config/sparc/sparc-common.c: Moved to...
* common/config/sparc/sparc-common.cc: ...here.
* common/config/tilegx/tilegx-common.c: Moved to...
* common/config/tilegx/tilegx-common.cc: ...here.
* common/config/tilepro/tilepro-common.c: Moved to...
* common/config/tilepro/tilepro-common.cc: ...here.
* common/config/v850/v850-common.c: Moved to...
* common/config/v850/v850-common.cc: ...here.
* common/config/vax/vax-common.c: Moved to...
* common/config/vax/vax-common.cc: ...here.
* common/config/visium/visium-common.c: Moved to...
* common/config/visium/visium-common.cc: ...here.
* common/config/xstormy16/xstormy16-common.c: Moved to...
* common/config/xstormy16/xstormy16-common.cc: ...here.
* common/config/xtensa/xtensa-common.c: Moved to...
* common/config/xtensa/xtensa-common.cc: ...here.
* compare-elim.c: Moved to...
* compare-elim.cc: ...here.
* config/aarch64/aarch64-bti-insert.c: Moved to...
* config/aarch64/aarch64-bti-insert.cc: ...here.
* config/aarch64/aarch64-builtins.c: Moved to...
* config/aarch64/aarch64-builtins.cc: ...here.
* config/aarch64/aarch64-c.c: Moved to...
* config/aarch64/aarch64-c.cc: ...here.
* config/aarch64/aarch64-d.c: Moved to...
* config/aarch64/aarch64-d.cc: ...here.
* config/aarch64/aarch64.c: Moved to...
* config/aarch64/aarch64.cc: ...here.
* config/aarch64/cortex-a57-fma-steering.c: Moved to...
* config/aarch64/cortex-a57-fma-steering.cc: ...here.
* config/aarch64/driver-aarch64.c: Moved to...
* config/aarch64/driver-aarch64.cc: ...here.
* config/aarch64/falkor-tag-collision-avoidance.c: Moved to...
* config/aarch64/falkor-tag-collision-avoidance.cc: ...here.
* config/aarch64/host-aarch64-darwin.c: Moved to...
* config/aarch64/host-aarch64-darwin.cc: ...here.
* config/alpha/alpha.c: Moved to...
* config/alpha/alpha.cc: ...here.
* config/alpha/driver-alpha.c: Moved to...
* config/alpha/driver-alpha.cc: ...here.
* config/arc/arc-c.c: Moved to...
* config/arc/arc-c.cc: ...here.
* config/arc/arc.c: Moved to...
* config/arc/arc.cc: ...here.
* config/arc/driver-arc.c: Moved to...
* config/arc/driver-arc.cc: ...here.
* config/arm/aarch-common.c: Moved to...
* config/arm/aarch-common.cc: ...here.
* config/arm/arm-builtins.c: Moved to...
* config/arm/arm-builtins.cc: ...here.
* config/arm/arm-c.c: Moved to...
* config/arm/arm-c.cc: ...here.
* config/arm/arm-d.c: Moved to...
* config/arm/arm-d.cc: ...here.
* config/arm/arm.c: Moved to...
* config/arm/arm.cc: ...here.
* config/arm/driver-arm.c: Moved to...
* config/arm/driver-arm.cc: ...here.
* config/avr/avr-c.c: Moved to...
* config/avr/avr-c.cc: ...here.
* config/avr/avr-devices.c: Moved to...
* config/avr/avr-devices.cc: ...here.
* config/avr/avr-log.c: Moved to...
* config/avr/avr-log.cc: ...here.
* config/avr/avr.c: Moved to...
* config/avr/avr.cc: ...here.
* config/avr/driver-avr.c: Moved to...
* config/avr/driver-avr.cc: ...here.
* config/avr/gen-avr-mmcu-specs.c: Moved to...
* config/avr/gen-avr-mmcu-specs.cc: ...here.
* config/avr/gen-avr-mmcu-texi.c: Moved to...
* config/avr/gen-avr-mmcu-texi.cc: ...here.
* config/bfin/bfin.c: Moved to...
* config/bfin/bfin.cc: ...here.
* config/bpf/bpf.c: Moved to...
* config/bpf/bpf.cc: ...here.
* config/bpf/coreout.c: Moved to...
* config/bpf/coreout.cc: ...here.
* config/c6x/c6x.c: Moved to...
* config/c6x/c6x.cc: ...here.
* config/cr16/cr16.c: Moved to...
* config/cr16/cr16.cc: ...here.
* config/cris/cris.c: Moved to...
* config/cris/cris.cc: ...here.
* config/csky/csky.c: Moved to...
* config/csky/csky.cc: ...here.
* config/darwin-c.c: Moved to...
* config/darwin-c.cc: ...here.
* config/darwin-d.c: Moved to...
* config/darwin-d.cc: ...here.
* config/darwin-driver.c: Moved to...
* config/darwin-driver.cc: ...here.
* config/darwin-f.c: Moved to...
* config/darwin-f.cc: ...here.
* config/darwin.c: Moved to...
* config/darwin.cc: ...here.
* config/default-c.c: Moved to...
* config/default-c.cc: ...here.
* config/default-d.c: Moved to...
* config/default-d.cc: ...here.
* config/dragonfly-d.c: Moved to...
* config/dragonfly-d.cc: ...here.
* config/epiphany/epiphany.c: Moved to...
* config/epiphany/epiphany.cc: ...here.
* config/epiphany/mode-switch-use.c: Moved to...
* config/epiphany/mode-switch-use.cc: ...here.
* config/epiphany/resolve-sw-modes.c: Moved to...
* config/epiphany/resolve-sw-modes.cc: ...here.
* config/fr30/fr30.c: Moved to...
* config/fr30/fr30.cc: ...here.
* config/freebsd-d.c: Moved to...
* config/freebsd-d.cc: ...here.
* config/frv/frv.c: Moved to...
* config/frv/frv.cc: ...here.
* config/ft32/ft32.c: Moved to...
* config/ft32/ft32.cc: ...here.
* config/gcn/driver-gcn.c: Moved to...
* config/gcn/driver-gcn.cc: ...here.
* config/gcn/gcn-run.c: Moved to...
* config/gcn/gcn-run.cc: ...here.
* config/gcn/gcn-tree.c: Moved to...
* config/gcn/gcn-tree.cc: ...here.
* config/gcn/gcn.c: Moved to...
* config/gcn/gcn.cc: ...here.
* config/gcn/mkoffload.c: Moved to...
* config/gcn/mkoffload.cc: ...here.
* config/glibc-c.c: Moved to...
* config/glibc-c.cc: ...here.
* config/glibc-d.c: Moved to...
* config/glibc-d.cc: ...here.
* config/h8300/h8300.c: Moved to...
* config/h8300/h8300.cc: ...here.
* config/host-darwin.c: Moved to...
* config/host-darwin.cc: ...here.
* config/host-hpux.c: Moved to...
* config/host-hpux.cc: ...here.
* config/host-linux.c: Moved to...
* config/host-linux.cc: ...here.
* config/host-netbsd.c: Moved to...
* config/host-netbsd.cc: ...here.
* config/host-openbsd.c: Moved to...
* config/host-openbsd.cc: ...here.
* config/host-solaris.c: Moved to...
* config/host-solaris.cc: ...here.
* config/i386/djgpp.c: Moved to...
* config/i386/djgpp.cc: ...here.
* config/i386/driver-i386.c: Moved to...
* config/i386/driver-i386.cc: ...here.
* config/i386/driver-mingw32.c: Moved to...
* config/i386/driver-mingw32.cc: ...here.
* config/i386/gnu-property.c: Moved to...
* config/i386/gnu-property.cc: ...here.
* config/i386/host-cygwin.c: Moved to...
* config/i386/host-cygwin.cc: ...here.
* config/i386/host-i386-darwin.c: Moved to...
* config/i386/host-i386-darwin.cc: ...here.
* config/i386/host-mingw32.c: Moved to...
* config/i386/host-mingw32.cc: ...here.
* config/i386/i386-builtins.c: Moved to...
* config/i386/i386-builtins.cc: ...here.
* config/i386/i386-c.c: Moved to...
* config/i386/i386-c.cc: ...here.
* config/i386/i386-d.c: Moved to...
* config/i386/i386-d.cc: ...here.
* config/i386/i386-expand.c: Moved to...
* config/i386/i386-expand.cc: ...here.
* config/i386/i386-features.c: Moved to...
* config/i386/i386-features.cc: ...here.
* config/i386/i386-options.c: Moved to...
* config/i386/i386-options.cc: ...here.
* config/i386/i386.c: Moved to...
* config/i386/i386.cc: ...here.
* config/i386/intelmic-mkoffload.c: Moved to...
* config/i386/intelmic-mkoffload.cc: ...here.
* config/i386/msformat-c.c: Moved to...
* config/i386/msformat-c.cc: ...here.
* config/i386/winnt-cxx.c: Moved to...
* config/i386/winnt-cxx.cc: ...here.
* config/i386/winnt-d.c: Moved to...
* config/i386/winnt-d.cc: ...here.
* config/i386/winnt-stubs.c: Moved to...
* config/i386/winnt-stubs.cc: ...here.
* config/i386/winnt.c: Moved to...
* config/i386/winnt.cc: ...here.
* config/i386/x86-tune-sched-atom.c: Moved to...
* config/i386/x86-tune-sched-atom.cc: ...here.
* config/i386/x86-tune-sched-bd.c: Moved to...
* config/i386/x86-tune-sched-bd.cc: ...here.
* config/i386/x86-tune-sched-core.c: Moved to...
* config/i386/x86-tune-sched-core.cc: ...here.
* config/i386/x86-tune-sched.c: Moved to...
* config/i386/x86-tune-sched.cc: ...here.
* config/ia64/ia64-c.c: Moved to...
* config/ia64/ia64-c.cc: ...here.
* config/ia64/ia64.c: Moved to...
* config/ia64/ia64.cc: ...here.
* config/iq2000/iq2000.c: Moved to...
* config/iq2000/iq2000.cc: ...here.
* config/linux.c: Moved to...
* config/linux.cc: ...here.
* config/lm32/lm32.c: Moved to...
* config/lm32/lm32.cc: ...here.
* config/m32c/m32c-pragma.c: Moved to...
* config/m32c/m32c-pragma.cc: ...here.
* config/m32c/m32c.c: Moved to...
* config/m32c/m32c.cc: ...here.
* config/m32r/m32r.c: Moved to...
* config/m32r/m32r.cc: ...here.
* config/m68k/m68k.c: Moved to...
* config/m68k/m68k.cc: ...here.
* config/mcore/mcore.c: Moved to...
* config/mcore/mcore.cc: ...here.
* config/microblaze/microblaze-c.c: Moved to...
* config/microblaze/microblaze-c.cc: ...here.
* config/microblaze/microblaze.c: Moved to...
* config/microblaze/microblaze.cc: ...here.
* config/mips/driver-native.c: Moved to...
* config/mips/driver-native.cc: ...here.
* config/mips/frame-header-opt.c: Moved to...
* config/mips/frame-header-opt.cc: ...here.
* config/mips/mips-d.c: Moved to...
* config/mips/mips-d.cc: ...here.
* config/mips/mips.c: Moved to...
* config/mips/mips.cc: ...here.
* config/mmix/mmix.c: Moved to...
* config/mmix/mmix.cc: ...here.
* config/mn10300/mn10300.c: Moved to...
* config/mn10300/mn10300.cc: ...here.
* config/moxie/moxie.c: Moved to...
* config/moxie/moxie.cc: ...here.
* config/msp430/driver-msp430.c: Moved to...
* config/msp430/driver-msp430.cc: ...here.
* config/msp430/msp430-c.c: Moved to...
* config/msp430/msp430-c.cc: ...here.
* config/msp430/msp430-devices.c: Moved to...
* config/msp430/msp430-devices.cc: ...here.
* config/msp430/msp430.c: Moved to...
* config/msp430/msp430.cc: ...here.
* config/nds32/nds32-cost.c: Moved to...
* config/nds32/nds32-cost.cc: ...here.
* config/nds32/nds32-fp-as-gp.c: Moved to...
* config/nds32/nds32-fp-as-gp.cc: ...here.
* config/nds32/nds32-intrinsic.c: Moved to...
* config/nds32/nds32-intrinsic.cc: ...here.
* config/nds32/nds32-isr.c: Moved to...
* config/nds32/nds32-isr.cc: ...here.
* config/nds32/nds32-md-auxiliary.c: Moved to...
* config/nds32/nds32-md-auxiliary.cc: ...here.
* config/nds32/nds32-memory-manipulation.c: Moved to...
* config/nds32/nds32-memory-manipulation.cc: ...here.
* config/nds32/nds32-pipelines-auxiliary.c: Moved to...
* config/nds32/nds32-pipelines-auxiliary.cc: ...here.
* config/nds32/nds32-predicates.c: Moved to...
* config/nds32/nds32-predicates.cc: ...here.
* config/nds32/nds32-relax-opt.c: Moved to...
* config/nds32/nds32-relax-opt.cc: ...here.
* config/nds32/nds32-utils.c: Moved to...
* config/nds32/nds32-utils.cc: ...here.
* config/nds32/nds32.c: Moved to...
* config/nds32/nds32.cc: ...here.
* config/netbsd-d.c: Moved to...
* config/netbsd-d.cc: ...here.
* config/netbsd.c: Moved to...
* config/netbsd.cc: ...here.
* config/nios2/nios2.c: Moved to...
* config/nios2/nios2.cc: ...here.
* config/nvptx/mkoffload.c: Moved to...
* config/nvptx/mkoffload.cc: ...here.
* config/nvptx/nvptx-c.c: Moved to...
* config/nvptx/nvptx-c.cc: ...here.
* config/nvptx/nvptx.c: Moved to...
* config/nvptx/nvptx.cc: ...here.
* config/openbsd-d.c: Moved to...
* config/openbsd-d.cc: ...here.
* config/or1k/or1k.c: Moved to...
* config/or1k/or1k.cc: ...here.
* config/pa/pa-d.c: Moved to...
* config/pa/pa-d.cc: ...here.
* config/pa/pa.c: Moved to...
* config/pa/pa.cc: ...here.
* config/pdp11/pdp11.c: Moved to...
* config/pdp11/pdp11.cc: ...here.
* config/pru/pru-passes.c: Moved to...
* config/pru/pru-passes.cc: ...here.
* config/pru/pru-pragma.c: Moved to...
* config/pru/pru-pragma.cc: ...here.
* config/pru/pru.c: Moved to...
* config/pru/pru.cc: ...here.
* config/riscv/riscv-builtins.c: Moved to...
* config/riscv/riscv-builtins.cc: ...here.
* config/riscv/riscv-c.c: Moved to...
* config/riscv/riscv-c.cc: ...here.
* config/riscv/riscv-d.c: Moved to...
* config/riscv/riscv-d.cc: ...here.
* config/riscv/riscv-shorten-memrefs.c: Moved to...
* config/riscv/riscv-shorten-memrefs.cc: ...here.
* config/riscv/riscv-sr.c: Moved to...
* config/riscv/riscv-sr.cc: ...here.
* config/riscv/riscv.c: Moved to...
* config/riscv/riscv.cc: ...here.
* config/rl78/rl78-c.c: Moved to...
* config/rl78/rl78-c.cc: ...here.
* config/rl78/rl78.c: Moved to...
* config/rl78/rl78.cc: ...here.
* config/rs6000/driver-rs6000.c: Moved to...
* config/rs6000/driver-rs6000.cc: ...here.
* config/rs6000/host-darwin.c: Moved to...
* config/rs6000/host-darwin.cc: ...here.
* config/rs6000/host-ppc64-darwin.c: Moved to...
* config/rs6000/host-ppc64-darwin.cc: ...here.
* config/rs6000/rbtree.c: Moved to...
* config/rs6000/rbtree.cc: ...here.
* config/rs6000/rs6000-c.c: Moved to...
* config/rs6000/rs6000-c.cc: ...here.
* config/rs6000/rs6000-call.c: Moved to...
* config/rs6000/rs6000-call.cc: ...here.
* config/rs6000/rs6000-d.c: Moved to...
* config/rs6000/rs6000-d.cc: ...here.
* config/rs6000/rs6000-gen-builtins.c: Moved to...
* config/rs6000/rs6000-gen-builtins.cc: ...here.
* config/rs6000/rs6000-linux.c: Moved to...
* config/rs6000/rs6000-linux.cc: ...here.
* config/rs6000/rs6000-logue.c: Moved to...
* config/rs6000/rs6000-logue.cc: ...here.
* config/rs6000/rs6000-p8swap.c: Moved to...
* config/rs6000/rs6000-p8swap.cc: ...here.
* config/rs6000/rs6000-pcrel-opt.c: Moved to...
* config/rs6000/rs6000-pcrel-opt.cc: ...here.
* config/rs6000/rs6000-string.c: Moved to...
* config/rs6000/rs6000-string.cc: ...here.
* config/rs6000/rs6000.c: Moved to...
* config/rs6000/rs6000.cc: ...here.
* config/rx/rx.c: Moved to...
* config/rx/rx.cc: ...here.
* config/s390/driver-native.c: Moved to...
* config/s390/driver-native.cc: ...here.
* config/s390/s390-c.c: Moved to...
* config/s390/s390-c.cc: ...here.
* config/s390/s390-d.c: Moved to...
* config/s390/s390-d.cc: ...here.
* config/s390/s390.c: Moved to...
* config/s390/s390.cc: ...here.
* config/sh/divtab-sh4-300.c: Moved to...
* config/sh/divtab-sh4-300.cc: ...here.
* config/sh/divtab-sh4.c: Moved to...
* config/sh/divtab-sh4.cc: ...here.
* config/sh/divtab.c: Moved to...
* config/sh/divtab.cc: ...here.
* config/sh/sh-c.c: Moved to...
* config/sh/sh-c.cc: ...here.
* config/sh/sh.c: Moved to...
* config/sh/sh.cc: ...here.
* config/sol2-c.c: Moved to...
* config/sol2-c.cc: ...here.
* config/sol2-cxx.c: Moved to...
* config/sol2-cxx.cc: ...here.
* config/sol2-d.c: Moved to...
* config/sol2-d.cc: ...here.
* config/sol2-stubs.c: Moved to...
* config/sol2-stubs.cc: ...here.
* config/sol2.c: Moved to...
* config/sol2.cc: ...here.
* config/sparc/driver-sparc.c: Moved to...
* config/sparc/driver-sparc.cc: ...here.
* config/sparc/sparc-c.c: Moved to...
* config/sparc/sparc-c.cc: ...here.
* config/sparc/sparc-d.c: Moved to...
* config/sparc/sparc-d.cc: ...here.
* config/sparc/sparc.c: Moved to...
* config/sparc/sparc.cc: ...here.
* config/stormy16/stormy16.c: Moved to...
* config/stormy16/stormy16.cc: ...here.
* config/tilegx/mul-tables.c: Moved to...
* config/tilegx/mul-tables.cc: ...here.
* config/tilegx/tilegx-c.c: Moved to...
* config/tilegx/tilegx-c.cc: ...here.
* config/tilegx/tilegx.c: Moved to...
* config/tilegx/tilegx.cc: ...here.
* config/tilepro/mul-tables.c: Moved to...
* config/tilepro/mul-tables.cc: ...here.
* config/tilepro/tilepro-c.c: Moved to...
* config/tilepro/tilepro-c.cc: ...here.
* config/tilepro/tilepro.c: Moved to...
* config/tilepro/tilepro.cc: ...here.
* config/v850/v850-c.c: Moved to...
* config/v850/v850-c.cc: ...here.
* config/v850/v850.c: Moved to...
* config/v850/v850.cc: ...here.
* config/vax/vax.c: Moved to...
* config/vax/vax.cc: ...here.
* config/visium/visium.c: Moved to...
* config/visium/visium.cc: ...here.
* config/vms/vms-c.c: Moved to...
* config/vms/vms-c.cc: ...here.
* config/vms/vms-f.c: Moved to...
* config/vms/vms-f.cc: ...here.
* config/vms/vms.c: Moved to...
* config/vms/vms.cc: ...here.
* config/vxworks-c.c: Moved to...
* config/vxworks-c.cc: ...here.
* config/vxworks.c: Moved to...
* config/vxworks.cc: ...here.
* config/winnt-c.c: Moved to...
* config/winnt-c.cc: ...here.
* config/xtensa/xtensa.c: Moved to...
* config/xtensa/xtensa.cc: ...here.
* context.c: Moved to...
* context.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* coverage.c: Moved to...
* coverage.cc: ...here.
* cppbuiltin.c: Moved to...
* cppbuiltin.cc: ...here.
* cppdefault.c: Moved to...
* cppdefault.cc: ...here.
* cprop.c: Moved to...
* cprop.cc: ...here.
* cse.c: Moved to...
* cse.cc: ...here.
* cselib.c: Moved to...
* cselib.cc: ...here.
* ctfc.c: Moved to...
* ctfc.cc: ...here.
* ctfout.c: Moved to...
* ctfout.cc: ...here.
* data-streamer-in.c: Moved to...
* data-streamer-in.cc: ...here.
* data-streamer-out.c: Moved to...
* data-streamer-out.cc: ...here.
* data-streamer.c: Moved to...
* data-streamer.cc: ...here.
* dbgcnt.c: Moved to...
* dbgcnt.cc: ...here.
* dbxout.c: Moved to...
* dbxout.cc: ...here.
* dce.c: Moved to...
* dce.cc: ...here.
* ddg.c: Moved to...
* ddg.cc: ...here.
* debug.c: Moved to...
* debug.cc: ...here.
* df-core.c: Moved to...
* df-core.cc: ...here.
* df-problems.c: Moved to...
* df-problems.cc: ...here.
* df-scan.c: Moved to...
* df-scan.cc: ...here.
* dfp.c: Moved to...
* dfp.cc: ...here.
* diagnostic-color.c: Moved to...
* diagnostic-color.cc: ...here.
* diagnostic-show-locus.c: Moved to...
* diagnostic-show-locus.cc: ...here.
* diagnostic-spec.c: Moved to...
* diagnostic-spec.cc: ...here.
* diagnostic.c: Moved to...
* diagnostic.cc: ...here.
* dojump.c: Moved to...
* dojump.cc: ...here.
* dominance.c: Moved to...
* dominance.cc: ...here.
* domwalk.c: Moved to...
* domwalk.cc: ...here.
* double-int.c: Moved to...
* double-int.cc: ...here.
* dse.c: Moved to...
* dse.cc: ...here.
* dumpfile.c: Moved to...
* dumpfile.cc: ...here.
* dwarf2asm.c: Moved to...
* dwarf2asm.cc: ...here.
* dwarf2cfi.c: Moved to...
* dwarf2cfi.cc: ...here.
* dwarf2ctf.c: Moved to...
* dwarf2ctf.cc: ...here.
* dwarf2out.c: Moved to...
* dwarf2out.cc: ...here.
* early-remat.c: Moved to...
* early-remat.cc: ...here.
* edit-context.c: Moved to...
* edit-context.cc: ...here.
* emit-rtl.c: Moved to...
* emit-rtl.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* et-forest.c: Moved to...
* et-forest.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* explow.c: Moved to...
* explow.cc: ...here.
* expmed.c: Moved to...
* expmed.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* fibonacci_heap.c: Moved to...
* fibonacci_heap.cc: ...here.
* file-find.c: Moved to...
* file-find.cc: ...here.
* file-prefix-map.c: Moved to...
* file-prefix-map.cc: ...here.
* final.c: Moved to...
* final.cc: ...here.
* fixed-value.c: Moved to...
* fixed-value.cc: ...here.
* fold-const-call.c: Moved to...
* fold-const-call.cc: ...here.
* fold-const.c: Moved to...
* fold-const.cc: ...here.
* fp-test.c: Moved to...
* fp-test.cc: ...here.
* function-tests.c: Moved to...
* function-tests.cc: ...here.
* function.c: Moved to...
* function.cc: ...here.
* fwprop.c: Moved to...
* fwprop.cc: ...here.
* gcc-ar.c: Moved to...
* gcc-ar.cc: ...here.
* gcc-main.c: Moved to...
* gcc-main.cc: ...here.
* gcc-rich-location.c: Moved to...
* gcc-rich-location.cc: ...here.
* gcc.c: Moved to...
* gcc.cc: ...here.
* gcov-dump.c: Moved to...
* gcov-dump.cc: ...here.
* gcov-io.c: Moved to...
* gcov-io.cc: ...here.
* gcov-tool.c: Moved to...
* gcov-tool.cc: ...here.
* gcov.c: Moved to...
* gcov.cc: ...here.
* gcse-common.c: Moved to...
* gcse-common.cc: ...here.
* gcse.c: Moved to...
* gcse.cc: ...here.
* genattr-common.c: Moved to...
* genattr-common.cc: ...here.
* genattr.c: Moved to...
* genattr.cc: ...here.
* genattrtab.c: Moved to...
* genattrtab.cc: ...here.
* genautomata.c: Moved to...
* genautomata.cc: ...here.
* gencfn-macros.c: Moved to...
* gencfn-macros.cc: ...here.
* gencheck.c: Moved to...
* gencheck.cc: ...here.
* genchecksum.c: Moved to...
* genchecksum.cc: ...here.
* gencodes.c: Moved to...
* gencodes.cc: ...here.
* genconditions.c: Moved to...
* genconditions.cc: ...here.
* genconfig.c: Moved to...
* genconfig.cc: ...here.
* genconstants.c: Moved to...
* genconstants.cc: ...here.
* genemit.c: Moved to...
* genemit.cc: ...here.
* genenums.c: Moved to...
* genenums.cc: ...here.
* generic-match-head.c: Moved to...
* generic-match-head.cc: ...here.
* genextract.c: Moved to...
* genextract.cc: ...here.
* genflags.c: Moved to...
* genflags.cc: ...here.
* gengenrtl.c: Moved to...
* gengenrtl.cc: ...here.
* gengtype-parse.c: Moved to...
* gengtype-parse.cc: ...here.
* gengtype-state.c: Moved to...
* gengtype-state.cc: ...here.
* gengtype.c: Moved to...
* gengtype.cc: ...here.
* genhooks.c: Moved to...
* genhooks.cc: ...here.
* genmatch.c: Moved to...
* genmatch.cc: ...here.
* genmddeps.c: Moved to...
* genmddeps.cc: ...here.
* genmddump.c: Moved to...
* genmddump.cc: ...here.
* genmodes.c: Moved to...
* genmodes.cc: ...here.
* genopinit.c: Moved to...
* genopinit.cc: ...here.
* genoutput.c: Moved to...
* genoutput.cc: ...here.
* genpeep.c: Moved to...
* genpeep.cc: ...here.
* genpreds.c: Moved to...
* genpreds.cc: ...here.
* genrecog.c: Moved to...
* genrecog.cc: ...here.
* gensupport.c: Moved to...
* gensupport.cc: ...here.
* gentarget-def.c: Moved to...
* gentarget-def.cc: ...here.
* genversion.c: Moved to...
* genversion.cc: ...here.
* ggc-common.c: Moved to...
* ggc-common.cc: ...here.
* ggc-none.c: Moved to...
* ggc-none.cc: ...here.
* ggc-page.c: Moved to...
* ggc-page.cc: ...here.
* ggc-tests.c: Moved to...
* ggc-tests.cc: ...here.
* gimple-builder.c: Moved to...
* gimple-builder.cc: ...here.
* gimple-expr.c: Moved to...
* gimple-expr.cc: ...here.
* gimple-fold.c: Moved to...
* gimple-fold.cc: ...here.
* gimple-iterator.c: Moved to...
* gimple-iterator.cc: ...here.
* gimple-laddress.c: Moved to...
* gimple-laddress.cc: ...here.
* gimple-loop-jam.c: Moved to...
* gimple-loop-jam.cc: ...here.
* gimple-low.c: Moved to...
* gimple-low.cc: ...here.
* gimple-match-head.c: Moved to...
* gimple-match-head.cc: ...here.
* gimple-pretty-print.c: Moved to...
* gimple-pretty-print.cc: ...here.
* gimple-ssa-backprop.c: Moved to...
* gimple-ssa-backprop.cc: ...here.
* gimple-ssa-evrp-analyze.c: Moved to...
* gimple-ssa-evrp-analyze.cc: ...here.
* gimple-ssa-evrp.c: Moved to...
* gimple-ssa-evrp.cc: ...here.
* gimple-ssa-isolate-paths.c: Moved to...
* gimple-ssa-isolate-paths.cc: ...here.
* gimple-ssa-nonnull-compare.c: Moved to...
* gimple-ssa-nonnull-compare.cc: ...here.
* gimple-ssa-split-paths.c: Moved to...
* gimple-ssa-split-paths.cc: ...here.
* gimple-ssa-sprintf.c: Moved to...
* gimple-ssa-sprintf.cc: ...here.
* gimple-ssa-store-merging.c: Moved to...
* gimple-ssa-store-merging.cc: ...here.
* gimple-ssa-strength-reduction.c: Moved to...
* gimple-ssa-strength-reduction.cc: ...here.
* gimple-ssa-warn-alloca.c: Moved to...
* gimple-ssa-warn-alloca.cc: ...here.
* gimple-ssa-warn-restrict.c: Moved to...
* gimple-ssa-warn-restrict.cc: ...here.
* gimple-streamer-in.c: Moved to...
* gimple-streamer-in.cc: ...here.
* gimple-streamer-out.c: Moved to...
* gimple-streamer-out.cc: ...here.
* gimple-walk.c: Moved to...
* gimple-walk.cc: ...here.
* gimple-warn-recursion.c: Moved to...
* gimple-warn-recursion.cc: ...here.
* gimple.c: Moved to...
* gimple.cc: ...here.
* gimplify-me.c: Moved to...
* gimplify-me.cc: ...here.
* gimplify.c: Moved to...
* gimplify.cc: ...here.
* godump.c: Moved to...
* godump.cc: ...here.
* graph.c: Moved to...
* graph.cc: ...here.
* graphds.c: Moved to...
* graphds.cc: ...here.
* graphite-dependences.c: Moved to...
* graphite-dependences.cc: ...here.
* graphite-isl-ast-to-gimple.c: Moved to...
* graphite-isl-ast-to-gimple.cc: ...here.
* graphite-optimize-isl.c: Moved to...
* graphite-optimize-isl.cc: ...here.
* graphite-poly.c: Moved to...
* graphite-poly.cc: ...here.
* graphite-scop-detection.c: Moved to...
* graphite-scop-detection.cc: ...here.
* graphite-sese-to-poly.c: Moved to...
* graphite-sese-to-poly.cc: ...here.
* graphite.c: Moved to...
* graphite.cc: ...here.
* haifa-sched.c: Moved to...
* haifa-sched.cc: ...here.
* hash-map-tests.c: Moved to...
* hash-map-tests.cc: ...here.
* hash-set-tests.c: Moved to...
* hash-set-tests.cc: ...here.
* hash-table.c: Moved to...
* hash-table.cc: ...here.
* hooks.c: Moved to...
* hooks.cc: ...here.
* host-default.c: Moved to...
* host-default.cc: ...here.
* hw-doloop.c: Moved to...
* hw-doloop.cc: ...here.
* hwint.c: Moved to...
* hwint.cc: ...here.
* ifcvt.c: Moved to...
* ifcvt.cc: ...here.
* inchash.c: Moved to...
* inchash.cc: ...here.
* incpath.c: Moved to...
* incpath.cc: ...here.
* init-regs.c: Moved to...
* init-regs.cc: ...here.
* input.c: Moved to...
* input.cc: ...here.
* internal-fn.c: Moved to...
* internal-fn.cc: ...here.
* intl.c: Moved to...
* intl.cc: ...here.
* ipa-comdats.c: Moved to...
* ipa-comdats.cc: ...here.
* ipa-cp.c: Moved to...
* ipa-cp.cc: ...here.
* ipa-devirt.c: Moved to...
* ipa-devirt.cc: ...here.
* ipa-fnsummary.c: Moved to...
* ipa-fnsummary.cc: ...here.
* ipa-icf-gimple.c: Moved to...
* ipa-icf-gimple.cc: ...here.
* ipa-icf.c: Moved to...
* ipa-icf.cc: ...here.
* ipa-inline-analysis.c: Moved to...
* ipa-inline-analysis.cc: ...here.
* ipa-inline-transform.c: Moved to...
* ipa-inline-transform.cc: ...here.
* ipa-inline.c: Moved to...
* ipa-inline.cc: ...here.
* ipa-modref-tree.c: Moved to...
* ipa-modref-tree.cc: ...here.
* ipa-modref.c: Moved to...
* ipa-modref.cc: ...here.
* ipa-param-manipulation.c: Moved to...
* ipa-param-manipulation.cc: ...here.
* ipa-polymorphic-call.c: Moved to...
* ipa-polymorphic-call.cc: ...here.
* ipa-predicate.c: Moved to...
* ipa-predicate.cc: ...here.
* ipa-profile.c: Moved to...
* ipa-profile.cc: ...here.
* ipa-prop.c: Moved to...
* ipa-prop.cc: ...here.
* ipa-pure-const.c: Moved to...
* ipa-pure-const.cc: ...here.
* ipa-ref.c: Moved to...
* ipa-ref.cc: ...here.
* ipa-reference.c: Moved to...
* ipa-reference.cc: ...here.
* ipa-split.c: Moved to...
* ipa-split.cc: ...here.
* ipa-sra.c: Moved to...
* ipa-sra.cc: ...here.
* ipa-utils.c: Moved to...
* ipa-utils.cc: ...here.
* ipa-visibility.c: Moved to...
* ipa-visibility.cc: ...here.
* ipa.c: Moved to...
* ipa.cc: ...here.
* ira-build.c: Moved to...
* ira-build.cc: ...here.
* ira-color.c: Moved to...
* ira-color.cc: ...here.
* ira-conflicts.c: Moved to...
* ira-conflicts.cc: ...here.
* ira-costs.c: Moved to...
* ira-costs.cc: ...here.
* ira-emit.c: Moved to...
* ira-emit.cc: ...here.
* ira-lives.c: Moved to...
* ira-lives.cc: ...here.
* ira.c: Moved to...
* ira.cc: ...here.
* jump.c: Moved to...
* jump.cc: ...here.
* langhooks.c: Moved to...
* langhooks.cc: ...here.
* lcm.c: Moved to...
* lcm.cc: ...here.
* lists.c: Moved to...
* lists.cc: ...here.
* loop-doloop.c: Moved to...
* loop-doloop.cc: ...here.
* loop-init.c: Moved to...
* loop-init.cc: ...here.
* loop-invariant.c: Moved to...
* loop-invariant.cc: ...here.
* loop-iv.c: Moved to...
* loop-iv.cc: ...here.
* loop-unroll.c: Moved to...
* loop-unroll.cc: ...here.
* lower-subreg.c: Moved to...
* lower-subreg.cc: ...here.
* lra-assigns.c: Moved to...
* lra-assigns.cc: ...here.
* lra-coalesce.c: Moved to...
* lra-coalesce.cc: ...here.
* lra-constraints.c: Moved to...
* lra-constraints.cc: ...here.
* lra-eliminations.c: Moved to...
* lra-eliminations.cc: ...here.
* lra-lives.c: Moved to...
* lra-lives.cc: ...here.
* lra-remat.c: Moved to...
* lra-remat.cc: ...here.
* lra-spills.c: Moved to...
* lra-spills.cc: ...here.
* lra.c: Moved to...
* lra.cc: ...here.
* lto-cgraph.c: Moved to...
* lto-cgraph.cc: ...here.
* lto-compress.c: Moved to...
* lto-compress.cc: ...here.
* lto-opts.c: Moved to...
* lto-opts.cc: ...here.
* lto-section-in.c: Moved to...
* lto-section-in.cc: ...here.
* lto-section-out.c: Moved to...
* lto-section-out.cc: ...here.
* lto-streamer-in.c: Moved to...
* lto-streamer-in.cc: ...here.
* lto-streamer-out.c: Moved to...
* lto-streamer-out.cc: ...here.
* lto-streamer.c: Moved to...
* lto-streamer.cc: ...here.
* lto-wrapper.c: Moved to...
* lto-wrapper.cc: ...here.
* main.c: Moved to...
* main.cc: ...here.
* mcf.c: Moved to...
* mcf.cc: ...here.
* mode-switching.c: Moved to...
* mode-switching.cc: ...here.
* modulo-sched.c: Moved to...
* modulo-sched.cc: ...here.
* multiple_target.c: Moved to...
* multiple_target.cc: ...here.
* omp-expand.c: Moved to...
* omp-expand.cc: ...here.
* omp-general.c: Moved to...
* omp-general.cc: ...here.
* omp-low.c: Moved to...
* omp-low.cc: ...here.
* omp-offload.c: Moved to...
* omp-offload.cc: ...here.
* omp-simd-clone.c: Moved to...
* omp-simd-clone.cc: ...here.
* opt-suggestions.c: Moved to...
* opt-suggestions.cc: ...here.
* optabs-libfuncs.c: Moved to...
* optabs-libfuncs.cc: ...here.
* optabs-query.c: Moved to...
* optabs-query.cc: ...here.
* optabs-tree.c: Moved to...
* optabs-tree.cc: ...here.
* optabs.c: Moved to...
* optabs.cc: ...here.
* opts-common.c: Moved to...
* opts-common.cc: ...here.
* opts-global.c: Moved to...
* opts-global.cc: ...here.
* opts.c: Moved to...
* opts.cc: ...here.
* passes.c: Moved to...
* passes.cc: ...here.
* plugin.c: Moved to...
* plugin.cc: ...here.
* postreload-gcse.c: Moved to...
* postreload-gcse.cc: ...here.
* postreload.c: Moved to...
* postreload.cc: ...here.
* predict.c: Moved to...
* predict.cc: ...here.
* prefix.c: Moved to...
* prefix.cc: ...here.
* pretty-print.c: Moved to...
* pretty-print.cc: ...here.
* print-rtl-function.c: Moved to...
* print-rtl-function.cc: ...here.
* print-rtl.c: Moved to...
* print-rtl.cc: ...here.
* print-tree.c: Moved to...
* print-tree.cc: ...here.
* profile-count.c: Moved to...
* profile-count.cc: ...here.
* profile.c: Moved to...
* profile.cc: ...here.
* read-md.c: Moved to...
* read-md.cc: ...here.
* read-rtl-function.c: Moved to...
* read-rtl-function.cc: ...here.
* read-rtl.c: Moved to...
* read-rtl.cc: ...here.
* real.c: Moved to...
* real.cc: ...here.
* realmpfr.c: Moved to...
* realmpfr.cc: ...here.
* recog.c: Moved to...
* recog.cc: ...here.
* ree.c: Moved to...
* ree.cc: ...here.
* reg-stack.c: Moved to...
* reg-stack.cc: ...here.
* regcprop.c: Moved to...
* regcprop.cc: ...here.
* reginfo.c: Moved to...
* reginfo.cc: ...here.
* regrename.c: Moved to...
* regrename.cc: ...here.
* regstat.c: Moved to...
* regstat.cc: ...here.
* reload.c: Moved to...
* reload.cc: ...here.
* reload1.c: Moved to...
* reload1.cc: ...here.
* reorg.c: Moved to...
* reorg.cc: ...here.
* resource.c: Moved to...
* resource.cc: ...here.
* rtl-error.c: Moved to...
* rtl-error.cc: ...here.
* rtl-tests.c: Moved to...
* rtl-tests.cc: ...here.
* rtl.c: Moved to...
* rtl.cc: ...here.
* rtlanal.c: Moved to...
* rtlanal.cc: ...here.
* rtlhash.c: Moved to...
* rtlhash.cc: ...here.
* rtlhooks.c: Moved to...
* rtlhooks.cc: ...here.
* rtx-vector-builder.c: Moved to...
* rtx-vector-builder.cc: ...here.
* run-rtl-passes.c: Moved to...
* run-rtl-passes.cc: ...here.
* sancov.c: Moved to...
* sancov.cc: ...here.
* sanopt.c: Moved to...
* sanopt.cc: ...here.
* sbitmap.c: Moved to...
* sbitmap.cc: ...here.
* sched-deps.c: Moved to...
* sched-deps.cc: ...here.
* sched-ebb.c: Moved to...
* sched-ebb.cc: ...here.
* sched-rgn.c: Moved to...
* sched-rgn.cc: ...here.
* sel-sched-dump.c: Moved to...
* sel-sched-dump.cc: ...here.
* sel-sched-ir.c: Moved to...
* sel-sched-ir.cc: ...here.
* sel-sched.c: Moved to...
* sel-sched.cc: ...here.
* selftest-diagnostic.c: Moved to...
* selftest-diagnostic.cc: ...here.
* selftest-rtl.c: Moved to...
* selftest-rtl.cc: ...here.
* selftest-run-tests.c: Moved to...
* selftest-run-tests.cc: ...here.
* selftest.c: Moved to...
* selftest.cc: ...here.
* sese.c: Moved to...
* sese.cc: ...here.
* shrink-wrap.c: Moved to...
* shrink-wrap.cc: ...here.
* simplify-rtx.c: Moved to...
* simplify-rtx.cc: ...here.
* sparseset.c: Moved to...
* sparseset.cc: ...here.
* spellcheck-tree.c: Moved to...
* spellcheck-tree.cc: ...here.
* spellcheck.c: Moved to...
* spellcheck.cc: ...here.
* sreal.c: Moved to...
* sreal.cc: ...here.
* stack-ptr-mod.c: Moved to...
* stack-ptr-mod.cc: ...here.
* statistics.c: Moved to...
* statistics.cc: ...here.
* stmt.c: Moved to...
* stmt.cc: ...here.
* stor-layout.c: Moved to...
* stor-layout.cc: ...here.
* store-motion.c: Moved to...
* store-motion.cc: ...here.
* streamer-hooks.c: Moved to...
* streamer-hooks.cc: ...here.
* stringpool.c: Moved to...
* stringpool.cc: ...here.
* substring-locations.c: Moved to...
* substring-locations.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* target-globals.c: Moved to...
* target-globals.cc: ...here.
* targhooks.c: Moved to...
* targhooks.cc: ...here.
* timevar.c: Moved to...
* timevar.cc: ...here.
* toplev.c: Moved to...
* toplev.cc: ...here.
* tracer.c: Moved to...
* tracer.cc: ...here.
* trans-mem.c: Moved to...
* trans-mem.cc: ...here.
* tree-affine.c: Moved to...
* tree-affine.cc: ...here.
* tree-call-cdce.c: Moved to...
* tree-call-cdce.cc: ...here.
* tree-cfg.c: Moved to...
* tree-cfg.cc: ...here.
* tree-cfgcleanup.c: Moved to...
* tree-cfgcleanup.cc: ...here.
* tree-chrec.c: Moved to...
* tree-chrec.cc: ...here.
* tree-complex.c: Moved to...
* tree-complex.cc: ...here.
* tree-data-ref.c: Moved to...
* tree-data-ref.cc: ...here.
* tree-dfa.c: Moved to...
* tree-dfa.cc: ...here.
* tree-diagnostic.c: Moved to...
* tree-diagnostic.cc: ...here.
* tree-dump.c: Moved to...
* tree-dump.cc: ...here.
* tree-eh.c: Moved to...
* tree-eh.cc: ...here.
* tree-emutls.c: Moved to...
* tree-emutls.cc: ...here.
* tree-if-conv.c: Moved to...
* tree-if-conv.cc: ...here.
* tree-inline.c: Moved to...
* tree-inline.cc: ...here.
* tree-into-ssa.c: Moved to...
* tree-into-ssa.cc: ...here.
* tree-iterator.c: Moved to...
* tree-iterator.cc: ...here.
* tree-loop-distribution.c: Moved to...
* tree-loop-distribution.cc: ...here.
* tree-nested.c: Moved to...
* tree-nested.cc: ...here.
* tree-nrv.c: Moved to...
* tree-nrv.cc: ...here.
* tree-object-size.c: Moved to...
* tree-object-size.cc: ...here.
* tree-outof-ssa.c: Moved to...
* tree-outof-ssa.cc: ...here.
* tree-parloops.c: Moved to...
* tree-parloops.cc: ...here.
* tree-phinodes.c: Moved to...
* tree-phinodes.cc: ...here.
* tree-predcom.c: Moved to...
* tree-predcom.cc: ...here.
* tree-pretty-print.c: Moved to...
* tree-pretty-print.cc: ...here.
* tree-profile.c: Moved to...
* tree-profile.cc: ...here.
* tree-scalar-evolution.c: Moved to...
* tree-scalar-evolution.cc: ...here.
* tree-sra.c: Moved to...
* tree-sra.cc: ...here.
* tree-ssa-address.c: Moved to...
* tree-ssa-address.cc: ...here.
* tree-ssa-alias.c: Moved to...
* tree-ssa-alias.cc: ...here.
* tree-ssa-ccp.c: Moved to...
* tree-ssa-ccp.cc: ...here.
* tree-ssa-coalesce.c: Moved to...
* tree-ssa-coalesce.cc: ...here.
* tree-ssa-copy.c: Moved to...
* tree-ssa-copy.cc: ...here.
* tree-ssa-dce.c: Moved to...
* tree-ssa-dce.cc: ...here.
* tree-ssa-dom.c: Moved to...
* tree-ssa-dom.cc: ...here.
* tree-ssa-dse.c: Moved to...
* tree-ssa-dse.cc: ...here.
* tree-ssa-forwprop.c: Moved to...
* tree-ssa-forwprop.cc: ...here.
* tree-ssa-ifcombine.c: Moved to...
* tree-ssa-ifcombine.cc: ...here.
* tree-ssa-live.c: Moved to...
* tree-ssa-live.cc: ...here.
* tree-ssa-loop-ch.c: Moved to...
* tree-ssa-loop-ch.cc: ...here.
* tree-ssa-loop-im.c: Moved to...
* tree-ssa-loop-im.cc: ...here.
* tree-ssa-loop-ivcanon.c: Moved to...
* tree-ssa-loop-ivcanon.cc: ...here.
* tree-ssa-loop-ivopts.c: Moved to...
* tree-ssa-loop-ivopts.cc: ...here.
* tree-ssa-loop-manip.c: Moved to...
* tree-ssa-loop-manip.cc: ...here.
* tree-ssa-loop-niter.c: Moved to...
* tree-ssa-loop-niter.cc: ...here.
* tree-ssa-loop-prefetch.c: Moved to...
* tree-ssa-loop-prefetch.cc: ...here.
* tree-ssa-loop-split.c: Moved to...
* tree-ssa-loop-split.cc: ...here.
* tree-ssa-loop-unswitch.c: Moved to...
* tree-ssa-loop-unswitch.cc: ...here.
* tree-ssa-loop.c: Moved to...
* tree-ssa-loop.cc: ...here.
* tree-ssa-math-opts.c: Moved to...
* tree-ssa-math-opts.cc: ...here.
* tree-ssa-operands.c: Moved to...
* tree-ssa-operands.cc: ...here.
* tree-ssa-phiopt.c: Moved to...
* tree-ssa-phiopt.cc: ...here.
* tree-ssa-phiprop.c: Moved to...
* tree-ssa-phiprop.cc: ...here.
* tree-ssa-pre.c: Moved to...
* tree-ssa-pre.cc: ...here.
* tree-ssa-propagate.c: Moved to...
* tree-ssa-propagate.cc: ...here.
* tree-ssa-reassoc.c: Moved to...
* tree-ssa-reassoc.cc: ...here.
* tree-ssa-sccvn.c: Moved to...
* tree-ssa-sccvn.cc: ...here.
* tree-ssa-scopedtables.c: Moved to...
* tree-ssa-scopedtables.cc: ...here.
* tree-ssa-sink.c: Moved to...
* tree-ssa-sink.cc: ...here.
* tree-ssa-strlen.c: Moved to...
* tree-ssa-strlen.cc: ...here.
* tree-ssa-structalias.c: Moved to...
* tree-ssa-structalias.cc: ...here.
* tree-ssa-tail-merge.c: Moved to...
* tree-ssa-tail-merge.cc: ...here.
* tree-ssa-ter.c: Moved to...
* tree-ssa-ter.cc: ...here.
* tree-ssa-threadbackward.c: Moved to...
* tree-ssa-threadbackward.cc: ...here.
* tree-ssa-threadedge.c: Moved to...
* tree-ssa-threadedge.cc: ...here.
* tree-ssa-threadupdate.c: Moved to...
* tree-ssa-threadupdate.cc: ...here.
* tree-ssa-uncprop.c: Moved to...
* tree-ssa-uncprop.cc: ...here.
* tree-ssa-uninit.c: Moved to...
* tree-ssa-uninit.cc: ...here.
* tree-ssa.c: Moved to...
* tree-ssa.cc: ...here.
* tree-ssanames.c: Moved to...
* tree-ssanames.cc: ...here.
* tree-stdarg.c: Moved to...
* tree-stdarg.cc: ...here.
* tree-streamer-in.c: Moved to...
* tree-streamer-in.cc: ...here.
* tree-streamer-out.c: Moved to...
* tree-streamer-out.cc: ...here.
* tree-streamer.c: Moved to...
* tree-streamer.cc: ...here.
* tree-switch-conversion.c: Moved to...
* tree-switch-conversion.cc: ...here.
* tree-tailcall.c: Moved to...
* tree-tailcall.cc: ...here.
* tree-vect-data-refs.c: Moved to...
* tree-vect-data-refs.cc: ...here.
* tree-vect-generic.c: Moved to...
* tree-vect-generic.cc: ...here.
* tree-vect-loop-manip.c: Moved to...
* tree-vect-loop-manip.cc: ...here.
* tree-vect-loop.c: Moved to...
* tree-vect-loop.cc: ...here.
* tree-vect-patterns.c: Moved to...
* tree-vect-patterns.cc: ...here.
* tree-vect-slp-patterns.c: Moved to...
* tree-vect-slp-patterns.cc: ...here.
* tree-vect-slp.c: Moved to...
* tree-vect-slp.cc: ...here.
* tree-vect-stmts.c: Moved to...
* tree-vect-stmts.cc: ...here.
* tree-vector-builder.c: Moved to...
* tree-vector-builder.cc: ...here.
* tree-vectorizer.c: Moved to...
* tree-vectorizer.cc: ...here.
* tree-vrp.c: Moved to...
* tree-vrp.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* tsan.c: Moved to...
* tsan.cc: ...here.
* typed-splay-tree.c: Moved to...
* typed-splay-tree.cc: ...here.
* ubsan.c: Moved to...
* ubsan.cc: ...here.
* valtrack.c: Moved to...
* valtrack.cc: ...here.
* value-prof.c: Moved to...
* value-prof.cc: ...here.
* var-tracking.c: Moved to...
* var-tracking.cc: ...here.
* varasm.c: Moved to...
* varasm.cc: ...here.
* varpool.c: Moved to...
* varpool.cc: ...here.
* vec-perm-indices.c: Moved to...
* vec-perm-indices.cc: ...here.
* vec.c: Moved to...
* vec.cc: ...here.
* vmsdbgout.c: Moved to...
* vmsdbgout.cc: ...here.
* vr-values.c: Moved to...
* vr-values.cc: ...here.
* vtable-verify.c: Moved to...
* vtable-verify.cc: ...here.
* web.c: Moved to...
* web.cc: ...here.
* xcoffout.c: Moved to...
* xcoffout.cc: ...here.
gcc/c-family/ChangeLog:
* c-ada-spec.c: Moved to...
* c-ada-spec.cc: ...here.
* c-attribs.c: Moved to...
* c-attribs.cc: ...here.
* c-common.c: Moved to...
* c-common.cc: ...here.
* c-cppbuiltin.c: Moved to...
* c-cppbuiltin.cc: ...here.
* c-dump.c: Moved to...
* c-dump.cc: ...here.
* c-format.c: Moved to...
* c-format.cc: ...here.
* c-gimplify.c: Moved to...
* c-gimplify.cc: ...here.
* c-indentation.c: Moved to...
* c-indentation.cc: ...here.
* c-lex.c: Moved to...
* c-lex.cc: ...here.
* c-omp.c: Moved to...
* c-omp.cc: ...here.
* c-opts.c: Moved to...
* c-opts.cc: ...here.
* c-pch.c: Moved to...
* c-pch.cc: ...here.
* c-ppoutput.c: Moved to...
* c-ppoutput.cc: ...here.
* c-pragma.c: Moved to...
* c-pragma.cc: ...here.
* c-pretty-print.c: Moved to...
* c-pretty-print.cc: ...here.
* c-semantics.c: Moved to...
* c-semantics.cc: ...here.
* c-ubsan.c: Moved to...
* c-ubsan.cc: ...here.
* c-warn.c: Moved to...
* c-warn.cc: ...here.
* cppspec.c: Moved to...
* cppspec.cc: ...here.
* stub-objc.c: Moved to...
* stub-objc.cc: ...here.
gcc/c/ChangeLog:
* c-aux-info.c: Moved to...
* c-aux-info.cc: ...here.
* c-convert.c: Moved to...
* c-convert.cc: ...here.
* c-decl.c: Moved to...
* c-decl.cc: ...here.
* c-errors.c: Moved to...
* c-errors.cc: ...here.
* c-fold.c: Moved to...
* c-fold.cc: ...here.
* c-lang.c: Moved to...
* c-lang.cc: ...here.
* c-objc-common.c: Moved to...
* c-objc-common.cc: ...here.
* c-parser.c: Moved to...
* c-parser.cc: ...here.
* c-typeck.c: Moved to...
* c-typeck.cc: ...here.
* gccspec.c: Moved to...
* gccspec.cc: ...here.
* gimple-parser.c: Moved to...
* gimple-parser.cc: ...here.
gcc/cp/ChangeLog:
* call.c: Moved to...
* call.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constexpr.c: Moved to...
* constexpr.cc: ...here.
* cp-gimplify.c: Moved to...
* cp-gimplify.cc: ...here.
* cp-lang.c: Moved to...
* cp-lang.cc: ...here.
* cp-objcp-common.c: Moved to...
* cp-objcp-common.cc: ...here.
* cp-ubsan.c: Moved to...
* cp-ubsan.cc: ...here.
* cvt.c: Moved to...
* cvt.cc: ...here.
* cxx-pretty-print.c: Moved to...
* cxx-pretty-print.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* decl2.c: Moved to...
* decl2.cc: ...here.
* dump.c: Moved to...
* dump.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* except.c: Moved to...
* except.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* friend.c: Moved to...
* friend.cc: ...here.
* g++spec.c: Moved to...
* g++spec.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lambda.c: Moved to...
* lambda.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* mangle.c: Moved to...
* mangle.cc: ...here.
* method.c: Moved to...
* method.cc: ...here.
* name-lookup.c: Moved to...
* name-lookup.cc: ...here.
* optimize.c: Moved to...
* optimize.cc: ...here.
* parser.c: Moved to...
* parser.cc: ...here.
* pt.c: Moved to...
* pt.cc: ...here.
* ptree.c: Moved to...
* ptree.cc: ...here.
* rtti.c: Moved to...
* rtti.cc: ...here.
* search.c: Moved to...
* search.cc: ...here.
* semantics.c: Moved to...
* semantics.cc: ...here.
* tree.c: Moved to...
* tree.cc: ...here.
* typeck.c: Moved to...
* typeck.cc: ...here.
* typeck2.c: Moved to...
* typeck2.cc: ...here.
* vtable-class-hierarchy.c: Moved to...
* vtable-class-hierarchy.cc: ...here.
gcc/fortran/ChangeLog:
* arith.c: Moved to...
* arith.cc: ...here.
* array.c: Moved to...
* array.cc: ...here.
* bbt.c: Moved to...
* bbt.cc: ...here.
* check.c: Moved to...
* check.cc: ...here.
* class.c: Moved to...
* class.cc: ...here.
* constructor.c: Moved to...
* constructor.cc: ...here.
* convert.c: Moved to...
* convert.cc: ...here.
* cpp.c: Moved to...
* cpp.cc: ...here.
* data.c: Moved to...
* data.cc: ...here.
* decl.c: Moved to...
* decl.cc: ...here.
* dependency.c: Moved to...
* dependency.cc: ...here.
* dump-parse-tree.c: Moved to...
* dump-parse-tree.cc: ...here.
* error.c: Moved to...
* error.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* f95-lang.c: Moved to...
* f95-lang.cc: ...here.
* frontend-passes.c: Moved to...
* frontend-passes.cc: ...here.
* gfortranspec.c: Moved to...
* gfortranspec.cc: ...here.
* interface.c: Moved to...
* interface.cc: ...here.
* intrinsic.c: Moved to...
* intrinsic.cc: ...here.
* io.c: Moved to...
* io.cc: ...here.
* iresolve.c: Moved to...
* iresolve.cc: ...here.
* match.c: Moved to...
* match.cc: ...here.
* matchexp.c: Moved to...
* matchexp.cc: ...here.
* misc.c: Moved to...
* misc.cc: ...here.
* module.c: Moved to...
* module.cc: ...here.
* openmp.c: Moved to...
* openmp.cc: ...here.
* options.c: Moved to...
* options.cc: ...here.
* parse.c: Moved to...
* parse.cc: ...here.
* primary.c: Moved to...
* primary.cc: ...here.
* resolve.c: Moved to...
* resolve.cc: ...here.
* scanner.c: Moved to...
* scanner.cc: ...here.
* simplify.c: Moved to...
* simplify.cc: ...here.
* st.c: Moved to...
* st.cc: ...here.
* symbol.c: Moved to...
* symbol.cc: ...here.
* target-memory.c: Moved to...
* target-memory.cc: ...here.
* trans-array.c: Moved to...
* trans-array.cc: ...here.
* trans-common.c: Moved to...
* trans-common.cc: ...here.
* trans-const.c: Moved to...
* trans-const.cc: ...here.
* trans-decl.c: Moved to...
* trans-decl.cc: ...here.
* trans-expr.c: Moved to...
* trans-expr.cc: ...here.
* trans-intrinsic.c: Moved to...
* trans-intrinsic.cc: ...here.
* trans-io.c: Moved to...
* trans-io.cc: ...here.
* trans-openmp.c: Moved to...
* trans-openmp.cc: ...here.
* trans-stmt.c: Moved to...
* trans-stmt.cc: ...here.
* trans-types.c: Moved to...
* trans-types.cc: ...here.
* trans.c: Moved to...
* trans.cc: ...here.
gcc/go/ChangeLog:
* go-backend.c: Moved to...
* go-backend.cc: ...here.
* go-lang.c: Moved to...
* go-lang.cc: ...here.
* gospec.c: Moved to...
* gospec.cc: ...here.
gcc/jit/ChangeLog:
* dummy-frontend.c: Moved to...
* dummy-frontend.cc: ...here.
* jit-builtins.c: Moved to...
* jit-builtins.cc: ...here.
* jit-logging.c: Moved to...
* jit-logging.cc: ...here.
* jit-playback.c: Moved to...
* jit-playback.cc: ...here.
* jit-recording.c: Moved to...
* jit-recording.cc: ...here.
* jit-result.c: Moved to...
* jit-result.cc: ...here.
* jit-spec.c: Moved to...
* jit-spec.cc: ...here.
* jit-tempdir.c: Moved to...
* jit-tempdir.cc: ...here.
* jit-w32.c: Moved to...
* jit-w32.cc: ...here.
* libgccjit.c: Moved to...
* libgccjit.cc: ...here.
gcc/lto/ChangeLog:
* common.c: Moved to...
* common.cc: ...here.
* lto-common.c: Moved to...
* lto-common.cc: ...here.
* lto-dump.c: Moved to...
* lto-dump.cc: ...here.
* lto-lang.c: Moved to...
* lto-lang.cc: ...here.
* lto-object.c: Moved to...
* lto-object.cc: ...here.
* lto-partition.c: Moved to...
* lto-partition.cc: ...here.
* lto-symtab.c: Moved to...
* lto-symtab.cc: ...here.
* lto.c: Moved to...
* lto.cc: ...here.
gcc/objc/ChangeLog:
* objc-act.c: Moved to...
* objc-act.cc: ...here.
* objc-encoding.c: Moved to...
* objc-encoding.cc: ...here.
* objc-gnu-runtime-abi-01.c: Moved to...
* objc-gnu-runtime-abi-01.cc: ...here.
* objc-lang.c: Moved to...
* objc-lang.cc: ...here.
* objc-map.c: Moved to...
* objc-map.cc: ...here.
* objc-next-runtime-abi-01.c: Moved to...
* objc-next-runtime-abi-01.cc: ...here.
* objc-next-runtime-abi-02.c: Moved to...
* objc-next-runtime-abi-02.cc: ...here.
* objc-runtime-shared-support.c: Moved to...
* objc-runtime-shared-support.cc: ...here.
gcc/objcp/ChangeLog:
* objcp-decl.c: Moved to...
* objcp-decl.cc: ...here.
* objcp-lang.c: Moved to...
* objcp-lang.cc: ...here.
libcpp/ChangeLog:
* charset.c: Moved to...
* charset.cc: ...here.
* directives.c: Moved to...
* directives.cc: ...here.
* errors.c: Moved to...
* errors.cc: ...here.
* expr.c: Moved to...
* expr.cc: ...here.
* files.c: Moved to...
* files.cc: ...here.
* identifiers.c: Moved to...
* identifiers.cc: ...here.
* init.c: Moved to...
* init.cc: ...here.
* lex.c: Moved to...
* lex.cc: ...here.
* line-map.c: Moved to...
* line-map.cc: ...here.
* macro.c: Moved to...
* macro.cc: ...here.
* makeucnid.c: Moved to...
* makeucnid.cc: ...here.
* mkdeps.c: Moved to...
* mkdeps.cc: ...here.
* pch.c: Moved to...
* pch.cc: ...here.
* symtab.c: Moved to...
* symtab.cc: ...here.
* traditional.c: Moved to...
* traditional.cc: ...here.
Diffstat (limited to 'gcc/fold-const.c')
-rw-r--r-- | gcc/fold-const.c | 16787 |
1 files changed, 0 insertions, 16787 deletions
diff --git a/gcc/fold-const.c b/gcc/fold-const.c deleted file mode 100644 index cfeee9e..0000000 --- a/gcc/fold-const.c +++ /dev/null @@ -1,16787 +0,0 @@ -/* Fold a constant sub-tree into a single node for C-compiler - Copyright (C) 1987-2022 Free Software Foundation, Inc. - -This file is part of GCC. - -GCC is free software; you can redistribute it and/or modify it under -the terms of the GNU General Public License as published by the Free -Software Foundation; either version 3, or (at your option) any later -version. - -GCC is distributed in the hope that it will be useful, but WITHOUT ANY -WARRANTY; without even the implied warranty of MERCHANTABILITY or -FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -for more details. - -You should have received a copy of the GNU General Public License -along with GCC; see the file COPYING3. If not see -<http://www.gnu.org/licenses/>. */ - -/*@@ This file should be rewritten to use an arbitrary precision - @@ representation for "struct tree_int_cst" and "struct tree_real_cst". - @@ Perhaps the routines could also be used for bc/dc, and made a lib. - @@ The routines that translate from the ap rep should - @@ warn if precision et. al. is lost. - @@ This would also make life easier when this technology is used - @@ for cross-compilers. */ - -/* The entry points in this file are fold, size_int_wide and size_binop. - - fold takes a tree as argument and returns a simplified tree. - - size_binop takes a tree code for an arithmetic operation - and two operands that are trees, and produces a tree for the - result, assuming the type comes from `sizetype'. - - size_int takes an integer value, and creates a tree constant - with type from `sizetype'. - - Note: Since the folders get called on non-gimple code as well as - gimple code, we need to handle GIMPLE tuples as well as their - corresponding tree equivalents. */ - -#include "config.h" -#include "system.h" -#include "coretypes.h" -#include "backend.h" -#include "target.h" -#include "rtl.h" -#include "tree.h" -#include "gimple.h" -#include "predict.h" -#include "memmodel.h" -#include "tm_p.h" -#include "tree-ssa-operands.h" -#include "optabs-query.h" -#include "cgraph.h" -#include "diagnostic-core.h" -#include "flags.h" -#include "alias.h" -#include "fold-const.h" -#include "fold-const-call.h" -#include "stor-layout.h" -#include "calls.h" -#include "tree-iterator.h" -#include "expr.h" -#include "intl.h" -#include "langhooks.h" -#include "tree-eh.h" -#include "gimplify.h" -#include "tree-dfa.h" -#include "builtins.h" -#include "generic-match.h" -#include "gimple-fold.h" -#include "tree-into-ssa.h" -#include "md5.h" -#include "case-cfn-macros.h" -#include "stringpool.h" -#include "tree-vrp.h" -#include "tree-ssanames.h" -#include "selftest.h" -#include "stringpool.h" -#include "attribs.h" -#include "tree-vector-builder.h" -#include "vec-perm-indices.h" -#include "asan.h" -#include "gimple-range.h" - -/* Nonzero if we are folding constants inside an initializer or a C++ - manifestly-constant-evaluated context; zero otherwise. */ -int folding_initializer = 0; - -/* The following constants represent a bit based encoding of GCC's - comparison operators. This encoding simplifies transformations - on relational comparison operators, such as AND and OR. */ -enum comparison_code { - COMPCODE_FALSE = 0, - COMPCODE_LT = 1, - COMPCODE_EQ = 2, - COMPCODE_LE = 3, - COMPCODE_GT = 4, - COMPCODE_LTGT = 5, - COMPCODE_GE = 6, - COMPCODE_ORD = 7, - COMPCODE_UNORD = 8, - COMPCODE_UNLT = 9, - COMPCODE_UNEQ = 10, - COMPCODE_UNLE = 11, - COMPCODE_UNGT = 12, - COMPCODE_NE = 13, - COMPCODE_UNGE = 14, - COMPCODE_TRUE = 15 -}; - -static bool negate_expr_p (tree); -static tree negate_expr (tree); -static tree associate_trees (location_t, tree, tree, enum tree_code, tree); -static enum comparison_code comparison_to_compcode (enum tree_code); -static enum tree_code compcode_to_comparison (enum comparison_code); -static bool twoval_comparison_p (tree, tree *, tree *); -static tree eval_subst (location_t, tree, tree, tree, tree, tree); -static tree optimize_bit_field_compare (location_t, enum tree_code, - tree, tree, tree); -static bool simple_operand_p (const_tree); -static bool simple_operand_p_2 (tree); -static tree range_binop (enum tree_code, tree, tree, int, tree, int); -static tree range_predecessor (tree); -static tree range_successor (tree); -static tree fold_range_test (location_t, enum tree_code, tree, tree, tree); -static tree fold_cond_expr_with_comparison (location_t, tree, enum tree_code, - tree, tree, tree, tree); -static tree unextend (tree, int, int, tree); -static tree extract_muldiv (tree, tree, enum tree_code, tree, bool *); -static tree extract_muldiv_1 (tree, tree, enum tree_code, tree, bool *); -static tree fold_binary_op_with_conditional_arg (location_t, - enum tree_code, tree, - tree, tree, - tree, tree, int); -static tree fold_negate_const (tree, tree); -static tree fold_not_const (const_tree, tree); -static tree fold_relational_const (enum tree_code, tree, tree, tree); -static tree fold_convert_const (enum tree_code, tree, tree); -static tree fold_view_convert_expr (tree, tree); -static tree fold_negate_expr (location_t, tree); - - -/* Return EXPR_LOCATION of T if it is not UNKNOWN_LOCATION. - Otherwise, return LOC. */ - -static location_t -expr_location_or (tree t, location_t loc) -{ - location_t tloc = EXPR_LOCATION (t); - return tloc == UNKNOWN_LOCATION ? loc : tloc; -} - -/* Similar to protected_set_expr_location, but never modify x in place, - if location can and needs to be set, unshare it. */ - -static inline tree -protected_set_expr_location_unshare (tree x, location_t loc) -{ - if (CAN_HAVE_LOCATION_P (x) - && EXPR_LOCATION (x) != loc - && !(TREE_CODE (x) == SAVE_EXPR - || TREE_CODE (x) == TARGET_EXPR - || TREE_CODE (x) == BIND_EXPR)) - { - x = copy_node (x); - SET_EXPR_LOCATION (x, loc); - } - return x; -} - -/* If ARG2 divides ARG1 with zero remainder, carries out the exact - division and returns the quotient. Otherwise returns - NULL_TREE. */ - -tree -div_if_zero_remainder (const_tree arg1, const_tree arg2) -{ - widest_int quo; - - if (wi::multiple_of_p (wi::to_widest (arg1), wi::to_widest (arg2), - SIGNED, &quo)) - return wide_int_to_tree (TREE_TYPE (arg1), quo); - - return NULL_TREE; -} - -/* This is nonzero if we should defer warnings about undefined - overflow. This facility exists because these warnings are a - special case. The code to estimate loop iterations does not want - to issue any warnings, since it works with expressions which do not - occur in user code. Various bits of cleanup code call fold(), but - only use the result if it has certain characteristics (e.g., is a - constant); that code only wants to issue a warning if the result is - used. */ - -static int fold_deferring_overflow_warnings; - -/* If a warning about undefined overflow is deferred, this is the - warning. Note that this may cause us to turn two warnings into - one, but that is fine since it is sufficient to only give one - warning per expression. */ - -static const char* fold_deferred_overflow_warning; - -/* If a warning about undefined overflow is deferred, this is the - level at which the warning should be emitted. */ - -static enum warn_strict_overflow_code fold_deferred_overflow_code; - -/* Start deferring overflow warnings. We could use a stack here to - permit nested calls, but at present it is not necessary. */ - -void -fold_defer_overflow_warnings (void) -{ - ++fold_deferring_overflow_warnings; -} - -/* Stop deferring overflow warnings. If there is a pending warning, - and ISSUE is true, then issue the warning if appropriate. STMT is - the statement with which the warning should be associated (used for - location information); STMT may be NULL. CODE is the level of the - warning--a warn_strict_overflow_code value. This function will use - the smaller of CODE and the deferred code when deciding whether to - issue the warning. CODE may be zero to mean to always use the - deferred code. */ - -void -fold_undefer_overflow_warnings (bool issue, const gimple *stmt, int code) -{ - const char *warnmsg; - location_t locus; - - gcc_assert (fold_deferring_overflow_warnings > 0); - --fold_deferring_overflow_warnings; - if (fold_deferring_overflow_warnings > 0) - { - if (fold_deferred_overflow_warning != NULL - && code != 0 - && code < (int) fold_deferred_overflow_code) - fold_deferred_overflow_code = (enum warn_strict_overflow_code) code; - return; - } - - warnmsg = fold_deferred_overflow_warning; - fold_deferred_overflow_warning = NULL; - - if (!issue || warnmsg == NULL) - return; - - if (warning_suppressed_p (stmt, OPT_Wstrict_overflow)) - return; - - /* Use the smallest code level when deciding to issue the - warning. */ - if (code == 0 || code > (int) fold_deferred_overflow_code) - code = fold_deferred_overflow_code; - - if (!issue_strict_overflow_warning (code)) - return; - - if (stmt == NULL) - locus = input_location; - else - locus = gimple_location (stmt); - warning_at (locus, OPT_Wstrict_overflow, "%s", warnmsg); -} - -/* Stop deferring overflow warnings, ignoring any deferred - warnings. */ - -void -fold_undefer_and_ignore_overflow_warnings (void) -{ - fold_undefer_overflow_warnings (false, NULL, 0); -} - -/* Whether we are deferring overflow warnings. */ - -bool -fold_deferring_overflow_warnings_p (void) -{ - return fold_deferring_overflow_warnings > 0; -} - -/* This is called when we fold something based on the fact that signed - overflow is undefined. */ - -void -fold_overflow_warning (const char* gmsgid, enum warn_strict_overflow_code wc) -{ - if (fold_deferring_overflow_warnings > 0) - { - if (fold_deferred_overflow_warning == NULL - || wc < fold_deferred_overflow_code) - { - fold_deferred_overflow_warning = gmsgid; - fold_deferred_overflow_code = wc; - } - } - else if (issue_strict_overflow_warning (wc)) - warning (OPT_Wstrict_overflow, gmsgid); -} - -/* Return true if the built-in mathematical function specified by CODE - is odd, i.e. -f(x) == f(-x). */ - -bool -negate_mathfn_p (combined_fn fn) -{ - switch (fn) - { - CASE_CFN_ASIN: - CASE_CFN_ASINH: - CASE_CFN_ATAN: - CASE_CFN_ATANH: - CASE_CFN_CASIN: - CASE_CFN_CASINH: - CASE_CFN_CATAN: - CASE_CFN_CATANH: - CASE_CFN_CBRT: - CASE_CFN_CPROJ: - CASE_CFN_CSIN: - CASE_CFN_CSINH: - CASE_CFN_CTAN: - CASE_CFN_CTANH: - CASE_CFN_ERF: - CASE_CFN_LLROUND: - CASE_CFN_LROUND: - CASE_CFN_ROUND: - CASE_CFN_ROUNDEVEN: - CASE_CFN_ROUNDEVEN_FN: - CASE_CFN_SIN: - CASE_CFN_SINH: - CASE_CFN_TAN: - CASE_CFN_TANH: - CASE_CFN_TRUNC: - return true; - - CASE_CFN_LLRINT: - CASE_CFN_LRINT: - CASE_CFN_NEARBYINT: - CASE_CFN_RINT: - return !flag_rounding_math; - - default: - break; - } - return false; -} - -/* Check whether we may negate an integer constant T without causing - overflow. */ - -bool -may_negate_without_overflow_p (const_tree t) -{ - tree type; - - gcc_assert (TREE_CODE (t) == INTEGER_CST); - - type = TREE_TYPE (t); - if (TYPE_UNSIGNED (type)) - return false; - - return !wi::only_sign_bit_p (wi::to_wide (t)); -} - -/* Determine whether an expression T can be cheaply negated using - the function negate_expr without introducing undefined overflow. */ - -static bool -negate_expr_p (tree t) -{ - tree type; - - if (t == 0) - return false; - - type = TREE_TYPE (t); - - STRIP_SIGN_NOPS (t); - switch (TREE_CODE (t)) - { - case INTEGER_CST: - if (INTEGRAL_TYPE_P (type) && TYPE_UNSIGNED (type)) - return true; - - /* Check that -CST will not overflow type. */ - return may_negate_without_overflow_p (t); - case BIT_NOT_EXPR: - return (INTEGRAL_TYPE_P (type) - && TYPE_OVERFLOW_WRAPS (type)); - - case FIXED_CST: - return true; - - case NEGATE_EXPR: - return !TYPE_OVERFLOW_SANITIZED (type); - - case REAL_CST: - /* We want to canonicalize to positive real constants. Pretend - that only negative ones can be easily negated. */ - return REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); - - case COMPLEX_CST: - return negate_expr_p (TREE_REALPART (t)) - && negate_expr_p (TREE_IMAGPART (t)); - - case VECTOR_CST: - { - if (FLOAT_TYPE_P (TREE_TYPE (type)) || TYPE_OVERFLOW_WRAPS (type)) - return true; - - /* Steps don't prevent negation. */ - unsigned int count = vector_cst_encoded_nelts (t); - for (unsigned int i = 0; i < count; ++i) - if (!negate_expr_p (VECTOR_CST_ENCODED_ELT (t, i))) - return false; - - return true; - } - - case COMPLEX_EXPR: - return negate_expr_p (TREE_OPERAND (t, 0)) - && negate_expr_p (TREE_OPERAND (t, 1)); - - case CONJ_EXPR: - return negate_expr_p (TREE_OPERAND (t, 0)); - - case PLUS_EXPR: - if (HONOR_SIGN_DEPENDENT_ROUNDING (type) - || HONOR_SIGNED_ZEROS (type) - || (ANY_INTEGRAL_TYPE_P (type) - && ! TYPE_OVERFLOW_WRAPS (type))) - return false; - /* -(A + B) -> (-B) - A. */ - if (negate_expr_p (TREE_OPERAND (t, 1))) - return true; - /* -(A + B) -> (-A) - B. */ - return negate_expr_p (TREE_OPERAND (t, 0)); - - case MINUS_EXPR: - /* We can't turn -(A-B) into B-A when we honor signed zeros. */ - return !HONOR_SIGN_DEPENDENT_ROUNDING (type) - && !HONOR_SIGNED_ZEROS (type) - && (! ANY_INTEGRAL_TYPE_P (type) - || TYPE_OVERFLOW_WRAPS (type)); - - case MULT_EXPR: - if (TYPE_UNSIGNED (type)) - break; - /* INT_MIN/n * n doesn't overflow while negating one operand it does - if n is a (negative) power of two. */ - if (INTEGRAL_TYPE_P (TREE_TYPE (t)) - && ! TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) - && ! ((TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST - && (wi::popcount - (wi::abs (wi::to_wide (TREE_OPERAND (t, 0))))) != 1) - || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST - && (wi::popcount - (wi::abs (wi::to_wide (TREE_OPERAND (t, 1))))) != 1))) - break; - - /* Fall through. */ - - case RDIV_EXPR: - if (! HONOR_SIGN_DEPENDENT_ROUNDING (t)) - return negate_expr_p (TREE_OPERAND (t, 1)) - || negate_expr_p (TREE_OPERAND (t, 0)); - break; - - case TRUNC_DIV_EXPR: - case ROUND_DIV_EXPR: - case EXACT_DIV_EXPR: - if (TYPE_UNSIGNED (type)) - break; - /* In general we can't negate A in A / B, because if A is INT_MIN and - B is not 1 we change the sign of the result. */ - if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST - && negate_expr_p (TREE_OPERAND (t, 0))) - return true; - /* In general we can't negate B in A / B, because if A is INT_MIN and - B is 1, we may turn this into INT_MIN / -1 which is undefined - and actually traps on some architectures. */ - if (! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) - || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) - || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST - && ! integer_onep (TREE_OPERAND (t, 1)))) - return negate_expr_p (TREE_OPERAND (t, 1)); - break; - - case NOP_EXPR: - /* Negate -((double)float) as (double)(-float). */ - if (TREE_CODE (type) == REAL_TYPE) - { - tree tem = strip_float_extensions (t); - if (tem != t) - return negate_expr_p (tem); - } - break; - - case CALL_EXPR: - /* Negate -f(x) as f(-x). */ - if (negate_mathfn_p (get_call_combined_fn (t))) - return negate_expr_p (CALL_EXPR_ARG (t, 0)); - break; - - case RSHIFT_EXPR: - /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ - if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) - { - tree op1 = TREE_OPERAND (t, 1); - if (wi::to_wide (op1) == element_precision (type) - 1) - return true; - } - break; - - default: - break; - } - return false; -} - -/* Given T, an expression, return a folded tree for -T or NULL_TREE, if no - simplification is possible. - If negate_expr_p would return true for T, NULL_TREE will never be - returned. */ - -static tree -fold_negate_expr_1 (location_t loc, tree t) -{ - tree type = TREE_TYPE (t); - tree tem; - - switch (TREE_CODE (t)) - { - /* Convert - (~A) to A + 1. */ - case BIT_NOT_EXPR: - if (INTEGRAL_TYPE_P (type)) - return fold_build2_loc (loc, PLUS_EXPR, type, TREE_OPERAND (t, 0), - build_one_cst (type)); - break; - - case INTEGER_CST: - tem = fold_negate_const (t, type); - if (TREE_OVERFLOW (tem) == TREE_OVERFLOW (t) - || (ANY_INTEGRAL_TYPE_P (type) - && !TYPE_OVERFLOW_TRAPS (type) - && TYPE_OVERFLOW_WRAPS (type)) - || (flag_sanitize & SANITIZE_SI_OVERFLOW) == 0) - return tem; - break; - - case POLY_INT_CST: - case REAL_CST: - case FIXED_CST: - tem = fold_negate_const (t, type); - return tem; - - case COMPLEX_CST: - { - tree rpart = fold_negate_expr (loc, TREE_REALPART (t)); - tree ipart = fold_negate_expr (loc, TREE_IMAGPART (t)); - if (rpart && ipart) - return build_complex (type, rpart, ipart); - } - break; - - case VECTOR_CST: - { - tree_vector_builder elts; - elts.new_unary_operation (type, t, true); - unsigned int count = elts.encoded_nelts (); - for (unsigned int i = 0; i < count; ++i) - { - tree elt = fold_negate_expr (loc, VECTOR_CST_ELT (t, i)); - if (elt == NULL_TREE) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - - case COMPLEX_EXPR: - if (negate_expr_p (t)) - return fold_build2_loc (loc, COMPLEX_EXPR, type, - fold_negate_expr (loc, TREE_OPERAND (t, 0)), - fold_negate_expr (loc, TREE_OPERAND (t, 1))); - break; - - case CONJ_EXPR: - if (negate_expr_p (t)) - return fold_build1_loc (loc, CONJ_EXPR, type, - fold_negate_expr (loc, TREE_OPERAND (t, 0))); - break; - - case NEGATE_EXPR: - if (!TYPE_OVERFLOW_SANITIZED (type)) - return TREE_OPERAND (t, 0); - break; - - case PLUS_EXPR: - if (!HONOR_SIGN_DEPENDENT_ROUNDING (type) - && !HONOR_SIGNED_ZEROS (type)) - { - /* -(A + B) -> (-B) - A. */ - if (negate_expr_p (TREE_OPERAND (t, 1))) - { - tem = negate_expr (TREE_OPERAND (t, 1)); - return fold_build2_loc (loc, MINUS_EXPR, type, - tem, TREE_OPERAND (t, 0)); - } - - /* -(A + B) -> (-A) - B. */ - if (negate_expr_p (TREE_OPERAND (t, 0))) - { - tem = negate_expr (TREE_OPERAND (t, 0)); - return fold_build2_loc (loc, MINUS_EXPR, type, - tem, TREE_OPERAND (t, 1)); - } - } - break; - - case MINUS_EXPR: - /* - (A - B) -> B - A */ - if (!HONOR_SIGN_DEPENDENT_ROUNDING (type) - && !HONOR_SIGNED_ZEROS (type)) - return fold_build2_loc (loc, MINUS_EXPR, type, - TREE_OPERAND (t, 1), TREE_OPERAND (t, 0)); - break; - - case MULT_EXPR: - if (TYPE_UNSIGNED (type)) - break; - - /* Fall through. */ - - case RDIV_EXPR: - if (! HONOR_SIGN_DEPENDENT_ROUNDING (type)) - { - tem = TREE_OPERAND (t, 1); - if (negate_expr_p (tem)) - return fold_build2_loc (loc, TREE_CODE (t), type, - TREE_OPERAND (t, 0), negate_expr (tem)); - tem = TREE_OPERAND (t, 0); - if (negate_expr_p (tem)) - return fold_build2_loc (loc, TREE_CODE (t), type, - negate_expr (tem), TREE_OPERAND (t, 1)); - } - break; - - case TRUNC_DIV_EXPR: - case ROUND_DIV_EXPR: - case EXACT_DIV_EXPR: - if (TYPE_UNSIGNED (type)) - break; - /* In general we can't negate A in A / B, because if A is INT_MIN and - B is not 1 we change the sign of the result. */ - if (TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST - && negate_expr_p (TREE_OPERAND (t, 0))) - return fold_build2_loc (loc, TREE_CODE (t), type, - negate_expr (TREE_OPERAND (t, 0)), - TREE_OPERAND (t, 1)); - /* In general we can't negate B in A / B, because if A is INT_MIN and - B is 1, we may turn this into INT_MIN / -1 which is undefined - and actually traps on some architectures. */ - if ((! ANY_INTEGRAL_TYPE_P (TREE_TYPE (t)) - || TYPE_OVERFLOW_WRAPS (TREE_TYPE (t)) - || (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST - && ! integer_onep (TREE_OPERAND (t, 1)))) - && negate_expr_p (TREE_OPERAND (t, 1))) - return fold_build2_loc (loc, TREE_CODE (t), type, - TREE_OPERAND (t, 0), - negate_expr (TREE_OPERAND (t, 1))); - break; - - case NOP_EXPR: - /* Convert -((double)float) into (double)(-float). */ - if (TREE_CODE (type) == REAL_TYPE) - { - tem = strip_float_extensions (t); - if (tem != t && negate_expr_p (tem)) - return fold_convert_loc (loc, type, negate_expr (tem)); - } - break; - - case CALL_EXPR: - /* Negate -f(x) as f(-x). */ - if (negate_mathfn_p (get_call_combined_fn (t)) - && negate_expr_p (CALL_EXPR_ARG (t, 0))) - { - tree fndecl, arg; - - fndecl = get_callee_fndecl (t); - arg = negate_expr (CALL_EXPR_ARG (t, 0)); - return build_call_expr_loc (loc, fndecl, 1, arg); - } - break; - - case RSHIFT_EXPR: - /* Optimize -((int)x >> 31) into (unsigned)x >> 31 for int. */ - if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) - { - tree op1 = TREE_OPERAND (t, 1); - if (wi::to_wide (op1) == element_precision (type) - 1) - { - tree ntype = TYPE_UNSIGNED (type) - ? signed_type_for (type) - : unsigned_type_for (type); - tree temp = fold_convert_loc (loc, ntype, TREE_OPERAND (t, 0)); - temp = fold_build2_loc (loc, RSHIFT_EXPR, ntype, temp, op1); - return fold_convert_loc (loc, type, temp); - } - } - break; - - default: - break; - } - - return NULL_TREE; -} - -/* A wrapper for fold_negate_expr_1. */ - -static tree -fold_negate_expr (location_t loc, tree t) -{ - tree type = TREE_TYPE (t); - STRIP_SIGN_NOPS (t); - tree tem = fold_negate_expr_1 (loc, t); - if (tem == NULL_TREE) - return NULL_TREE; - return fold_convert_loc (loc, type, tem); -} - -/* Like fold_negate_expr, but return a NEGATE_EXPR tree, if T cannot be - negated in a simpler way. Also allow for T to be NULL_TREE, in which case - return NULL_TREE. */ - -static tree -negate_expr (tree t) -{ - tree type, tem; - location_t loc; - - if (t == NULL_TREE) - return NULL_TREE; - - loc = EXPR_LOCATION (t); - type = TREE_TYPE (t); - STRIP_SIGN_NOPS (t); - - tem = fold_negate_expr (loc, t); - if (!tem) - tem = build1_loc (loc, NEGATE_EXPR, TREE_TYPE (t), t); - return fold_convert_loc (loc, type, tem); -} - -/* Split a tree IN into a constant, literal and variable parts that could be - combined with CODE to make IN. "constant" means an expression with - TREE_CONSTANT but that isn't an actual constant. CODE must be a - commutative arithmetic operation. Store the constant part into *CONP, - the literal in *LITP and return the variable part. If a part isn't - present, set it to null. If the tree does not decompose in this way, - return the entire tree as the variable part and the other parts as null. - - If CODE is PLUS_EXPR we also split trees that use MINUS_EXPR. In that - case, we negate an operand that was subtracted. Except if it is a - literal for which we use *MINUS_LITP instead. - - If NEGATE_P is true, we are negating all of IN, again except a literal - for which we use *MINUS_LITP instead. If a variable part is of pointer - type, it is negated after converting to TYPE. This prevents us from - generating illegal MINUS pointer expression. LOC is the location of - the converted variable part. - - If IN is itself a literal or constant, return it as appropriate. - - Note that we do not guarantee that any of the three values will be the - same type as IN, but they will have the same signedness and mode. */ - -static tree -split_tree (tree in, tree type, enum tree_code code, - tree *minus_varp, tree *conp, tree *minus_conp, - tree *litp, tree *minus_litp, int negate_p) -{ - tree var = 0; - *minus_varp = 0; - *conp = 0; - *minus_conp = 0; - *litp = 0; - *minus_litp = 0; - - /* Strip any conversions that don't change the machine mode or signedness. */ - STRIP_SIGN_NOPS (in); - - if (TREE_CODE (in) == INTEGER_CST || TREE_CODE (in) == REAL_CST - || TREE_CODE (in) == FIXED_CST) - *litp = in; - else if (TREE_CODE (in) == code - || ((! FLOAT_TYPE_P (TREE_TYPE (in)) || flag_associative_math) - && ! SAT_FIXED_POINT_TYPE_P (TREE_TYPE (in)) - /* We can associate addition and subtraction together (even - though the C standard doesn't say so) for integers because - the value is not affected. For reals, the value might be - affected, so we can't. */ - && ((code == PLUS_EXPR && TREE_CODE (in) == POINTER_PLUS_EXPR) - || (code == PLUS_EXPR && TREE_CODE (in) == MINUS_EXPR) - || (code == MINUS_EXPR - && (TREE_CODE (in) == PLUS_EXPR - || TREE_CODE (in) == POINTER_PLUS_EXPR))))) - { - tree op0 = TREE_OPERAND (in, 0); - tree op1 = TREE_OPERAND (in, 1); - int neg1_p = TREE_CODE (in) == MINUS_EXPR; - int neg_litp_p = 0, neg_conp_p = 0, neg_var_p = 0; - - /* First see if either of the operands is a literal, then a constant. */ - if (TREE_CODE (op0) == INTEGER_CST || TREE_CODE (op0) == REAL_CST - || TREE_CODE (op0) == FIXED_CST) - *litp = op0, op0 = 0; - else if (TREE_CODE (op1) == INTEGER_CST || TREE_CODE (op1) == REAL_CST - || TREE_CODE (op1) == FIXED_CST) - *litp = op1, neg_litp_p = neg1_p, op1 = 0; - - if (op0 != 0 && TREE_CONSTANT (op0)) - *conp = op0, op0 = 0; - else if (op1 != 0 && TREE_CONSTANT (op1)) - *conp = op1, neg_conp_p = neg1_p, op1 = 0; - - /* If we haven't dealt with either operand, this is not a case we can - decompose. Otherwise, VAR is either of the ones remaining, if any. */ - if (op0 != 0 && op1 != 0) - var = in; - else if (op0 != 0) - var = op0; - else - var = op1, neg_var_p = neg1_p; - - /* Now do any needed negations. */ - if (neg_litp_p) - *minus_litp = *litp, *litp = 0; - if (neg_conp_p && *conp) - *minus_conp = *conp, *conp = 0; - if (neg_var_p && var) - *minus_varp = var, var = 0; - } - else if (TREE_CONSTANT (in)) - *conp = in; - else if (TREE_CODE (in) == BIT_NOT_EXPR - && code == PLUS_EXPR) - { - /* -1 - X is folded to ~X, undo that here. Do _not_ do this - when IN is constant. */ - *litp = build_minus_one_cst (type); - *minus_varp = TREE_OPERAND (in, 0); - } - else - var = in; - - if (negate_p) - { - if (*litp) - *minus_litp = *litp, *litp = 0; - else if (*minus_litp) - *litp = *minus_litp, *minus_litp = 0; - if (*conp) - *minus_conp = *conp, *conp = 0; - else if (*minus_conp) - *conp = *minus_conp, *minus_conp = 0; - if (var) - *minus_varp = var, var = 0; - else if (*minus_varp) - var = *minus_varp, *minus_varp = 0; - } - - if (*litp - && TREE_OVERFLOW_P (*litp)) - *litp = drop_tree_overflow (*litp); - if (*minus_litp - && TREE_OVERFLOW_P (*minus_litp)) - *minus_litp = drop_tree_overflow (*minus_litp); - - return var; -} - -/* Re-associate trees split by the above function. T1 and T2 are - either expressions to associate or null. Return the new - expression, if any. LOC is the location of the new expression. If - we build an operation, do it in TYPE and with CODE. */ - -static tree -associate_trees (location_t loc, tree t1, tree t2, enum tree_code code, tree type) -{ - if (t1 == 0) - { - gcc_assert (t2 == 0 || code != MINUS_EXPR); - return t2; - } - else if (t2 == 0) - return t1; - - /* If either input is CODE, a PLUS_EXPR, or a MINUS_EXPR, don't - try to fold this since we will have infinite recursion. But do - deal with any NEGATE_EXPRs. */ - if (TREE_CODE (t1) == code || TREE_CODE (t2) == code - || TREE_CODE (t1) == PLUS_EXPR || TREE_CODE (t2) == PLUS_EXPR - || TREE_CODE (t1) == MINUS_EXPR || TREE_CODE (t2) == MINUS_EXPR) - { - if (code == PLUS_EXPR) - { - if (TREE_CODE (t1) == NEGATE_EXPR) - return build2_loc (loc, MINUS_EXPR, type, - fold_convert_loc (loc, type, t2), - fold_convert_loc (loc, type, - TREE_OPERAND (t1, 0))); - else if (TREE_CODE (t2) == NEGATE_EXPR) - return build2_loc (loc, MINUS_EXPR, type, - fold_convert_loc (loc, type, t1), - fold_convert_loc (loc, type, - TREE_OPERAND (t2, 0))); - else if (integer_zerop (t2)) - return fold_convert_loc (loc, type, t1); - } - else if (code == MINUS_EXPR) - { - if (integer_zerop (t2)) - return fold_convert_loc (loc, type, t1); - } - - return build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), - fold_convert_loc (loc, type, t2)); - } - - return fold_build2_loc (loc, code, type, fold_convert_loc (loc, type, t1), - fold_convert_loc (loc, type, t2)); -} - -/* Check whether TYPE1 and TYPE2 are equivalent integer types, suitable - for use in int_const_binop, size_binop and size_diffop. */ - -static bool -int_binop_types_match_p (enum tree_code code, const_tree type1, const_tree type2) -{ - if (!INTEGRAL_TYPE_P (type1) && !POINTER_TYPE_P (type1)) - return false; - if (!INTEGRAL_TYPE_P (type2) && !POINTER_TYPE_P (type2)) - return false; - - switch (code) - { - case LSHIFT_EXPR: - case RSHIFT_EXPR: - case LROTATE_EXPR: - case RROTATE_EXPR: - return true; - - default: - break; - } - - return TYPE_UNSIGNED (type1) == TYPE_UNSIGNED (type2) - && TYPE_PRECISION (type1) == TYPE_PRECISION (type2) - && TYPE_MODE (type1) == TYPE_MODE (type2); -} - -/* Combine two wide ints ARG1 and ARG2 under operation CODE to produce - a new constant in RES. Return FALSE if we don't know how to - evaluate CODE at compile-time. */ - -bool -wide_int_binop (wide_int &res, - enum tree_code code, const wide_int &arg1, const wide_int &arg2, - signop sign, wi::overflow_type *overflow) -{ - wide_int tmp; - *overflow = wi::OVF_NONE; - switch (code) - { - case BIT_IOR_EXPR: - res = wi::bit_or (arg1, arg2); - break; - - case BIT_XOR_EXPR: - res = wi::bit_xor (arg1, arg2); - break; - - case BIT_AND_EXPR: - res = wi::bit_and (arg1, arg2); - break; - - case LSHIFT_EXPR: - if (wi::neg_p (arg2)) - return false; - res = wi::lshift (arg1, arg2); - break; - - case RSHIFT_EXPR: - if (wi::neg_p (arg2)) - return false; - /* It's unclear from the C standard whether shifts can overflow. - The following code ignores overflow; perhaps a C standard - interpretation ruling is needed. */ - res = wi::rshift (arg1, arg2, sign); - break; - - case RROTATE_EXPR: - case LROTATE_EXPR: - if (wi::neg_p (arg2)) - { - tmp = -arg2; - if (code == RROTATE_EXPR) - code = LROTATE_EXPR; - else - code = RROTATE_EXPR; - } - else - tmp = arg2; - - if (code == RROTATE_EXPR) - res = wi::rrotate (arg1, tmp); - else - res = wi::lrotate (arg1, tmp); - break; - - case PLUS_EXPR: - res = wi::add (arg1, arg2, sign, overflow); - break; - - case MINUS_EXPR: - res = wi::sub (arg1, arg2, sign, overflow); - break; - - case MULT_EXPR: - res = wi::mul (arg1, arg2, sign, overflow); - break; - - case MULT_HIGHPART_EXPR: - res = wi::mul_high (arg1, arg2, sign); - break; - - case TRUNC_DIV_EXPR: - case EXACT_DIV_EXPR: - if (arg2 == 0) - return false; - res = wi::div_trunc (arg1, arg2, sign, overflow); - break; - - case FLOOR_DIV_EXPR: - if (arg2 == 0) - return false; - res = wi::div_floor (arg1, arg2, sign, overflow); - break; - - case CEIL_DIV_EXPR: - if (arg2 == 0) - return false; - res = wi::div_ceil (arg1, arg2, sign, overflow); - break; - - case ROUND_DIV_EXPR: - if (arg2 == 0) - return false; - res = wi::div_round (arg1, arg2, sign, overflow); - break; - - case TRUNC_MOD_EXPR: - if (arg2 == 0) - return false; - res = wi::mod_trunc (arg1, arg2, sign, overflow); - break; - - case FLOOR_MOD_EXPR: - if (arg2 == 0) - return false; - res = wi::mod_floor (arg1, arg2, sign, overflow); - break; - - case CEIL_MOD_EXPR: - if (arg2 == 0) - return false; - res = wi::mod_ceil (arg1, arg2, sign, overflow); - break; - - case ROUND_MOD_EXPR: - if (arg2 == 0) - return false; - res = wi::mod_round (arg1, arg2, sign, overflow); - break; - - case MIN_EXPR: - res = wi::min (arg1, arg2, sign); - break; - - case MAX_EXPR: - res = wi::max (arg1, arg2, sign); - break; - - default: - return false; - } - return true; -} - -/* Combine two poly int's ARG1 and ARG2 under operation CODE to - produce a new constant in RES. Return FALSE if we don't know how - to evaluate CODE at compile-time. */ - -static bool -poly_int_binop (poly_wide_int &res, enum tree_code code, - const_tree arg1, const_tree arg2, - signop sign, wi::overflow_type *overflow) -{ - gcc_assert (NUM_POLY_INT_COEFFS != 1); - gcc_assert (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)); - switch (code) - { - case PLUS_EXPR: - res = wi::add (wi::to_poly_wide (arg1), - wi::to_poly_wide (arg2), sign, overflow); - break; - - case MINUS_EXPR: - res = wi::sub (wi::to_poly_wide (arg1), - wi::to_poly_wide (arg2), sign, overflow); - break; - - case MULT_EXPR: - if (TREE_CODE (arg2) == INTEGER_CST) - res = wi::mul (wi::to_poly_wide (arg1), - wi::to_wide (arg2), sign, overflow); - else if (TREE_CODE (arg1) == INTEGER_CST) - res = wi::mul (wi::to_poly_wide (arg2), - wi::to_wide (arg1), sign, overflow); - else - return NULL_TREE; - break; - - case LSHIFT_EXPR: - if (TREE_CODE (arg2) == INTEGER_CST) - res = wi::to_poly_wide (arg1) << wi::to_wide (arg2); - else - return false; - break; - - case BIT_IOR_EXPR: - if (TREE_CODE (arg2) != INTEGER_CST - || !can_ior_p (wi::to_poly_wide (arg1), wi::to_wide (arg2), - &res)) - return false; - break; - - default: - return false; - } - return true; -} - -/* Combine two integer constants ARG1 and ARG2 under operation CODE to - produce a new constant. Return NULL_TREE if we don't know how to - evaluate CODE at compile-time. */ - -tree -int_const_binop (enum tree_code code, const_tree arg1, const_tree arg2, - int overflowable) -{ - poly_wide_int poly_res; - tree type = TREE_TYPE (arg1); - signop sign = TYPE_SIGN (type); - wi::overflow_type overflow = wi::OVF_NONE; - - if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg2) == INTEGER_CST) - { - wide_int warg1 = wi::to_wide (arg1), res; - wide_int warg2 = wi::to_wide (arg2, TYPE_PRECISION (type)); - if (!wide_int_binop (res, code, warg1, warg2, sign, &overflow)) - return NULL_TREE; - poly_res = res; - } - else if (!poly_int_tree_p (arg1) - || !poly_int_tree_p (arg2) - || !poly_int_binop (poly_res, code, arg1, arg2, sign, &overflow)) - return NULL_TREE; - return force_fit_type (type, poly_res, overflowable, - (((sign == SIGNED || overflowable == -1) - && overflow) - | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2))); -} - -/* Return true if binary operation OP distributes over addition in operand - OPNO, with the other operand being held constant. OPNO counts from 1. */ - -static bool -distributes_over_addition_p (tree_code op, int opno) -{ - switch (op) - { - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - return true; - - case LSHIFT_EXPR: - return opno == 1; - - default: - return false; - } -} - -/* Combine two constants ARG1 and ARG2 under operation CODE to produce a new - constant. We assume ARG1 and ARG2 have the same data type, or at least - are the same kind of constant and the same machine mode. Return zero if - combining the constants is not allowed in the current operating mode. */ - -static tree -const_binop (enum tree_code code, tree arg1, tree arg2) -{ - /* Sanity check for the recursive cases. */ - if (!arg1 || !arg2) - return NULL_TREE; - - STRIP_NOPS (arg1); - STRIP_NOPS (arg2); - - if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) - { - if (code == POINTER_PLUS_EXPR) - return int_const_binop (PLUS_EXPR, - arg1, fold_convert (TREE_TYPE (arg1), arg2)); - - return int_const_binop (code, arg1, arg2); - } - - if (TREE_CODE (arg1) == REAL_CST && TREE_CODE (arg2) == REAL_CST) - { - machine_mode mode; - REAL_VALUE_TYPE d1; - REAL_VALUE_TYPE d2; - REAL_VALUE_TYPE value; - REAL_VALUE_TYPE result; - bool inexact; - tree t, type; - - /* The following codes are handled by real_arithmetic. */ - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - case RDIV_EXPR: - case MIN_EXPR: - case MAX_EXPR: - break; - - default: - return NULL_TREE; - } - - d1 = TREE_REAL_CST (arg1); - d2 = TREE_REAL_CST (arg2); - - type = TREE_TYPE (arg1); - mode = TYPE_MODE (type); - - /* Don't perform operation if we honor signaling NaNs and - either operand is a signaling NaN. */ - if (HONOR_SNANS (mode) - && (REAL_VALUE_ISSIGNALING_NAN (d1) - || REAL_VALUE_ISSIGNALING_NAN (d2))) - return NULL_TREE; - - /* Don't perform operation if it would raise a division - by zero exception. */ - if (code == RDIV_EXPR - && real_equal (&d2, &dconst0) - && (flag_trapping_math || ! MODE_HAS_INFINITIES (mode))) - return NULL_TREE; - - /* If either operand is a NaN, just return it. Otherwise, set up - for floating-point trap; we return an overflow. */ - if (REAL_VALUE_ISNAN (d1)) - { - /* Make resulting NaN value to be qNaN when flag_signaling_nans - is off. */ - d1.signalling = 0; - t = build_real (type, d1); - return t; - } - else if (REAL_VALUE_ISNAN (d2)) - { - /* Make resulting NaN value to be qNaN when flag_signaling_nans - is off. */ - d2.signalling = 0; - t = build_real (type, d2); - return t; - } - - inexact = real_arithmetic (&value, code, &d1, &d2); - real_convert (&result, mode, &value); - - /* Don't constant fold this floating point operation if - the result has overflowed and flag_trapping_math. */ - if (flag_trapping_math - && MODE_HAS_INFINITIES (mode) - && REAL_VALUE_ISINF (result) - && !REAL_VALUE_ISINF (d1) - && !REAL_VALUE_ISINF (d2)) - return NULL_TREE; - - /* Don't constant fold this floating point operation if the - result may dependent upon the run-time rounding mode and - flag_rounding_math is set, or if GCC's software emulation - is unable to accurately represent the result. */ - if ((flag_rounding_math - || (MODE_COMPOSITE_P (mode) && !flag_unsafe_math_optimizations)) - && (inexact || !real_identical (&result, &value))) - return NULL_TREE; - - t = build_real (type, result); - - TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2); - return t; - } - - if (TREE_CODE (arg1) == FIXED_CST) - { - FIXED_VALUE_TYPE f1; - FIXED_VALUE_TYPE f2; - FIXED_VALUE_TYPE result; - tree t, type; - int sat_p; - bool overflow_p; - - /* The following codes are handled by fixed_arithmetic. */ - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - case TRUNC_DIV_EXPR: - if (TREE_CODE (arg2) != FIXED_CST) - return NULL_TREE; - f2 = TREE_FIXED_CST (arg2); - break; - - case LSHIFT_EXPR: - case RSHIFT_EXPR: - { - if (TREE_CODE (arg2) != INTEGER_CST) - return NULL_TREE; - wi::tree_to_wide_ref w2 = wi::to_wide (arg2); - f2.data.high = w2.elt (1); - f2.data.low = w2.ulow (); - f2.mode = SImode; - } - break; - - default: - return NULL_TREE; - } - - f1 = TREE_FIXED_CST (arg1); - type = TREE_TYPE (arg1); - sat_p = TYPE_SATURATING (type); - overflow_p = fixed_arithmetic (&result, code, &f1, &f2, sat_p); - t = build_fixed (type, result); - /* Propagate overflow flags. */ - if (overflow_p | TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)) - TREE_OVERFLOW (t) = 1; - return t; - } - - if (TREE_CODE (arg1) == COMPLEX_CST && TREE_CODE (arg2) == COMPLEX_CST) - { - tree type = TREE_TYPE (arg1); - tree r1 = TREE_REALPART (arg1); - tree i1 = TREE_IMAGPART (arg1); - tree r2 = TREE_REALPART (arg2); - tree i2 = TREE_IMAGPART (arg2); - tree real, imag; - - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - real = const_binop (code, r1, r2); - imag = const_binop (code, i1, i2); - break; - - case MULT_EXPR: - if (COMPLEX_FLOAT_TYPE_P (type)) - return do_mpc_arg2 (arg1, arg2, type, - /* do_nonfinite= */ folding_initializer, - mpc_mul); - - real = const_binop (MINUS_EXPR, - const_binop (MULT_EXPR, r1, r2), - const_binop (MULT_EXPR, i1, i2)); - imag = const_binop (PLUS_EXPR, - const_binop (MULT_EXPR, r1, i2), - const_binop (MULT_EXPR, i1, r2)); - break; - - case RDIV_EXPR: - if (COMPLEX_FLOAT_TYPE_P (type)) - return do_mpc_arg2 (arg1, arg2, type, - /* do_nonfinite= */ folding_initializer, - mpc_div); - /* Fallthru. */ - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - if (flag_complex_method == 0) - { - /* Keep this algorithm in sync with - tree-complex.c:expand_complex_div_straight(). - - Expand complex division to scalars, straightforward algorithm. - a / b = ((ar*br + ai*bi)/t) + i((ai*br - ar*bi)/t) - t = br*br + bi*bi - */ - tree magsquared - = const_binop (PLUS_EXPR, - const_binop (MULT_EXPR, r2, r2), - const_binop (MULT_EXPR, i2, i2)); - tree t1 - = const_binop (PLUS_EXPR, - const_binop (MULT_EXPR, r1, r2), - const_binop (MULT_EXPR, i1, i2)); - tree t2 - = const_binop (MINUS_EXPR, - const_binop (MULT_EXPR, i1, r2), - const_binop (MULT_EXPR, r1, i2)); - - real = const_binop (code, t1, magsquared); - imag = const_binop (code, t2, magsquared); - } - else - { - /* Keep this algorithm in sync with - tree-complex.c:expand_complex_div_wide(). - - Expand complex division to scalars, modified algorithm to minimize - overflow with wide input ranges. */ - tree compare = fold_build2 (LT_EXPR, boolean_type_node, - fold_abs_const (r2, TREE_TYPE (type)), - fold_abs_const (i2, TREE_TYPE (type))); - - if (integer_nonzerop (compare)) - { - /* In the TRUE branch, we compute - ratio = br/bi; - div = (br * ratio) + bi; - tr = (ar * ratio) + ai; - ti = (ai * ratio) - ar; - tr = tr / div; - ti = ti / div; */ - tree ratio = const_binop (code, r2, i2); - tree div = const_binop (PLUS_EXPR, i2, - const_binop (MULT_EXPR, r2, ratio)); - real = const_binop (MULT_EXPR, r1, ratio); - real = const_binop (PLUS_EXPR, real, i1); - real = const_binop (code, real, div); - - imag = const_binop (MULT_EXPR, i1, ratio); - imag = const_binop (MINUS_EXPR, imag, r1); - imag = const_binop (code, imag, div); - } - else - { - /* In the FALSE branch, we compute - ratio = d/c; - divisor = (d * ratio) + c; - tr = (b * ratio) + a; - ti = b - (a * ratio); - tr = tr / div; - ti = ti / div; */ - tree ratio = const_binop (code, i2, r2); - tree div = const_binop (PLUS_EXPR, r2, - const_binop (MULT_EXPR, i2, ratio)); - - real = const_binop (MULT_EXPR, i1, ratio); - real = const_binop (PLUS_EXPR, real, r1); - real = const_binop (code, real, div); - - imag = const_binop (MULT_EXPR, r1, ratio); - imag = const_binop (MINUS_EXPR, i1, imag); - imag = const_binop (code, imag, div); - } - } - break; - - default: - return NULL_TREE; - } - - if (real && imag) - return build_complex (type, real, imag); - } - - if (TREE_CODE (arg1) == VECTOR_CST - && TREE_CODE (arg2) == VECTOR_CST - && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), - TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg2)))) - { - tree type = TREE_TYPE (arg1); - bool step_ok_p; - if (VECTOR_CST_STEPPED_P (arg1) - && VECTOR_CST_STEPPED_P (arg2)) - /* We can operate directly on the encoding if: - - a3 - a2 == a2 - a1 && b3 - b2 == b2 - b1 - implies - (a3 op b3) - (a2 op b2) == (a2 op b2) - (a1 op b1) - - Addition and subtraction are the supported operators - for which this is true. */ - step_ok_p = (code == PLUS_EXPR || code == MINUS_EXPR); - else if (VECTOR_CST_STEPPED_P (arg1)) - /* We can operate directly on stepped encodings if: - - a3 - a2 == a2 - a1 - implies: - (a3 op c) - (a2 op c) == (a2 op c) - (a1 op c) - - which is true if (x -> x op c) distributes over addition. */ - step_ok_p = distributes_over_addition_p (code, 1); - else - /* Similarly in reverse. */ - step_ok_p = distributes_over_addition_p (code, 2); - tree_vector_builder elts; - if (!elts.new_binary_operation (type, arg1, arg2, step_ok_p)) - return NULL_TREE; - unsigned int count = elts.encoded_nelts (); - for (unsigned int i = 0; i < count; ++i) - { - tree elem1 = VECTOR_CST_ELT (arg1, i); - tree elem2 = VECTOR_CST_ELT (arg2, i); - - tree elt = const_binop (code, elem1, elem2); - - /* It is possible that const_binop cannot handle the given - code and return NULL_TREE */ - if (elt == NULL_TREE) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - - /* Shifts allow a scalar offset for a vector. */ - if (TREE_CODE (arg1) == VECTOR_CST - && TREE_CODE (arg2) == INTEGER_CST) - { - tree type = TREE_TYPE (arg1); - bool step_ok_p = distributes_over_addition_p (code, 1); - tree_vector_builder elts; - if (!elts.new_unary_operation (type, arg1, step_ok_p)) - return NULL_TREE; - unsigned int count = elts.encoded_nelts (); - for (unsigned int i = 0; i < count; ++i) - { - tree elem1 = VECTOR_CST_ELT (arg1, i); - - tree elt = const_binop (code, elem1, arg2); - - /* It is possible that const_binop cannot handle the given - code and return NULL_TREE. */ - if (elt == NULL_TREE) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - return NULL_TREE; -} - -/* Overload that adds a TYPE parameter to be able to dispatch - to fold_relational_const. */ - -tree -const_binop (enum tree_code code, tree type, tree arg1, tree arg2) -{ - if (TREE_CODE_CLASS (code) == tcc_comparison) - return fold_relational_const (code, type, arg1, arg2); - - /* ??? Until we make the const_binop worker take the type of the - result as argument put those cases that need it here. */ - switch (code) - { - case VEC_SERIES_EXPR: - if (CONSTANT_CLASS_P (arg1) - && CONSTANT_CLASS_P (arg2)) - return build_vec_series (type, arg1, arg2); - return NULL_TREE; - - case COMPLEX_EXPR: - if ((TREE_CODE (arg1) == REAL_CST - && TREE_CODE (arg2) == REAL_CST) - || (TREE_CODE (arg1) == INTEGER_CST - && TREE_CODE (arg2) == INTEGER_CST)) - return build_complex (type, arg1, arg2); - return NULL_TREE; - - case POINTER_DIFF_EXPR: - if (poly_int_tree_p (arg1) && poly_int_tree_p (arg2)) - { - poly_offset_int res = (wi::to_poly_offset (arg1) - - wi::to_poly_offset (arg2)); - return force_fit_type (type, res, 1, - TREE_OVERFLOW (arg1) | TREE_OVERFLOW (arg2)); - } - return NULL_TREE; - - case VEC_PACK_TRUNC_EXPR: - case VEC_PACK_FIX_TRUNC_EXPR: - case VEC_PACK_FLOAT_EXPR: - { - unsigned int HOST_WIDE_INT out_nelts, in_nelts, i; - - if (TREE_CODE (arg1) != VECTOR_CST - || TREE_CODE (arg2) != VECTOR_CST) - return NULL_TREE; - - if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) - return NULL_TREE; - - out_nelts = in_nelts * 2; - gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) - && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); - - tree_vector_builder elts (type, out_nelts, 1); - for (i = 0; i < out_nelts; i++) - { - tree elt = (i < in_nelts - ? VECTOR_CST_ELT (arg1, i) - : VECTOR_CST_ELT (arg2, i - in_nelts)); - elt = fold_convert_const (code == VEC_PACK_TRUNC_EXPR - ? NOP_EXPR - : code == VEC_PACK_FLOAT_EXPR - ? FLOAT_EXPR : FIX_TRUNC_EXPR, - TREE_TYPE (type), elt); - if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - - case VEC_WIDEN_MULT_LO_EXPR: - case VEC_WIDEN_MULT_HI_EXPR: - case VEC_WIDEN_MULT_EVEN_EXPR: - case VEC_WIDEN_MULT_ODD_EXPR: - { - unsigned HOST_WIDE_INT out_nelts, in_nelts, out, ofs, scale; - - if (TREE_CODE (arg1) != VECTOR_CST || TREE_CODE (arg2) != VECTOR_CST) - return NULL_TREE; - - if (!VECTOR_CST_NELTS (arg1).is_constant (&in_nelts)) - return NULL_TREE; - out_nelts = in_nelts / 2; - gcc_assert (known_eq (in_nelts, VECTOR_CST_NELTS (arg2)) - && known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); - - if (code == VEC_WIDEN_MULT_LO_EXPR) - scale = 0, ofs = BYTES_BIG_ENDIAN ? out_nelts : 0; - else if (code == VEC_WIDEN_MULT_HI_EXPR) - scale = 0, ofs = BYTES_BIG_ENDIAN ? 0 : out_nelts; - else if (code == VEC_WIDEN_MULT_EVEN_EXPR) - scale = 1, ofs = 0; - else /* if (code == VEC_WIDEN_MULT_ODD_EXPR) */ - scale = 1, ofs = 1; - - tree_vector_builder elts (type, out_nelts, 1); - for (out = 0; out < out_nelts; out++) - { - unsigned int in = (out << scale) + ofs; - tree t1 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), - VECTOR_CST_ELT (arg1, in)); - tree t2 = fold_convert_const (NOP_EXPR, TREE_TYPE (type), - VECTOR_CST_ELT (arg2, in)); - - if (t1 == NULL_TREE || t2 == NULL_TREE) - return NULL_TREE; - tree elt = const_binop (MULT_EXPR, t1, t2); - if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - - default:; - } - - if (TREE_CODE_CLASS (code) != tcc_binary) - return NULL_TREE; - - /* Make sure type and arg0 have the same saturating flag. */ - gcc_checking_assert (TYPE_SATURATING (type) - == TYPE_SATURATING (TREE_TYPE (arg1))); - - return const_binop (code, arg1, arg2); -} - -/* Compute CODE ARG1 with resulting type TYPE with ARG1 being constant. - Return zero if computing the constants is not possible. */ - -tree -const_unop (enum tree_code code, tree type, tree arg0) -{ - /* Don't perform the operation, other than NEGATE and ABS, if - flag_signaling_nans is on and the operand is a signaling NaN. */ - if (TREE_CODE (arg0) == REAL_CST - && HONOR_SNANS (arg0) - && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg0)) - && code != NEGATE_EXPR - && code != ABS_EXPR - && code != ABSU_EXPR) - return NULL_TREE; - - switch (code) - { - CASE_CONVERT: - case FLOAT_EXPR: - case FIX_TRUNC_EXPR: - case FIXED_CONVERT_EXPR: - return fold_convert_const (code, type, arg0); - - case ADDR_SPACE_CONVERT_EXPR: - /* If the source address is 0, and the source address space - cannot have a valid object at 0, fold to dest type null. */ - if (integer_zerop (arg0) - && !(targetm.addr_space.zero_address_valid - (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0)))))) - return fold_convert_const (code, type, arg0); - break; - - case VIEW_CONVERT_EXPR: - return fold_view_convert_expr (type, arg0); - - case NEGATE_EXPR: - { - /* Can't call fold_negate_const directly here as that doesn't - handle all cases and we might not be able to negate some - constants. */ - tree tem = fold_negate_expr (UNKNOWN_LOCATION, arg0); - if (tem && CONSTANT_CLASS_P (tem)) - return tem; - break; - } - - case ABS_EXPR: - case ABSU_EXPR: - if (TREE_CODE (arg0) == INTEGER_CST || TREE_CODE (arg0) == REAL_CST) - return fold_abs_const (arg0, type); - break; - - case CONJ_EXPR: - if (TREE_CODE (arg0) == COMPLEX_CST) - { - tree ipart = fold_negate_const (TREE_IMAGPART (arg0), - TREE_TYPE (type)); - return build_complex (type, TREE_REALPART (arg0), ipart); - } - break; - - case BIT_NOT_EXPR: - if (TREE_CODE (arg0) == INTEGER_CST) - return fold_not_const (arg0, type); - else if (POLY_INT_CST_P (arg0)) - return wide_int_to_tree (type, -poly_int_cst_value (arg0)); - /* Perform BIT_NOT_EXPR on each element individually. */ - else if (TREE_CODE (arg0) == VECTOR_CST) - { - tree elem; - - /* This can cope with stepped encodings because ~x == -1 - x. */ - tree_vector_builder elements; - elements.new_unary_operation (type, arg0, true); - unsigned int i, count = elements.encoded_nelts (); - for (i = 0; i < count; ++i) - { - elem = VECTOR_CST_ELT (arg0, i); - elem = const_unop (BIT_NOT_EXPR, TREE_TYPE (type), elem); - if (elem == NULL_TREE) - break; - elements.quick_push (elem); - } - if (i == count) - return elements.build (); - } - break; - - case TRUTH_NOT_EXPR: - if (TREE_CODE (arg0) == INTEGER_CST) - return constant_boolean_node (integer_zerop (arg0), type); - break; - - case REALPART_EXPR: - if (TREE_CODE (arg0) == COMPLEX_CST) - return fold_convert (type, TREE_REALPART (arg0)); - break; - - case IMAGPART_EXPR: - if (TREE_CODE (arg0) == COMPLEX_CST) - return fold_convert (type, TREE_IMAGPART (arg0)); - break; - - case VEC_UNPACK_LO_EXPR: - case VEC_UNPACK_HI_EXPR: - case VEC_UNPACK_FLOAT_LO_EXPR: - case VEC_UNPACK_FLOAT_HI_EXPR: - case VEC_UNPACK_FIX_TRUNC_LO_EXPR: - case VEC_UNPACK_FIX_TRUNC_HI_EXPR: - { - unsigned HOST_WIDE_INT out_nelts, in_nelts, i; - enum tree_code subcode; - - if (TREE_CODE (arg0) != VECTOR_CST) - return NULL_TREE; - - if (!VECTOR_CST_NELTS (arg0).is_constant (&in_nelts)) - return NULL_TREE; - out_nelts = in_nelts / 2; - gcc_assert (known_eq (out_nelts, TYPE_VECTOR_SUBPARTS (type))); - - unsigned int offset = 0; - if ((!BYTES_BIG_ENDIAN) ^ (code == VEC_UNPACK_LO_EXPR - || code == VEC_UNPACK_FLOAT_LO_EXPR - || code == VEC_UNPACK_FIX_TRUNC_LO_EXPR)) - offset = out_nelts; - - if (code == VEC_UNPACK_LO_EXPR || code == VEC_UNPACK_HI_EXPR) - subcode = NOP_EXPR; - else if (code == VEC_UNPACK_FLOAT_LO_EXPR - || code == VEC_UNPACK_FLOAT_HI_EXPR) - subcode = FLOAT_EXPR; - else - subcode = FIX_TRUNC_EXPR; - - tree_vector_builder elts (type, out_nelts, 1); - for (i = 0; i < out_nelts; i++) - { - tree elt = fold_convert_const (subcode, TREE_TYPE (type), - VECTOR_CST_ELT (arg0, i + offset)); - if (elt == NULL_TREE || !CONSTANT_CLASS_P (elt)) - return NULL_TREE; - elts.quick_push (elt); - } - - return elts.build (); - } - - case VEC_DUPLICATE_EXPR: - if (CONSTANT_CLASS_P (arg0)) - return build_vector_from_val (type, arg0); - return NULL_TREE; - - default: - break; - } - - return NULL_TREE; -} - -/* Create a sizetype INT_CST node with NUMBER sign extended. KIND - indicates which particular sizetype to create. */ - -tree -size_int_kind (poly_int64 number, enum size_type_kind kind) -{ - return build_int_cst (sizetype_tab[(int) kind], number); -} - -/* Combine operands OP1 and OP2 with arithmetic operation CODE. CODE - is a tree code. The type of the result is taken from the operands. - Both must be equivalent integer types, ala int_binop_types_match_p. - If the operands are constant, so is the result. */ - -tree -size_binop_loc (location_t loc, enum tree_code code, tree arg0, tree arg1) -{ - tree type = TREE_TYPE (arg0); - - if (arg0 == error_mark_node || arg1 == error_mark_node) - return error_mark_node; - - gcc_assert (int_binop_types_match_p (code, TREE_TYPE (arg0), - TREE_TYPE (arg1))); - - /* Handle the special case of two poly_int constants faster. */ - if (poly_int_tree_p (arg0) && poly_int_tree_p (arg1)) - { - /* And some specific cases even faster than that. */ - if (code == PLUS_EXPR) - { - if (integer_zerop (arg0) - && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0))) - return arg1; - if (integer_zerop (arg1) - && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1))) - return arg0; - } - else if (code == MINUS_EXPR) - { - if (integer_zerop (arg1) - && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg1))) - return arg0; - } - else if (code == MULT_EXPR) - { - if (integer_onep (arg0) - && !TREE_OVERFLOW (tree_strip_any_location_wrapper (arg0))) - return arg1; - } - - /* Handle general case of two integer constants. For sizetype - constant calculations we always want to know about overflow, - even in the unsigned case. */ - tree res = int_const_binop (code, arg0, arg1, -1); - if (res != NULL_TREE) - return res; - } - - return fold_build2_loc (loc, code, type, arg0, arg1); -} - -/* Given two values, either both of sizetype or both of bitsizetype, - compute the difference between the two values. Return the value - in signed type corresponding to the type of the operands. */ - -tree -size_diffop_loc (location_t loc, tree arg0, tree arg1) -{ - tree type = TREE_TYPE (arg0); - tree ctype; - - gcc_assert (int_binop_types_match_p (MINUS_EXPR, TREE_TYPE (arg0), - TREE_TYPE (arg1))); - - /* If the type is already signed, just do the simple thing. */ - if (!TYPE_UNSIGNED (type)) - return size_binop_loc (loc, MINUS_EXPR, arg0, arg1); - - if (type == sizetype) - ctype = ssizetype; - else if (type == bitsizetype) - ctype = sbitsizetype; - else - ctype = signed_type_for (type); - - /* If either operand is not a constant, do the conversions to the signed - type and subtract. The hardware will do the right thing with any - overflow in the subtraction. */ - if (TREE_CODE (arg0) != INTEGER_CST || TREE_CODE (arg1) != INTEGER_CST) - return size_binop_loc (loc, MINUS_EXPR, - fold_convert_loc (loc, ctype, arg0), - fold_convert_loc (loc, ctype, arg1)); - - /* If ARG0 is larger than ARG1, subtract and return the result in CTYPE. - Otherwise, subtract the other way, convert to CTYPE (we know that can't - overflow) and negate (which can't either). Special-case a result - of zero while we're here. */ - if (tree_int_cst_equal (arg0, arg1)) - return build_int_cst (ctype, 0); - else if (tree_int_cst_lt (arg1, arg0)) - return fold_convert_loc (loc, ctype, - size_binop_loc (loc, MINUS_EXPR, arg0, arg1)); - else - return size_binop_loc (loc, MINUS_EXPR, build_int_cst (ctype, 0), - fold_convert_loc (loc, ctype, - size_binop_loc (loc, - MINUS_EXPR, - arg1, arg0))); -} - -/* A subroutine of fold_convert_const handling conversions of an - INTEGER_CST to another integer type. */ - -static tree -fold_convert_const_int_from_int (tree type, const_tree arg1) -{ - /* Given an integer constant, make new constant with new type, - appropriately sign-extended or truncated. Use widest_int - so that any extension is done according ARG1's type. */ - return force_fit_type (type, wi::to_widest (arg1), - !POINTER_TYPE_P (TREE_TYPE (arg1)), - TREE_OVERFLOW (arg1)); -} - -/* A subroutine of fold_convert_const handling conversions a REAL_CST - to an integer type. */ - -static tree -fold_convert_const_int_from_real (enum tree_code code, tree type, const_tree arg1) -{ - bool overflow = false; - tree t; - - /* The following code implements the floating point to integer - conversion rules required by the Java Language Specification, - that IEEE NaNs are mapped to zero and values that overflow - the target precision saturate, i.e. values greater than - INT_MAX are mapped to INT_MAX, and values less than INT_MIN - are mapped to INT_MIN. These semantics are allowed by the - C and C++ standards that simply state that the behavior of - FP-to-integer conversion is unspecified upon overflow. */ - - wide_int val; - REAL_VALUE_TYPE r; - REAL_VALUE_TYPE x = TREE_REAL_CST (arg1); - - switch (code) - { - case FIX_TRUNC_EXPR: - real_trunc (&r, VOIDmode, &x); - break; - - default: - gcc_unreachable (); - } - - /* If R is NaN, return zero and show we have an overflow. */ - if (REAL_VALUE_ISNAN (r)) - { - overflow = true; - val = wi::zero (TYPE_PRECISION (type)); - } - - /* See if R is less than the lower bound or greater than the - upper bound. */ - - if (! overflow) - { - tree lt = TYPE_MIN_VALUE (type); - REAL_VALUE_TYPE l = real_value_from_int_cst (NULL_TREE, lt); - if (real_less (&r, &l)) - { - overflow = true; - val = wi::to_wide (lt); - } - } - - if (! overflow) - { - tree ut = TYPE_MAX_VALUE (type); - if (ut) - { - REAL_VALUE_TYPE u = real_value_from_int_cst (NULL_TREE, ut); - if (real_less (&u, &r)) - { - overflow = true; - val = wi::to_wide (ut); - } - } - } - - if (! overflow) - val = real_to_integer (&r, &overflow, TYPE_PRECISION (type)); - - t = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (arg1)); - return t; -} - -/* A subroutine of fold_convert_const handling conversions of a - FIXED_CST to an integer type. */ - -static tree -fold_convert_const_int_from_fixed (tree type, const_tree arg1) -{ - tree t; - double_int temp, temp_trunc; - scalar_mode mode; - - /* Right shift FIXED_CST to temp by fbit. */ - temp = TREE_FIXED_CST (arg1).data; - mode = TREE_FIXED_CST (arg1).mode; - if (GET_MODE_FBIT (mode) < HOST_BITS_PER_DOUBLE_INT) - { - temp = temp.rshift (GET_MODE_FBIT (mode), - HOST_BITS_PER_DOUBLE_INT, - SIGNED_FIXED_POINT_MODE_P (mode)); - - /* Left shift temp to temp_trunc by fbit. */ - temp_trunc = temp.lshift (GET_MODE_FBIT (mode), - HOST_BITS_PER_DOUBLE_INT, - SIGNED_FIXED_POINT_MODE_P (mode)); - } - else - { - temp = double_int_zero; - temp_trunc = double_int_zero; - } - - /* If FIXED_CST is negative, we need to round the value toward 0. - By checking if the fractional bits are not zero to add 1 to temp. */ - if (SIGNED_FIXED_POINT_MODE_P (mode) - && temp_trunc.is_negative () - && TREE_FIXED_CST (arg1).data != temp_trunc) - temp += double_int_one; - - /* Given a fixed-point constant, make new constant with new type, - appropriately sign-extended or truncated. */ - t = force_fit_type (type, temp, -1, - (temp.is_negative () - && (TYPE_UNSIGNED (type) - < TYPE_UNSIGNED (TREE_TYPE (arg1)))) - | TREE_OVERFLOW (arg1)); - - return t; -} - -/* A subroutine of fold_convert_const handling conversions a REAL_CST - to another floating point type. */ - -static tree -fold_convert_const_real_from_real (tree type, const_tree arg1) -{ - REAL_VALUE_TYPE value; - tree t; - - /* Don't perform the operation if flag_signaling_nans is on - and the operand is a signaling NaN. */ - if (HONOR_SNANS (arg1) - && REAL_VALUE_ISSIGNALING_NAN (TREE_REAL_CST (arg1))) - return NULL_TREE; - - /* With flag_rounding_math we should respect the current rounding mode - unless the conversion is exact. */ - if (HONOR_SIGN_DEPENDENT_ROUNDING (arg1) - && !exact_real_truncate (TYPE_MODE (type), &TREE_REAL_CST (arg1))) - return NULL_TREE; - - real_convert (&value, TYPE_MODE (type), &TREE_REAL_CST (arg1)); - t = build_real (type, value); - - /* If converting an infinity or NAN to a representation that doesn't - have one, set the overflow bit so that we can produce some kind of - error message at the appropriate point if necessary. It's not the - most user-friendly message, but it's better than nothing. */ - if (REAL_VALUE_ISINF (TREE_REAL_CST (arg1)) - && !MODE_HAS_INFINITIES (TYPE_MODE (type))) - TREE_OVERFLOW (t) = 1; - else if (REAL_VALUE_ISNAN (TREE_REAL_CST (arg1)) - && !MODE_HAS_NANS (TYPE_MODE (type))) - TREE_OVERFLOW (t) = 1; - /* Regular overflow, conversion produced an infinity in a mode that - can't represent them. */ - else if (!MODE_HAS_INFINITIES (TYPE_MODE (type)) - && REAL_VALUE_ISINF (value) - && !REAL_VALUE_ISINF (TREE_REAL_CST (arg1))) - TREE_OVERFLOW (t) = 1; - else - TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); - return t; -} - -/* A subroutine of fold_convert_const handling conversions a FIXED_CST - to a floating point type. */ - -static tree -fold_convert_const_real_from_fixed (tree type, const_tree arg1) -{ - REAL_VALUE_TYPE value; - tree t; - - real_convert_from_fixed (&value, SCALAR_FLOAT_TYPE_MODE (type), - &TREE_FIXED_CST (arg1)); - t = build_real (type, value); - - TREE_OVERFLOW (t) = TREE_OVERFLOW (arg1); - return t; -} - -/* A subroutine of fold_convert_const handling conversions a FIXED_CST - to another fixed-point type. */ - -static tree -fold_convert_const_fixed_from_fixed (tree type, const_tree arg1) -{ - FIXED_VALUE_TYPE value; - tree t; - bool overflow_p; - - overflow_p = fixed_convert (&value, SCALAR_TYPE_MODE (type), - &TREE_FIXED_CST (arg1), TYPE_SATURATING (type)); - t = build_fixed (type, value); - - /* Propagate overflow flags. */ - if (overflow_p | TREE_OVERFLOW (arg1)) - TREE_OVERFLOW (t) = 1; - return t; -} - -/* A subroutine of fold_convert_const handling conversions an INTEGER_CST - to a fixed-point type. */ - -static tree -fold_convert_const_fixed_from_int (tree type, const_tree arg1) -{ - FIXED_VALUE_TYPE value; - tree t; - bool overflow_p; - double_int di; - - gcc_assert (TREE_INT_CST_NUNITS (arg1) <= 2); - - di.low = TREE_INT_CST_ELT (arg1, 0); - if (TREE_INT_CST_NUNITS (arg1) == 1) - di.high = (HOST_WIDE_INT) di.low < 0 ? HOST_WIDE_INT_M1 : 0; - else - di.high = TREE_INT_CST_ELT (arg1, 1); - - overflow_p = fixed_convert_from_int (&value, SCALAR_TYPE_MODE (type), di, - TYPE_UNSIGNED (TREE_TYPE (arg1)), - TYPE_SATURATING (type)); - t = build_fixed (type, value); - - /* Propagate overflow flags. */ - if (overflow_p | TREE_OVERFLOW (arg1)) - TREE_OVERFLOW (t) = 1; - return t; -} - -/* A subroutine of fold_convert_const handling conversions a REAL_CST - to a fixed-point type. */ - -static tree -fold_convert_const_fixed_from_real (tree type, const_tree arg1) -{ - FIXED_VALUE_TYPE value; - tree t; - bool overflow_p; - - overflow_p = fixed_convert_from_real (&value, SCALAR_TYPE_MODE (type), - &TREE_REAL_CST (arg1), - TYPE_SATURATING (type)); - t = build_fixed (type, value); - - /* Propagate overflow flags. */ - if (overflow_p | TREE_OVERFLOW (arg1)) - TREE_OVERFLOW (t) = 1; - return t; -} - -/* Attempt to fold type conversion operation CODE of expression ARG1 to - type TYPE. If no simplification can be done return NULL_TREE. */ - -static tree -fold_convert_const (enum tree_code code, tree type, tree arg1) -{ - tree arg_type = TREE_TYPE (arg1); - if (arg_type == type) - return arg1; - - /* We can't widen types, since the runtime value could overflow the - original type before being extended to the new type. */ - if (POLY_INT_CST_P (arg1) - && (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) - && TYPE_PRECISION (type) <= TYPE_PRECISION (arg_type)) - return build_poly_int_cst (type, - poly_wide_int::from (poly_int_cst_value (arg1), - TYPE_PRECISION (type), - TYPE_SIGN (arg_type))); - - if (POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type) - || TREE_CODE (type) == OFFSET_TYPE) - { - if (TREE_CODE (arg1) == INTEGER_CST) - return fold_convert_const_int_from_int (type, arg1); - else if (TREE_CODE (arg1) == REAL_CST) - return fold_convert_const_int_from_real (code, type, arg1); - else if (TREE_CODE (arg1) == FIXED_CST) - return fold_convert_const_int_from_fixed (type, arg1); - } - else if (TREE_CODE (type) == REAL_TYPE) - { - if (TREE_CODE (arg1) == INTEGER_CST) - { - tree res = build_real_from_int_cst (type, arg1); - /* Avoid the folding if flag_rounding_math is on and the - conversion is not exact. */ - if (HONOR_SIGN_DEPENDENT_ROUNDING (type)) - { - bool fail = false; - wide_int w = real_to_integer (&TREE_REAL_CST (res), &fail, - TYPE_PRECISION (TREE_TYPE (arg1))); - if (fail || wi::ne_p (w, wi::to_wide (arg1))) - return NULL_TREE; - } - return res; - } - else if (TREE_CODE (arg1) == REAL_CST) - return fold_convert_const_real_from_real (type, arg1); - else if (TREE_CODE (arg1) == FIXED_CST) - return fold_convert_const_real_from_fixed (type, arg1); - } - else if (TREE_CODE (type) == FIXED_POINT_TYPE) - { - if (TREE_CODE (arg1) == FIXED_CST) - return fold_convert_const_fixed_from_fixed (type, arg1); - else if (TREE_CODE (arg1) == INTEGER_CST) - return fold_convert_const_fixed_from_int (type, arg1); - else if (TREE_CODE (arg1) == REAL_CST) - return fold_convert_const_fixed_from_real (type, arg1); - } - else if (TREE_CODE (type) == VECTOR_TYPE) - { - if (TREE_CODE (arg1) == VECTOR_CST - && known_eq (TYPE_VECTOR_SUBPARTS (type), VECTOR_CST_NELTS (arg1))) - { - tree elttype = TREE_TYPE (type); - tree arg1_elttype = TREE_TYPE (TREE_TYPE (arg1)); - /* We can't handle steps directly when extending, since the - values need to wrap at the original precision first. */ - bool step_ok_p - = (INTEGRAL_TYPE_P (elttype) - && INTEGRAL_TYPE_P (arg1_elttype) - && TYPE_PRECISION (elttype) <= TYPE_PRECISION (arg1_elttype)); - tree_vector_builder v; - if (!v.new_unary_operation (type, arg1, step_ok_p)) - return NULL_TREE; - unsigned int len = v.encoded_nelts (); - for (unsigned int i = 0; i < len; ++i) - { - tree elt = VECTOR_CST_ELT (arg1, i); - tree cvt = fold_convert_const (code, elttype, elt); - if (cvt == NULL_TREE) - return NULL_TREE; - v.quick_push (cvt); - } - return v.build (); - } - } - return NULL_TREE; -} - -/* Construct a vector of zero elements of vector type TYPE. */ - -static tree -build_zero_vector (tree type) -{ - tree t; - - t = fold_convert_const (NOP_EXPR, TREE_TYPE (type), integer_zero_node); - return build_vector_from_val (type, t); -} - -/* Returns true, if ARG is convertible to TYPE using a NOP_EXPR. */ - -bool -fold_convertible_p (const_tree type, const_tree arg) -{ - tree orig = TREE_TYPE (arg); - - if (type == orig) - return true; - - if (TREE_CODE (arg) == ERROR_MARK - || TREE_CODE (type) == ERROR_MARK - || TREE_CODE (orig) == ERROR_MARK) - return false; - - if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) - return true; - - switch (TREE_CODE (type)) - { - case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case POINTER_TYPE: case REFERENCE_TYPE: - case OFFSET_TYPE: - return (INTEGRAL_TYPE_P (orig) - || (POINTER_TYPE_P (orig) - && TYPE_PRECISION (type) <= TYPE_PRECISION (orig)) - || TREE_CODE (orig) == OFFSET_TYPE); - - case REAL_TYPE: - case FIXED_POINT_TYPE: - case VOID_TYPE: - return TREE_CODE (type) == TREE_CODE (orig); - - case VECTOR_TYPE: - return (VECTOR_TYPE_P (orig) - && known_eq (TYPE_VECTOR_SUBPARTS (type), - TYPE_VECTOR_SUBPARTS (orig)) - && fold_convertible_p (TREE_TYPE (type), TREE_TYPE (orig))); - - default: - return false; - } -} - -/* Convert expression ARG to type TYPE. Used by the middle-end for - simple conversions in preference to calling the front-end's convert. */ - -tree -fold_convert_loc (location_t loc, tree type, tree arg) -{ - tree orig = TREE_TYPE (arg); - tree tem; - - if (type == orig) - return arg; - - if (TREE_CODE (arg) == ERROR_MARK - || TREE_CODE (type) == ERROR_MARK - || TREE_CODE (orig) == ERROR_MARK) - return error_mark_node; - - switch (TREE_CODE (type)) - { - case POINTER_TYPE: - case REFERENCE_TYPE: - /* Handle conversions between pointers to different address spaces. */ - if (POINTER_TYPE_P (orig) - && (TYPE_ADDR_SPACE (TREE_TYPE (type)) - != TYPE_ADDR_SPACE (TREE_TYPE (orig)))) - return fold_build1_loc (loc, ADDR_SPACE_CONVERT_EXPR, type, arg); - /* fall through */ - - case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE: - case OFFSET_TYPE: - if (TREE_CODE (arg) == INTEGER_CST) - { - tem = fold_convert_const (NOP_EXPR, type, arg); - if (tem != NULL_TREE) - return tem; - } - if (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) - || TREE_CODE (orig) == OFFSET_TYPE) - return fold_build1_loc (loc, NOP_EXPR, type, arg); - if (TREE_CODE (orig) == COMPLEX_TYPE) - return fold_convert_loc (loc, type, - fold_build1_loc (loc, REALPART_EXPR, - TREE_TYPE (orig), arg)); - gcc_assert (TREE_CODE (orig) == VECTOR_TYPE - && tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); - return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); - - case REAL_TYPE: - if (TREE_CODE (arg) == INTEGER_CST) - { - tem = fold_convert_const (FLOAT_EXPR, type, arg); - if (tem != NULL_TREE) - return tem; - } - else if (TREE_CODE (arg) == REAL_CST) - { - tem = fold_convert_const (NOP_EXPR, type, arg); - if (tem != NULL_TREE) - return tem; - } - else if (TREE_CODE (arg) == FIXED_CST) - { - tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); - if (tem != NULL_TREE) - return tem; - } - - switch (TREE_CODE (orig)) - { - case INTEGER_TYPE: - case BOOLEAN_TYPE: case ENUMERAL_TYPE: - case POINTER_TYPE: case REFERENCE_TYPE: - return fold_build1_loc (loc, FLOAT_EXPR, type, arg); - - case REAL_TYPE: - return fold_build1_loc (loc, NOP_EXPR, type, arg); - - case FIXED_POINT_TYPE: - return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); - - case COMPLEX_TYPE: - tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); - return fold_convert_loc (loc, type, tem); - - default: - gcc_unreachable (); - } - - case FIXED_POINT_TYPE: - if (TREE_CODE (arg) == FIXED_CST || TREE_CODE (arg) == INTEGER_CST - || TREE_CODE (arg) == REAL_CST) - { - tem = fold_convert_const (FIXED_CONVERT_EXPR, type, arg); - if (tem != NULL_TREE) - goto fold_convert_exit; - } - - switch (TREE_CODE (orig)) - { - case FIXED_POINT_TYPE: - case INTEGER_TYPE: - case ENUMERAL_TYPE: - case BOOLEAN_TYPE: - case REAL_TYPE: - return fold_build1_loc (loc, FIXED_CONVERT_EXPR, type, arg); - - case COMPLEX_TYPE: - tem = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); - return fold_convert_loc (loc, type, tem); - - default: - gcc_unreachable (); - } - - case COMPLEX_TYPE: - switch (TREE_CODE (orig)) - { - case INTEGER_TYPE: - case BOOLEAN_TYPE: case ENUMERAL_TYPE: - case POINTER_TYPE: case REFERENCE_TYPE: - case REAL_TYPE: - case FIXED_POINT_TYPE: - return fold_build2_loc (loc, COMPLEX_EXPR, type, - fold_convert_loc (loc, TREE_TYPE (type), arg), - fold_convert_loc (loc, TREE_TYPE (type), - integer_zero_node)); - case COMPLEX_TYPE: - { - tree rpart, ipart; - - if (TREE_CODE (arg) == COMPLEX_EXPR) - { - rpart = fold_convert_loc (loc, TREE_TYPE (type), - TREE_OPERAND (arg, 0)); - ipart = fold_convert_loc (loc, TREE_TYPE (type), - TREE_OPERAND (arg, 1)); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); - } - - arg = save_expr (arg); - rpart = fold_build1_loc (loc, REALPART_EXPR, TREE_TYPE (orig), arg); - ipart = fold_build1_loc (loc, IMAGPART_EXPR, TREE_TYPE (orig), arg); - rpart = fold_convert_loc (loc, TREE_TYPE (type), rpart); - ipart = fold_convert_loc (loc, TREE_TYPE (type), ipart); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rpart, ipart); - } - - default: - gcc_unreachable (); - } - - case VECTOR_TYPE: - if (integer_zerop (arg)) - return build_zero_vector (type); - gcc_assert (tree_int_cst_equal (TYPE_SIZE (type), TYPE_SIZE (orig))); - gcc_assert (INTEGRAL_TYPE_P (orig) || POINTER_TYPE_P (orig) - || TREE_CODE (orig) == VECTOR_TYPE); - return fold_build1_loc (loc, VIEW_CONVERT_EXPR, type, arg); - - case VOID_TYPE: - tem = fold_ignored_result (arg); - return fold_build1_loc (loc, NOP_EXPR, type, tem); - - default: - if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (orig)) - return fold_build1_loc (loc, NOP_EXPR, type, arg); - gcc_unreachable (); - } - fold_convert_exit: - protected_set_expr_location_unshare (tem, loc); - return tem; -} - -/* Return false if expr can be assumed not to be an lvalue, true - otherwise. */ - -static bool -maybe_lvalue_p (const_tree x) -{ - /* We only need to wrap lvalue tree codes. */ - switch (TREE_CODE (x)) - { - case VAR_DECL: - case PARM_DECL: - case RESULT_DECL: - case LABEL_DECL: - case FUNCTION_DECL: - case SSA_NAME: - - case COMPONENT_REF: - case MEM_REF: - case INDIRECT_REF: - case ARRAY_REF: - case ARRAY_RANGE_REF: - case BIT_FIELD_REF: - case OBJ_TYPE_REF: - - case REALPART_EXPR: - case IMAGPART_EXPR: - case PREINCREMENT_EXPR: - case PREDECREMENT_EXPR: - case SAVE_EXPR: - case TRY_CATCH_EXPR: - case WITH_CLEANUP_EXPR: - case COMPOUND_EXPR: - case MODIFY_EXPR: - case TARGET_EXPR: - case COND_EXPR: - case BIND_EXPR: - case VIEW_CONVERT_EXPR: - break; - - default: - /* Assume the worst for front-end tree codes. */ - if ((int)TREE_CODE (x) >= NUM_TREE_CODES) - break; - return false; - } - - return true; -} - -/* Return an expr equal to X but certainly not valid as an lvalue. */ - -tree -non_lvalue_loc (location_t loc, tree x) -{ - /* While we are in GIMPLE, NON_LVALUE_EXPR doesn't mean anything to - us. */ - if (in_gimple_form) - return x; - - if (! maybe_lvalue_p (x)) - return x; - return build1_loc (loc, NON_LVALUE_EXPR, TREE_TYPE (x), x); -} - -/* Given a tree comparison code, return the code that is the logical inverse. - It is generally not safe to do this for floating-point comparisons, except - for EQ_EXPR, NE_EXPR, ORDERED_EXPR and UNORDERED_EXPR, so we return - ERROR_MARK in this case. */ - -enum tree_code -invert_tree_comparison (enum tree_code code, bool honor_nans) -{ - if (honor_nans && flag_trapping_math && code != EQ_EXPR && code != NE_EXPR - && code != ORDERED_EXPR && code != UNORDERED_EXPR) - return ERROR_MARK; - - switch (code) - { - case EQ_EXPR: - return NE_EXPR; - case NE_EXPR: - return EQ_EXPR; - case GT_EXPR: - return honor_nans ? UNLE_EXPR : LE_EXPR; - case GE_EXPR: - return honor_nans ? UNLT_EXPR : LT_EXPR; - case LT_EXPR: - return honor_nans ? UNGE_EXPR : GE_EXPR; - case LE_EXPR: - return honor_nans ? UNGT_EXPR : GT_EXPR; - case LTGT_EXPR: - return UNEQ_EXPR; - case UNEQ_EXPR: - return LTGT_EXPR; - case UNGT_EXPR: - return LE_EXPR; - case UNGE_EXPR: - return LT_EXPR; - case UNLT_EXPR: - return GE_EXPR; - case UNLE_EXPR: - return GT_EXPR; - case ORDERED_EXPR: - return UNORDERED_EXPR; - case UNORDERED_EXPR: - return ORDERED_EXPR; - default: - gcc_unreachable (); - } -} - -/* Similar, but return the comparison that results if the operands are - swapped. This is safe for floating-point. */ - -enum tree_code -swap_tree_comparison (enum tree_code code) -{ - switch (code) - { - case EQ_EXPR: - case NE_EXPR: - case ORDERED_EXPR: - case UNORDERED_EXPR: - case LTGT_EXPR: - case UNEQ_EXPR: - return code; - case GT_EXPR: - return LT_EXPR; - case GE_EXPR: - return LE_EXPR; - case LT_EXPR: - return GT_EXPR; - case LE_EXPR: - return GE_EXPR; - case UNGT_EXPR: - return UNLT_EXPR; - case UNGE_EXPR: - return UNLE_EXPR; - case UNLT_EXPR: - return UNGT_EXPR; - case UNLE_EXPR: - return UNGE_EXPR; - default: - gcc_unreachable (); - } -} - - -/* Convert a comparison tree code from an enum tree_code representation - into a compcode bit-based encoding. This function is the inverse of - compcode_to_comparison. */ - -static enum comparison_code -comparison_to_compcode (enum tree_code code) -{ - switch (code) - { - case LT_EXPR: - return COMPCODE_LT; - case EQ_EXPR: - return COMPCODE_EQ; - case LE_EXPR: - return COMPCODE_LE; - case GT_EXPR: - return COMPCODE_GT; - case NE_EXPR: - return COMPCODE_NE; - case GE_EXPR: - return COMPCODE_GE; - case ORDERED_EXPR: - return COMPCODE_ORD; - case UNORDERED_EXPR: - return COMPCODE_UNORD; - case UNLT_EXPR: - return COMPCODE_UNLT; - case UNEQ_EXPR: - return COMPCODE_UNEQ; - case UNLE_EXPR: - return COMPCODE_UNLE; - case UNGT_EXPR: - return COMPCODE_UNGT; - case LTGT_EXPR: - return COMPCODE_LTGT; - case UNGE_EXPR: - return COMPCODE_UNGE; - default: - gcc_unreachable (); - } -} - -/* Convert a compcode bit-based encoding of a comparison operator back - to GCC's enum tree_code representation. This function is the - inverse of comparison_to_compcode. */ - -static enum tree_code -compcode_to_comparison (enum comparison_code code) -{ - switch (code) - { - case COMPCODE_LT: - return LT_EXPR; - case COMPCODE_EQ: - return EQ_EXPR; - case COMPCODE_LE: - return LE_EXPR; - case COMPCODE_GT: - return GT_EXPR; - case COMPCODE_NE: - return NE_EXPR; - case COMPCODE_GE: - return GE_EXPR; - case COMPCODE_ORD: - return ORDERED_EXPR; - case COMPCODE_UNORD: - return UNORDERED_EXPR; - case COMPCODE_UNLT: - return UNLT_EXPR; - case COMPCODE_UNEQ: - return UNEQ_EXPR; - case COMPCODE_UNLE: - return UNLE_EXPR; - case COMPCODE_UNGT: - return UNGT_EXPR; - case COMPCODE_LTGT: - return LTGT_EXPR; - case COMPCODE_UNGE: - return UNGE_EXPR; - default: - gcc_unreachable (); - } -} - -/* Return true if COND1 tests the opposite condition of COND2. */ - -bool -inverse_conditions_p (const_tree cond1, const_tree cond2) -{ - return (COMPARISON_CLASS_P (cond1) - && COMPARISON_CLASS_P (cond2) - && (invert_tree_comparison - (TREE_CODE (cond1), - HONOR_NANS (TREE_OPERAND (cond1, 0))) == TREE_CODE (cond2)) - && operand_equal_p (TREE_OPERAND (cond1, 0), - TREE_OPERAND (cond2, 0), 0) - && operand_equal_p (TREE_OPERAND (cond1, 1), - TREE_OPERAND (cond2, 1), 0)); -} - -/* Return a tree for the comparison which is the combination of - doing the AND or OR (depending on CODE) of the two operations LCODE - and RCODE on the identical operands LL_ARG and LR_ARG. Take into account - the possibility of trapping if the mode has NaNs, and return NULL_TREE - if this makes the transformation invalid. */ - -tree -combine_comparisons (location_t loc, - enum tree_code code, enum tree_code lcode, - enum tree_code rcode, tree truth_type, - tree ll_arg, tree lr_arg) -{ - bool honor_nans = HONOR_NANS (ll_arg); - enum comparison_code lcompcode = comparison_to_compcode (lcode); - enum comparison_code rcompcode = comparison_to_compcode (rcode); - int compcode; - - switch (code) - { - case TRUTH_AND_EXPR: case TRUTH_ANDIF_EXPR: - compcode = lcompcode & rcompcode; - break; - - case TRUTH_OR_EXPR: case TRUTH_ORIF_EXPR: - compcode = lcompcode | rcompcode; - break; - - default: - return NULL_TREE; - } - - if (!honor_nans) - { - /* Eliminate unordered comparisons, as well as LTGT and ORD - which are not used unless the mode has NaNs. */ - compcode &= ~COMPCODE_UNORD; - if (compcode == COMPCODE_LTGT) - compcode = COMPCODE_NE; - else if (compcode == COMPCODE_ORD) - compcode = COMPCODE_TRUE; - } - else if (flag_trapping_math) - { - /* Check that the original operation and the optimized ones will trap - under the same condition. */ - bool ltrap = (lcompcode & COMPCODE_UNORD) == 0 - && (lcompcode != COMPCODE_EQ) - && (lcompcode != COMPCODE_ORD); - bool rtrap = (rcompcode & COMPCODE_UNORD) == 0 - && (rcompcode != COMPCODE_EQ) - && (rcompcode != COMPCODE_ORD); - bool trap = (compcode & COMPCODE_UNORD) == 0 - && (compcode != COMPCODE_EQ) - && (compcode != COMPCODE_ORD); - - /* In a short-circuited boolean expression the LHS might be - such that the RHS, if evaluated, will never trap. For - example, in ORD (x, y) && (x < y), we evaluate the RHS only - if neither x nor y is NaN. (This is a mixed blessing: for - example, the expression above will never trap, hence - optimizing it to x < y would be invalid). */ - if ((code == TRUTH_ORIF_EXPR && (lcompcode & COMPCODE_UNORD)) - || (code == TRUTH_ANDIF_EXPR && !(lcompcode & COMPCODE_UNORD))) - rtrap = false; - - /* If the comparison was short-circuited, and only the RHS - trapped, we may now generate a spurious trap. */ - if (rtrap && !ltrap - && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) - return NULL_TREE; - - /* If we changed the conditions that cause a trap, we lose. */ - if ((ltrap || rtrap) != trap) - return NULL_TREE; - } - - if (compcode == COMPCODE_TRUE) - return constant_boolean_node (true, truth_type); - else if (compcode == COMPCODE_FALSE) - return constant_boolean_node (false, truth_type); - else - { - enum tree_code tcode; - - tcode = compcode_to_comparison ((enum comparison_code) compcode); - return fold_build2_loc (loc, tcode, truth_type, ll_arg, lr_arg); - } -} - -/* Return nonzero if two operands (typically of the same tree node) - are necessarily equal. FLAGS modifies behavior as follows: - - If OEP_ONLY_CONST is set, only return nonzero for constants. - This function tests whether the operands are indistinguishable; - it does not test whether they are equal using C's == operation. - The distinction is important for IEEE floating point, because - (1) -0.0 and 0.0 are distinguishable, but -0.0==0.0, and - (2) two NaNs may be indistinguishable, but NaN!=NaN. - - If OEP_ONLY_CONST is unset, a VAR_DECL is considered equal to itself - even though it may hold multiple values during a function. - This is because a GCC tree node guarantees that nothing else is - executed between the evaluation of its "operands" (which may often - be evaluated in arbitrary order). Hence if the operands themselves - don't side-effect, the VAR_DECLs, PARM_DECLs etc... must hold the - same value in each operand/subexpression. Hence leaving OEP_ONLY_CONST - unset means assuming isochronic (or instantaneous) tree equivalence. - Unless comparing arbitrary expression trees, such as from different - statements, this flag can usually be left unset. - - If OEP_PURE_SAME is set, then pure functions with identical arguments - are considered the same. It is used when the caller has other ways - to ensure that global memory is unchanged in between. - - If OEP_ADDRESS_OF is set, we are actually comparing addresses of objects, - not values of expressions. - - If OEP_LEXICOGRAPHIC is set, then also handle expressions with side-effects - such as MODIFY_EXPR, RETURN_EXPR, as well as STATEMENT_LISTs. - - If OEP_BITWISE is set, then require the values to be bitwise identical - rather than simply numerically equal. Do not take advantage of things - like math-related flags or undefined behavior; only return true for - values that are provably bitwise identical in all circumstances. - - Unless OEP_MATCH_SIDE_EFFECTS is set, the function returns false on - any operand with side effect. This is unnecesarily conservative in the - case we know that arg0 and arg1 are in disjoint code paths (such as in - ?: operator). In addition OEP_MATCH_SIDE_EFFECTS is used when comparing - addresses with TREE_CONSTANT flag set so we know that &var == &var - even if var is volatile. */ - -bool -operand_compare::operand_equal_p (const_tree arg0, const_tree arg1, - unsigned int flags) -{ - bool r; - if (verify_hash_value (arg0, arg1, flags, &r)) - return r; - - STRIP_ANY_LOCATION_WRAPPER (arg0); - STRIP_ANY_LOCATION_WRAPPER (arg1); - - /* If either is ERROR_MARK, they aren't equal. */ - if (TREE_CODE (arg0) == ERROR_MARK || TREE_CODE (arg1) == ERROR_MARK - || TREE_TYPE (arg0) == error_mark_node - || TREE_TYPE (arg1) == error_mark_node) - return false; - - /* Similar, if either does not have a type (like a template id), - they aren't equal. */ - if (!TREE_TYPE (arg0) || !TREE_TYPE (arg1)) - return false; - - /* Bitwise identity makes no sense if the values have different layouts. */ - if ((flags & OEP_BITWISE) - && !tree_nop_conversion_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) - return false; - - /* We cannot consider pointers to different address space equal. */ - if (POINTER_TYPE_P (TREE_TYPE (arg0)) - && POINTER_TYPE_P (TREE_TYPE (arg1)) - && (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg0))) - != TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (arg1))))) - return false; - - /* Check equality of integer constants before bailing out due to - precision differences. */ - if (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST) - { - /* Address of INTEGER_CST is not defined; check that we did not forget - to drop the OEP_ADDRESS_OF flags. */ - gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); - return tree_int_cst_equal (arg0, arg1); - } - - if (!(flags & OEP_ADDRESS_OF)) - { - /* If both types don't have the same signedness, then we can't consider - them equal. We must check this before the STRIP_NOPS calls - because they may change the signedness of the arguments. As pointers - strictly don't have a signedness, require either two pointers or - two non-pointers as well. */ - if (TYPE_UNSIGNED (TREE_TYPE (arg0)) != TYPE_UNSIGNED (TREE_TYPE (arg1)) - || POINTER_TYPE_P (TREE_TYPE (arg0)) - != POINTER_TYPE_P (TREE_TYPE (arg1))) - return false; - - /* If both types don't have the same precision, then it is not safe - to strip NOPs. */ - if (element_precision (TREE_TYPE (arg0)) - != element_precision (TREE_TYPE (arg1))) - return false; - - STRIP_NOPS (arg0); - STRIP_NOPS (arg1); - } -#if 0 - /* FIXME: Fortran FE currently produce ADDR_EXPR of NOP_EXPR. Enable the - sanity check once the issue is solved. */ - else - /* Addresses of conversions and SSA_NAMEs (and many other things) - are not defined. Check that we did not forget to drop the - OEP_ADDRESS_OF/OEP_CONSTANT_ADDRESS_OF flags. */ - gcc_checking_assert (!CONVERT_EXPR_P (arg0) && !CONVERT_EXPR_P (arg1) - && TREE_CODE (arg0) != SSA_NAME); -#endif - - /* In case both args are comparisons but with different comparison - code, try to swap the comparison operands of one arg to produce - a match and compare that variant. */ - if (TREE_CODE (arg0) != TREE_CODE (arg1) - && COMPARISON_CLASS_P (arg0) - && COMPARISON_CLASS_P (arg1)) - { - enum tree_code swap_code = swap_tree_comparison (TREE_CODE (arg1)); - - if (TREE_CODE (arg0) == swap_code) - return operand_equal_p (TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 1), flags) - && operand_equal_p (TREE_OPERAND (arg0, 1), - TREE_OPERAND (arg1, 0), flags); - } - - if (TREE_CODE (arg0) != TREE_CODE (arg1)) - { - /* NOP_EXPR and CONVERT_EXPR are considered equal. */ - if (CONVERT_EXPR_P (arg0) && CONVERT_EXPR_P (arg1)) - ; - else if (flags & OEP_ADDRESS_OF) - { - /* If we are interested in comparing addresses ignore - MEM_REF wrappings of the base that can appear just for - TBAA reasons. */ - if (TREE_CODE (arg0) == MEM_REF - && DECL_P (arg1) - && TREE_CODE (TREE_OPERAND (arg0, 0)) == ADDR_EXPR - && TREE_OPERAND (TREE_OPERAND (arg0, 0), 0) == arg1 - && integer_zerop (TREE_OPERAND (arg0, 1))) - return true; - else if (TREE_CODE (arg1) == MEM_REF - && DECL_P (arg0) - && TREE_CODE (TREE_OPERAND (arg1, 0)) == ADDR_EXPR - && TREE_OPERAND (TREE_OPERAND (arg1, 0), 0) == arg0 - && integer_zerop (TREE_OPERAND (arg1, 1))) - return true; - return false; - } - else - return false; - } - - /* When not checking adddresses, this is needed for conversions and for - COMPONENT_REF. Might as well play it safe and always test this. */ - if (TREE_CODE (TREE_TYPE (arg0)) == ERROR_MARK - || TREE_CODE (TREE_TYPE (arg1)) == ERROR_MARK - || (TYPE_MODE (TREE_TYPE (arg0)) != TYPE_MODE (TREE_TYPE (arg1)) - && !(flags & OEP_ADDRESS_OF))) - return false; - - /* If ARG0 and ARG1 are the same SAVE_EXPR, they are necessarily equal. - We don't care about side effects in that case because the SAVE_EXPR - takes care of that for us. In all other cases, two expressions are - equal if they have no side effects. If we have two identical - expressions with side effects that should be treated the same due - to the only side effects being identical SAVE_EXPR's, that will - be detected in the recursive calls below. - If we are taking an invariant address of two identical objects - they are necessarily equal as well. */ - if (arg0 == arg1 && ! (flags & OEP_ONLY_CONST) - && (TREE_CODE (arg0) == SAVE_EXPR - || (flags & OEP_MATCH_SIDE_EFFECTS) - || (! TREE_SIDE_EFFECTS (arg0) && ! TREE_SIDE_EFFECTS (arg1)))) - return true; - - /* Next handle constant cases, those for which we can return 1 even - if ONLY_CONST is set. */ - if (TREE_CONSTANT (arg0) && TREE_CONSTANT (arg1)) - switch (TREE_CODE (arg0)) - { - case INTEGER_CST: - return tree_int_cst_equal (arg0, arg1); - - case FIXED_CST: - return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (arg0), - TREE_FIXED_CST (arg1)); - - case REAL_CST: - if (real_identical (&TREE_REAL_CST (arg0), &TREE_REAL_CST (arg1))) - return true; - - if (!(flags & OEP_BITWISE) && !HONOR_SIGNED_ZEROS (arg0)) - { - /* If we do not distinguish between signed and unsigned zero, - consider them equal. */ - if (real_zerop (arg0) && real_zerop (arg1)) - return true; - } - return false; - - case VECTOR_CST: - { - if (VECTOR_CST_LOG2_NPATTERNS (arg0) - != VECTOR_CST_LOG2_NPATTERNS (arg1)) - return false; - - if (VECTOR_CST_NELTS_PER_PATTERN (arg0) - != VECTOR_CST_NELTS_PER_PATTERN (arg1)) - return false; - - unsigned int count = vector_cst_encoded_nelts (arg0); - for (unsigned int i = 0; i < count; ++i) - if (!operand_equal_p (VECTOR_CST_ENCODED_ELT (arg0, i), - VECTOR_CST_ENCODED_ELT (arg1, i), flags)) - return false; - return true; - } - - case COMPLEX_CST: - return (operand_equal_p (TREE_REALPART (arg0), TREE_REALPART (arg1), - flags) - && operand_equal_p (TREE_IMAGPART (arg0), TREE_IMAGPART (arg1), - flags)); - - case STRING_CST: - return (TREE_STRING_LENGTH (arg0) == TREE_STRING_LENGTH (arg1) - && ! memcmp (TREE_STRING_POINTER (arg0), - TREE_STRING_POINTER (arg1), - TREE_STRING_LENGTH (arg0))); - - case ADDR_EXPR: - gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); - return operand_equal_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg1, 0), - flags | OEP_ADDRESS_OF - | OEP_MATCH_SIDE_EFFECTS); - case CONSTRUCTOR: - /* In GIMPLE empty constructors are allowed in initializers of - aggregates. */ - return !CONSTRUCTOR_NELTS (arg0) && !CONSTRUCTOR_NELTS (arg1); - default: - break; - } - - /* Don't handle more cases for OEP_BITWISE, since we can't guarantee that - two instances of undefined behavior will give identical results. */ - if (flags & (OEP_ONLY_CONST | OEP_BITWISE)) - return false; - -/* Define macros to test an operand from arg0 and arg1 for equality and a - variant that allows null and views null as being different from any - non-null value. In the latter case, if either is null, the both - must be; otherwise, do the normal comparison. */ -#define OP_SAME(N) operand_equal_p (TREE_OPERAND (arg0, N), \ - TREE_OPERAND (arg1, N), flags) - -#define OP_SAME_WITH_NULL(N) \ - ((!TREE_OPERAND (arg0, N) || !TREE_OPERAND (arg1, N)) \ - ? TREE_OPERAND (arg0, N) == TREE_OPERAND (arg1, N) : OP_SAME (N)) - - switch (TREE_CODE_CLASS (TREE_CODE (arg0))) - { - case tcc_unary: - /* Two conversions are equal only if signedness and modes match. */ - switch (TREE_CODE (arg0)) - { - CASE_CONVERT: - case FIX_TRUNC_EXPR: - if (TYPE_UNSIGNED (TREE_TYPE (arg0)) - != TYPE_UNSIGNED (TREE_TYPE (arg1))) - return false; - break; - default: - break; - } - - return OP_SAME (0); - - - case tcc_comparison: - case tcc_binary: - if (OP_SAME (0) && OP_SAME (1)) - return true; - - /* For commutative ops, allow the other order. */ - return (commutative_tree_code (TREE_CODE (arg0)) - && operand_equal_p (TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 1), flags) - && operand_equal_p (TREE_OPERAND (arg0, 1), - TREE_OPERAND (arg1, 0), flags)); - - case tcc_reference: - /* If either of the pointer (or reference) expressions we are - dereferencing contain a side effect, these cannot be equal, - but their addresses can be. */ - if ((flags & OEP_MATCH_SIDE_EFFECTS) == 0 - && (TREE_SIDE_EFFECTS (arg0) - || TREE_SIDE_EFFECTS (arg1))) - return false; - - switch (TREE_CODE (arg0)) - { - case INDIRECT_REF: - if (!(flags & OEP_ADDRESS_OF)) - { - if (TYPE_ALIGN (TREE_TYPE (arg0)) - != TYPE_ALIGN (TREE_TYPE (arg1))) - return false; - /* Verify that the access types are compatible. */ - if (TYPE_MAIN_VARIANT (TREE_TYPE (arg0)) - != TYPE_MAIN_VARIANT (TREE_TYPE (arg1))) - return false; - } - flags &= ~OEP_ADDRESS_OF; - return OP_SAME (0); - - case IMAGPART_EXPR: - /* Require the same offset. */ - if (!operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), - TYPE_SIZE (TREE_TYPE (arg1)), - flags & ~OEP_ADDRESS_OF)) - return false; - - /* Fallthru. */ - case REALPART_EXPR: - case VIEW_CONVERT_EXPR: - return OP_SAME (0); - - case TARGET_MEM_REF: - case MEM_REF: - if (!(flags & OEP_ADDRESS_OF)) - { - /* Require equal access sizes */ - if (TYPE_SIZE (TREE_TYPE (arg0)) != TYPE_SIZE (TREE_TYPE (arg1)) - && (!TYPE_SIZE (TREE_TYPE (arg0)) - || !TYPE_SIZE (TREE_TYPE (arg1)) - || !operand_equal_p (TYPE_SIZE (TREE_TYPE (arg0)), - TYPE_SIZE (TREE_TYPE (arg1)), - flags))) - return false; - /* Verify that access happens in similar types. */ - if (!types_compatible_p (TREE_TYPE (arg0), TREE_TYPE (arg1))) - return false; - /* Verify that accesses are TBAA compatible. */ - if (!alias_ptr_types_compatible_p - (TREE_TYPE (TREE_OPERAND (arg0, 1)), - TREE_TYPE (TREE_OPERAND (arg1, 1))) - || (MR_DEPENDENCE_CLIQUE (arg0) - != MR_DEPENDENCE_CLIQUE (arg1)) - || (MR_DEPENDENCE_BASE (arg0) - != MR_DEPENDENCE_BASE (arg1))) - return false; - /* Verify that alignment is compatible. */ - if (TYPE_ALIGN (TREE_TYPE (arg0)) - != TYPE_ALIGN (TREE_TYPE (arg1))) - return false; - } - flags &= ~OEP_ADDRESS_OF; - return (OP_SAME (0) && OP_SAME (1) - /* TARGET_MEM_REF require equal extra operands. */ - && (TREE_CODE (arg0) != TARGET_MEM_REF - || (OP_SAME_WITH_NULL (2) - && OP_SAME_WITH_NULL (3) - && OP_SAME_WITH_NULL (4)))); - - case ARRAY_REF: - case ARRAY_RANGE_REF: - if (!OP_SAME (0)) - return false; - flags &= ~OEP_ADDRESS_OF; - /* Compare the array index by value if it is constant first as we - may have different types but same value here. */ - return ((tree_int_cst_equal (TREE_OPERAND (arg0, 1), - TREE_OPERAND (arg1, 1)) - || OP_SAME (1)) - && OP_SAME_WITH_NULL (2) - && OP_SAME_WITH_NULL (3) - /* Compare low bound and element size as with OEP_ADDRESS_OF - we have to account for the offset of the ref. */ - && (TREE_TYPE (TREE_OPERAND (arg0, 0)) - == TREE_TYPE (TREE_OPERAND (arg1, 0)) - || (operand_equal_p (array_ref_low_bound - (CONST_CAST_TREE (arg0)), - array_ref_low_bound - (CONST_CAST_TREE (arg1)), flags) - && operand_equal_p (array_ref_element_size - (CONST_CAST_TREE (arg0)), - array_ref_element_size - (CONST_CAST_TREE (arg1)), - flags)))); - - case COMPONENT_REF: - /* Handle operand 2 the same as for ARRAY_REF. Operand 0 - may be NULL when we're called to compare MEM_EXPRs. */ - if (!OP_SAME_WITH_NULL (0)) - return false; - { - bool compare_address = flags & OEP_ADDRESS_OF; - - /* Most of time we only need to compare FIELD_DECLs for equality. - However when determining address look into actual offsets. - These may match for unions and unshared record types. */ - flags &= ~OEP_ADDRESS_OF; - if (!OP_SAME (1)) - { - if (compare_address - && (flags & OEP_ADDRESS_OF_SAME_FIELD) == 0) - { - if (TREE_OPERAND (arg0, 2) - || TREE_OPERAND (arg1, 2)) - return OP_SAME_WITH_NULL (2); - tree field0 = TREE_OPERAND (arg0, 1); - tree field1 = TREE_OPERAND (arg1, 1); - - if (!operand_equal_p (DECL_FIELD_OFFSET (field0), - DECL_FIELD_OFFSET (field1), flags) - || !operand_equal_p (DECL_FIELD_BIT_OFFSET (field0), - DECL_FIELD_BIT_OFFSET (field1), - flags)) - return false; - } - else - return false; - } - } - return OP_SAME_WITH_NULL (2); - - case BIT_FIELD_REF: - if (!OP_SAME (0)) - return false; - flags &= ~OEP_ADDRESS_OF; - return OP_SAME (1) && OP_SAME (2); - - default: - return false; - } - - case tcc_expression: - switch (TREE_CODE (arg0)) - { - case ADDR_EXPR: - /* Be sure we pass right ADDRESS_OF flag. */ - gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); - return operand_equal_p (TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 0), - flags | OEP_ADDRESS_OF); - - case TRUTH_NOT_EXPR: - return OP_SAME (0); - - case TRUTH_ANDIF_EXPR: - case TRUTH_ORIF_EXPR: - return OP_SAME (0) && OP_SAME (1); - - case WIDEN_MULT_PLUS_EXPR: - case WIDEN_MULT_MINUS_EXPR: - if (!OP_SAME (2)) - return false; - /* The multiplcation operands are commutative. */ - /* FALLTHRU */ - - case TRUTH_AND_EXPR: - case TRUTH_OR_EXPR: - case TRUTH_XOR_EXPR: - if (OP_SAME (0) && OP_SAME (1)) - return true; - - /* Otherwise take into account this is a commutative operation. */ - return (operand_equal_p (TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 1), flags) - && operand_equal_p (TREE_OPERAND (arg0, 1), - TREE_OPERAND (arg1, 0), flags)); - - case COND_EXPR: - if (! OP_SAME (1) || ! OP_SAME_WITH_NULL (2)) - return false; - flags &= ~OEP_ADDRESS_OF; - return OP_SAME (0); - - case BIT_INSERT_EXPR: - /* BIT_INSERT_EXPR has an implict operand as the type precision - of op1. Need to check to make sure they are the same. */ - if (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST - && TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST - && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg0, 1))) - != TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 1)))) - return false; - /* FALLTHRU */ - - case VEC_COND_EXPR: - case DOT_PROD_EXPR: - return OP_SAME (0) && OP_SAME (1) && OP_SAME (2); - - case MODIFY_EXPR: - case INIT_EXPR: - case COMPOUND_EXPR: - case PREDECREMENT_EXPR: - case PREINCREMENT_EXPR: - case POSTDECREMENT_EXPR: - case POSTINCREMENT_EXPR: - if (flags & OEP_LEXICOGRAPHIC) - return OP_SAME (0) && OP_SAME (1); - return false; - - case CLEANUP_POINT_EXPR: - case EXPR_STMT: - case SAVE_EXPR: - if (flags & OEP_LEXICOGRAPHIC) - return OP_SAME (0); - return false; - - case OBJ_TYPE_REF: - /* Virtual table reference. */ - if (!operand_equal_p (OBJ_TYPE_REF_EXPR (arg0), - OBJ_TYPE_REF_EXPR (arg1), flags)) - return false; - flags &= ~OEP_ADDRESS_OF; - if (tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg0)) - != tree_to_uhwi (OBJ_TYPE_REF_TOKEN (arg1))) - return false; - if (!operand_equal_p (OBJ_TYPE_REF_OBJECT (arg0), - OBJ_TYPE_REF_OBJECT (arg1), flags)) - return false; - if (virtual_method_call_p (arg0)) - { - if (!virtual_method_call_p (arg1)) - return false; - return types_same_for_odr (obj_type_ref_class (arg0), - obj_type_ref_class (arg1)); - } - return false; - - default: - return false; - } - - case tcc_vl_exp: - switch (TREE_CODE (arg0)) - { - case CALL_EXPR: - if ((CALL_EXPR_FN (arg0) == NULL_TREE) - != (CALL_EXPR_FN (arg1) == NULL_TREE)) - /* If not both CALL_EXPRs are either internal or normal function - functions, then they are not equal. */ - return false; - else if (CALL_EXPR_FN (arg0) == NULL_TREE) - { - /* If the CALL_EXPRs call different internal functions, then they - are not equal. */ - if (CALL_EXPR_IFN (arg0) != CALL_EXPR_IFN (arg1)) - return false; - } - else - { - /* If the CALL_EXPRs call different functions, then they are not - equal. */ - if (! operand_equal_p (CALL_EXPR_FN (arg0), CALL_EXPR_FN (arg1), - flags)) - return false; - } - - /* FIXME: We could skip this test for OEP_MATCH_SIDE_EFFECTS. */ - { - unsigned int cef = call_expr_flags (arg0); - if (flags & OEP_PURE_SAME) - cef &= ECF_CONST | ECF_PURE; - else - cef &= ECF_CONST; - if (!cef && !(flags & OEP_LEXICOGRAPHIC)) - return false; - } - - /* Now see if all the arguments are the same. */ - { - const_call_expr_arg_iterator iter0, iter1; - const_tree a0, a1; - for (a0 = first_const_call_expr_arg (arg0, &iter0), - a1 = first_const_call_expr_arg (arg1, &iter1); - a0 && a1; - a0 = next_const_call_expr_arg (&iter0), - a1 = next_const_call_expr_arg (&iter1)) - if (! operand_equal_p (a0, a1, flags)) - return false; - - /* If we get here and both argument lists are exhausted - then the CALL_EXPRs are equal. */ - return ! (a0 || a1); - } - default: - return false; - } - - case tcc_declaration: - /* Consider __builtin_sqrt equal to sqrt. */ - if (TREE_CODE (arg0) == FUNCTION_DECL) - return (fndecl_built_in_p (arg0) && fndecl_built_in_p (arg1) - && DECL_BUILT_IN_CLASS (arg0) == DECL_BUILT_IN_CLASS (arg1) - && (DECL_UNCHECKED_FUNCTION_CODE (arg0) - == DECL_UNCHECKED_FUNCTION_CODE (arg1))); - - if (DECL_P (arg0) - && (flags & OEP_DECL_NAME) - && (flags & OEP_LEXICOGRAPHIC)) - { - /* Consider decls with the same name equal. The caller needs - to make sure they refer to the same entity (such as a function - formal parameter). */ - tree a0name = DECL_NAME (arg0); - tree a1name = DECL_NAME (arg1); - const char *a0ns = a0name ? IDENTIFIER_POINTER (a0name) : NULL; - const char *a1ns = a1name ? IDENTIFIER_POINTER (a1name) : NULL; - return a0ns && a1ns && strcmp (a0ns, a1ns) == 0; - } - return false; - - case tcc_exceptional: - if (TREE_CODE (arg0) == CONSTRUCTOR) - { - if (CONSTRUCTOR_NO_CLEARING (arg0) != CONSTRUCTOR_NO_CLEARING (arg1)) - return false; - - /* In GIMPLE constructors are used only to build vectors from - elements. Individual elements in the constructor must be - indexed in increasing order and form an initial sequence. - - We make no effort to compare constructors in generic. - (see sem_variable::equals in ipa-icf which can do so for - constants). */ - if (!VECTOR_TYPE_P (TREE_TYPE (arg0)) - || !VECTOR_TYPE_P (TREE_TYPE (arg1))) - return false; - - /* Be sure that vectors constructed have the same representation. - We only tested element precision and modes to match. - Vectors may be BLKmode and thus also check that the number of - parts match. */ - if (maybe_ne (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), - TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)))) - return false; - - vec<constructor_elt, va_gc> *v0 = CONSTRUCTOR_ELTS (arg0); - vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (arg1); - unsigned int len = vec_safe_length (v0); - - if (len != vec_safe_length (v1)) - return false; - - for (unsigned int i = 0; i < len; i++) - { - constructor_elt *c0 = &(*v0)[i]; - constructor_elt *c1 = &(*v1)[i]; - - if (!operand_equal_p (c0->value, c1->value, flags) - /* In GIMPLE the indexes can be either NULL or matching i. - Double check this so we won't get false - positives for GENERIC. */ - || (c0->index - && (TREE_CODE (c0->index) != INTEGER_CST - || compare_tree_int (c0->index, i))) - || (c1->index - && (TREE_CODE (c1->index) != INTEGER_CST - || compare_tree_int (c1->index, i)))) - return false; - } - return true; - } - else if (TREE_CODE (arg0) == STATEMENT_LIST - && (flags & OEP_LEXICOGRAPHIC)) - { - /* Compare the STATEMENT_LISTs. */ - tree_stmt_iterator tsi1, tsi2; - tree body1 = CONST_CAST_TREE (arg0); - tree body2 = CONST_CAST_TREE (arg1); - for (tsi1 = tsi_start (body1), tsi2 = tsi_start (body2); ; - tsi_next (&tsi1), tsi_next (&tsi2)) - { - /* The lists don't have the same number of statements. */ - if (tsi_end_p (tsi1) ^ tsi_end_p (tsi2)) - return false; - if (tsi_end_p (tsi1) && tsi_end_p (tsi2)) - return true; - if (!operand_equal_p (tsi_stmt (tsi1), tsi_stmt (tsi2), - flags & (OEP_LEXICOGRAPHIC - | OEP_NO_HASH_CHECK))) - return false; - } - } - return false; - - case tcc_statement: - switch (TREE_CODE (arg0)) - { - case RETURN_EXPR: - if (flags & OEP_LEXICOGRAPHIC) - return OP_SAME_WITH_NULL (0); - return false; - case DEBUG_BEGIN_STMT: - if (flags & OEP_LEXICOGRAPHIC) - return true; - return false; - default: - return false; - } - - default: - return false; - } - -#undef OP_SAME -#undef OP_SAME_WITH_NULL -} - -/* Generate a hash value for an expression. This can be used iteratively - by passing a previous result as the HSTATE argument. */ - -void -operand_compare::hash_operand (const_tree t, inchash::hash &hstate, - unsigned int flags) -{ - int i; - enum tree_code code; - enum tree_code_class tclass; - - if (t == NULL_TREE || t == error_mark_node) - { - hstate.merge_hash (0); - return; - } - - STRIP_ANY_LOCATION_WRAPPER (t); - - if (!(flags & OEP_ADDRESS_OF)) - STRIP_NOPS (t); - - code = TREE_CODE (t); - - switch (code) - { - /* Alas, constants aren't shared, so we can't rely on pointer - identity. */ - case VOID_CST: - hstate.merge_hash (0); - return; - case INTEGER_CST: - gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); - for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++) - hstate.add_hwi (TREE_INT_CST_ELT (t, i)); - return; - case REAL_CST: - { - unsigned int val2; - if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t)) - val2 = rvc_zero; - else - val2 = real_hash (TREE_REAL_CST_PTR (t)); - hstate.merge_hash (val2); - return; - } - case FIXED_CST: - { - unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t)); - hstate.merge_hash (val2); - return; - } - case STRING_CST: - hstate.add ((const void *) TREE_STRING_POINTER (t), - TREE_STRING_LENGTH (t)); - return; - case COMPLEX_CST: - hash_operand (TREE_REALPART (t), hstate, flags); - hash_operand (TREE_IMAGPART (t), hstate, flags); - return; - case VECTOR_CST: - { - hstate.add_int (VECTOR_CST_NPATTERNS (t)); - hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t)); - unsigned int count = vector_cst_encoded_nelts (t); - for (unsigned int i = 0; i < count; ++i) - hash_operand (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags); - return; - } - case SSA_NAME: - /* We can just compare by pointer. */ - hstate.add_hwi (SSA_NAME_VERSION (t)); - return; - case PLACEHOLDER_EXPR: - /* The node itself doesn't matter. */ - return; - case BLOCK: - case OMP_CLAUSE: - /* Ignore. */ - return; - case TREE_LIST: - /* A list of expressions, for a CALL_EXPR or as the elements of a - VECTOR_CST. */ - for (; t; t = TREE_CHAIN (t)) - hash_operand (TREE_VALUE (t), hstate, flags); - return; - case CONSTRUCTOR: - { - unsigned HOST_WIDE_INT idx; - tree field, value; - flags &= ~OEP_ADDRESS_OF; - hstate.add_int (CONSTRUCTOR_NO_CLEARING (t)); - FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value) - { - /* In GIMPLE the indexes can be either NULL or matching i. */ - if (field == NULL_TREE) - field = bitsize_int (idx); - hash_operand (field, hstate, flags); - hash_operand (value, hstate, flags); - } - return; - } - case STATEMENT_LIST: - { - tree_stmt_iterator i; - for (i = tsi_start (CONST_CAST_TREE (t)); - !tsi_end_p (i); tsi_next (&i)) - hash_operand (tsi_stmt (i), hstate, flags); - return; - } - case TREE_VEC: - for (i = 0; i < TREE_VEC_LENGTH (t); ++i) - hash_operand (TREE_VEC_ELT (t, i), hstate, flags); - return; - case IDENTIFIER_NODE: - hstate.add_object (IDENTIFIER_HASH_VALUE (t)); - return; - case FUNCTION_DECL: - /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form. - Otherwise nodes that compare equal according to operand_equal_p might - get different hash codes. However, don't do this for machine specific - or front end builtins, since the function code is overloaded in those - cases. */ - if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL - && builtin_decl_explicit_p (DECL_FUNCTION_CODE (t))) - { - t = builtin_decl_explicit (DECL_FUNCTION_CODE (t)); - code = TREE_CODE (t); - } - /* FALL THROUGH */ - default: - if (POLY_INT_CST_P (t)) - { - for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i) - hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i))); - return; - } - tclass = TREE_CODE_CLASS (code); - - if (tclass == tcc_declaration) - { - /* DECL's have a unique ID */ - hstate.add_hwi (DECL_UID (t)); - } - else if (tclass == tcc_comparison && !commutative_tree_code (code)) - { - /* For comparisons that can be swapped, use the lower - tree code. */ - enum tree_code ccode = swap_tree_comparison (code); - if (code < ccode) - ccode = code; - hstate.add_object (ccode); - hash_operand (TREE_OPERAND (t, ccode != code), hstate, flags); - hash_operand (TREE_OPERAND (t, ccode == code), hstate, flags); - } - else if (CONVERT_EXPR_CODE_P (code)) - { - /* NOP_EXPR and CONVERT_EXPR are considered equal by - operand_equal_p. */ - enum tree_code ccode = NOP_EXPR; - hstate.add_object (ccode); - - /* Don't hash the type, that can lead to having nodes which - compare equal according to operand_equal_p, but which - have different hash codes. Make sure to include signedness - in the hash computation. */ - hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t))); - hash_operand (TREE_OPERAND (t, 0), hstate, flags); - } - /* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */ - else if (code == MEM_REF - && (flags & OEP_ADDRESS_OF) != 0 - && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR - && DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0)) - && integer_zerop (TREE_OPERAND (t, 1))) - hash_operand (TREE_OPERAND (TREE_OPERAND (t, 0), 0), - hstate, flags); - /* Don't ICE on FE specific trees, or their arguments etc. - during operand_equal_p hash verification. */ - else if (!IS_EXPR_CODE_CLASS (tclass)) - gcc_assert (flags & OEP_HASH_CHECK); - else - { - unsigned int sflags = flags; - - hstate.add_object (code); - - switch (code) - { - case ADDR_EXPR: - gcc_checking_assert (!(flags & OEP_ADDRESS_OF)); - flags |= OEP_ADDRESS_OF; - sflags = flags; - break; - - case INDIRECT_REF: - case MEM_REF: - case TARGET_MEM_REF: - flags &= ~OEP_ADDRESS_OF; - sflags = flags; - break; - - case COMPONENT_REF: - if (sflags & OEP_ADDRESS_OF) - { - hash_operand (TREE_OPERAND (t, 0), hstate, flags); - if (TREE_OPERAND (t, 2)) - hash_operand (TREE_OPERAND (t, 2), hstate, - flags & ~OEP_ADDRESS_OF); - else - { - tree field = TREE_OPERAND (t, 1); - hash_operand (DECL_FIELD_OFFSET (field), - hstate, flags & ~OEP_ADDRESS_OF); - hash_operand (DECL_FIELD_BIT_OFFSET (field), - hstate, flags & ~OEP_ADDRESS_OF); - } - return; - } - break; - case ARRAY_REF: - case ARRAY_RANGE_REF: - case BIT_FIELD_REF: - sflags &= ~OEP_ADDRESS_OF; - break; - - case COND_EXPR: - flags &= ~OEP_ADDRESS_OF; - break; - - case WIDEN_MULT_PLUS_EXPR: - case WIDEN_MULT_MINUS_EXPR: - { - /* The multiplication operands are commutative. */ - inchash::hash one, two; - hash_operand (TREE_OPERAND (t, 0), one, flags); - hash_operand (TREE_OPERAND (t, 1), two, flags); - hstate.add_commutative (one, two); - hash_operand (TREE_OPERAND (t, 2), two, flags); - return; - } - - case CALL_EXPR: - if (CALL_EXPR_FN (t) == NULL_TREE) - hstate.add_int (CALL_EXPR_IFN (t)); - break; - - case TARGET_EXPR: - /* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT. - Usually different TARGET_EXPRs just should use - different temporaries in their slots. */ - hash_operand (TARGET_EXPR_SLOT (t), hstate, flags); - return; - - case OBJ_TYPE_REF: - /* Virtual table reference. */ - inchash::add_expr (OBJ_TYPE_REF_EXPR (t), hstate, flags); - flags &= ~OEP_ADDRESS_OF; - inchash::add_expr (OBJ_TYPE_REF_TOKEN (t), hstate, flags); - inchash::add_expr (OBJ_TYPE_REF_OBJECT (t), hstate, flags); - if (!virtual_method_call_p (t)) - return; - if (tree c = obj_type_ref_class (t)) - { - c = TYPE_NAME (TYPE_MAIN_VARIANT (c)); - /* We compute mangled names only when free_lang_data is run. - In that case we can hash precisely. */ - if (TREE_CODE (c) == TYPE_DECL - && DECL_ASSEMBLER_NAME_SET_P (c)) - hstate.add_object - (IDENTIFIER_HASH_VALUE - (DECL_ASSEMBLER_NAME (c))); - } - return; - default: - break; - } - - /* Don't hash the type, that can lead to having nodes which - compare equal according to operand_equal_p, but which - have different hash codes. */ - if (code == NON_LVALUE_EXPR) - { - /* Make sure to include signness in the hash computation. */ - hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t))); - hash_operand (TREE_OPERAND (t, 0), hstate, flags); - } - - else if (commutative_tree_code (code)) - { - /* It's a commutative expression. We want to hash it the same - however it appears. We do this by first hashing both operands - and then rehashing based on the order of their independent - hashes. */ - inchash::hash one, two; - hash_operand (TREE_OPERAND (t, 0), one, flags); - hash_operand (TREE_OPERAND (t, 1), two, flags); - hstate.add_commutative (one, two); - } - else - for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i) - hash_operand (TREE_OPERAND (t, i), hstate, - i == 0 ? flags : sflags); - } - return; - } -} - -bool -operand_compare::verify_hash_value (const_tree arg0, const_tree arg1, - unsigned int flags, bool *ret) -{ - /* When checking and unless comparing DECL names, verify that if - the outermost operand_equal_p call returns non-zero then ARG0 - and ARG1 have the same hash value. */ - if (flag_checking && !(flags & OEP_NO_HASH_CHECK)) - { - if (operand_equal_p (arg0, arg1, flags | OEP_NO_HASH_CHECK)) - { - if (arg0 != arg1 && !(flags & OEP_DECL_NAME)) - { - inchash::hash hstate0 (0), hstate1 (0); - hash_operand (arg0, hstate0, flags | OEP_HASH_CHECK); - hash_operand (arg1, hstate1, flags | OEP_HASH_CHECK); - hashval_t h0 = hstate0.end (); - hashval_t h1 = hstate1.end (); - gcc_assert (h0 == h1); - } - *ret = true; - } - else - *ret = false; - - return true; - } - - return false; -} - - -static operand_compare default_compare_instance; - -/* Conveinece wrapper around operand_compare class because usually we do - not need to play with the valueizer. */ - -bool -operand_equal_p (const_tree arg0, const_tree arg1, unsigned int flags) -{ - return default_compare_instance.operand_equal_p (arg0, arg1, flags); -} - -namespace inchash -{ - -/* Generate a hash value for an expression. This can be used iteratively - by passing a previous result as the HSTATE argument. - - This function is intended to produce the same hash for expressions which - would compare equal using operand_equal_p. */ -void -add_expr (const_tree t, inchash::hash &hstate, unsigned int flags) -{ - default_compare_instance.hash_operand (t, hstate, flags); -} - -} - -/* Similar to operand_equal_p, but see if ARG0 might be a variant of ARG1 - with a different signedness or a narrower precision. */ - -static bool -operand_equal_for_comparison_p (tree arg0, tree arg1) -{ - if (operand_equal_p (arg0, arg1, 0)) - return true; - - if (! INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - || ! INTEGRAL_TYPE_P (TREE_TYPE (arg1))) - return false; - - /* Discard any conversions that don't change the modes of ARG0 and ARG1 - and see if the inner values are the same. This removes any - signedness comparison, which doesn't matter here. */ - tree op0 = arg0; - tree op1 = arg1; - STRIP_NOPS (op0); - STRIP_NOPS (op1); - if (operand_equal_p (op0, op1, 0)) - return true; - - /* Discard a single widening conversion from ARG1 and see if the inner - value is the same as ARG0. */ - if (CONVERT_EXPR_P (arg1) - && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg1, 0))) - && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg1, 0))) - < TYPE_PRECISION (TREE_TYPE (arg1)) - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return true; - - return false; -} - -/* See if ARG is an expression that is either a comparison or is performing - arithmetic on comparisons. The comparisons must only be comparing - two different values, which will be stored in *CVAL1 and *CVAL2; if - they are nonzero it means that some operands have already been found. - No variables may be used anywhere else in the expression except in the - comparisons. - - If this is true, return 1. Otherwise, return zero. */ - -static bool -twoval_comparison_p (tree arg, tree *cval1, tree *cval2) -{ - enum tree_code code = TREE_CODE (arg); - enum tree_code_class tclass = TREE_CODE_CLASS (code); - - /* We can handle some of the tcc_expression cases here. */ - if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) - tclass = tcc_unary; - else if (tclass == tcc_expression - && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR - || code == COMPOUND_EXPR)) - tclass = tcc_binary; - - switch (tclass) - { - case tcc_unary: - return twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2); - - case tcc_binary: - return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) - && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2)); - - case tcc_constant: - return true; - - case tcc_expression: - if (code == COND_EXPR) - return (twoval_comparison_p (TREE_OPERAND (arg, 0), cval1, cval2) - && twoval_comparison_p (TREE_OPERAND (arg, 1), cval1, cval2) - && twoval_comparison_p (TREE_OPERAND (arg, 2), cval1, cval2)); - return false; - - case tcc_comparison: - /* First see if we can handle the first operand, then the second. For - the second operand, we know *CVAL1 can't be zero. It must be that - one side of the comparison is each of the values; test for the - case where this isn't true by failing if the two operands - are the same. */ - - if (operand_equal_p (TREE_OPERAND (arg, 0), - TREE_OPERAND (arg, 1), 0)) - return false; - - if (*cval1 == 0) - *cval1 = TREE_OPERAND (arg, 0); - else if (operand_equal_p (*cval1, TREE_OPERAND (arg, 0), 0)) - ; - else if (*cval2 == 0) - *cval2 = TREE_OPERAND (arg, 0); - else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 0), 0)) - ; - else - return false; - - if (operand_equal_p (*cval1, TREE_OPERAND (arg, 1), 0)) - ; - else if (*cval2 == 0) - *cval2 = TREE_OPERAND (arg, 1); - else if (operand_equal_p (*cval2, TREE_OPERAND (arg, 1), 0)) - ; - else - return false; - - return true; - - default: - return false; - } -} - -/* ARG is a tree that is known to contain just arithmetic operations and - comparisons. Evaluate the operations in the tree substituting NEW0 for - any occurrence of OLD0 as an operand of a comparison and likewise for - NEW1 and OLD1. */ - -static tree -eval_subst (location_t loc, tree arg, tree old0, tree new0, - tree old1, tree new1) -{ - tree type = TREE_TYPE (arg); - enum tree_code code = TREE_CODE (arg); - enum tree_code_class tclass = TREE_CODE_CLASS (code); - - /* We can handle some of the tcc_expression cases here. */ - if (tclass == tcc_expression && code == TRUTH_NOT_EXPR) - tclass = tcc_unary; - else if (tclass == tcc_expression - && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR)) - tclass = tcc_binary; - - switch (tclass) - { - case tcc_unary: - return fold_build1_loc (loc, code, type, - eval_subst (loc, TREE_OPERAND (arg, 0), - old0, new0, old1, new1)); - - case tcc_binary: - return fold_build2_loc (loc, code, type, - eval_subst (loc, TREE_OPERAND (arg, 0), - old0, new0, old1, new1), - eval_subst (loc, TREE_OPERAND (arg, 1), - old0, new0, old1, new1)); - - case tcc_expression: - switch (code) - { - case SAVE_EXPR: - return eval_subst (loc, TREE_OPERAND (arg, 0), old0, new0, - old1, new1); - - case COMPOUND_EXPR: - return eval_subst (loc, TREE_OPERAND (arg, 1), old0, new0, - old1, new1); - - case COND_EXPR: - return fold_build3_loc (loc, code, type, - eval_subst (loc, TREE_OPERAND (arg, 0), - old0, new0, old1, new1), - eval_subst (loc, TREE_OPERAND (arg, 1), - old0, new0, old1, new1), - eval_subst (loc, TREE_OPERAND (arg, 2), - old0, new0, old1, new1)); - default: - break; - } - /* Fall through - ??? */ - - case tcc_comparison: - { - tree arg0 = TREE_OPERAND (arg, 0); - tree arg1 = TREE_OPERAND (arg, 1); - - /* We need to check both for exact equality and tree equality. The - former will be true if the operand has a side-effect. In that - case, we know the operand occurred exactly once. */ - - if (arg0 == old0 || operand_equal_p (arg0, old0, 0)) - arg0 = new0; - else if (arg0 == old1 || operand_equal_p (arg0, old1, 0)) - arg0 = new1; - - if (arg1 == old0 || operand_equal_p (arg1, old0, 0)) - arg1 = new0; - else if (arg1 == old1 || operand_equal_p (arg1, old1, 0)) - arg1 = new1; - - return fold_build2_loc (loc, code, type, arg0, arg1); - } - - default: - return arg; - } -} - -/* Return a tree for the case when the result of an expression is RESULT - converted to TYPE and OMITTED was previously an operand of the expression - but is now not needed (e.g., we folded OMITTED * 0). - - If OMITTED has side effects, we must evaluate it. Otherwise, just do - the conversion of RESULT to TYPE. */ - -tree -omit_one_operand_loc (location_t loc, tree type, tree result, tree omitted) -{ - tree t = fold_convert_loc (loc, type, result); - - /* If the resulting operand is an empty statement, just return the omitted - statement casted to void. */ - if (IS_EMPTY_STMT (t) && TREE_SIDE_EFFECTS (omitted)) - return build1_loc (loc, NOP_EXPR, void_type_node, - fold_ignored_result (omitted)); - - if (TREE_SIDE_EFFECTS (omitted)) - return build2_loc (loc, COMPOUND_EXPR, type, - fold_ignored_result (omitted), t); - - return non_lvalue_loc (loc, t); -} - -/* Return a tree for the case when the result of an expression is RESULT - converted to TYPE and OMITTED1 and OMITTED2 were previously operands - of the expression but are now not needed. - - If OMITTED1 or OMITTED2 has side effects, they must be evaluated. - If both OMITTED1 and OMITTED2 have side effects, OMITTED1 is - evaluated before OMITTED2. Otherwise, if neither has side effects, - just do the conversion of RESULT to TYPE. */ - -tree -omit_two_operands_loc (location_t loc, tree type, tree result, - tree omitted1, tree omitted2) -{ - tree t = fold_convert_loc (loc, type, result); - - if (TREE_SIDE_EFFECTS (omitted2)) - t = build2_loc (loc, COMPOUND_EXPR, type, omitted2, t); - if (TREE_SIDE_EFFECTS (omitted1)) - t = build2_loc (loc, COMPOUND_EXPR, type, omitted1, t); - - return TREE_CODE (t) != COMPOUND_EXPR ? non_lvalue_loc (loc, t) : t; -} - - -/* Return a simplified tree node for the truth-negation of ARG. This - never alters ARG itself. We assume that ARG is an operation that - returns a truth value (0 or 1). - - FIXME: one would think we would fold the result, but it causes - problems with the dominator optimizer. */ - -static tree -fold_truth_not_expr (location_t loc, tree arg) -{ - tree type = TREE_TYPE (arg); - enum tree_code code = TREE_CODE (arg); - location_t loc1, loc2; - - /* If this is a comparison, we can simply invert it, except for - floating-point non-equality comparisons, in which case we just - enclose a TRUTH_NOT_EXPR around what we have. */ - - if (TREE_CODE_CLASS (code) == tcc_comparison) - { - tree op_type = TREE_TYPE (TREE_OPERAND (arg, 0)); - if (FLOAT_TYPE_P (op_type) - && flag_trapping_math - && code != ORDERED_EXPR && code != UNORDERED_EXPR - && code != NE_EXPR && code != EQ_EXPR) - return NULL_TREE; - - code = invert_tree_comparison (code, HONOR_NANS (op_type)); - if (code == ERROR_MARK) - return NULL_TREE; - - tree ret = build2_loc (loc, code, type, TREE_OPERAND (arg, 0), - TREE_OPERAND (arg, 1)); - copy_warning (ret, arg); - return ret; - } - - switch (code) - { - case INTEGER_CST: - return constant_boolean_node (integer_zerop (arg), type); - - case TRUTH_AND_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); - return build2_loc (loc, TRUTH_OR_EXPR, type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), - invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); - - case TRUTH_OR_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); - return build2_loc (loc, TRUTH_AND_EXPR, type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), - invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); - - case TRUTH_XOR_EXPR: - /* Here we can invert either operand. We invert the first operand - unless the second operand is a TRUTH_NOT_EXPR in which case our - result is the XOR of the first operand with the inside of the - negation of the second operand. */ - - if (TREE_CODE (TREE_OPERAND (arg, 1)) == TRUTH_NOT_EXPR) - return build2_loc (loc, TRUTH_XOR_EXPR, type, TREE_OPERAND (arg, 0), - TREE_OPERAND (TREE_OPERAND (arg, 1), 0)); - else - return build2_loc (loc, TRUTH_XOR_EXPR, type, - invert_truthvalue_loc (loc, TREE_OPERAND (arg, 0)), - TREE_OPERAND (arg, 1)); - - case TRUTH_ANDIF_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); - return build2_loc (loc, TRUTH_ORIF_EXPR, type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), - invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); - - case TRUTH_ORIF_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - loc2 = expr_location_or (TREE_OPERAND (arg, 1), loc); - return build2_loc (loc, TRUTH_ANDIF_EXPR, type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)), - invert_truthvalue_loc (loc2, TREE_OPERAND (arg, 1))); - - case TRUTH_NOT_EXPR: - return TREE_OPERAND (arg, 0); - - case COND_EXPR: - { - tree arg1 = TREE_OPERAND (arg, 1); - tree arg2 = TREE_OPERAND (arg, 2); - - loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); - loc2 = expr_location_or (TREE_OPERAND (arg, 2), loc); - - /* A COND_EXPR may have a throw as one operand, which - then has void type. Just leave void operands - as they are. */ - return build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg, 0), - VOID_TYPE_P (TREE_TYPE (arg1)) - ? arg1 : invert_truthvalue_loc (loc1, arg1), - VOID_TYPE_P (TREE_TYPE (arg2)) - ? arg2 : invert_truthvalue_loc (loc2, arg2)); - } - - case COMPOUND_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 1), loc); - return build2_loc (loc, COMPOUND_EXPR, type, - TREE_OPERAND (arg, 0), - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 1))); - - case NON_LVALUE_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - return invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0)); - - CASE_CONVERT: - if (TREE_CODE (TREE_TYPE (arg)) == BOOLEAN_TYPE) - return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); - - /* fall through */ - - case FLOAT_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - return build1_loc (loc, TREE_CODE (arg), type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); - - case BIT_AND_EXPR: - if (!integer_onep (TREE_OPERAND (arg, 1))) - return NULL_TREE; - return build2_loc (loc, EQ_EXPR, type, arg, build_int_cst (type, 0)); - - case SAVE_EXPR: - return build1_loc (loc, TRUTH_NOT_EXPR, type, arg); - - case CLEANUP_POINT_EXPR: - loc1 = expr_location_or (TREE_OPERAND (arg, 0), loc); - return build1_loc (loc, CLEANUP_POINT_EXPR, type, - invert_truthvalue_loc (loc1, TREE_OPERAND (arg, 0))); - - default: - return NULL_TREE; - } -} - -/* Fold the truth-negation of ARG. This never alters ARG itself. We - assume that ARG is an operation that returns a truth value (0 or 1 - for scalars, 0 or -1 for vectors). Return the folded expression if - folding is successful. Otherwise, return NULL_TREE. */ - -static tree -fold_invert_truthvalue (location_t loc, tree arg) -{ - tree type = TREE_TYPE (arg); - return fold_unary_loc (loc, VECTOR_TYPE_P (type) - ? BIT_NOT_EXPR - : TRUTH_NOT_EXPR, - type, arg); -} - -/* Return a simplified tree node for the truth-negation of ARG. This - never alters ARG itself. We assume that ARG is an operation that - returns a truth value (0 or 1 for scalars, 0 or -1 for vectors). */ - -tree -invert_truthvalue_loc (location_t loc, tree arg) -{ - if (TREE_CODE (arg) == ERROR_MARK) - return arg; - - tree type = TREE_TYPE (arg); - return fold_build1_loc (loc, VECTOR_TYPE_P (type) - ? BIT_NOT_EXPR - : TRUTH_NOT_EXPR, - type, arg); -} - -/* Return a BIT_FIELD_REF of type TYPE to refer to BITSIZE bits of INNER - starting at BITPOS. The field is unsigned if UNSIGNEDP is nonzero - and uses reverse storage order if REVERSEP is nonzero. ORIG_INNER - is the original memory reference used to preserve the alias set of - the access. */ - -static tree -make_bit_field_ref (location_t loc, tree inner, tree orig_inner, tree type, - HOST_WIDE_INT bitsize, poly_int64 bitpos, - int unsignedp, int reversep) -{ - tree result, bftype; - - /* Attempt not to lose the access path if possible. */ - if (TREE_CODE (orig_inner) == COMPONENT_REF) - { - tree ninner = TREE_OPERAND (orig_inner, 0); - machine_mode nmode; - poly_int64 nbitsize, nbitpos; - tree noffset; - int nunsignedp, nreversep, nvolatilep = 0; - tree base = get_inner_reference (ninner, &nbitsize, &nbitpos, - &noffset, &nmode, &nunsignedp, - &nreversep, &nvolatilep); - if (base == inner - && noffset == NULL_TREE - && known_subrange_p (bitpos, bitsize, nbitpos, nbitsize) - && !reversep - && !nreversep - && !nvolatilep) - { - inner = ninner; - bitpos -= nbitpos; - } - } - - alias_set_type iset = get_alias_set (orig_inner); - if (iset == 0 && get_alias_set (inner) != iset) - inner = fold_build2 (MEM_REF, TREE_TYPE (inner), - build_fold_addr_expr (inner), - build_int_cst (ptr_type_node, 0)); - - if (known_eq (bitpos, 0) && !reversep) - { - tree size = TYPE_SIZE (TREE_TYPE (inner)); - if ((INTEGRAL_TYPE_P (TREE_TYPE (inner)) - || POINTER_TYPE_P (TREE_TYPE (inner))) - && tree_fits_shwi_p (size) - && tree_to_shwi (size) == bitsize) - return fold_convert_loc (loc, type, inner); - } - - bftype = type; - if (TYPE_PRECISION (bftype) != bitsize - || TYPE_UNSIGNED (bftype) == !unsignedp) - bftype = build_nonstandard_integer_type (bitsize, 0); - - result = build3_loc (loc, BIT_FIELD_REF, bftype, inner, - bitsize_int (bitsize), bitsize_int (bitpos)); - REF_REVERSE_STORAGE_ORDER (result) = reversep; - - if (bftype != type) - result = fold_convert_loc (loc, type, result); - - return result; -} - -/* Optimize a bit-field compare. - - There are two cases: First is a compare against a constant and the - second is a comparison of two items where the fields are at the same - bit position relative to the start of a chunk (byte, halfword, word) - large enough to contain it. In these cases we can avoid the shift - implicit in bitfield extractions. - - For constants, we emit a compare of the shifted constant with the - BIT_AND_EXPR of a mask and a byte, halfword, or word of the operand being - compared. For two fields at the same position, we do the ANDs with the - similar mask and compare the result of the ANDs. - - CODE is the comparison code, known to be either NE_EXPR or EQ_EXPR. - COMPARE_TYPE is the type of the comparison, and LHS and RHS - are the left and right operands of the comparison, respectively. - - If the optimization described above can be done, we return the resulting - tree. Otherwise we return zero. */ - -static tree -optimize_bit_field_compare (location_t loc, enum tree_code code, - tree compare_type, tree lhs, tree rhs) -{ - poly_int64 plbitpos, plbitsize, rbitpos, rbitsize; - HOST_WIDE_INT lbitpos, lbitsize, nbitpos, nbitsize; - tree type = TREE_TYPE (lhs); - tree unsigned_type; - int const_p = TREE_CODE (rhs) == INTEGER_CST; - machine_mode lmode, rmode; - scalar_int_mode nmode; - int lunsignedp, runsignedp; - int lreversep, rreversep; - int lvolatilep = 0, rvolatilep = 0; - tree linner, rinner = NULL_TREE; - tree mask; - tree offset; - - /* Get all the information about the extractions being done. If the bit size - is the same as the size of the underlying object, we aren't doing an - extraction at all and so can do nothing. We also don't want to - do anything if the inner expression is a PLACEHOLDER_EXPR since we - then will no longer be able to replace it. */ - linner = get_inner_reference (lhs, &plbitsize, &plbitpos, &offset, &lmode, - &lunsignedp, &lreversep, &lvolatilep); - if (linner == lhs - || !known_size_p (plbitsize) - || !plbitsize.is_constant (&lbitsize) - || !plbitpos.is_constant (&lbitpos) - || known_eq (lbitsize, GET_MODE_BITSIZE (lmode)) - || offset != 0 - || TREE_CODE (linner) == PLACEHOLDER_EXPR - || lvolatilep) - return 0; - - if (const_p) - rreversep = lreversep; - else - { - /* If this is not a constant, we can only do something if bit positions, - sizes, signedness and storage order are the same. */ - rinner - = get_inner_reference (rhs, &rbitsize, &rbitpos, &offset, &rmode, - &runsignedp, &rreversep, &rvolatilep); - - if (rinner == rhs - || maybe_ne (lbitpos, rbitpos) - || maybe_ne (lbitsize, rbitsize) - || lunsignedp != runsignedp - || lreversep != rreversep - || offset != 0 - || TREE_CODE (rinner) == PLACEHOLDER_EXPR - || rvolatilep) - return 0; - } - - /* Honor the C++ memory model and mimic what RTL expansion does. */ - poly_uint64 bitstart = 0; - poly_uint64 bitend = 0; - if (TREE_CODE (lhs) == COMPONENT_REF) - { - get_bit_range (&bitstart, &bitend, lhs, &plbitpos, &offset); - if (!plbitpos.is_constant (&lbitpos) || offset != NULL_TREE) - return 0; - } - - /* See if we can find a mode to refer to this field. We should be able to, - but fail if we can't. */ - if (!get_best_mode (lbitsize, lbitpos, bitstart, bitend, - const_p ? TYPE_ALIGN (TREE_TYPE (linner)) - : MIN (TYPE_ALIGN (TREE_TYPE (linner)), - TYPE_ALIGN (TREE_TYPE (rinner))), - BITS_PER_WORD, false, &nmode)) - return 0; - - /* Set signed and unsigned types of the precision of this mode for the - shifts below. */ - unsigned_type = lang_hooks.types.type_for_mode (nmode, 1); - - /* Compute the bit position and size for the new reference and our offset - within it. If the new reference is the same size as the original, we - won't optimize anything, so return zero. */ - nbitsize = GET_MODE_BITSIZE (nmode); - nbitpos = lbitpos & ~ (nbitsize - 1); - lbitpos -= nbitpos; - if (nbitsize == lbitsize) - return 0; - - if (lreversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) - lbitpos = nbitsize - lbitsize - lbitpos; - - /* Make the mask to be used against the extracted field. */ - mask = build_int_cst_type (unsigned_type, -1); - mask = const_binop (LSHIFT_EXPR, mask, size_int (nbitsize - lbitsize)); - mask = const_binop (RSHIFT_EXPR, mask, - size_int (nbitsize - lbitsize - lbitpos)); - - if (! const_p) - { - if (nbitpos < 0) - return 0; - - /* If not comparing with constant, just rework the comparison - and return. */ - tree t1 = make_bit_field_ref (loc, linner, lhs, unsigned_type, - nbitsize, nbitpos, 1, lreversep); - t1 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t1, mask); - tree t2 = make_bit_field_ref (loc, rinner, rhs, unsigned_type, - nbitsize, nbitpos, 1, rreversep); - t2 = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, t2, mask); - return fold_build2_loc (loc, code, compare_type, t1, t2); - } - - /* Otherwise, we are handling the constant case. See if the constant is too - big for the field. Warn and return a tree for 0 (false) if so. We do - this not only for its own sake, but to avoid having to test for this - error case below. If we didn't, we might generate wrong code. - - For unsigned fields, the constant shifted right by the field length should - be all zero. For signed fields, the high-order bits should agree with - the sign bit. */ - - if (lunsignedp) - { - if (wi::lrshift (wi::to_wide (rhs), lbitsize) != 0) - { - warning (0, "comparison is always %d due to width of bit-field", - code == NE_EXPR); - return constant_boolean_node (code == NE_EXPR, compare_type); - } - } - else - { - wide_int tem = wi::arshift (wi::to_wide (rhs), lbitsize - 1); - if (tem != 0 && tem != -1) - { - warning (0, "comparison is always %d due to width of bit-field", - code == NE_EXPR); - return constant_boolean_node (code == NE_EXPR, compare_type); - } - } - - if (nbitpos < 0) - return 0; - - /* Single-bit compares should always be against zero. */ - if (lbitsize == 1 && ! integer_zerop (rhs)) - { - code = code == EQ_EXPR ? NE_EXPR : EQ_EXPR; - rhs = build_int_cst (type, 0); - } - - /* Make a new bitfield reference, shift the constant over the - appropriate number of bits and mask it with the computed mask - (in case this was a signed field). If we changed it, make a new one. */ - lhs = make_bit_field_ref (loc, linner, lhs, unsigned_type, - nbitsize, nbitpos, 1, lreversep); - - rhs = const_binop (BIT_AND_EXPR, - const_binop (LSHIFT_EXPR, - fold_convert_loc (loc, unsigned_type, rhs), - size_int (lbitpos)), - mask); - - lhs = build2_loc (loc, code, compare_type, - build2 (BIT_AND_EXPR, unsigned_type, lhs, mask), rhs); - return lhs; -} - -/* Subroutine for fold_truth_andor_1: decode a field reference. - - If EXP is a comparison reference, we return the innermost reference. - - *PBITSIZE is set to the number of bits in the reference, *PBITPOS is - set to the starting bit number. - - If the innermost field can be completely contained in a mode-sized - unit, *PMODE is set to that mode. Otherwise, it is set to VOIDmode. - - *PVOLATILEP is set to 1 if the any expression encountered is volatile; - otherwise it is not changed. - - *PUNSIGNEDP is set to the signedness of the field. - - *PREVERSEP is set to the storage order of the field. - - *PMASK is set to the mask used. This is either contained in a - BIT_AND_EXPR or derived from the width of the field. - - *PAND_MASK is set to the mask found in a BIT_AND_EXPR, if any. - - Return 0 if this is not a component reference or is one that we can't - do anything with. */ - -static tree -decode_field_reference (location_t loc, tree *exp_, HOST_WIDE_INT *pbitsize, - HOST_WIDE_INT *pbitpos, machine_mode *pmode, - int *punsignedp, int *preversep, int *pvolatilep, - tree *pmask, tree *pand_mask) -{ - tree exp = *exp_; - tree outer_type = 0; - tree and_mask = 0; - tree mask, inner, offset; - tree unsigned_type; - unsigned int precision; - - /* All the optimizations using this function assume integer fields. - There are problems with FP fields since the type_for_size call - below can fail for, e.g., XFmode. */ - if (! INTEGRAL_TYPE_P (TREE_TYPE (exp))) - return NULL_TREE; - - /* We are interested in the bare arrangement of bits, so strip everything - that doesn't affect the machine mode. However, record the type of the - outermost expression if it may matter below. */ - if (CONVERT_EXPR_P (exp) - || TREE_CODE (exp) == NON_LVALUE_EXPR) - outer_type = TREE_TYPE (exp); - STRIP_NOPS (exp); - - if (TREE_CODE (exp) == BIT_AND_EXPR) - { - and_mask = TREE_OPERAND (exp, 1); - exp = TREE_OPERAND (exp, 0); - STRIP_NOPS (exp); STRIP_NOPS (and_mask); - if (TREE_CODE (and_mask) != INTEGER_CST) - return NULL_TREE; - } - - poly_int64 poly_bitsize, poly_bitpos; - inner = get_inner_reference (exp, &poly_bitsize, &poly_bitpos, &offset, - pmode, punsignedp, preversep, pvolatilep); - if ((inner == exp && and_mask == 0) - || !poly_bitsize.is_constant (pbitsize) - || !poly_bitpos.is_constant (pbitpos) - || *pbitsize < 0 - || offset != 0 - || TREE_CODE (inner) == PLACEHOLDER_EXPR - /* Reject out-of-bound accesses (PR79731). */ - || (! AGGREGATE_TYPE_P (TREE_TYPE (inner)) - && compare_tree_int (TYPE_SIZE (TREE_TYPE (inner)), - *pbitpos + *pbitsize) < 0)) - return NULL_TREE; - - unsigned_type = lang_hooks.types.type_for_size (*pbitsize, 1); - if (unsigned_type == NULL_TREE) - return NULL_TREE; - - *exp_ = exp; - - /* If the number of bits in the reference is the same as the bitsize of - the outer type, then the outer type gives the signedness. Otherwise - (in case of a small bitfield) the signedness is unchanged. */ - if (outer_type && *pbitsize == TYPE_PRECISION (outer_type)) - *punsignedp = TYPE_UNSIGNED (outer_type); - - /* Compute the mask to access the bitfield. */ - precision = TYPE_PRECISION (unsigned_type); - - mask = build_int_cst_type (unsigned_type, -1); - - mask = const_binop (LSHIFT_EXPR, mask, size_int (precision - *pbitsize)); - mask = const_binop (RSHIFT_EXPR, mask, size_int (precision - *pbitsize)); - - /* Merge it with the mask we found in the BIT_AND_EXPR, if any. */ - if (and_mask != 0) - mask = fold_build2_loc (loc, BIT_AND_EXPR, unsigned_type, - fold_convert_loc (loc, unsigned_type, and_mask), mask); - - *pmask = mask; - *pand_mask = and_mask; - return inner; -} - -/* Return nonzero if MASK represents a mask of SIZE ones in the low-order - bit positions and MASK is SIGNED. */ - -static bool -all_ones_mask_p (const_tree mask, unsigned int size) -{ - tree type = TREE_TYPE (mask); - unsigned int precision = TYPE_PRECISION (type); - - /* If this function returns true when the type of the mask is - UNSIGNED, then there will be errors. In particular see - gcc.c-torture/execute/990326-1.c. There does not appear to be - any documentation paper trail as to why this is so. But the pre - wide-int worked with that restriction and it has been preserved - here. */ - if (size > precision || TYPE_SIGN (type) == UNSIGNED) - return false; - - return wi::mask (size, false, precision) == wi::to_wide (mask); -} - -/* Subroutine for fold: determine if VAL is the INTEGER_CONST that - represents the sign bit of EXP's type. If EXP represents a sign - or zero extension, also test VAL against the unextended type. - The return value is the (sub)expression whose sign bit is VAL, - or NULL_TREE otherwise. */ - -tree -sign_bit_p (tree exp, const_tree val) -{ - int width; - tree t; - - /* Tree EXP must have an integral type. */ - t = TREE_TYPE (exp); - if (! INTEGRAL_TYPE_P (t)) - return NULL_TREE; - - /* Tree VAL must be an integer constant. */ - if (TREE_CODE (val) != INTEGER_CST - || TREE_OVERFLOW (val)) - return NULL_TREE; - - width = TYPE_PRECISION (t); - if (wi::only_sign_bit_p (wi::to_wide (val), width)) - return exp; - - /* Handle extension from a narrower type. */ - if (TREE_CODE (exp) == NOP_EXPR - && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (exp, 0))) < width) - return sign_bit_p (TREE_OPERAND (exp, 0), val); - - return NULL_TREE; -} - -/* Subroutine for fold_truth_andor_1: determine if an operand is simple enough - to be evaluated unconditionally. */ - -static bool -simple_operand_p (const_tree exp) -{ - /* Strip any conversions that don't change the machine mode. */ - STRIP_NOPS (exp); - - return (CONSTANT_CLASS_P (exp) - || TREE_CODE (exp) == SSA_NAME - || (DECL_P (exp) - && ! TREE_ADDRESSABLE (exp) - && ! TREE_THIS_VOLATILE (exp) - && ! DECL_NONLOCAL (exp) - /* Don't regard global variables as simple. They may be - allocated in ways unknown to the compiler (shared memory, - #pragma weak, etc). */ - && ! TREE_PUBLIC (exp) - && ! DECL_EXTERNAL (exp) - /* Weakrefs are not safe to be read, since they can be NULL. - They are !TREE_PUBLIC && !DECL_EXTERNAL but still - have DECL_WEAK flag set. */ - && (! VAR_OR_FUNCTION_DECL_P (exp) || ! DECL_WEAK (exp)) - /* Loading a static variable is unduly expensive, but global - registers aren't expensive. */ - && (! TREE_STATIC (exp) || DECL_REGISTER (exp)))); -} - -/* Subroutine for fold_truth_andor: determine if an operand is simple enough - to be evaluated unconditionally. - I addition to simple_operand_p, we assume that comparisons, conversions, - and logic-not operations are simple, if their operands are simple, too. */ - -static bool -simple_operand_p_2 (tree exp) -{ - enum tree_code code; - - if (TREE_SIDE_EFFECTS (exp) || generic_expr_could_trap_p (exp)) - return false; - - while (CONVERT_EXPR_P (exp)) - exp = TREE_OPERAND (exp, 0); - - code = TREE_CODE (exp); - - if (TREE_CODE_CLASS (code) == tcc_comparison) - return (simple_operand_p (TREE_OPERAND (exp, 0)) - && simple_operand_p (TREE_OPERAND (exp, 1))); - - if (code == TRUTH_NOT_EXPR) - return simple_operand_p_2 (TREE_OPERAND (exp, 0)); - - return simple_operand_p (exp); -} - - -/* The following functions are subroutines to fold_range_test and allow it to - try to change a logical combination of comparisons into a range test. - - For example, both - X == 2 || X == 3 || X == 4 || X == 5 - and - X >= 2 && X <= 5 - are converted to - (unsigned) (X - 2) <= 3 - - We describe each set of comparisons as being either inside or outside - a range, using a variable named like IN_P, and then describe the - range with a lower and upper bound. If one of the bounds is omitted, - it represents either the highest or lowest value of the type. - - In the comments below, we represent a range by two numbers in brackets - preceded by a "+" to designate being inside that range, or a "-" to - designate being outside that range, so the condition can be inverted by - flipping the prefix. An omitted bound is represented by a "-". For - example, "- [-, 10]" means being outside the range starting at the lowest - possible value and ending at 10, in other words, being greater than 10. - The range "+ [-, -]" is always true and hence the range "- [-, -]" is - always false. - - We set up things so that the missing bounds are handled in a consistent - manner so neither a missing bound nor "true" and "false" need to be - handled using a special case. */ - -/* Return the result of applying CODE to ARG0 and ARG1, but handle the case - of ARG0 and/or ARG1 being omitted, meaning an unlimited range. UPPER0_P - and UPPER1_P are nonzero if the respective argument is an upper bound - and zero for a lower. TYPE, if nonzero, is the type of the result; it - must be specified for a comparison. ARG1 will be converted to ARG0's - type if both are specified. */ - -static tree -range_binop (enum tree_code code, tree type, tree arg0, int upper0_p, - tree arg1, int upper1_p) -{ - tree tem; - int result; - int sgn0, sgn1; - - /* If neither arg represents infinity, do the normal operation. - Else, if not a comparison, return infinity. Else handle the special - comparison rules. Note that most of the cases below won't occur, but - are handled for consistency. */ - - if (arg0 != 0 && arg1 != 0) - { - tem = fold_build2 (code, type != 0 ? type : TREE_TYPE (arg0), - arg0, fold_convert (TREE_TYPE (arg0), arg1)); - STRIP_NOPS (tem); - return TREE_CODE (tem) == INTEGER_CST ? tem : 0; - } - - if (TREE_CODE_CLASS (code) != tcc_comparison) - return 0; - - /* Set SGN[01] to -1 if ARG[01] is a lower bound, 1 for upper, and 0 - for neither. In real maths, we cannot assume open ended ranges are - the same. But, this is computer arithmetic, where numbers are finite. - We can therefore make the transformation of any unbounded range with - the value Z, Z being greater than any representable number. This permits - us to treat unbounded ranges as equal. */ - sgn0 = arg0 != 0 ? 0 : (upper0_p ? 1 : -1); - sgn1 = arg1 != 0 ? 0 : (upper1_p ? 1 : -1); - switch (code) - { - case EQ_EXPR: - result = sgn0 == sgn1; - break; - case NE_EXPR: - result = sgn0 != sgn1; - break; - case LT_EXPR: - result = sgn0 < sgn1; - break; - case LE_EXPR: - result = sgn0 <= sgn1; - break; - case GT_EXPR: - result = sgn0 > sgn1; - break; - case GE_EXPR: - result = sgn0 >= sgn1; - break; - default: - gcc_unreachable (); - } - - return constant_boolean_node (result, type); -} - -/* Helper routine for make_range. Perform one step for it, return - new expression if the loop should continue or NULL_TREE if it should - stop. */ - -tree -make_range_step (location_t loc, enum tree_code code, tree arg0, tree arg1, - tree exp_type, tree *p_low, tree *p_high, int *p_in_p, - bool *strict_overflow_p) -{ - tree arg0_type = TREE_TYPE (arg0); - tree n_low, n_high, low = *p_low, high = *p_high; - int in_p = *p_in_p, n_in_p; - - switch (code) - { - case TRUTH_NOT_EXPR: - /* We can only do something if the range is testing for zero. */ - if (low == NULL_TREE || high == NULL_TREE - || ! integer_zerop (low) || ! integer_zerop (high)) - return NULL_TREE; - *p_in_p = ! in_p; - return arg0; - - case EQ_EXPR: case NE_EXPR: - case LT_EXPR: case LE_EXPR: case GE_EXPR: case GT_EXPR: - /* We can only do something if the range is testing for zero - and if the second operand is an integer constant. Note that - saying something is "in" the range we make is done by - complementing IN_P since it will set in the initial case of - being not equal to zero; "out" is leaving it alone. */ - if (low == NULL_TREE || high == NULL_TREE - || ! integer_zerop (low) || ! integer_zerop (high) - || TREE_CODE (arg1) != INTEGER_CST) - return NULL_TREE; - - switch (code) - { - case NE_EXPR: /* - [c, c] */ - low = high = arg1; - break; - case EQ_EXPR: /* + [c, c] */ - in_p = ! in_p, low = high = arg1; - break; - case GT_EXPR: /* - [-, c] */ - low = 0, high = arg1; - break; - case GE_EXPR: /* + [c, -] */ - in_p = ! in_p, low = arg1, high = 0; - break; - case LT_EXPR: /* - [c, -] */ - low = arg1, high = 0; - break; - case LE_EXPR: /* + [-, c] */ - in_p = ! in_p, low = 0, high = arg1; - break; - default: - gcc_unreachable (); - } - - /* If this is an unsigned comparison, we also know that EXP is - greater than or equal to zero. We base the range tests we make - on that fact, so we record it here so we can parse existing - range tests. We test arg0_type since often the return type - of, e.g. EQ_EXPR, is boolean. */ - if (TYPE_UNSIGNED (arg0_type) && (low == 0 || high == 0)) - { - if (! merge_ranges (&n_in_p, &n_low, &n_high, - in_p, low, high, 1, - build_int_cst (arg0_type, 0), - NULL_TREE)) - return NULL_TREE; - - in_p = n_in_p, low = n_low, high = n_high; - - /* If the high bound is missing, but we have a nonzero low - bound, reverse the range so it goes from zero to the low bound - minus 1. */ - if (high == 0 && low && ! integer_zerop (low)) - { - in_p = ! in_p; - high = range_binop (MINUS_EXPR, NULL_TREE, low, 0, - build_int_cst (TREE_TYPE (low), 1), 0); - low = build_int_cst (arg0_type, 0); - } - } - - *p_low = low; - *p_high = high; - *p_in_p = in_p; - return arg0; - - case NEGATE_EXPR: - /* If flag_wrapv and ARG0_TYPE is signed, make sure - low and high are non-NULL, then normalize will DTRT. */ - if (!TYPE_UNSIGNED (arg0_type) - && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) - { - if (low == NULL_TREE) - low = TYPE_MIN_VALUE (arg0_type); - if (high == NULL_TREE) - high = TYPE_MAX_VALUE (arg0_type); - } - - /* (-x) IN [a,b] -> x in [-b, -a] */ - n_low = range_binop (MINUS_EXPR, exp_type, - build_int_cst (exp_type, 0), - 0, high, 1); - n_high = range_binop (MINUS_EXPR, exp_type, - build_int_cst (exp_type, 0), - 0, low, 0); - if (n_high != 0 && TREE_OVERFLOW (n_high)) - return NULL_TREE; - goto normalize; - - case BIT_NOT_EXPR: - /* ~ X -> -X - 1 */ - return build2_loc (loc, MINUS_EXPR, exp_type, negate_expr (arg0), - build_int_cst (exp_type, 1)); - - case PLUS_EXPR: - case MINUS_EXPR: - if (TREE_CODE (arg1) != INTEGER_CST) - return NULL_TREE; - - /* If flag_wrapv and ARG0_TYPE is signed, then we cannot - move a constant to the other side. */ - if (!TYPE_UNSIGNED (arg0_type) - && !TYPE_OVERFLOW_UNDEFINED (arg0_type)) - return NULL_TREE; - - /* If EXP is signed, any overflow in the computation is undefined, - so we don't worry about it so long as our computations on - the bounds don't overflow. For unsigned, overflow is defined - and this is exactly the right thing. */ - n_low = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, - arg0_type, low, 0, arg1, 0); - n_high = range_binop (code == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR, - arg0_type, high, 1, arg1, 0); - if ((n_low != 0 && TREE_OVERFLOW (n_low)) - || (n_high != 0 && TREE_OVERFLOW (n_high))) - return NULL_TREE; - - if (TYPE_OVERFLOW_UNDEFINED (arg0_type)) - *strict_overflow_p = true; - - normalize: - /* Check for an unsigned range which has wrapped around the maximum - value thus making n_high < n_low, and normalize it. */ - if (n_low && n_high && tree_int_cst_lt (n_high, n_low)) - { - low = range_binop (PLUS_EXPR, arg0_type, n_high, 0, - build_int_cst (TREE_TYPE (n_high), 1), 0); - high = range_binop (MINUS_EXPR, arg0_type, n_low, 0, - build_int_cst (TREE_TYPE (n_low), 1), 0); - - /* If the range is of the form +/- [ x+1, x ], we won't - be able to normalize it. But then, it represents the - whole range or the empty set, so make it - +/- [ -, - ]. */ - if (tree_int_cst_equal (n_low, low) - && tree_int_cst_equal (n_high, high)) - low = high = 0; - else - in_p = ! in_p; - } - else - low = n_low, high = n_high; - - *p_low = low; - *p_high = high; - *p_in_p = in_p; - return arg0; - - CASE_CONVERT: - case NON_LVALUE_EXPR: - if (TYPE_PRECISION (arg0_type) > TYPE_PRECISION (exp_type)) - return NULL_TREE; - - if (! INTEGRAL_TYPE_P (arg0_type) - || (low != 0 && ! int_fits_type_p (low, arg0_type)) - || (high != 0 && ! int_fits_type_p (high, arg0_type))) - return NULL_TREE; - - n_low = low, n_high = high; - - if (n_low != 0) - n_low = fold_convert_loc (loc, arg0_type, n_low); - - if (n_high != 0) - n_high = fold_convert_loc (loc, arg0_type, n_high); - - /* If we're converting arg0 from an unsigned type, to exp, - a signed type, we will be doing the comparison as unsigned. - The tests above have already verified that LOW and HIGH - are both positive. - - So we have to ensure that we will handle large unsigned - values the same way that the current signed bounds treat - negative values. */ - - if (!TYPE_UNSIGNED (exp_type) && TYPE_UNSIGNED (arg0_type)) - { - tree high_positive; - tree equiv_type; - /* For fixed-point modes, we need to pass the saturating flag - as the 2nd parameter. */ - if (ALL_FIXED_POINT_MODE_P (TYPE_MODE (arg0_type))) - equiv_type - = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), - TYPE_SATURATING (arg0_type)); - else - equiv_type - = lang_hooks.types.type_for_mode (TYPE_MODE (arg0_type), 1); - - /* A range without an upper bound is, naturally, unbounded. - Since convert would have cropped a very large value, use - the max value for the destination type. */ - high_positive - = TYPE_MAX_VALUE (equiv_type) ? TYPE_MAX_VALUE (equiv_type) - : TYPE_MAX_VALUE (arg0_type); - - if (TYPE_PRECISION (exp_type) == TYPE_PRECISION (arg0_type)) - high_positive = fold_build2_loc (loc, RSHIFT_EXPR, arg0_type, - fold_convert_loc (loc, arg0_type, - high_positive), - build_int_cst (arg0_type, 1)); - - /* If the low bound is specified, "and" the range with the - range for which the original unsigned value will be - positive. */ - if (low != 0) - { - if (! merge_ranges (&n_in_p, &n_low, &n_high, 1, n_low, n_high, - 1, fold_convert_loc (loc, arg0_type, - integer_zero_node), - high_positive)) - return NULL_TREE; - - in_p = (n_in_p == in_p); - } - else - { - /* Otherwise, "or" the range with the range of the input - that will be interpreted as negative. */ - if (! merge_ranges (&n_in_p, &n_low, &n_high, 0, n_low, n_high, - 1, fold_convert_loc (loc, arg0_type, - integer_zero_node), - high_positive)) - return NULL_TREE; - - in_p = (in_p != n_in_p); - } - } - - *p_low = n_low; - *p_high = n_high; - *p_in_p = in_p; - return arg0; - - default: - return NULL_TREE; - } -} - -/* Given EXP, a logical expression, set the range it is testing into - variables denoted by PIN_P, PLOW, and PHIGH. Return the expression - actually being tested. *PLOW and *PHIGH will be made of the same - type as the returned expression. If EXP is not a comparison, we - will most likely not be returning a useful value and range. Set - *STRICT_OVERFLOW_P to true if the return value is only valid - because signed overflow is undefined; otherwise, do not change - *STRICT_OVERFLOW_P. */ - -tree -make_range (tree exp, int *pin_p, tree *plow, tree *phigh, - bool *strict_overflow_p) -{ - enum tree_code code; - tree arg0, arg1 = NULL_TREE; - tree exp_type, nexp; - int in_p; - tree low, high; - location_t loc = EXPR_LOCATION (exp); - - /* Start with simply saying "EXP != 0" and then look at the code of EXP - and see if we can refine the range. Some of the cases below may not - happen, but it doesn't seem worth worrying about this. We "continue" - the outer loop when we've changed something; otherwise we "break" - the switch, which will "break" the while. */ - - in_p = 0; - low = high = build_int_cst (TREE_TYPE (exp), 0); - - while (1) - { - code = TREE_CODE (exp); - exp_type = TREE_TYPE (exp); - arg0 = NULL_TREE; - - if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))) - { - if (TREE_OPERAND_LENGTH (exp) > 0) - arg0 = TREE_OPERAND (exp, 0); - if (TREE_CODE_CLASS (code) == tcc_binary - || TREE_CODE_CLASS (code) == tcc_comparison - || (TREE_CODE_CLASS (code) == tcc_expression - && TREE_OPERAND_LENGTH (exp) > 1)) - arg1 = TREE_OPERAND (exp, 1); - } - if (arg0 == NULL_TREE) - break; - - nexp = make_range_step (loc, code, arg0, arg1, exp_type, &low, - &high, &in_p, strict_overflow_p); - if (nexp == NULL_TREE) - break; - exp = nexp; - } - - /* If EXP is a constant, we can evaluate whether this is true or false. */ - if (TREE_CODE (exp) == INTEGER_CST) - { - in_p = in_p == (integer_onep (range_binop (GE_EXPR, integer_type_node, - exp, 0, low, 0)) - && integer_onep (range_binop (LE_EXPR, integer_type_node, - exp, 1, high, 1))); - low = high = 0; - exp = 0; - } - - *pin_p = in_p, *plow = low, *phigh = high; - return exp; -} - -/* Returns TRUE if [LOW, HIGH] range check can be optimized to - a bitwise check i.e. when - LOW == 0xXX...X00...0 - HIGH == 0xXX...X11...1 - Return corresponding mask in MASK and stem in VALUE. */ - -static bool -maskable_range_p (const_tree low, const_tree high, tree type, tree *mask, - tree *value) -{ - if (TREE_CODE (low) != INTEGER_CST - || TREE_CODE (high) != INTEGER_CST) - return false; - - unsigned prec = TYPE_PRECISION (type); - wide_int lo = wi::to_wide (low, prec); - wide_int hi = wi::to_wide (high, prec); - - wide_int end_mask = lo ^ hi; - if ((end_mask & (end_mask + 1)) != 0 - || (lo & end_mask) != 0) - return false; - - wide_int stem_mask = ~end_mask; - wide_int stem = lo & stem_mask; - if (stem != (hi & stem_mask)) - return false; - - *mask = wide_int_to_tree (type, stem_mask); - *value = wide_int_to_tree (type, stem); - - return true; -} - -/* Helper routine for build_range_check and match.pd. Return the type to - perform the check or NULL if it shouldn't be optimized. */ - -tree -range_check_type (tree etype) -{ - /* First make sure that arithmetics in this type is valid, then make sure - that it wraps around. */ - if (TREE_CODE (etype) == ENUMERAL_TYPE || TREE_CODE (etype) == BOOLEAN_TYPE) - etype = lang_hooks.types.type_for_size (TYPE_PRECISION (etype), 1); - - if (TREE_CODE (etype) == INTEGER_TYPE && !TYPE_UNSIGNED (etype)) - { - tree utype, minv, maxv; - - /* Check if (unsigned) INT_MAX + 1 == (unsigned) INT_MIN - for the type in question, as we rely on this here. */ - utype = unsigned_type_for (etype); - maxv = fold_convert (utype, TYPE_MAX_VALUE (etype)); - maxv = range_binop (PLUS_EXPR, NULL_TREE, maxv, 1, - build_int_cst (TREE_TYPE (maxv), 1), 1); - minv = fold_convert (utype, TYPE_MIN_VALUE (etype)); - - if (integer_zerop (range_binop (NE_EXPR, integer_type_node, - minv, 1, maxv, 1))) - etype = utype; - else - return NULL_TREE; - } - else if (POINTER_TYPE_P (etype) || TREE_CODE (etype) == OFFSET_TYPE) - etype = unsigned_type_for (etype); - return etype; -} - -/* Given a range, LOW, HIGH, and IN_P, an expression, EXP, and a result - type, TYPE, return an expression to test if EXP is in (or out of, depending - on IN_P) the range. Return 0 if the test couldn't be created. */ - -tree -build_range_check (location_t loc, tree type, tree exp, int in_p, - tree low, tree high) -{ - tree etype = TREE_TYPE (exp), mask, value; - - /* Disable this optimization for function pointer expressions - on targets that require function pointer canonicalization. */ - if (targetm.have_canonicalize_funcptr_for_compare () - && POINTER_TYPE_P (etype) - && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (etype))) - return NULL_TREE; - - if (! in_p) - { - value = build_range_check (loc, type, exp, 1, low, high); - if (value != 0) - return invert_truthvalue_loc (loc, value); - - return 0; - } - - if (low == 0 && high == 0) - return omit_one_operand_loc (loc, type, build_int_cst (type, 1), exp); - - if (low == 0) - return fold_build2_loc (loc, LE_EXPR, type, exp, - fold_convert_loc (loc, etype, high)); - - if (high == 0) - return fold_build2_loc (loc, GE_EXPR, type, exp, - fold_convert_loc (loc, etype, low)); - - if (operand_equal_p (low, high, 0)) - return fold_build2_loc (loc, EQ_EXPR, type, exp, - fold_convert_loc (loc, etype, low)); - - if (TREE_CODE (exp) == BIT_AND_EXPR - && maskable_range_p (low, high, etype, &mask, &value)) - return fold_build2_loc (loc, EQ_EXPR, type, - fold_build2_loc (loc, BIT_AND_EXPR, etype, - exp, mask), - value); - - if (integer_zerop (low)) - { - if (! TYPE_UNSIGNED (etype)) - { - etype = unsigned_type_for (etype); - high = fold_convert_loc (loc, etype, high); - exp = fold_convert_loc (loc, etype, exp); - } - return build_range_check (loc, type, exp, 1, 0, high); - } - - /* Optimize (c>=1) && (c<=127) into (signed char)c > 0. */ - if (integer_onep (low) && TREE_CODE (high) == INTEGER_CST) - { - int prec = TYPE_PRECISION (etype); - - if (wi::mask <widest_int> (prec - 1, false) == wi::to_widest (high)) - { - if (TYPE_UNSIGNED (etype)) - { - tree signed_etype = signed_type_for (etype); - if (TYPE_PRECISION (signed_etype) != TYPE_PRECISION (etype)) - etype - = build_nonstandard_integer_type (TYPE_PRECISION (etype), 0); - else - etype = signed_etype; - exp = fold_convert_loc (loc, etype, exp); - } - return fold_build2_loc (loc, GT_EXPR, type, exp, - build_int_cst (etype, 0)); - } - } - - /* Optimize (c>=low) && (c<=high) into (c-low>=0) && (c-low<=high-low). - This requires wrap-around arithmetics for the type of the expression. */ - etype = range_check_type (etype); - if (etype == NULL_TREE) - return NULL_TREE; - - high = fold_convert_loc (loc, etype, high); - low = fold_convert_loc (loc, etype, low); - exp = fold_convert_loc (loc, etype, exp); - - value = const_binop (MINUS_EXPR, high, low); - - if (value != 0 && !TREE_OVERFLOW (value)) - return build_range_check (loc, type, - fold_build2_loc (loc, MINUS_EXPR, etype, exp, low), - 1, build_int_cst (etype, 0), value); - - return 0; -} - -/* Return the predecessor of VAL in its type, handling the infinite case. */ - -static tree -range_predecessor (tree val) -{ - tree type = TREE_TYPE (val); - - if (INTEGRAL_TYPE_P (type) - && operand_equal_p (val, TYPE_MIN_VALUE (type), 0)) - return 0; - else - return range_binop (MINUS_EXPR, NULL_TREE, val, 0, - build_int_cst (TREE_TYPE (val), 1), 0); -} - -/* Return the successor of VAL in its type, handling the infinite case. */ - -static tree -range_successor (tree val) -{ - tree type = TREE_TYPE (val); - - if (INTEGRAL_TYPE_P (type) - && operand_equal_p (val, TYPE_MAX_VALUE (type), 0)) - return 0; - else - return range_binop (PLUS_EXPR, NULL_TREE, val, 0, - build_int_cst (TREE_TYPE (val), 1), 0); -} - -/* Given two ranges, see if we can merge them into one. Return 1 if we - can, 0 if we can't. Set the output range into the specified parameters. */ - -bool -merge_ranges (int *pin_p, tree *plow, tree *phigh, int in0_p, tree low0, - tree high0, int in1_p, tree low1, tree high1) -{ - int no_overlap; - int subset; - int temp; - tree tem; - int in_p; - tree low, high; - int lowequal = ((low0 == 0 && low1 == 0) - || integer_onep (range_binop (EQ_EXPR, integer_type_node, - low0, 0, low1, 0))); - int highequal = ((high0 == 0 && high1 == 0) - || integer_onep (range_binop (EQ_EXPR, integer_type_node, - high0, 1, high1, 1))); - - /* Make range 0 be the range that starts first, or ends last if they - start at the same value. Swap them if it isn't. */ - if (integer_onep (range_binop (GT_EXPR, integer_type_node, - low0, 0, low1, 0)) - || (lowequal - && integer_onep (range_binop (GT_EXPR, integer_type_node, - high1, 1, high0, 1)))) - { - temp = in0_p, in0_p = in1_p, in1_p = temp; - tem = low0, low0 = low1, low1 = tem; - tem = high0, high0 = high1, high1 = tem; - } - - /* If the second range is != high1 where high1 is the type maximum of - the type, try first merging with < high1 range. */ - if (low1 - && high1 - && TREE_CODE (low1) == INTEGER_CST - && (TREE_CODE (TREE_TYPE (low1)) == INTEGER_TYPE - || (TREE_CODE (TREE_TYPE (low1)) == ENUMERAL_TYPE - && known_eq (TYPE_PRECISION (TREE_TYPE (low1)), - GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (low1)))))) - && operand_equal_p (low1, high1, 0)) - { - if (tree_int_cst_equal (low1, TYPE_MAX_VALUE (TREE_TYPE (low1))) - && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, - !in1_p, NULL_TREE, range_predecessor (low1))) - return true; - /* Similarly for the second range != low1 where low1 is the type minimum - of the type, try first merging with > low1 range. */ - if (tree_int_cst_equal (low1, TYPE_MIN_VALUE (TREE_TYPE (low1))) - && merge_ranges (pin_p, plow, phigh, in0_p, low0, high0, - !in1_p, range_successor (low1), NULL_TREE)) - return true; - } - - /* Now flag two cases, whether the ranges are disjoint or whether the - second range is totally subsumed in the first. Note that the tests - below are simplified by the ones above. */ - no_overlap = integer_onep (range_binop (LT_EXPR, integer_type_node, - high0, 1, low1, 0)); - subset = integer_onep (range_binop (LE_EXPR, integer_type_node, - high1, 1, high0, 1)); - - /* We now have four cases, depending on whether we are including or - excluding the two ranges. */ - if (in0_p && in1_p) - { - /* If they don't overlap, the result is false. If the second range - is a subset it is the result. Otherwise, the range is from the start - of the second to the end of the first. */ - if (no_overlap) - in_p = 0, low = high = 0; - else if (subset) - in_p = 1, low = low1, high = high1; - else - in_p = 1, low = low1, high = high0; - } - - else if (in0_p && ! in1_p) - { - /* If they don't overlap, the result is the first range. If they are - equal, the result is false. If the second range is a subset of the - first, and the ranges begin at the same place, we go from just after - the end of the second range to the end of the first. If the second - range is not a subset of the first, or if it is a subset and both - ranges end at the same place, the range starts at the start of the - first range and ends just before the second range. - Otherwise, we can't describe this as a single range. */ - if (no_overlap) - in_p = 1, low = low0, high = high0; - else if (lowequal && highequal) - in_p = 0, low = high = 0; - else if (subset && lowequal) - { - low = range_successor (high1); - high = high0; - in_p = 1; - if (low == 0) - { - /* We are in the weird situation where high0 > high1 but - high1 has no successor. Punt. */ - return 0; - } - } - else if (! subset || highequal) - { - low = low0; - high = range_predecessor (low1); - in_p = 1; - if (high == 0) - { - /* low0 < low1 but low1 has no predecessor. Punt. */ - return 0; - } - } - else - return 0; - } - - else if (! in0_p && in1_p) - { - /* If they don't overlap, the result is the second range. If the second - is a subset of the first, the result is false. Otherwise, - the range starts just after the first range and ends at the - end of the second. */ - if (no_overlap) - in_p = 1, low = low1, high = high1; - else if (subset || highequal) - in_p = 0, low = high = 0; - else - { - low = range_successor (high0); - high = high1; - in_p = 1; - if (low == 0) - { - /* high1 > high0 but high0 has no successor. Punt. */ - return 0; - } - } - } - - else - { - /* The case where we are excluding both ranges. Here the complex case - is if they don't overlap. In that case, the only time we have a - range is if they are adjacent. If the second is a subset of the - first, the result is the first. Otherwise, the range to exclude - starts at the beginning of the first range and ends at the end of the - second. */ - if (no_overlap) - { - if (integer_onep (range_binop (EQ_EXPR, integer_type_node, - range_successor (high0), - 1, low1, 0))) - in_p = 0, low = low0, high = high1; - else - { - /* Canonicalize - [min, x] into - [-, x]. */ - if (low0 && TREE_CODE (low0) == INTEGER_CST) - switch (TREE_CODE (TREE_TYPE (low0))) - { - case ENUMERAL_TYPE: - if (maybe_ne (TYPE_PRECISION (TREE_TYPE (low0)), - GET_MODE_BITSIZE - (TYPE_MODE (TREE_TYPE (low0))))) - break; - /* FALLTHROUGH */ - case INTEGER_TYPE: - if (tree_int_cst_equal (low0, - TYPE_MIN_VALUE (TREE_TYPE (low0)))) - low0 = 0; - break; - case POINTER_TYPE: - if (TYPE_UNSIGNED (TREE_TYPE (low0)) - && integer_zerop (low0)) - low0 = 0; - break; - default: - break; - } - - /* Canonicalize - [x, max] into - [x, -]. */ - if (high1 && TREE_CODE (high1) == INTEGER_CST) - switch (TREE_CODE (TREE_TYPE (high1))) - { - case ENUMERAL_TYPE: - if (maybe_ne (TYPE_PRECISION (TREE_TYPE (high1)), - GET_MODE_BITSIZE - (TYPE_MODE (TREE_TYPE (high1))))) - break; - /* FALLTHROUGH */ - case INTEGER_TYPE: - if (tree_int_cst_equal (high1, - TYPE_MAX_VALUE (TREE_TYPE (high1)))) - high1 = 0; - break; - case POINTER_TYPE: - if (TYPE_UNSIGNED (TREE_TYPE (high1)) - && integer_zerop (range_binop (PLUS_EXPR, NULL_TREE, - high1, 1, - build_int_cst (TREE_TYPE (high1), 1), - 1))) - high1 = 0; - break; - default: - break; - } - - /* The ranges might be also adjacent between the maximum and - minimum values of the given type. For - - [{min,-}, x] and - [y, {max,-}] ranges where x + 1 < y - return + [x + 1, y - 1]. */ - if (low0 == 0 && high1 == 0) - { - low = range_successor (high0); - high = range_predecessor (low1); - if (low == 0 || high == 0) - return 0; - - in_p = 1; - } - else - return 0; - } - } - else if (subset) - in_p = 0, low = low0, high = high0; - else - in_p = 0, low = low0, high = high1; - } - - *pin_p = in_p, *plow = low, *phigh = high; - return 1; -} - - -/* Subroutine of fold, looking inside expressions of the form - A op B ? A : C, where (ARG00, COMP_CODE, ARG01), ARG1 and ARG2 - are the three operands of the COND_EXPR. This function is - being used also to optimize A op B ? C : A, by reversing the - comparison first. - - Return a folded expression whose code is not a COND_EXPR - anymore, or NULL_TREE if no folding opportunity is found. */ - -static tree -fold_cond_expr_with_comparison (location_t loc, tree type, - enum tree_code comp_code, - tree arg00, tree arg01, tree arg1, tree arg2) -{ - tree arg1_type = TREE_TYPE (arg1); - tree tem; - - STRIP_NOPS (arg1); - STRIP_NOPS (arg2); - - /* If we have A op 0 ? A : -A, consider applying the following - transformations: - - A == 0? A : -A same as -A - A != 0? A : -A same as A - A >= 0? A : -A same as abs (A) - A > 0? A : -A same as abs (A) - A <= 0? A : -A same as -abs (A) - A < 0? A : -A same as -abs (A) - - None of these transformations work for modes with signed - zeros. If A is +/-0, the first two transformations will - change the sign of the result (from +0 to -0, or vice - versa). The last four will fix the sign of the result, - even though the original expressions could be positive or - negative, depending on the sign of A. - - Note that all these transformations are correct if A is - NaN, since the two alternatives (A and -A) are also NaNs. */ - if (!HONOR_SIGNED_ZEROS (type) - && (FLOAT_TYPE_P (TREE_TYPE (arg01)) - ? real_zerop (arg01) - : integer_zerop (arg01)) - && ((TREE_CODE (arg2) == NEGATE_EXPR - && operand_equal_p (TREE_OPERAND (arg2, 0), arg1, 0)) - /* In the case that A is of the form X-Y, '-A' (arg2) may - have already been folded to Y-X, check for that. */ - || (TREE_CODE (arg1) == MINUS_EXPR - && TREE_CODE (arg2) == MINUS_EXPR - && operand_equal_p (TREE_OPERAND (arg1, 0), - TREE_OPERAND (arg2, 1), 0) - && operand_equal_p (TREE_OPERAND (arg1, 1), - TREE_OPERAND (arg2, 0), 0)))) - switch (comp_code) - { - case EQ_EXPR: - case UNEQ_EXPR: - tem = fold_convert_loc (loc, arg1_type, arg1); - return fold_convert_loc (loc, type, negate_expr (tem)); - case NE_EXPR: - case LTGT_EXPR: - return fold_convert_loc (loc, type, arg1); - case UNGE_EXPR: - case UNGT_EXPR: - if (flag_trapping_math) - break; - /* Fall through. */ - case GE_EXPR: - case GT_EXPR: - if (TYPE_UNSIGNED (TREE_TYPE (arg1))) - break; - tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); - return fold_convert_loc (loc, type, tem); - case UNLE_EXPR: - case UNLT_EXPR: - if (flag_trapping_math) - break; - /* FALLTHRU */ - case LE_EXPR: - case LT_EXPR: - if (TYPE_UNSIGNED (TREE_TYPE (arg1))) - break; - if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg1)) - && !TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) - { - /* A <= 0 ? A : -A for A INT_MIN is valid, but -abs(INT_MIN) - is not, invokes UB both in abs and in the negation of it. - So, use ABSU_EXPR instead. */ - tree utype = unsigned_type_for (TREE_TYPE (arg1)); - tem = fold_build1_loc (loc, ABSU_EXPR, utype, arg1); - tem = negate_expr (tem); - return fold_convert_loc (loc, type, tem); - } - else - { - tem = fold_build1_loc (loc, ABS_EXPR, TREE_TYPE (arg1), arg1); - return negate_expr (fold_convert_loc (loc, type, tem)); - } - default: - gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); - break; - } - - /* A != 0 ? A : 0 is simply A, unless A is -0. Likewise - A == 0 ? A : 0 is always 0 unless A is -0. Note that - both transformations are correct when A is NaN: A != 0 - is then true, and A == 0 is false. */ - - if (!HONOR_SIGNED_ZEROS (type) - && integer_zerop (arg01) && integer_zerop (arg2)) - { - if (comp_code == NE_EXPR) - return fold_convert_loc (loc, type, arg1); - else if (comp_code == EQ_EXPR) - return build_zero_cst (type); - } - - /* Try some transformations of A op B ? A : B. - - A == B? A : B same as B - A != B? A : B same as A - A >= B? A : B same as max (A, B) - A > B? A : B same as max (B, A) - A <= B? A : B same as min (A, B) - A < B? A : B same as min (B, A) - - As above, these transformations don't work in the presence - of signed zeros. For example, if A and B are zeros of - opposite sign, the first two transformations will change - the sign of the result. In the last four, the original - expressions give different results for (A=+0, B=-0) and - (A=-0, B=+0), but the transformed expressions do not. - - The first two transformations are correct if either A or B - is a NaN. In the first transformation, the condition will - be false, and B will indeed be chosen. In the case of the - second transformation, the condition A != B will be true, - and A will be chosen. - - The conversions to max() and min() are not correct if B is - a number and A is not. The conditions in the original - expressions will be false, so all four give B. The min() - and max() versions would give a NaN instead. */ - if (!HONOR_SIGNED_ZEROS (type) - && operand_equal_for_comparison_p (arg01, arg2) - /* Avoid these transformations if the COND_EXPR may be used - as an lvalue in the C++ front-end. PR c++/19199. */ - && (in_gimple_form - || VECTOR_TYPE_P (type) - || (! lang_GNU_CXX () - && strcmp (lang_hooks.name, "GNU Objective-C++") != 0) - || ! maybe_lvalue_p (arg1) - || ! maybe_lvalue_p (arg2))) - { - tree comp_op0 = arg00; - tree comp_op1 = arg01; - tree comp_type = TREE_TYPE (comp_op0); - - switch (comp_code) - { - case EQ_EXPR: - return fold_convert_loc (loc, type, arg2); - case NE_EXPR: - return fold_convert_loc (loc, type, arg1); - case LE_EXPR: - case LT_EXPR: - case UNLE_EXPR: - case UNLT_EXPR: - /* In C++ a ?: expression can be an lvalue, so put the - operand which will be used if they are equal first - so that we can convert this back to the - corresponding COND_EXPR. */ - if (!HONOR_NANS (arg1)) - { - comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); - comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); - tem = (comp_code == LE_EXPR || comp_code == UNLE_EXPR) - ? fold_build2_loc (loc, MIN_EXPR, comp_type, comp_op0, comp_op1) - : fold_build2_loc (loc, MIN_EXPR, comp_type, - comp_op1, comp_op0); - return fold_convert_loc (loc, type, tem); - } - break; - case GE_EXPR: - case GT_EXPR: - case UNGE_EXPR: - case UNGT_EXPR: - if (!HONOR_NANS (arg1)) - { - comp_op0 = fold_convert_loc (loc, comp_type, comp_op0); - comp_op1 = fold_convert_loc (loc, comp_type, comp_op1); - tem = (comp_code == GE_EXPR || comp_code == UNGE_EXPR) - ? fold_build2_loc (loc, MAX_EXPR, comp_type, comp_op0, comp_op1) - : fold_build2_loc (loc, MAX_EXPR, comp_type, - comp_op1, comp_op0); - return fold_convert_loc (loc, type, tem); - } - break; - case UNEQ_EXPR: - if (!HONOR_NANS (arg1)) - return fold_convert_loc (loc, type, arg2); - break; - case LTGT_EXPR: - if (!HONOR_NANS (arg1)) - return fold_convert_loc (loc, type, arg1); - break; - default: - gcc_assert (TREE_CODE_CLASS (comp_code) == tcc_comparison); - break; - } - } - - return NULL_TREE; -} - - - -#ifndef LOGICAL_OP_NON_SHORT_CIRCUIT -#define LOGICAL_OP_NON_SHORT_CIRCUIT \ - (BRANCH_COST (optimize_function_for_speed_p (cfun), \ - false) >= 2) -#endif - -/* EXP is some logical combination of boolean tests. See if we can - merge it into some range test. Return the new tree if so. */ - -static tree -fold_range_test (location_t loc, enum tree_code code, tree type, - tree op0, tree op1) -{ - int or_op = (code == TRUTH_ORIF_EXPR - || code == TRUTH_OR_EXPR); - int in0_p, in1_p, in_p; - tree low0, low1, low, high0, high1, high; - bool strict_overflow_p = false; - tree tem, lhs, rhs; - const char * const warnmsg = G_("assuming signed overflow does not occur " - "when simplifying range test"); - - if (!INTEGRAL_TYPE_P (type)) - return 0; - - lhs = make_range (op0, &in0_p, &low0, &high0, &strict_overflow_p); - /* If op0 is known true or false and this is a short-circuiting - operation we must not merge with op1 since that makes side-effects - unconditional. So special-case this. */ - if (!lhs - && ((code == TRUTH_ORIF_EXPR && in0_p) - || (code == TRUTH_ANDIF_EXPR && !in0_p))) - return op0; - rhs = make_range (op1, &in1_p, &low1, &high1, &strict_overflow_p); - - /* If this is an OR operation, invert both sides; we will invert - again at the end. */ - if (or_op) - in0_p = ! in0_p, in1_p = ! in1_p; - - /* If both expressions are the same, if we can merge the ranges, and we - can build the range test, return it or it inverted. If one of the - ranges is always true or always false, consider it to be the same - expression as the other. */ - if ((lhs == 0 || rhs == 0 || operand_equal_p (lhs, rhs, 0)) - && merge_ranges (&in_p, &low, &high, in0_p, low0, high0, - in1_p, low1, high1) - && (tem = (build_range_check (loc, type, - lhs != 0 ? lhs - : rhs != 0 ? rhs : integer_zero_node, - in_p, low, high))) != 0) - { - if (strict_overflow_p) - fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); - return or_op ? invert_truthvalue_loc (loc, tem) : tem; - } - - /* On machines where the branch cost is expensive, if this is a - short-circuited branch and the underlying object on both sides - is the same, make a non-short-circuit operation. */ - bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT; - if (param_logical_op_non_short_circuit != -1) - logical_op_non_short_circuit - = param_logical_op_non_short_circuit; - if (logical_op_non_short_circuit - && !sanitize_coverage_p () - && lhs != 0 && rhs != 0 - && (code == TRUTH_ANDIF_EXPR || code == TRUTH_ORIF_EXPR) - && operand_equal_p (lhs, rhs, 0)) - { - /* If simple enough, just rewrite. Otherwise, make a SAVE_EXPR - unless we are at top level or LHS contains a PLACEHOLDER_EXPR, in - which cases we can't do this. */ - if (simple_operand_p (lhs)) - return build2_loc (loc, code == TRUTH_ANDIF_EXPR - ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, - type, op0, op1); - - else if (!lang_hooks.decls.global_bindings_p () - && !CONTAINS_PLACEHOLDER_P (lhs)) - { - tree common = save_expr (lhs); - - if ((lhs = build_range_check (loc, type, common, - or_op ? ! in0_p : in0_p, - low0, high0)) != 0 - && (rhs = build_range_check (loc, type, common, - or_op ? ! in1_p : in1_p, - low1, high1)) != 0) - { - if (strict_overflow_p) - fold_overflow_warning (warnmsg, - WARN_STRICT_OVERFLOW_COMPARISON); - return build2_loc (loc, code == TRUTH_ANDIF_EXPR - ? TRUTH_AND_EXPR : TRUTH_OR_EXPR, - type, lhs, rhs); - } - } - } - - return 0; -} - -/* Subroutine for fold_truth_andor_1: C is an INTEGER_CST interpreted as a P - bit value. Arrange things so the extra bits will be set to zero if and - only if C is signed-extended to its full width. If MASK is nonzero, - it is an INTEGER_CST that should be AND'ed with the extra bits. */ - -static tree -unextend (tree c, int p, int unsignedp, tree mask) -{ - tree type = TREE_TYPE (c); - int modesize = GET_MODE_BITSIZE (SCALAR_INT_TYPE_MODE (type)); - tree temp; - - if (p == modesize || unsignedp) - return c; - - /* We work by getting just the sign bit into the low-order bit, then - into the high-order bit, then sign-extend. We then XOR that value - with C. */ - temp = build_int_cst (TREE_TYPE (c), - wi::extract_uhwi (wi::to_wide (c), p - 1, 1)); - - /* We must use a signed type in order to get an arithmetic right shift. - However, we must also avoid introducing accidental overflows, so that - a subsequent call to integer_zerop will work. Hence we must - do the type conversion here. At this point, the constant is either - zero or one, and the conversion to a signed type can never overflow. - We could get an overflow if this conversion is done anywhere else. */ - if (TYPE_UNSIGNED (type)) - temp = fold_convert (signed_type_for (type), temp); - - temp = const_binop (LSHIFT_EXPR, temp, size_int (modesize - 1)); - temp = const_binop (RSHIFT_EXPR, temp, size_int (modesize - p - 1)); - if (mask != 0) - temp = const_binop (BIT_AND_EXPR, temp, - fold_convert (TREE_TYPE (c), mask)); - /* If necessary, convert the type back to match the type of C. */ - if (TYPE_UNSIGNED (type)) - temp = fold_convert (type, temp); - - return fold_convert (type, const_binop (BIT_XOR_EXPR, c, temp)); -} - -/* For an expression that has the form - (A && B) || ~B - or - (A || B) && ~B, - we can drop one of the inner expressions and simplify to - A || ~B - or - A && ~B - LOC is the location of the resulting expression. OP is the inner - logical operation; the left-hand side in the examples above, while CMPOP - is the right-hand side. RHS_ONLY is used to prevent us from accidentally - removing a condition that guards another, as in - (A != NULL && A->...) || A == NULL - which we must not transform. If RHS_ONLY is true, only eliminate the - right-most operand of the inner logical operation. */ - -static tree -merge_truthop_with_opposite_arm (location_t loc, tree op, tree cmpop, - bool rhs_only) -{ - tree type = TREE_TYPE (cmpop); - enum tree_code code = TREE_CODE (cmpop); - enum tree_code truthop_code = TREE_CODE (op); - tree lhs = TREE_OPERAND (op, 0); - tree rhs = TREE_OPERAND (op, 1); - tree orig_lhs = lhs, orig_rhs = rhs; - enum tree_code rhs_code = TREE_CODE (rhs); - enum tree_code lhs_code = TREE_CODE (lhs); - enum tree_code inv_code; - - if (TREE_SIDE_EFFECTS (op) || TREE_SIDE_EFFECTS (cmpop)) - return NULL_TREE; - - if (TREE_CODE_CLASS (code) != tcc_comparison) - return NULL_TREE; - - if (rhs_code == truthop_code) - { - tree newrhs = merge_truthop_with_opposite_arm (loc, rhs, cmpop, rhs_only); - if (newrhs != NULL_TREE) - { - rhs = newrhs; - rhs_code = TREE_CODE (rhs); - } - } - if (lhs_code == truthop_code && !rhs_only) - { - tree newlhs = merge_truthop_with_opposite_arm (loc, lhs, cmpop, false); - if (newlhs != NULL_TREE) - { - lhs = newlhs; - lhs_code = TREE_CODE (lhs); - } - } - - inv_code = invert_tree_comparison (code, HONOR_NANS (type)); - if (inv_code == rhs_code - && operand_equal_p (TREE_OPERAND (rhs, 0), TREE_OPERAND (cmpop, 0), 0) - && operand_equal_p (TREE_OPERAND (rhs, 1), TREE_OPERAND (cmpop, 1), 0)) - return lhs; - if (!rhs_only && inv_code == lhs_code - && operand_equal_p (TREE_OPERAND (lhs, 0), TREE_OPERAND (cmpop, 0), 0) - && operand_equal_p (TREE_OPERAND (lhs, 1), TREE_OPERAND (cmpop, 1), 0)) - return rhs; - if (rhs != orig_rhs || lhs != orig_lhs) - return fold_build2_loc (loc, truthop_code, TREE_TYPE (cmpop), - lhs, rhs); - return NULL_TREE; -} - -/* Find ways of folding logical expressions of LHS and RHS: - Try to merge two comparisons to the same innermost item. - Look for range tests like "ch >= '0' && ch <= '9'". - Look for combinations of simple terms on machines with expensive branches - and evaluate the RHS unconditionally. - - For example, if we have p->a == 2 && p->b == 4 and we can make an - object large enough to span both A and B, we can do this with a comparison - against the object ANDed with the a mask. - - If we have p->a == q->a && p->b == q->b, we may be able to use bit masking - operations to do this with one comparison. - - We check for both normal comparisons and the BIT_AND_EXPRs made this by - function and the one above. - - CODE is the logical operation being done. It can be TRUTH_ANDIF_EXPR, - TRUTH_AND_EXPR, TRUTH_ORIF_EXPR, or TRUTH_OR_EXPR. - - TRUTH_TYPE is the type of the logical operand and LHS and RHS are its - two operands. - - We return the simplified tree or 0 if no optimization is possible. */ - -static tree -fold_truth_andor_1 (location_t loc, enum tree_code code, tree truth_type, - tree lhs, tree rhs) -{ - /* If this is the "or" of two comparisons, we can do something if - the comparisons are NE_EXPR. If this is the "and", we can do something - if the comparisons are EQ_EXPR. I.e., - (a->b == 2 && a->c == 4) can become (a->new == NEW). - - WANTED_CODE is this operation code. For single bit fields, we can - convert EQ_EXPR to NE_EXPR so we need not reject the "wrong" - comparison for one-bit fields. */ - - enum tree_code wanted_code; - enum tree_code lcode, rcode; - tree ll_arg, lr_arg, rl_arg, rr_arg; - tree ll_inner, lr_inner, rl_inner, rr_inner; - HOST_WIDE_INT ll_bitsize, ll_bitpos, lr_bitsize, lr_bitpos; - HOST_WIDE_INT rl_bitsize, rl_bitpos, rr_bitsize, rr_bitpos; - HOST_WIDE_INT xll_bitpos, xlr_bitpos, xrl_bitpos, xrr_bitpos; - HOST_WIDE_INT lnbitsize, lnbitpos, rnbitsize, rnbitpos; - int ll_unsignedp, lr_unsignedp, rl_unsignedp, rr_unsignedp; - int ll_reversep, lr_reversep, rl_reversep, rr_reversep; - machine_mode ll_mode, lr_mode, rl_mode, rr_mode; - scalar_int_mode lnmode, rnmode; - tree ll_mask, lr_mask, rl_mask, rr_mask; - tree ll_and_mask, lr_and_mask, rl_and_mask, rr_and_mask; - tree l_const, r_const; - tree lntype, rntype, result; - HOST_WIDE_INT first_bit, end_bit; - int volatilep; - - /* Start by getting the comparison codes. Fail if anything is volatile. - If one operand is a BIT_AND_EXPR with the constant one, treat it as if - it were surrounded with a NE_EXPR. */ - - if (TREE_SIDE_EFFECTS (lhs) || TREE_SIDE_EFFECTS (rhs)) - return 0; - - lcode = TREE_CODE (lhs); - rcode = TREE_CODE (rhs); - - if (lcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (lhs, 1))) - { - lhs = build2 (NE_EXPR, truth_type, lhs, - build_int_cst (TREE_TYPE (lhs), 0)); - lcode = NE_EXPR; - } - - if (rcode == BIT_AND_EXPR && integer_onep (TREE_OPERAND (rhs, 1))) - { - rhs = build2 (NE_EXPR, truth_type, rhs, - build_int_cst (TREE_TYPE (rhs), 0)); - rcode = NE_EXPR; - } - - if (TREE_CODE_CLASS (lcode) != tcc_comparison - || TREE_CODE_CLASS (rcode) != tcc_comparison) - return 0; - - ll_arg = TREE_OPERAND (lhs, 0); - lr_arg = TREE_OPERAND (lhs, 1); - rl_arg = TREE_OPERAND (rhs, 0); - rr_arg = TREE_OPERAND (rhs, 1); - - /* Simplify (x<y) && (x==y) into (x<=y) and related optimizations. */ - if (simple_operand_p (ll_arg) - && simple_operand_p (lr_arg)) - { - if (operand_equal_p (ll_arg, rl_arg, 0) - && operand_equal_p (lr_arg, rr_arg, 0)) - { - result = combine_comparisons (loc, code, lcode, rcode, - truth_type, ll_arg, lr_arg); - if (result) - return result; - } - else if (operand_equal_p (ll_arg, rr_arg, 0) - && operand_equal_p (lr_arg, rl_arg, 0)) - { - result = combine_comparisons (loc, code, lcode, - swap_tree_comparison (rcode), - truth_type, ll_arg, lr_arg); - if (result) - return result; - } - } - - code = ((code == TRUTH_AND_EXPR || code == TRUTH_ANDIF_EXPR) - ? TRUTH_AND_EXPR : TRUTH_OR_EXPR); - - /* If the RHS can be evaluated unconditionally and its operands are - simple, it wins to evaluate the RHS unconditionally on machines - with expensive branches. In this case, this isn't a comparison - that can be merged. */ - - if (BRANCH_COST (optimize_function_for_speed_p (cfun), - false) >= 2 - && ! FLOAT_TYPE_P (TREE_TYPE (rl_arg)) - && simple_operand_p (rl_arg) - && simple_operand_p (rr_arg)) - { - /* Convert (a != 0) || (b != 0) into (a | b) != 0. */ - if (code == TRUTH_OR_EXPR - && lcode == NE_EXPR && integer_zerop (lr_arg) - && rcode == NE_EXPR && integer_zerop (rr_arg) - && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) - && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) - return build2_loc (loc, NE_EXPR, truth_type, - build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), - ll_arg, rl_arg), - build_int_cst (TREE_TYPE (ll_arg), 0)); - - /* Convert (a == 0) && (b == 0) into (a | b) == 0. */ - if (code == TRUTH_AND_EXPR - && lcode == EQ_EXPR && integer_zerop (lr_arg) - && rcode == EQ_EXPR && integer_zerop (rr_arg) - && TREE_TYPE (ll_arg) == TREE_TYPE (rl_arg) - && INTEGRAL_TYPE_P (TREE_TYPE (ll_arg))) - return build2_loc (loc, EQ_EXPR, truth_type, - build2 (BIT_IOR_EXPR, TREE_TYPE (ll_arg), - ll_arg, rl_arg), - build_int_cst (TREE_TYPE (ll_arg), 0)); - } - - /* See if the comparisons can be merged. Then get all the parameters for - each side. */ - - if ((lcode != EQ_EXPR && lcode != NE_EXPR) - || (rcode != EQ_EXPR && rcode != NE_EXPR)) - return 0; - - ll_reversep = lr_reversep = rl_reversep = rr_reversep = 0; - volatilep = 0; - ll_inner = decode_field_reference (loc, &ll_arg, - &ll_bitsize, &ll_bitpos, &ll_mode, - &ll_unsignedp, &ll_reversep, &volatilep, - &ll_mask, &ll_and_mask); - lr_inner = decode_field_reference (loc, &lr_arg, - &lr_bitsize, &lr_bitpos, &lr_mode, - &lr_unsignedp, &lr_reversep, &volatilep, - &lr_mask, &lr_and_mask); - rl_inner = decode_field_reference (loc, &rl_arg, - &rl_bitsize, &rl_bitpos, &rl_mode, - &rl_unsignedp, &rl_reversep, &volatilep, - &rl_mask, &rl_and_mask); - rr_inner = decode_field_reference (loc, &rr_arg, - &rr_bitsize, &rr_bitpos, &rr_mode, - &rr_unsignedp, &rr_reversep, &volatilep, - &rr_mask, &rr_and_mask); - - /* It must be true that the inner operation on the lhs of each - comparison must be the same if we are to be able to do anything. - Then see if we have constants. If not, the same must be true for - the rhs's. */ - if (volatilep - || ll_reversep != rl_reversep - || ll_inner == 0 || rl_inner == 0 - || ! operand_equal_p (ll_inner, rl_inner, 0)) - return 0; - - if (TREE_CODE (lr_arg) == INTEGER_CST - && TREE_CODE (rr_arg) == INTEGER_CST) - { - l_const = lr_arg, r_const = rr_arg; - lr_reversep = ll_reversep; - } - else if (lr_reversep != rr_reversep - || lr_inner == 0 || rr_inner == 0 - || ! operand_equal_p (lr_inner, rr_inner, 0)) - return 0; - else - l_const = r_const = 0; - - /* If either comparison code is not correct for our logical operation, - fail. However, we can convert a one-bit comparison against zero into - the opposite comparison against that bit being set in the field. */ - - wanted_code = (code == TRUTH_AND_EXPR ? EQ_EXPR : NE_EXPR); - if (lcode != wanted_code) - { - if (l_const && integer_zerop (l_const) && integer_pow2p (ll_mask)) - { - /* Make the left operand unsigned, since we are only interested - in the value of one bit. Otherwise we are doing the wrong - thing below. */ - ll_unsignedp = 1; - l_const = ll_mask; - } - else - return 0; - } - - /* This is analogous to the code for l_const above. */ - if (rcode != wanted_code) - { - if (r_const && integer_zerop (r_const) && integer_pow2p (rl_mask)) - { - rl_unsignedp = 1; - r_const = rl_mask; - } - else - return 0; - } - - /* See if we can find a mode that contains both fields being compared on - the left. If we can't, fail. Otherwise, update all constants and masks - to be relative to a field of that size. */ - first_bit = MIN (ll_bitpos, rl_bitpos); - end_bit = MAX (ll_bitpos + ll_bitsize, rl_bitpos + rl_bitsize); - if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, - TYPE_ALIGN (TREE_TYPE (ll_inner)), BITS_PER_WORD, - volatilep, &lnmode)) - return 0; - - lnbitsize = GET_MODE_BITSIZE (lnmode); - lnbitpos = first_bit & ~ (lnbitsize - 1); - lntype = lang_hooks.types.type_for_size (lnbitsize, 1); - xll_bitpos = ll_bitpos - lnbitpos, xrl_bitpos = rl_bitpos - lnbitpos; - - if (ll_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) - { - xll_bitpos = lnbitsize - xll_bitpos - ll_bitsize; - xrl_bitpos = lnbitsize - xrl_bitpos - rl_bitsize; - } - - ll_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, ll_mask), - size_int (xll_bitpos)); - rl_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, lntype, rl_mask), - size_int (xrl_bitpos)); - if (ll_mask == NULL_TREE || rl_mask == NULL_TREE) - return 0; - - if (l_const) - { - l_const = fold_convert_loc (loc, lntype, l_const); - l_const = unextend (l_const, ll_bitsize, ll_unsignedp, ll_and_mask); - l_const = const_binop (LSHIFT_EXPR, l_const, size_int (xll_bitpos)); - if (l_const == NULL_TREE) - return 0; - if (! integer_zerop (const_binop (BIT_AND_EXPR, l_const, - fold_build1_loc (loc, BIT_NOT_EXPR, - lntype, ll_mask)))) - { - warning (0, "comparison is always %d", wanted_code == NE_EXPR); - - return constant_boolean_node (wanted_code == NE_EXPR, truth_type); - } - } - if (r_const) - { - r_const = fold_convert_loc (loc, lntype, r_const); - r_const = unextend (r_const, rl_bitsize, rl_unsignedp, rl_and_mask); - r_const = const_binop (LSHIFT_EXPR, r_const, size_int (xrl_bitpos)); - if (r_const == NULL_TREE) - return 0; - if (! integer_zerop (const_binop (BIT_AND_EXPR, r_const, - fold_build1_loc (loc, BIT_NOT_EXPR, - lntype, rl_mask)))) - { - warning (0, "comparison is always %d", wanted_code == NE_EXPR); - - return constant_boolean_node (wanted_code == NE_EXPR, truth_type); - } - } - - /* If the right sides are not constant, do the same for it. Also, - disallow this optimization if a size, signedness or storage order - mismatch occurs between the left and right sides. */ - if (l_const == 0) - { - if (ll_bitsize != lr_bitsize || rl_bitsize != rr_bitsize - || ll_unsignedp != lr_unsignedp || rl_unsignedp != rr_unsignedp - || ll_reversep != lr_reversep - /* Make sure the two fields on the right - correspond to the left without being swapped. */ - || ll_bitpos - rl_bitpos != lr_bitpos - rr_bitpos) - return 0; - - first_bit = MIN (lr_bitpos, rr_bitpos); - end_bit = MAX (lr_bitpos + lr_bitsize, rr_bitpos + rr_bitsize); - if (!get_best_mode (end_bit - first_bit, first_bit, 0, 0, - TYPE_ALIGN (TREE_TYPE (lr_inner)), BITS_PER_WORD, - volatilep, &rnmode)) - return 0; - - rnbitsize = GET_MODE_BITSIZE (rnmode); - rnbitpos = first_bit & ~ (rnbitsize - 1); - rntype = lang_hooks.types.type_for_size (rnbitsize, 1); - xlr_bitpos = lr_bitpos - rnbitpos, xrr_bitpos = rr_bitpos - rnbitpos; - - if (lr_reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN) - { - xlr_bitpos = rnbitsize - xlr_bitpos - lr_bitsize; - xrr_bitpos = rnbitsize - xrr_bitpos - rr_bitsize; - } - - lr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, - rntype, lr_mask), - size_int (xlr_bitpos)); - rr_mask = const_binop (LSHIFT_EXPR, fold_convert_loc (loc, - rntype, rr_mask), - size_int (xrr_bitpos)); - if (lr_mask == NULL_TREE || rr_mask == NULL_TREE) - return 0; - - /* Make a mask that corresponds to both fields being compared. - Do this for both items being compared. If the operands are the - same size and the bits being compared are in the same position - then we can do this by masking both and comparing the masked - results. */ - ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); - lr_mask = const_binop (BIT_IOR_EXPR, lr_mask, rr_mask); - if (lnbitsize == rnbitsize - && xll_bitpos == xlr_bitpos - && lnbitpos >= 0 - && rnbitpos >= 0) - { - lhs = make_bit_field_ref (loc, ll_inner, ll_arg, - lntype, lnbitsize, lnbitpos, - ll_unsignedp || rl_unsignedp, ll_reversep); - if (! all_ones_mask_p (ll_mask, lnbitsize)) - lhs = build2 (BIT_AND_EXPR, lntype, lhs, ll_mask); - - rhs = make_bit_field_ref (loc, lr_inner, lr_arg, - rntype, rnbitsize, rnbitpos, - lr_unsignedp || rr_unsignedp, lr_reversep); - if (! all_ones_mask_p (lr_mask, rnbitsize)) - rhs = build2 (BIT_AND_EXPR, rntype, rhs, lr_mask); - - return build2_loc (loc, wanted_code, truth_type, lhs, rhs); - } - - /* There is still another way we can do something: If both pairs of - fields being compared are adjacent, we may be able to make a wider - field containing them both. - - Note that we still must mask the lhs/rhs expressions. Furthermore, - the mask must be shifted to account for the shift done by - make_bit_field_ref. */ - if (((ll_bitsize + ll_bitpos == rl_bitpos - && lr_bitsize + lr_bitpos == rr_bitpos) - || (ll_bitpos == rl_bitpos + rl_bitsize - && lr_bitpos == rr_bitpos + rr_bitsize)) - && ll_bitpos >= 0 - && rl_bitpos >= 0 - && lr_bitpos >= 0 - && rr_bitpos >= 0) - { - tree type; - - lhs = make_bit_field_ref (loc, ll_inner, ll_arg, lntype, - ll_bitsize + rl_bitsize, - MIN (ll_bitpos, rl_bitpos), - ll_unsignedp, ll_reversep); - rhs = make_bit_field_ref (loc, lr_inner, lr_arg, rntype, - lr_bitsize + rr_bitsize, - MIN (lr_bitpos, rr_bitpos), - lr_unsignedp, lr_reversep); - - ll_mask = const_binop (RSHIFT_EXPR, ll_mask, - size_int (MIN (xll_bitpos, xrl_bitpos))); - lr_mask = const_binop (RSHIFT_EXPR, lr_mask, - size_int (MIN (xlr_bitpos, xrr_bitpos))); - if (ll_mask == NULL_TREE || lr_mask == NULL_TREE) - return 0; - - /* Convert to the smaller type before masking out unwanted bits. */ - type = lntype; - if (lntype != rntype) - { - if (lnbitsize > rnbitsize) - { - lhs = fold_convert_loc (loc, rntype, lhs); - ll_mask = fold_convert_loc (loc, rntype, ll_mask); - type = rntype; - } - else if (lnbitsize < rnbitsize) - { - rhs = fold_convert_loc (loc, lntype, rhs); - lr_mask = fold_convert_loc (loc, lntype, lr_mask); - type = lntype; - } - } - - if (! all_ones_mask_p (ll_mask, ll_bitsize + rl_bitsize)) - lhs = build2 (BIT_AND_EXPR, type, lhs, ll_mask); - - if (! all_ones_mask_p (lr_mask, lr_bitsize + rr_bitsize)) - rhs = build2 (BIT_AND_EXPR, type, rhs, lr_mask); - - return build2_loc (loc, wanted_code, truth_type, lhs, rhs); - } - - return 0; - } - - /* Handle the case of comparisons with constants. If there is something in - common between the masks, those bits of the constants must be the same. - If not, the condition is always false. Test for this to avoid generating - incorrect code below. */ - result = const_binop (BIT_AND_EXPR, ll_mask, rl_mask); - if (! integer_zerop (result) - && simple_cst_equal (const_binop (BIT_AND_EXPR, result, l_const), - const_binop (BIT_AND_EXPR, result, r_const)) != 1) - { - if (wanted_code == NE_EXPR) - { - warning (0, "%<or%> of unmatched not-equal tests is always 1"); - return constant_boolean_node (true, truth_type); - } - else - { - warning (0, "%<and%> of mutually exclusive equal-tests is always 0"); - return constant_boolean_node (false, truth_type); - } - } - - if (lnbitpos < 0) - return 0; - - /* Construct the expression we will return. First get the component - reference we will make. Unless the mask is all ones the width of - that field, perform the mask operation. Then compare with the - merged constant. */ - result = make_bit_field_ref (loc, ll_inner, ll_arg, - lntype, lnbitsize, lnbitpos, - ll_unsignedp || rl_unsignedp, ll_reversep); - - ll_mask = const_binop (BIT_IOR_EXPR, ll_mask, rl_mask); - if (! all_ones_mask_p (ll_mask, lnbitsize)) - result = build2_loc (loc, BIT_AND_EXPR, lntype, result, ll_mask); - - return build2_loc (loc, wanted_code, truth_type, result, - const_binop (BIT_IOR_EXPR, l_const, r_const)); -} - -/* T is an integer expression that is being multiplied, divided, or taken a - modulus (CODE says which and what kind of divide or modulus) by a - constant C. See if we can eliminate that operation by folding it with - other operations already in T. WIDE_TYPE, if non-null, is a type that - should be used for the computation if wider than our type. - - For example, if we are dividing (X * 8) + (Y * 16) by 4, we can return - (X * 2) + (Y * 4). We must, however, be assured that either the original - expression would not overflow or that overflow is undefined for the type - in the language in question. - - If we return a non-null expression, it is an equivalent form of the - original computation, but need not be in the original type. - - We set *STRICT_OVERFLOW_P to true if the return values depends on - signed overflow being undefined. Otherwise we do not change - *STRICT_OVERFLOW_P. */ - -static tree -extract_muldiv (tree t, tree c, enum tree_code code, tree wide_type, - bool *strict_overflow_p) -{ - /* To avoid exponential search depth, refuse to allow recursion past - three levels. Beyond that (1) it's highly unlikely that we'll find - something interesting and (2) we've probably processed it before - when we built the inner expression. */ - - static int depth; - tree ret; - - if (depth > 3) - return NULL; - - depth++; - ret = extract_muldiv_1 (t, c, code, wide_type, strict_overflow_p); - depth--; - - return ret; -} - -static tree -extract_muldiv_1 (tree t, tree c, enum tree_code code, tree wide_type, - bool *strict_overflow_p) -{ - tree type = TREE_TYPE (t); - enum tree_code tcode = TREE_CODE (t); - tree ctype = (wide_type != 0 - && (GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (wide_type)) - > GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type))) - ? wide_type : type); - tree t1, t2; - int same_p = tcode == code; - tree op0 = NULL_TREE, op1 = NULL_TREE; - bool sub_strict_overflow_p; - - /* Don't deal with constants of zero here; they confuse the code below. */ - if (integer_zerop (c)) - return NULL_TREE; - - if (TREE_CODE_CLASS (tcode) == tcc_unary) - op0 = TREE_OPERAND (t, 0); - - if (TREE_CODE_CLASS (tcode) == tcc_binary) - op0 = TREE_OPERAND (t, 0), op1 = TREE_OPERAND (t, 1); - - /* Note that we need not handle conditional operations here since fold - already handles those cases. So just do arithmetic here. */ - switch (tcode) - { - case INTEGER_CST: - /* For a constant, we can always simplify if we are a multiply - or (for divide and modulus) if it is a multiple of our constant. */ - if (code == MULT_EXPR - || wi::multiple_of_p (wi::to_wide (t), wi::to_wide (c), - TYPE_SIGN (type))) - { - tree tem = const_binop (code, fold_convert (ctype, t), - fold_convert (ctype, c)); - /* If the multiplication overflowed, we lost information on it. - See PR68142 and PR69845. */ - if (TREE_OVERFLOW (tem)) - return NULL_TREE; - return tem; - } - break; - - CASE_CONVERT: case NON_LVALUE_EXPR: - if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))) - break; - /* If op0 is an expression ... */ - if ((COMPARISON_CLASS_P (op0) - || UNARY_CLASS_P (op0) - || BINARY_CLASS_P (op0) - || VL_EXP_CLASS_P (op0) - || EXPRESSION_CLASS_P (op0)) - /* ... and has wrapping overflow, and its type is smaller - than ctype, then we cannot pass through as widening. */ - && ((TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)) - && (TYPE_PRECISION (ctype) - > TYPE_PRECISION (TREE_TYPE (op0)))) - /* ... or this is a truncation (t is narrower than op0), - then we cannot pass through this narrowing. */ - || (TYPE_PRECISION (type) - < TYPE_PRECISION (TREE_TYPE (op0))) - /* ... or signedness changes for division or modulus, - then we cannot pass through this conversion. */ - || (code != MULT_EXPR - && (TYPE_UNSIGNED (ctype) - != TYPE_UNSIGNED (TREE_TYPE (op0)))) - /* ... or has undefined overflow while the converted to - type has not, we cannot do the operation in the inner type - as that would introduce undefined overflow. */ - || (TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)) - && !TYPE_OVERFLOW_UNDEFINED (type)))) - break; - - /* Pass the constant down and see if we can make a simplification. If - we can, replace this expression with the inner simplification for - possible later conversion to our or some other type. */ - if ((t2 = fold_convert (TREE_TYPE (op0), c)) != 0 - && TREE_CODE (t2) == INTEGER_CST - && !TREE_OVERFLOW (t2) - && (t1 = extract_muldiv (op0, t2, code, - code == MULT_EXPR ? ctype : NULL_TREE, - strict_overflow_p)) != 0) - return t1; - break; - - case ABS_EXPR: - /* If widening the type changes it from signed to unsigned, then we - must avoid building ABS_EXPR itself as unsigned. */ - if (TYPE_UNSIGNED (ctype) && !TYPE_UNSIGNED (type)) - { - tree cstype = (*signed_type_for) (ctype); - if ((t1 = extract_muldiv (op0, c, code, cstype, strict_overflow_p)) - != 0) - { - t1 = fold_build1 (tcode, cstype, fold_convert (cstype, t1)); - return fold_convert (ctype, t1); - } - break; - } - /* If the constant is negative, we cannot simplify this. */ - if (tree_int_cst_sgn (c) == -1) - break; - /* FALLTHROUGH */ - case NEGATE_EXPR: - /* For division and modulus, type can't be unsigned, as e.g. - (-(x / 2U)) / 2U isn't equal to -((x / 2U) / 2U) for x >= 2. - For signed types, even with wrapping overflow, this is fine. */ - if (code != MULT_EXPR && TYPE_UNSIGNED (type)) - break; - if ((t1 = extract_muldiv (op0, c, code, wide_type, strict_overflow_p)) - != 0) - return fold_build1 (tcode, ctype, fold_convert (ctype, t1)); - break; - - case MIN_EXPR: case MAX_EXPR: - /* If widening the type changes the signedness, then we can't perform - this optimization as that changes the result. */ - if (TYPE_UNSIGNED (ctype) != TYPE_UNSIGNED (type)) - break; - - /* MIN (a, b) / 5 -> MIN (a / 5, b / 5) */ - sub_strict_overflow_p = false; - if ((t1 = extract_muldiv (op0, c, code, wide_type, - &sub_strict_overflow_p)) != 0 - && (t2 = extract_muldiv (op1, c, code, wide_type, - &sub_strict_overflow_p)) != 0) - { - if (tree_int_cst_sgn (c) < 0) - tcode = (tcode == MIN_EXPR ? MAX_EXPR : MIN_EXPR); - if (sub_strict_overflow_p) - *strict_overflow_p = true; - return fold_build2 (tcode, ctype, fold_convert (ctype, t1), - fold_convert (ctype, t2)); - } - break; - - case LSHIFT_EXPR: case RSHIFT_EXPR: - /* If the second operand is constant, this is a multiplication - or floor division, by a power of two, so we can treat it that - way unless the multiplier or divisor overflows. Signed - left-shift overflow is implementation-defined rather than - undefined in C90, so do not convert signed left shift into - multiplication. */ - if (TREE_CODE (op1) == INTEGER_CST - && (tcode == RSHIFT_EXPR || TYPE_UNSIGNED (TREE_TYPE (op0))) - /* const_binop may not detect overflow correctly, - so check for it explicitly here. */ - && wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), - wi::to_wide (op1)) - && (t1 = fold_convert (ctype, - const_binop (LSHIFT_EXPR, size_one_node, - op1))) != 0 - && !TREE_OVERFLOW (t1)) - return extract_muldiv (build2 (tcode == LSHIFT_EXPR - ? MULT_EXPR : FLOOR_DIV_EXPR, - ctype, - fold_convert (ctype, op0), - t1), - c, code, wide_type, strict_overflow_p); - break; - - case PLUS_EXPR: case MINUS_EXPR: - /* See if we can eliminate the operation on both sides. If we can, we - can return a new PLUS or MINUS. If we can't, the only remaining - cases where we can do anything are if the second operand is a - constant. */ - sub_strict_overflow_p = false; - t1 = extract_muldiv (op0, c, code, wide_type, &sub_strict_overflow_p); - t2 = extract_muldiv (op1, c, code, wide_type, &sub_strict_overflow_p); - if (t1 != 0 && t2 != 0 - && TYPE_OVERFLOW_WRAPS (ctype) - && (code == MULT_EXPR - /* If not multiplication, we can only do this if both operands - are divisible by c. */ - || (multiple_of_p (ctype, op0, c) - && multiple_of_p (ctype, op1, c)))) - { - if (sub_strict_overflow_p) - *strict_overflow_p = true; - return fold_build2 (tcode, ctype, fold_convert (ctype, t1), - fold_convert (ctype, t2)); - } - - /* If this was a subtraction, negate OP1 and set it to be an addition. - This simplifies the logic below. */ - if (tcode == MINUS_EXPR) - { - tcode = PLUS_EXPR, op1 = negate_expr (op1); - /* If OP1 was not easily negatable, the constant may be OP0. */ - if (TREE_CODE (op0) == INTEGER_CST) - { - std::swap (op0, op1); - std::swap (t1, t2); - } - } - - if (TREE_CODE (op1) != INTEGER_CST) - break; - - /* If either OP1 or C are negative, this optimization is not safe for - some of the division and remainder types while for others we need - to change the code. */ - if (tree_int_cst_sgn (op1) < 0 || tree_int_cst_sgn (c) < 0) - { - if (code == CEIL_DIV_EXPR) - code = FLOOR_DIV_EXPR; - else if (code == FLOOR_DIV_EXPR) - code = CEIL_DIV_EXPR; - else if (code != MULT_EXPR - && code != CEIL_MOD_EXPR && code != FLOOR_MOD_EXPR) - break; - } - - /* If it's a multiply or a division/modulus operation of a multiple - of our constant, do the operation and verify it doesn't overflow. */ - if (code == MULT_EXPR - || wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), - TYPE_SIGN (type))) - { - op1 = const_binop (code, fold_convert (ctype, op1), - fold_convert (ctype, c)); - /* We allow the constant to overflow with wrapping semantics. */ - if (op1 == 0 - || (TREE_OVERFLOW (op1) && !TYPE_OVERFLOW_WRAPS (ctype))) - break; - } - else - break; - - /* If we have an unsigned type, we cannot widen the operation since it - will change the result if the original computation overflowed. */ - if (TYPE_UNSIGNED (ctype) && ctype != type) - break; - - /* The last case is if we are a multiply. In that case, we can - apply the distributive law to commute the multiply and addition - if the multiplication of the constants doesn't overflow - and overflow is defined. With undefined overflow - op0 * c might overflow, while (op0 + orig_op1) * c doesn't. - But fold_plusminus_mult_expr would factor back any power-of-two - value so do not distribute in the first place in this case. */ - if (code == MULT_EXPR - && TYPE_OVERFLOW_WRAPS (ctype) - && !(tree_fits_shwi_p (c) && pow2p_hwi (absu_hwi (tree_to_shwi (c))))) - return fold_build2 (tcode, ctype, - fold_build2 (code, ctype, - fold_convert (ctype, op0), - fold_convert (ctype, c)), - op1); - - break; - - case MULT_EXPR: - /* We have a special case here if we are doing something like - (C * 8) % 4 since we know that's zero. */ - if ((code == TRUNC_MOD_EXPR || code == CEIL_MOD_EXPR - || code == FLOOR_MOD_EXPR || code == ROUND_MOD_EXPR) - /* If the multiplication can overflow we cannot optimize this. */ - && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (t)) - && TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST - && wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), - TYPE_SIGN (type))) - { - *strict_overflow_p = true; - return omit_one_operand (type, integer_zero_node, op0); - } - - /* ... fall through ... */ - - case TRUNC_DIV_EXPR: case CEIL_DIV_EXPR: case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: case EXACT_DIV_EXPR: - /* If we can extract our operation from the LHS, do so and return a - new operation. Likewise for the RHS from a MULT_EXPR. Otherwise, - do something only if the second operand is a constant. */ - if (same_p - && TYPE_OVERFLOW_WRAPS (ctype) - && (t1 = extract_muldiv (op0, c, code, wide_type, - strict_overflow_p)) != 0) - return fold_build2 (tcode, ctype, fold_convert (ctype, t1), - fold_convert (ctype, op1)); - else if (tcode == MULT_EXPR && code == MULT_EXPR - && TYPE_OVERFLOW_WRAPS (ctype) - && (t1 = extract_muldiv (op1, c, code, wide_type, - strict_overflow_p)) != 0) - return fold_build2 (tcode, ctype, fold_convert (ctype, op0), - fold_convert (ctype, t1)); - else if (TREE_CODE (op1) != INTEGER_CST) - return 0; - - /* If these are the same operation types, we can associate them - assuming no overflow. */ - if (tcode == code) - { - bool overflow_p = false; - wi::overflow_type overflow_mul; - signop sign = TYPE_SIGN (ctype); - unsigned prec = TYPE_PRECISION (ctype); - wide_int mul = wi::mul (wi::to_wide (op1, prec), - wi::to_wide (c, prec), - sign, &overflow_mul); - overflow_p = TREE_OVERFLOW (c) | TREE_OVERFLOW (op1); - if (overflow_mul - && ((sign == UNSIGNED && tcode != MULT_EXPR) || sign == SIGNED)) - overflow_p = true; - if (!overflow_p) - return fold_build2 (tcode, ctype, fold_convert (ctype, op0), - wide_int_to_tree (ctype, mul)); - } - - /* If these operations "cancel" each other, we have the main - optimizations of this pass, which occur when either constant is a - multiple of the other, in which case we replace this with either an - operation or CODE or TCODE. - - If we have an unsigned type, we cannot do this since it will change - the result if the original computation overflowed. */ - if (TYPE_OVERFLOW_UNDEFINED (ctype) - && ((code == MULT_EXPR && tcode == EXACT_DIV_EXPR) - || (tcode == MULT_EXPR - && code != TRUNC_MOD_EXPR && code != CEIL_MOD_EXPR - && code != FLOOR_MOD_EXPR && code != ROUND_MOD_EXPR - && code != MULT_EXPR))) - { - if (wi::multiple_of_p (wi::to_wide (op1), wi::to_wide (c), - TYPE_SIGN (type))) - { - if (TYPE_OVERFLOW_UNDEFINED (ctype)) - *strict_overflow_p = true; - return fold_build2 (tcode, ctype, fold_convert (ctype, op0), - fold_convert (ctype, - const_binop (TRUNC_DIV_EXPR, - op1, c))); - } - else if (wi::multiple_of_p (wi::to_wide (c), wi::to_wide (op1), - TYPE_SIGN (type))) - { - if (TYPE_OVERFLOW_UNDEFINED (ctype)) - *strict_overflow_p = true; - return fold_build2 (code, ctype, fold_convert (ctype, op0), - fold_convert (ctype, - const_binop (TRUNC_DIV_EXPR, - c, op1))); - } - } - break; - - default: - break; - } - - return 0; -} - -/* Return a node which has the indicated constant VALUE (either 0 or - 1 for scalars or {-1,-1,..} or {0,0,...} for vectors), - and is of the indicated TYPE. */ - -tree -constant_boolean_node (bool value, tree type) -{ - if (type == integer_type_node) - return value ? integer_one_node : integer_zero_node; - else if (type == boolean_type_node) - return value ? boolean_true_node : boolean_false_node; - else if (TREE_CODE (type) == VECTOR_TYPE) - return build_vector_from_val (type, - build_int_cst (TREE_TYPE (type), - value ? -1 : 0)); - else - return fold_convert (type, value ? integer_one_node : integer_zero_node); -} - - -/* Transform `a + (b ? x : y)' into `b ? (a + x) : (a + y)'. - Transform, `a + (x < y)' into `(x < y) ? (a + 1) : (a + 0)'. Here - CODE corresponds to the `+', COND to the `(b ? x : y)' or `(x < y)' - expression, and ARG to `a'. If COND_FIRST_P is nonzero, then the - COND is the first argument to CODE; otherwise (as in the example - given here), it is the second argument. TYPE is the type of the - original expression. Return NULL_TREE if no simplification is - possible. */ - -static tree -fold_binary_op_with_conditional_arg (location_t loc, - enum tree_code code, - tree type, tree op0, tree op1, - tree cond, tree arg, int cond_first_p) -{ - tree cond_type = cond_first_p ? TREE_TYPE (op0) : TREE_TYPE (op1); - tree arg_type = cond_first_p ? TREE_TYPE (op1) : TREE_TYPE (op0); - tree test, true_value, false_value; - tree lhs = NULL_TREE; - tree rhs = NULL_TREE; - enum tree_code cond_code = COND_EXPR; - - /* Do not move possibly trapping operations into the conditional as this - pessimizes code and causes gimplification issues when applied late. */ - if (operation_could_trap_p (code, FLOAT_TYPE_P (type), - ANY_INTEGRAL_TYPE_P (type) - && TYPE_OVERFLOW_TRAPS (type), op1)) - return NULL_TREE; - - if (TREE_CODE (cond) == COND_EXPR - || TREE_CODE (cond) == VEC_COND_EXPR) - { - test = TREE_OPERAND (cond, 0); - true_value = TREE_OPERAND (cond, 1); - false_value = TREE_OPERAND (cond, 2); - /* If this operand throws an expression, then it does not make - sense to try to perform a logical or arithmetic operation - involving it. */ - if (VOID_TYPE_P (TREE_TYPE (true_value))) - lhs = true_value; - if (VOID_TYPE_P (TREE_TYPE (false_value))) - rhs = false_value; - } - else if (!(TREE_CODE (type) != VECTOR_TYPE - && TREE_CODE (TREE_TYPE (cond)) == VECTOR_TYPE)) - { - tree testtype = TREE_TYPE (cond); - test = cond; - true_value = constant_boolean_node (true, testtype); - false_value = constant_boolean_node (false, testtype); - } - else - /* Detect the case of mixing vector and scalar types - bail out. */ - return NULL_TREE; - - if (TREE_CODE (TREE_TYPE (test)) == VECTOR_TYPE) - cond_code = VEC_COND_EXPR; - - /* This transformation is only worthwhile if we don't have to wrap ARG - in a SAVE_EXPR and the operation can be simplified without recursing - on at least one of the branches once its pushed inside the COND_EXPR. */ - if (!TREE_CONSTANT (arg) - && (TREE_SIDE_EFFECTS (arg) - || TREE_CODE (arg) == COND_EXPR || TREE_CODE (arg) == VEC_COND_EXPR - || TREE_CONSTANT (true_value) || TREE_CONSTANT (false_value))) - return NULL_TREE; - - arg = fold_convert_loc (loc, arg_type, arg); - if (lhs == 0) - { - true_value = fold_convert_loc (loc, cond_type, true_value); - if (cond_first_p) - lhs = fold_build2_loc (loc, code, type, true_value, arg); - else - lhs = fold_build2_loc (loc, code, type, arg, true_value); - } - if (rhs == 0) - { - false_value = fold_convert_loc (loc, cond_type, false_value); - if (cond_first_p) - rhs = fold_build2_loc (loc, code, type, false_value, arg); - else - rhs = fold_build2_loc (loc, code, type, arg, false_value); - } - - /* Check that we have simplified at least one of the branches. */ - if (!TREE_CONSTANT (arg) && !TREE_CONSTANT (lhs) && !TREE_CONSTANT (rhs)) - return NULL_TREE; - - return fold_build3_loc (loc, cond_code, type, test, lhs, rhs); -} - - -/* Subroutine of fold() that checks for the addition of ARG +/- 0.0. - - If !NEGATE, return true if ZERO_ARG is +/-0.0 and, for all ARG of - type TYPE, ARG + ZERO_ARG is the same as ARG. If NEGATE, return true - if ARG - ZERO_ARG is the same as X. - - If ARG is NULL, check for any value of type TYPE. - - X + 0 and X - 0 both give X when X is NaN, infinite, or nonzero - and finite. The problematic cases are when X is zero, and its mode - has signed zeros. In the case of rounding towards -infinity, - X - 0 is not the same as X because 0 - 0 is -0. In other rounding - modes, X + 0 is not the same as X because -0 + 0 is 0. */ - -bool -fold_real_zero_addition_p (const_tree type, const_tree arg, - const_tree zero_arg, int negate) -{ - if (!real_zerop (zero_arg)) - return false; - - /* Don't allow the fold with -fsignaling-nans. */ - if (arg ? tree_expr_maybe_signaling_nan_p (arg) : HONOR_SNANS (type)) - return false; - - /* Allow the fold if zeros aren't signed, or their sign isn't important. */ - if (!HONOR_SIGNED_ZEROS (type)) - return true; - - /* There is no case that is safe for all rounding modes. */ - if (HONOR_SIGN_DEPENDENT_ROUNDING (type)) - return false; - - /* In a vector or complex, we would need to check the sign of all zeros. */ - if (TREE_CODE (zero_arg) == VECTOR_CST) - zero_arg = uniform_vector_p (zero_arg); - if (!zero_arg || TREE_CODE (zero_arg) != REAL_CST) - return false; - - /* Treat x + -0 as x - 0 and x - -0 as x + 0. */ - if (REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (zero_arg))) - negate = !negate; - - /* The mode has signed zeros, and we have to honor their sign. - In this situation, there are only two cases we can return true for. - (i) X - 0 is the same as X with default rounding. - (ii) X + 0 is X when X can't possibly be -0.0. */ - return negate || (arg && !tree_expr_maybe_real_minus_zero_p (arg)); -} - -/* Subroutine of match.pd that optimizes comparisons of a division by - a nonzero integer constant against an integer constant, i.e. - X/C1 op C2. - - CODE is the comparison operator: EQ_EXPR, NE_EXPR, GT_EXPR, LT_EXPR, - GE_EXPR or LE_EXPR. ARG01 and ARG1 must be a INTEGER_CST. */ - -enum tree_code -fold_div_compare (enum tree_code code, tree c1, tree c2, tree *lo, - tree *hi, bool *neg_overflow) -{ - tree prod, tmp, type = TREE_TYPE (c1); - signop sign = TYPE_SIGN (type); - wi::overflow_type overflow; - - /* We have to do this the hard way to detect unsigned overflow. - prod = int_const_binop (MULT_EXPR, c1, c2); */ - wide_int val = wi::mul (wi::to_wide (c1), wi::to_wide (c2), sign, &overflow); - prod = force_fit_type (type, val, -1, overflow); - *neg_overflow = false; - - if (sign == UNSIGNED) - { - tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); - *lo = prod; - - /* Likewise *hi = int_const_binop (PLUS_EXPR, prod, tmp). */ - val = wi::add (wi::to_wide (prod), wi::to_wide (tmp), sign, &overflow); - *hi = force_fit_type (type, val, -1, overflow | TREE_OVERFLOW (prod)); - } - else if (tree_int_cst_sgn (c1) >= 0) - { - tmp = int_const_binop (MINUS_EXPR, c1, build_int_cst (type, 1)); - switch (tree_int_cst_sgn (c2)) - { - case -1: - *neg_overflow = true; - *lo = int_const_binop (MINUS_EXPR, prod, tmp); - *hi = prod; - break; - - case 0: - *lo = fold_negate_const (tmp, type); - *hi = tmp; - break; - - case 1: - *hi = int_const_binop (PLUS_EXPR, prod, tmp); - *lo = prod; - break; - - default: - gcc_unreachable (); - } - } - else - { - /* A negative divisor reverses the relational operators. */ - code = swap_tree_comparison (code); - - tmp = int_const_binop (PLUS_EXPR, c1, build_int_cst (type, 1)); - switch (tree_int_cst_sgn (c2)) - { - case -1: - *hi = int_const_binop (MINUS_EXPR, prod, tmp); - *lo = prod; - break; - - case 0: - *hi = fold_negate_const (tmp, type); - *lo = tmp; - break; - - case 1: - *neg_overflow = true; - *lo = int_const_binop (PLUS_EXPR, prod, tmp); - *hi = prod; - break; - - default: - gcc_unreachable (); - } - } - - if (code != EQ_EXPR && code != NE_EXPR) - return code; - - if (TREE_OVERFLOW (*lo) - || operand_equal_p (*lo, TYPE_MIN_VALUE (type), 0)) - *lo = NULL_TREE; - if (TREE_OVERFLOW (*hi) - || operand_equal_p (*hi, TYPE_MAX_VALUE (type), 0)) - *hi = NULL_TREE; - - return code; -} - - -/* If CODE with arguments ARG0 and ARG1 represents a single bit - equality/inequality test, then return a simplified form of the test - using a sign testing. Otherwise return NULL. TYPE is the desired - result type. */ - -static tree -fold_single_bit_test_into_sign_test (location_t loc, - enum tree_code code, tree arg0, tree arg1, - tree result_type) -{ - /* If this is testing a single bit, we can optimize the test. */ - if ((code == NE_EXPR || code == EQ_EXPR) - && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) - && integer_pow2p (TREE_OPERAND (arg0, 1))) - { - /* If we have (A & C) != 0 where C is the sign bit of A, convert - this into A < 0. Similarly for (A & C) == 0 into A >= 0. */ - tree arg00 = sign_bit_p (TREE_OPERAND (arg0, 0), TREE_OPERAND (arg0, 1)); - - if (arg00 != NULL_TREE - /* This is only a win if casting to a signed type is cheap, - i.e. when arg00's type is not a partial mode. */ - && type_has_mode_precision_p (TREE_TYPE (arg00))) - { - tree stype = signed_type_for (TREE_TYPE (arg00)); - return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, - result_type, - fold_convert_loc (loc, stype, arg00), - build_int_cst (stype, 0)); - } - } - - return NULL_TREE; -} - -/* If CODE with arguments ARG0 and ARG1 represents a single bit - equality/inequality test, then return a simplified form of - the test using shifts and logical operations. Otherwise return - NULL. TYPE is the desired result type. */ - -tree -fold_single_bit_test (location_t loc, enum tree_code code, - tree arg0, tree arg1, tree result_type) -{ - /* If this is testing a single bit, we can optimize the test. */ - if ((code == NE_EXPR || code == EQ_EXPR) - && TREE_CODE (arg0) == BIT_AND_EXPR && integer_zerop (arg1) - && integer_pow2p (TREE_OPERAND (arg0, 1))) - { - tree inner = TREE_OPERAND (arg0, 0); - tree type = TREE_TYPE (arg0); - int bitnum = tree_log2 (TREE_OPERAND (arg0, 1)); - scalar_int_mode operand_mode = SCALAR_INT_TYPE_MODE (type); - int ops_unsigned; - tree signed_type, unsigned_type, intermediate_type; - tree tem, one; - - /* First, see if we can fold the single bit test into a sign-bit - test. */ - tem = fold_single_bit_test_into_sign_test (loc, code, arg0, arg1, - result_type); - if (tem) - return tem; - - /* Otherwise we have (A & C) != 0 where C is a single bit, - convert that into ((A >> C2) & 1). Where C2 = log2(C). - Similarly for (A & C) == 0. */ - - /* If INNER is a right shift of a constant and it plus BITNUM does - not overflow, adjust BITNUM and INNER. */ - if (TREE_CODE (inner) == RSHIFT_EXPR - && TREE_CODE (TREE_OPERAND (inner, 1)) == INTEGER_CST - && bitnum < TYPE_PRECISION (type) - && wi::ltu_p (wi::to_wide (TREE_OPERAND (inner, 1)), - TYPE_PRECISION (type) - bitnum)) - { - bitnum += tree_to_uhwi (TREE_OPERAND (inner, 1)); - inner = TREE_OPERAND (inner, 0); - } - - /* If we are going to be able to omit the AND below, we must do our - operations as unsigned. If we must use the AND, we have a choice. - Normally unsigned is faster, but for some machines signed is. */ - ops_unsigned = (load_extend_op (operand_mode) == SIGN_EXTEND - && !flag_syntax_only) ? 0 : 1; - - signed_type = lang_hooks.types.type_for_mode (operand_mode, 0); - unsigned_type = lang_hooks.types.type_for_mode (operand_mode, 1); - intermediate_type = ops_unsigned ? unsigned_type : signed_type; - inner = fold_convert_loc (loc, intermediate_type, inner); - - if (bitnum != 0) - inner = build2 (RSHIFT_EXPR, intermediate_type, - inner, size_int (bitnum)); - - one = build_int_cst (intermediate_type, 1); - - if (code == EQ_EXPR) - inner = fold_build2_loc (loc, BIT_XOR_EXPR, intermediate_type, inner, one); - - /* Put the AND last so it can combine with more things. */ - inner = build2 (BIT_AND_EXPR, intermediate_type, inner, one); - - /* Make sure to return the proper type. */ - inner = fold_convert_loc (loc, result_type, inner); - - return inner; - } - return NULL_TREE; -} - -/* Test whether it is preferable to swap two operands, ARG0 and - ARG1, for example because ARG0 is an integer constant and ARG1 - isn't. */ - -bool -tree_swap_operands_p (const_tree arg0, const_tree arg1) -{ - if (CONSTANT_CLASS_P (arg1)) - return 0; - if (CONSTANT_CLASS_P (arg0)) - return 1; - - STRIP_NOPS (arg0); - STRIP_NOPS (arg1); - - if (TREE_CONSTANT (arg1)) - return 0; - if (TREE_CONSTANT (arg0)) - return 1; - - /* It is preferable to swap two SSA_NAME to ensure a canonical form - for commutative and comparison operators. Ensuring a canonical - form allows the optimizers to find additional redundancies without - having to explicitly check for both orderings. */ - if (TREE_CODE (arg0) == SSA_NAME - && TREE_CODE (arg1) == SSA_NAME - && SSA_NAME_VERSION (arg0) > SSA_NAME_VERSION (arg1)) - return 1; - - /* Put SSA_NAMEs last. */ - if (TREE_CODE (arg1) == SSA_NAME) - return 0; - if (TREE_CODE (arg0) == SSA_NAME) - return 1; - - /* Put variables last. */ - if (DECL_P (arg1)) - return 0; - if (DECL_P (arg0)) - return 1; - - return 0; -} - - -/* Fold A < X && A + 1 > Y to A < X && A >= Y. Normally A + 1 > Y - means A >= Y && A != MAX, but in this case we know that - A < X <= MAX. INEQ is A + 1 > Y, BOUND is A < X. */ - -static tree -fold_to_nonsharp_ineq_using_bound (location_t loc, tree ineq, tree bound) -{ - tree a, typea, type = TREE_TYPE (ineq), a1, diff, y; - - if (TREE_CODE (bound) == LT_EXPR) - a = TREE_OPERAND (bound, 0); - else if (TREE_CODE (bound) == GT_EXPR) - a = TREE_OPERAND (bound, 1); - else - return NULL_TREE; - - typea = TREE_TYPE (a); - if (!INTEGRAL_TYPE_P (typea) - && !POINTER_TYPE_P (typea)) - return NULL_TREE; - - if (TREE_CODE (ineq) == LT_EXPR) - { - a1 = TREE_OPERAND (ineq, 1); - y = TREE_OPERAND (ineq, 0); - } - else if (TREE_CODE (ineq) == GT_EXPR) - { - a1 = TREE_OPERAND (ineq, 0); - y = TREE_OPERAND (ineq, 1); - } - else - return NULL_TREE; - - if (TREE_TYPE (a1) != typea) - return NULL_TREE; - - if (POINTER_TYPE_P (typea)) - { - /* Convert the pointer types into integer before taking the difference. */ - tree ta = fold_convert_loc (loc, ssizetype, a); - tree ta1 = fold_convert_loc (loc, ssizetype, a1); - diff = fold_binary_loc (loc, MINUS_EXPR, ssizetype, ta1, ta); - } - else - diff = fold_binary_loc (loc, MINUS_EXPR, typea, a1, a); - - if (!diff || !integer_onep (diff)) - return NULL_TREE; - - return fold_build2_loc (loc, GE_EXPR, type, a, y); -} - -/* Fold a sum or difference of at least one multiplication. - Returns the folded tree or NULL if no simplification could be made. */ - -static tree -fold_plusminus_mult_expr (location_t loc, enum tree_code code, tree type, - tree arg0, tree arg1) -{ - tree arg00, arg01, arg10, arg11; - tree alt0 = NULL_TREE, alt1 = NULL_TREE, same; - - /* (A * C) +- (B * C) -> (A+-B) * C. - (A * C) +- A -> A * (C+-1). - We are most concerned about the case where C is a constant, - but other combinations show up during loop reduction. Since - it is not difficult, try all four possibilities. */ - - if (TREE_CODE (arg0) == MULT_EXPR) - { - arg00 = TREE_OPERAND (arg0, 0); - arg01 = TREE_OPERAND (arg0, 1); - } - else if (TREE_CODE (arg0) == INTEGER_CST) - { - arg00 = build_one_cst (type); - arg01 = arg0; - } - else - { - /* We cannot generate constant 1 for fract. */ - if (ALL_FRACT_MODE_P (TYPE_MODE (type))) - return NULL_TREE; - arg00 = arg0; - arg01 = build_one_cst (type); - } - if (TREE_CODE (arg1) == MULT_EXPR) - { - arg10 = TREE_OPERAND (arg1, 0); - arg11 = TREE_OPERAND (arg1, 1); - } - else if (TREE_CODE (arg1) == INTEGER_CST) - { - arg10 = build_one_cst (type); - /* As we canonicalize A - 2 to A + -2 get rid of that sign for - the purpose of this canonicalization. */ - if (wi::neg_p (wi::to_wide (arg1), TYPE_SIGN (TREE_TYPE (arg1))) - && negate_expr_p (arg1) - && code == PLUS_EXPR) - { - arg11 = negate_expr (arg1); - code = MINUS_EXPR; - } - else - arg11 = arg1; - } - else - { - /* We cannot generate constant 1 for fract. */ - if (ALL_FRACT_MODE_P (TYPE_MODE (type))) - return NULL_TREE; - arg10 = arg1; - arg11 = build_one_cst (type); - } - same = NULL_TREE; - - /* Prefer factoring a common non-constant. */ - if (operand_equal_p (arg00, arg10, 0)) - same = arg00, alt0 = arg01, alt1 = arg11; - else if (operand_equal_p (arg01, arg11, 0)) - same = arg01, alt0 = arg00, alt1 = arg10; - else if (operand_equal_p (arg00, arg11, 0)) - same = arg00, alt0 = arg01, alt1 = arg10; - else if (operand_equal_p (arg01, arg10, 0)) - same = arg01, alt0 = arg00, alt1 = arg11; - - /* No identical multiplicands; see if we can find a common - power-of-two factor in non-power-of-two multiplies. This - can help in multi-dimensional array access. */ - else if (tree_fits_shwi_p (arg01) && tree_fits_shwi_p (arg11)) - { - HOST_WIDE_INT int01 = tree_to_shwi (arg01); - HOST_WIDE_INT int11 = tree_to_shwi (arg11); - HOST_WIDE_INT tmp; - bool swap = false; - tree maybe_same; - - /* Move min of absolute values to int11. */ - if (absu_hwi (int01) < absu_hwi (int11)) - { - tmp = int01, int01 = int11, int11 = tmp; - alt0 = arg00, arg00 = arg10, arg10 = alt0; - maybe_same = arg01; - swap = true; - } - else - maybe_same = arg11; - - const unsigned HOST_WIDE_INT factor = absu_hwi (int11); - if (factor > 1 - && pow2p_hwi (factor) - && (int01 & (factor - 1)) == 0 - /* The remainder should not be a constant, otherwise we - end up folding i * 4 + 2 to (i * 2 + 1) * 2 which has - increased the number of multiplications necessary. */ - && TREE_CODE (arg10) != INTEGER_CST) - { - alt0 = fold_build2_loc (loc, MULT_EXPR, TREE_TYPE (arg00), arg00, - build_int_cst (TREE_TYPE (arg00), - int01 / int11)); - alt1 = arg10; - same = maybe_same; - if (swap) - maybe_same = alt0, alt0 = alt1, alt1 = maybe_same; - } - } - - if (!same) - return NULL_TREE; - - if (! ANY_INTEGRAL_TYPE_P (type) - || TYPE_OVERFLOW_WRAPS (type) - /* We are neither factoring zero nor minus one. */ - || TREE_CODE (same) == INTEGER_CST) - return fold_build2_loc (loc, MULT_EXPR, type, - fold_build2_loc (loc, code, type, - fold_convert_loc (loc, type, alt0), - fold_convert_loc (loc, type, alt1)), - fold_convert_loc (loc, type, same)); - - /* Same may be zero and thus the operation 'code' may overflow. Likewise - same may be minus one and thus the multiplication may overflow. Perform - the sum operation in an unsigned type. */ - tree utype = unsigned_type_for (type); - tree tem = fold_build2_loc (loc, code, utype, - fold_convert_loc (loc, utype, alt0), - fold_convert_loc (loc, utype, alt1)); - /* If the sum evaluated to a constant that is not -INF the multiplication - cannot overflow. */ - if (TREE_CODE (tem) == INTEGER_CST - && (wi::to_wide (tem) - != wi::min_value (TYPE_PRECISION (utype), SIGNED))) - return fold_build2_loc (loc, MULT_EXPR, type, - fold_convert (type, tem), same); - - /* Do not resort to unsigned multiplication because - we lose the no-overflow property of the expression. */ - return NULL_TREE; -} - -/* Subroutine of native_encode_expr. Encode the INTEGER_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_int (const_tree expr, unsigned char *ptr, int len, int off) -{ - tree type = TREE_TYPE (expr); - int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); - int byte, offset, word, words; - unsigned char value; - - if ((off == -1 && total_bytes > len) || off >= total_bytes) - return 0; - if (off == -1) - off = 0; - - if (ptr == NULL) - /* Dry run. */ - return MIN (len, total_bytes - off); - - words = total_bytes / UNITS_PER_WORD; - - for (byte = 0; byte < total_bytes; byte++) - { - int bitpos = byte * BITS_PER_UNIT; - /* Extend EXPR according to TYPE_SIGN if the precision isn't a whole - number of bytes. */ - value = wi::extract_uhwi (wi::to_widest (expr), bitpos, BITS_PER_UNIT); - - if (total_bytes > UNITS_PER_WORD) - { - word = byte / UNITS_PER_WORD; - if (WORDS_BIG_ENDIAN) - word = (words - 1) - word; - offset = word * UNITS_PER_WORD; - if (BYTES_BIG_ENDIAN) - offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); - else - offset += byte % UNITS_PER_WORD; - } - else - offset = BYTES_BIG_ENDIAN ? (total_bytes - 1) - byte : byte; - if (offset >= off && offset - off < len) - ptr[offset - off] = value; - } - return MIN (len, total_bytes - off); -} - - -/* Subroutine of native_encode_expr. Encode the FIXED_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_fixed (const_tree expr, unsigned char *ptr, int len, int off) -{ - tree type = TREE_TYPE (expr); - scalar_mode mode = SCALAR_TYPE_MODE (type); - int total_bytes = GET_MODE_SIZE (mode); - FIXED_VALUE_TYPE value; - tree i_value, i_type; - - if (total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) - return 0; - - i_type = lang_hooks.types.type_for_size (GET_MODE_BITSIZE (mode), 1); - - if (NULL_TREE == i_type || TYPE_PRECISION (i_type) != total_bytes) - return 0; - - value = TREE_FIXED_CST (expr); - i_value = double_int_to_tree (i_type, value.data); - - return native_encode_int (i_value, ptr, len, off); -} - - -/* Subroutine of native_encode_expr. Encode the REAL_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_real (const_tree expr, unsigned char *ptr, int len, int off) -{ - tree type = TREE_TYPE (expr); - int total_bytes = GET_MODE_SIZE (SCALAR_FLOAT_TYPE_MODE (type)); - int byte, offset, word, words, bitpos; - unsigned char value; - - /* There are always 32 bits in each long, no matter the size of - the hosts long. We handle floating point representations with - up to 192 bits. */ - long tmp[6]; - - if ((off == -1 && total_bytes > len) || off >= total_bytes) - return 0; - if (off == -1) - off = 0; - - if (ptr == NULL) - /* Dry run. */ - return MIN (len, total_bytes - off); - - words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; - - real_to_target (tmp, TREE_REAL_CST_PTR (expr), TYPE_MODE (type)); - - for (bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; - bitpos += BITS_PER_UNIT) - { - byte = (bitpos / BITS_PER_UNIT) & 3; - value = (unsigned char) (tmp[bitpos / 32] >> (bitpos & 31)); - - if (UNITS_PER_WORD < 4) - { - word = byte / UNITS_PER_WORD; - if (WORDS_BIG_ENDIAN) - word = (words - 1) - word; - offset = word * UNITS_PER_WORD; - if (BYTES_BIG_ENDIAN) - offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); - else - offset += byte % UNITS_PER_WORD; - } - else - { - offset = byte; - if (BYTES_BIG_ENDIAN) - { - /* Reverse bytes within each long, or within the entire float - if it's smaller than a long (for HFmode). */ - offset = MIN (3, total_bytes - 1) - offset; - gcc_assert (offset >= 0); - } - } - offset = offset + ((bitpos / BITS_PER_UNIT) & ~3); - if (offset >= off - && offset - off < len) - ptr[offset - off] = value; - } - return MIN (len, total_bytes - off); -} - -/* Subroutine of native_encode_expr. Encode the COMPLEX_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_complex (const_tree expr, unsigned char *ptr, int len, int off) -{ - int rsize, isize; - tree part; - - part = TREE_REALPART (expr); - rsize = native_encode_expr (part, ptr, len, off); - if (off == -1 && rsize == 0) - return 0; - part = TREE_IMAGPART (expr); - if (off != -1) - off = MAX (0, off - GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (part)))); - isize = native_encode_expr (part, ptr ? ptr + rsize : NULL, - len - rsize, off); - if (off == -1 && isize != rsize) - return 0; - return rsize + isize; -} - -/* Like native_encode_vector, but only encode the first COUNT elements. - The other arguments are as for native_encode_vector. */ - -static int -native_encode_vector_part (const_tree expr, unsigned char *ptr, int len, - int off, unsigned HOST_WIDE_INT count) -{ - tree itype = TREE_TYPE (TREE_TYPE (expr)); - if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (expr)) - && TYPE_PRECISION (itype) <= BITS_PER_UNIT) - { - /* This is the only case in which elements can be smaller than a byte. - Element 0 is always in the lsb of the containing byte. */ - unsigned int elt_bits = TYPE_PRECISION (itype); - int total_bytes = CEIL (elt_bits * count, BITS_PER_UNIT); - if ((off == -1 && total_bytes > len) || off >= total_bytes) - return 0; - - if (off == -1) - off = 0; - - /* Zero the buffer and then set bits later where necessary. */ - int extract_bytes = MIN (len, total_bytes - off); - if (ptr) - memset (ptr, 0, extract_bytes); - - unsigned int elts_per_byte = BITS_PER_UNIT / elt_bits; - unsigned int first_elt = off * elts_per_byte; - unsigned int extract_elts = extract_bytes * elts_per_byte; - for (unsigned int i = 0; i < extract_elts; ++i) - { - tree elt = VECTOR_CST_ELT (expr, first_elt + i); - if (TREE_CODE (elt) != INTEGER_CST) - return 0; - - if (ptr && wi::extract_uhwi (wi::to_wide (elt), 0, 1)) - { - unsigned int bit = i * elt_bits; - ptr[bit / BITS_PER_UNIT] |= 1 << (bit % BITS_PER_UNIT); - } - } - return extract_bytes; - } - - int offset = 0; - int size = GET_MODE_SIZE (SCALAR_TYPE_MODE (itype)); - for (unsigned HOST_WIDE_INT i = 0; i < count; i++) - { - if (off >= size) - { - off -= size; - continue; - } - tree elem = VECTOR_CST_ELT (expr, i); - int res = native_encode_expr (elem, ptr ? ptr + offset : NULL, - len - offset, off); - if ((off == -1 && res != size) || res == 0) - return 0; - offset += res; - if (offset >= len) - return (off == -1 && i < count - 1) ? 0 : offset; - if (off != -1) - off = 0; - } - return offset; -} - -/* Subroutine of native_encode_expr. Encode the VECTOR_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_vector (const_tree expr, unsigned char *ptr, int len, int off) -{ - unsigned HOST_WIDE_INT count; - if (!VECTOR_CST_NELTS (expr).is_constant (&count)) - return 0; - return native_encode_vector_part (expr, ptr, len, off, count); -} - - -/* Subroutine of native_encode_expr. Encode the STRING_CST - specified by EXPR into the buffer PTR of length LEN bytes. - Return the number of bytes placed in the buffer, or zero - upon failure. */ - -static int -native_encode_string (const_tree expr, unsigned char *ptr, int len, int off) -{ - tree type = TREE_TYPE (expr); - - /* Wide-char strings are encoded in target byte-order so native - encoding them is trivial. */ - if (BITS_PER_UNIT != CHAR_BIT - || TREE_CODE (type) != ARRAY_TYPE - || TREE_CODE (TREE_TYPE (type)) != INTEGER_TYPE - || !tree_fits_shwi_p (TYPE_SIZE_UNIT (type))) - return 0; - - HOST_WIDE_INT total_bytes = tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (expr))); - if ((off == -1 && total_bytes > len) || off >= total_bytes) - return 0; - if (off == -1) - off = 0; - len = MIN (total_bytes - off, len); - if (ptr == NULL) - /* Dry run. */; - else - { - int written = 0; - if (off < TREE_STRING_LENGTH (expr)) - { - written = MIN (len, TREE_STRING_LENGTH (expr) - off); - memcpy (ptr, TREE_STRING_POINTER (expr) + off, written); - } - memset (ptr + written, 0, len - written); - } - return len; -} - - -/* Subroutine of fold_view_convert_expr. Encode the INTEGER_CST, REAL_CST, - FIXED_CST, COMPLEX_CST, STRING_CST, or VECTOR_CST specified by EXPR into - the buffer PTR of size LEN bytes. If PTR is NULL, don't actually store - anything, just do a dry run. Fail either if OFF is -1 and LEN isn't - sufficient to encode the entire EXPR, or if OFF is out of bounds. - Otherwise, start at byte offset OFF and encode at most LEN bytes. - Return the number of bytes placed in the buffer, or zero upon failure. */ - -int -native_encode_expr (const_tree expr, unsigned char *ptr, int len, int off) -{ - /* We don't support starting at negative offset and -1 is special. */ - if (off < -1) - return 0; - - switch (TREE_CODE (expr)) - { - case INTEGER_CST: - return native_encode_int (expr, ptr, len, off); - - case REAL_CST: - return native_encode_real (expr, ptr, len, off); - - case FIXED_CST: - return native_encode_fixed (expr, ptr, len, off); - - case COMPLEX_CST: - return native_encode_complex (expr, ptr, len, off); - - case VECTOR_CST: - return native_encode_vector (expr, ptr, len, off); - - case STRING_CST: - return native_encode_string (expr, ptr, len, off); - - default: - return 0; - } -} - -/* Try to find a type whose byte size is smaller or equal to LEN bytes larger - or equal to FIELDSIZE bytes, with underlying mode precision/size multiple - of BITS_PER_UNIT. As native_{interpret,encode}_int works in term of - machine modes, we can't just use build_nonstandard_integer_type. */ - -tree -find_bitfield_repr_type (int fieldsize, int len) -{ - machine_mode mode; - for (int pass = 0; pass < 2; pass++) - { - enum mode_class mclass = pass ? MODE_PARTIAL_INT : MODE_INT; - FOR_EACH_MODE_IN_CLASS (mode, mclass) - if (known_ge (GET_MODE_SIZE (mode), fieldsize) - && known_eq (GET_MODE_PRECISION (mode), - GET_MODE_BITSIZE (mode)) - && known_le (GET_MODE_SIZE (mode), len)) - { - tree ret = lang_hooks.types.type_for_mode (mode, 1); - if (ret && TYPE_MODE (ret) == mode) - return ret; - } - } - - for (int i = 0; i < NUM_INT_N_ENTS; i ++) - if (int_n_enabled_p[i] - && int_n_data[i].bitsize >= (unsigned) (BITS_PER_UNIT * fieldsize) - && int_n_trees[i].unsigned_type) - { - tree ret = int_n_trees[i].unsigned_type; - mode = TYPE_MODE (ret); - if (known_ge (GET_MODE_SIZE (mode), fieldsize) - && known_eq (GET_MODE_PRECISION (mode), - GET_MODE_BITSIZE (mode)) - && known_le (GET_MODE_SIZE (mode), len)) - return ret; - } - - return NULL_TREE; -} - -/* Similar to native_encode_expr, but also handle CONSTRUCTORs, VCEs, - NON_LVALUE_EXPRs and nops. If MASK is non-NULL (then PTR has - to be non-NULL and OFF zero), then in addition to filling the - bytes pointed by PTR with the value also clear any bits pointed - by MASK that are known to be initialized, keep them as is for - e.g. uninitialized padding bits or uninitialized fields. */ - -int -native_encode_initializer (tree init, unsigned char *ptr, int len, - int off, unsigned char *mask) -{ - int r; - - /* We don't support starting at negative offset and -1 is special. */ - if (off < -1 || init == NULL_TREE) - return 0; - - gcc_assert (mask == NULL || (off == 0 && ptr)); - - STRIP_NOPS (init); - switch (TREE_CODE (init)) - { - case VIEW_CONVERT_EXPR: - case NON_LVALUE_EXPR: - return native_encode_initializer (TREE_OPERAND (init, 0), ptr, len, off, - mask); - default: - r = native_encode_expr (init, ptr, len, off); - if (mask) - memset (mask, 0, r); - return r; - case CONSTRUCTOR: - tree type = TREE_TYPE (init); - HOST_WIDE_INT total_bytes = int_size_in_bytes (type); - if (total_bytes < 0) - return 0; - if ((off == -1 && total_bytes > len) || off >= total_bytes) - return 0; - int o = off == -1 ? 0 : off; - if (TREE_CODE (type) == ARRAY_TYPE) - { - tree min_index; - unsigned HOST_WIDE_INT cnt; - HOST_WIDE_INT curpos = 0, fieldsize, valueinit = -1; - constructor_elt *ce; - - if (!TYPE_DOMAIN (type) - || TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (type))) != INTEGER_CST) - return 0; - - fieldsize = int_size_in_bytes (TREE_TYPE (type)); - if (fieldsize <= 0) - return 0; - - min_index = TYPE_MIN_VALUE (TYPE_DOMAIN (type)); - if (ptr) - memset (ptr, '\0', MIN (total_bytes - off, len)); - - for (cnt = 0; ; cnt++) - { - tree val = NULL_TREE, index = NULL_TREE; - HOST_WIDE_INT pos = curpos, count = 0; - bool full = false; - if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), cnt, &ce)) - { - val = ce->value; - index = ce->index; - } - else if (mask == NULL - || CONSTRUCTOR_NO_CLEARING (init) - || curpos >= total_bytes) - break; - else - pos = total_bytes; - - if (index && TREE_CODE (index) == RANGE_EXPR) - { - if (TREE_CODE (TREE_OPERAND (index, 0)) != INTEGER_CST - || TREE_CODE (TREE_OPERAND (index, 1)) != INTEGER_CST) - return 0; - offset_int wpos - = wi::sext (wi::to_offset (TREE_OPERAND (index, 0)) - - wi::to_offset (min_index), - TYPE_PRECISION (sizetype)); - wpos *= fieldsize; - if (!wi::fits_shwi_p (pos)) - return 0; - pos = wpos.to_shwi (); - offset_int wcount - = wi::sext (wi::to_offset (TREE_OPERAND (index, 1)) - - wi::to_offset (TREE_OPERAND (index, 0)), - TYPE_PRECISION (sizetype)); - if (!wi::fits_shwi_p (wcount)) - return 0; - count = wcount.to_shwi (); - } - else if (index) - { - if (TREE_CODE (index) != INTEGER_CST) - return 0; - offset_int wpos - = wi::sext (wi::to_offset (index) - - wi::to_offset (min_index), - TYPE_PRECISION (sizetype)); - wpos *= fieldsize; - if (!wi::fits_shwi_p (wpos)) - return 0; - pos = wpos.to_shwi (); - } - - if (mask && !CONSTRUCTOR_NO_CLEARING (init) && curpos != pos) - { - if (valueinit == -1) - { - tree zero = build_zero_cst (TREE_TYPE (type)); - r = native_encode_initializer (zero, ptr + curpos, - fieldsize, 0, - mask + curpos); - if (TREE_CODE (zero) == CONSTRUCTOR) - ggc_free (zero); - if (!r) - return 0; - valueinit = curpos; - curpos += fieldsize; - } - while (curpos != pos) - { - memcpy (ptr + curpos, ptr + valueinit, fieldsize); - memcpy (mask + curpos, mask + valueinit, fieldsize); - curpos += fieldsize; - } - } - - curpos = pos; - if (val) - do - { - if (off == -1 - || (curpos >= off - && (curpos + fieldsize - <= (HOST_WIDE_INT) off + len))) - { - if (full) - { - if (ptr) - memcpy (ptr + (curpos - o), ptr + (pos - o), - fieldsize); - if (mask) - memcpy (mask + curpos, mask + pos, fieldsize); - } - else if (!native_encode_initializer (val, - ptr - ? ptr + curpos - o - : NULL, - fieldsize, - off == -1 ? -1 - : 0, - mask - ? mask + curpos - : NULL)) - return 0; - else - { - full = true; - pos = curpos; - } - } - else if (curpos + fieldsize > off - && curpos < (HOST_WIDE_INT) off + len) - { - /* Partial overlap. */ - unsigned char *p = NULL; - int no = 0; - int l; - gcc_assert (mask == NULL); - if (curpos >= off) - { - if (ptr) - p = ptr + curpos - off; - l = MIN ((HOST_WIDE_INT) off + len - curpos, - fieldsize); - } - else - { - p = ptr; - no = off - curpos; - l = len; - } - if (!native_encode_initializer (val, p, l, no, NULL)) - return 0; - } - curpos += fieldsize; - } - while (count-- != 0); - } - return MIN (total_bytes - off, len); - } - else if (TREE_CODE (type) == RECORD_TYPE - || TREE_CODE (type) == UNION_TYPE) - { - unsigned HOST_WIDE_INT cnt; - constructor_elt *ce; - tree fld_base = TYPE_FIELDS (type); - tree to_free = NULL_TREE; - - gcc_assert (TREE_CODE (type) == RECORD_TYPE || mask == NULL); - if (ptr != NULL) - memset (ptr, '\0', MIN (total_bytes - o, len)); - for (cnt = 0; ; cnt++) - { - tree val = NULL_TREE, field = NULL_TREE; - HOST_WIDE_INT pos = 0, fieldsize; - unsigned HOST_WIDE_INT bpos = 0, epos = 0; - - if (to_free) - { - ggc_free (to_free); - to_free = NULL_TREE; - } - - if (vec_safe_iterate (CONSTRUCTOR_ELTS (init), cnt, &ce)) - { - val = ce->value; - field = ce->index; - if (field == NULL_TREE) - return 0; - - pos = int_byte_position (field); - if (off != -1 && (HOST_WIDE_INT) off + len <= pos) - continue; - } - else if (mask == NULL - || CONSTRUCTOR_NO_CLEARING (init)) - break; - else - pos = total_bytes; - - if (mask && !CONSTRUCTOR_NO_CLEARING (init)) - { - tree fld; - for (fld = fld_base; fld; fld = DECL_CHAIN (fld)) - { - if (TREE_CODE (fld) != FIELD_DECL) - continue; - if (fld == field) - break; - if (DECL_PADDING_P (fld)) - continue; - if (DECL_SIZE_UNIT (fld) == NULL_TREE - || !tree_fits_shwi_p (DECL_SIZE_UNIT (fld))) - return 0; - if (integer_zerop (DECL_SIZE_UNIT (fld))) - continue; - break; - } - if (fld == NULL_TREE) - { - if (ce == NULL) - break; - return 0; - } - fld_base = DECL_CHAIN (fld); - if (fld != field) - { - cnt--; - field = fld; - pos = int_byte_position (field); - val = build_zero_cst (TREE_TYPE (fld)); - if (TREE_CODE (val) == CONSTRUCTOR) - to_free = val; - } - } - - if (TREE_CODE (TREE_TYPE (field)) == ARRAY_TYPE - && TYPE_DOMAIN (TREE_TYPE (field)) - && ! TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (field)))) - { - if (mask || off != -1) - return 0; - if (val == NULL_TREE) - continue; - if (TREE_CODE (TREE_TYPE (val)) != ARRAY_TYPE) - return 0; - fieldsize = int_size_in_bytes (TREE_TYPE (val)); - if (fieldsize < 0 - || (int) fieldsize != fieldsize - || (pos + fieldsize) > INT_MAX) - return 0; - if (pos + fieldsize > total_bytes) - { - if (ptr != NULL && total_bytes < len) - memset (ptr + total_bytes, '\0', - MIN (pos + fieldsize, len) - total_bytes); - total_bytes = pos + fieldsize; - } - } - else - { - if (DECL_SIZE_UNIT (field) == NULL_TREE - || !tree_fits_shwi_p (DECL_SIZE_UNIT (field))) - return 0; - fieldsize = tree_to_shwi (DECL_SIZE_UNIT (field)); - } - if (fieldsize == 0) - continue; - - if (DECL_BIT_FIELD (field)) - { - if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field))) - return 0; - fieldsize = TYPE_PRECISION (TREE_TYPE (field)); - bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)); - if (bpos % BITS_PER_UNIT) - bpos %= BITS_PER_UNIT; - else - bpos = 0; - fieldsize += bpos; - epos = fieldsize % BITS_PER_UNIT; - fieldsize += BITS_PER_UNIT - 1; - fieldsize /= BITS_PER_UNIT; - } - - if (off != -1 && pos + fieldsize <= off) - continue; - - if (val == NULL_TREE) - continue; - - if (DECL_BIT_FIELD (field)) - { - /* FIXME: Handle PDP endian. */ - if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) - return 0; - - if (TREE_CODE (val) != INTEGER_CST) - return 0; - - tree repr = DECL_BIT_FIELD_REPRESENTATIVE (field); - tree repr_type = NULL_TREE; - HOST_WIDE_INT rpos = 0; - if (repr && INTEGRAL_TYPE_P (TREE_TYPE (repr))) - { - rpos = int_byte_position (repr); - repr_type = TREE_TYPE (repr); - } - else - { - repr_type = find_bitfield_repr_type (fieldsize, len); - if (repr_type == NULL_TREE) - return 0; - HOST_WIDE_INT repr_size = int_size_in_bytes (repr_type); - gcc_assert (repr_size > 0 && repr_size <= len); - if (pos + repr_size <= o + len) - rpos = pos; - else - { - rpos = o + len - repr_size; - gcc_assert (rpos <= pos); - } - } - - if (rpos > pos) - return 0; - wide_int w = wi::to_wide (val, TYPE_PRECISION (repr_type)); - int diff = (TYPE_PRECISION (repr_type) - - TYPE_PRECISION (TREE_TYPE (field))); - HOST_WIDE_INT bitoff = (pos - rpos) * BITS_PER_UNIT + bpos; - if (!BYTES_BIG_ENDIAN) - w = wi::lshift (w, bitoff); - else - w = wi::lshift (w, diff - bitoff); - val = wide_int_to_tree (repr_type, w); - - unsigned char buf[MAX_BITSIZE_MODE_ANY_INT - / BITS_PER_UNIT + 1]; - int l = native_encode_int (val, buf, sizeof buf, 0); - if (l * BITS_PER_UNIT != TYPE_PRECISION (repr_type)) - return 0; - - if (ptr == NULL) - continue; - - /* If the bitfield does not start at byte boundary, handle - the partial byte at the start. */ - if (bpos - && (off == -1 || (pos >= off && len >= 1))) - { - if (!BYTES_BIG_ENDIAN) - { - int msk = (1 << bpos) - 1; - buf[pos - rpos] &= ~msk; - buf[pos - rpos] |= ptr[pos - o] & msk; - if (mask) - { - if (fieldsize > 1 || epos == 0) - mask[pos] &= msk; - else - mask[pos] &= (msk | ~((1 << epos) - 1)); - } - } - else - { - int msk = (1 << (BITS_PER_UNIT - bpos)) - 1; - buf[pos - rpos] &= msk; - buf[pos - rpos] |= ptr[pos - o] & ~msk; - if (mask) - { - if (fieldsize > 1 || epos == 0) - mask[pos] &= ~msk; - else - mask[pos] &= (~msk - | ((1 << (BITS_PER_UNIT - epos)) - - 1)); - } - } - } - /* If the bitfield does not end at byte boundary, handle - the partial byte at the end. */ - if (epos - && (off == -1 - || pos + fieldsize <= (HOST_WIDE_INT) off + len)) - { - if (!BYTES_BIG_ENDIAN) - { - int msk = (1 << epos) - 1; - buf[pos - rpos + fieldsize - 1] &= msk; - buf[pos - rpos + fieldsize - 1] - |= ptr[pos + fieldsize - 1 - o] & ~msk; - if (mask && (fieldsize > 1 || bpos == 0)) - mask[pos + fieldsize - 1] &= ~msk; - } - else - { - int msk = (1 << (BITS_PER_UNIT - epos)) - 1; - buf[pos - rpos + fieldsize - 1] &= ~msk; - buf[pos - rpos + fieldsize - 1] - |= ptr[pos + fieldsize - 1 - o] & msk; - if (mask && (fieldsize > 1 || bpos == 0)) - mask[pos + fieldsize - 1] &= msk; - } - } - if (off == -1 - || (pos >= off - && (pos + fieldsize <= (HOST_WIDE_INT) off + len))) - { - memcpy (ptr + pos - o, buf + (pos - rpos), fieldsize); - if (mask && (fieldsize > (bpos != 0) + (epos != 0))) - memset (mask + pos + (bpos != 0), 0, - fieldsize - (bpos != 0) - (epos != 0)); - } - else - { - /* Partial overlap. */ - HOST_WIDE_INT fsz = fieldsize; - gcc_assert (mask == NULL); - if (pos < off) - { - fsz -= (off - pos); - pos = off; - } - if (pos + fsz > (HOST_WIDE_INT) off + len) - fsz = (HOST_WIDE_INT) off + len - pos; - memcpy (ptr + pos - off, buf + (pos - rpos), fsz); - } - continue; - } - - if (off == -1 - || (pos >= off - && (pos + fieldsize <= (HOST_WIDE_INT) off + len))) - { - int fldsize = fieldsize; - if (off == -1) - { - tree fld = DECL_CHAIN (field); - while (fld) - { - if (TREE_CODE (fld) == FIELD_DECL) - break; - fld = DECL_CHAIN (fld); - } - if (fld == NULL_TREE) - fldsize = len - pos; - } - r = native_encode_initializer (val, ptr ? ptr + pos - o - : NULL, - fldsize, - off == -1 ? -1 : 0, - mask ? mask + pos : NULL); - if (!r) - return 0; - if (off == -1 - && fldsize != fieldsize - && r > fieldsize - && pos + r > total_bytes) - total_bytes = pos + r; - } - else - { - /* Partial overlap. */ - unsigned char *p = NULL; - int no = 0; - int l; - gcc_assert (mask == NULL); - if (pos >= off) - { - if (ptr) - p = ptr + pos - off; - l = MIN ((HOST_WIDE_INT) off + len - pos, - fieldsize); - } - else - { - p = ptr; - no = off - pos; - l = len; - } - if (!native_encode_initializer (val, p, l, no, NULL)) - return 0; - } - } - return MIN (total_bytes - off, len); - } - return 0; - } -} - - -/* Subroutine of native_interpret_expr. Interpret the contents of - the buffer PTR of length LEN as an INTEGER_CST of type TYPE. - If the buffer cannot be interpreted, return NULL_TREE. */ - -static tree -native_interpret_int (tree type, const unsigned char *ptr, int len) -{ - int total_bytes = GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (type)); - - if (total_bytes > len - || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) - return NULL_TREE; - - wide_int result = wi::from_buffer (ptr, total_bytes); - - return wide_int_to_tree (type, result); -} - - -/* Subroutine of native_interpret_expr. Interpret the contents of - the buffer PTR of length LEN as a FIXED_CST of type TYPE. - If the buffer cannot be interpreted, return NULL_TREE. */ - -static tree -native_interpret_fixed (tree type, const unsigned char *ptr, int len) -{ - scalar_mode mode = SCALAR_TYPE_MODE (type); - int total_bytes = GET_MODE_SIZE (mode); - double_int result; - FIXED_VALUE_TYPE fixed_value; - - if (total_bytes > len - || total_bytes * BITS_PER_UNIT > HOST_BITS_PER_DOUBLE_INT) - return NULL_TREE; - - result = double_int::from_buffer (ptr, total_bytes); - fixed_value = fixed_from_double_int (result, mode); - - return build_fixed (type, fixed_value); -} - - -/* Subroutine of native_interpret_expr. Interpret the contents of - the buffer PTR of length LEN as a REAL_CST of type TYPE. - If the buffer cannot be interpreted, return NULL_TREE. */ - -static tree -native_interpret_real (tree type, const unsigned char *ptr, int len) -{ - scalar_float_mode mode = SCALAR_FLOAT_TYPE_MODE (type); - int total_bytes = GET_MODE_SIZE (mode); - unsigned char value; - /* There are always 32 bits in each long, no matter the size of - the hosts long. We handle floating point representations with - up to 192 bits. */ - REAL_VALUE_TYPE r; - long tmp[6]; - - if (total_bytes > len || total_bytes > 24) - return NULL_TREE; - int words = (32 / BITS_PER_UNIT) / UNITS_PER_WORD; - - memset (tmp, 0, sizeof (tmp)); - for (int bitpos = 0; bitpos < total_bytes * BITS_PER_UNIT; - bitpos += BITS_PER_UNIT) - { - /* Both OFFSET and BYTE index within a long; - bitpos indexes the whole float. */ - int offset, byte = (bitpos / BITS_PER_UNIT) & 3; - if (UNITS_PER_WORD < 4) - { - int word = byte / UNITS_PER_WORD; - if (WORDS_BIG_ENDIAN) - word = (words - 1) - word; - offset = word * UNITS_PER_WORD; - if (BYTES_BIG_ENDIAN) - offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD); - else - offset += byte % UNITS_PER_WORD; - } - else - { - offset = byte; - if (BYTES_BIG_ENDIAN) - { - /* Reverse bytes within each long, or within the entire float - if it's smaller than a long (for HFmode). */ - offset = MIN (3, total_bytes - 1) - offset; - gcc_assert (offset >= 0); - } - } - value = ptr[offset + ((bitpos / BITS_PER_UNIT) & ~3)]; - - tmp[bitpos / 32] |= (unsigned long)value << (bitpos & 31); - } - - real_from_target (&r, tmp, mode); - tree ret = build_real (type, r); - if (MODE_COMPOSITE_P (mode)) - { - /* For floating point values in composite modes, punt if this folding - doesn't preserve bit representation. As the mode doesn't have fixed - precision while GCC pretends it does, there could be valid values that - GCC can't really represent accurately. See PR95450. */ - unsigned char buf[24]; - if (native_encode_expr (ret, buf, total_bytes, 0) != total_bytes - || memcmp (ptr, buf, total_bytes) != 0) - ret = NULL_TREE; - } - return ret; -} - - -/* Subroutine of native_interpret_expr. Interpret the contents of - the buffer PTR of length LEN as a COMPLEX_CST of type TYPE. - If the buffer cannot be interpreted, return NULL_TREE. */ - -static tree -native_interpret_complex (tree type, const unsigned char *ptr, int len) -{ - tree etype, rpart, ipart; - int size; - - etype = TREE_TYPE (type); - size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); - if (size * 2 > len) - return NULL_TREE; - rpart = native_interpret_expr (etype, ptr, size); - if (!rpart) - return NULL_TREE; - ipart = native_interpret_expr (etype, ptr+size, size); - if (!ipart) - return NULL_TREE; - return build_complex (type, rpart, ipart); -} - -/* Read a vector of type TYPE from the target memory image given by BYTES, - which contains LEN bytes. The vector is known to be encodable using - NPATTERNS interleaved patterns with NELTS_PER_PATTERN elements each. - - Return the vector on success, otherwise return null. */ - -static tree -native_interpret_vector_part (tree type, const unsigned char *bytes, - unsigned int len, unsigned int npatterns, - unsigned int nelts_per_pattern) -{ - tree elt_type = TREE_TYPE (type); - if (VECTOR_BOOLEAN_TYPE_P (type) - && TYPE_PRECISION (elt_type) <= BITS_PER_UNIT) - { - /* This is the only case in which elements can be smaller than a byte. - Element 0 is always in the lsb of the containing byte. */ - unsigned int elt_bits = TYPE_PRECISION (elt_type); - if (elt_bits * npatterns * nelts_per_pattern > len * BITS_PER_UNIT) - return NULL_TREE; - - tree_vector_builder builder (type, npatterns, nelts_per_pattern); - for (unsigned int i = 0; i < builder.encoded_nelts (); ++i) - { - unsigned int bit_index = i * elt_bits; - unsigned int byte_index = bit_index / BITS_PER_UNIT; - unsigned int lsb = bit_index % BITS_PER_UNIT; - builder.quick_push (bytes[byte_index] & (1 << lsb) - ? build_all_ones_cst (elt_type) - : build_zero_cst (elt_type)); - } - return builder.build (); - } - - unsigned int elt_bytes = tree_to_uhwi (TYPE_SIZE_UNIT (elt_type)); - if (elt_bytes * npatterns * nelts_per_pattern > len) - return NULL_TREE; - - tree_vector_builder builder (type, npatterns, nelts_per_pattern); - for (unsigned int i = 0; i < builder.encoded_nelts (); ++i) - { - tree elt = native_interpret_expr (elt_type, bytes, elt_bytes); - if (!elt) - return NULL_TREE; - builder.quick_push (elt); - bytes += elt_bytes; - } - return builder.build (); -} - -/* Subroutine of native_interpret_expr. Interpret the contents of - the buffer PTR of length LEN as a VECTOR_CST of type TYPE. - If the buffer cannot be interpreted, return NULL_TREE. */ - -static tree -native_interpret_vector (tree type, const unsigned char *ptr, unsigned int len) -{ - tree etype; - unsigned int size; - unsigned HOST_WIDE_INT count; - - etype = TREE_TYPE (type); - size = GET_MODE_SIZE (SCALAR_TYPE_MODE (etype)); - if (!TYPE_VECTOR_SUBPARTS (type).is_constant (&count) - || size * count > len) - return NULL_TREE; - - return native_interpret_vector_part (type, ptr, len, count, 1); -} - - -/* Subroutine of fold_view_convert_expr. Interpret the contents of - the buffer PTR of length LEN as a constant of type TYPE. For - INTEGRAL_TYPE_P we return an INTEGER_CST, for SCALAR_FLOAT_TYPE_P - we return a REAL_CST, etc... If the buffer cannot be interpreted, - return NULL_TREE. */ - -tree -native_interpret_expr (tree type, const unsigned char *ptr, int len) -{ - switch (TREE_CODE (type)) - { - case INTEGER_TYPE: - case ENUMERAL_TYPE: - case BOOLEAN_TYPE: - case POINTER_TYPE: - case REFERENCE_TYPE: - case OFFSET_TYPE: - return native_interpret_int (type, ptr, len); - - case REAL_TYPE: - return native_interpret_real (type, ptr, len); - - case FIXED_POINT_TYPE: - return native_interpret_fixed (type, ptr, len); - - case COMPLEX_TYPE: - return native_interpret_complex (type, ptr, len); - - case VECTOR_TYPE: - return native_interpret_vector (type, ptr, len); - - default: - return NULL_TREE; - } -} - -/* Returns true if we can interpret the contents of a native encoding - as TYPE. */ - -bool -can_native_interpret_type_p (tree type) -{ - switch (TREE_CODE (type)) - { - case INTEGER_TYPE: - case ENUMERAL_TYPE: - case BOOLEAN_TYPE: - case POINTER_TYPE: - case REFERENCE_TYPE: - case FIXED_POINT_TYPE: - case REAL_TYPE: - case COMPLEX_TYPE: - case VECTOR_TYPE: - case OFFSET_TYPE: - return true; - default: - return false; - } -} - -/* Attempt to interpret aggregate of TYPE from bytes encoded in target - byte order at PTR + OFF with LEN bytes. Does not handle unions. */ - -tree -native_interpret_aggregate (tree type, const unsigned char *ptr, int off, - int len) -{ - vec<constructor_elt, va_gc> *elts = NULL; - if (TREE_CODE (type) == ARRAY_TYPE) - { - HOST_WIDE_INT eltsz = int_size_in_bytes (TREE_TYPE (type)); - if (eltsz < 0 || eltsz > len || TYPE_DOMAIN (type) == NULL_TREE) - return NULL_TREE; - - HOST_WIDE_INT cnt = 0; - if (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) - { - if (!tree_fits_shwi_p (TYPE_MAX_VALUE (TYPE_DOMAIN (type)))) - return NULL_TREE; - cnt = tree_to_shwi (TYPE_MAX_VALUE (TYPE_DOMAIN (type))) + 1; - } - if (eltsz == 0) - cnt = 0; - HOST_WIDE_INT pos = 0; - for (HOST_WIDE_INT i = 0; i < cnt; i++, pos += eltsz) - { - tree v = NULL_TREE; - if (pos >= len || pos + eltsz > len) - return NULL_TREE; - if (can_native_interpret_type_p (TREE_TYPE (type))) - { - v = native_interpret_expr (TREE_TYPE (type), - ptr + off + pos, eltsz); - if (v == NULL_TREE) - return NULL_TREE; - } - else if (TREE_CODE (TREE_TYPE (type)) == RECORD_TYPE - || TREE_CODE (TREE_TYPE (type)) == ARRAY_TYPE) - v = native_interpret_aggregate (TREE_TYPE (type), ptr, off + pos, - eltsz); - if (v == NULL_TREE) - return NULL_TREE; - CONSTRUCTOR_APPEND_ELT (elts, size_int (i), v); - } - return build_constructor (type, elts); - } - if (TREE_CODE (type) != RECORD_TYPE) - return NULL_TREE; - for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field)) - { - if (TREE_CODE (field) != FIELD_DECL || DECL_PADDING_P (field)) - continue; - tree fld = field; - HOST_WIDE_INT bitoff = 0, pos = 0, sz = 0; - int diff = 0; - tree v = NULL_TREE; - if (DECL_BIT_FIELD (field)) - { - fld = DECL_BIT_FIELD_REPRESENTATIVE (field); - if (fld && INTEGRAL_TYPE_P (TREE_TYPE (fld))) - { - poly_int64 bitoffset; - poly_uint64 field_offset, fld_offset; - if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset) - && poly_int_tree_p (DECL_FIELD_OFFSET (fld), &fld_offset)) - bitoffset = (field_offset - fld_offset) * BITS_PER_UNIT; - else - bitoffset = 0; - bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)) - - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (fld))); - diff = (TYPE_PRECISION (TREE_TYPE (fld)) - - TYPE_PRECISION (TREE_TYPE (field))); - if (!bitoffset.is_constant (&bitoff) - || bitoff < 0 - || bitoff > diff) - return NULL_TREE; - } - else - { - if (!tree_fits_uhwi_p (DECL_FIELD_BIT_OFFSET (field))) - return NULL_TREE; - int fieldsize = TYPE_PRECISION (TREE_TYPE (field)); - int bpos = tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)); - bpos %= BITS_PER_UNIT; - fieldsize += bpos; - fieldsize += BITS_PER_UNIT - 1; - fieldsize /= BITS_PER_UNIT; - tree repr_type = find_bitfield_repr_type (fieldsize, len); - if (repr_type == NULL_TREE) - return NULL_TREE; - sz = int_size_in_bytes (repr_type); - if (sz < 0 || sz > len) - return NULL_TREE; - pos = int_byte_position (field); - if (pos < 0 || pos > len || pos + fieldsize > len) - return NULL_TREE; - HOST_WIDE_INT rpos; - if (pos + sz <= len) - rpos = pos; - else - { - rpos = len - sz; - gcc_assert (rpos <= pos); - } - bitoff = (HOST_WIDE_INT) (pos - rpos) * BITS_PER_UNIT + bpos; - pos = rpos; - diff = (TYPE_PRECISION (repr_type) - - TYPE_PRECISION (TREE_TYPE (field))); - v = native_interpret_expr (repr_type, ptr + off + pos, sz); - if (v == NULL_TREE) - return NULL_TREE; - fld = NULL_TREE; - } - } - - if (fld) - { - sz = int_size_in_bytes (TREE_TYPE (fld)); - if (sz < 0 || sz > len) - return NULL_TREE; - tree byte_pos = byte_position (fld); - if (!tree_fits_shwi_p (byte_pos)) - return NULL_TREE; - pos = tree_to_shwi (byte_pos); - if (pos < 0 || pos > len || pos + sz > len) - return NULL_TREE; - } - if (fld == NULL_TREE) - /* Already handled above. */; - else if (can_native_interpret_type_p (TREE_TYPE (fld))) - { - v = native_interpret_expr (TREE_TYPE (fld), - ptr + off + pos, sz); - if (v == NULL_TREE) - return NULL_TREE; - } - else if (TREE_CODE (TREE_TYPE (fld)) == RECORD_TYPE - || TREE_CODE (TREE_TYPE (fld)) == ARRAY_TYPE) - v = native_interpret_aggregate (TREE_TYPE (fld), ptr, off + pos, sz); - if (v == NULL_TREE) - return NULL_TREE; - if (fld != field) - { - if (TREE_CODE (v) != INTEGER_CST) - return NULL_TREE; - - /* FIXME: Figure out how to handle PDP endian bitfields. */ - if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN) - return NULL_TREE; - if (!BYTES_BIG_ENDIAN) - v = wide_int_to_tree (TREE_TYPE (field), - wi::lrshift (wi::to_wide (v), bitoff)); - else - v = wide_int_to_tree (TREE_TYPE (field), - wi::lrshift (wi::to_wide (v), - diff - bitoff)); - } - CONSTRUCTOR_APPEND_ELT (elts, field, v); - } - return build_constructor (type, elts); -} - -/* Routines for manipulation of native_encode_expr encoded data if the encoded - or extracted constant positions and/or sizes aren't byte aligned. */ - -/* Shift left the bytes in PTR of SZ elements by AMNT bits, carrying over the - bits between adjacent elements. AMNT should be within - [0, BITS_PER_UNIT). - Example, AMNT = 2: - 00011111|11100000 << 2 = 01111111|10000000 - PTR[1] | PTR[0] PTR[1] | PTR[0]. */ - -void -shift_bytes_in_array_left (unsigned char *ptr, unsigned int sz, - unsigned int amnt) -{ - if (amnt == 0) - return; - - unsigned char carry_over = 0U; - unsigned char carry_mask = (~0U) << (unsigned char) (BITS_PER_UNIT - amnt); - unsigned char clear_mask = (~0U) << amnt; - - for (unsigned int i = 0; i < sz; i++) - { - unsigned prev_carry_over = carry_over; - carry_over = (ptr[i] & carry_mask) >> (BITS_PER_UNIT - amnt); - - ptr[i] <<= amnt; - if (i != 0) - { - ptr[i] &= clear_mask; - ptr[i] |= prev_carry_over; - } - } -} - -/* Like shift_bytes_in_array_left but for big-endian. - Shift right the bytes in PTR of SZ elements by AMNT bits, carrying over the - bits between adjacent elements. AMNT should be within - [0, BITS_PER_UNIT). - Example, AMNT = 2: - 00011111|11100000 >> 2 = 00000111|11111000 - PTR[0] | PTR[1] PTR[0] | PTR[1]. */ - -void -shift_bytes_in_array_right (unsigned char *ptr, unsigned int sz, - unsigned int amnt) -{ - if (amnt == 0) - return; - - unsigned char carry_over = 0U; - unsigned char carry_mask = ~(~0U << amnt); - - for (unsigned int i = 0; i < sz; i++) - { - unsigned prev_carry_over = carry_over; - carry_over = ptr[i] & carry_mask; - - carry_over <<= (unsigned char) BITS_PER_UNIT - amnt; - ptr[i] >>= amnt; - ptr[i] |= prev_carry_over; - } -} - -/* Try to view-convert VECTOR_CST EXPR to VECTOR_TYPE TYPE by operating - directly on the VECTOR_CST encoding, in a way that works for variable- - length vectors. Return the resulting VECTOR_CST on success or null - on failure. */ - -static tree -fold_view_convert_vector_encoding (tree type, tree expr) -{ - tree expr_type = TREE_TYPE (expr); - poly_uint64 type_bits, expr_bits; - if (!poly_int_tree_p (TYPE_SIZE (type), &type_bits) - || !poly_int_tree_p (TYPE_SIZE (expr_type), &expr_bits)) - return NULL_TREE; - - poly_uint64 type_units = TYPE_VECTOR_SUBPARTS (type); - poly_uint64 expr_units = TYPE_VECTOR_SUBPARTS (expr_type); - unsigned int type_elt_bits = vector_element_size (type_bits, type_units); - unsigned int expr_elt_bits = vector_element_size (expr_bits, expr_units); - - /* We can only preserve the semantics of a stepped pattern if the new - vector element is an integer of the same size. */ - if (VECTOR_CST_STEPPED_P (expr) - && (!INTEGRAL_TYPE_P (type) || type_elt_bits != expr_elt_bits)) - return NULL_TREE; - - /* The number of bits needed to encode one element from every pattern - of the original vector. */ - unsigned int expr_sequence_bits - = VECTOR_CST_NPATTERNS (expr) * expr_elt_bits; - - /* The number of bits needed to encode one element from every pattern - of the result. */ - unsigned int type_sequence_bits - = least_common_multiple (expr_sequence_bits, type_elt_bits); - - /* Don't try to read more bytes than are available, which can happen - for constant-sized vectors if TYPE has larger elements than EXPR_TYPE. - The general VIEW_CONVERT handling can cope with that case, so there's - no point complicating things here. */ - unsigned int nelts_per_pattern = VECTOR_CST_NELTS_PER_PATTERN (expr); - unsigned int buffer_bytes = CEIL (nelts_per_pattern * type_sequence_bits, - BITS_PER_UNIT); - unsigned int buffer_bits = buffer_bytes * BITS_PER_UNIT; - if (known_gt (buffer_bits, expr_bits)) - return NULL_TREE; - - /* Get enough bytes of EXPR to form the new encoding. */ - auto_vec<unsigned char, 128> buffer (buffer_bytes); - buffer.quick_grow (buffer_bytes); - if (native_encode_vector_part (expr, buffer.address (), buffer_bytes, 0, - buffer_bits / expr_elt_bits) - != (int) buffer_bytes) - return NULL_TREE; - - /* Reencode the bytes as TYPE. */ - unsigned int type_npatterns = type_sequence_bits / type_elt_bits; - return native_interpret_vector_part (type, &buffer[0], buffer.length (), - type_npatterns, nelts_per_pattern); -} - -/* Fold a VIEW_CONVERT_EXPR of a constant expression EXPR to type - TYPE at compile-time. If we're unable to perform the conversion - return NULL_TREE. */ - -static tree -fold_view_convert_expr (tree type, tree expr) -{ - /* We support up to 512-bit values (for V8DFmode). */ - unsigned char buffer[64]; - int len; - - /* Check that the host and target are sane. */ - if (CHAR_BIT != 8 || BITS_PER_UNIT != 8) - return NULL_TREE; - - if (VECTOR_TYPE_P (type) && TREE_CODE (expr) == VECTOR_CST) - if (tree res = fold_view_convert_vector_encoding (type, expr)) - return res; - - len = native_encode_expr (expr, buffer, sizeof (buffer)); - if (len == 0) - return NULL_TREE; - - return native_interpret_expr (type, buffer, len); -} - -/* Build an expression for the address of T. Folds away INDIRECT_REF - to avoid confusing the gimplify process. */ - -tree -build_fold_addr_expr_with_type_loc (location_t loc, tree t, tree ptrtype) -{ - /* The size of the object is not relevant when talking about its address. */ - if (TREE_CODE (t) == WITH_SIZE_EXPR) - t = TREE_OPERAND (t, 0); - - if (TREE_CODE (t) == INDIRECT_REF) - { - t = TREE_OPERAND (t, 0); - - if (TREE_TYPE (t) != ptrtype) - t = build1_loc (loc, NOP_EXPR, ptrtype, t); - } - else if (TREE_CODE (t) == MEM_REF - && integer_zerop (TREE_OPERAND (t, 1))) - { - t = TREE_OPERAND (t, 0); - - if (TREE_TYPE (t) != ptrtype) - t = fold_convert_loc (loc, ptrtype, t); - } - else if (TREE_CODE (t) == MEM_REF - && TREE_CODE (TREE_OPERAND (t, 0)) == INTEGER_CST) - return fold_binary (POINTER_PLUS_EXPR, ptrtype, - TREE_OPERAND (t, 0), - convert_to_ptrofftype (TREE_OPERAND (t, 1))); - else if (TREE_CODE (t) == VIEW_CONVERT_EXPR) - { - t = build_fold_addr_expr_loc (loc, TREE_OPERAND (t, 0)); - - if (TREE_TYPE (t) != ptrtype) - t = fold_convert_loc (loc, ptrtype, t); - } - else - t = build1_loc (loc, ADDR_EXPR, ptrtype, t); - - return t; -} - -/* Build an expression for the address of T. */ - -tree -build_fold_addr_expr_loc (location_t loc, tree t) -{ - tree ptrtype = build_pointer_type (TREE_TYPE (t)); - - return build_fold_addr_expr_with_type_loc (loc, t, ptrtype); -} - -/* Fold a unary expression of code CODE and type TYPE with operand - OP0. Return the folded expression if folding is successful. - Otherwise, return NULL_TREE. */ - -tree -fold_unary_loc (location_t loc, enum tree_code code, tree type, tree op0) -{ - tree tem; - tree arg0; - enum tree_code_class kind = TREE_CODE_CLASS (code); - - gcc_assert (IS_EXPR_CODE_CLASS (kind) - && TREE_CODE_LENGTH (code) == 1); - - arg0 = op0; - if (arg0) - { - if (CONVERT_EXPR_CODE_P (code) - || code == FLOAT_EXPR || code == ABS_EXPR || code == NEGATE_EXPR) - { - /* Don't use STRIP_NOPS, because signedness of argument type - matters. */ - STRIP_SIGN_NOPS (arg0); - } - else - { - /* Strip any conversions that don't change the mode. This - is safe for every expression, except for a comparison - expression because its signedness is derived from its - operands. - - Note that this is done as an internal manipulation within - the constant folder, in order to find the simplest - representation of the arguments so that their form can be - studied. In any cases, the appropriate type conversions - should be put back in the tree that will get out of the - constant folder. */ - STRIP_NOPS (arg0); - } - - if (CONSTANT_CLASS_P (arg0)) - { - tree tem = const_unop (code, type, arg0); - if (tem) - { - if (TREE_TYPE (tem) != type) - tem = fold_convert_loc (loc, type, tem); - return tem; - } - } - } - - tem = generic_simplify (loc, code, type, op0); - if (tem) - return tem; - - if (TREE_CODE_CLASS (code) == tcc_unary) - { - if (TREE_CODE (arg0) == COMPOUND_EXPR) - return build2 (COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), - fold_build1_loc (loc, code, type, - fold_convert_loc (loc, TREE_TYPE (op0), - TREE_OPERAND (arg0, 1)))); - else if (TREE_CODE (arg0) == COND_EXPR) - { - tree arg01 = TREE_OPERAND (arg0, 1); - tree arg02 = TREE_OPERAND (arg0, 2); - if (! VOID_TYPE_P (TREE_TYPE (arg01))) - arg01 = fold_build1_loc (loc, code, type, - fold_convert_loc (loc, - TREE_TYPE (op0), arg01)); - if (! VOID_TYPE_P (TREE_TYPE (arg02))) - arg02 = fold_build1_loc (loc, code, type, - fold_convert_loc (loc, - TREE_TYPE (op0), arg02)); - tem = fold_build3_loc (loc, COND_EXPR, type, TREE_OPERAND (arg0, 0), - arg01, arg02); - - /* If this was a conversion, and all we did was to move into - inside the COND_EXPR, bring it back out. But leave it if - it is a conversion from integer to integer and the - result precision is no wider than a word since such a - conversion is cheap and may be optimized away by combine, - while it couldn't if it were outside the COND_EXPR. Then return - so we don't get into an infinite recursion loop taking the - conversion out and then back in. */ - - if ((CONVERT_EXPR_CODE_P (code) - || code == NON_LVALUE_EXPR) - && TREE_CODE (tem) == COND_EXPR - && TREE_CODE (TREE_OPERAND (tem, 1)) == code - && TREE_CODE (TREE_OPERAND (tem, 2)) == code - && ! VOID_TYPE_P (TREE_OPERAND (tem, 1)) - && ! VOID_TYPE_P (TREE_OPERAND (tem, 2)) - && (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)) - == TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 2), 0))) - && (! (INTEGRAL_TYPE_P (TREE_TYPE (tem)) - && (INTEGRAL_TYPE_P - (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (tem, 1), 0)))) - && TYPE_PRECISION (TREE_TYPE (tem)) <= BITS_PER_WORD) - || flag_syntax_only)) - tem = build1_loc (loc, code, type, - build3 (COND_EXPR, - TREE_TYPE (TREE_OPERAND - (TREE_OPERAND (tem, 1), 0)), - TREE_OPERAND (tem, 0), - TREE_OPERAND (TREE_OPERAND (tem, 1), 0), - TREE_OPERAND (TREE_OPERAND (tem, 2), - 0))); - return tem; - } - } - - switch (code) - { - case NON_LVALUE_EXPR: - if (!maybe_lvalue_p (op0)) - return fold_convert_loc (loc, type, op0); - return NULL_TREE; - - CASE_CONVERT: - case FLOAT_EXPR: - case FIX_TRUNC_EXPR: - if (COMPARISON_CLASS_P (op0)) - { - /* If we have (type) (a CMP b) and type is an integral type, return - new expression involving the new type. Canonicalize - (type) (a CMP b) to (a CMP b) ? (type) true : (type) false for - non-integral type. - Do not fold the result as that would not simplify further, also - folding again results in recursions. */ - if (TREE_CODE (type) == BOOLEAN_TYPE) - return build2_loc (loc, TREE_CODE (op0), type, - TREE_OPERAND (op0, 0), - TREE_OPERAND (op0, 1)); - else if (!INTEGRAL_TYPE_P (type) && !VOID_TYPE_P (type) - && TREE_CODE (type) != VECTOR_TYPE) - return build3_loc (loc, COND_EXPR, type, op0, - constant_boolean_node (true, type), - constant_boolean_node (false, type)); - } - - /* Handle (T *)&A.B.C for A being of type T and B and C - living at offset zero. This occurs frequently in - C++ upcasting and then accessing the base. */ - if (TREE_CODE (op0) == ADDR_EXPR - && POINTER_TYPE_P (type) - && handled_component_p (TREE_OPERAND (op0, 0))) - { - poly_int64 bitsize, bitpos; - tree offset; - machine_mode mode; - int unsignedp, reversep, volatilep; - tree base - = get_inner_reference (TREE_OPERAND (op0, 0), &bitsize, &bitpos, - &offset, &mode, &unsignedp, &reversep, - &volatilep); - /* If the reference was to a (constant) zero offset, we can use - the address of the base if it has the same base type - as the result type and the pointer type is unqualified. */ - if (!offset - && known_eq (bitpos, 0) - && (TYPE_MAIN_VARIANT (TREE_TYPE (type)) - == TYPE_MAIN_VARIANT (TREE_TYPE (base))) - && TYPE_QUALS (type) == TYPE_UNQUALIFIED) - return fold_convert_loc (loc, type, - build_fold_addr_expr_loc (loc, base)); - } - - if (TREE_CODE (op0) == MODIFY_EXPR - && TREE_CONSTANT (TREE_OPERAND (op0, 1)) - /* Detect assigning a bitfield. */ - && !(TREE_CODE (TREE_OPERAND (op0, 0)) == COMPONENT_REF - && DECL_BIT_FIELD - (TREE_OPERAND (TREE_OPERAND (op0, 0), 1)))) - { - /* Don't leave an assignment inside a conversion - unless assigning a bitfield. */ - tem = fold_build1_loc (loc, code, type, TREE_OPERAND (op0, 1)); - /* First do the assignment, then return converted constant. */ - tem = build2_loc (loc, COMPOUND_EXPR, TREE_TYPE (tem), op0, tem); - suppress_warning (tem /* What warning? */); - TREE_USED (tem) = 1; - return tem; - } - - /* Convert (T)(x & c) into (T)x & (T)c, if c is an integer - constants (if x has signed type, the sign bit cannot be set - in c). This folds extension into the BIT_AND_EXPR. - ??? We don't do it for BOOLEAN_TYPE or ENUMERAL_TYPE because they - very likely don't have maximal range for their precision and this - transformation effectively doesn't preserve non-maximal ranges. */ - if (TREE_CODE (type) == INTEGER_TYPE - && TREE_CODE (op0) == BIT_AND_EXPR - && TREE_CODE (TREE_OPERAND (op0, 1)) == INTEGER_CST) - { - tree and_expr = op0; - tree and0 = TREE_OPERAND (and_expr, 0); - tree and1 = TREE_OPERAND (and_expr, 1); - int change = 0; - - if (TYPE_UNSIGNED (TREE_TYPE (and_expr)) - || (TYPE_PRECISION (type) - <= TYPE_PRECISION (TREE_TYPE (and_expr)))) - change = 1; - else if (TYPE_PRECISION (TREE_TYPE (and1)) - <= HOST_BITS_PER_WIDE_INT - && tree_fits_uhwi_p (and1)) - { - unsigned HOST_WIDE_INT cst; - - cst = tree_to_uhwi (and1); - cst &= HOST_WIDE_INT_M1U - << (TYPE_PRECISION (TREE_TYPE (and1)) - 1); - change = (cst == 0); - if (change - && !flag_syntax_only - && (load_extend_op (TYPE_MODE (TREE_TYPE (and0))) - == ZERO_EXTEND)) - { - tree uns = unsigned_type_for (TREE_TYPE (and0)); - and0 = fold_convert_loc (loc, uns, and0); - and1 = fold_convert_loc (loc, uns, and1); - } - } - if (change) - { - tem = force_fit_type (type, wi::to_widest (and1), 0, - TREE_OVERFLOW (and1)); - return fold_build2_loc (loc, BIT_AND_EXPR, type, - fold_convert_loc (loc, type, and0), tem); - } - } - - /* Convert (T1)(X p+ Y) into ((T1)X p+ Y), for pointer type, when the new - cast (T1)X will fold away. We assume that this happens when X itself - is a cast. */ - if (POINTER_TYPE_P (type) - && TREE_CODE (arg0) == POINTER_PLUS_EXPR - && CONVERT_EXPR_P (TREE_OPERAND (arg0, 0))) - { - tree arg00 = TREE_OPERAND (arg0, 0); - tree arg01 = TREE_OPERAND (arg0, 1); - - /* If -fsanitize=alignment, avoid this optimization in GENERIC - when the pointed type needs higher alignment than - the p+ first operand's pointed type. */ - if (!in_gimple_form - && sanitize_flags_p (SANITIZE_ALIGNMENT) - && (min_align_of_type (TREE_TYPE (type)) - > min_align_of_type (TREE_TYPE (TREE_TYPE (arg00))))) - return NULL_TREE; - - arg00 = fold_convert_loc (loc, type, arg00); - return fold_build_pointer_plus_loc (loc, arg00, arg01); - } - - /* Convert (T1)(~(T2)X) into ~(T1)X if T1 and T2 are integral types - of the same precision, and X is an integer type not narrower than - types T1 or T2, i.e. the cast (T2)X isn't an extension. */ - if (INTEGRAL_TYPE_P (type) - && TREE_CODE (op0) == BIT_NOT_EXPR - && INTEGRAL_TYPE_P (TREE_TYPE (op0)) - && CONVERT_EXPR_P (TREE_OPERAND (op0, 0)) - && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (op0))) - { - tem = TREE_OPERAND (TREE_OPERAND (op0, 0), 0); - if (INTEGRAL_TYPE_P (TREE_TYPE (tem)) - && TYPE_PRECISION (type) <= TYPE_PRECISION (TREE_TYPE (tem))) - return fold_build1_loc (loc, BIT_NOT_EXPR, type, - fold_convert_loc (loc, type, tem)); - } - - /* Convert (T1)(X * Y) into (T1)X * (T1)Y if T1 is narrower than the - type of X and Y (integer types only). */ - if (INTEGRAL_TYPE_P (type) - && TREE_CODE (op0) == MULT_EXPR - && INTEGRAL_TYPE_P (TREE_TYPE (op0)) - && TYPE_PRECISION (type) < TYPE_PRECISION (TREE_TYPE (op0))) - { - /* Be careful not to introduce new overflows. */ - tree mult_type; - if (TYPE_OVERFLOW_WRAPS (type)) - mult_type = type; - else - mult_type = unsigned_type_for (type); - - if (TYPE_PRECISION (mult_type) < TYPE_PRECISION (TREE_TYPE (op0))) - { - tem = fold_build2_loc (loc, MULT_EXPR, mult_type, - fold_convert_loc (loc, mult_type, - TREE_OPERAND (op0, 0)), - fold_convert_loc (loc, mult_type, - TREE_OPERAND (op0, 1))); - return fold_convert_loc (loc, type, tem); - } - } - - return NULL_TREE; - - case VIEW_CONVERT_EXPR: - if (TREE_CODE (op0) == MEM_REF) - { - if (TYPE_ALIGN (TREE_TYPE (op0)) != TYPE_ALIGN (type)) - type = build_aligned_type (type, TYPE_ALIGN (TREE_TYPE (op0))); - tem = fold_build2_loc (loc, MEM_REF, type, - TREE_OPERAND (op0, 0), TREE_OPERAND (op0, 1)); - REF_REVERSE_STORAGE_ORDER (tem) = REF_REVERSE_STORAGE_ORDER (op0); - return tem; - } - - return NULL_TREE; - - case NEGATE_EXPR: - tem = fold_negate_expr (loc, arg0); - if (tem) - return fold_convert_loc (loc, type, tem); - return NULL_TREE; - - case ABS_EXPR: - /* Convert fabs((double)float) into (double)fabsf(float). */ - if (TREE_CODE (arg0) == NOP_EXPR - && TREE_CODE (type) == REAL_TYPE) - { - tree targ0 = strip_float_extensions (arg0); - if (targ0 != arg0) - return fold_convert_loc (loc, type, - fold_build1_loc (loc, ABS_EXPR, - TREE_TYPE (targ0), - targ0)); - } - return NULL_TREE; - - case BIT_NOT_EXPR: - /* Convert ~(X ^ Y) to ~X ^ Y or X ^ ~Y if ~X or ~Y simplify. */ - if (TREE_CODE (arg0) == BIT_XOR_EXPR - && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 0))))) - return fold_build2_loc (loc, BIT_XOR_EXPR, type, tem, - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 1))); - else if (TREE_CODE (arg0) == BIT_XOR_EXPR - && (tem = fold_unary_loc (loc, BIT_NOT_EXPR, type, - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 1))))) - return fold_build2_loc (loc, BIT_XOR_EXPR, type, - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 0)), tem); - - return NULL_TREE; - - case TRUTH_NOT_EXPR: - /* Note that the operand of this must be an int - and its values must be 0 or 1. - ("true" is a fixed value perhaps depending on the language, - but we don't handle values other than 1 correctly yet.) */ - tem = fold_truth_not_expr (loc, arg0); - if (!tem) - return NULL_TREE; - return fold_convert_loc (loc, type, tem); - - case INDIRECT_REF: - /* Fold *&X to X if X is an lvalue. */ - if (TREE_CODE (op0) == ADDR_EXPR) - { - tree op00 = TREE_OPERAND (op0, 0); - if ((VAR_P (op00) - || TREE_CODE (op00) == PARM_DECL - || TREE_CODE (op00) == RESULT_DECL) - && !TREE_READONLY (op00)) - return op00; - } - return NULL_TREE; - - default: - return NULL_TREE; - } /* switch (code) */ -} - - -/* If the operation was a conversion do _not_ mark a resulting constant - with TREE_OVERFLOW if the original constant was not. These conversions - have implementation defined behavior and retaining the TREE_OVERFLOW - flag here would confuse later passes such as VRP. */ -tree -fold_unary_ignore_overflow_loc (location_t loc, enum tree_code code, - tree type, tree op0) -{ - tree res = fold_unary_loc (loc, code, type, op0); - if (res - && TREE_CODE (res) == INTEGER_CST - && TREE_CODE (op0) == INTEGER_CST - && CONVERT_EXPR_CODE_P (code)) - TREE_OVERFLOW (res) = TREE_OVERFLOW (op0); - - return res; -} - -/* Fold a binary bitwise/truth expression of code CODE and type TYPE with - operands OP0 and OP1. LOC is the location of the resulting expression. - ARG0 and ARG1 are the NOP_STRIPed results of OP0 and OP1. - Return the folded expression if folding is successful. Otherwise, - return NULL_TREE. */ -static tree -fold_truth_andor (location_t loc, enum tree_code code, tree type, - tree arg0, tree arg1, tree op0, tree op1) -{ - tree tem; - - /* We only do these simplifications if we are optimizing. */ - if (!optimize) - return NULL_TREE; - - /* Check for things like (A || B) && (A || C). We can convert this - to A || (B && C). Note that either operator can be any of the four - truth and/or operations and the transformation will still be - valid. Also note that we only care about order for the - ANDIF and ORIF operators. If B contains side effects, this - might change the truth-value of A. */ - if (TREE_CODE (arg0) == TREE_CODE (arg1) - && (TREE_CODE (arg0) == TRUTH_ANDIF_EXPR - || TREE_CODE (arg0) == TRUTH_ORIF_EXPR - || TREE_CODE (arg0) == TRUTH_AND_EXPR - || TREE_CODE (arg0) == TRUTH_OR_EXPR) - && ! TREE_SIDE_EFFECTS (TREE_OPERAND (arg0, 1))) - { - tree a00 = TREE_OPERAND (arg0, 0); - tree a01 = TREE_OPERAND (arg0, 1); - tree a10 = TREE_OPERAND (arg1, 0); - tree a11 = TREE_OPERAND (arg1, 1); - int commutative = ((TREE_CODE (arg0) == TRUTH_OR_EXPR - || TREE_CODE (arg0) == TRUTH_AND_EXPR) - && (code == TRUTH_AND_EXPR - || code == TRUTH_OR_EXPR)); - - if (operand_equal_p (a00, a10, 0)) - return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, - fold_build2_loc (loc, code, type, a01, a11)); - else if (commutative && operand_equal_p (a00, a11, 0)) - return fold_build2_loc (loc, TREE_CODE (arg0), type, a00, - fold_build2_loc (loc, code, type, a01, a10)); - else if (commutative && operand_equal_p (a01, a10, 0)) - return fold_build2_loc (loc, TREE_CODE (arg0), type, a01, - fold_build2_loc (loc, code, type, a00, a11)); - - /* This case if tricky because we must either have commutative - operators or else A10 must not have side-effects. */ - - else if ((commutative || ! TREE_SIDE_EFFECTS (a10)) - && operand_equal_p (a01, a11, 0)) - return fold_build2_loc (loc, TREE_CODE (arg0), type, - fold_build2_loc (loc, code, type, a00, a10), - a01); - } - - /* See if we can build a range comparison. */ - if ((tem = fold_range_test (loc, code, type, op0, op1)) != 0) - return tem; - - if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg0) == TRUTH_ORIF_EXPR) - || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg0) == TRUTH_ANDIF_EXPR)) - { - tem = merge_truthop_with_opposite_arm (loc, arg0, arg1, true); - if (tem) - return fold_build2_loc (loc, code, type, tem, arg1); - } - - if ((code == TRUTH_ANDIF_EXPR && TREE_CODE (arg1) == TRUTH_ORIF_EXPR) - || (code == TRUTH_ORIF_EXPR && TREE_CODE (arg1) == TRUTH_ANDIF_EXPR)) - { - tem = merge_truthop_with_opposite_arm (loc, arg1, arg0, false); - if (tem) - return fold_build2_loc (loc, code, type, arg0, tem); - } - - /* Check for the possibility of merging component references. If our - lhs is another similar operation, try to merge its rhs with our - rhs. Then try to merge our lhs and rhs. */ - if (TREE_CODE (arg0) == code - && (tem = fold_truth_andor_1 (loc, code, type, - TREE_OPERAND (arg0, 1), arg1)) != 0) - return fold_build2_loc (loc, code, type, TREE_OPERAND (arg0, 0), tem); - - if ((tem = fold_truth_andor_1 (loc, code, type, arg0, arg1)) != 0) - return tem; - - bool logical_op_non_short_circuit = LOGICAL_OP_NON_SHORT_CIRCUIT; - if (param_logical_op_non_short_circuit != -1) - logical_op_non_short_circuit - = param_logical_op_non_short_circuit; - if (logical_op_non_short_circuit - && !sanitize_coverage_p () - && (code == TRUTH_AND_EXPR - || code == TRUTH_ANDIF_EXPR - || code == TRUTH_OR_EXPR - || code == TRUTH_ORIF_EXPR)) - { - enum tree_code ncode, icode; - - ncode = (code == TRUTH_ANDIF_EXPR || code == TRUTH_AND_EXPR) - ? TRUTH_AND_EXPR : TRUTH_OR_EXPR; - icode = ncode == TRUTH_AND_EXPR ? TRUTH_ANDIF_EXPR : TRUTH_ORIF_EXPR; - - /* Transform ((A AND-IF B) AND[-IF] C) into (A AND-IF (B AND C)), - or ((A OR-IF B) OR[-IF] C) into (A OR-IF (B OR C)) - We don't want to pack more than two leafs to a non-IF AND/OR - expression. - If tree-code of left-hand operand isn't an AND/OR-IF code and not - equal to IF-CODE, then we don't want to add right-hand operand. - If the inner right-hand side of left-hand operand has - side-effects, or isn't simple, then we can't add to it, - as otherwise we might destroy if-sequence. */ - if (TREE_CODE (arg0) == icode - && simple_operand_p_2 (arg1) - /* Needed for sequence points to handle trappings, and - side-effects. */ - && simple_operand_p_2 (TREE_OPERAND (arg0, 1))) - { - tem = fold_build2_loc (loc, ncode, type, TREE_OPERAND (arg0, 1), - arg1); - return fold_build2_loc (loc, icode, type, TREE_OPERAND (arg0, 0), - tem); - } - /* Same as above but for (A AND[-IF] (B AND-IF C)) -> ((A AND B) AND-IF C), - or (A OR[-IF] (B OR-IF C) -> ((A OR B) OR-IF C). */ - else if (TREE_CODE (arg1) == icode - && simple_operand_p_2 (arg0) - /* Needed for sequence points to handle trappings, and - side-effects. */ - && simple_operand_p_2 (TREE_OPERAND (arg1, 0))) - { - tem = fold_build2_loc (loc, ncode, type, - arg0, TREE_OPERAND (arg1, 0)); - return fold_build2_loc (loc, icode, type, tem, - TREE_OPERAND (arg1, 1)); - } - /* Transform (A AND-IF B) into (A AND B), or (A OR-IF B) - into (A OR B). - For sequence point consistancy, we need to check for trapping, - and side-effects. */ - else if (code == icode && simple_operand_p_2 (arg0) - && simple_operand_p_2 (arg1)) - return fold_build2_loc (loc, ncode, type, arg0, arg1); - } - - return NULL_TREE; -} - -/* Helper that tries to canonicalize the comparison ARG0 CODE ARG1 - by changing CODE to reduce the magnitude of constants involved in - ARG0 of the comparison. - Returns a canonicalized comparison tree if a simplification was - possible, otherwise returns NULL_TREE. - Set *STRICT_OVERFLOW_P to true if the canonicalization is only - valid if signed overflow is undefined. */ - -static tree -maybe_canonicalize_comparison_1 (location_t loc, enum tree_code code, tree type, - tree arg0, tree arg1, - bool *strict_overflow_p) -{ - enum tree_code code0 = TREE_CODE (arg0); - tree t, cst0 = NULL_TREE; - int sgn0; - - /* Match A +- CST code arg1. We can change this only if overflow - is undefined. */ - if (!((ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0))) - /* In principle pointers also have undefined overflow behavior, - but that causes problems elsewhere. */ - && !POINTER_TYPE_P (TREE_TYPE (arg0)) - && (code0 == MINUS_EXPR - || code0 == PLUS_EXPR) - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST)) - return NULL_TREE; - - /* Identify the constant in arg0 and its sign. */ - cst0 = TREE_OPERAND (arg0, 1); - sgn0 = tree_int_cst_sgn (cst0); - - /* Overflowed constants and zero will cause problems. */ - if (integer_zerop (cst0) - || TREE_OVERFLOW (cst0)) - return NULL_TREE; - - /* See if we can reduce the magnitude of the constant in - arg0 by changing the comparison code. */ - /* A - CST < arg1 -> A - CST-1 <= arg1. */ - if (code == LT_EXPR - && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) - code = LE_EXPR; - /* A + CST > arg1 -> A + CST-1 >= arg1. */ - else if (code == GT_EXPR - && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) - code = GE_EXPR; - /* A + CST <= arg1 -> A + CST-1 < arg1. */ - else if (code == LE_EXPR - && code0 == ((sgn0 == -1) ? MINUS_EXPR : PLUS_EXPR)) - code = LT_EXPR; - /* A - CST >= arg1 -> A - CST-1 > arg1. */ - else if (code == GE_EXPR - && code0 == ((sgn0 == -1) ? PLUS_EXPR : MINUS_EXPR)) - code = GT_EXPR; - else - return NULL_TREE; - *strict_overflow_p = true; - - /* Now build the constant reduced in magnitude. But not if that - would produce one outside of its types range. */ - if (INTEGRAL_TYPE_P (TREE_TYPE (cst0)) - && ((sgn0 == 1 - && TYPE_MIN_VALUE (TREE_TYPE (cst0)) - && tree_int_cst_equal (cst0, TYPE_MIN_VALUE (TREE_TYPE (cst0)))) - || (sgn0 == -1 - && TYPE_MAX_VALUE (TREE_TYPE (cst0)) - && tree_int_cst_equal (cst0, TYPE_MAX_VALUE (TREE_TYPE (cst0)))))) - return NULL_TREE; - - t = int_const_binop (sgn0 == -1 ? PLUS_EXPR : MINUS_EXPR, - cst0, build_int_cst (TREE_TYPE (cst0), 1)); - t = fold_build2_loc (loc, code0, TREE_TYPE (arg0), TREE_OPERAND (arg0, 0), t); - t = fold_convert (TREE_TYPE (arg1), t); - - return fold_build2_loc (loc, code, type, t, arg1); -} - -/* Canonicalize the comparison ARG0 CODE ARG1 with type TYPE with undefined - overflow further. Try to decrease the magnitude of constants involved - by changing LE_EXPR and GE_EXPR to LT_EXPR and GT_EXPR or vice versa - and put sole constants at the second argument position. - Returns the canonicalized tree if changed, otherwise NULL_TREE. */ - -static tree -maybe_canonicalize_comparison (location_t loc, enum tree_code code, tree type, - tree arg0, tree arg1) -{ - tree t; - bool strict_overflow_p; - const char * const warnmsg = G_("assuming signed overflow does not occur " - "when reducing constant in comparison"); - - /* Try canonicalization by simplifying arg0. */ - strict_overflow_p = false; - t = maybe_canonicalize_comparison_1 (loc, code, type, arg0, arg1, - &strict_overflow_p); - if (t) - { - if (strict_overflow_p) - fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); - return t; - } - - /* Try canonicalization by simplifying arg1 using the swapped - comparison. */ - code = swap_tree_comparison (code); - strict_overflow_p = false; - t = maybe_canonicalize_comparison_1 (loc, code, type, arg1, arg0, - &strict_overflow_p); - if (t && strict_overflow_p) - fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_MAGNITUDE); - return t; -} - -/* Return whether BASE + OFFSET + BITPOS may wrap around the address - space. This is used to avoid issuing overflow warnings for - expressions like &p->x which cannot wrap. */ - -static bool -pointer_may_wrap_p (tree base, tree offset, poly_int64 bitpos) -{ - if (!POINTER_TYPE_P (TREE_TYPE (base))) - return true; - - if (maybe_lt (bitpos, 0)) - return true; - - poly_wide_int wi_offset; - int precision = TYPE_PRECISION (TREE_TYPE (base)); - if (offset == NULL_TREE) - wi_offset = wi::zero (precision); - else if (!poly_int_tree_p (offset) || TREE_OVERFLOW (offset)) - return true; - else - wi_offset = wi::to_poly_wide (offset); - - wi::overflow_type overflow; - poly_wide_int units = wi::shwi (bits_to_bytes_round_down (bitpos), - precision); - poly_wide_int total = wi::add (wi_offset, units, UNSIGNED, &overflow); - if (overflow) - return true; - - poly_uint64 total_hwi, size; - if (!total.to_uhwi (&total_hwi) - || !poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (base))), - &size) - || known_eq (size, 0U)) - return true; - - if (known_le (total_hwi, size)) - return false; - - /* We can do slightly better for SIZE if we have an ADDR_EXPR of an - array. */ - if (TREE_CODE (base) == ADDR_EXPR - && poly_int_tree_p (TYPE_SIZE_UNIT (TREE_TYPE (TREE_OPERAND (base, 0))), - &size) - && maybe_ne (size, 0U) - && known_le (total_hwi, size)) - return false; - - return true; -} - -/* Return a positive integer when the symbol DECL is known to have - a nonzero address, zero when it's known not to (e.g., it's a weak - symbol), and a negative integer when the symbol is not yet in the - symbol table and so whether or not its address is zero is unknown. - For function local objects always return positive integer. */ -static int -maybe_nonzero_address (tree decl) -{ - /* Normally, don't do anything for variables and functions before symtab is - built; it is quite possible that DECL will be declared weak later. - But if folding_initializer, we need a constant answer now, so create - the symtab entry and prevent later weak declaration. */ - if (DECL_P (decl) && decl_in_symtab_p (decl)) - if (struct symtab_node *symbol - = (folding_initializer - ? symtab_node::get_create (decl) - : symtab_node::get (decl))) - return symbol->nonzero_address (); - - /* Function local objects are never NULL. */ - if (DECL_P (decl) - && (DECL_CONTEXT (decl) - && TREE_CODE (DECL_CONTEXT (decl)) == FUNCTION_DECL - && auto_var_in_fn_p (decl, DECL_CONTEXT (decl)))) - return 1; - - return -1; -} - -/* Subroutine of fold_binary. This routine performs all of the - transformations that are common to the equality/inequality - operators (EQ_EXPR and NE_EXPR) and the ordering operators - (LT_EXPR, LE_EXPR, GE_EXPR and GT_EXPR). Callers other than - fold_binary should call fold_binary. Fold a comparison with - tree code CODE and type TYPE with operands OP0 and OP1. Return - the folded comparison or NULL_TREE. */ - -static tree -fold_comparison (location_t loc, enum tree_code code, tree type, - tree op0, tree op1) -{ - const bool equality_code = (code == EQ_EXPR || code == NE_EXPR); - tree arg0, arg1, tem; - - arg0 = op0; - arg1 = op1; - - STRIP_SIGN_NOPS (arg0); - STRIP_SIGN_NOPS (arg1); - - /* For comparisons of pointers we can decompose it to a compile time - comparison of the base objects and the offsets into the object. - This requires at least one operand being an ADDR_EXPR or a - POINTER_PLUS_EXPR to do more than the operand_equal_p test below. */ - if (POINTER_TYPE_P (TREE_TYPE (arg0)) - && (TREE_CODE (arg0) == ADDR_EXPR - || TREE_CODE (arg1) == ADDR_EXPR - || TREE_CODE (arg0) == POINTER_PLUS_EXPR - || TREE_CODE (arg1) == POINTER_PLUS_EXPR)) - { - tree base0, base1, offset0 = NULL_TREE, offset1 = NULL_TREE; - poly_int64 bitsize, bitpos0 = 0, bitpos1 = 0; - machine_mode mode; - int volatilep, reversep, unsignedp; - bool indirect_base0 = false, indirect_base1 = false; - - /* Get base and offset for the access. Strip ADDR_EXPR for - get_inner_reference, but put it back by stripping INDIRECT_REF - off the base object if possible. indirect_baseN will be true - if baseN is not an address but refers to the object itself. */ - base0 = arg0; - if (TREE_CODE (arg0) == ADDR_EXPR) - { - base0 - = get_inner_reference (TREE_OPERAND (arg0, 0), - &bitsize, &bitpos0, &offset0, &mode, - &unsignedp, &reversep, &volatilep); - if (TREE_CODE (base0) == INDIRECT_REF) - base0 = TREE_OPERAND (base0, 0); - else - indirect_base0 = true; - } - else if (TREE_CODE (arg0) == POINTER_PLUS_EXPR) - { - base0 = TREE_OPERAND (arg0, 0); - STRIP_SIGN_NOPS (base0); - if (TREE_CODE (base0) == ADDR_EXPR) - { - base0 - = get_inner_reference (TREE_OPERAND (base0, 0), - &bitsize, &bitpos0, &offset0, &mode, - &unsignedp, &reversep, &volatilep); - if (TREE_CODE (base0) == INDIRECT_REF) - base0 = TREE_OPERAND (base0, 0); - else - indirect_base0 = true; - } - if (offset0 == NULL_TREE || integer_zerop (offset0)) - offset0 = TREE_OPERAND (arg0, 1); - else - offset0 = size_binop (PLUS_EXPR, offset0, - TREE_OPERAND (arg0, 1)); - if (poly_int_tree_p (offset0)) - { - poly_offset_int tem = wi::sext (wi::to_poly_offset (offset0), - TYPE_PRECISION (sizetype)); - tem <<= LOG2_BITS_PER_UNIT; - tem += bitpos0; - if (tem.to_shwi (&bitpos0)) - offset0 = NULL_TREE; - } - } - - base1 = arg1; - if (TREE_CODE (arg1) == ADDR_EXPR) - { - base1 - = get_inner_reference (TREE_OPERAND (arg1, 0), - &bitsize, &bitpos1, &offset1, &mode, - &unsignedp, &reversep, &volatilep); - if (TREE_CODE (base1) == INDIRECT_REF) - base1 = TREE_OPERAND (base1, 0); - else - indirect_base1 = true; - } - else if (TREE_CODE (arg1) == POINTER_PLUS_EXPR) - { - base1 = TREE_OPERAND (arg1, 0); - STRIP_SIGN_NOPS (base1); - if (TREE_CODE (base1) == ADDR_EXPR) - { - base1 - = get_inner_reference (TREE_OPERAND (base1, 0), - &bitsize, &bitpos1, &offset1, &mode, - &unsignedp, &reversep, &volatilep); - if (TREE_CODE (base1) == INDIRECT_REF) - base1 = TREE_OPERAND (base1, 0); - else - indirect_base1 = true; - } - if (offset1 == NULL_TREE || integer_zerop (offset1)) - offset1 = TREE_OPERAND (arg1, 1); - else - offset1 = size_binop (PLUS_EXPR, offset1, - TREE_OPERAND (arg1, 1)); - if (poly_int_tree_p (offset1)) - { - poly_offset_int tem = wi::sext (wi::to_poly_offset (offset1), - TYPE_PRECISION (sizetype)); - tem <<= LOG2_BITS_PER_UNIT; - tem += bitpos1; - if (tem.to_shwi (&bitpos1)) - offset1 = NULL_TREE; - } - } - - /* If we have equivalent bases we might be able to simplify. */ - if (indirect_base0 == indirect_base1 - && operand_equal_p (base0, base1, - indirect_base0 ? OEP_ADDRESS_OF : 0)) - { - /* We can fold this expression to a constant if the non-constant - offset parts are equal. */ - if ((offset0 == offset1 - || (offset0 && offset1 - && operand_equal_p (offset0, offset1, 0))) - && (equality_code - || (indirect_base0 - && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) - || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) - { - if (!equality_code - && maybe_ne (bitpos0, bitpos1) - && (pointer_may_wrap_p (base0, offset0, bitpos0) - || pointer_may_wrap_p (base1, offset1, bitpos1))) - fold_overflow_warning (("assuming pointer wraparound does not " - "occur when comparing P +- C1 with " - "P +- C2"), - WARN_STRICT_OVERFLOW_CONDITIONAL); - - switch (code) - { - case EQ_EXPR: - if (known_eq (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_ne (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - case NE_EXPR: - if (known_ne (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_eq (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - case LT_EXPR: - if (known_lt (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_ge (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - case LE_EXPR: - if (known_le (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_gt (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - case GE_EXPR: - if (known_ge (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_lt (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - case GT_EXPR: - if (known_gt (bitpos0, bitpos1)) - return constant_boolean_node (true, type); - if (known_le (bitpos0, bitpos1)) - return constant_boolean_node (false, type); - break; - default:; - } - } - /* We can simplify the comparison to a comparison of the variable - offset parts if the constant offset parts are equal. - Be careful to use signed sizetype here because otherwise we - mess with array offsets in the wrong way. This is possible - because pointer arithmetic is restricted to retain within an - object and overflow on pointer differences is undefined as of - 6.5.6/8 and /9 with respect to the signed ptrdiff_t. */ - else if (known_eq (bitpos0, bitpos1) - && (equality_code - || (indirect_base0 - && (DECL_P (base0) || CONSTANT_CLASS_P (base0))) - || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) - { - /* By converting to signed sizetype we cover middle-end pointer - arithmetic which operates on unsigned pointer types of size - type size and ARRAY_REF offsets which are properly sign or - zero extended from their type in case it is narrower than - sizetype. */ - if (offset0 == NULL_TREE) - offset0 = build_int_cst (ssizetype, 0); - else - offset0 = fold_convert_loc (loc, ssizetype, offset0); - if (offset1 == NULL_TREE) - offset1 = build_int_cst (ssizetype, 0); - else - offset1 = fold_convert_loc (loc, ssizetype, offset1); - - if (!equality_code - && (pointer_may_wrap_p (base0, offset0, bitpos0) - || pointer_may_wrap_p (base1, offset1, bitpos1))) - fold_overflow_warning (("assuming pointer wraparound does not " - "occur when comparing P +- C1 with " - "P +- C2"), - WARN_STRICT_OVERFLOW_COMPARISON); - - return fold_build2_loc (loc, code, type, offset0, offset1); - } - } - /* For equal offsets we can simplify to a comparison of the - base addresses. */ - else if (known_eq (bitpos0, bitpos1) - && (indirect_base0 - ? base0 != TREE_OPERAND (arg0, 0) : base0 != arg0) - && (indirect_base1 - ? base1 != TREE_OPERAND (arg1, 0) : base1 != arg1) - && ((offset0 == offset1) - || (offset0 && offset1 - && operand_equal_p (offset0, offset1, 0)))) - { - if (indirect_base0) - base0 = build_fold_addr_expr_loc (loc, base0); - if (indirect_base1) - base1 = build_fold_addr_expr_loc (loc, base1); - return fold_build2_loc (loc, code, type, base0, base1); - } - /* Comparison between an ordinary (non-weak) symbol and a null - pointer can be eliminated since such symbols must have a non - null address. In C, relational expressions between pointers - to objects and null pointers are undefined. The results - below follow the C++ rules with the additional property that - every object pointer compares greater than a null pointer. - */ - else if (((DECL_P (base0) - && maybe_nonzero_address (base0) > 0 - /* Avoid folding references to struct members at offset 0 to - prevent tests like '&ptr->firstmember == 0' from getting - eliminated. When ptr is null, although the -> expression - is strictly speaking invalid, GCC retains it as a matter - of QoI. See PR c/44555. */ - && (offset0 == NULL_TREE && known_ne (bitpos0, 0))) - || CONSTANT_CLASS_P (base0)) - && indirect_base0 - /* The caller guarantees that when one of the arguments is - constant (i.e., null in this case) it is second. */ - && integer_zerop (arg1)) - { - switch (code) - { - case EQ_EXPR: - case LE_EXPR: - case LT_EXPR: - return constant_boolean_node (false, type); - case GE_EXPR: - case GT_EXPR: - case NE_EXPR: - return constant_boolean_node (true, type); - default: - gcc_unreachable (); - } - } - } - - /* Transform comparisons of the form X +- C1 CMP Y +- C2 to - X CMP Y +- C2 +- C1 for signed X, Y. This is valid if - the resulting offset is smaller in absolute value than the - original one and has the same sign. */ - if (ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)) - && (TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) - && (TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST - && !TREE_OVERFLOW (TREE_OPERAND (arg0, 1))) - && (TREE_CODE (arg1) == PLUS_EXPR || TREE_CODE (arg1) == MINUS_EXPR) - && (TREE_CODE (TREE_OPERAND (arg1, 1)) == INTEGER_CST - && !TREE_OVERFLOW (TREE_OPERAND (arg1, 1)))) - { - tree const1 = TREE_OPERAND (arg0, 1); - tree const2 = TREE_OPERAND (arg1, 1); - tree variable1 = TREE_OPERAND (arg0, 0); - tree variable2 = TREE_OPERAND (arg1, 0); - tree cst; - const char * const warnmsg = G_("assuming signed overflow does not " - "occur when combining constants around " - "a comparison"); - - /* Put the constant on the side where it doesn't overflow and is - of lower absolute value and of same sign than before. */ - cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) - ? MINUS_EXPR : PLUS_EXPR, - const2, const1); - if (!TREE_OVERFLOW (cst) - && tree_int_cst_compare (const2, cst) == tree_int_cst_sgn (const2) - && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const2)) - { - fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); - return fold_build2_loc (loc, code, type, - variable1, - fold_build2_loc (loc, TREE_CODE (arg1), - TREE_TYPE (arg1), - variable2, cst)); - } - - cst = int_const_binop (TREE_CODE (arg0) == TREE_CODE (arg1) - ? MINUS_EXPR : PLUS_EXPR, - const1, const2); - if (!TREE_OVERFLOW (cst) - && tree_int_cst_compare (const1, cst) == tree_int_cst_sgn (const1) - && tree_int_cst_sgn (cst) == tree_int_cst_sgn (const1)) - { - fold_overflow_warning (warnmsg, WARN_STRICT_OVERFLOW_COMPARISON); - return fold_build2_loc (loc, code, type, - fold_build2_loc (loc, TREE_CODE (arg0), - TREE_TYPE (arg0), - variable1, cst), - variable2); - } - } - - tem = maybe_canonicalize_comparison (loc, code, type, arg0, arg1); - if (tem) - return tem; - - /* If we are comparing an expression that just has comparisons - of two integer values, arithmetic expressions of those comparisons, - and constants, we can simplify it. There are only three cases - to check: the two values can either be equal, the first can be - greater, or the second can be greater. Fold the expression for - those three values. Since each value must be 0 or 1, we have - eight possibilities, each of which corresponds to the constant 0 - or 1 or one of the six possible comparisons. - - This handles common cases like (a > b) == 0 but also handles - expressions like ((x > y) - (y > x)) > 0, which supposedly - occur in macroized code. */ - - if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) != INTEGER_CST) - { - tree cval1 = 0, cval2 = 0; - - if (twoval_comparison_p (arg0, &cval1, &cval2) - /* Don't handle degenerate cases here; they should already - have been handled anyway. */ - && cval1 != 0 && cval2 != 0 - && ! (TREE_CONSTANT (cval1) && TREE_CONSTANT (cval2)) - && TREE_TYPE (cval1) == TREE_TYPE (cval2) - && INTEGRAL_TYPE_P (TREE_TYPE (cval1)) - && TYPE_MAX_VALUE (TREE_TYPE (cval1)) - && TYPE_MAX_VALUE (TREE_TYPE (cval2)) - && ! operand_equal_p (TYPE_MIN_VALUE (TREE_TYPE (cval1)), - TYPE_MAX_VALUE (TREE_TYPE (cval2)), 0)) - { - tree maxval = TYPE_MAX_VALUE (TREE_TYPE (cval1)); - tree minval = TYPE_MIN_VALUE (TREE_TYPE (cval1)); - - /* We can't just pass T to eval_subst in case cval1 or cval2 - was the same as ARG1. */ - - tree high_result - = fold_build2_loc (loc, code, type, - eval_subst (loc, arg0, cval1, maxval, - cval2, minval), - arg1); - tree equal_result - = fold_build2_loc (loc, code, type, - eval_subst (loc, arg0, cval1, maxval, - cval2, maxval), - arg1); - tree low_result - = fold_build2_loc (loc, code, type, - eval_subst (loc, arg0, cval1, minval, - cval2, maxval), - arg1); - - /* All three of these results should be 0 or 1. Confirm they are. - Then use those values to select the proper code to use. */ - - if (TREE_CODE (high_result) == INTEGER_CST - && TREE_CODE (equal_result) == INTEGER_CST - && TREE_CODE (low_result) == INTEGER_CST) - { - /* Make a 3-bit mask with the high-order bit being the - value for `>', the next for '=', and the low for '<'. */ - switch ((integer_onep (high_result) * 4) - + (integer_onep (equal_result) * 2) - + integer_onep (low_result)) - { - case 0: - /* Always false. */ - return omit_one_operand_loc (loc, type, integer_zero_node, arg0); - case 1: - code = LT_EXPR; - break; - case 2: - code = EQ_EXPR; - break; - case 3: - code = LE_EXPR; - break; - case 4: - code = GT_EXPR; - break; - case 5: - code = NE_EXPR; - break; - case 6: - code = GE_EXPR; - break; - case 7: - /* Always true. */ - return omit_one_operand_loc (loc, type, integer_one_node, arg0); - } - - return fold_build2_loc (loc, code, type, cval1, cval2); - } - } - } - - return NULL_TREE; -} - - -/* Subroutine of fold_binary. Optimize complex multiplications of the - form z * conj(z), as pow(realpart(z),2) + pow(imagpart(z),2). The - argument EXPR represents the expression "z" of type TYPE. */ - -static tree -fold_mult_zconjz (location_t loc, tree type, tree expr) -{ - tree itype = TREE_TYPE (type); - tree rpart, ipart, tem; - - if (TREE_CODE (expr) == COMPLEX_EXPR) - { - rpart = TREE_OPERAND (expr, 0); - ipart = TREE_OPERAND (expr, 1); - } - else if (TREE_CODE (expr) == COMPLEX_CST) - { - rpart = TREE_REALPART (expr); - ipart = TREE_IMAGPART (expr); - } - else - { - expr = save_expr (expr); - rpart = fold_build1_loc (loc, REALPART_EXPR, itype, expr); - ipart = fold_build1_loc (loc, IMAGPART_EXPR, itype, expr); - } - - rpart = save_expr (rpart); - ipart = save_expr (ipart); - tem = fold_build2_loc (loc, PLUS_EXPR, itype, - fold_build2_loc (loc, MULT_EXPR, itype, rpart, rpart), - fold_build2_loc (loc, MULT_EXPR, itype, ipart, ipart)); - return fold_build2_loc (loc, COMPLEX_EXPR, type, tem, - build_zero_cst (itype)); -} - - -/* Helper function for fold_vec_perm. Store elements of VECTOR_CST or - CONSTRUCTOR ARG into array ELTS, which has NELTS elements, and return - true if successful. */ - -static bool -vec_cst_ctor_to_array (tree arg, unsigned int nelts, tree *elts) -{ - unsigned HOST_WIDE_INT i, nunits; - - if (TREE_CODE (arg) == VECTOR_CST - && VECTOR_CST_NELTS (arg).is_constant (&nunits)) - { - for (i = 0; i < nunits; ++i) - elts[i] = VECTOR_CST_ELT (arg, i); - } - else if (TREE_CODE (arg) == CONSTRUCTOR) - { - constructor_elt *elt; - - FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (arg), i, elt) - if (i >= nelts || TREE_CODE (TREE_TYPE (elt->value)) == VECTOR_TYPE) - return false; - else - elts[i] = elt->value; - } - else - return false; - for (; i < nelts; i++) - elts[i] - = fold_convert (TREE_TYPE (TREE_TYPE (arg)), integer_zero_node); - return true; -} - -/* Attempt to fold vector permutation of ARG0 and ARG1 vectors using SEL - selector. Return the folded VECTOR_CST or CONSTRUCTOR if successful, - NULL_TREE otherwise. */ - -tree -fold_vec_perm (tree type, tree arg0, tree arg1, const vec_perm_indices &sel) -{ - unsigned int i; - unsigned HOST_WIDE_INT nelts; - bool need_ctor = false; - - if (!sel.length ().is_constant (&nelts)) - return NULL_TREE; - gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (type), nelts) - && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)), nelts) - && known_eq (TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg1)), nelts)); - if (TREE_TYPE (TREE_TYPE (arg0)) != TREE_TYPE (type) - || TREE_TYPE (TREE_TYPE (arg1)) != TREE_TYPE (type)) - return NULL_TREE; - - tree *in_elts = XALLOCAVEC (tree, nelts * 2); - if (!vec_cst_ctor_to_array (arg0, nelts, in_elts) - || !vec_cst_ctor_to_array (arg1, nelts, in_elts + nelts)) - return NULL_TREE; - - tree_vector_builder out_elts (type, nelts, 1); - for (i = 0; i < nelts; i++) - { - HOST_WIDE_INT index; - if (!sel[i].is_constant (&index)) - return NULL_TREE; - if (!CONSTANT_CLASS_P (in_elts[index])) - need_ctor = true; - out_elts.quick_push (unshare_expr (in_elts[index])); - } - - if (need_ctor) - { - vec<constructor_elt, va_gc> *v; - vec_alloc (v, nelts); - for (i = 0; i < nelts; i++) - CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, out_elts[i]); - return build_constructor (type, v); - } - else - return out_elts.build (); -} - -/* Try to fold a pointer difference of type TYPE two address expressions of - array references AREF0 and AREF1 using location LOC. Return a - simplified expression for the difference or NULL_TREE. */ - -static tree -fold_addr_of_array_ref_difference (location_t loc, tree type, - tree aref0, tree aref1, - bool use_pointer_diff) -{ - tree base0 = TREE_OPERAND (aref0, 0); - tree base1 = TREE_OPERAND (aref1, 0); - tree base_offset = build_int_cst (type, 0); - - /* If the bases are array references as well, recurse. If the bases - are pointer indirections compute the difference of the pointers. - If the bases are equal, we are set. */ - if ((TREE_CODE (base0) == ARRAY_REF - && TREE_CODE (base1) == ARRAY_REF - && (base_offset - = fold_addr_of_array_ref_difference (loc, type, base0, base1, - use_pointer_diff))) - || (INDIRECT_REF_P (base0) - && INDIRECT_REF_P (base1) - && (base_offset - = use_pointer_diff - ? fold_binary_loc (loc, POINTER_DIFF_EXPR, type, - TREE_OPERAND (base0, 0), - TREE_OPERAND (base1, 0)) - : fold_binary_loc (loc, MINUS_EXPR, type, - fold_convert (type, - TREE_OPERAND (base0, 0)), - fold_convert (type, - TREE_OPERAND (base1, 0))))) - || operand_equal_p (base0, base1, OEP_ADDRESS_OF)) - { - tree op0 = fold_convert_loc (loc, type, TREE_OPERAND (aref0, 1)); - tree op1 = fold_convert_loc (loc, type, TREE_OPERAND (aref1, 1)); - tree esz = fold_convert_loc (loc, type, array_ref_element_size (aref0)); - tree diff = fold_build2_loc (loc, MINUS_EXPR, type, op0, op1); - return fold_build2_loc (loc, PLUS_EXPR, type, - base_offset, - fold_build2_loc (loc, MULT_EXPR, type, - diff, esz)); - } - return NULL_TREE; -} - -/* If the real or vector real constant CST of type TYPE has an exact - inverse, return it, else return NULL. */ - -tree -exact_inverse (tree type, tree cst) -{ - REAL_VALUE_TYPE r; - tree unit_type; - machine_mode mode; - - switch (TREE_CODE (cst)) - { - case REAL_CST: - r = TREE_REAL_CST (cst); - - if (exact_real_inverse (TYPE_MODE (type), &r)) - return build_real (type, r); - - return NULL_TREE; - - case VECTOR_CST: - { - unit_type = TREE_TYPE (type); - mode = TYPE_MODE (unit_type); - - tree_vector_builder elts; - if (!elts.new_unary_operation (type, cst, false)) - return NULL_TREE; - unsigned int count = elts.encoded_nelts (); - for (unsigned int i = 0; i < count; ++i) - { - r = TREE_REAL_CST (VECTOR_CST_ELT (cst, i)); - if (!exact_real_inverse (mode, &r)) - return NULL_TREE; - elts.quick_push (build_real (unit_type, r)); - } - - return elts.build (); - } - - default: - return NULL_TREE; - } -} - -/* Mask out the tz least significant bits of X of type TYPE where - tz is the number of trailing zeroes in Y. */ -static wide_int -mask_with_tz (tree type, const wide_int &x, const wide_int &y) -{ - int tz = wi::ctz (y); - if (tz > 0) - return wi::mask (tz, true, TYPE_PRECISION (type)) & x; - return x; -} - -/* Return true when T is an address and is known to be nonzero. - For floating point we further ensure that T is not denormal. - Similar logic is present in nonzero_address in rtlanal.h. - - If the return value is based on the assumption that signed overflow - is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't - change *STRICT_OVERFLOW_P. */ - -static bool -tree_expr_nonzero_warnv_p (tree t, bool *strict_overflow_p) -{ - tree type = TREE_TYPE (t); - enum tree_code code; - - /* Doing something useful for floating point would need more work. */ - if (!INTEGRAL_TYPE_P (type) && !POINTER_TYPE_P (type)) - return false; - - code = TREE_CODE (t); - switch (TREE_CODE_CLASS (code)) - { - case tcc_unary: - return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), - strict_overflow_p); - case tcc_binary: - case tcc_comparison: - return tree_binary_nonzero_warnv_p (code, type, - TREE_OPERAND (t, 0), - TREE_OPERAND (t, 1), - strict_overflow_p); - case tcc_constant: - case tcc_declaration: - case tcc_reference: - return tree_single_nonzero_warnv_p (t, strict_overflow_p); - - default: - break; - } - - switch (code) - { - case TRUTH_NOT_EXPR: - return tree_unary_nonzero_warnv_p (code, type, TREE_OPERAND (t, 0), - strict_overflow_p); - - case TRUTH_AND_EXPR: - case TRUTH_OR_EXPR: - case TRUTH_XOR_EXPR: - return tree_binary_nonzero_warnv_p (code, type, - TREE_OPERAND (t, 0), - TREE_OPERAND (t, 1), - strict_overflow_p); - - case COND_EXPR: - case CONSTRUCTOR: - case OBJ_TYPE_REF: - case ASSERT_EXPR: - case ADDR_EXPR: - case WITH_SIZE_EXPR: - case SSA_NAME: - return tree_single_nonzero_warnv_p (t, strict_overflow_p); - - case COMPOUND_EXPR: - case MODIFY_EXPR: - case BIND_EXPR: - return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), - strict_overflow_p); - - case SAVE_EXPR: - return tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 0), - strict_overflow_p); - - case CALL_EXPR: - { - tree fndecl = get_callee_fndecl (t); - if (!fndecl) return false; - if (flag_delete_null_pointer_checks && !flag_check_new - && DECL_IS_OPERATOR_NEW_P (fndecl) - && !TREE_NOTHROW (fndecl)) - return true; - if (flag_delete_null_pointer_checks - && lookup_attribute ("returns_nonnull", - TYPE_ATTRIBUTES (TREE_TYPE (fndecl)))) - return true; - return alloca_call_p (t); - } - - default: - break; - } - return false; -} - -/* Return true when T is an address and is known to be nonzero. - Handle warnings about undefined signed overflow. */ - -bool -tree_expr_nonzero_p (tree t) -{ - bool ret, strict_overflow_p; - - strict_overflow_p = false; - ret = tree_expr_nonzero_warnv_p (t, &strict_overflow_p); - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur when " - "determining that expression is always " - "non-zero"), - WARN_STRICT_OVERFLOW_MISC); - return ret; -} - -/* Return true if T is known not to be equal to an integer W. */ - -bool -expr_not_equal_to (tree t, const wide_int &w) -{ - int_range_max vr; - switch (TREE_CODE (t)) - { - case INTEGER_CST: - return wi::to_wide (t) != w; - - case SSA_NAME: - if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) - return false; - - if (cfun) - get_range_query (cfun)->range_of_expr (vr, t); - else - get_global_range_query ()->range_of_expr (vr, t); - - if (!vr.undefined_p () - && !vr.contains_p (wide_int_to_tree (TREE_TYPE (t), w))) - return true; - /* If T has some known zero bits and W has any of those bits set, - then T is known not to be equal to W. */ - if (wi::ne_p (wi::zext (wi::bit_and_not (w, get_nonzero_bits (t)), - TYPE_PRECISION (TREE_TYPE (t))), 0)) - return true; - return false; - - default: - return false; - } -} - -/* Fold a binary expression of code CODE and type TYPE with operands - OP0 and OP1. LOC is the location of the resulting expression. - Return the folded expression if folding is successful. Otherwise, - return NULL_TREE. */ - -tree -fold_binary_loc (location_t loc, enum tree_code code, tree type, - tree op0, tree op1) -{ - enum tree_code_class kind = TREE_CODE_CLASS (code); - tree arg0, arg1, tem; - tree t1 = NULL_TREE; - bool strict_overflow_p; - unsigned int prec; - - gcc_assert (IS_EXPR_CODE_CLASS (kind) - && TREE_CODE_LENGTH (code) == 2 - && op0 != NULL_TREE - && op1 != NULL_TREE); - - arg0 = op0; - arg1 = op1; - - /* Strip any conversions that don't change the mode. This is - safe for every expression, except for a comparison expression - because its signedness is derived from its operands. So, in - the latter case, only strip conversions that don't change the - signedness. MIN_EXPR/MAX_EXPR also need signedness of arguments - preserved. - - Note that this is done as an internal manipulation within the - constant folder, in order to find the simplest representation - of the arguments so that their form can be studied. In any - cases, the appropriate type conversions should be put back in - the tree that will get out of the constant folder. */ - - if (kind == tcc_comparison || code == MIN_EXPR || code == MAX_EXPR) - { - STRIP_SIGN_NOPS (arg0); - STRIP_SIGN_NOPS (arg1); - } - else - { - STRIP_NOPS (arg0); - STRIP_NOPS (arg1); - } - - /* Note that TREE_CONSTANT isn't enough: static var addresses are - constant but we can't do arithmetic on them. */ - if (CONSTANT_CLASS_P (arg0) && CONSTANT_CLASS_P (arg1)) - { - tem = const_binop (code, type, arg0, arg1); - if (tem != NULL_TREE) - { - if (TREE_TYPE (tem) != type) - tem = fold_convert_loc (loc, type, tem); - return tem; - } - } - - /* If this is a commutative operation, and ARG0 is a constant, move it - to ARG1 to reduce the number of tests below. */ - if (commutative_tree_code (code) - && tree_swap_operands_p (arg0, arg1)) - return fold_build2_loc (loc, code, type, op1, op0); - - /* Likewise if this is a comparison, and ARG0 is a constant, move it - to ARG1 to reduce the number of tests below. */ - if (kind == tcc_comparison - && tree_swap_operands_p (arg0, arg1)) - return fold_build2_loc (loc, swap_tree_comparison (code), type, op1, op0); - - tem = generic_simplify (loc, code, type, op0, op1); - if (tem) - return tem; - - /* ARG0 is the first operand of EXPR, and ARG1 is the second operand. - - First check for cases where an arithmetic operation is applied to a - compound, conditional, or comparison operation. Push the arithmetic - operation inside the compound or conditional to see if any folding - can then be done. Convert comparison to conditional for this purpose. - The also optimizes non-constant cases that used to be done in - expand_expr. - - Before we do that, see if this is a BIT_AND_EXPR or a BIT_IOR_EXPR, - one of the operands is a comparison and the other is a comparison, a - BIT_AND_EXPR with the constant 1, or a truth value. In that case, the - code below would make the expression more complex. Change it to a - TRUTH_{AND,OR}_EXPR. Likewise, convert a similar NE_EXPR to - TRUTH_XOR_EXPR and an EQ_EXPR to the inversion of a TRUTH_XOR_EXPR. */ - - if ((code == BIT_AND_EXPR || code == BIT_IOR_EXPR - || code == EQ_EXPR || code == NE_EXPR) - && !VECTOR_TYPE_P (TREE_TYPE (arg0)) - && ((truth_value_p (TREE_CODE (arg0)) - && (truth_value_p (TREE_CODE (arg1)) - || (TREE_CODE (arg1) == BIT_AND_EXPR - && integer_onep (TREE_OPERAND (arg1, 1))))) - || (truth_value_p (TREE_CODE (arg1)) - && (truth_value_p (TREE_CODE (arg0)) - || (TREE_CODE (arg0) == BIT_AND_EXPR - && integer_onep (TREE_OPERAND (arg0, 1))))))) - { - tem = fold_build2_loc (loc, code == BIT_AND_EXPR ? TRUTH_AND_EXPR - : code == BIT_IOR_EXPR ? TRUTH_OR_EXPR - : TRUTH_XOR_EXPR, - boolean_type_node, - fold_convert_loc (loc, boolean_type_node, arg0), - fold_convert_loc (loc, boolean_type_node, arg1)); - - if (code == EQ_EXPR) - tem = invert_truthvalue_loc (loc, tem); - - return fold_convert_loc (loc, type, tem); - } - - if (TREE_CODE_CLASS (code) == tcc_binary - || TREE_CODE_CLASS (code) == tcc_comparison) - { - if (TREE_CODE (arg0) == COMPOUND_EXPR) - { - tem = fold_build2_loc (loc, code, type, - fold_convert_loc (loc, TREE_TYPE (op0), - TREE_OPERAND (arg0, 1)), op1); - return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg0, 0), - tem); - } - if (TREE_CODE (arg1) == COMPOUND_EXPR) - { - tem = fold_build2_loc (loc, code, type, op0, - fold_convert_loc (loc, TREE_TYPE (op1), - TREE_OPERAND (arg1, 1))); - return build2_loc (loc, COMPOUND_EXPR, type, TREE_OPERAND (arg1, 0), - tem); - } - - if (TREE_CODE (arg0) == COND_EXPR - || TREE_CODE (arg0) == VEC_COND_EXPR - || COMPARISON_CLASS_P (arg0)) - { - tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, - arg0, arg1, - /*cond_first_p=*/1); - if (tem != NULL_TREE) - return tem; - } - - if (TREE_CODE (arg1) == COND_EXPR - || TREE_CODE (arg1) == VEC_COND_EXPR - || COMPARISON_CLASS_P (arg1)) - { - tem = fold_binary_op_with_conditional_arg (loc, code, type, op0, op1, - arg1, arg0, - /*cond_first_p=*/0); - if (tem != NULL_TREE) - return tem; - } - } - - switch (code) - { - case MEM_REF: - /* MEM[&MEM[p, CST1], CST2] -> MEM[p, CST1 + CST2]. */ - if (TREE_CODE (arg0) == ADDR_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 0)) == MEM_REF) - { - tree iref = TREE_OPERAND (arg0, 0); - return fold_build2 (MEM_REF, type, - TREE_OPERAND (iref, 0), - int_const_binop (PLUS_EXPR, arg1, - TREE_OPERAND (iref, 1))); - } - - /* MEM[&a.b, CST2] -> MEM[&a, offsetof (a, b) + CST2]. */ - if (TREE_CODE (arg0) == ADDR_EXPR - && handled_component_p (TREE_OPERAND (arg0, 0))) - { - tree base; - poly_int64 coffset; - base = get_addr_base_and_unit_offset (TREE_OPERAND (arg0, 0), - &coffset); - if (!base) - return NULL_TREE; - return fold_build2 (MEM_REF, type, - build1 (ADDR_EXPR, TREE_TYPE (arg0), base), - int_const_binop (PLUS_EXPR, arg1, - size_int (coffset))); - } - - return NULL_TREE; - - case POINTER_PLUS_EXPR: - /* INT +p INT -> (PTR)(INT + INT). Stripping types allows for this. */ - if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) - && INTEGRAL_TYPE_P (TREE_TYPE (arg0))) - return fold_convert_loc (loc, type, - fold_build2_loc (loc, PLUS_EXPR, sizetype, - fold_convert_loc (loc, sizetype, - arg1), - fold_convert_loc (loc, sizetype, - arg0))); - - return NULL_TREE; - - case PLUS_EXPR: - if (INTEGRAL_TYPE_P (type) || VECTOR_INTEGER_TYPE_P (type)) - { - /* X + (X / CST) * -CST is X % CST. */ - if (TREE_CODE (arg1) == MULT_EXPR - && TREE_CODE (TREE_OPERAND (arg1, 0)) == TRUNC_DIV_EXPR - && operand_equal_p (arg0, - TREE_OPERAND (TREE_OPERAND (arg1, 0), 0), 0)) - { - tree cst0 = TREE_OPERAND (TREE_OPERAND (arg1, 0), 1); - tree cst1 = TREE_OPERAND (arg1, 1); - tree sum = fold_binary_loc (loc, PLUS_EXPR, TREE_TYPE (cst1), - cst1, cst0); - if (sum && integer_zerop (sum)) - return fold_convert_loc (loc, type, - fold_build2_loc (loc, TRUNC_MOD_EXPR, - TREE_TYPE (arg0), arg0, - cst0)); - } - } - - /* Handle (A1 * C1) + (A2 * C2) with A1, A2 or C1, C2 being the same or - one. Make sure the type is not saturating and has the signedness of - the stripped operands, as fold_plusminus_mult_expr will re-associate. - ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ - if ((TREE_CODE (arg0) == MULT_EXPR - || TREE_CODE (arg1) == MULT_EXPR) - && !TYPE_SATURATING (type) - && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) - && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) - && (!FLOAT_TYPE_P (type) || flag_associative_math)) - { - tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); - if (tem) - return tem; - } - - if (! FLOAT_TYPE_P (type)) - { - /* Reassociate (plus (plus (mult) (foo)) (mult)) as - (plus (plus (mult) (mult)) (foo)) so that we can - take advantage of the factoring cases below. */ - if (ANY_INTEGRAL_TYPE_P (type) - && TYPE_OVERFLOW_WRAPS (type) - && (((TREE_CODE (arg0) == PLUS_EXPR - || TREE_CODE (arg0) == MINUS_EXPR) - && TREE_CODE (arg1) == MULT_EXPR) - || ((TREE_CODE (arg1) == PLUS_EXPR - || TREE_CODE (arg1) == MINUS_EXPR) - && TREE_CODE (arg0) == MULT_EXPR))) - { - tree parg0, parg1, parg, marg; - enum tree_code pcode; - - if (TREE_CODE (arg1) == MULT_EXPR) - parg = arg0, marg = arg1; - else - parg = arg1, marg = arg0; - pcode = TREE_CODE (parg); - parg0 = TREE_OPERAND (parg, 0); - parg1 = TREE_OPERAND (parg, 1); - STRIP_NOPS (parg0); - STRIP_NOPS (parg1); - - if (TREE_CODE (parg0) == MULT_EXPR - && TREE_CODE (parg1) != MULT_EXPR) - return fold_build2_loc (loc, pcode, type, - fold_build2_loc (loc, PLUS_EXPR, type, - fold_convert_loc (loc, type, - parg0), - fold_convert_loc (loc, type, - marg)), - fold_convert_loc (loc, type, parg1)); - if (TREE_CODE (parg0) != MULT_EXPR - && TREE_CODE (parg1) == MULT_EXPR) - return - fold_build2_loc (loc, PLUS_EXPR, type, - fold_convert_loc (loc, type, parg0), - fold_build2_loc (loc, pcode, type, - fold_convert_loc (loc, type, marg), - fold_convert_loc (loc, type, - parg1))); - } - } - else - { - /* Fold __complex__ ( x, 0 ) + __complex__ ( 0, y ) - to __complex__ ( x, y ). This is not the same for SNaNs or - if signed zeros are involved. */ - if (!HONOR_SNANS (arg0) - && !HONOR_SIGNED_ZEROS (arg0) - && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) - { - tree rtype = TREE_TYPE (TREE_TYPE (arg0)); - tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); - tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); - bool arg0rz = false, arg0iz = false; - if ((arg0r && (arg0rz = real_zerop (arg0r))) - || (arg0i && (arg0iz = real_zerop (arg0i)))) - { - tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); - tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); - if (arg0rz && arg1i && real_zerop (arg1i)) - { - tree rp = arg1r ? arg1r - : build1 (REALPART_EXPR, rtype, arg1); - tree ip = arg0i ? arg0i - : build1 (IMAGPART_EXPR, rtype, arg0); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); - } - else if (arg0iz && arg1r && real_zerop (arg1r)) - { - tree rp = arg0r ? arg0r - : build1 (REALPART_EXPR, rtype, arg0); - tree ip = arg1i ? arg1i - : build1 (IMAGPART_EXPR, rtype, arg1); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); - } - } - } - - /* Convert a + (b*c + d*e) into (a + b*c) + d*e. - We associate floats only if the user has specified - -fassociative-math. */ - if (flag_associative_math - && TREE_CODE (arg1) == PLUS_EXPR - && TREE_CODE (arg0) != MULT_EXPR) - { - tree tree10 = TREE_OPERAND (arg1, 0); - tree tree11 = TREE_OPERAND (arg1, 1); - if (TREE_CODE (tree11) == MULT_EXPR - && TREE_CODE (tree10) == MULT_EXPR) - { - tree tree0; - tree0 = fold_build2_loc (loc, PLUS_EXPR, type, arg0, tree10); - return fold_build2_loc (loc, PLUS_EXPR, type, tree0, tree11); - } - } - /* Convert (b*c + d*e) + a into b*c + (d*e +a). - We associate floats only if the user has specified - -fassociative-math. */ - if (flag_associative_math - && TREE_CODE (arg0) == PLUS_EXPR - && TREE_CODE (arg1) != MULT_EXPR) - { - tree tree00 = TREE_OPERAND (arg0, 0); - tree tree01 = TREE_OPERAND (arg0, 1); - if (TREE_CODE (tree01) == MULT_EXPR - && TREE_CODE (tree00) == MULT_EXPR) - { - tree tree0; - tree0 = fold_build2_loc (loc, PLUS_EXPR, type, tree01, arg1); - return fold_build2_loc (loc, PLUS_EXPR, type, tree00, tree0); - } - } - } - - bit_rotate: - /* (A << C1) + (A >> C2) if A is unsigned and C1+C2 is the size of A - is a rotate of A by C1 bits. */ - /* (A << B) + (A >> (Z - B)) if A is unsigned and Z is the size of A - is a rotate of A by B bits. - Similarly for (A << B) | (A >> (-B & C3)) where C3 is Z-1, - though in this case CODE must be | and not + or ^, otherwise - it doesn't return A when B is 0. */ - { - enum tree_code code0, code1; - tree rtype; - code0 = TREE_CODE (arg0); - code1 = TREE_CODE (arg1); - if (((code0 == RSHIFT_EXPR && code1 == LSHIFT_EXPR) - || (code1 == RSHIFT_EXPR && code0 == LSHIFT_EXPR)) - && operand_equal_p (TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 0), 0) - && (rtype = TREE_TYPE (TREE_OPERAND (arg0, 0)), - TYPE_UNSIGNED (rtype)) - /* Only create rotates in complete modes. Other cases are not - expanded properly. */ - && (element_precision (rtype) - == GET_MODE_UNIT_PRECISION (TYPE_MODE (rtype)))) - { - tree tree01, tree11; - tree orig_tree01, orig_tree11; - enum tree_code code01, code11; - - tree01 = orig_tree01 = TREE_OPERAND (arg0, 1); - tree11 = orig_tree11 = TREE_OPERAND (arg1, 1); - STRIP_NOPS (tree01); - STRIP_NOPS (tree11); - code01 = TREE_CODE (tree01); - code11 = TREE_CODE (tree11); - if (code11 != MINUS_EXPR - && (code01 == MINUS_EXPR || code01 == BIT_AND_EXPR)) - { - std::swap (code0, code1); - std::swap (code01, code11); - std::swap (tree01, tree11); - std::swap (orig_tree01, orig_tree11); - } - if (code01 == INTEGER_CST - && code11 == INTEGER_CST - && (wi::to_widest (tree01) + wi::to_widest (tree11) - == element_precision (rtype))) - { - tem = build2_loc (loc, LROTATE_EXPR, - rtype, TREE_OPERAND (arg0, 0), - code0 == LSHIFT_EXPR - ? orig_tree01 : orig_tree11); - return fold_convert_loc (loc, type, tem); - } - else if (code11 == MINUS_EXPR) - { - tree tree110, tree111; - tree110 = TREE_OPERAND (tree11, 0); - tree111 = TREE_OPERAND (tree11, 1); - STRIP_NOPS (tree110); - STRIP_NOPS (tree111); - if (TREE_CODE (tree110) == INTEGER_CST - && compare_tree_int (tree110, - element_precision (rtype)) == 0 - && operand_equal_p (tree01, tree111, 0)) - { - tem = build2_loc (loc, (code0 == LSHIFT_EXPR - ? LROTATE_EXPR : RROTATE_EXPR), - rtype, TREE_OPERAND (arg0, 0), - orig_tree01); - return fold_convert_loc (loc, type, tem); - } - } - else if (code == BIT_IOR_EXPR - && code11 == BIT_AND_EXPR - && pow2p_hwi (element_precision (rtype))) - { - tree tree110, tree111; - tree110 = TREE_OPERAND (tree11, 0); - tree111 = TREE_OPERAND (tree11, 1); - STRIP_NOPS (tree110); - STRIP_NOPS (tree111); - if (TREE_CODE (tree110) == NEGATE_EXPR - && TREE_CODE (tree111) == INTEGER_CST - && compare_tree_int (tree111, - element_precision (rtype) - 1) == 0 - && operand_equal_p (tree01, TREE_OPERAND (tree110, 0), 0)) - { - tem = build2_loc (loc, (code0 == LSHIFT_EXPR - ? LROTATE_EXPR : RROTATE_EXPR), - rtype, TREE_OPERAND (arg0, 0), - orig_tree01); - return fold_convert_loc (loc, type, tem); - } - } - } - } - - associate: - /* In most languages, can't associate operations on floats through - parentheses. Rather than remember where the parentheses were, we - don't associate floats at all, unless the user has specified - -fassociative-math. - And, we need to make sure type is not saturating. */ - - if ((! FLOAT_TYPE_P (type) || flag_associative_math) - && !TYPE_SATURATING (type)) - { - tree var0, minus_var0, con0, minus_con0, lit0, minus_lit0; - tree var1, minus_var1, con1, minus_con1, lit1, minus_lit1; - tree atype = type; - bool ok = true; - - /* Split both trees into variables, constants, and literals. Then - associate each group together, the constants with literals, - then the result with variables. This increases the chances of - literals being recombined later and of generating relocatable - expressions for the sum of a constant and literal. */ - var0 = split_tree (arg0, type, code, - &minus_var0, &con0, &minus_con0, - &lit0, &minus_lit0, 0); - var1 = split_tree (arg1, type, code, - &minus_var1, &con1, &minus_con1, - &lit1, &minus_lit1, code == MINUS_EXPR); - - /* Recombine MINUS_EXPR operands by using PLUS_EXPR. */ - if (code == MINUS_EXPR) - code = PLUS_EXPR; - - /* With undefined overflow prefer doing association in a type - which wraps on overflow, if that is one of the operand types. */ - if ((POINTER_TYPE_P (type) || INTEGRAL_TYPE_P (type)) - && !TYPE_OVERFLOW_WRAPS (type)) - { - if (INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg0))) - atype = TREE_TYPE (arg0); - else if (INTEGRAL_TYPE_P (TREE_TYPE (arg1)) - && TYPE_OVERFLOW_WRAPS (TREE_TYPE (arg1))) - atype = TREE_TYPE (arg1); - gcc_assert (TYPE_PRECISION (atype) == TYPE_PRECISION (type)); - } - - /* With undefined overflow we can only associate constants with one - variable, and constants whose association doesn't overflow. */ - if ((POINTER_TYPE_P (atype) || INTEGRAL_TYPE_P (atype)) - && !TYPE_OVERFLOW_WRAPS (atype)) - { - if ((var0 && var1) || (minus_var0 && minus_var1)) - { - /* ??? If split_tree would handle NEGATE_EXPR we could - simply reject these cases and the allowed cases would - be the var0/minus_var1 ones. */ - tree tmp0 = var0 ? var0 : minus_var0; - tree tmp1 = var1 ? var1 : minus_var1; - bool one_neg = false; - - if (TREE_CODE (tmp0) == NEGATE_EXPR) - { - tmp0 = TREE_OPERAND (tmp0, 0); - one_neg = !one_neg; - } - if (CONVERT_EXPR_P (tmp0) - && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp0, 0))) - && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp0, 0))) - <= TYPE_PRECISION (atype))) - tmp0 = TREE_OPERAND (tmp0, 0); - if (TREE_CODE (tmp1) == NEGATE_EXPR) - { - tmp1 = TREE_OPERAND (tmp1, 0); - one_neg = !one_neg; - } - if (CONVERT_EXPR_P (tmp1) - && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (tmp1, 0))) - && (TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (tmp1, 0))) - <= TYPE_PRECISION (atype))) - tmp1 = TREE_OPERAND (tmp1, 0); - /* The only case we can still associate with two variables - is if they cancel out. */ - if (!one_neg - || !operand_equal_p (tmp0, tmp1, 0)) - ok = false; - } - else if ((var0 && minus_var1 - && ! operand_equal_p (var0, minus_var1, 0)) - || (minus_var0 && var1 - && ! operand_equal_p (minus_var0, var1, 0))) - ok = false; - } - - /* Only do something if we found more than two objects. Otherwise, - nothing has changed and we risk infinite recursion. */ - if (ok - && ((var0 != 0) + (var1 != 0) - + (minus_var0 != 0) + (minus_var1 != 0) - + (con0 != 0) + (con1 != 0) - + (minus_con0 != 0) + (minus_con1 != 0) - + (lit0 != 0) + (lit1 != 0) - + (minus_lit0 != 0) + (minus_lit1 != 0)) > 2) - { - var0 = associate_trees (loc, var0, var1, code, atype); - minus_var0 = associate_trees (loc, minus_var0, minus_var1, - code, atype); - con0 = associate_trees (loc, con0, con1, code, atype); - minus_con0 = associate_trees (loc, minus_con0, minus_con1, - code, atype); - lit0 = associate_trees (loc, lit0, lit1, code, atype); - minus_lit0 = associate_trees (loc, minus_lit0, minus_lit1, - code, atype); - - if (minus_var0 && var0) - { - var0 = associate_trees (loc, var0, minus_var0, - MINUS_EXPR, atype); - minus_var0 = 0; - } - if (minus_con0 && con0) - { - con0 = associate_trees (loc, con0, minus_con0, - MINUS_EXPR, atype); - minus_con0 = 0; - } - - /* Preserve the MINUS_EXPR if the negative part of the literal is - greater than the positive part. Otherwise, the multiplicative - folding code (i.e extract_muldiv) may be fooled in case - unsigned constants are subtracted, like in the following - example: ((X*2 + 4) - 8U)/2. */ - if (minus_lit0 && lit0) - { - if (TREE_CODE (lit0) == INTEGER_CST - && TREE_CODE (minus_lit0) == INTEGER_CST - && tree_int_cst_lt (lit0, minus_lit0) - /* But avoid ending up with only negated parts. */ - && (var0 || con0)) - { - minus_lit0 = associate_trees (loc, minus_lit0, lit0, - MINUS_EXPR, atype); - lit0 = 0; - } - else - { - lit0 = associate_trees (loc, lit0, minus_lit0, - MINUS_EXPR, atype); - minus_lit0 = 0; - } - } - - /* Don't introduce overflows through reassociation. */ - if ((lit0 && TREE_OVERFLOW_P (lit0)) - || (minus_lit0 && TREE_OVERFLOW_P (minus_lit0))) - return NULL_TREE; - - /* Eliminate lit0 and minus_lit0 to con0 and minus_con0. */ - con0 = associate_trees (loc, con0, lit0, code, atype); - lit0 = 0; - minus_con0 = associate_trees (loc, minus_con0, minus_lit0, - code, atype); - minus_lit0 = 0; - - /* Eliminate minus_con0. */ - if (minus_con0) - { - if (con0) - con0 = associate_trees (loc, con0, minus_con0, - MINUS_EXPR, atype); - else if (var0) - var0 = associate_trees (loc, var0, minus_con0, - MINUS_EXPR, atype); - else - gcc_unreachable (); - minus_con0 = 0; - } - - /* Eliminate minus_var0. */ - if (minus_var0) - { - if (con0) - con0 = associate_trees (loc, con0, minus_var0, - MINUS_EXPR, atype); - else - gcc_unreachable (); - minus_var0 = 0; - } - - return - fold_convert_loc (loc, type, associate_trees (loc, var0, con0, - code, atype)); - } - } - - return NULL_TREE; - - case POINTER_DIFF_EXPR: - case MINUS_EXPR: - /* Fold &a[i] - &a[j] to i-j. */ - if (TREE_CODE (arg0) == ADDR_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 0)) == ARRAY_REF - && TREE_CODE (arg1) == ADDR_EXPR - && TREE_CODE (TREE_OPERAND (arg1, 0)) == ARRAY_REF) - { - tree tem = fold_addr_of_array_ref_difference (loc, type, - TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg1, 0), - code - == POINTER_DIFF_EXPR); - if (tem) - return tem; - } - - /* Further transformations are not for pointers. */ - if (code == POINTER_DIFF_EXPR) - return NULL_TREE; - - /* (-A) - B -> (-B) - A where B is easily negated and we can swap. */ - if (TREE_CODE (arg0) == NEGATE_EXPR - && negate_expr_p (op1) - /* If arg0 is e.g. unsigned int and type is int, then this could - introduce UB, because if A is INT_MIN at runtime, the original - expression can be well defined while the latter is not. - See PR83269. */ - && !(ANY_INTEGRAL_TYPE_P (type) - && TYPE_OVERFLOW_UNDEFINED (type) - && ANY_INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (arg0)))) - return fold_build2_loc (loc, MINUS_EXPR, type, negate_expr (op1), - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 0))); - - /* Fold __complex__ ( x, 0 ) - __complex__ ( 0, y ) to - __complex__ ( x, -y ). This is not the same for SNaNs or if - signed zeros are involved. */ - if (!HONOR_SNANS (arg0) - && !HONOR_SIGNED_ZEROS (arg0) - && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0))) - { - tree rtype = TREE_TYPE (TREE_TYPE (arg0)); - tree arg0r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg0); - tree arg0i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg0); - bool arg0rz = false, arg0iz = false; - if ((arg0r && (arg0rz = real_zerop (arg0r))) - || (arg0i && (arg0iz = real_zerop (arg0i)))) - { - tree arg1r = fold_unary_loc (loc, REALPART_EXPR, rtype, arg1); - tree arg1i = fold_unary_loc (loc, IMAGPART_EXPR, rtype, arg1); - if (arg0rz && arg1i && real_zerop (arg1i)) - { - tree rp = fold_build1_loc (loc, NEGATE_EXPR, rtype, - arg1r ? arg1r - : build1 (REALPART_EXPR, rtype, arg1)); - tree ip = arg0i ? arg0i - : build1 (IMAGPART_EXPR, rtype, arg0); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); - } - else if (arg0iz && arg1r && real_zerop (arg1r)) - { - tree rp = arg0r ? arg0r - : build1 (REALPART_EXPR, rtype, arg0); - tree ip = fold_build1_loc (loc, NEGATE_EXPR, rtype, - arg1i ? arg1i - : build1 (IMAGPART_EXPR, rtype, arg1)); - return fold_build2_loc (loc, COMPLEX_EXPR, type, rp, ip); - } - } - } - - /* A - B -> A + (-B) if B is easily negatable. */ - if (negate_expr_p (op1) - && ! TYPE_OVERFLOW_SANITIZED (type) - && ((FLOAT_TYPE_P (type) - /* Avoid this transformation if B is a positive REAL_CST. */ - && (TREE_CODE (op1) != REAL_CST - || REAL_VALUE_NEGATIVE (TREE_REAL_CST (op1)))) - || INTEGRAL_TYPE_P (type))) - return fold_build2_loc (loc, PLUS_EXPR, type, - fold_convert_loc (loc, type, arg0), - negate_expr (op1)); - - /* Handle (A1 * C1) - (A2 * C2) with A1, A2 or C1, C2 being the same or - one. Make sure the type is not saturating and has the signedness of - the stripped operands, as fold_plusminus_mult_expr will re-associate. - ??? The latter condition should use TYPE_OVERFLOW_* flags instead. */ - if ((TREE_CODE (arg0) == MULT_EXPR - || TREE_CODE (arg1) == MULT_EXPR) - && !TYPE_SATURATING (type) - && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg0)) - && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (TREE_TYPE (arg1)) - && (!FLOAT_TYPE_P (type) || flag_associative_math)) - { - tree tem = fold_plusminus_mult_expr (loc, code, type, arg0, arg1); - if (tem) - return tem; - } - - goto associate; - - case MULT_EXPR: - if (! FLOAT_TYPE_P (type)) - { - /* Transform x * -C into -x * C if x is easily negatable. */ - if (TREE_CODE (op1) == INTEGER_CST - && tree_int_cst_sgn (op1) == -1 - && negate_expr_p (op0) - && negate_expr_p (op1) - && (tem = negate_expr (op1)) != op1 - && ! TREE_OVERFLOW (tem)) - return fold_build2_loc (loc, MULT_EXPR, type, - fold_convert_loc (loc, type, - negate_expr (op0)), tem); - - strict_overflow_p = false; - if (TREE_CODE (arg1) == INTEGER_CST - && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, - &strict_overflow_p)) != 0) - { - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not " - "occur when simplifying " - "multiplication"), - WARN_STRICT_OVERFLOW_MISC); - return fold_convert_loc (loc, type, tem); - } - - /* Optimize z * conj(z) for integer complex numbers. */ - if (TREE_CODE (arg0) == CONJ_EXPR - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) - return fold_mult_zconjz (loc, type, arg1); - if (TREE_CODE (arg1) == CONJ_EXPR - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return fold_mult_zconjz (loc, type, arg0); - } - else - { - /* Fold z * +-I to __complex__ (-+__imag z, +-__real z). - This is not the same for NaNs or if signed zeros are - involved. */ - if (!HONOR_NANS (arg0) - && !HONOR_SIGNED_ZEROS (arg0) - && COMPLEX_FLOAT_TYPE_P (TREE_TYPE (arg0)) - && TREE_CODE (arg1) == COMPLEX_CST - && real_zerop (TREE_REALPART (arg1))) - { - tree rtype = TREE_TYPE (TREE_TYPE (arg0)); - if (real_onep (TREE_IMAGPART (arg1))) - return - fold_build2_loc (loc, COMPLEX_EXPR, type, - negate_expr (fold_build1_loc (loc, IMAGPART_EXPR, - rtype, arg0)), - fold_build1_loc (loc, REALPART_EXPR, rtype, arg0)); - else if (real_minus_onep (TREE_IMAGPART (arg1))) - return - fold_build2_loc (loc, COMPLEX_EXPR, type, - fold_build1_loc (loc, IMAGPART_EXPR, rtype, arg0), - negate_expr (fold_build1_loc (loc, REALPART_EXPR, - rtype, arg0))); - } - - /* Optimize z * conj(z) for floating point complex numbers. - Guarded by flag_unsafe_math_optimizations as non-finite - imaginary components don't produce scalar results. */ - if (flag_unsafe_math_optimizations - && TREE_CODE (arg0) == CONJ_EXPR - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) - return fold_mult_zconjz (loc, type, arg1); - if (flag_unsafe_math_optimizations - && TREE_CODE (arg1) == CONJ_EXPR - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return fold_mult_zconjz (loc, type, arg0); - } - goto associate; - - case BIT_IOR_EXPR: - /* Canonicalize (X & C1) | C2. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && TREE_CODE (arg1) == INTEGER_CST - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) - { - int width = TYPE_PRECISION (type), w; - wide_int c1 = wi::to_wide (TREE_OPERAND (arg0, 1)); - wide_int c2 = wi::to_wide (arg1); - - /* If (C1&C2) == C1, then (X&C1)|C2 becomes (X,C2). */ - if ((c1 & c2) == c1) - return omit_one_operand_loc (loc, type, arg1, - TREE_OPERAND (arg0, 0)); - - wide_int msk = wi::mask (width, false, - TYPE_PRECISION (TREE_TYPE (arg1))); - - /* If (C1|C2) == ~0 then (X&C1)|C2 becomes X|C2. */ - if (wi::bit_and_not (msk, c1 | c2) == 0) - { - tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); - } - - /* Minimize the number of bits set in C1, i.e. C1 := C1 & ~C2, - unless (C1 & ~C2) | (C2 & C3) for some C3 is a mask of some - mode which allows further optimizations. */ - c1 &= msk; - c2 &= msk; - wide_int c3 = wi::bit_and_not (c1, c2); - for (w = BITS_PER_UNIT; w <= width; w <<= 1) - { - wide_int mask = wi::mask (w, false, - TYPE_PRECISION (type)); - if (((c1 | c2) & mask) == mask - && wi::bit_and_not (c1, mask) == 0) - { - c3 = mask; - break; - } - } - - if (c3 != c1) - { - tem = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - tem = fold_build2_loc (loc, BIT_AND_EXPR, type, tem, - wide_int_to_tree (type, c3)); - return fold_build2_loc (loc, BIT_IOR_EXPR, type, tem, arg1); - } - } - - /* See if this can be simplified into a rotate first. If that - is unsuccessful continue in the association code. */ - goto bit_rotate; - - case BIT_XOR_EXPR: - /* Fold (X & 1) ^ 1 as (X & 1) == 0. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && INTEGRAL_TYPE_P (type) - && integer_onep (TREE_OPERAND (arg0, 1)) - && integer_onep (arg1)) - return fold_build2_loc (loc, EQ_EXPR, type, arg0, - build_zero_cst (TREE_TYPE (arg0))); - - /* See if this can be simplified into a rotate first. If that - is unsuccessful continue in the association code. */ - goto bit_rotate; - - case BIT_AND_EXPR: - /* Fold (X ^ 1) & 1 as (X & 1) == 0. */ - if (TREE_CODE (arg0) == BIT_XOR_EXPR - && INTEGRAL_TYPE_P (type) - && integer_onep (TREE_OPERAND (arg0, 1)) - && integer_onep (arg1)) - { - tree tem2; - tem = TREE_OPERAND (arg0, 0); - tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); - tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), - tem, tem2); - return fold_build2_loc (loc, EQ_EXPR, type, tem2, - build_zero_cst (TREE_TYPE (tem))); - } - /* Fold ~X & 1 as (X & 1) == 0. */ - if (TREE_CODE (arg0) == BIT_NOT_EXPR - && INTEGRAL_TYPE_P (type) - && integer_onep (arg1)) - { - tree tem2; - tem = TREE_OPERAND (arg0, 0); - tem2 = fold_convert_loc (loc, TREE_TYPE (tem), arg1); - tem2 = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (tem), - tem, tem2); - return fold_build2_loc (loc, EQ_EXPR, type, tem2, - build_zero_cst (TREE_TYPE (tem))); - } - /* Fold !X & 1 as X == 0. */ - if (TREE_CODE (arg0) == TRUTH_NOT_EXPR - && integer_onep (arg1)) - { - tem = TREE_OPERAND (arg0, 0); - return fold_build2_loc (loc, EQ_EXPR, type, tem, - build_zero_cst (TREE_TYPE (tem))); - } - - /* Fold (X * Y) & -(1 << CST) to X * Y if Y is a constant - multiple of 1 << CST. */ - if (TREE_CODE (arg1) == INTEGER_CST) - { - wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); - wide_int ncst1 = -cst1; - if ((cst1 & ncst1) == ncst1 - && multiple_of_p (type, arg0, - wide_int_to_tree (TREE_TYPE (arg1), ncst1))) - return fold_convert_loc (loc, type, arg0); - } - - /* Fold (X * CST1) & CST2 to zero if we can, or drop known zero - bits from CST2. */ - if (TREE_CODE (arg1) == INTEGER_CST - && TREE_CODE (arg0) == MULT_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) - { - wi::tree_to_wide_ref warg1 = wi::to_wide (arg1); - wide_int masked - = mask_with_tz (type, warg1, wi::to_wide (TREE_OPERAND (arg0, 1))); - - if (masked == 0) - return omit_two_operands_loc (loc, type, build_zero_cst (type), - arg0, arg1); - else if (masked != warg1) - { - /* Avoid the transform if arg1 is a mask of some - mode which allows further optimizations. */ - int pop = wi::popcount (warg1); - if (!(pop >= BITS_PER_UNIT - && pow2p_hwi (pop) - && wi::mask (pop, false, warg1.get_precision ()) == warg1)) - return fold_build2_loc (loc, code, type, op0, - wide_int_to_tree (type, masked)); - } - } - - /* Simplify ((int)c & 0377) into (int)c, if c is unsigned char. */ - if (TREE_CODE (arg1) == INTEGER_CST && TREE_CODE (arg0) == NOP_EXPR - && TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg0, 0)))) - { - prec = element_precision (TREE_TYPE (TREE_OPERAND (arg0, 0))); - - wide_int mask = wide_int::from (wi::to_wide (arg1), prec, UNSIGNED); - if (mask == -1) - return - fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - } - - goto associate; - - case RDIV_EXPR: - /* Don't touch a floating-point divide by zero unless the mode - of the constant can represent infinity. */ - if (TREE_CODE (arg1) == REAL_CST - && !MODE_HAS_INFINITIES (TYPE_MODE (TREE_TYPE (arg1))) - && real_zerop (arg1)) - return NULL_TREE; - - /* (-A) / (-B) -> A / B */ - if (TREE_CODE (arg0) == NEGATE_EXPR && negate_expr_p (arg1)) - return fold_build2_loc (loc, RDIV_EXPR, type, - TREE_OPERAND (arg0, 0), - negate_expr (arg1)); - if (TREE_CODE (arg1) == NEGATE_EXPR && negate_expr_p (arg0)) - return fold_build2_loc (loc, RDIV_EXPR, type, - negate_expr (arg0), - TREE_OPERAND (arg1, 0)); - return NULL_TREE; - - case TRUNC_DIV_EXPR: - /* Fall through */ - - case FLOOR_DIV_EXPR: - /* Simplify A / (B << N) where A and B are positive and B is - a power of 2, to A >> (N + log2(B)). */ - strict_overflow_p = false; - if (TREE_CODE (arg1) == LSHIFT_EXPR - && (TYPE_UNSIGNED (type) - || tree_expr_nonnegative_warnv_p (op0, &strict_overflow_p))) - { - tree sval = TREE_OPERAND (arg1, 0); - if (integer_pow2p (sval) && tree_int_cst_sgn (sval) > 0) - { - tree sh_cnt = TREE_OPERAND (arg1, 1); - tree pow2 = build_int_cst (TREE_TYPE (sh_cnt), - wi::exact_log2 (wi::to_wide (sval))); - - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not " - "occur when simplifying A / (B << N)"), - WARN_STRICT_OVERFLOW_MISC); - - sh_cnt = fold_build2_loc (loc, PLUS_EXPR, TREE_TYPE (sh_cnt), - sh_cnt, pow2); - return fold_build2_loc (loc, RSHIFT_EXPR, type, - fold_convert_loc (loc, type, arg0), sh_cnt); - } - } - - /* Fall through */ - - case ROUND_DIV_EXPR: - case CEIL_DIV_EXPR: - case EXACT_DIV_EXPR: - if (integer_zerop (arg1)) - return NULL_TREE; - - /* Convert -A / -B to A / B when the type is signed and overflow is - undefined. */ - if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) - && TREE_CODE (op0) == NEGATE_EXPR - && negate_expr_p (op1)) - { - if (ANY_INTEGRAL_TYPE_P (type)) - fold_overflow_warning (("assuming signed overflow does not occur " - "when distributing negation across " - "division"), - WARN_STRICT_OVERFLOW_MISC); - return fold_build2_loc (loc, code, type, - fold_convert_loc (loc, type, - TREE_OPERAND (arg0, 0)), - negate_expr (op1)); - } - if ((!ANY_INTEGRAL_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) - && TREE_CODE (arg1) == NEGATE_EXPR - && negate_expr_p (op0)) - { - if (ANY_INTEGRAL_TYPE_P (type)) - fold_overflow_warning (("assuming signed overflow does not occur " - "when distributing negation across " - "division"), - WARN_STRICT_OVERFLOW_MISC); - return fold_build2_loc (loc, code, type, - negate_expr (op0), - fold_convert_loc (loc, type, - TREE_OPERAND (arg1, 0))); - } - - /* If arg0 is a multiple of arg1, then rewrite to the fastest div - operation, EXACT_DIV_EXPR. - - Note that only CEIL_DIV_EXPR and FLOOR_DIV_EXPR are rewritten now. - At one time others generated faster code, it's not clear if they do - after the last round to changes to the DIV code in expmed.c. */ - if ((code == CEIL_DIV_EXPR || code == FLOOR_DIV_EXPR) - && multiple_of_p (type, arg0, arg1)) - return fold_build2_loc (loc, EXACT_DIV_EXPR, type, - fold_convert (type, arg0), - fold_convert (type, arg1)); - - strict_overflow_p = false; - if (TREE_CODE (arg1) == INTEGER_CST - && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, - &strict_overflow_p)) != 0) - { - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur " - "when simplifying division"), - WARN_STRICT_OVERFLOW_MISC); - return fold_convert_loc (loc, type, tem); - } - - return NULL_TREE; - - case CEIL_MOD_EXPR: - case FLOOR_MOD_EXPR: - case ROUND_MOD_EXPR: - case TRUNC_MOD_EXPR: - strict_overflow_p = false; - if (TREE_CODE (arg1) == INTEGER_CST - && (tem = extract_muldiv (op0, arg1, code, NULL_TREE, - &strict_overflow_p)) != 0) - { - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur " - "when simplifying modulus"), - WARN_STRICT_OVERFLOW_MISC); - return fold_convert_loc (loc, type, tem); - } - - return NULL_TREE; - - case LROTATE_EXPR: - case RROTATE_EXPR: - case RSHIFT_EXPR: - case LSHIFT_EXPR: - /* Since negative shift count is not well-defined, - don't try to compute it in the compiler. */ - if (TREE_CODE (arg1) == INTEGER_CST && tree_int_cst_sgn (arg1) < 0) - return NULL_TREE; - - prec = element_precision (type); - - /* If we have a rotate of a bit operation with the rotate count and - the second operand of the bit operation both constant, - permute the two operations. */ - if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST - && (TREE_CODE (arg0) == BIT_AND_EXPR - || TREE_CODE (arg0) == BIT_IOR_EXPR - || TREE_CODE (arg0) == BIT_XOR_EXPR) - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) - { - tree arg00 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - tree arg01 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); - return fold_build2_loc (loc, TREE_CODE (arg0), type, - fold_build2_loc (loc, code, type, - arg00, arg1), - fold_build2_loc (loc, code, type, - arg01, arg1)); - } - - /* Two consecutive rotates adding up to the some integer - multiple of the precision of the type can be ignored. */ - if (code == RROTATE_EXPR && TREE_CODE (arg1) == INTEGER_CST - && TREE_CODE (arg0) == RROTATE_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST - && wi::umod_trunc (wi::to_wide (arg1) - + wi::to_wide (TREE_OPERAND (arg0, 1)), - prec) == 0) - return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - - return NULL_TREE; - - case MIN_EXPR: - case MAX_EXPR: - goto associate; - - case TRUTH_ANDIF_EXPR: - /* Note that the operands of this must be ints - and their values must be 0 or 1. - ("true" is a fixed value perhaps depending on the language.) */ - /* If first arg is constant zero, return it. */ - if (integer_zerop (arg0)) - return fold_convert_loc (loc, type, arg0); - /* FALLTHRU */ - case TRUTH_AND_EXPR: - /* If either arg is constant true, drop it. */ - if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); - if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1) - /* Preserve sequence points. */ - && (code != TRUTH_ANDIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); - /* If second arg is constant zero, result is zero, but first arg - must be evaluated. */ - if (integer_zerop (arg1)) - return omit_one_operand_loc (loc, type, arg1, arg0); - /* Likewise for first arg, but note that only the TRUTH_AND_EXPR - case will be handled here. */ - if (integer_zerop (arg0)) - return omit_one_operand_loc (loc, type, arg0, arg1); - - /* !X && X is always false. */ - if (TREE_CODE (arg0) == TRUTH_NOT_EXPR - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) - return omit_one_operand_loc (loc, type, integer_zero_node, arg1); - /* X && !X is always false. */ - if (TREE_CODE (arg1) == TRUTH_NOT_EXPR - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return omit_one_operand_loc (loc, type, integer_zero_node, arg0); - - /* A < X && A + 1 > Y ==> A < X && A >= Y. Normally A + 1 > Y - means A >= Y && A != MAX, but in this case we know that - A < X <= MAX. */ - - if (!TREE_SIDE_EFFECTS (arg0) - && !TREE_SIDE_EFFECTS (arg1)) - { - tem = fold_to_nonsharp_ineq_using_bound (loc, arg0, arg1); - if (tem && !operand_equal_p (tem, arg0, 0)) - return fold_build2_loc (loc, code, type, tem, arg1); - - tem = fold_to_nonsharp_ineq_using_bound (loc, arg1, arg0); - if (tem && !operand_equal_p (tem, arg1, 0)) - return fold_build2_loc (loc, code, type, arg0, tem); - } - - if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) - != NULL_TREE) - return tem; - - return NULL_TREE; - - case TRUTH_ORIF_EXPR: - /* Note that the operands of this must be ints - and their values must be 0 or true. - ("true" is a fixed value perhaps depending on the language.) */ - /* If first arg is constant true, return it. */ - if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) - return fold_convert_loc (loc, type, arg0); - /* FALLTHRU */ - case TRUTH_OR_EXPR: - /* If either arg is constant zero, drop it. */ - if (TREE_CODE (arg0) == INTEGER_CST && integer_zerop (arg0)) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg1)); - if (TREE_CODE (arg1) == INTEGER_CST && integer_zerop (arg1) - /* Preserve sequence points. */ - && (code != TRUTH_ORIF_EXPR || ! TREE_SIDE_EFFECTS (arg0))) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); - /* If second arg is constant true, result is true, but we must - evaluate first arg. */ - if (TREE_CODE (arg1) == INTEGER_CST && ! integer_zerop (arg1)) - return omit_one_operand_loc (loc, type, arg1, arg0); - /* Likewise for first arg, but note this only occurs here for - TRUTH_OR_EXPR. */ - if (TREE_CODE (arg0) == INTEGER_CST && ! integer_zerop (arg0)) - return omit_one_operand_loc (loc, type, arg0, arg1); - - /* !X || X is always true. */ - if (TREE_CODE (arg0) == TRUTH_NOT_EXPR - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) - return omit_one_operand_loc (loc, type, integer_one_node, arg1); - /* X || !X is always true. */ - if (TREE_CODE (arg1) == TRUTH_NOT_EXPR - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return omit_one_operand_loc (loc, type, integer_one_node, arg0); - - /* (X && !Y) || (!X && Y) is X ^ Y */ - if (TREE_CODE (arg0) == TRUTH_AND_EXPR - && TREE_CODE (arg1) == TRUTH_AND_EXPR) - { - tree a0, a1, l0, l1, n0, n1; - - a0 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 0)); - a1 = fold_convert_loc (loc, type, TREE_OPERAND (arg1, 1)); - - l0 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - l1 = fold_convert_loc (loc, type, TREE_OPERAND (arg0, 1)); - - n0 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l0); - n1 = fold_build1_loc (loc, TRUTH_NOT_EXPR, type, l1); - - if ((operand_equal_p (n0, a0, 0) - && operand_equal_p (n1, a1, 0)) - || (operand_equal_p (n0, a1, 0) - && operand_equal_p (n1, a0, 0))) - return fold_build2_loc (loc, TRUTH_XOR_EXPR, type, l0, n1); - } - - if ((tem = fold_truth_andor (loc, code, type, arg0, arg1, op0, op1)) - != NULL_TREE) - return tem; - - return NULL_TREE; - - case TRUTH_XOR_EXPR: - /* If the second arg is constant zero, drop it. */ - if (integer_zerop (arg1)) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); - /* If the second arg is constant true, this is a logical inversion. */ - if (integer_onep (arg1)) - { - tem = invert_truthvalue_loc (loc, arg0); - return non_lvalue_loc (loc, fold_convert_loc (loc, type, tem)); - } - /* Identical arguments cancel to zero. */ - if (operand_equal_p (arg0, arg1, 0)) - return omit_one_operand_loc (loc, type, integer_zero_node, arg0); - - /* !X ^ X is always true. */ - if (TREE_CODE (arg0) == TRUTH_NOT_EXPR - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0)) - return omit_one_operand_loc (loc, type, integer_one_node, arg1); - - /* X ^ !X is always true. */ - if (TREE_CODE (arg1) == TRUTH_NOT_EXPR - && operand_equal_p (arg0, TREE_OPERAND (arg1, 0), 0)) - return omit_one_operand_loc (loc, type, integer_one_node, arg0); - - return NULL_TREE; - - case EQ_EXPR: - case NE_EXPR: - STRIP_NOPS (arg0); - STRIP_NOPS (arg1); - - tem = fold_comparison (loc, code, type, op0, op1); - if (tem != NULL_TREE) - return tem; - - /* bool_var != 1 becomes !bool_var. */ - if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_onep (arg1) - && code == NE_EXPR) - return fold_convert_loc (loc, type, - fold_build1_loc (loc, TRUTH_NOT_EXPR, - TREE_TYPE (arg0), arg0)); - - /* bool_var == 0 becomes !bool_var. */ - if (TREE_CODE (TREE_TYPE (arg0)) == BOOLEAN_TYPE && integer_zerop (arg1) - && code == EQ_EXPR) - return fold_convert_loc (loc, type, - fold_build1_loc (loc, TRUTH_NOT_EXPR, - TREE_TYPE (arg0), arg0)); - - /* !exp != 0 becomes !exp */ - if (TREE_CODE (arg0) == TRUTH_NOT_EXPR && integer_zerop (arg1) - && code == NE_EXPR) - return non_lvalue_loc (loc, fold_convert_loc (loc, type, arg0)); - - /* If this is an EQ or NE comparison with zero and ARG0 is - (1 << foo) & bar, convert it to (bar >> foo) & 1. Both require - two operations, but the latter can be done in one less insn - on machines that have only two-operand insns or on which a - constant cannot be the first operand. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && integer_zerop (arg1)) - { - tree arg00 = TREE_OPERAND (arg0, 0); - tree arg01 = TREE_OPERAND (arg0, 1); - if (TREE_CODE (arg00) == LSHIFT_EXPR - && integer_onep (TREE_OPERAND (arg00, 0))) - { - tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg00), - arg01, TREE_OPERAND (arg00, 1)); - tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, - build_one_cst (TREE_TYPE (arg0))); - return fold_build2_loc (loc, code, type, - fold_convert_loc (loc, TREE_TYPE (arg1), - tem), arg1); - } - else if (TREE_CODE (arg01) == LSHIFT_EXPR - && integer_onep (TREE_OPERAND (arg01, 0))) - { - tree tem = fold_build2_loc (loc, RSHIFT_EXPR, TREE_TYPE (arg01), - arg00, TREE_OPERAND (arg01, 1)); - tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), tem, - build_one_cst (TREE_TYPE (arg0))); - return fold_build2_loc (loc, code, type, - fold_convert_loc (loc, TREE_TYPE (arg1), - tem), arg1); - } - } - - /* Fold ((X >> C1) & C2) == 0 and ((X >> C1) & C2) != 0 where - C1 is a valid shift constant, and C2 is a power of two, i.e. - a single bit. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && integer_pow2p (TREE_OPERAND (arg0, 1)) - && integer_zerop (arg1)) - { - tree arg00 = TREE_OPERAND (arg0, 0); - STRIP_NOPS (arg00); - if (TREE_CODE (arg00) == RSHIFT_EXPR - && TREE_CODE (TREE_OPERAND (arg00, 1)) == INTEGER_CST) - { - tree itype = TREE_TYPE (arg00); - tree arg001 = TREE_OPERAND (arg00, 1); - prec = TYPE_PRECISION (itype); - - /* Check for a valid shift count. */ - if (wi::ltu_p (wi::to_wide (arg001), prec)) - { - tree arg01 = TREE_OPERAND (arg0, 1); - tree arg000 = TREE_OPERAND (arg00, 0); - unsigned HOST_WIDE_INT log2 = tree_log2 (arg01); - /* If (C2 << C1) doesn't overflow, then - ((X >> C1) & C2) != 0 can be rewritten as - (X & (C2 << C1)) != 0. */ - if ((log2 + TREE_INT_CST_LOW (arg001)) < prec) - { - tem = fold_build2_loc (loc, LSHIFT_EXPR, itype, - arg01, arg001); - tem = fold_build2_loc (loc, BIT_AND_EXPR, itype, - arg000, tem); - return fold_build2_loc (loc, code, type, tem, - fold_convert_loc (loc, itype, arg1)); - } - /* Otherwise, for signed (arithmetic) shifts, - ((X >> C1) & C2) != 0 is rewritten as X < 0, and - ((X >> C1) & C2) == 0 is rewritten as X >= 0. */ - else if (!TYPE_UNSIGNED (itype)) - return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR - : LT_EXPR, - type, arg000, - build_int_cst (itype, 0)); - /* Otherwise, of unsigned (logical) shifts, - ((X >> C1) & C2) != 0 is rewritten as (X,false), and - ((X >> C1) & C2) == 0 is rewritten as (X,true). */ - else - return omit_one_operand_loc (loc, type, - code == EQ_EXPR ? integer_one_node - : integer_zero_node, - arg000); - } - } - } - - /* If this is a comparison of a field, we may be able to simplify it. */ - if ((TREE_CODE (arg0) == COMPONENT_REF - || TREE_CODE (arg0) == BIT_FIELD_REF) - /* Handle the constant case even without -O - to make sure the warnings are given. */ - && (optimize || TREE_CODE (arg1) == INTEGER_CST)) - { - t1 = optimize_bit_field_compare (loc, code, type, arg0, arg1); - if (t1) - return t1; - } - - /* Optimize comparisons of strlen vs zero to a compare of the - first character of the string vs zero. To wit, - strlen(ptr) == 0 => *ptr == 0 - strlen(ptr) != 0 => *ptr != 0 - Other cases should reduce to one of these two (or a constant) - due to the return value of strlen being unsigned. */ - if (TREE_CODE (arg0) == CALL_EXPR && integer_zerop (arg1)) - { - tree fndecl = get_callee_fndecl (arg0); - - if (fndecl - && fndecl_built_in_p (fndecl, BUILT_IN_STRLEN) - && call_expr_nargs (arg0) == 1 - && (TREE_CODE (TREE_TYPE (CALL_EXPR_ARG (arg0, 0))) - == POINTER_TYPE)) - { - tree ptrtype - = build_pointer_type (build_qualified_type (char_type_node, - TYPE_QUAL_CONST)); - tree ptr = fold_convert_loc (loc, ptrtype, - CALL_EXPR_ARG (arg0, 0)); - tree iref = build_fold_indirect_ref_loc (loc, ptr); - return fold_build2_loc (loc, code, type, iref, - build_int_cst (TREE_TYPE (iref), 0)); - } - } - - /* Fold (X >> C) != 0 into X < 0 if C is one less than the width - of X. Similarly fold (X >> C) == 0 into X >= 0. */ - if (TREE_CODE (arg0) == RSHIFT_EXPR - && integer_zerop (arg1) - && TREE_CODE (TREE_OPERAND (arg0, 1)) == INTEGER_CST) - { - tree arg00 = TREE_OPERAND (arg0, 0); - tree arg01 = TREE_OPERAND (arg0, 1); - tree itype = TREE_TYPE (arg00); - if (wi::to_wide (arg01) == element_precision (itype) - 1) - { - if (TYPE_UNSIGNED (itype)) - { - itype = signed_type_for (itype); - arg00 = fold_convert_loc (loc, itype, arg00); - } - return fold_build2_loc (loc, code == EQ_EXPR ? GE_EXPR : LT_EXPR, - type, arg00, build_zero_cst (itype)); - } - } - - /* Fold (~X & C) == 0 into (X & C) != 0 and (~X & C) != 0 into - (X & C) == 0 when C is a single bit. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_NOT_EXPR - && integer_zerop (arg1) - && integer_pow2p (TREE_OPERAND (arg0, 1))) - { - tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg0), - TREE_OPERAND (TREE_OPERAND (arg0, 0), 0), - TREE_OPERAND (arg0, 1)); - return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, - type, tem, - fold_convert_loc (loc, TREE_TYPE (arg0), - arg1)); - } - - /* Fold ((X & C) ^ C) eq/ne 0 into (X & C) ne/eq 0, when the - constant C is a power of two, i.e. a single bit. */ - if (TREE_CODE (arg0) == BIT_XOR_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR - && integer_zerop (arg1) - && integer_pow2p (TREE_OPERAND (arg0, 1)) - && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), - TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) - { - tree arg00 = TREE_OPERAND (arg0, 0); - return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, - arg00, build_int_cst (TREE_TYPE (arg00), 0)); - } - - /* Likewise, fold ((X ^ C) & C) eq/ne 0 into (X & C) ne/eq 0, - when is C is a power of two, i.e. a single bit. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_XOR_EXPR - && integer_zerop (arg1) - && integer_pow2p (TREE_OPERAND (arg0, 1)) - && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), - TREE_OPERAND (arg0, 1), OEP_ONLY_CONST)) - { - tree arg000 = TREE_OPERAND (TREE_OPERAND (arg0, 0), 0); - tem = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg000), - arg000, TREE_OPERAND (arg0, 1)); - return fold_build2_loc (loc, code == EQ_EXPR ? NE_EXPR : EQ_EXPR, type, - tem, build_int_cst (TREE_TYPE (tem), 0)); - } - - if (integer_zerop (arg1) - && tree_expr_nonzero_p (arg0)) - { - tree res = constant_boolean_node (code==NE_EXPR, type); - return omit_one_operand_loc (loc, type, res, arg0); - } - - if (TREE_CODE (arg0) == BIT_XOR_EXPR - && TREE_CODE (arg1) == BIT_XOR_EXPR) - { - tree arg00 = TREE_OPERAND (arg0, 0); - tree arg01 = TREE_OPERAND (arg0, 1); - tree arg10 = TREE_OPERAND (arg1, 0); - tree arg11 = TREE_OPERAND (arg1, 1); - tree itype = TREE_TYPE (arg0); - - /* Optimize (X ^ Z) op (Y ^ Z) as X op Y, and symmetries. - operand_equal_p guarantees no side-effects so we don't need - to use omit_one_operand on Z. */ - if (operand_equal_p (arg01, arg11, 0)) - return fold_build2_loc (loc, code, type, arg00, - fold_convert_loc (loc, TREE_TYPE (arg00), - arg10)); - if (operand_equal_p (arg01, arg10, 0)) - return fold_build2_loc (loc, code, type, arg00, - fold_convert_loc (loc, TREE_TYPE (arg00), - arg11)); - if (operand_equal_p (arg00, arg11, 0)) - return fold_build2_loc (loc, code, type, arg01, - fold_convert_loc (loc, TREE_TYPE (arg01), - arg10)); - if (operand_equal_p (arg00, arg10, 0)) - return fold_build2_loc (loc, code, type, arg01, - fold_convert_loc (loc, TREE_TYPE (arg01), - arg11)); - - /* Optimize (X ^ C1) op (Y ^ C2) as (X ^ (C1 ^ C2)) op Y. */ - if (TREE_CODE (arg01) == INTEGER_CST - && TREE_CODE (arg11) == INTEGER_CST) - { - tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg01, - fold_convert_loc (loc, itype, arg11)); - tem = fold_build2_loc (loc, BIT_XOR_EXPR, itype, arg00, tem); - return fold_build2_loc (loc, code, type, tem, - fold_convert_loc (loc, itype, arg10)); - } - } - - /* Attempt to simplify equality/inequality comparisons of complex - values. Only lower the comparison if the result is known or - can be simplified to a single scalar comparison. */ - if ((TREE_CODE (arg0) == COMPLEX_EXPR - || TREE_CODE (arg0) == COMPLEX_CST) - && (TREE_CODE (arg1) == COMPLEX_EXPR - || TREE_CODE (arg1) == COMPLEX_CST)) - { - tree real0, imag0, real1, imag1; - tree rcond, icond; - - if (TREE_CODE (arg0) == COMPLEX_EXPR) - { - real0 = TREE_OPERAND (arg0, 0); - imag0 = TREE_OPERAND (arg0, 1); - } - else - { - real0 = TREE_REALPART (arg0); - imag0 = TREE_IMAGPART (arg0); - } - - if (TREE_CODE (arg1) == COMPLEX_EXPR) - { - real1 = TREE_OPERAND (arg1, 0); - imag1 = TREE_OPERAND (arg1, 1); - } - else - { - real1 = TREE_REALPART (arg1); - imag1 = TREE_IMAGPART (arg1); - } - - rcond = fold_binary_loc (loc, code, type, real0, real1); - if (rcond && TREE_CODE (rcond) == INTEGER_CST) - { - if (integer_zerop (rcond)) - { - if (code == EQ_EXPR) - return omit_two_operands_loc (loc, type, boolean_false_node, - imag0, imag1); - return fold_build2_loc (loc, NE_EXPR, type, imag0, imag1); - } - else - { - if (code == NE_EXPR) - return omit_two_operands_loc (loc, type, boolean_true_node, - imag0, imag1); - return fold_build2_loc (loc, EQ_EXPR, type, imag0, imag1); - } - } - - icond = fold_binary_loc (loc, code, type, imag0, imag1); - if (icond && TREE_CODE (icond) == INTEGER_CST) - { - if (integer_zerop (icond)) - { - if (code == EQ_EXPR) - return omit_two_operands_loc (loc, type, boolean_false_node, - real0, real1); - return fold_build2_loc (loc, NE_EXPR, type, real0, real1); - } - else - { - if (code == NE_EXPR) - return omit_two_operands_loc (loc, type, boolean_true_node, - real0, real1); - return fold_build2_loc (loc, EQ_EXPR, type, real0, real1); - } - } - } - - return NULL_TREE; - - case LT_EXPR: - case GT_EXPR: - case LE_EXPR: - case GE_EXPR: - tem = fold_comparison (loc, code, type, op0, op1); - if (tem != NULL_TREE) - return tem; - - /* Transform comparisons of the form X +- C CMP X. */ - if ((TREE_CODE (arg0) == PLUS_EXPR || TREE_CODE (arg0) == MINUS_EXPR) - && operand_equal_p (TREE_OPERAND (arg0, 0), arg1, 0) - && TREE_CODE (TREE_OPERAND (arg0, 1)) == REAL_CST - && !HONOR_SNANS (arg0)) - { - tree arg01 = TREE_OPERAND (arg0, 1); - enum tree_code code0 = TREE_CODE (arg0); - int is_positive = REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg01)) ? -1 : 1; - - /* (X - c) > X becomes false. */ - if (code == GT_EXPR - && ((code0 == MINUS_EXPR && is_positive >= 0) - || (code0 == PLUS_EXPR && is_positive <= 0))) - return constant_boolean_node (0, type); - - /* Likewise (X + c) < X becomes false. */ - if (code == LT_EXPR - && ((code0 == PLUS_EXPR && is_positive >= 0) - || (code0 == MINUS_EXPR && is_positive <= 0))) - return constant_boolean_node (0, type); - - /* Convert (X - c) <= X to true. */ - if (!HONOR_NANS (arg1) - && code == LE_EXPR - && ((code0 == MINUS_EXPR && is_positive >= 0) - || (code0 == PLUS_EXPR && is_positive <= 0))) - return constant_boolean_node (1, type); - - /* Convert (X + c) >= X to true. */ - if (!HONOR_NANS (arg1) - && code == GE_EXPR - && ((code0 == PLUS_EXPR && is_positive >= 0) - || (code0 == MINUS_EXPR && is_positive <= 0))) - return constant_boolean_node (1, type); - } - - /* If we are comparing an ABS_EXPR with a constant, we can - convert all the cases into explicit comparisons, but they may - well not be faster than doing the ABS and one comparison. - But ABS (X) <= C is a range comparison, which becomes a subtraction - and a comparison, and is probably faster. */ - if (code == LE_EXPR - && TREE_CODE (arg1) == INTEGER_CST - && TREE_CODE (arg0) == ABS_EXPR - && ! TREE_SIDE_EFFECTS (arg0) - && (tem = negate_expr (arg1)) != 0 - && TREE_CODE (tem) == INTEGER_CST - && !TREE_OVERFLOW (tem)) - return fold_build2_loc (loc, TRUTH_ANDIF_EXPR, type, - build2 (GE_EXPR, type, - TREE_OPERAND (arg0, 0), tem), - build2 (LE_EXPR, type, - TREE_OPERAND (arg0, 0), arg1)); - - /* Convert ABS_EXPR<x> >= 0 to true. */ - strict_overflow_p = false; - if (code == GE_EXPR - && (integer_zerop (arg1) - || (! HONOR_NANS (arg0) - && real_zerop (arg1))) - && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) - { - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur " - "when simplifying comparison of " - "absolute value and zero"), - WARN_STRICT_OVERFLOW_CONDITIONAL); - return omit_one_operand_loc (loc, type, - constant_boolean_node (true, type), - arg0); - } - - /* Convert ABS_EXPR<x> < 0 to false. */ - strict_overflow_p = false; - if (code == LT_EXPR - && (integer_zerop (arg1) || real_zerop (arg1)) - && tree_expr_nonnegative_warnv_p (arg0, &strict_overflow_p)) - { - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur " - "when simplifying comparison of " - "absolute value and zero"), - WARN_STRICT_OVERFLOW_CONDITIONAL); - return omit_one_operand_loc (loc, type, - constant_boolean_node (false, type), - arg0); - } - - /* If X is unsigned, convert X < (1 << Y) into X >> Y == 0 - and similarly for >= into !=. */ - if ((code == LT_EXPR || code == GE_EXPR) - && TYPE_UNSIGNED (TREE_TYPE (arg0)) - && TREE_CODE (arg1) == LSHIFT_EXPR - && integer_onep (TREE_OPERAND (arg1, 0))) - return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, - build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, - TREE_OPERAND (arg1, 1)), - build_zero_cst (TREE_TYPE (arg0))); - - /* Similarly for X < (cast) (1 << Y). But cast can't be narrowing, - otherwise Y might be >= # of bits in X's type and thus e.g. - (unsigned char) (1 << Y) for Y 15 might be 0. - If the cast is widening, then 1 << Y should have unsigned type, - otherwise if Y is number of bits in the signed shift type minus 1, - we can't optimize this. E.g. (unsigned long long) (1 << Y) for Y - 31 might be 0xffffffff80000000. */ - if ((code == LT_EXPR || code == GE_EXPR) - && (INTEGRAL_TYPE_P (TREE_TYPE (arg0)) - || VECTOR_INTEGER_TYPE_P (TREE_TYPE (arg0))) - && TYPE_UNSIGNED (TREE_TYPE (arg0)) - && CONVERT_EXPR_P (arg1) - && TREE_CODE (TREE_OPERAND (arg1, 0)) == LSHIFT_EXPR - && (element_precision (TREE_TYPE (arg1)) - >= element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0)))) - && (TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (arg1, 0))) - || (element_precision (TREE_TYPE (arg1)) - == element_precision (TREE_TYPE (TREE_OPERAND (arg1, 0))))) - && integer_onep (TREE_OPERAND (TREE_OPERAND (arg1, 0), 0))) - { - tem = build2 (RSHIFT_EXPR, TREE_TYPE (arg0), arg0, - TREE_OPERAND (TREE_OPERAND (arg1, 0), 1)); - return build2_loc (loc, code == LT_EXPR ? EQ_EXPR : NE_EXPR, type, - fold_convert_loc (loc, TREE_TYPE (arg0), tem), - build_zero_cst (TREE_TYPE (arg0))); - } - - return NULL_TREE; - - case UNORDERED_EXPR: - case ORDERED_EXPR: - case UNLT_EXPR: - case UNLE_EXPR: - case UNGT_EXPR: - case UNGE_EXPR: - case UNEQ_EXPR: - case LTGT_EXPR: - /* Fold (double)float1 CMP (double)float2 into float1 CMP float2. */ - { - tree targ0 = strip_float_extensions (arg0); - tree targ1 = strip_float_extensions (arg1); - tree newtype = TREE_TYPE (targ0); - - if (TYPE_PRECISION (TREE_TYPE (targ1)) > TYPE_PRECISION (newtype)) - newtype = TREE_TYPE (targ1); - - if (TYPE_PRECISION (newtype) < TYPE_PRECISION (TREE_TYPE (arg0))) - return fold_build2_loc (loc, code, type, - fold_convert_loc (loc, newtype, targ0), - fold_convert_loc (loc, newtype, targ1)); - } - - return NULL_TREE; - - case COMPOUND_EXPR: - /* When pedantic, a compound expression can be neither an lvalue - nor an integer constant expression. */ - if (TREE_SIDE_EFFECTS (arg0) || TREE_CONSTANT (arg1)) - return NULL_TREE; - /* Don't let (0, 0) be null pointer constant. */ - tem = integer_zerop (arg1) ? build1_loc (loc, NOP_EXPR, type, arg1) - : fold_convert_loc (loc, type, arg1); - return tem; - - case ASSERT_EXPR: - /* An ASSERT_EXPR should never be passed to fold_binary. */ - gcc_unreachable (); - - default: - return NULL_TREE; - } /* switch (code) */ -} - -/* For constants M and N, if M == (1LL << cst) - 1 && (N & M) == M, - ((A & N) + B) & M -> (A + B) & M - Similarly if (N & M) == 0, - ((A | N) + B) & M -> (A + B) & M - and for - instead of + (or unary - instead of +) - and/or ^ instead of |. - If B is constant and (B & M) == 0, fold into A & M. - - This function is a helper for match.pd patterns. Return non-NULL - type in which the simplified operation should be performed only - if any optimization is possible. - - ARG1 is M above, ARG00 is left operand of +/-, if CODE00 is BIT_*_EXPR, - then ARG00{0,1} are operands of that bitop, otherwise CODE00 is ERROR_MARK. - Similarly for ARG01, CODE01 and ARG01{0,1}, just for the right operand of - +/-. */ -tree -fold_bit_and_mask (tree type, tree arg1, enum tree_code code, - tree arg00, enum tree_code code00, tree arg000, tree arg001, - tree arg01, enum tree_code code01, tree arg010, tree arg011, - tree *pmop) -{ - gcc_assert (TREE_CODE (arg1) == INTEGER_CST); - gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR || code == NEGATE_EXPR); - wi::tree_to_wide_ref cst1 = wi::to_wide (arg1); - if (~cst1 == 0 - || (cst1 & (cst1 + 1)) != 0 - || !INTEGRAL_TYPE_P (type) - || (!TYPE_OVERFLOW_WRAPS (type) - && TREE_CODE (type) != INTEGER_TYPE) - || (wi::max_value (type) & cst1) != cst1) - return NULL_TREE; - - enum tree_code codes[2] = { code00, code01 }; - tree arg0xx[4] = { arg000, arg001, arg010, arg011 }; - int which = 0; - wide_int cst0; - - /* Now we know that arg0 is (C + D) or (C - D) or -C and - arg1 (M) is == (1LL << cst) - 1. - Store C into PMOP[0] and D into PMOP[1]. */ - pmop[0] = arg00; - pmop[1] = arg01; - which = code != NEGATE_EXPR; - - for (; which >= 0; which--) - switch (codes[which]) - { - case BIT_AND_EXPR: - case BIT_IOR_EXPR: - case BIT_XOR_EXPR: - gcc_assert (TREE_CODE (arg0xx[2 * which + 1]) == INTEGER_CST); - cst0 = wi::to_wide (arg0xx[2 * which + 1]) & cst1; - if (codes[which] == BIT_AND_EXPR) - { - if (cst0 != cst1) - break; - } - else if (cst0 != 0) - break; - /* If C or D is of the form (A & N) where - (N & M) == M, or of the form (A | N) or - (A ^ N) where (N & M) == 0, replace it with A. */ - pmop[which] = arg0xx[2 * which]; - break; - case ERROR_MARK: - if (TREE_CODE (pmop[which]) != INTEGER_CST) - break; - /* If C or D is a N where (N & M) == 0, it can be - omitted (replaced with 0). */ - if ((code == PLUS_EXPR - || (code == MINUS_EXPR && which == 0)) - && (cst1 & wi::to_wide (pmop[which])) == 0) - pmop[which] = build_int_cst (type, 0); - /* Similarly, with C - N where (-N & M) == 0. */ - if (code == MINUS_EXPR - && which == 1 - && (cst1 & -wi::to_wide (pmop[which])) == 0) - pmop[which] = build_int_cst (type, 0); - break; - default: - gcc_unreachable (); - } - - /* Only build anything new if we optimized one or both arguments above. */ - if (pmop[0] == arg00 && pmop[1] == arg01) - return NULL_TREE; - - if (TYPE_OVERFLOW_WRAPS (type)) - return type; - else - return unsigned_type_for (type); -} - -/* Used by contains_label_[p1]. */ - -struct contains_label_data -{ - hash_set<tree> *pset; - bool inside_switch_p; -}; - -/* Callback for walk_tree, looking for LABEL_EXPR. Return *TP if it is - a LABEL_EXPR or CASE_LABEL_EXPR not inside of another SWITCH_EXPR; otherwise - return NULL_TREE. Do not check the subtrees of GOTO_EXPR. */ - -static tree -contains_label_1 (tree *tp, int *walk_subtrees, void *data) -{ - contains_label_data *d = (contains_label_data *) data; - switch (TREE_CODE (*tp)) - { - case LABEL_EXPR: - return *tp; - - case CASE_LABEL_EXPR: - if (!d->inside_switch_p) - return *tp; - return NULL_TREE; - - case SWITCH_EXPR: - if (!d->inside_switch_p) - { - if (walk_tree (&SWITCH_COND (*tp), contains_label_1, data, d->pset)) - return *tp; - d->inside_switch_p = true; - if (walk_tree (&SWITCH_BODY (*tp), contains_label_1, data, d->pset)) - return *tp; - d->inside_switch_p = false; - *walk_subtrees = 0; - } - return NULL_TREE; - - case GOTO_EXPR: - *walk_subtrees = 0; - return NULL_TREE; - - default: - return NULL_TREE; - } -} - -/* Return whether the sub-tree ST contains a label which is accessible from - outside the sub-tree. */ - -static bool -contains_label_p (tree st) -{ - hash_set<tree> pset; - contains_label_data data = { &pset, false }; - return walk_tree (&st, contains_label_1, &data, &pset) != NULL_TREE; -} - -/* Fold a ternary expression of code CODE and type TYPE with operands - OP0, OP1, and OP2. Return the folded expression if folding is - successful. Otherwise, return NULL_TREE. */ - -tree -fold_ternary_loc (location_t loc, enum tree_code code, tree type, - tree op0, tree op1, tree op2) -{ - tree tem; - tree arg0 = NULL_TREE, arg1 = NULL_TREE, arg2 = NULL_TREE; - enum tree_code_class kind = TREE_CODE_CLASS (code); - - gcc_assert (IS_EXPR_CODE_CLASS (kind) - && TREE_CODE_LENGTH (code) == 3); - - /* If this is a commutative operation, and OP0 is a constant, move it - to OP1 to reduce the number of tests below. */ - if (commutative_ternary_tree_code (code) - && tree_swap_operands_p (op0, op1)) - return fold_build3_loc (loc, code, type, op1, op0, op2); - - tem = generic_simplify (loc, code, type, op0, op1, op2); - if (tem) - return tem; - - /* Strip any conversions that don't change the mode. This is safe - for every expression, except for a comparison expression because - its signedness is derived from its operands. So, in the latter - case, only strip conversions that don't change the signedness. - - Note that this is done as an internal manipulation within the - constant folder, in order to find the simplest representation of - the arguments so that their form can be studied. In any cases, - the appropriate type conversions should be put back in the tree - that will get out of the constant folder. */ - if (op0) - { - arg0 = op0; - STRIP_NOPS (arg0); - } - - if (op1) - { - arg1 = op1; - STRIP_NOPS (arg1); - } - - if (op2) - { - arg2 = op2; - STRIP_NOPS (arg2); - } - - switch (code) - { - case COMPONENT_REF: - if (TREE_CODE (arg0) == CONSTRUCTOR - && ! type_contains_placeholder_p (TREE_TYPE (arg0))) - { - unsigned HOST_WIDE_INT idx; - tree field, value; - FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (arg0), idx, field, value) - if (field == arg1) - return value; - } - return NULL_TREE; - - case COND_EXPR: - case VEC_COND_EXPR: - /* Pedantic ANSI C says that a conditional expression is never an lvalue, - so all simple results must be passed through pedantic_non_lvalue. */ - if (TREE_CODE (arg0) == INTEGER_CST) - { - tree unused_op = integer_zerop (arg0) ? op1 : op2; - tem = integer_zerop (arg0) ? op2 : op1; - /* Only optimize constant conditions when the selected branch - has the same type as the COND_EXPR. This avoids optimizing - away "c ? x : throw", where the throw has a void type. - Avoid throwing away that operand which contains label. */ - if ((!TREE_SIDE_EFFECTS (unused_op) - || !contains_label_p (unused_op)) - && (! VOID_TYPE_P (TREE_TYPE (tem)) - || VOID_TYPE_P (type))) - return protected_set_expr_location_unshare (tem, loc); - return NULL_TREE; - } - else if (TREE_CODE (arg0) == VECTOR_CST) - { - unsigned HOST_WIDE_INT nelts; - if ((TREE_CODE (arg1) == VECTOR_CST - || TREE_CODE (arg1) == CONSTRUCTOR) - && (TREE_CODE (arg2) == VECTOR_CST - || TREE_CODE (arg2) == CONSTRUCTOR) - && TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts)) - { - vec_perm_builder sel (nelts, nelts, 1); - for (unsigned int i = 0; i < nelts; i++) - { - tree val = VECTOR_CST_ELT (arg0, i); - if (integer_all_onesp (val)) - sel.quick_push (i); - else if (integer_zerop (val)) - sel.quick_push (nelts + i); - else /* Currently unreachable. */ - return NULL_TREE; - } - vec_perm_indices indices (sel, 2, nelts); - tree t = fold_vec_perm (type, arg1, arg2, indices); - if (t != NULL_TREE) - return t; - } - } - - /* If we have A op B ? A : C, we may be able to convert this to a - simpler expression, depending on the operation and the values - of B and C. Signed zeros prevent all of these transformations, - for reasons given above each one. - - Also try swapping the arguments and inverting the conditional. */ - if (COMPARISON_CLASS_P (arg0) - && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op1) - && !HONOR_SIGNED_ZEROS (op1)) - { - tem = fold_cond_expr_with_comparison (loc, type, TREE_CODE (arg0), - TREE_OPERAND (arg0, 0), - TREE_OPERAND (arg0, 1), - op1, op2); - if (tem) - return tem; - } - - if (COMPARISON_CLASS_P (arg0) - && operand_equal_for_comparison_p (TREE_OPERAND (arg0, 0), op2) - && !HONOR_SIGNED_ZEROS (op2)) - { - enum tree_code comp_code = TREE_CODE (arg0); - tree arg00 = TREE_OPERAND (arg0, 0); - tree arg01 = TREE_OPERAND (arg0, 1); - comp_code = invert_tree_comparison (comp_code, HONOR_NANS (arg00)); - if (comp_code != ERROR_MARK) - tem = fold_cond_expr_with_comparison (loc, type, comp_code, - arg00, - arg01, - op2, op1); - if (tem) - return tem; - } - - /* If the second operand is simpler than the third, swap them - since that produces better jump optimization results. */ - if (truth_value_p (TREE_CODE (arg0)) - && tree_swap_operands_p (op1, op2)) - { - location_t loc0 = expr_location_or (arg0, loc); - /* See if this can be inverted. If it can't, possibly because - it was a floating-point inequality comparison, don't do - anything. */ - tem = fold_invert_truthvalue (loc0, arg0); - if (tem) - return fold_build3_loc (loc, code, type, tem, op2, op1); - } - - /* Convert A ? 1 : 0 to simply A. */ - if ((code == VEC_COND_EXPR ? integer_all_onesp (op1) - : (integer_onep (op1) - && !VECTOR_TYPE_P (type))) - && integer_zerop (op2) - /* If we try to convert OP0 to our type, the - call to fold will try to move the conversion inside - a COND, which will recurse. In that case, the COND_EXPR - is probably the best choice, so leave it alone. */ - && type == TREE_TYPE (arg0)) - return protected_set_expr_location_unshare (arg0, loc); - - /* Convert A ? 0 : 1 to !A. This prefers the use of NOT_EXPR - over COND_EXPR in cases such as floating point comparisons. */ - if (integer_zerop (op1) - && code == COND_EXPR - && integer_onep (op2) - && !VECTOR_TYPE_P (type) - && truth_value_p (TREE_CODE (arg0))) - return fold_convert_loc (loc, type, - invert_truthvalue_loc (loc, arg0)); - - /* A < 0 ? <sign bit of A> : 0 is simply (A & <sign bit of A>). */ - if (TREE_CODE (arg0) == LT_EXPR - && integer_zerop (TREE_OPERAND (arg0, 1)) - && integer_zerop (op2) - && (tem = sign_bit_p (TREE_OPERAND (arg0, 0), arg1))) - { - /* sign_bit_p looks through both zero and sign extensions, - but for this optimization only sign extensions are - usable. */ - tree tem2 = TREE_OPERAND (arg0, 0); - while (tem != tem2) - { - if (TREE_CODE (tem2) != NOP_EXPR - || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (tem2, 0)))) - { - tem = NULL_TREE; - break; - } - tem2 = TREE_OPERAND (tem2, 0); - } - /* sign_bit_p only checks ARG1 bits within A's precision. - If <sign bit of A> has wider type than A, bits outside - of A's precision in <sign bit of A> need to be checked. - If they are all 0, this optimization needs to be done - in unsigned A's type, if they are all 1 in signed A's type, - otherwise this can't be done. */ - if (tem - && TYPE_PRECISION (TREE_TYPE (tem)) - < TYPE_PRECISION (TREE_TYPE (arg1)) - && TYPE_PRECISION (TREE_TYPE (tem)) - < TYPE_PRECISION (type)) - { - int inner_width, outer_width; - tree tem_type; - - inner_width = TYPE_PRECISION (TREE_TYPE (tem)); - outer_width = TYPE_PRECISION (TREE_TYPE (arg1)); - if (outer_width > TYPE_PRECISION (type)) - outer_width = TYPE_PRECISION (type); - - wide_int mask = wi::shifted_mask - (inner_width, outer_width - inner_width, false, - TYPE_PRECISION (TREE_TYPE (arg1))); - - wide_int common = mask & wi::to_wide (arg1); - if (common == mask) - { - tem_type = signed_type_for (TREE_TYPE (tem)); - tem = fold_convert_loc (loc, tem_type, tem); - } - else if (common == 0) - { - tem_type = unsigned_type_for (TREE_TYPE (tem)); - tem = fold_convert_loc (loc, tem_type, tem); - } - else - tem = NULL; - } - - if (tem) - return - fold_convert_loc (loc, type, - fold_build2_loc (loc, BIT_AND_EXPR, - TREE_TYPE (tem), tem, - fold_convert_loc (loc, - TREE_TYPE (tem), - arg1))); - } - - /* (A >> N) & 1 ? (1 << N) : 0 is simply A & (1 << N). A & 1 was - already handled above. */ - if (TREE_CODE (arg0) == BIT_AND_EXPR - && integer_onep (TREE_OPERAND (arg0, 1)) - && integer_zerop (op2) - && integer_pow2p (arg1)) - { - tree tem = TREE_OPERAND (arg0, 0); - STRIP_NOPS (tem); - if (TREE_CODE (tem) == RSHIFT_EXPR - && tree_fits_uhwi_p (TREE_OPERAND (tem, 1)) - && (unsigned HOST_WIDE_INT) tree_log2 (arg1) - == tree_to_uhwi (TREE_OPERAND (tem, 1))) - return fold_build2_loc (loc, BIT_AND_EXPR, type, - fold_convert_loc (loc, type, - TREE_OPERAND (tem, 0)), - op1); - } - - /* A & N ? N : 0 is simply A & N if N is a power of two. This - is probably obsolete because the first operand should be a - truth value (that's why we have the two cases above), but let's - leave it in until we can confirm this for all front-ends. */ - if (integer_zerop (op2) - && TREE_CODE (arg0) == NE_EXPR - && integer_zerop (TREE_OPERAND (arg0, 1)) - && integer_pow2p (arg1) - && TREE_CODE (TREE_OPERAND (arg0, 0)) == BIT_AND_EXPR - && operand_equal_p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1), - arg1, OEP_ONLY_CONST) - /* operand_equal_p compares just value, not precision, so e.g. - arg1 could be 8-bit -128 and be power of two, but BIT_AND_EXPR - second operand 32-bit -128, which is not a power of two (or vice - versa. */ - && integer_pow2p (TREE_OPERAND (TREE_OPERAND (arg0, 0), 1))) - return fold_convert_loc (loc, type, TREE_OPERAND (arg0, 0)); - - /* Disable the transformations below for vectors, since - fold_binary_op_with_conditional_arg may undo them immediately, - yielding an infinite loop. */ - if (code == VEC_COND_EXPR) - return NULL_TREE; - - /* Convert A ? B : 0 into A && B if A and B are truth values. */ - if (integer_zerop (op2) - && truth_value_p (TREE_CODE (arg0)) - && truth_value_p (TREE_CODE (arg1)) - && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) - return fold_build2_loc (loc, code == VEC_COND_EXPR ? BIT_AND_EXPR - : TRUTH_ANDIF_EXPR, - type, fold_convert_loc (loc, type, arg0), op1); - - /* Convert A ? B : 1 into !A || B if A and B are truth values. */ - if (code == VEC_COND_EXPR ? integer_all_onesp (op2) : integer_onep (op2) - && truth_value_p (TREE_CODE (arg0)) - && truth_value_p (TREE_CODE (arg1)) - && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) - { - location_t loc0 = expr_location_or (arg0, loc); - /* Only perform transformation if ARG0 is easily inverted. */ - tem = fold_invert_truthvalue (loc0, arg0); - if (tem) - return fold_build2_loc (loc, code == VEC_COND_EXPR - ? BIT_IOR_EXPR - : TRUTH_ORIF_EXPR, - type, fold_convert_loc (loc, type, tem), - op1); - } - - /* Convert A ? 0 : B into !A && B if A and B are truth values. */ - if (integer_zerop (arg1) - && truth_value_p (TREE_CODE (arg0)) - && truth_value_p (TREE_CODE (op2)) - && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) - { - location_t loc0 = expr_location_or (arg0, loc); - /* Only perform transformation if ARG0 is easily inverted. */ - tem = fold_invert_truthvalue (loc0, arg0); - if (tem) - return fold_build2_loc (loc, code == VEC_COND_EXPR - ? BIT_AND_EXPR : TRUTH_ANDIF_EXPR, - type, fold_convert_loc (loc, type, tem), - op2); - } - - /* Convert A ? 1 : B into A || B if A and B are truth values. */ - if (code == VEC_COND_EXPR ? integer_all_onesp (arg1) : integer_onep (arg1) - && truth_value_p (TREE_CODE (arg0)) - && truth_value_p (TREE_CODE (op2)) - && (code == VEC_COND_EXPR || !VECTOR_TYPE_P (type))) - return fold_build2_loc (loc, code == VEC_COND_EXPR - ? BIT_IOR_EXPR : TRUTH_ORIF_EXPR, - type, fold_convert_loc (loc, type, arg0), op2); - - return NULL_TREE; - - case CALL_EXPR: - /* CALL_EXPRs used to be ternary exprs. Catch any mistaken uses - of fold_ternary on them. */ - gcc_unreachable (); - - case BIT_FIELD_REF: - if (TREE_CODE (arg0) == VECTOR_CST - && (type == TREE_TYPE (TREE_TYPE (arg0)) - || (VECTOR_TYPE_P (type) - && TREE_TYPE (type) == TREE_TYPE (TREE_TYPE (arg0)))) - && tree_fits_uhwi_p (op1) - && tree_fits_uhwi_p (op2)) - { - tree eltype = TREE_TYPE (TREE_TYPE (arg0)); - unsigned HOST_WIDE_INT width - = (TREE_CODE (eltype) == BOOLEAN_TYPE - ? TYPE_PRECISION (eltype) : tree_to_uhwi (TYPE_SIZE (eltype))); - unsigned HOST_WIDE_INT n = tree_to_uhwi (arg1); - unsigned HOST_WIDE_INT idx = tree_to_uhwi (op2); - - if (n != 0 - && (idx % width) == 0 - && (n % width) == 0 - && known_le ((idx + n) / width, - TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg0)))) - { - idx = idx / width; - n = n / width; - - if (TREE_CODE (arg0) == VECTOR_CST) - { - if (n == 1) - { - tem = VECTOR_CST_ELT (arg0, idx); - if (VECTOR_TYPE_P (type)) - tem = fold_build1 (VIEW_CONVERT_EXPR, type, tem); - return tem; - } - - tree_vector_builder vals (type, n, 1); - for (unsigned i = 0; i < n; ++i) - vals.quick_push (VECTOR_CST_ELT (arg0, idx + i)); - return vals.build (); - } - } - } - - /* On constants we can use native encode/interpret to constant - fold (nearly) all BIT_FIELD_REFs. */ - if (CONSTANT_CLASS_P (arg0) - && can_native_interpret_type_p (type) - && BITS_PER_UNIT == 8 - && tree_fits_uhwi_p (op1) - && tree_fits_uhwi_p (op2)) - { - unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); - unsigned HOST_WIDE_INT bitsize = tree_to_uhwi (op1); - /* Limit us to a reasonable amount of work. To relax the - other limitations we need bit-shifting of the buffer - and rounding up the size. */ - if (bitpos % BITS_PER_UNIT == 0 - && bitsize % BITS_PER_UNIT == 0 - && bitsize <= MAX_BITSIZE_MODE_ANY_MODE) - { - unsigned char b[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT]; - unsigned HOST_WIDE_INT len - = native_encode_expr (arg0, b, bitsize / BITS_PER_UNIT, - bitpos / BITS_PER_UNIT); - if (len > 0 - && len * BITS_PER_UNIT >= bitsize) - { - tree v = native_interpret_expr (type, b, - bitsize / BITS_PER_UNIT); - if (v) - return v; - } - } - } - - return NULL_TREE; - - case VEC_PERM_EXPR: - /* Perform constant folding of BIT_INSERT_EXPR. */ - if (TREE_CODE (arg2) == VECTOR_CST - && TREE_CODE (op0) == VECTOR_CST - && TREE_CODE (op1) == VECTOR_CST) - { - /* Build a vector of integers from the tree mask. */ - vec_perm_builder builder; - if (!tree_to_vec_perm_builder (&builder, arg2)) - return NULL_TREE; - - /* Create a vec_perm_indices for the integer vector. */ - poly_uint64 nelts = TYPE_VECTOR_SUBPARTS (type); - bool single_arg = (op0 == op1); - vec_perm_indices sel (builder, single_arg ? 1 : 2, nelts); - return fold_vec_perm (type, op0, op1, sel); - } - return NULL_TREE; - - case BIT_INSERT_EXPR: - /* Perform (partial) constant folding of BIT_INSERT_EXPR. */ - if (TREE_CODE (arg0) == INTEGER_CST - && TREE_CODE (arg1) == INTEGER_CST) - { - unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); - unsigned bitsize = TYPE_PRECISION (TREE_TYPE (arg1)); - wide_int tem = (wi::to_wide (arg0) - & wi::shifted_mask (bitpos, bitsize, true, - TYPE_PRECISION (type))); - wide_int tem2 - = wi::lshift (wi::zext (wi::to_wide (arg1, TYPE_PRECISION (type)), - bitsize), bitpos); - return wide_int_to_tree (type, wi::bit_or (tem, tem2)); - } - else if (TREE_CODE (arg0) == VECTOR_CST - && CONSTANT_CLASS_P (arg1) - && types_compatible_p (TREE_TYPE (TREE_TYPE (arg0)), - TREE_TYPE (arg1))) - { - unsigned HOST_WIDE_INT bitpos = tree_to_uhwi (op2); - unsigned HOST_WIDE_INT elsize - = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (arg1))); - if (bitpos % elsize == 0) - { - unsigned k = bitpos / elsize; - unsigned HOST_WIDE_INT nelts; - if (operand_equal_p (VECTOR_CST_ELT (arg0, k), arg1, 0)) - return arg0; - else if (VECTOR_CST_NELTS (arg0).is_constant (&nelts)) - { - tree_vector_builder elts (type, nelts, 1); - elts.quick_grow (nelts); - for (unsigned HOST_WIDE_INT i = 0; i < nelts; ++i) - elts[i] = (i == k ? arg1 : VECTOR_CST_ELT (arg0, i)); - return elts.build (); - } - } - } - return NULL_TREE; - - default: - return NULL_TREE; - } /* switch (code) */ -} - -/* Gets the element ACCESS_INDEX from CTOR, which must be a CONSTRUCTOR - of an array (or vector). *CTOR_IDX if non-NULL is updated with the - constructor element index of the value returned. If the element is - not found NULL_TREE is returned and *CTOR_IDX is updated to - the index of the element after the ACCESS_INDEX position (which - may be outside of the CTOR array). */ - -tree -get_array_ctor_element_at_index (tree ctor, offset_int access_index, - unsigned *ctor_idx) -{ - tree index_type = NULL_TREE; - signop index_sgn = UNSIGNED; - offset_int low_bound = 0; - - if (TREE_CODE (TREE_TYPE (ctor)) == ARRAY_TYPE) - { - tree domain_type = TYPE_DOMAIN (TREE_TYPE (ctor)); - if (domain_type && TYPE_MIN_VALUE (domain_type)) - { - /* Static constructors for variably sized objects makes no sense. */ - gcc_assert (TREE_CODE (TYPE_MIN_VALUE (domain_type)) == INTEGER_CST); - index_type = TREE_TYPE (TYPE_MIN_VALUE (domain_type)); - /* ??? When it is obvious that the range is signed, treat it so. */ - if (TYPE_UNSIGNED (index_type) - && TYPE_MAX_VALUE (domain_type) - && tree_int_cst_lt (TYPE_MAX_VALUE (domain_type), - TYPE_MIN_VALUE (domain_type))) - { - index_sgn = SIGNED; - low_bound - = offset_int::from (wi::to_wide (TYPE_MIN_VALUE (domain_type)), - SIGNED); - } - else - { - index_sgn = TYPE_SIGN (index_type); - low_bound = wi::to_offset (TYPE_MIN_VALUE (domain_type)); - } - } - } - - if (index_type) - access_index = wi::ext (access_index, TYPE_PRECISION (index_type), - index_sgn); - - offset_int index = low_bound; - if (index_type) - index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn); - - offset_int max_index = index; - unsigned cnt; - tree cfield, cval; - bool first_p = true; - - FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), cnt, cfield, cval) - { - /* Array constructor might explicitly set index, or specify a range, - or leave index NULL meaning that it is next index after previous - one. */ - if (cfield) - { - if (TREE_CODE (cfield) == INTEGER_CST) - max_index = index - = offset_int::from (wi::to_wide (cfield), index_sgn); - else - { - gcc_assert (TREE_CODE (cfield) == RANGE_EXPR); - index = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 0)), - index_sgn); - max_index - = offset_int::from (wi::to_wide (TREE_OPERAND (cfield, 1)), - index_sgn); - gcc_checking_assert (wi::le_p (index, max_index, index_sgn)); - } - } - else if (!first_p) - { - index = max_index + 1; - if (index_type) - index = wi::ext (index, TYPE_PRECISION (index_type), index_sgn); - gcc_checking_assert (wi::gt_p (index, max_index, index_sgn)); - max_index = index; - } - else - first_p = false; - - /* Do we have match? */ - if (wi::cmp (access_index, index, index_sgn) >= 0) - { - if (wi::cmp (access_index, max_index, index_sgn) <= 0) - { - if (ctor_idx) - *ctor_idx = cnt; - return cval; - } - } - else if (in_gimple_form) - /* We're past the element we search for. Note during parsing - the elements might not be sorted. - ??? We should use a binary search and a flag on the - CONSTRUCTOR as to whether elements are sorted in declaration - order. */ - break; - } - if (ctor_idx) - *ctor_idx = cnt; - return NULL_TREE; -} - -/* Perform constant folding and related simplification of EXPR. - The related simplifications include x*1 => x, x*0 => 0, etc., - and application of the associative law. - NOP_EXPR conversions may be removed freely (as long as we - are careful not to change the type of the overall expression). - We cannot simplify through a CONVERT_EXPR, FIX_EXPR or FLOAT_EXPR, - but we can constant-fold them if they have constant operands. */ - -#ifdef ENABLE_FOLD_CHECKING -# define fold(x) fold_1 (x) -static tree fold_1 (tree); -static -#endif -tree -fold (tree expr) -{ - const tree t = expr; - enum tree_code code = TREE_CODE (t); - enum tree_code_class kind = TREE_CODE_CLASS (code); - tree tem; - location_t loc = EXPR_LOCATION (expr); - - /* Return right away if a constant. */ - if (kind == tcc_constant) - return t; - - /* CALL_EXPR-like objects with variable numbers of operands are - treated specially. */ - if (kind == tcc_vl_exp) - { - if (code == CALL_EXPR) - { - tem = fold_call_expr (loc, expr, false); - return tem ? tem : expr; - } - return expr; - } - - if (IS_EXPR_CODE_CLASS (kind)) - { - tree type = TREE_TYPE (t); - tree op0, op1, op2; - - switch (TREE_CODE_LENGTH (code)) - { - case 1: - op0 = TREE_OPERAND (t, 0); - tem = fold_unary_loc (loc, code, type, op0); - return tem ? tem : expr; - case 2: - op0 = TREE_OPERAND (t, 0); - op1 = TREE_OPERAND (t, 1); - tem = fold_binary_loc (loc, code, type, op0, op1); - return tem ? tem : expr; - case 3: - op0 = TREE_OPERAND (t, 0); - op1 = TREE_OPERAND (t, 1); - op2 = TREE_OPERAND (t, 2); - tem = fold_ternary_loc (loc, code, type, op0, op1, op2); - return tem ? tem : expr; - default: - break; - } - } - - switch (code) - { - case ARRAY_REF: - { - tree op0 = TREE_OPERAND (t, 0); - tree op1 = TREE_OPERAND (t, 1); - - if (TREE_CODE (op1) == INTEGER_CST - && TREE_CODE (op0) == CONSTRUCTOR - && ! type_contains_placeholder_p (TREE_TYPE (op0))) - { - tree val = get_array_ctor_element_at_index (op0, - wi::to_offset (op1)); - if (val) - return val; - } - - return t; - } - - /* Return a VECTOR_CST if possible. */ - case CONSTRUCTOR: - { - tree type = TREE_TYPE (t); - if (TREE_CODE (type) != VECTOR_TYPE) - return t; - - unsigned i; - tree val; - FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (t), i, val) - if (! CONSTANT_CLASS_P (val)) - return t; - - return build_vector_from_ctor (type, CONSTRUCTOR_ELTS (t)); - } - - case CONST_DECL: - return fold (DECL_INITIAL (t)); - - default: - return t; - } /* switch (code) */ -} - -#ifdef ENABLE_FOLD_CHECKING -#undef fold - -static void fold_checksum_tree (const_tree, struct md5_ctx *, - hash_table<nofree_ptr_hash<const tree_node> > *); -static void fold_check_failed (const_tree, const_tree); -void print_fold_checksum (const_tree); - -/* When --enable-checking=fold, compute a digest of expr before - and after actual fold call to see if fold did not accidentally - change original expr. */ - -tree -fold (tree expr) -{ - tree ret; - struct md5_ctx ctx; - unsigned char checksum_before[16], checksum_after[16]; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (expr, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before); - ht.empty (); - - ret = fold_1 (expr); - - md5_init_ctx (&ctx); - fold_checksum_tree (expr, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after); - - if (memcmp (checksum_before, checksum_after, 16)) - fold_check_failed (expr, ret); - - return ret; -} - -void -print_fold_checksum (const_tree expr) -{ - struct md5_ctx ctx; - unsigned char checksum[16], cnt; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (expr, &ctx, &ht); - md5_finish_ctx (&ctx, checksum); - for (cnt = 0; cnt < 16; ++cnt) - fprintf (stderr, "%02x", checksum[cnt]); - putc ('\n', stderr); -} - -static void -fold_check_failed (const_tree expr ATTRIBUTE_UNUSED, const_tree ret ATTRIBUTE_UNUSED) -{ - internal_error ("fold check: original tree changed by fold"); -} - -static void -fold_checksum_tree (const_tree expr, struct md5_ctx *ctx, - hash_table<nofree_ptr_hash <const tree_node> > *ht) -{ - const tree_node **slot; - enum tree_code code; - union tree_node *buf; - int i, len; - - recursive_label: - if (expr == NULL) - return; - slot = ht->find_slot (expr, INSERT); - if (*slot != NULL) - return; - *slot = expr; - code = TREE_CODE (expr); - if (TREE_CODE_CLASS (code) == tcc_declaration - && HAS_DECL_ASSEMBLER_NAME_P (expr)) - { - /* Allow DECL_ASSEMBLER_NAME and symtab_node to be modified. */ - size_t sz = tree_size (expr); - buf = XALLOCAVAR (union tree_node, sz); - memcpy ((char *) buf, expr, sz); - SET_DECL_ASSEMBLER_NAME ((tree) buf, NULL); - buf->decl_with_vis.symtab_node = NULL; - buf->base.nowarning_flag = 0; - expr = (tree) buf; - } - else if (TREE_CODE_CLASS (code) == tcc_type - && (TYPE_POINTER_TO (expr) - || TYPE_REFERENCE_TO (expr) - || TYPE_CACHED_VALUES_P (expr) - || TYPE_CONTAINS_PLACEHOLDER_INTERNAL (expr) - || TYPE_NEXT_VARIANT (expr) - || TYPE_ALIAS_SET_KNOWN_P (expr))) - { - /* Allow these fields to be modified. */ - tree tmp; - size_t sz = tree_size (expr); - buf = XALLOCAVAR (union tree_node, sz); - memcpy ((char *) buf, expr, sz); - expr = tmp = (tree) buf; - TYPE_CONTAINS_PLACEHOLDER_INTERNAL (tmp) = 0; - TYPE_POINTER_TO (tmp) = NULL; - TYPE_REFERENCE_TO (tmp) = NULL; - TYPE_NEXT_VARIANT (tmp) = NULL; - TYPE_ALIAS_SET (tmp) = -1; - if (TYPE_CACHED_VALUES_P (tmp)) - { - TYPE_CACHED_VALUES_P (tmp) = 0; - TYPE_CACHED_VALUES (tmp) = NULL; - } - } - else if (warning_suppressed_p (expr) && (DECL_P (expr) || EXPR_P (expr))) - { - /* Allow the no-warning bit to be set. Perhaps we shouldn't allow - that and change builtins.c etc. instead - see PR89543. */ - size_t sz = tree_size (expr); - buf = XALLOCAVAR (union tree_node, sz); - memcpy ((char *) buf, expr, sz); - buf->base.nowarning_flag = 0; - expr = (tree) buf; - } - md5_process_bytes (expr, tree_size (expr), ctx); - if (CODE_CONTAINS_STRUCT (code, TS_TYPED)) - fold_checksum_tree (TREE_TYPE (expr), ctx, ht); - if (TREE_CODE_CLASS (code) != tcc_type - && TREE_CODE_CLASS (code) != tcc_declaration - && code != TREE_LIST - && code != SSA_NAME - && CODE_CONTAINS_STRUCT (code, TS_COMMON)) - fold_checksum_tree (TREE_CHAIN (expr), ctx, ht); - switch (TREE_CODE_CLASS (code)) - { - case tcc_constant: - switch (code) - { - case STRING_CST: - md5_process_bytes (TREE_STRING_POINTER (expr), - TREE_STRING_LENGTH (expr), ctx); - break; - case COMPLEX_CST: - fold_checksum_tree (TREE_REALPART (expr), ctx, ht); - fold_checksum_tree (TREE_IMAGPART (expr), ctx, ht); - break; - case VECTOR_CST: - len = vector_cst_encoded_nelts (expr); - for (i = 0; i < len; ++i) - fold_checksum_tree (VECTOR_CST_ENCODED_ELT (expr, i), ctx, ht); - break; - default: - break; - } - break; - case tcc_exceptional: - switch (code) - { - case TREE_LIST: - fold_checksum_tree (TREE_PURPOSE (expr), ctx, ht); - fold_checksum_tree (TREE_VALUE (expr), ctx, ht); - expr = TREE_CHAIN (expr); - goto recursive_label; - break; - case TREE_VEC: - for (i = 0; i < TREE_VEC_LENGTH (expr); ++i) - fold_checksum_tree (TREE_VEC_ELT (expr, i), ctx, ht); - break; - default: - break; - } - break; - case tcc_expression: - case tcc_reference: - case tcc_comparison: - case tcc_unary: - case tcc_binary: - case tcc_statement: - case tcc_vl_exp: - len = TREE_OPERAND_LENGTH (expr); - for (i = 0; i < len; ++i) - fold_checksum_tree (TREE_OPERAND (expr, i), ctx, ht); - break; - case tcc_declaration: - fold_checksum_tree (DECL_NAME (expr), ctx, ht); - fold_checksum_tree (DECL_CONTEXT (expr), ctx, ht); - if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_COMMON)) - { - fold_checksum_tree (DECL_SIZE (expr), ctx, ht); - fold_checksum_tree (DECL_SIZE_UNIT (expr), ctx, ht); - fold_checksum_tree (DECL_INITIAL (expr), ctx, ht); - fold_checksum_tree (DECL_ABSTRACT_ORIGIN (expr), ctx, ht); - fold_checksum_tree (DECL_ATTRIBUTES (expr), ctx, ht); - } - - if (CODE_CONTAINS_STRUCT (TREE_CODE (expr), TS_DECL_NON_COMMON)) - { - if (TREE_CODE (expr) == FUNCTION_DECL) - { - fold_checksum_tree (DECL_VINDEX (expr), ctx, ht); - fold_checksum_tree (DECL_ARGUMENTS (expr), ctx, ht); - } - fold_checksum_tree (DECL_RESULT_FLD (expr), ctx, ht); - } - break; - case tcc_type: - if (TREE_CODE (expr) == ENUMERAL_TYPE) - fold_checksum_tree (TYPE_VALUES (expr), ctx, ht); - fold_checksum_tree (TYPE_SIZE (expr), ctx, ht); - fold_checksum_tree (TYPE_SIZE_UNIT (expr), ctx, ht); - fold_checksum_tree (TYPE_ATTRIBUTES (expr), ctx, ht); - fold_checksum_tree (TYPE_NAME (expr), ctx, ht); - if (INTEGRAL_TYPE_P (expr) - || SCALAR_FLOAT_TYPE_P (expr)) - { - fold_checksum_tree (TYPE_MIN_VALUE (expr), ctx, ht); - fold_checksum_tree (TYPE_MAX_VALUE (expr), ctx, ht); - } - fold_checksum_tree (TYPE_MAIN_VARIANT (expr), ctx, ht); - if (TREE_CODE (expr) == RECORD_TYPE - || TREE_CODE (expr) == UNION_TYPE - || TREE_CODE (expr) == QUAL_UNION_TYPE) - fold_checksum_tree (TYPE_BINFO (expr), ctx, ht); - fold_checksum_tree (TYPE_CONTEXT (expr), ctx, ht); - break; - default: - break; - } -} - -/* Helper function for outputting the checksum of a tree T. When - debugging with gdb, you can "define mynext" to be "next" followed - by "call debug_fold_checksum (op0)", then just trace down till the - outputs differ. */ - -DEBUG_FUNCTION void -debug_fold_checksum (const_tree t) -{ - int i; - unsigned char checksum[16]; - struct md5_ctx ctx; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (t, &ctx, &ht); - md5_finish_ctx (&ctx, checksum); - ht.empty (); - - for (i = 0; i < 16; i++) - fprintf (stderr, "%d ", checksum[i]); - - fprintf (stderr, "\n"); -} - -#endif - -/* Fold a unary tree expression with code CODE of type TYPE with an - operand OP0. LOC is the location of the resulting expression. - Return a folded expression if successful. Otherwise, return a tree - expression with code CODE of type TYPE with an operand OP0. */ - -tree -fold_build1_loc (location_t loc, - enum tree_code code, tree type, tree op0 MEM_STAT_DECL) -{ - tree tem; -#ifdef ENABLE_FOLD_CHECKING - unsigned char checksum_before[16], checksum_after[16]; - struct md5_ctx ctx; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before); - ht.empty (); -#endif - - tem = fold_unary_loc (loc, code, type, op0); - if (!tem) - tem = build1_loc (loc, code, type, op0 PASS_MEM_STAT); - -#ifdef ENABLE_FOLD_CHECKING - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after); - - if (memcmp (checksum_before, checksum_after, 16)) - fold_check_failed (op0, tem); -#endif - return tem; -} - -/* Fold a binary tree expression with code CODE of type TYPE with - operands OP0 and OP1. LOC is the location of the resulting - expression. Return a folded expression if successful. Otherwise, - return a tree expression with code CODE of type TYPE with operands - OP0 and OP1. */ - -tree -fold_build2_loc (location_t loc, - enum tree_code code, tree type, tree op0, tree op1 - MEM_STAT_DECL) -{ - tree tem; -#ifdef ENABLE_FOLD_CHECKING - unsigned char checksum_before_op0[16], - checksum_before_op1[16], - checksum_after_op0[16], - checksum_after_op1[16]; - struct md5_ctx ctx; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_op0); - ht.empty (); - - md5_init_ctx (&ctx); - fold_checksum_tree (op1, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_op1); - ht.empty (); -#endif - - tem = fold_binary_loc (loc, code, type, op0, op1); - if (!tem) - tem = build2_loc (loc, code, type, op0, op1 PASS_MEM_STAT); - -#ifdef ENABLE_FOLD_CHECKING - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_op0); - ht.empty (); - - if (memcmp (checksum_before_op0, checksum_after_op0, 16)) - fold_check_failed (op0, tem); - - md5_init_ctx (&ctx); - fold_checksum_tree (op1, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_op1); - - if (memcmp (checksum_before_op1, checksum_after_op1, 16)) - fold_check_failed (op1, tem); -#endif - return tem; -} - -/* Fold a ternary tree expression with code CODE of type TYPE with - operands OP0, OP1, and OP2. Return a folded expression if - successful. Otherwise, return a tree expression with code CODE of - type TYPE with operands OP0, OP1, and OP2. */ - -tree -fold_build3_loc (location_t loc, enum tree_code code, tree type, - tree op0, tree op1, tree op2 MEM_STAT_DECL) -{ - tree tem; -#ifdef ENABLE_FOLD_CHECKING - unsigned char checksum_before_op0[16], - checksum_before_op1[16], - checksum_before_op2[16], - checksum_after_op0[16], - checksum_after_op1[16], - checksum_after_op2[16]; - struct md5_ctx ctx; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_op0); - ht.empty (); - - md5_init_ctx (&ctx); - fold_checksum_tree (op1, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_op1); - ht.empty (); - - md5_init_ctx (&ctx); - fold_checksum_tree (op2, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_op2); - ht.empty (); -#endif - - gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp); - tem = fold_ternary_loc (loc, code, type, op0, op1, op2); - if (!tem) - tem = build3_loc (loc, code, type, op0, op1, op2 PASS_MEM_STAT); - -#ifdef ENABLE_FOLD_CHECKING - md5_init_ctx (&ctx); - fold_checksum_tree (op0, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_op0); - ht.empty (); - - if (memcmp (checksum_before_op0, checksum_after_op0, 16)) - fold_check_failed (op0, tem); - - md5_init_ctx (&ctx); - fold_checksum_tree (op1, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_op1); - ht.empty (); - - if (memcmp (checksum_before_op1, checksum_after_op1, 16)) - fold_check_failed (op1, tem); - - md5_init_ctx (&ctx); - fold_checksum_tree (op2, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_op2); - - if (memcmp (checksum_before_op2, checksum_after_op2, 16)) - fold_check_failed (op2, tem); -#endif - return tem; -} - -/* Fold a CALL_EXPR expression of type TYPE with operands FN and NARGS - arguments in ARGARRAY, and a null static chain. - Return a folded expression if successful. Otherwise, return a CALL_EXPR - of type TYPE from the given operands as constructed by build_call_array. */ - -tree -fold_build_call_array_loc (location_t loc, tree type, tree fn, - int nargs, tree *argarray) -{ - tree tem; -#ifdef ENABLE_FOLD_CHECKING - unsigned char checksum_before_fn[16], - checksum_before_arglist[16], - checksum_after_fn[16], - checksum_after_arglist[16]; - struct md5_ctx ctx; - hash_table<nofree_ptr_hash<const tree_node> > ht (32); - int i; - - md5_init_ctx (&ctx); - fold_checksum_tree (fn, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_fn); - ht.empty (); - - md5_init_ctx (&ctx); - for (i = 0; i < nargs; i++) - fold_checksum_tree (argarray[i], &ctx, &ht); - md5_finish_ctx (&ctx, checksum_before_arglist); - ht.empty (); -#endif - - tem = fold_builtin_call_array (loc, type, fn, nargs, argarray); - if (!tem) - tem = build_call_array_loc (loc, type, fn, nargs, argarray); - -#ifdef ENABLE_FOLD_CHECKING - md5_init_ctx (&ctx); - fold_checksum_tree (fn, &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_fn); - ht.empty (); - - if (memcmp (checksum_before_fn, checksum_after_fn, 16)) - fold_check_failed (fn, tem); - - md5_init_ctx (&ctx); - for (i = 0; i < nargs; i++) - fold_checksum_tree (argarray[i], &ctx, &ht); - md5_finish_ctx (&ctx, checksum_after_arglist); - - if (memcmp (checksum_before_arglist, checksum_after_arglist, 16)) - fold_check_failed (NULL_TREE, tem); -#endif - return tem; -} - -/* Perform constant folding and related simplification of initializer - expression EXPR. These behave identically to "fold_buildN" but ignore - potential run-time traps and exceptions that fold must preserve. */ - -#define START_FOLD_INIT \ - int saved_signaling_nans = flag_signaling_nans;\ - int saved_trapping_math = flag_trapping_math;\ - int saved_rounding_math = flag_rounding_math;\ - int saved_trapv = flag_trapv;\ - int saved_folding_initializer = folding_initializer;\ - flag_signaling_nans = 0;\ - flag_trapping_math = 0;\ - flag_rounding_math = 0;\ - flag_trapv = 0;\ - folding_initializer = 1; - -#define END_FOLD_INIT \ - flag_signaling_nans = saved_signaling_nans;\ - flag_trapping_math = saved_trapping_math;\ - flag_rounding_math = saved_rounding_math;\ - flag_trapv = saved_trapv;\ - folding_initializer = saved_folding_initializer; - -tree -fold_init (tree expr) -{ - tree result; - START_FOLD_INIT; - - result = fold (expr); - - END_FOLD_INIT; - return result; -} - -tree -fold_build1_initializer_loc (location_t loc, enum tree_code code, - tree type, tree op) -{ - tree result; - START_FOLD_INIT; - - result = fold_build1_loc (loc, code, type, op); - - END_FOLD_INIT; - return result; -} - -tree -fold_build2_initializer_loc (location_t loc, enum tree_code code, - tree type, tree op0, tree op1) -{ - tree result; - START_FOLD_INIT; - - result = fold_build2_loc (loc, code, type, op0, op1); - - END_FOLD_INIT; - return result; -} - -tree -fold_build_call_array_initializer_loc (location_t loc, tree type, tree fn, - int nargs, tree *argarray) -{ - tree result; - START_FOLD_INIT; - - result = fold_build_call_array_loc (loc, type, fn, nargs, argarray); - - END_FOLD_INIT; - return result; -} - -tree -fold_binary_initializer_loc (location_t loc, tree_code code, tree type, - tree lhs, tree rhs) -{ - tree result; - START_FOLD_INIT; - - result = fold_binary_loc (loc, code, type, lhs, rhs); - - END_FOLD_INIT; - return result; -} - -#undef START_FOLD_INIT -#undef END_FOLD_INIT - -/* Determine if first argument is a multiple of second argument. Return 0 if - it is not, or we cannot easily determined it to be. - - An example of the sort of thing we care about (at this point; this routine - could surely be made more general, and expanded to do what the *_DIV_EXPR's - fold cases do now) is discovering that - - SAVE_EXPR (I) * SAVE_EXPR (J * 8) - - is a multiple of - - SAVE_EXPR (J * 8) - - when we know that the two SAVE_EXPR (J * 8) nodes are the same node. - - This code also handles discovering that - - SAVE_EXPR (I) * SAVE_EXPR (J * 8) - - is a multiple of 8 so we don't have to worry about dealing with a - possible remainder. - - Note that we *look* inside a SAVE_EXPR only to determine how it was - calculated; it is not safe for fold to do much of anything else with the - internals of a SAVE_EXPR, since it cannot know when it will be evaluated - at run time. For example, the latter example above *cannot* be implemented - as SAVE_EXPR (I) * J or any variant thereof, since the value of J at - evaluation time of the original SAVE_EXPR is not necessarily the same at - the time the new expression is evaluated. The only optimization of this - sort that would be valid is changing - - SAVE_EXPR (I) * SAVE_EXPR (SAVE_EXPR (J) * 8) - - divided by 8 to - - SAVE_EXPR (I) * SAVE_EXPR (J) - - (where the same SAVE_EXPR (J) is used in the original and the - transformed version). */ - -int -multiple_of_p (tree type, const_tree top, const_tree bottom) -{ - gimple *stmt; - tree t1, op1, op2; - - if (operand_equal_p (top, bottom, 0)) - return 1; - - if (TREE_CODE (type) != INTEGER_TYPE) - return 0; - - switch (TREE_CODE (top)) - { - case BIT_AND_EXPR: - /* Bitwise and provides a power of two multiple. If the mask is - a multiple of BOTTOM then TOP is a multiple of BOTTOM. */ - if (!integer_pow2p (bottom)) - return 0; - return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) - || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); - - case MULT_EXPR: - if (TREE_CODE (bottom) == INTEGER_CST) - { - op1 = TREE_OPERAND (top, 0); - op2 = TREE_OPERAND (top, 1); - if (TREE_CODE (op1) == INTEGER_CST) - std::swap (op1, op2); - if (TREE_CODE (op2) == INTEGER_CST) - { - if (multiple_of_p (type, op2, bottom)) - return 1; - /* Handle multiple_of_p ((x * 2 + 2) * 4, 8). */ - if (multiple_of_p (type, bottom, op2)) - { - widest_int w = wi::sdiv_trunc (wi::to_widest (bottom), - wi::to_widest (op2)); - if (wi::fits_to_tree_p (w, TREE_TYPE (bottom))) - { - op2 = wide_int_to_tree (TREE_TYPE (bottom), w); - return multiple_of_p (type, op1, op2); - } - } - return multiple_of_p (type, op1, bottom); - } - } - return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) - || multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); - - case MINUS_EXPR: - /* It is impossible to prove if op0 - op1 is multiple of bottom - precisely, so be conservative here checking if both op0 and op1 - are multiple of bottom. Note we check the second operand first - since it's usually simpler. */ - return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) - && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); - - case PLUS_EXPR: - /* The same as MINUS_EXPR, but handle cases like op0 + 0xfffffffd - as op0 - 3 if the expression has unsigned type. For example, - (X / 3) + 0xfffffffd is multiple of 3, but 0xfffffffd is not. */ - op1 = TREE_OPERAND (top, 1); - if (TYPE_UNSIGNED (type) - && TREE_CODE (op1) == INTEGER_CST && tree_int_cst_sign_bit (op1)) - op1 = fold_build1 (NEGATE_EXPR, type, op1); - return (multiple_of_p (type, op1, bottom) - && multiple_of_p (type, TREE_OPERAND (top, 0), bottom)); - - case LSHIFT_EXPR: - if (TREE_CODE (TREE_OPERAND (top, 1)) == INTEGER_CST) - { - op1 = TREE_OPERAND (top, 1); - /* const_binop may not detect overflow correctly, - so check for it explicitly here. */ - if (wi::gtu_p (TYPE_PRECISION (TREE_TYPE (size_one_node)), - wi::to_wide (op1)) - && (t1 = fold_convert (type, - const_binop (LSHIFT_EXPR, size_one_node, - op1))) != 0 - && !TREE_OVERFLOW (t1)) - return multiple_of_p (type, t1, bottom); - } - return 0; - - case NOP_EXPR: - /* Can't handle conversions from non-integral or wider integral type. */ - if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (top, 0))) != INTEGER_TYPE) - || (TYPE_PRECISION (type) - < TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (top, 0))))) - return 0; - - /* fall through */ - - case SAVE_EXPR: - return multiple_of_p (type, TREE_OPERAND (top, 0), bottom); - - case COND_EXPR: - return (multiple_of_p (type, TREE_OPERAND (top, 1), bottom) - && multiple_of_p (type, TREE_OPERAND (top, 2), bottom)); - - case INTEGER_CST: - if (TREE_CODE (bottom) != INTEGER_CST - || integer_zerop (bottom) - || (TYPE_UNSIGNED (type) - && (tree_int_cst_sgn (top) < 0 - || tree_int_cst_sgn (bottom) < 0))) - return 0; - return wi::multiple_of_p (wi::to_widest (top), wi::to_widest (bottom), - SIGNED); - - case SSA_NAME: - if (TREE_CODE (bottom) == INTEGER_CST - && (stmt = SSA_NAME_DEF_STMT (top)) != NULL - && gimple_code (stmt) == GIMPLE_ASSIGN) - { - enum tree_code code = gimple_assign_rhs_code (stmt); - - /* Check for special cases to see if top is defined as multiple - of bottom: - - top = (X & ~(bottom - 1) ; bottom is power of 2 - - or - - Y = X % bottom - top = X - Y. */ - if (code == BIT_AND_EXPR - && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE - && TREE_CODE (op2) == INTEGER_CST - && integer_pow2p (bottom) - && wi::multiple_of_p (wi::to_widest (op2), - wi::to_widest (bottom), UNSIGNED)) - return 1; - - op1 = gimple_assign_rhs1 (stmt); - if (code == MINUS_EXPR - && (op2 = gimple_assign_rhs2 (stmt)) != NULL_TREE - && TREE_CODE (op2) == SSA_NAME - && (stmt = SSA_NAME_DEF_STMT (op2)) != NULL - && gimple_code (stmt) == GIMPLE_ASSIGN - && (code = gimple_assign_rhs_code (stmt)) == TRUNC_MOD_EXPR - && operand_equal_p (op1, gimple_assign_rhs1 (stmt), 0) - && operand_equal_p (bottom, gimple_assign_rhs2 (stmt), 0)) - return 1; - } - - /* fall through */ - - default: - if (POLY_INT_CST_P (top) && poly_int_tree_p (bottom)) - return multiple_p (wi::to_poly_widest (top), - wi::to_poly_widest (bottom)); - - return 0; - } -} - -/* Return true if expression X cannot be (or contain) a NaN or infinity. - This function returns true for integer expressions, and returns - false if uncertain. */ - -bool -tree_expr_finite_p (const_tree x) -{ - machine_mode mode = element_mode (x); - if (!HONOR_NANS (mode) && !HONOR_INFINITIES (mode)) - return true; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_isfinite (TREE_REAL_CST_PTR (x)); - case COMPLEX_CST: - return tree_expr_finite_p (TREE_REALPART (x)) - && tree_expr_finite_p (TREE_IMAGPART (x)); - case FLOAT_EXPR: - return true; - case ABS_EXPR: - case CONVERT_EXPR: - case NON_LVALUE_EXPR: - case NEGATE_EXPR: - case SAVE_EXPR: - return tree_expr_finite_p (TREE_OPERAND (x, 0)); - case MIN_EXPR: - case MAX_EXPR: - return tree_expr_finite_p (TREE_OPERAND (x, 0)) - && tree_expr_finite_p (TREE_OPERAND (x, 1)); - case COND_EXPR: - return tree_expr_finite_p (TREE_OPERAND (x, 1)) - && tree_expr_finite_p (TREE_OPERAND (x, 2)); - case CALL_EXPR: - switch (get_call_combined_fn (x)) - { - CASE_CFN_FABS: - return tree_expr_finite_p (CALL_EXPR_ARG (x, 0)); - CASE_CFN_FMAX: - CASE_CFN_FMIN: - return tree_expr_finite_p (CALL_EXPR_ARG (x, 0)) - && tree_expr_finite_p (CALL_EXPR_ARG (x, 1)); - default: - return false; - } - - default: - return false; - } -} - -/* Return true if expression X evaluates to an infinity. - This function returns false for integer expressions. */ - -bool -tree_expr_infinite_p (const_tree x) -{ - if (!HONOR_INFINITIES (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_isinf (TREE_REAL_CST_PTR (x)); - case ABS_EXPR: - case NEGATE_EXPR: - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_infinite_p (TREE_OPERAND (x, 0)); - case COND_EXPR: - return tree_expr_infinite_p (TREE_OPERAND (x, 1)) - && tree_expr_infinite_p (TREE_OPERAND (x, 2)); - default: - return false; - } -} - -/* Return true if expression X could evaluate to an infinity. - This function returns false for integer expressions, and returns - true if uncertain. */ - -bool -tree_expr_maybe_infinite_p (const_tree x) -{ - if (!HONOR_INFINITIES (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_isinf (TREE_REAL_CST_PTR (x)); - case FLOAT_EXPR: - return false; - case ABS_EXPR: - case NEGATE_EXPR: - return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 0)); - case COND_EXPR: - return tree_expr_maybe_infinite_p (TREE_OPERAND (x, 1)) - || tree_expr_maybe_infinite_p (TREE_OPERAND (x, 2)); - default: - return true; - } -} - -/* Return true if expression X evaluates to a signaling NaN. - This function returns false for integer expressions. */ - -bool -tree_expr_signaling_nan_p (const_tree x) -{ - if (!HONOR_SNANS (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_issignaling_nan (TREE_REAL_CST_PTR (x)); - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_signaling_nan_p (TREE_OPERAND (x, 0)); - case COND_EXPR: - return tree_expr_signaling_nan_p (TREE_OPERAND (x, 1)) - && tree_expr_signaling_nan_p (TREE_OPERAND (x, 2)); - default: - return false; - } -} - -/* Return true if expression X could evaluate to a signaling NaN. - This function returns false for integer expressions, and returns - true if uncertain. */ - -bool -tree_expr_maybe_signaling_nan_p (const_tree x) -{ - if (!HONOR_SNANS (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_issignaling_nan (TREE_REAL_CST_PTR (x)); - case FLOAT_EXPR: - return false; - case ABS_EXPR: - case CONVERT_EXPR: - case NEGATE_EXPR: - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0)); - case MIN_EXPR: - case MAX_EXPR: - return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 0)) - || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1)); - case COND_EXPR: - return tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 1)) - || tree_expr_maybe_signaling_nan_p (TREE_OPERAND (x, 2)); - case CALL_EXPR: - switch (get_call_combined_fn (x)) - { - CASE_CFN_FABS: - return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0)); - CASE_CFN_FMAX: - CASE_CFN_FMIN: - return tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 0)) - || tree_expr_maybe_signaling_nan_p (CALL_EXPR_ARG (x, 1)); - default: - return true; - } - default: - return true; - } -} - -/* Return true if expression X evaluates to a NaN. - This function returns false for integer expressions. */ - -bool -tree_expr_nan_p (const_tree x) -{ - if (!HONOR_NANS (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_isnan (TREE_REAL_CST_PTR (x)); - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_nan_p (TREE_OPERAND (x, 0)); - case COND_EXPR: - return tree_expr_nan_p (TREE_OPERAND (x, 1)) - && tree_expr_nan_p (TREE_OPERAND (x, 2)); - default: - return false; - } -} - -/* Return true if expression X could evaluate to a NaN. - This function returns false for integer expressions, and returns - true if uncertain. */ - -bool -tree_expr_maybe_nan_p (const_tree x) -{ - if (!HONOR_NANS (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return real_isnan (TREE_REAL_CST_PTR (x)); - case FLOAT_EXPR: - return false; - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - return !tree_expr_finite_p (TREE_OPERAND (x, 0)) - || !tree_expr_finite_p (TREE_OPERAND (x, 1)); - case ABS_EXPR: - case CONVERT_EXPR: - case NEGATE_EXPR: - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0)); - case MIN_EXPR: - case MAX_EXPR: - return tree_expr_maybe_nan_p (TREE_OPERAND (x, 0)) - || tree_expr_maybe_nan_p (TREE_OPERAND (x, 1)); - case COND_EXPR: - return tree_expr_maybe_nan_p (TREE_OPERAND (x, 1)) - || tree_expr_maybe_nan_p (TREE_OPERAND (x, 2)); - case CALL_EXPR: - switch (get_call_combined_fn (x)) - { - CASE_CFN_FABS: - return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0)); - CASE_CFN_FMAX: - CASE_CFN_FMIN: - return tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 0)) - || tree_expr_maybe_nan_p (CALL_EXPR_ARG (x, 1)); - default: - return true; - } - default: - return true; - } -} - -/* Return true if expression X could evaluate to -0.0. - This function returns true if uncertain. */ - -bool -tree_expr_maybe_real_minus_zero_p (const_tree x) -{ - if (!HONOR_SIGNED_ZEROS (x)) - return false; - switch (TREE_CODE (x)) - { - case REAL_CST: - return REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (x)); - case INTEGER_CST: - case FLOAT_EXPR: - case ABS_EXPR: - return false; - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 0)); - case COND_EXPR: - return tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 1)) - || tree_expr_maybe_real_minus_zero_p (TREE_OPERAND (x, 2)); - case CALL_EXPR: - switch (get_call_combined_fn (x)) - { - CASE_CFN_FABS: - return false; - default: - break; - } - default: - break; - } - /* Ideally !(tree_expr_nonzero_p (X) || tree_expr_nonnegative_p (X)) - * but currently those predicates require tree and not const_tree. */ - return true; -} - -#define tree_expr_nonnegative_warnv_p(X, Y) \ - _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 - -#define RECURSE(X) \ - ((tree_expr_nonnegative_warnv_p) (X, strict_overflow_p, depth + 1)) - -/* Return true if CODE or TYPE is known to be non-negative. */ - -static bool -tree_simple_nonnegative_warnv_p (enum tree_code code, tree type) -{ - if ((TYPE_PRECISION (type) != 1 || TYPE_UNSIGNED (type)) - && truth_value_p (code)) - /* Truth values evaluate to 0 or 1, which is nonnegative unless we - have a signed:1 type (where the value is -1 and 0). */ - return true; - return false; -} - -/* Return true if (CODE OP0) is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -bool -tree_unary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, - bool *strict_overflow_p, int depth) -{ - if (TYPE_UNSIGNED (type)) - return true; - - switch (code) - { - case ABS_EXPR: - /* We can't return 1 if flag_wrapv is set because - ABS_EXPR<INT_MIN> = INT_MIN. */ - if (!ANY_INTEGRAL_TYPE_P (type)) - return true; - if (TYPE_OVERFLOW_UNDEFINED (type)) - { - *strict_overflow_p = true; - return true; - } - break; - - case NON_LVALUE_EXPR: - case FLOAT_EXPR: - case FIX_TRUNC_EXPR: - return RECURSE (op0); - - CASE_CONVERT: - { - tree inner_type = TREE_TYPE (op0); - tree outer_type = type; - - if (TREE_CODE (outer_type) == REAL_TYPE) - { - if (TREE_CODE (inner_type) == REAL_TYPE) - return RECURSE (op0); - if (INTEGRAL_TYPE_P (inner_type)) - { - if (TYPE_UNSIGNED (inner_type)) - return true; - return RECURSE (op0); - } - } - else if (INTEGRAL_TYPE_P (outer_type)) - { - if (TREE_CODE (inner_type) == REAL_TYPE) - return RECURSE (op0); - if (INTEGRAL_TYPE_P (inner_type)) - return TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type) - && TYPE_UNSIGNED (inner_type); - } - } - break; - - default: - return tree_simple_nonnegative_warnv_p (code, type); - } - - /* We don't know sign of `t', so be conservative and return false. */ - return false; -} - -/* Return true if (CODE OP0 OP1) is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -bool -tree_binary_nonnegative_warnv_p (enum tree_code code, tree type, tree op0, - tree op1, bool *strict_overflow_p, - int depth) -{ - if (TYPE_UNSIGNED (type)) - return true; - - switch (code) - { - case POINTER_PLUS_EXPR: - case PLUS_EXPR: - if (FLOAT_TYPE_P (type)) - return RECURSE (op0) && RECURSE (op1); - - /* zero_extend(x) + zero_extend(y) is non-negative if x and y are - both unsigned and at least 2 bits shorter than the result. */ - if (TREE_CODE (type) == INTEGER_TYPE - && TREE_CODE (op0) == NOP_EXPR - && TREE_CODE (op1) == NOP_EXPR) - { - tree inner1 = TREE_TYPE (TREE_OPERAND (op0, 0)); - tree inner2 = TREE_TYPE (TREE_OPERAND (op1, 0)); - if (TREE_CODE (inner1) == INTEGER_TYPE && TYPE_UNSIGNED (inner1) - && TREE_CODE (inner2) == INTEGER_TYPE && TYPE_UNSIGNED (inner2)) - { - unsigned int prec = MAX (TYPE_PRECISION (inner1), - TYPE_PRECISION (inner2)) + 1; - return prec < TYPE_PRECISION (type); - } - } - break; - - case MULT_EXPR: - if (FLOAT_TYPE_P (type) || TYPE_OVERFLOW_UNDEFINED (type)) - { - /* x * x is always non-negative for floating point x - or without overflow. */ - if (operand_equal_p (op0, op1, 0) - || (RECURSE (op0) && RECURSE (op1))) - { - if (ANY_INTEGRAL_TYPE_P (type) - && TYPE_OVERFLOW_UNDEFINED (type)) - *strict_overflow_p = true; - return true; - } - } - - /* zero_extend(x) * zero_extend(y) is non-negative if x and y are - both unsigned and their total bits is shorter than the result. */ - if (TREE_CODE (type) == INTEGER_TYPE - && (TREE_CODE (op0) == NOP_EXPR || TREE_CODE (op0) == INTEGER_CST) - && (TREE_CODE (op1) == NOP_EXPR || TREE_CODE (op1) == INTEGER_CST)) - { - tree inner0 = (TREE_CODE (op0) == NOP_EXPR) - ? TREE_TYPE (TREE_OPERAND (op0, 0)) - : TREE_TYPE (op0); - tree inner1 = (TREE_CODE (op1) == NOP_EXPR) - ? TREE_TYPE (TREE_OPERAND (op1, 0)) - : TREE_TYPE (op1); - - bool unsigned0 = TYPE_UNSIGNED (inner0); - bool unsigned1 = TYPE_UNSIGNED (inner1); - - if (TREE_CODE (op0) == INTEGER_CST) - unsigned0 = unsigned0 || tree_int_cst_sgn (op0) >= 0; - - if (TREE_CODE (op1) == INTEGER_CST) - unsigned1 = unsigned1 || tree_int_cst_sgn (op1) >= 0; - - if (TREE_CODE (inner0) == INTEGER_TYPE && unsigned0 - && TREE_CODE (inner1) == INTEGER_TYPE && unsigned1) - { - unsigned int precision0 = (TREE_CODE (op0) == INTEGER_CST) - ? tree_int_cst_min_precision (op0, UNSIGNED) - : TYPE_PRECISION (inner0); - - unsigned int precision1 = (TREE_CODE (op1) == INTEGER_CST) - ? tree_int_cst_min_precision (op1, UNSIGNED) - : TYPE_PRECISION (inner1); - - return precision0 + precision1 < TYPE_PRECISION (type); - } - } - return false; - - case BIT_AND_EXPR: - return RECURSE (op0) || RECURSE (op1); - - case MAX_EXPR: - /* Usually RECURSE (op0) || RECURSE (op1) but NaNs complicate - things. */ - if (tree_expr_maybe_nan_p (op0) || tree_expr_maybe_nan_p (op1)) - return RECURSE (op0) && RECURSE (op1); - return RECURSE (op0) || RECURSE (op1); - - case BIT_IOR_EXPR: - case BIT_XOR_EXPR: - case MIN_EXPR: - case RDIV_EXPR: - case TRUNC_DIV_EXPR: - case CEIL_DIV_EXPR: - case FLOOR_DIV_EXPR: - case ROUND_DIV_EXPR: - return RECURSE (op0) && RECURSE (op1); - - case TRUNC_MOD_EXPR: - return RECURSE (op0); - - case FLOOR_MOD_EXPR: - return RECURSE (op1); - - case CEIL_MOD_EXPR: - case ROUND_MOD_EXPR: - default: - return tree_simple_nonnegative_warnv_p (code, type); - } - - /* We don't know sign of `t', so be conservative and return false. */ - return false; -} - -/* Return true if T is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -bool -tree_single_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) -{ - if (TYPE_UNSIGNED (TREE_TYPE (t))) - return true; - - switch (TREE_CODE (t)) - { - case INTEGER_CST: - return tree_int_cst_sgn (t) >= 0; - - case REAL_CST: - return ! REAL_VALUE_NEGATIVE (TREE_REAL_CST (t)); - - case FIXED_CST: - return ! FIXED_VALUE_NEGATIVE (TREE_FIXED_CST (t)); - - case COND_EXPR: - return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); - - case SSA_NAME: - /* Limit the depth of recursion to avoid quadratic behavior. - This is expected to catch almost all occurrences in practice. - If this code misses important cases that unbounded recursion - would not, passes that need this information could be revised - to provide it through dataflow propagation. */ - return (!name_registered_for_update_p (t) - && depth < param_max_ssa_name_query_depth - && gimple_stmt_nonnegative_warnv_p (SSA_NAME_DEF_STMT (t), - strict_overflow_p, depth)); - - default: - return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); - } -} - -/* Return true if T is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -bool -tree_call_nonnegative_warnv_p (tree type, combined_fn fn, tree arg0, tree arg1, - bool *strict_overflow_p, int depth) -{ - switch (fn) - { - CASE_CFN_ACOS: - CASE_CFN_ACOSH: - CASE_CFN_CABS: - CASE_CFN_COSH: - CASE_CFN_ERFC: - CASE_CFN_EXP: - CASE_CFN_EXP10: - CASE_CFN_EXP2: - CASE_CFN_FABS: - CASE_CFN_FDIM: - CASE_CFN_HYPOT: - CASE_CFN_POW10: - CASE_CFN_FFS: - CASE_CFN_PARITY: - CASE_CFN_POPCOUNT: - CASE_CFN_CLZ: - CASE_CFN_CLRSB: - case CFN_BUILT_IN_BSWAP16: - case CFN_BUILT_IN_BSWAP32: - case CFN_BUILT_IN_BSWAP64: - case CFN_BUILT_IN_BSWAP128: - /* Always true. */ - return true; - - CASE_CFN_SQRT: - CASE_CFN_SQRT_FN: - /* sqrt(-0.0) is -0.0. */ - if (!HONOR_SIGNED_ZEROS (type)) - return true; - return RECURSE (arg0); - - CASE_CFN_ASINH: - CASE_CFN_ATAN: - CASE_CFN_ATANH: - CASE_CFN_CBRT: - CASE_CFN_CEIL: - CASE_CFN_CEIL_FN: - CASE_CFN_ERF: - CASE_CFN_EXPM1: - CASE_CFN_FLOOR: - CASE_CFN_FLOOR_FN: - CASE_CFN_FMOD: - CASE_CFN_FREXP: - CASE_CFN_ICEIL: - CASE_CFN_IFLOOR: - CASE_CFN_IRINT: - CASE_CFN_IROUND: - CASE_CFN_LCEIL: - CASE_CFN_LDEXP: - CASE_CFN_LFLOOR: - CASE_CFN_LLCEIL: - CASE_CFN_LLFLOOR: - CASE_CFN_LLRINT: - CASE_CFN_LLROUND: - CASE_CFN_LRINT: - CASE_CFN_LROUND: - CASE_CFN_MODF: - CASE_CFN_NEARBYINT: - CASE_CFN_NEARBYINT_FN: - CASE_CFN_RINT: - CASE_CFN_RINT_FN: - CASE_CFN_ROUND: - CASE_CFN_ROUND_FN: - CASE_CFN_ROUNDEVEN: - CASE_CFN_ROUNDEVEN_FN: - CASE_CFN_SCALB: - CASE_CFN_SCALBLN: - CASE_CFN_SCALBN: - CASE_CFN_SIGNBIT: - CASE_CFN_SIGNIFICAND: - CASE_CFN_SINH: - CASE_CFN_TANH: - CASE_CFN_TRUNC: - CASE_CFN_TRUNC_FN: - /* True if the 1st argument is nonnegative. */ - return RECURSE (arg0); - - CASE_CFN_FMAX: - CASE_CFN_FMAX_FN: - /* Usually RECURSE (arg0) || RECURSE (arg1) but NaNs complicate - things. In the presence of sNaNs, we're only guaranteed to be - non-negative if both operands are non-negative. In the presence - of qNaNs, we're non-negative if either operand is non-negative - and can't be a qNaN, or if both operands are non-negative. */ - if (tree_expr_maybe_signaling_nan_p (arg0) || - tree_expr_maybe_signaling_nan_p (arg1)) - return RECURSE (arg0) && RECURSE (arg1); - return RECURSE (arg0) ? (!tree_expr_maybe_nan_p (arg0) - || RECURSE (arg1)) - : (RECURSE (arg1) - && !tree_expr_maybe_nan_p (arg1)); - - CASE_CFN_FMIN: - CASE_CFN_FMIN_FN: - /* True if the 1st AND 2nd arguments are nonnegative. */ - return RECURSE (arg0) && RECURSE (arg1); - - CASE_CFN_COPYSIGN: - CASE_CFN_COPYSIGN_FN: - /* True if the 2nd argument is nonnegative. */ - return RECURSE (arg1); - - CASE_CFN_POWI: - /* True if the 1st argument is nonnegative or the second - argument is an even integer. */ - if (TREE_CODE (arg1) == INTEGER_CST - && (TREE_INT_CST_LOW (arg1) & 1) == 0) - return true; - return RECURSE (arg0); - - CASE_CFN_POW: - /* True if the 1st argument is nonnegative or the second - argument is an even integer valued real. */ - if (TREE_CODE (arg1) == REAL_CST) - { - REAL_VALUE_TYPE c; - HOST_WIDE_INT n; - - c = TREE_REAL_CST (arg1); - n = real_to_integer (&c); - if ((n & 1) == 0) - { - REAL_VALUE_TYPE cint; - real_from_integer (&cint, VOIDmode, n, SIGNED); - if (real_identical (&c, &cint)) - return true; - } - } - return RECURSE (arg0); - - default: - break; - } - return tree_simple_nonnegative_warnv_p (CALL_EXPR, type); -} - -/* Return true if T is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -static bool -tree_invalid_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) -{ - enum tree_code code = TREE_CODE (t); - if (TYPE_UNSIGNED (TREE_TYPE (t))) - return true; - - switch (code) - { - case TARGET_EXPR: - { - tree temp = TARGET_EXPR_SLOT (t); - t = TARGET_EXPR_INITIAL (t); - - /* If the initializer is non-void, then it's a normal expression - that will be assigned to the slot. */ - if (!VOID_TYPE_P (t)) - return RECURSE (t); - - /* Otherwise, the initializer sets the slot in some way. One common - way is an assignment statement at the end of the initializer. */ - while (1) - { - if (TREE_CODE (t) == BIND_EXPR) - t = expr_last (BIND_EXPR_BODY (t)); - else if (TREE_CODE (t) == TRY_FINALLY_EXPR - || TREE_CODE (t) == TRY_CATCH_EXPR) - t = expr_last (TREE_OPERAND (t, 0)); - else if (TREE_CODE (t) == STATEMENT_LIST) - t = expr_last (t); - else - break; - } - if (TREE_CODE (t) == MODIFY_EXPR - && TREE_OPERAND (t, 0) == temp) - return RECURSE (TREE_OPERAND (t, 1)); - - return false; - } - - case CALL_EXPR: - { - tree arg0 = call_expr_nargs (t) > 0 ? CALL_EXPR_ARG (t, 0) : NULL_TREE; - tree arg1 = call_expr_nargs (t) > 1 ? CALL_EXPR_ARG (t, 1) : NULL_TREE; - - return tree_call_nonnegative_warnv_p (TREE_TYPE (t), - get_call_combined_fn (t), - arg0, - arg1, - strict_overflow_p, depth); - } - case COMPOUND_EXPR: - case MODIFY_EXPR: - return RECURSE (TREE_OPERAND (t, 1)); - - case BIND_EXPR: - return RECURSE (expr_last (TREE_OPERAND (t, 1))); - - case SAVE_EXPR: - return RECURSE (TREE_OPERAND (t, 0)); - - default: - return tree_simple_nonnegative_warnv_p (TREE_CODE (t), TREE_TYPE (t)); - } -} - -#undef RECURSE -#undef tree_expr_nonnegative_warnv_p - -/* Return true if T is known to be non-negative. If the return - value is based on the assumption that signed overflow is undefined, - set *STRICT_OVERFLOW_P to true; otherwise, don't change - *STRICT_OVERFLOW_P. DEPTH is the current nesting depth of the query. */ - -bool -tree_expr_nonnegative_warnv_p (tree t, bool *strict_overflow_p, int depth) -{ - enum tree_code code; - if (t == error_mark_node) - return false; - - code = TREE_CODE (t); - switch (TREE_CODE_CLASS (code)) - { - case tcc_binary: - case tcc_comparison: - return tree_binary_nonnegative_warnv_p (TREE_CODE (t), - TREE_TYPE (t), - TREE_OPERAND (t, 0), - TREE_OPERAND (t, 1), - strict_overflow_p, depth); - - case tcc_unary: - return tree_unary_nonnegative_warnv_p (TREE_CODE (t), - TREE_TYPE (t), - TREE_OPERAND (t, 0), - strict_overflow_p, depth); - - case tcc_constant: - case tcc_declaration: - case tcc_reference: - return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); - - default: - break; - } - - switch (code) - { - case TRUTH_AND_EXPR: - case TRUTH_OR_EXPR: - case TRUTH_XOR_EXPR: - return tree_binary_nonnegative_warnv_p (TREE_CODE (t), - TREE_TYPE (t), - TREE_OPERAND (t, 0), - TREE_OPERAND (t, 1), - strict_overflow_p, depth); - case TRUTH_NOT_EXPR: - return tree_unary_nonnegative_warnv_p (TREE_CODE (t), - TREE_TYPE (t), - TREE_OPERAND (t, 0), - strict_overflow_p, depth); - - case COND_EXPR: - case CONSTRUCTOR: - case OBJ_TYPE_REF: - case ASSERT_EXPR: - case ADDR_EXPR: - case WITH_SIZE_EXPR: - case SSA_NAME: - return tree_single_nonnegative_warnv_p (t, strict_overflow_p, depth); - - default: - return tree_invalid_nonnegative_warnv_p (t, strict_overflow_p, depth); - } -} - -/* Return true if `t' is known to be non-negative. Handle warnings - about undefined signed overflow. */ - -bool -tree_expr_nonnegative_p (tree t) -{ - bool ret, strict_overflow_p; - - strict_overflow_p = false; - ret = tree_expr_nonnegative_warnv_p (t, &strict_overflow_p); - if (strict_overflow_p) - fold_overflow_warning (("assuming signed overflow does not occur when " - "determining that expression is always " - "non-negative"), - WARN_STRICT_OVERFLOW_MISC); - return ret; -} - - -/* Return true when (CODE OP0) is an address and is known to be nonzero. - For floating point we further ensure that T is not denormal. - Similar logic is present in nonzero_address in rtlanal.h. - - If the return value is based on the assumption that signed overflow - is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't - change *STRICT_OVERFLOW_P. */ - -bool -tree_unary_nonzero_warnv_p (enum tree_code code, tree type, tree op0, - bool *strict_overflow_p) -{ - switch (code) - { - case ABS_EXPR: - return tree_expr_nonzero_warnv_p (op0, - strict_overflow_p); - - case NOP_EXPR: - { - tree inner_type = TREE_TYPE (op0); - tree outer_type = type; - - return (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type) - && tree_expr_nonzero_warnv_p (op0, - strict_overflow_p)); - } - break; - - case NON_LVALUE_EXPR: - return tree_expr_nonzero_warnv_p (op0, - strict_overflow_p); - - default: - break; - } - - return false; -} - -/* Return true when (CODE OP0 OP1) is an address and is known to be nonzero. - For floating point we further ensure that T is not denormal. - Similar logic is present in nonzero_address in rtlanal.h. - - If the return value is based on the assumption that signed overflow - is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't - change *STRICT_OVERFLOW_P. */ - -bool -tree_binary_nonzero_warnv_p (enum tree_code code, - tree type, - tree op0, - tree op1, bool *strict_overflow_p) -{ - bool sub_strict_overflow_p; - switch (code) - { - case POINTER_PLUS_EXPR: - case PLUS_EXPR: - if (ANY_INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_UNDEFINED (type)) - { - /* With the presence of negative values it is hard - to say something. */ - sub_strict_overflow_p = false; - if (!tree_expr_nonnegative_warnv_p (op0, - &sub_strict_overflow_p) - || !tree_expr_nonnegative_warnv_p (op1, - &sub_strict_overflow_p)) - return false; - /* One of operands must be positive and the other non-negative. */ - /* We don't set *STRICT_OVERFLOW_P here: even if this value - overflows, on a twos-complement machine the sum of two - nonnegative numbers can never be zero. */ - return (tree_expr_nonzero_warnv_p (op0, - strict_overflow_p) - || tree_expr_nonzero_warnv_p (op1, - strict_overflow_p)); - } - break; - - case MULT_EXPR: - if (TYPE_OVERFLOW_UNDEFINED (type)) - { - if (tree_expr_nonzero_warnv_p (op0, - strict_overflow_p) - && tree_expr_nonzero_warnv_p (op1, - strict_overflow_p)) - { - *strict_overflow_p = true; - return true; - } - } - break; - - case MIN_EXPR: - sub_strict_overflow_p = false; - if (tree_expr_nonzero_warnv_p (op0, - &sub_strict_overflow_p) - && tree_expr_nonzero_warnv_p (op1, - &sub_strict_overflow_p)) - { - if (sub_strict_overflow_p) - *strict_overflow_p = true; - } - break; - - case MAX_EXPR: - sub_strict_overflow_p = false; - if (tree_expr_nonzero_warnv_p (op0, - &sub_strict_overflow_p)) - { - if (sub_strict_overflow_p) - *strict_overflow_p = true; - - /* When both operands are nonzero, then MAX must be too. */ - if (tree_expr_nonzero_warnv_p (op1, - strict_overflow_p)) - return true; - - /* MAX where operand 0 is positive is positive. */ - return tree_expr_nonnegative_warnv_p (op0, - strict_overflow_p); - } - /* MAX where operand 1 is positive is positive. */ - else if (tree_expr_nonzero_warnv_p (op1, - &sub_strict_overflow_p) - && tree_expr_nonnegative_warnv_p (op1, - &sub_strict_overflow_p)) - { - if (sub_strict_overflow_p) - *strict_overflow_p = true; - return true; - } - break; - - case BIT_IOR_EXPR: - return (tree_expr_nonzero_warnv_p (op1, - strict_overflow_p) - || tree_expr_nonzero_warnv_p (op0, - strict_overflow_p)); - - default: - break; - } - - return false; -} - -/* Return true when T is an address and is known to be nonzero. - For floating point we further ensure that T is not denormal. - Similar logic is present in nonzero_address in rtlanal.h. - - If the return value is based on the assumption that signed overflow - is undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't - change *STRICT_OVERFLOW_P. */ - -bool -tree_single_nonzero_warnv_p (tree t, bool *strict_overflow_p) -{ - bool sub_strict_overflow_p; - switch (TREE_CODE (t)) - { - case INTEGER_CST: - return !integer_zerop (t); - - case ADDR_EXPR: - { - tree base = TREE_OPERAND (t, 0); - - if (!DECL_P (base)) - base = get_base_address (base); - - if (base && TREE_CODE (base) == TARGET_EXPR) - base = TARGET_EXPR_SLOT (base); - - if (!base) - return false; - - /* For objects in symbol table check if we know they are non-zero. - Don't do anything for variables and functions before symtab is built; - it is quite possible that they will be declared weak later. */ - int nonzero_addr = maybe_nonzero_address (base); - if (nonzero_addr >= 0) - return nonzero_addr; - - /* Constants are never weak. */ - if (CONSTANT_CLASS_P (base)) - return true; - - return false; - } - - case COND_EXPR: - sub_strict_overflow_p = false; - if (tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 1), - &sub_strict_overflow_p) - && tree_expr_nonzero_warnv_p (TREE_OPERAND (t, 2), - &sub_strict_overflow_p)) - { - if (sub_strict_overflow_p) - *strict_overflow_p = true; - return true; - } - break; - - case SSA_NAME: - if (!INTEGRAL_TYPE_P (TREE_TYPE (t))) - break; - return expr_not_equal_to (t, wi::zero (TYPE_PRECISION (TREE_TYPE (t)))); - - default: - break; - } - return false; -} - -#define integer_valued_real_p(X) \ - _Pragma ("GCC error \"Use RECURSE for recursive calls\"") 0 - -#define RECURSE(X) \ - ((integer_valued_real_p) (X, depth + 1)) - -/* Return true if the floating point result of (CODE OP0) has an - integer value. We also allow +Inf, -Inf and NaN to be considered - integer values. Return false for signaling NaN. - - DEPTH is the current nesting depth of the query. */ - -bool -integer_valued_real_unary_p (tree_code code, tree op0, int depth) -{ - switch (code) - { - case FLOAT_EXPR: - return true; - - case ABS_EXPR: - return RECURSE (op0); - - CASE_CONVERT: - { - tree type = TREE_TYPE (op0); - if (TREE_CODE (type) == INTEGER_TYPE) - return true; - if (TREE_CODE (type) == REAL_TYPE) - return RECURSE (op0); - break; - } - - default: - break; - } - return false; -} - -/* Return true if the floating point result of (CODE OP0 OP1) has an - integer value. We also allow +Inf, -Inf and NaN to be considered - integer values. Return false for signaling NaN. - - DEPTH is the current nesting depth of the query. */ - -bool -integer_valued_real_binary_p (tree_code code, tree op0, tree op1, int depth) -{ - switch (code) - { - case PLUS_EXPR: - case MINUS_EXPR: - case MULT_EXPR: - case MIN_EXPR: - case MAX_EXPR: - return RECURSE (op0) && RECURSE (op1); - - default: - break; - } - return false; -} - -/* Return true if the floating point result of calling FNDECL with arguments - ARG0 and ARG1 has an integer value. We also allow +Inf, -Inf and NaN to be - considered integer values. Return false for signaling NaN. If FNDECL - takes fewer than 2 arguments, the remaining ARGn are null. - - DEPTH is the current nesting depth of the query. */ - -bool -integer_valued_real_call_p (combined_fn fn, tree arg0, tree arg1, int depth) -{ - switch (fn) - { - CASE_CFN_CEIL: - CASE_CFN_CEIL_FN: - CASE_CFN_FLOOR: - CASE_CFN_FLOOR_FN: - CASE_CFN_NEARBYINT: - CASE_CFN_NEARBYINT_FN: - CASE_CFN_RINT: - CASE_CFN_RINT_FN: - CASE_CFN_ROUND: - CASE_CFN_ROUND_FN: - CASE_CFN_ROUNDEVEN: - CASE_CFN_ROUNDEVEN_FN: - CASE_CFN_TRUNC: - CASE_CFN_TRUNC_FN: - return true; - - CASE_CFN_FMIN: - CASE_CFN_FMIN_FN: - CASE_CFN_FMAX: - CASE_CFN_FMAX_FN: - return RECURSE (arg0) && RECURSE (arg1); - - default: - break; - } - return false; -} - -/* Return true if the floating point expression T (a GIMPLE_SINGLE_RHS) - has an integer value. We also allow +Inf, -Inf and NaN to be - considered integer values. Return false for signaling NaN. - - DEPTH is the current nesting depth of the query. */ - -bool -integer_valued_real_single_p (tree t, int depth) -{ - switch (TREE_CODE (t)) - { - case REAL_CST: - return real_isinteger (TREE_REAL_CST_PTR (t), TYPE_MODE (TREE_TYPE (t))); - - case COND_EXPR: - return RECURSE (TREE_OPERAND (t, 1)) && RECURSE (TREE_OPERAND (t, 2)); - - case SSA_NAME: - /* Limit the depth of recursion to avoid quadratic behavior. - This is expected to catch almost all occurrences in practice. - If this code misses important cases that unbounded recursion - would not, passes that need this information could be revised - to provide it through dataflow propagation. */ - return (!name_registered_for_update_p (t) - && depth < param_max_ssa_name_query_depth - && gimple_stmt_integer_valued_real_p (SSA_NAME_DEF_STMT (t), - depth)); - - default: - break; - } - return false; -} - -/* Return true if the floating point expression T (a GIMPLE_INVALID_RHS) - has an integer value. We also allow +Inf, -Inf and NaN to be - considered integer values. Return false for signaling NaN. - - DEPTH is the current nesting depth of the query. */ - -static bool -integer_valued_real_invalid_p (tree t, int depth) -{ - switch (TREE_CODE (t)) - { - case COMPOUND_EXPR: - case MODIFY_EXPR: - case BIND_EXPR: - return RECURSE (TREE_OPERAND (t, 1)); - - case SAVE_EXPR: - return RECURSE (TREE_OPERAND (t, 0)); - - default: - break; - } - return false; -} - -#undef RECURSE -#undef integer_valued_real_p - -/* Return true if the floating point expression T has an integer value. - We also allow +Inf, -Inf and NaN to be considered integer values. - Return false for signaling NaN. - - DEPTH is the current nesting depth of the query. */ - -bool -integer_valued_real_p (tree t, int depth) -{ - if (t == error_mark_node) - return false; - - STRIP_ANY_LOCATION_WRAPPER (t); - - tree_code code = TREE_CODE (t); - switch (TREE_CODE_CLASS (code)) - { - case tcc_binary: - case tcc_comparison: - return integer_valued_real_binary_p (code, TREE_OPERAND (t, 0), - TREE_OPERAND (t, 1), depth); - - case tcc_unary: - return integer_valued_real_unary_p (code, TREE_OPERAND (t, 0), depth); - - case tcc_constant: - case tcc_declaration: - case tcc_reference: - return integer_valued_real_single_p (t, depth); - - default: - break; - } - - switch (code) - { - case COND_EXPR: - case SSA_NAME: - return integer_valued_real_single_p (t, depth); - - case CALL_EXPR: - { - tree arg0 = (call_expr_nargs (t) > 0 - ? CALL_EXPR_ARG (t, 0) - : NULL_TREE); - tree arg1 = (call_expr_nargs (t) > 1 - ? CALL_EXPR_ARG (t, 1) - : NULL_TREE); - return integer_valued_real_call_p (get_call_combined_fn (t), - arg0, arg1, depth); - } - - default: - return integer_valued_real_invalid_p (t, depth); - } -} - -/* Given the components of a binary expression CODE, TYPE, OP0 and OP1, - attempt to fold the expression to a constant without modifying TYPE, - OP0 or OP1. - - If the expression could be simplified to a constant, then return - the constant. If the expression would not be simplified to a - constant, then return NULL_TREE. */ - -tree -fold_binary_to_constant (enum tree_code code, tree type, tree op0, tree op1) -{ - tree tem = fold_binary (code, type, op0, op1); - return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; -} - -/* Given the components of a unary expression CODE, TYPE and OP0, - attempt to fold the expression to a constant without modifying - TYPE or OP0. - - If the expression could be simplified to a constant, then return - the constant. If the expression would not be simplified to a - constant, then return NULL_TREE. */ - -tree -fold_unary_to_constant (enum tree_code code, tree type, tree op0) -{ - tree tem = fold_unary (code, type, op0); - return (tem && TREE_CONSTANT (tem)) ? tem : NULL_TREE; -} - -/* If EXP represents referencing an element in a constant string - (either via pointer arithmetic or array indexing), return the - tree representing the value accessed, otherwise return NULL. */ - -tree -fold_read_from_constant_string (tree exp) -{ - if ((TREE_CODE (exp) == INDIRECT_REF - || TREE_CODE (exp) == ARRAY_REF) - && TREE_CODE (TREE_TYPE (exp)) == INTEGER_TYPE) - { - tree exp1 = TREE_OPERAND (exp, 0); - tree index; - tree string; - location_t loc = EXPR_LOCATION (exp); - - if (TREE_CODE (exp) == INDIRECT_REF) - string = string_constant (exp1, &index, NULL, NULL); - else - { - tree low_bound = array_ref_low_bound (exp); - index = fold_convert_loc (loc, sizetype, TREE_OPERAND (exp, 1)); - - /* Optimize the special-case of a zero lower bound. - - We convert the low_bound to sizetype to avoid some problems - with constant folding. (E.g. suppose the lower bound is 1, - and its mode is QI. Without the conversion,l (ARRAY - +(INDEX-(unsigned char)1)) becomes ((ARRAY+(-(unsigned char)1)) - +INDEX), which becomes (ARRAY+255+INDEX). Oops!) */ - if (! integer_zerop (low_bound)) - index = size_diffop_loc (loc, index, - fold_convert_loc (loc, sizetype, low_bound)); - - string = exp1; - } - - scalar_int_mode char_mode; - if (string - && TYPE_MODE (TREE_TYPE (exp)) == TYPE_MODE (TREE_TYPE (TREE_TYPE (string))) - && TREE_CODE (string) == STRING_CST - && tree_fits_uhwi_p (index) - && compare_tree_int (index, TREE_STRING_LENGTH (string)) < 0 - && is_int_mode (TYPE_MODE (TREE_TYPE (TREE_TYPE (string))), - &char_mode) - && GET_MODE_SIZE (char_mode) == 1) - return build_int_cst_type (TREE_TYPE (exp), - (TREE_STRING_POINTER (string) - [TREE_INT_CST_LOW (index)])); - } - return NULL; -} - -/* Folds a read from vector element at IDX of vector ARG. */ - -tree -fold_read_from_vector (tree arg, poly_uint64 idx) -{ - unsigned HOST_WIDE_INT i; - if (known_lt (idx, TYPE_VECTOR_SUBPARTS (TREE_TYPE (arg))) - && known_ge (idx, 0u) - && idx.is_constant (&i)) - { - if (TREE_CODE (arg) == VECTOR_CST) - return VECTOR_CST_ELT (arg, i); - else if (TREE_CODE (arg) == CONSTRUCTOR) - { - if (CONSTRUCTOR_NELTS (arg) - && VECTOR_TYPE_P (TREE_TYPE (CONSTRUCTOR_ELT (arg, 0)->value))) - return NULL_TREE; - if (i >= CONSTRUCTOR_NELTS (arg)) - return build_zero_cst (TREE_TYPE (TREE_TYPE (arg))); - return CONSTRUCTOR_ELT (arg, i)->value; - } - } - return NULL_TREE; -} - -/* Return the tree for neg (ARG0) when ARG0 is known to be either - an integer constant, real, or fixed-point constant. - - TYPE is the type of the result. */ - -static tree -fold_negate_const (tree arg0, tree type) -{ - tree t = NULL_TREE; - - switch (TREE_CODE (arg0)) - { - case REAL_CST: - t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); - break; - - case FIXED_CST: - { - FIXED_VALUE_TYPE f; - bool overflow_p = fixed_arithmetic (&f, NEGATE_EXPR, - &(TREE_FIXED_CST (arg0)), NULL, - TYPE_SATURATING (type)); - t = build_fixed (type, f); - /* Propagate overflow flags. */ - if (overflow_p | TREE_OVERFLOW (arg0)) - TREE_OVERFLOW (t) = 1; - break; - } - - default: - if (poly_int_tree_p (arg0)) - { - wi::overflow_type overflow; - poly_wide_int res = wi::neg (wi::to_poly_wide (arg0), &overflow); - t = force_fit_type (type, res, 1, - (overflow && ! TYPE_UNSIGNED (type)) - || TREE_OVERFLOW (arg0)); - break; - } - - gcc_unreachable (); - } - - return t; -} - -/* Return the tree for abs (ARG0) when ARG0 is known to be either - an integer constant or real constant. - - TYPE is the type of the result. */ - -tree -fold_abs_const (tree arg0, tree type) -{ - tree t = NULL_TREE; - - switch (TREE_CODE (arg0)) - { - case INTEGER_CST: - { - /* If the value is unsigned or non-negative, then the absolute value - is the same as the ordinary value. */ - wide_int val = wi::to_wide (arg0); - wi::overflow_type overflow = wi::OVF_NONE; - if (!wi::neg_p (val, TYPE_SIGN (TREE_TYPE (arg0)))) - ; - - /* If the value is negative, then the absolute value is - its negation. */ - else - val = wi::neg (val, &overflow); - - /* Force to the destination type, set TREE_OVERFLOW for signed - TYPE only. */ - t = force_fit_type (type, val, 1, overflow | TREE_OVERFLOW (arg0)); - } - break; - - case REAL_CST: - if (REAL_VALUE_NEGATIVE (TREE_REAL_CST (arg0))) - t = build_real (type, real_value_negate (&TREE_REAL_CST (arg0))); - else - t = arg0; - break; - - default: - gcc_unreachable (); - } - - return t; -} - -/* Return the tree for not (ARG0) when ARG0 is known to be an integer - constant. TYPE is the type of the result. */ - -static tree -fold_not_const (const_tree arg0, tree type) -{ - gcc_assert (TREE_CODE (arg0) == INTEGER_CST); - - return force_fit_type (type, ~wi::to_wide (arg0), 0, TREE_OVERFLOW (arg0)); -} - -/* Given CODE, a relational operator, the target type, TYPE and two - constant operands OP0 and OP1, return the result of the - relational operation. If the result is not a compile time - constant, then return NULL_TREE. */ - -static tree -fold_relational_const (enum tree_code code, tree type, tree op0, tree op1) -{ - int result, invert; - - /* From here on, the only cases we handle are when the result is - known to be a constant. */ - - if (TREE_CODE (op0) == REAL_CST && TREE_CODE (op1) == REAL_CST) - { - const REAL_VALUE_TYPE *c0 = TREE_REAL_CST_PTR (op0); - const REAL_VALUE_TYPE *c1 = TREE_REAL_CST_PTR (op1); - - /* Handle the cases where either operand is a NaN. */ - if (real_isnan (c0) || real_isnan (c1)) - { - switch (code) - { - case EQ_EXPR: - case ORDERED_EXPR: - result = 0; - break; - - case NE_EXPR: - case UNORDERED_EXPR: - case UNLT_EXPR: - case UNLE_EXPR: - case UNGT_EXPR: - case UNGE_EXPR: - case UNEQ_EXPR: - result = 1; - break; - - case LT_EXPR: - case LE_EXPR: - case GT_EXPR: - case GE_EXPR: - case LTGT_EXPR: - if (flag_trapping_math) - return NULL_TREE; - result = 0; - break; - - default: - gcc_unreachable (); - } - - return constant_boolean_node (result, type); - } - - return constant_boolean_node (real_compare (code, c0, c1), type); - } - - if (TREE_CODE (op0) == FIXED_CST && TREE_CODE (op1) == FIXED_CST) - { - const FIXED_VALUE_TYPE *c0 = TREE_FIXED_CST_PTR (op0); - const FIXED_VALUE_TYPE *c1 = TREE_FIXED_CST_PTR (op1); - return constant_boolean_node (fixed_compare (code, c0, c1), type); - } - - /* Handle equality/inequality of complex constants. */ - if (TREE_CODE (op0) == COMPLEX_CST && TREE_CODE (op1) == COMPLEX_CST) - { - tree rcond = fold_relational_const (code, type, - TREE_REALPART (op0), - TREE_REALPART (op1)); - tree icond = fold_relational_const (code, type, - TREE_IMAGPART (op0), - TREE_IMAGPART (op1)); - if (code == EQ_EXPR) - return fold_build2 (TRUTH_ANDIF_EXPR, type, rcond, icond); - else if (code == NE_EXPR) - return fold_build2 (TRUTH_ORIF_EXPR, type, rcond, icond); - else - return NULL_TREE; - } - - if (TREE_CODE (op0) == VECTOR_CST && TREE_CODE (op1) == VECTOR_CST) - { - if (!VECTOR_TYPE_P (type)) - { - /* Have vector comparison with scalar boolean result. */ - gcc_assert ((code == EQ_EXPR || code == NE_EXPR) - && known_eq (VECTOR_CST_NELTS (op0), - VECTOR_CST_NELTS (op1))); - unsigned HOST_WIDE_INT nunits; - if (!VECTOR_CST_NELTS (op0).is_constant (&nunits)) - return NULL_TREE; - for (unsigned i = 0; i < nunits; i++) - { - tree elem0 = VECTOR_CST_ELT (op0, i); - tree elem1 = VECTOR_CST_ELT (op1, i); - tree tmp = fold_relational_const (EQ_EXPR, type, elem0, elem1); - if (tmp == NULL_TREE) - return NULL_TREE; - if (integer_zerop (tmp)) - return constant_boolean_node (code == NE_EXPR, type); - } - return constant_boolean_node (code == EQ_EXPR, type); - } - tree_vector_builder elts; - if (!elts.new_binary_operation (type, op0, op1, false)) - return NULL_TREE; - unsigned int count = elts.encoded_nelts (); - for (unsigned i = 0; i < count; i++) - { - tree elem_type = TREE_TYPE (type); - tree elem0 = VECTOR_CST_ELT (op0, i); - tree elem1 = VECTOR_CST_ELT (op1, i); - - tree tem = fold_relational_const (code, elem_type, - elem0, elem1); - - if (tem == NULL_TREE) - return NULL_TREE; - - elts.quick_push (build_int_cst (elem_type, - integer_zerop (tem) ? 0 : -1)); - } - - return elts.build (); - } - - /* From here on we only handle LT, LE, GT, GE, EQ and NE. - - To compute GT, swap the arguments and do LT. - To compute GE, do LT and invert the result. - To compute LE, swap the arguments, do LT and invert the result. - To compute NE, do EQ and invert the result. - - Therefore, the code below must handle only EQ and LT. */ - - if (code == LE_EXPR || code == GT_EXPR) - { - std::swap (op0, op1); - code = swap_tree_comparison (code); - } - - /* Note that it is safe to invert for real values here because we - have already handled the one case that it matters. */ - - invert = 0; - if (code == NE_EXPR || code == GE_EXPR) - { - invert = 1; - code = invert_tree_comparison (code, false); - } - - /* Compute a result for LT or EQ if args permit; - Otherwise return T. */ - if (TREE_CODE (op0) == INTEGER_CST && TREE_CODE (op1) == INTEGER_CST) - { - if (code == EQ_EXPR) - result = tree_int_cst_equal (op0, op1); - else - result = tree_int_cst_lt (op0, op1); - } - else - return NULL_TREE; - - if (invert) - result ^= 1; - return constant_boolean_node (result, type); -} - -/* If necessary, return a CLEANUP_POINT_EXPR for EXPR with the - indicated TYPE. If no CLEANUP_POINT_EXPR is necessary, return EXPR - itself. */ - -tree -fold_build_cleanup_point_expr (tree type, tree expr) -{ - /* If the expression does not have side effects then we don't have to wrap - it with a cleanup point expression. */ - if (!TREE_SIDE_EFFECTS (expr)) - return expr; - - /* If the expression is a return, check to see if the expression inside the - return has no side effects or the right hand side of the modify expression - inside the return. If either don't have side effects set we don't need to - wrap the expression in a cleanup point expression. Note we don't check the - left hand side of the modify because it should always be a return decl. */ - if (TREE_CODE (expr) == RETURN_EXPR) - { - tree op = TREE_OPERAND (expr, 0); - if (!op || !TREE_SIDE_EFFECTS (op)) - return expr; - op = TREE_OPERAND (op, 1); - if (!TREE_SIDE_EFFECTS (op)) - return expr; - } - - return build1_loc (EXPR_LOCATION (expr), CLEANUP_POINT_EXPR, type, expr); -} - -/* Given a pointer value OP0 and a type TYPE, return a simplified version - of an indirection through OP0, or NULL_TREE if no simplification is - possible. */ - -tree -fold_indirect_ref_1 (location_t loc, tree type, tree op0) -{ - tree sub = op0; - tree subtype; - poly_uint64 const_op01; - - STRIP_NOPS (sub); - subtype = TREE_TYPE (sub); - if (!POINTER_TYPE_P (subtype) - || TYPE_REF_CAN_ALIAS_ALL (TREE_TYPE (op0))) - return NULL_TREE; - - if (TREE_CODE (sub) == ADDR_EXPR) - { - tree op = TREE_OPERAND (sub, 0); - tree optype = TREE_TYPE (op); - - /* *&CONST_DECL -> to the value of the const decl. */ - if (TREE_CODE (op) == CONST_DECL) - return DECL_INITIAL (op); - /* *&p => p; make sure to handle *&"str"[cst] here. */ - if (type == optype) - { - tree fop = fold_read_from_constant_string (op); - if (fop) - return fop; - else - return op; - } - /* *(foo *)&fooarray => fooarray[0] */ - else if (TREE_CODE (optype) == ARRAY_TYPE - && type == TREE_TYPE (optype) - && (!in_gimple_form - || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) - { - tree type_domain = TYPE_DOMAIN (optype); - tree min_val = size_zero_node; - if (type_domain && TYPE_MIN_VALUE (type_domain)) - min_val = TYPE_MIN_VALUE (type_domain); - if (in_gimple_form - && TREE_CODE (min_val) != INTEGER_CST) - return NULL_TREE; - return build4_loc (loc, ARRAY_REF, type, op, min_val, - NULL_TREE, NULL_TREE); - } - /* *(foo *)&complexfoo => __real__ complexfoo */ - else if (TREE_CODE (optype) == COMPLEX_TYPE - && type == TREE_TYPE (optype)) - return fold_build1_loc (loc, REALPART_EXPR, type, op); - /* *(foo *)&vectorfoo => BIT_FIELD_REF<vectorfoo,...> */ - else if (VECTOR_TYPE_P (optype) - && type == TREE_TYPE (optype)) - { - tree part_width = TYPE_SIZE (type); - tree index = bitsize_int (0); - return fold_build3_loc (loc, BIT_FIELD_REF, type, op, part_width, - index); - } - } - - if (TREE_CODE (sub) == POINTER_PLUS_EXPR - && poly_int_tree_p (TREE_OPERAND (sub, 1), &const_op01)) - { - tree op00 = TREE_OPERAND (sub, 0); - tree op01 = TREE_OPERAND (sub, 1); - - STRIP_NOPS (op00); - if (TREE_CODE (op00) == ADDR_EXPR) - { - tree op00type; - op00 = TREE_OPERAND (op00, 0); - op00type = TREE_TYPE (op00); - - /* ((foo*)&vectorfoo)[1] => BIT_FIELD_REF<vectorfoo,...> */ - if (VECTOR_TYPE_P (op00type) - && type == TREE_TYPE (op00type) - /* POINTER_PLUS_EXPR second operand is sizetype, unsigned, - but we want to treat offsets with MSB set as negative. - For the code below negative offsets are invalid and - TYPE_SIZE of the element is something unsigned, so - check whether op01 fits into poly_int64, which implies - it is from 0 to INTTYPE_MAXIMUM (HOST_WIDE_INT), and - then just use poly_uint64 because we want to treat the - value as unsigned. */ - && tree_fits_poly_int64_p (op01)) - { - tree part_width = TYPE_SIZE (type); - poly_uint64 max_offset - = (tree_to_uhwi (part_width) / BITS_PER_UNIT - * TYPE_VECTOR_SUBPARTS (op00type)); - if (known_lt (const_op01, max_offset)) - { - tree index = bitsize_int (const_op01 * BITS_PER_UNIT); - return fold_build3_loc (loc, - BIT_FIELD_REF, type, op00, - part_width, index); - } - } - /* ((foo*)&complexfoo)[1] => __imag__ complexfoo */ - else if (TREE_CODE (op00type) == COMPLEX_TYPE - && type == TREE_TYPE (op00type)) - { - if (known_eq (wi::to_poly_offset (TYPE_SIZE_UNIT (type)), - const_op01)) - return fold_build1_loc (loc, IMAGPART_EXPR, type, op00); - } - /* ((foo *)&fooarray)[1] => fooarray[1] */ - else if (TREE_CODE (op00type) == ARRAY_TYPE - && type == TREE_TYPE (op00type)) - { - tree type_domain = TYPE_DOMAIN (op00type); - tree min_val = size_zero_node; - if (type_domain && TYPE_MIN_VALUE (type_domain)) - min_val = TYPE_MIN_VALUE (type_domain); - poly_uint64 type_size, index; - if (poly_int_tree_p (min_val) - && poly_int_tree_p (TYPE_SIZE_UNIT (type), &type_size) - && multiple_p (const_op01, type_size, &index)) - { - poly_offset_int off = index + wi::to_poly_offset (min_val); - op01 = wide_int_to_tree (sizetype, off); - return build4_loc (loc, ARRAY_REF, type, op00, op01, - NULL_TREE, NULL_TREE); - } - } - } - } - - /* *(foo *)fooarrptr => (*fooarrptr)[0] */ - if (TREE_CODE (TREE_TYPE (subtype)) == ARRAY_TYPE - && type == TREE_TYPE (TREE_TYPE (subtype)) - && (!in_gimple_form - || TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST)) - { - tree type_domain; - tree min_val = size_zero_node; - sub = build_fold_indirect_ref_loc (loc, sub); - type_domain = TYPE_DOMAIN (TREE_TYPE (sub)); - if (type_domain && TYPE_MIN_VALUE (type_domain)) - min_val = TYPE_MIN_VALUE (type_domain); - if (in_gimple_form - && TREE_CODE (min_val) != INTEGER_CST) - return NULL_TREE; - return build4_loc (loc, ARRAY_REF, type, sub, min_val, NULL_TREE, - NULL_TREE); - } - - return NULL_TREE; -} - -/* Builds an expression for an indirection through T, simplifying some - cases. */ - -tree -build_fold_indirect_ref_loc (location_t loc, tree t) -{ - tree type = TREE_TYPE (TREE_TYPE (t)); - tree sub = fold_indirect_ref_1 (loc, type, t); - - if (sub) - return sub; - - return build1_loc (loc, INDIRECT_REF, type, t); -} - -/* Given an INDIRECT_REF T, return either T or a simplified version. */ - -tree -fold_indirect_ref_loc (location_t loc, tree t) -{ - tree sub = fold_indirect_ref_1 (loc, TREE_TYPE (t), TREE_OPERAND (t, 0)); - - if (sub) - return sub; - else - return t; -} - -/* Strip non-trapping, non-side-effecting tree nodes from an expression - whose result is ignored. The type of the returned tree need not be - the same as the original expression. */ - -tree -fold_ignored_result (tree t) -{ - if (!TREE_SIDE_EFFECTS (t)) - return integer_zero_node; - - for (;;) - switch (TREE_CODE_CLASS (TREE_CODE (t))) - { - case tcc_unary: - t = TREE_OPERAND (t, 0); - break; - - case tcc_binary: - case tcc_comparison: - if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) - t = TREE_OPERAND (t, 0); - else if (!TREE_SIDE_EFFECTS (TREE_OPERAND (t, 0))) - t = TREE_OPERAND (t, 1); - else - return t; - break; - - case tcc_expression: - switch (TREE_CODE (t)) - { - case COMPOUND_EXPR: - if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1))) - return t; - t = TREE_OPERAND (t, 0); - break; - - case COND_EXPR: - if (TREE_SIDE_EFFECTS (TREE_OPERAND (t, 1)) - || TREE_SIDE_EFFECTS (TREE_OPERAND (t, 2))) - return t; - t = TREE_OPERAND (t, 0); - break; - - default: - return t; - } - break; - - default: - return t; - } -} - -/* Return the value of VALUE, rounded up to a multiple of DIVISOR. */ - -tree -round_up_loc (location_t loc, tree value, unsigned int divisor) -{ - tree div = NULL_TREE; - - if (divisor == 1) - return value; - - /* See if VALUE is already a multiple of DIVISOR. If so, we don't - have to do anything. Only do this when we are not given a const, - because in that case, this check is more expensive than just - doing it. */ - if (TREE_CODE (value) != INTEGER_CST) - { - div = build_int_cst (TREE_TYPE (value), divisor); - - if (multiple_of_p (TREE_TYPE (value), value, div)) - return value; - } - - /* If divisor is a power of two, simplify this to bit manipulation. */ - if (pow2_or_zerop (divisor)) - { - if (TREE_CODE (value) == INTEGER_CST) - { - wide_int val = wi::to_wide (value); - bool overflow_p; - - if ((val & (divisor - 1)) == 0) - return value; - - overflow_p = TREE_OVERFLOW (value); - val += divisor - 1; - val &= (int) -divisor; - if (val == 0) - overflow_p = true; - - return force_fit_type (TREE_TYPE (value), val, -1, overflow_p); - } - else - { - tree t; - - t = build_int_cst (TREE_TYPE (value), divisor - 1); - value = size_binop_loc (loc, PLUS_EXPR, value, t); - t = build_int_cst (TREE_TYPE (value), - (int) divisor); - value = size_binop_loc (loc, BIT_AND_EXPR, value, t); - } - } - else - { - if (!div) - div = build_int_cst (TREE_TYPE (value), divisor); - value = size_binop_loc (loc, CEIL_DIV_EXPR, value, div); - value = size_binop_loc (loc, MULT_EXPR, value, div); - } - - return value; -} - -/* Likewise, but round down. */ - -tree -round_down_loc (location_t loc, tree value, int divisor) -{ - tree div = NULL_TREE; - - gcc_assert (divisor > 0); - if (divisor == 1) - return value; - - /* See if VALUE is already a multiple of DIVISOR. If so, we don't - have to do anything. Only do this when we are not given a const, - because in that case, this check is more expensive than just - doing it. */ - if (TREE_CODE (value) != INTEGER_CST) - { - div = build_int_cst (TREE_TYPE (value), divisor); - - if (multiple_of_p (TREE_TYPE (value), value, div)) - return value; - } - - /* If divisor is a power of two, simplify this to bit manipulation. */ - if (pow2_or_zerop (divisor)) - { - tree t; - - t = build_int_cst (TREE_TYPE (value), -divisor); - value = size_binop_loc (loc, BIT_AND_EXPR, value, t); - } - else - { - if (!div) - div = build_int_cst (TREE_TYPE (value), divisor); - value = size_binop_loc (loc, FLOOR_DIV_EXPR, value, div); - value = size_binop_loc (loc, MULT_EXPR, value, div); - } - - return value; -} - -/* Returns the pointer to the base of the object addressed by EXP and - extracts the information about the offset of the access, storing it - to PBITPOS and POFFSET. */ - -static tree -split_address_to_core_and_offset (tree exp, - poly_int64_pod *pbitpos, tree *poffset) -{ - tree core; - machine_mode mode; - int unsignedp, reversep, volatilep; - poly_int64 bitsize; - location_t loc = EXPR_LOCATION (exp); - - if (TREE_CODE (exp) == ADDR_EXPR) - { - core = get_inner_reference (TREE_OPERAND (exp, 0), &bitsize, pbitpos, - poffset, &mode, &unsignedp, &reversep, - &volatilep); - core = build_fold_addr_expr_loc (loc, core); - } - else if (TREE_CODE (exp) == POINTER_PLUS_EXPR) - { - core = TREE_OPERAND (exp, 0); - STRIP_NOPS (core); - *pbitpos = 0; - *poffset = TREE_OPERAND (exp, 1); - if (poly_int_tree_p (*poffset)) - { - poly_offset_int tem - = wi::sext (wi::to_poly_offset (*poffset), - TYPE_PRECISION (TREE_TYPE (*poffset))); - tem <<= LOG2_BITS_PER_UNIT; - if (tem.to_shwi (pbitpos)) - *poffset = NULL_TREE; - } - } - else - { - core = exp; - *pbitpos = 0; - *poffset = NULL_TREE; - } - - return core; -} - -/* Returns true if addresses of E1 and E2 differ by a constant, false - otherwise. If they do, E1 - E2 is stored in *DIFF. */ - -bool -ptr_difference_const (tree e1, tree e2, poly_int64_pod *diff) -{ - tree core1, core2; - poly_int64 bitpos1, bitpos2; - tree toffset1, toffset2, tdiff, type; - - core1 = split_address_to_core_and_offset (e1, &bitpos1, &toffset1); - core2 = split_address_to_core_and_offset (e2, &bitpos2, &toffset2); - - poly_int64 bytepos1, bytepos2; - if (!multiple_p (bitpos1, BITS_PER_UNIT, &bytepos1) - || !multiple_p (bitpos2, BITS_PER_UNIT, &bytepos2) - || !operand_equal_p (core1, core2, 0)) - return false; - - if (toffset1 && toffset2) - { - type = TREE_TYPE (toffset1); - if (type != TREE_TYPE (toffset2)) - toffset2 = fold_convert (type, toffset2); - - tdiff = fold_build2 (MINUS_EXPR, type, toffset1, toffset2); - if (!cst_and_fits_in_hwi (tdiff)) - return false; - - *diff = int_cst_value (tdiff); - } - else if (toffset1 || toffset2) - { - /* If only one of the offsets is non-constant, the difference cannot - be a constant. */ - return false; - } - else - *diff = 0; - - *diff += bytepos1 - bytepos2; - return true; -} - -/* Return OFF converted to a pointer offset type suitable as offset for - POINTER_PLUS_EXPR. Use location LOC for this conversion. */ -tree -convert_to_ptrofftype_loc (location_t loc, tree off) -{ - if (ptrofftype_p (TREE_TYPE (off))) - return off; - return fold_convert_loc (loc, sizetype, off); -} - -/* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ -tree -fold_build_pointer_plus_loc (location_t loc, tree ptr, tree off) -{ - return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), - ptr, convert_to_ptrofftype_loc (loc, off)); -} - -/* Build and fold a POINTER_PLUS_EXPR at LOC offsetting PTR by OFF. */ -tree -fold_build_pointer_plus_hwi_loc (location_t loc, tree ptr, HOST_WIDE_INT off) -{ - return fold_build2_loc (loc, POINTER_PLUS_EXPR, TREE_TYPE (ptr), - ptr, size_int (off)); -} - -/* Return a pointer to a NUL-terminated string containing the sequence - of bytes corresponding to the representation of the object referred to - by SRC (or a subsequence of such bytes within it if SRC is a reference - to an initialized constant array plus some constant offset). - Set *STRSIZE the number of bytes in the constant sequence including - the terminating NUL byte. *STRSIZE is equal to sizeof(A) - OFFSET - where A is the array that stores the constant sequence that SRC points - to and OFFSET is the byte offset of SRC from the beginning of A. SRC - need not point to a string or even an array of characters but may point - to an object of any type. */ - -const char * -getbyterep (tree src, unsigned HOST_WIDE_INT *strsize) -{ - /* The offset into the array A storing the string, and A's byte size. */ - tree offset_node; - tree mem_size; - - if (strsize) - *strsize = 0; - - if (strsize) - src = byte_representation (src, &offset_node, &mem_size, NULL); - else - src = string_constant (src, &offset_node, &mem_size, NULL); - if (!src) - return NULL; - - unsigned HOST_WIDE_INT offset = 0; - if (offset_node != NULL_TREE) - { - if (!tree_fits_uhwi_p (offset_node)) - return NULL; - else - offset = tree_to_uhwi (offset_node); - } - - if (!tree_fits_uhwi_p (mem_size)) - return NULL; - - /* ARRAY_SIZE is the byte size of the array the constant sequence - is stored in and equal to sizeof A. INIT_BYTES is the number - of bytes in the constant sequence used to initialize the array, - including any embedded NULs as well as the terminating NUL (for - strings), but not including any trailing zeros/NULs past - the terminating one appended implicitly to a string literal to - zero out the remainder of the array it's stored in. For example, - given: - const char a[7] = "abc\0d"; - n = strlen (a + 1); - ARRAY_SIZE is 7, INIT_BYTES is 6, and OFFSET is 1. For a valid - (i.e., nul-terminated) string with no embedded nuls, INIT_BYTES - is equal to strlen (A) + 1. */ - const unsigned HOST_WIDE_INT array_size = tree_to_uhwi (mem_size); - unsigned HOST_WIDE_INT init_bytes = TREE_STRING_LENGTH (src); - const char *string = TREE_STRING_POINTER (src); - - /* Ideally this would turn into a gcc_checking_assert over time. */ - if (init_bytes > array_size) - init_bytes = array_size; - - if (init_bytes == 0 || offset >= array_size) - return NULL; - - if (strsize) - { - /* Compute and store the number of characters from the beginning - of the substring at OFFSET to the end, including the terminating - nul. Offsets past the initial length refer to null strings. */ - if (offset < init_bytes) - *strsize = init_bytes - offset; - else - *strsize = 1; - } - else - { - tree eltype = TREE_TYPE (TREE_TYPE (src)); - /* Support only properly NUL-terminated single byte strings. */ - if (tree_to_uhwi (TYPE_SIZE_UNIT (eltype)) != 1) - return NULL; - if (string[init_bytes - 1] != '\0') - return NULL; - } - - return offset < init_bytes ? string + offset : ""; -} - -/* Return a pointer to a NUL-terminated string corresponding to - the expression STR referencing a constant string, possibly - involving a constant offset. Return null if STR either doesn't - reference a constant string or if it involves a nonconstant - offset. */ - -const char * -c_getstr (tree str) -{ - return getbyterep (str, NULL); -} - -/* Given a tree T, compute which bits in T may be nonzero. */ - -wide_int -tree_nonzero_bits (const_tree t) -{ - switch (TREE_CODE (t)) - { - case INTEGER_CST: - return wi::to_wide (t); - case SSA_NAME: - return get_nonzero_bits (t); - case NON_LVALUE_EXPR: - case SAVE_EXPR: - return tree_nonzero_bits (TREE_OPERAND (t, 0)); - case BIT_AND_EXPR: - return wi::bit_and (tree_nonzero_bits (TREE_OPERAND (t, 0)), - tree_nonzero_bits (TREE_OPERAND (t, 1))); - case BIT_IOR_EXPR: - case BIT_XOR_EXPR: - return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 0)), - tree_nonzero_bits (TREE_OPERAND (t, 1))); - case COND_EXPR: - return wi::bit_or (tree_nonzero_bits (TREE_OPERAND (t, 1)), - tree_nonzero_bits (TREE_OPERAND (t, 2))); - CASE_CONVERT: - return wide_int::from (tree_nonzero_bits (TREE_OPERAND (t, 0)), - TYPE_PRECISION (TREE_TYPE (t)), - TYPE_SIGN (TREE_TYPE (TREE_OPERAND (t, 0)))); - case PLUS_EXPR: - if (INTEGRAL_TYPE_P (TREE_TYPE (t))) - { - wide_int nzbits1 = tree_nonzero_bits (TREE_OPERAND (t, 0)); - wide_int nzbits2 = tree_nonzero_bits (TREE_OPERAND (t, 1)); - if (wi::bit_and (nzbits1, nzbits2) == 0) - return wi::bit_or (nzbits1, nzbits2); - } - break; - case LSHIFT_EXPR: - if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) - { - tree type = TREE_TYPE (t); - wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0)); - wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1), - TYPE_PRECISION (type)); - return wi::neg_p (arg1) - ? wi::rshift (nzbits, -arg1, TYPE_SIGN (type)) - : wi::lshift (nzbits, arg1); - } - break; - case RSHIFT_EXPR: - if (TREE_CODE (TREE_OPERAND (t, 1)) == INTEGER_CST) - { - tree type = TREE_TYPE (t); - wide_int nzbits = tree_nonzero_bits (TREE_OPERAND (t, 0)); - wide_int arg1 = wi::to_wide (TREE_OPERAND (t, 1), - TYPE_PRECISION (type)); - return wi::neg_p (arg1) - ? wi::lshift (nzbits, -arg1) - : wi::rshift (nzbits, arg1, TYPE_SIGN (type)); - } - break; - default: - break; - } - - return wi::shwi (-1, TYPE_PRECISION (TREE_TYPE (t))); -} - -/* Helper function for address compare simplifications in match.pd. - OP0 and OP1 are ADDR_EXPR operands being compared by CODE. - BASE0, BASE1, OFF0 and OFF1 are set by the function. - GENERIC is true if GENERIC folding and false for GIMPLE folding. - Returns 0 if OP0 is known to be unequal to OP1 regardless of OFF{0,1}, - 1 if bases are known to be equal and OP0 cmp OP1 depends on OFF0 cmp OFF1, - and 2 if unknown. */ - -int -address_compare (tree_code code, tree type, tree op0, tree op1, - tree &base0, tree &base1, poly_int64 &off0, poly_int64 &off1, - bool generic) -{ - gcc_checking_assert (TREE_CODE (op0) == ADDR_EXPR); - gcc_checking_assert (TREE_CODE (op1) == ADDR_EXPR); - base0 = get_addr_base_and_unit_offset (TREE_OPERAND (op0, 0), &off0); - base1 = get_addr_base_and_unit_offset (TREE_OPERAND (op1, 0), &off1); - if (base0 && TREE_CODE (base0) == MEM_REF) - { - off0 += mem_ref_offset (base0).force_shwi (); - base0 = TREE_OPERAND (base0, 0); - } - if (base1 && TREE_CODE (base1) == MEM_REF) - { - off1 += mem_ref_offset (base1).force_shwi (); - base1 = TREE_OPERAND (base1, 0); - } - if (base0 == NULL_TREE || base1 == NULL_TREE) - return 2; - - int equal = 2; - /* Punt in GENERIC on variables with value expressions; - the value expressions might point to fields/elements - of other vars etc. */ - if (generic - && ((VAR_P (base0) && DECL_HAS_VALUE_EXPR_P (base0)) - || (VAR_P (base1) && DECL_HAS_VALUE_EXPR_P (base1)))) - return 2; - else if (decl_in_symtab_p (base0) && decl_in_symtab_p (base1)) - { - symtab_node *node0 = symtab_node::get_create (base0); - symtab_node *node1 = symtab_node::get_create (base1); - equal = node0->equal_address_to (node1); - } - else if ((DECL_P (base0) - || TREE_CODE (base0) == SSA_NAME - || TREE_CODE (base0) == STRING_CST) - && (DECL_P (base1) - || TREE_CODE (base1) == SSA_NAME - || TREE_CODE (base1) == STRING_CST)) - equal = (base0 == base1); - if (equal == 1) - { - if (code == EQ_EXPR - || code == NE_EXPR - /* If the offsets are equal we can ignore overflow. */ - || known_eq (off0, off1) - || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)) - /* Or if we compare using pointers to decls or strings. */ - || (POINTER_TYPE_P (type) - && (DECL_P (base0) || TREE_CODE (base0) == STRING_CST))) - return 1; - return 2; - } - if (equal != 0) - return equal; - if (code != EQ_EXPR && code != NE_EXPR) - return 2; - - HOST_WIDE_INT ioff0 = -1, ioff1 = -1; - off0.is_constant (&ioff0); - off1.is_constant (&ioff1); - if ((DECL_P (base0) && TREE_CODE (base1) == STRING_CST) - || (TREE_CODE (base0) == STRING_CST && DECL_P (base1)) - || (TREE_CODE (base0) == STRING_CST - && TREE_CODE (base1) == STRING_CST - && ioff0 >= 0 && ioff1 >= 0 - && ioff0 < TREE_STRING_LENGTH (base0) - && ioff1 < TREE_STRING_LENGTH (base1) - /* This is a too conservative test that the STRING_CSTs - will not end up being string-merged. */ - && strncmp (TREE_STRING_POINTER (base0) + ioff0, - TREE_STRING_POINTER (base1) + ioff1, - MIN (TREE_STRING_LENGTH (base0) - ioff0, - TREE_STRING_LENGTH (base1) - ioff1)) != 0)) - ; - else if (!DECL_P (base0) || !DECL_P (base1)) - return 2; - /* If this is a pointer comparison, ignore for now even - valid equalities where one pointer is the offset zero - of one object and the other to one past end of another one. */ - else if (!folding_initializer && !INTEGRAL_TYPE_P (type)) - ; - /* Assume that automatic variables can't be adjacent to global - variables. */ - else if (is_global_var (base0) != is_global_var (base1)) - ; - else - { - tree sz0 = DECL_SIZE_UNIT (base0); - tree sz1 = DECL_SIZE_UNIT (base1); - /* If sizes are unknown, e.g. VLA or not representable, punt. */ - if (!tree_fits_poly_int64_p (sz0) || !tree_fits_poly_int64_p (sz1)) - return 2; - - poly_int64 size0 = tree_to_poly_int64 (sz0); - poly_int64 size1 = tree_to_poly_int64 (sz1); - /* If one offset is pointing (or could be) to the beginning of one - object and the other is pointing to one past the last byte of the - other object, punt. */ - if (maybe_eq (off0, 0) && maybe_eq (off1, size1)) - equal = 2; - else if (maybe_eq (off1, 0) && maybe_eq (off0, size0)) - equal = 2; - /* If both offsets are the same, there are some cases we know that are - ok. Either if we know they aren't zero, or if we know both sizes - are no zero. */ - if (equal == 2 - && known_eq (off0, off1) - && (known_ne (off0, 0) - || (known_ne (size0, 0) && known_ne (size1, 0)))) - equal = 0; - } - return equal; -} - -#if CHECKING_P - -namespace selftest { - -/* Helper functions for writing tests of folding trees. */ - -/* Verify that the binary op (LHS CODE RHS) folds to CONSTANT. */ - -static void -assert_binop_folds_to_const (tree lhs, enum tree_code code, tree rhs, - tree constant) -{ - ASSERT_EQ (constant, fold_build2 (code, TREE_TYPE (lhs), lhs, rhs)); -} - -/* Verify that the binary op (LHS CODE RHS) folds to an NON_LVALUE_EXPR - wrapping WRAPPED_EXPR. */ - -static void -assert_binop_folds_to_nonlvalue (tree lhs, enum tree_code code, tree rhs, - tree wrapped_expr) -{ - tree result = fold_build2 (code, TREE_TYPE (lhs), lhs, rhs); - ASSERT_NE (wrapped_expr, result); - ASSERT_EQ (NON_LVALUE_EXPR, TREE_CODE (result)); - ASSERT_EQ (wrapped_expr, TREE_OPERAND (result, 0)); -} - -/* Verify that various arithmetic binary operations are folded - correctly. */ - -static void -test_arithmetic_folding () -{ - tree type = integer_type_node; - tree x = create_tmp_var_raw (type, "x"); - tree zero = build_zero_cst (type); - tree one = build_int_cst (type, 1); - - /* Addition. */ - /* 1 <-- (0 + 1) */ - assert_binop_folds_to_const (zero, PLUS_EXPR, one, - one); - assert_binop_folds_to_const (one, PLUS_EXPR, zero, - one); - - /* (nonlvalue)x <-- (x + 0) */ - assert_binop_folds_to_nonlvalue (x, PLUS_EXPR, zero, - x); - - /* Subtraction. */ - /* 0 <-- (x - x) */ - assert_binop_folds_to_const (x, MINUS_EXPR, x, - zero); - assert_binop_folds_to_nonlvalue (x, MINUS_EXPR, zero, - x); - - /* Multiplication. */ - /* 0 <-- (x * 0) */ - assert_binop_folds_to_const (x, MULT_EXPR, zero, - zero); - - /* (nonlvalue)x <-- (x * 1) */ - assert_binop_folds_to_nonlvalue (x, MULT_EXPR, one, - x); -} - -/* Verify that various binary operations on vectors are folded - correctly. */ - -static void -test_vector_folding () -{ - tree inner_type = integer_type_node; - tree type = build_vector_type (inner_type, 4); - tree zero = build_zero_cst (type); - tree one = build_one_cst (type); - tree index = build_index_vector (type, 0, 1); - - /* Verify equality tests that return a scalar boolean result. */ - tree res_type = boolean_type_node; - ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, one))); - ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, zero, zero))); - ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, zero, one))); - ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, one, one))); - ASSERT_TRUE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, index, one))); - ASSERT_FALSE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, - index, one))); - ASSERT_FALSE (integer_nonzerop (fold_build2 (NE_EXPR, res_type, - index, index))); - ASSERT_TRUE (integer_nonzerop (fold_build2 (EQ_EXPR, res_type, - index, index))); -} - -/* Verify folding of VEC_DUPLICATE_EXPRs. */ - -static void -test_vec_duplicate_folding () -{ - scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (ssizetype); - machine_mode vec_mode = targetm.vectorize.preferred_simd_mode (int_mode); - /* This will be 1 if VEC_MODE isn't a vector mode. */ - poly_uint64 nunits = GET_MODE_NUNITS (vec_mode); - - tree type = build_vector_type (ssizetype, nunits); - tree dup5_expr = fold_unary (VEC_DUPLICATE_EXPR, type, ssize_int (5)); - tree dup5_cst = build_vector_from_val (type, ssize_int (5)); - ASSERT_TRUE (operand_equal_p (dup5_expr, dup5_cst, 0)); -} - -/* Run all of the selftests within this file. */ - -void -fold_const_c_tests () -{ - test_arithmetic_folding (); - test_vector_folding (); - test_vec_duplicate_folding (); -} - -} // namespace selftest - -#endif /* CHECKING_P */ |