aboutsummaryrefslogtreecommitdiff
path: root/gcc/expr.c
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2022-01-14 16:56:44 +0100
committerMartin Liska <mliska@suse.cz>2022-01-17 22:12:04 +0100
commit5c69acb32329d49e58c26fa41ae74229a52b9106 (patch)
treeddb05f9d73afb6f998457d2ac4b720e3b3b60483 /gcc/expr.c
parent490e23032baaece71f2ec09fa1805064b150fbc2 (diff)
downloadgcc-5c69acb32329d49e58c26fa41ae74229a52b9106.zip
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.gz
gcc-5c69acb32329d49e58c26fa41ae74229a52b9106.tar.bz2
Rename .c files to .cc files.
gcc/ada/ChangeLog: * adadecode.c: Moved to... * adadecode.cc: ...here. * affinity.c: Moved to... * affinity.cc: ...here. * argv-lynxos178-raven-cert.c: Moved to... * argv-lynxos178-raven-cert.cc: ...here. * argv.c: Moved to... * argv.cc: ...here. * aux-io.c: Moved to... * aux-io.cc: ...here. * cio.c: Moved to... * cio.cc: ...here. * cstreams.c: Moved to... * cstreams.cc: ...here. * env.c: Moved to... * env.cc: ...here. * exit.c: Moved to... * exit.cc: ...here. * expect.c: Moved to... * expect.cc: ...here. * final.c: Moved to... * final.cc: ...here. * gcc-interface/cuintp.c: Moved to... * gcc-interface/cuintp.cc: ...here. * gcc-interface/decl.c: Moved to... * gcc-interface/decl.cc: ...here. * gcc-interface/misc.c: Moved to... * gcc-interface/misc.cc: ...here. * gcc-interface/targtyps.c: Moved to... * gcc-interface/targtyps.cc: ...here. * gcc-interface/trans.c: Moved to... * gcc-interface/trans.cc: ...here. * gcc-interface/utils.c: Moved to... * gcc-interface/utils.cc: ...here. * gcc-interface/utils2.c: Moved to... * gcc-interface/utils2.cc: ...here. * init.c: Moved to... * init.cc: ...here. * initialize.c: Moved to... * initialize.cc: ...here. * libgnarl/thread.c: Moved to... * libgnarl/thread.cc: ...here. * link.c: Moved to... * link.cc: ...here. * locales.c: Moved to... * locales.cc: ...here. * mkdir.c: Moved to... * mkdir.cc: ...here. * raise.c: Moved to... * raise.cc: ...here. * rtfinal.c: Moved to... * rtfinal.cc: ...here. * rtinit.c: Moved to... * rtinit.cc: ...here. * seh_init.c: Moved to... * seh_init.cc: ...here. * sigtramp-armdroid.c: Moved to... * sigtramp-armdroid.cc: ...here. * sigtramp-ios.c: Moved to... * sigtramp-ios.cc: ...here. * sigtramp-qnx.c: Moved to... * sigtramp-qnx.cc: ...here. * sigtramp-vxworks.c: Moved to... * sigtramp-vxworks.cc: ...here. * socket.c: Moved to... * socket.cc: ...here. * tracebak.c: Moved to... * tracebak.cc: ...here. * version.c: Moved to... * version.cc: ...here. * vx_stack_info.c: Moved to... * vx_stack_info.cc: ...here. gcc/ChangeLog: * adjust-alignment.c: Moved to... * adjust-alignment.cc: ...here. * alias.c: Moved to... * alias.cc: ...here. * alloc-pool.c: Moved to... * alloc-pool.cc: ...here. * asan.c: Moved to... * asan.cc: ...here. * attribs.c: Moved to... * attribs.cc: ...here. * auto-inc-dec.c: Moved to... * auto-inc-dec.cc: ...here. * auto-profile.c: Moved to... * auto-profile.cc: ...here. * bb-reorder.c: Moved to... * bb-reorder.cc: ...here. * bitmap.c: Moved to... * bitmap.cc: ...here. * btfout.c: Moved to... * btfout.cc: ...here. * builtins.c: Moved to... * builtins.cc: ...here. * caller-save.c: Moved to... * caller-save.cc: ...here. * calls.c: Moved to... * calls.cc: ...here. * ccmp.c: Moved to... * ccmp.cc: ...here. * cfg.c: Moved to... * cfg.cc: ...here. * cfganal.c: Moved to... * cfganal.cc: ...here. * cfgbuild.c: Moved to... * cfgbuild.cc: ...here. * cfgcleanup.c: Moved to... * cfgcleanup.cc: ...here. * cfgexpand.c: Moved to... * cfgexpand.cc: ...here. * cfghooks.c: Moved to... * cfghooks.cc: ...here. * cfgloop.c: Moved to... * cfgloop.cc: ...here. * cfgloopanal.c: Moved to... * cfgloopanal.cc: ...here. * cfgloopmanip.c: Moved to... * cfgloopmanip.cc: ...here. * cfgrtl.c: Moved to... * cfgrtl.cc: ...here. * cgraph.c: Moved to... * cgraph.cc: ...here. * cgraphbuild.c: Moved to... * cgraphbuild.cc: ...here. * cgraphclones.c: Moved to... * cgraphclones.cc: ...here. * cgraphunit.c: Moved to... * cgraphunit.cc: ...here. * collect-utils.c: Moved to... * collect-utils.cc: ...here. * collect2-aix.c: Moved to... * collect2-aix.cc: ...here. * collect2.c: Moved to... * collect2.cc: ...here. * combine-stack-adj.c: Moved to... * combine-stack-adj.cc: ...here. * combine.c: Moved to... * combine.cc: ...here. * common/common-targhooks.c: Moved to... * common/common-targhooks.cc: ...here. * common/config/aarch64/aarch64-common.c: Moved to... * common/config/aarch64/aarch64-common.cc: ...here. * common/config/alpha/alpha-common.c: Moved to... * common/config/alpha/alpha-common.cc: ...here. * common/config/arc/arc-common.c: Moved to... * common/config/arc/arc-common.cc: ...here. * common/config/arm/arm-common.c: Moved to... * common/config/arm/arm-common.cc: ...here. * common/config/avr/avr-common.c: Moved to... * common/config/avr/avr-common.cc: ...here. * common/config/bfin/bfin-common.c: Moved to... * common/config/bfin/bfin-common.cc: ...here. * common/config/bpf/bpf-common.c: Moved to... * common/config/bpf/bpf-common.cc: ...here. * common/config/c6x/c6x-common.c: Moved to... * common/config/c6x/c6x-common.cc: ...here. * common/config/cr16/cr16-common.c: Moved to... * common/config/cr16/cr16-common.cc: ...here. * common/config/cris/cris-common.c: Moved to... * common/config/cris/cris-common.cc: ...here. * common/config/csky/csky-common.c: Moved to... * common/config/csky/csky-common.cc: ...here. * common/config/default-common.c: Moved to... * common/config/default-common.cc: ...here. * common/config/epiphany/epiphany-common.c: Moved to... * common/config/epiphany/epiphany-common.cc: ...here. * common/config/fr30/fr30-common.c: Moved to... * common/config/fr30/fr30-common.cc: ...here. * common/config/frv/frv-common.c: Moved to... * common/config/frv/frv-common.cc: ...here. * common/config/gcn/gcn-common.c: Moved to... * common/config/gcn/gcn-common.cc: ...here. * common/config/h8300/h8300-common.c: Moved to... * common/config/h8300/h8300-common.cc: ...here. * common/config/i386/i386-common.c: Moved to... * common/config/i386/i386-common.cc: ...here. * common/config/ia64/ia64-common.c: Moved to... * common/config/ia64/ia64-common.cc: ...here. * common/config/iq2000/iq2000-common.c: Moved to... * common/config/iq2000/iq2000-common.cc: ...here. * common/config/lm32/lm32-common.c: Moved to... * common/config/lm32/lm32-common.cc: ...here. * common/config/m32r/m32r-common.c: Moved to... * common/config/m32r/m32r-common.cc: ...here. * common/config/m68k/m68k-common.c: Moved to... * common/config/m68k/m68k-common.cc: ...here. * common/config/mcore/mcore-common.c: Moved to... * common/config/mcore/mcore-common.cc: ...here. * common/config/microblaze/microblaze-common.c: Moved to... * common/config/microblaze/microblaze-common.cc: ...here. * common/config/mips/mips-common.c: Moved to... * common/config/mips/mips-common.cc: ...here. * common/config/mmix/mmix-common.c: Moved to... * common/config/mmix/mmix-common.cc: ...here. * common/config/mn10300/mn10300-common.c: Moved to... * common/config/mn10300/mn10300-common.cc: ...here. * common/config/msp430/msp430-common.c: Moved to... * common/config/msp430/msp430-common.cc: ...here. * common/config/nds32/nds32-common.c: Moved to... * common/config/nds32/nds32-common.cc: ...here. * common/config/nios2/nios2-common.c: Moved to... * common/config/nios2/nios2-common.cc: ...here. * common/config/nvptx/nvptx-common.c: Moved to... * common/config/nvptx/nvptx-common.cc: ...here. * common/config/or1k/or1k-common.c: Moved to... * common/config/or1k/or1k-common.cc: ...here. * common/config/pa/pa-common.c: Moved to... * common/config/pa/pa-common.cc: ...here. * common/config/pdp11/pdp11-common.c: Moved to... * common/config/pdp11/pdp11-common.cc: ...here. * common/config/pru/pru-common.c: Moved to... * common/config/pru/pru-common.cc: ...here. * common/config/riscv/riscv-common.c: Moved to... * common/config/riscv/riscv-common.cc: ...here. * common/config/rs6000/rs6000-common.c: Moved to... * common/config/rs6000/rs6000-common.cc: ...here. * common/config/rx/rx-common.c: Moved to... * common/config/rx/rx-common.cc: ...here. * common/config/s390/s390-common.c: Moved to... * common/config/s390/s390-common.cc: ...here. * common/config/sh/sh-common.c: Moved to... * common/config/sh/sh-common.cc: ...here. * common/config/sparc/sparc-common.c: Moved to... * common/config/sparc/sparc-common.cc: ...here. * common/config/tilegx/tilegx-common.c: Moved to... * common/config/tilegx/tilegx-common.cc: ...here. * common/config/tilepro/tilepro-common.c: Moved to... * common/config/tilepro/tilepro-common.cc: ...here. * common/config/v850/v850-common.c: Moved to... * common/config/v850/v850-common.cc: ...here. * common/config/vax/vax-common.c: Moved to... * common/config/vax/vax-common.cc: ...here. * common/config/visium/visium-common.c: Moved to... * common/config/visium/visium-common.cc: ...here. * common/config/xstormy16/xstormy16-common.c: Moved to... * common/config/xstormy16/xstormy16-common.cc: ...here. * common/config/xtensa/xtensa-common.c: Moved to... * common/config/xtensa/xtensa-common.cc: ...here. * compare-elim.c: Moved to... * compare-elim.cc: ...here. * config/aarch64/aarch64-bti-insert.c: Moved to... * config/aarch64/aarch64-bti-insert.cc: ...here. * config/aarch64/aarch64-builtins.c: Moved to... * config/aarch64/aarch64-builtins.cc: ...here. * config/aarch64/aarch64-c.c: Moved to... * config/aarch64/aarch64-c.cc: ...here. * config/aarch64/aarch64-d.c: Moved to... * config/aarch64/aarch64-d.cc: ...here. * config/aarch64/aarch64.c: Moved to... * config/aarch64/aarch64.cc: ...here. * config/aarch64/cortex-a57-fma-steering.c: Moved to... * config/aarch64/cortex-a57-fma-steering.cc: ...here. * config/aarch64/driver-aarch64.c: Moved to... * config/aarch64/driver-aarch64.cc: ...here. * config/aarch64/falkor-tag-collision-avoidance.c: Moved to... * config/aarch64/falkor-tag-collision-avoidance.cc: ...here. * config/aarch64/host-aarch64-darwin.c: Moved to... * config/aarch64/host-aarch64-darwin.cc: ...here. * config/alpha/alpha.c: Moved to... * config/alpha/alpha.cc: ...here. * config/alpha/driver-alpha.c: Moved to... * config/alpha/driver-alpha.cc: ...here. * config/arc/arc-c.c: Moved to... * config/arc/arc-c.cc: ...here. * config/arc/arc.c: Moved to... * config/arc/arc.cc: ...here. * config/arc/driver-arc.c: Moved to... * config/arc/driver-arc.cc: ...here. * config/arm/aarch-common.c: Moved to... * config/arm/aarch-common.cc: ...here. * config/arm/arm-builtins.c: Moved to... * config/arm/arm-builtins.cc: ...here. * config/arm/arm-c.c: Moved to... * config/arm/arm-c.cc: ...here. * config/arm/arm-d.c: Moved to... * config/arm/arm-d.cc: ...here. * config/arm/arm.c: Moved to... * config/arm/arm.cc: ...here. * config/arm/driver-arm.c: Moved to... * config/arm/driver-arm.cc: ...here. * config/avr/avr-c.c: Moved to... * config/avr/avr-c.cc: ...here. * config/avr/avr-devices.c: Moved to... * config/avr/avr-devices.cc: ...here. * config/avr/avr-log.c: Moved to... * config/avr/avr-log.cc: ...here. * config/avr/avr.c: Moved to... * config/avr/avr.cc: ...here. * config/avr/driver-avr.c: Moved to... * config/avr/driver-avr.cc: ...here. * config/avr/gen-avr-mmcu-specs.c: Moved to... * config/avr/gen-avr-mmcu-specs.cc: ...here. * config/avr/gen-avr-mmcu-texi.c: Moved to... * config/avr/gen-avr-mmcu-texi.cc: ...here. * config/bfin/bfin.c: Moved to... * config/bfin/bfin.cc: ...here. * config/bpf/bpf.c: Moved to... * config/bpf/bpf.cc: ...here. * config/bpf/coreout.c: Moved to... * config/bpf/coreout.cc: ...here. * config/c6x/c6x.c: Moved to... * config/c6x/c6x.cc: ...here. * config/cr16/cr16.c: Moved to... * config/cr16/cr16.cc: ...here. * config/cris/cris.c: Moved to... * config/cris/cris.cc: ...here. * config/csky/csky.c: Moved to... * config/csky/csky.cc: ...here. * config/darwin-c.c: Moved to... * config/darwin-c.cc: ...here. * config/darwin-d.c: Moved to... * config/darwin-d.cc: ...here. * config/darwin-driver.c: Moved to... * config/darwin-driver.cc: ...here. * config/darwin-f.c: Moved to... * config/darwin-f.cc: ...here. * config/darwin.c: Moved to... * config/darwin.cc: ...here. * config/default-c.c: Moved to... * config/default-c.cc: ...here. * config/default-d.c: Moved to... * config/default-d.cc: ...here. * config/dragonfly-d.c: Moved to... * config/dragonfly-d.cc: ...here. * config/epiphany/epiphany.c: Moved to... * config/epiphany/epiphany.cc: ...here. * config/epiphany/mode-switch-use.c: Moved to... * config/epiphany/mode-switch-use.cc: ...here. * config/epiphany/resolve-sw-modes.c: Moved to... * config/epiphany/resolve-sw-modes.cc: ...here. * config/fr30/fr30.c: Moved to... * config/fr30/fr30.cc: ...here. * config/freebsd-d.c: Moved to... * config/freebsd-d.cc: ...here. * config/frv/frv.c: Moved to... * config/frv/frv.cc: ...here. * config/ft32/ft32.c: Moved to... * config/ft32/ft32.cc: ...here. * config/gcn/driver-gcn.c: Moved to... * config/gcn/driver-gcn.cc: ...here. * config/gcn/gcn-run.c: Moved to... * config/gcn/gcn-run.cc: ...here. * config/gcn/gcn-tree.c: Moved to... * config/gcn/gcn-tree.cc: ...here. * config/gcn/gcn.c: Moved to... * config/gcn/gcn.cc: ...here. * config/gcn/mkoffload.c: Moved to... * config/gcn/mkoffload.cc: ...here. * config/glibc-c.c: Moved to... * config/glibc-c.cc: ...here. * config/glibc-d.c: Moved to... * config/glibc-d.cc: ...here. * config/h8300/h8300.c: Moved to... * config/h8300/h8300.cc: ...here. * config/host-darwin.c: Moved to... * config/host-darwin.cc: ...here. * config/host-hpux.c: Moved to... * config/host-hpux.cc: ...here. * config/host-linux.c: Moved to... * config/host-linux.cc: ...here. * config/host-netbsd.c: Moved to... * config/host-netbsd.cc: ...here. * config/host-openbsd.c: Moved to... * config/host-openbsd.cc: ...here. * config/host-solaris.c: Moved to... * config/host-solaris.cc: ...here. * config/i386/djgpp.c: Moved to... * config/i386/djgpp.cc: ...here. * config/i386/driver-i386.c: Moved to... * config/i386/driver-i386.cc: ...here. * config/i386/driver-mingw32.c: Moved to... * config/i386/driver-mingw32.cc: ...here. * config/i386/gnu-property.c: Moved to... * config/i386/gnu-property.cc: ...here. * config/i386/host-cygwin.c: Moved to... * config/i386/host-cygwin.cc: ...here. * config/i386/host-i386-darwin.c: Moved to... * config/i386/host-i386-darwin.cc: ...here. * config/i386/host-mingw32.c: Moved to... * config/i386/host-mingw32.cc: ...here. * config/i386/i386-builtins.c: Moved to... * config/i386/i386-builtins.cc: ...here. * config/i386/i386-c.c: Moved to... * config/i386/i386-c.cc: ...here. * config/i386/i386-d.c: Moved to... * config/i386/i386-d.cc: ...here. * config/i386/i386-expand.c: Moved to... * config/i386/i386-expand.cc: ...here. * config/i386/i386-features.c: Moved to... * config/i386/i386-features.cc: ...here. * config/i386/i386-options.c: Moved to... * config/i386/i386-options.cc: ...here. * config/i386/i386.c: Moved to... * config/i386/i386.cc: ...here. * config/i386/intelmic-mkoffload.c: Moved to... * config/i386/intelmic-mkoffload.cc: ...here. * config/i386/msformat-c.c: Moved to... * config/i386/msformat-c.cc: ...here. * config/i386/winnt-cxx.c: Moved to... * config/i386/winnt-cxx.cc: ...here. * config/i386/winnt-d.c: Moved to... * config/i386/winnt-d.cc: ...here. * config/i386/winnt-stubs.c: Moved to... * config/i386/winnt-stubs.cc: ...here. * config/i386/winnt.c: Moved to... * config/i386/winnt.cc: ...here. * config/i386/x86-tune-sched-atom.c: Moved to... * config/i386/x86-tune-sched-atom.cc: ...here. * config/i386/x86-tune-sched-bd.c: Moved to... * config/i386/x86-tune-sched-bd.cc: ...here. * config/i386/x86-tune-sched-core.c: Moved to... * config/i386/x86-tune-sched-core.cc: ...here. * config/i386/x86-tune-sched.c: Moved to... * config/i386/x86-tune-sched.cc: ...here. * config/ia64/ia64-c.c: Moved to... * config/ia64/ia64-c.cc: ...here. * config/ia64/ia64.c: Moved to... * config/ia64/ia64.cc: ...here. * config/iq2000/iq2000.c: Moved to... * config/iq2000/iq2000.cc: ...here. * config/linux.c: Moved to... * config/linux.cc: ...here. * config/lm32/lm32.c: Moved to... * config/lm32/lm32.cc: ...here. * config/m32c/m32c-pragma.c: Moved to... * config/m32c/m32c-pragma.cc: ...here. * config/m32c/m32c.c: Moved to... * config/m32c/m32c.cc: ...here. * config/m32r/m32r.c: Moved to... * config/m32r/m32r.cc: ...here. * config/m68k/m68k.c: Moved to... * config/m68k/m68k.cc: ...here. * config/mcore/mcore.c: Moved to... * config/mcore/mcore.cc: ...here. * config/microblaze/microblaze-c.c: Moved to... * config/microblaze/microblaze-c.cc: ...here. * config/microblaze/microblaze.c: Moved to... * config/microblaze/microblaze.cc: ...here. * config/mips/driver-native.c: Moved to... * config/mips/driver-native.cc: ...here. * config/mips/frame-header-opt.c: Moved to... * config/mips/frame-header-opt.cc: ...here. * config/mips/mips-d.c: Moved to... * config/mips/mips-d.cc: ...here. * config/mips/mips.c: Moved to... * config/mips/mips.cc: ...here. * config/mmix/mmix.c: Moved to... * config/mmix/mmix.cc: ...here. * config/mn10300/mn10300.c: Moved to... * config/mn10300/mn10300.cc: ...here. * config/moxie/moxie.c: Moved to... * config/moxie/moxie.cc: ...here. * config/msp430/driver-msp430.c: Moved to... * config/msp430/driver-msp430.cc: ...here. * config/msp430/msp430-c.c: Moved to... * config/msp430/msp430-c.cc: ...here. * config/msp430/msp430-devices.c: Moved to... * config/msp430/msp430-devices.cc: ...here. * config/msp430/msp430.c: Moved to... * config/msp430/msp430.cc: ...here. * config/nds32/nds32-cost.c: Moved to... * config/nds32/nds32-cost.cc: ...here. * config/nds32/nds32-fp-as-gp.c: Moved to... * config/nds32/nds32-fp-as-gp.cc: ...here. * config/nds32/nds32-intrinsic.c: Moved to... * config/nds32/nds32-intrinsic.cc: ...here. * config/nds32/nds32-isr.c: Moved to... * config/nds32/nds32-isr.cc: ...here. * config/nds32/nds32-md-auxiliary.c: Moved to... * config/nds32/nds32-md-auxiliary.cc: ...here. * config/nds32/nds32-memory-manipulation.c: Moved to... * config/nds32/nds32-memory-manipulation.cc: ...here. * config/nds32/nds32-pipelines-auxiliary.c: Moved to... * config/nds32/nds32-pipelines-auxiliary.cc: ...here. * config/nds32/nds32-predicates.c: Moved to... * config/nds32/nds32-predicates.cc: ...here. * config/nds32/nds32-relax-opt.c: Moved to... * config/nds32/nds32-relax-opt.cc: ...here. * config/nds32/nds32-utils.c: Moved to... * config/nds32/nds32-utils.cc: ...here. * config/nds32/nds32.c: Moved to... * config/nds32/nds32.cc: ...here. * config/netbsd-d.c: Moved to... * config/netbsd-d.cc: ...here. * config/netbsd.c: Moved to... * config/netbsd.cc: ...here. * config/nios2/nios2.c: Moved to... * config/nios2/nios2.cc: ...here. * config/nvptx/mkoffload.c: Moved to... * config/nvptx/mkoffload.cc: ...here. * config/nvptx/nvptx-c.c: Moved to... * config/nvptx/nvptx-c.cc: ...here. * config/nvptx/nvptx.c: Moved to... * config/nvptx/nvptx.cc: ...here. * config/openbsd-d.c: Moved to... * config/openbsd-d.cc: ...here. * config/or1k/or1k.c: Moved to... * config/or1k/or1k.cc: ...here. * config/pa/pa-d.c: Moved to... * config/pa/pa-d.cc: ...here. * config/pa/pa.c: Moved to... * config/pa/pa.cc: ...here. * config/pdp11/pdp11.c: Moved to... * config/pdp11/pdp11.cc: ...here. * config/pru/pru-passes.c: Moved to... * config/pru/pru-passes.cc: ...here. * config/pru/pru-pragma.c: Moved to... * config/pru/pru-pragma.cc: ...here. * config/pru/pru.c: Moved to... * config/pru/pru.cc: ...here. * config/riscv/riscv-builtins.c: Moved to... * config/riscv/riscv-builtins.cc: ...here. * config/riscv/riscv-c.c: Moved to... * config/riscv/riscv-c.cc: ...here. * config/riscv/riscv-d.c: Moved to... * config/riscv/riscv-d.cc: ...here. * config/riscv/riscv-shorten-memrefs.c: Moved to... * config/riscv/riscv-shorten-memrefs.cc: ...here. * config/riscv/riscv-sr.c: Moved to... * config/riscv/riscv-sr.cc: ...here. * config/riscv/riscv.c: Moved to... * config/riscv/riscv.cc: ...here. * config/rl78/rl78-c.c: Moved to... * config/rl78/rl78-c.cc: ...here. * config/rl78/rl78.c: Moved to... * config/rl78/rl78.cc: ...here. * config/rs6000/driver-rs6000.c: Moved to... * config/rs6000/driver-rs6000.cc: ...here. * config/rs6000/host-darwin.c: Moved to... * config/rs6000/host-darwin.cc: ...here. * config/rs6000/host-ppc64-darwin.c: Moved to... * config/rs6000/host-ppc64-darwin.cc: ...here. * config/rs6000/rbtree.c: Moved to... * config/rs6000/rbtree.cc: ...here. * config/rs6000/rs6000-c.c: Moved to... * config/rs6000/rs6000-c.cc: ...here. * config/rs6000/rs6000-call.c: Moved to... * config/rs6000/rs6000-call.cc: ...here. * config/rs6000/rs6000-d.c: Moved to... * config/rs6000/rs6000-d.cc: ...here. * config/rs6000/rs6000-gen-builtins.c: Moved to... * config/rs6000/rs6000-gen-builtins.cc: ...here. * config/rs6000/rs6000-linux.c: Moved to... * config/rs6000/rs6000-linux.cc: ...here. * config/rs6000/rs6000-logue.c: Moved to... * config/rs6000/rs6000-logue.cc: ...here. * config/rs6000/rs6000-p8swap.c: Moved to... * config/rs6000/rs6000-p8swap.cc: ...here. * config/rs6000/rs6000-pcrel-opt.c: Moved to... * config/rs6000/rs6000-pcrel-opt.cc: ...here. * config/rs6000/rs6000-string.c: Moved to... * config/rs6000/rs6000-string.cc: ...here. * config/rs6000/rs6000.c: Moved to... * config/rs6000/rs6000.cc: ...here. * config/rx/rx.c: Moved to... * config/rx/rx.cc: ...here. * config/s390/driver-native.c: Moved to... * config/s390/driver-native.cc: ...here. * config/s390/s390-c.c: Moved to... * config/s390/s390-c.cc: ...here. * config/s390/s390-d.c: Moved to... * config/s390/s390-d.cc: ...here. * config/s390/s390.c: Moved to... * config/s390/s390.cc: ...here. * config/sh/divtab-sh4-300.c: Moved to... * config/sh/divtab-sh4-300.cc: ...here. * config/sh/divtab-sh4.c: Moved to... * config/sh/divtab-sh4.cc: ...here. * config/sh/divtab.c: Moved to... * config/sh/divtab.cc: ...here. * config/sh/sh-c.c: Moved to... * config/sh/sh-c.cc: ...here. * config/sh/sh.c: Moved to... * config/sh/sh.cc: ...here. * config/sol2-c.c: Moved to... * config/sol2-c.cc: ...here. * config/sol2-cxx.c: Moved to... * config/sol2-cxx.cc: ...here. * config/sol2-d.c: Moved to... * config/sol2-d.cc: ...here. * config/sol2-stubs.c: Moved to... * config/sol2-stubs.cc: ...here. * config/sol2.c: Moved to... * config/sol2.cc: ...here. * config/sparc/driver-sparc.c: Moved to... * config/sparc/driver-sparc.cc: ...here. * config/sparc/sparc-c.c: Moved to... * config/sparc/sparc-c.cc: ...here. * config/sparc/sparc-d.c: Moved to... * config/sparc/sparc-d.cc: ...here. * config/sparc/sparc.c: Moved to... * config/sparc/sparc.cc: ...here. * config/stormy16/stormy16.c: Moved to... * config/stormy16/stormy16.cc: ...here. * config/tilegx/mul-tables.c: Moved to... * config/tilegx/mul-tables.cc: ...here. * config/tilegx/tilegx-c.c: Moved to... * config/tilegx/tilegx-c.cc: ...here. * config/tilegx/tilegx.c: Moved to... * config/tilegx/tilegx.cc: ...here. * config/tilepro/mul-tables.c: Moved to... * config/tilepro/mul-tables.cc: ...here. * config/tilepro/tilepro-c.c: Moved to... * config/tilepro/tilepro-c.cc: ...here. * config/tilepro/tilepro.c: Moved to... * config/tilepro/tilepro.cc: ...here. * config/v850/v850-c.c: Moved to... * config/v850/v850-c.cc: ...here. * config/v850/v850.c: Moved to... * config/v850/v850.cc: ...here. * config/vax/vax.c: Moved to... * config/vax/vax.cc: ...here. * config/visium/visium.c: Moved to... * config/visium/visium.cc: ...here. * config/vms/vms-c.c: Moved to... * config/vms/vms-c.cc: ...here. * config/vms/vms-f.c: Moved to... * config/vms/vms-f.cc: ...here. * config/vms/vms.c: Moved to... * config/vms/vms.cc: ...here. * config/vxworks-c.c: Moved to... * config/vxworks-c.cc: ...here. * config/vxworks.c: Moved to... * config/vxworks.cc: ...here. * config/winnt-c.c: Moved to... * config/winnt-c.cc: ...here. * config/xtensa/xtensa.c: Moved to... * config/xtensa/xtensa.cc: ...here. * context.c: Moved to... * context.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * coverage.c: Moved to... * coverage.cc: ...here. * cppbuiltin.c: Moved to... * cppbuiltin.cc: ...here. * cppdefault.c: Moved to... * cppdefault.cc: ...here. * cprop.c: Moved to... * cprop.cc: ...here. * cse.c: Moved to... * cse.cc: ...here. * cselib.c: Moved to... * cselib.cc: ...here. * ctfc.c: Moved to... * ctfc.cc: ...here. * ctfout.c: Moved to... * ctfout.cc: ...here. * data-streamer-in.c: Moved to... * data-streamer-in.cc: ...here. * data-streamer-out.c: Moved to... * data-streamer-out.cc: ...here. * data-streamer.c: Moved to... * data-streamer.cc: ...here. * dbgcnt.c: Moved to... * dbgcnt.cc: ...here. * dbxout.c: Moved to... * dbxout.cc: ...here. * dce.c: Moved to... * dce.cc: ...here. * ddg.c: Moved to... * ddg.cc: ...here. * debug.c: Moved to... * debug.cc: ...here. * df-core.c: Moved to... * df-core.cc: ...here. * df-problems.c: Moved to... * df-problems.cc: ...here. * df-scan.c: Moved to... * df-scan.cc: ...here. * dfp.c: Moved to... * dfp.cc: ...here. * diagnostic-color.c: Moved to... * diagnostic-color.cc: ...here. * diagnostic-show-locus.c: Moved to... * diagnostic-show-locus.cc: ...here. * diagnostic-spec.c: Moved to... * diagnostic-spec.cc: ...here. * diagnostic.c: Moved to... * diagnostic.cc: ...here. * dojump.c: Moved to... * dojump.cc: ...here. * dominance.c: Moved to... * dominance.cc: ...here. * domwalk.c: Moved to... * domwalk.cc: ...here. * double-int.c: Moved to... * double-int.cc: ...here. * dse.c: Moved to... * dse.cc: ...here. * dumpfile.c: Moved to... * dumpfile.cc: ...here. * dwarf2asm.c: Moved to... * dwarf2asm.cc: ...here. * dwarf2cfi.c: Moved to... * dwarf2cfi.cc: ...here. * dwarf2ctf.c: Moved to... * dwarf2ctf.cc: ...here. * dwarf2out.c: Moved to... * dwarf2out.cc: ...here. * early-remat.c: Moved to... * early-remat.cc: ...here. * edit-context.c: Moved to... * edit-context.cc: ...here. * emit-rtl.c: Moved to... * emit-rtl.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * et-forest.c: Moved to... * et-forest.cc: ...here. * except.c: Moved to... * except.cc: ...here. * explow.c: Moved to... * explow.cc: ...here. * expmed.c: Moved to... * expmed.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * fibonacci_heap.c: Moved to... * fibonacci_heap.cc: ...here. * file-find.c: Moved to... * file-find.cc: ...here. * file-prefix-map.c: Moved to... * file-prefix-map.cc: ...here. * final.c: Moved to... * final.cc: ...here. * fixed-value.c: Moved to... * fixed-value.cc: ...here. * fold-const-call.c: Moved to... * fold-const-call.cc: ...here. * fold-const.c: Moved to... * fold-const.cc: ...here. * fp-test.c: Moved to... * fp-test.cc: ...here. * function-tests.c: Moved to... * function-tests.cc: ...here. * function.c: Moved to... * function.cc: ...here. * fwprop.c: Moved to... * fwprop.cc: ...here. * gcc-ar.c: Moved to... * gcc-ar.cc: ...here. * gcc-main.c: Moved to... * gcc-main.cc: ...here. * gcc-rich-location.c: Moved to... * gcc-rich-location.cc: ...here. * gcc.c: Moved to... * gcc.cc: ...here. * gcov-dump.c: Moved to... * gcov-dump.cc: ...here. * gcov-io.c: Moved to... * gcov-io.cc: ...here. * gcov-tool.c: Moved to... * gcov-tool.cc: ...here. * gcov.c: Moved to... * gcov.cc: ...here. * gcse-common.c: Moved to... * gcse-common.cc: ...here. * gcse.c: Moved to... * gcse.cc: ...here. * genattr-common.c: Moved to... * genattr-common.cc: ...here. * genattr.c: Moved to... * genattr.cc: ...here. * genattrtab.c: Moved to... * genattrtab.cc: ...here. * genautomata.c: Moved to... * genautomata.cc: ...here. * gencfn-macros.c: Moved to... * gencfn-macros.cc: ...here. * gencheck.c: Moved to... * gencheck.cc: ...here. * genchecksum.c: Moved to... * genchecksum.cc: ...here. * gencodes.c: Moved to... * gencodes.cc: ...here. * genconditions.c: Moved to... * genconditions.cc: ...here. * genconfig.c: Moved to... * genconfig.cc: ...here. * genconstants.c: Moved to... * genconstants.cc: ...here. * genemit.c: Moved to... * genemit.cc: ...here. * genenums.c: Moved to... * genenums.cc: ...here. * generic-match-head.c: Moved to... * generic-match-head.cc: ...here. * genextract.c: Moved to... * genextract.cc: ...here. * genflags.c: Moved to... * genflags.cc: ...here. * gengenrtl.c: Moved to... * gengenrtl.cc: ...here. * gengtype-parse.c: Moved to... * gengtype-parse.cc: ...here. * gengtype-state.c: Moved to... * gengtype-state.cc: ...here. * gengtype.c: Moved to... * gengtype.cc: ...here. * genhooks.c: Moved to... * genhooks.cc: ...here. * genmatch.c: Moved to... * genmatch.cc: ...here. * genmddeps.c: Moved to... * genmddeps.cc: ...here. * genmddump.c: Moved to... * genmddump.cc: ...here. * genmodes.c: Moved to... * genmodes.cc: ...here. * genopinit.c: Moved to... * genopinit.cc: ...here. * genoutput.c: Moved to... * genoutput.cc: ...here. * genpeep.c: Moved to... * genpeep.cc: ...here. * genpreds.c: Moved to... * genpreds.cc: ...here. * genrecog.c: Moved to... * genrecog.cc: ...here. * gensupport.c: Moved to... * gensupport.cc: ...here. * gentarget-def.c: Moved to... * gentarget-def.cc: ...here. * genversion.c: Moved to... * genversion.cc: ...here. * ggc-common.c: Moved to... * ggc-common.cc: ...here. * ggc-none.c: Moved to... * ggc-none.cc: ...here. * ggc-page.c: Moved to... * ggc-page.cc: ...here. * ggc-tests.c: Moved to... * ggc-tests.cc: ...here. * gimple-builder.c: Moved to... * gimple-builder.cc: ...here. * gimple-expr.c: Moved to... * gimple-expr.cc: ...here. * gimple-fold.c: Moved to... * gimple-fold.cc: ...here. * gimple-iterator.c: Moved to... * gimple-iterator.cc: ...here. * gimple-laddress.c: Moved to... * gimple-laddress.cc: ...here. * gimple-loop-jam.c: Moved to... * gimple-loop-jam.cc: ...here. * gimple-low.c: Moved to... * gimple-low.cc: ...here. * gimple-match-head.c: Moved to... * gimple-match-head.cc: ...here. * gimple-pretty-print.c: Moved to... * gimple-pretty-print.cc: ...here. * gimple-ssa-backprop.c: Moved to... * gimple-ssa-backprop.cc: ...here. * gimple-ssa-evrp-analyze.c: Moved to... * gimple-ssa-evrp-analyze.cc: ...here. * gimple-ssa-evrp.c: Moved to... * gimple-ssa-evrp.cc: ...here. * gimple-ssa-isolate-paths.c: Moved to... * gimple-ssa-isolate-paths.cc: ...here. * gimple-ssa-nonnull-compare.c: Moved to... * gimple-ssa-nonnull-compare.cc: ...here. * gimple-ssa-split-paths.c: Moved to... * gimple-ssa-split-paths.cc: ...here. * gimple-ssa-sprintf.c: Moved to... * gimple-ssa-sprintf.cc: ...here. * gimple-ssa-store-merging.c: Moved to... * gimple-ssa-store-merging.cc: ...here. * gimple-ssa-strength-reduction.c: Moved to... * gimple-ssa-strength-reduction.cc: ...here. * gimple-ssa-warn-alloca.c: Moved to... * gimple-ssa-warn-alloca.cc: ...here. * gimple-ssa-warn-restrict.c: Moved to... * gimple-ssa-warn-restrict.cc: ...here. * gimple-streamer-in.c: Moved to... * gimple-streamer-in.cc: ...here. * gimple-streamer-out.c: Moved to... * gimple-streamer-out.cc: ...here. * gimple-walk.c: Moved to... * gimple-walk.cc: ...here. * gimple-warn-recursion.c: Moved to... * gimple-warn-recursion.cc: ...here. * gimple.c: Moved to... * gimple.cc: ...here. * gimplify-me.c: Moved to... * gimplify-me.cc: ...here. * gimplify.c: Moved to... * gimplify.cc: ...here. * godump.c: Moved to... * godump.cc: ...here. * graph.c: Moved to... * graph.cc: ...here. * graphds.c: Moved to... * graphds.cc: ...here. * graphite-dependences.c: Moved to... * graphite-dependences.cc: ...here. * graphite-isl-ast-to-gimple.c: Moved to... * graphite-isl-ast-to-gimple.cc: ...here. * graphite-optimize-isl.c: Moved to... * graphite-optimize-isl.cc: ...here. * graphite-poly.c: Moved to... * graphite-poly.cc: ...here. * graphite-scop-detection.c: Moved to... * graphite-scop-detection.cc: ...here. * graphite-sese-to-poly.c: Moved to... * graphite-sese-to-poly.cc: ...here. * graphite.c: Moved to... * graphite.cc: ...here. * haifa-sched.c: Moved to... * haifa-sched.cc: ...here. * hash-map-tests.c: Moved to... * hash-map-tests.cc: ...here. * hash-set-tests.c: Moved to... * hash-set-tests.cc: ...here. * hash-table.c: Moved to... * hash-table.cc: ...here. * hooks.c: Moved to... * hooks.cc: ...here. * host-default.c: Moved to... * host-default.cc: ...here. * hw-doloop.c: Moved to... * hw-doloop.cc: ...here. * hwint.c: Moved to... * hwint.cc: ...here. * ifcvt.c: Moved to... * ifcvt.cc: ...here. * inchash.c: Moved to... * inchash.cc: ...here. * incpath.c: Moved to... * incpath.cc: ...here. * init-regs.c: Moved to... * init-regs.cc: ...here. * input.c: Moved to... * input.cc: ...here. * internal-fn.c: Moved to... * internal-fn.cc: ...here. * intl.c: Moved to... * intl.cc: ...here. * ipa-comdats.c: Moved to... * ipa-comdats.cc: ...here. * ipa-cp.c: Moved to... * ipa-cp.cc: ...here. * ipa-devirt.c: Moved to... * ipa-devirt.cc: ...here. * ipa-fnsummary.c: Moved to... * ipa-fnsummary.cc: ...here. * ipa-icf-gimple.c: Moved to... * ipa-icf-gimple.cc: ...here. * ipa-icf.c: Moved to... * ipa-icf.cc: ...here. * ipa-inline-analysis.c: Moved to... * ipa-inline-analysis.cc: ...here. * ipa-inline-transform.c: Moved to... * ipa-inline-transform.cc: ...here. * ipa-inline.c: Moved to... * ipa-inline.cc: ...here. * ipa-modref-tree.c: Moved to... * ipa-modref-tree.cc: ...here. * ipa-modref.c: Moved to... * ipa-modref.cc: ...here. * ipa-param-manipulation.c: Moved to... * ipa-param-manipulation.cc: ...here. * ipa-polymorphic-call.c: Moved to... * ipa-polymorphic-call.cc: ...here. * ipa-predicate.c: Moved to... * ipa-predicate.cc: ...here. * ipa-profile.c: Moved to... * ipa-profile.cc: ...here. * ipa-prop.c: Moved to... * ipa-prop.cc: ...here. * ipa-pure-const.c: Moved to... * ipa-pure-const.cc: ...here. * ipa-ref.c: Moved to... * ipa-ref.cc: ...here. * ipa-reference.c: Moved to... * ipa-reference.cc: ...here. * ipa-split.c: Moved to... * ipa-split.cc: ...here. * ipa-sra.c: Moved to... * ipa-sra.cc: ...here. * ipa-utils.c: Moved to... * ipa-utils.cc: ...here. * ipa-visibility.c: Moved to... * ipa-visibility.cc: ...here. * ipa.c: Moved to... * ipa.cc: ...here. * ira-build.c: Moved to... * ira-build.cc: ...here. * ira-color.c: Moved to... * ira-color.cc: ...here. * ira-conflicts.c: Moved to... * ira-conflicts.cc: ...here. * ira-costs.c: Moved to... * ira-costs.cc: ...here. * ira-emit.c: Moved to... * ira-emit.cc: ...here. * ira-lives.c: Moved to... * ira-lives.cc: ...here. * ira.c: Moved to... * ira.cc: ...here. * jump.c: Moved to... * jump.cc: ...here. * langhooks.c: Moved to... * langhooks.cc: ...here. * lcm.c: Moved to... * lcm.cc: ...here. * lists.c: Moved to... * lists.cc: ...here. * loop-doloop.c: Moved to... * loop-doloop.cc: ...here. * loop-init.c: Moved to... * loop-init.cc: ...here. * loop-invariant.c: Moved to... * loop-invariant.cc: ...here. * loop-iv.c: Moved to... * loop-iv.cc: ...here. * loop-unroll.c: Moved to... * loop-unroll.cc: ...here. * lower-subreg.c: Moved to... * lower-subreg.cc: ...here. * lra-assigns.c: Moved to... * lra-assigns.cc: ...here. * lra-coalesce.c: Moved to... * lra-coalesce.cc: ...here. * lra-constraints.c: Moved to... * lra-constraints.cc: ...here. * lra-eliminations.c: Moved to... * lra-eliminations.cc: ...here. * lra-lives.c: Moved to... * lra-lives.cc: ...here. * lra-remat.c: Moved to... * lra-remat.cc: ...here. * lra-spills.c: Moved to... * lra-spills.cc: ...here. * lra.c: Moved to... * lra.cc: ...here. * lto-cgraph.c: Moved to... * lto-cgraph.cc: ...here. * lto-compress.c: Moved to... * lto-compress.cc: ...here. * lto-opts.c: Moved to... * lto-opts.cc: ...here. * lto-section-in.c: Moved to... * lto-section-in.cc: ...here. * lto-section-out.c: Moved to... * lto-section-out.cc: ...here. * lto-streamer-in.c: Moved to... * lto-streamer-in.cc: ...here. * lto-streamer-out.c: Moved to... * lto-streamer-out.cc: ...here. * lto-streamer.c: Moved to... * lto-streamer.cc: ...here. * lto-wrapper.c: Moved to... * lto-wrapper.cc: ...here. * main.c: Moved to... * main.cc: ...here. * mcf.c: Moved to... * mcf.cc: ...here. * mode-switching.c: Moved to... * mode-switching.cc: ...here. * modulo-sched.c: Moved to... * modulo-sched.cc: ...here. * multiple_target.c: Moved to... * multiple_target.cc: ...here. * omp-expand.c: Moved to... * omp-expand.cc: ...here. * omp-general.c: Moved to... * omp-general.cc: ...here. * omp-low.c: Moved to... * omp-low.cc: ...here. * omp-offload.c: Moved to... * omp-offload.cc: ...here. * omp-simd-clone.c: Moved to... * omp-simd-clone.cc: ...here. * opt-suggestions.c: Moved to... * opt-suggestions.cc: ...here. * optabs-libfuncs.c: Moved to... * optabs-libfuncs.cc: ...here. * optabs-query.c: Moved to... * optabs-query.cc: ...here. * optabs-tree.c: Moved to... * optabs-tree.cc: ...here. * optabs.c: Moved to... * optabs.cc: ...here. * opts-common.c: Moved to... * opts-common.cc: ...here. * opts-global.c: Moved to... * opts-global.cc: ...here. * opts.c: Moved to... * opts.cc: ...here. * passes.c: Moved to... * passes.cc: ...here. * plugin.c: Moved to... * plugin.cc: ...here. * postreload-gcse.c: Moved to... * postreload-gcse.cc: ...here. * postreload.c: Moved to... * postreload.cc: ...here. * predict.c: Moved to... * predict.cc: ...here. * prefix.c: Moved to... * prefix.cc: ...here. * pretty-print.c: Moved to... * pretty-print.cc: ...here. * print-rtl-function.c: Moved to... * print-rtl-function.cc: ...here. * print-rtl.c: Moved to... * print-rtl.cc: ...here. * print-tree.c: Moved to... * print-tree.cc: ...here. * profile-count.c: Moved to... * profile-count.cc: ...here. * profile.c: Moved to... * profile.cc: ...here. * read-md.c: Moved to... * read-md.cc: ...here. * read-rtl-function.c: Moved to... * read-rtl-function.cc: ...here. * read-rtl.c: Moved to... * read-rtl.cc: ...here. * real.c: Moved to... * real.cc: ...here. * realmpfr.c: Moved to... * realmpfr.cc: ...here. * recog.c: Moved to... * recog.cc: ...here. * ree.c: Moved to... * ree.cc: ...here. * reg-stack.c: Moved to... * reg-stack.cc: ...here. * regcprop.c: Moved to... * regcprop.cc: ...here. * reginfo.c: Moved to... * reginfo.cc: ...here. * regrename.c: Moved to... * regrename.cc: ...here. * regstat.c: Moved to... * regstat.cc: ...here. * reload.c: Moved to... * reload.cc: ...here. * reload1.c: Moved to... * reload1.cc: ...here. * reorg.c: Moved to... * reorg.cc: ...here. * resource.c: Moved to... * resource.cc: ...here. * rtl-error.c: Moved to... * rtl-error.cc: ...here. * rtl-tests.c: Moved to... * rtl-tests.cc: ...here. * rtl.c: Moved to... * rtl.cc: ...here. * rtlanal.c: Moved to... * rtlanal.cc: ...here. * rtlhash.c: Moved to... * rtlhash.cc: ...here. * rtlhooks.c: Moved to... * rtlhooks.cc: ...here. * rtx-vector-builder.c: Moved to... * rtx-vector-builder.cc: ...here. * run-rtl-passes.c: Moved to... * run-rtl-passes.cc: ...here. * sancov.c: Moved to... * sancov.cc: ...here. * sanopt.c: Moved to... * sanopt.cc: ...here. * sbitmap.c: Moved to... * sbitmap.cc: ...here. * sched-deps.c: Moved to... * sched-deps.cc: ...here. * sched-ebb.c: Moved to... * sched-ebb.cc: ...here. * sched-rgn.c: Moved to... * sched-rgn.cc: ...here. * sel-sched-dump.c: Moved to... * sel-sched-dump.cc: ...here. * sel-sched-ir.c: Moved to... * sel-sched-ir.cc: ...here. * sel-sched.c: Moved to... * sel-sched.cc: ...here. * selftest-diagnostic.c: Moved to... * selftest-diagnostic.cc: ...here. * selftest-rtl.c: Moved to... * selftest-rtl.cc: ...here. * selftest-run-tests.c: Moved to... * selftest-run-tests.cc: ...here. * selftest.c: Moved to... * selftest.cc: ...here. * sese.c: Moved to... * sese.cc: ...here. * shrink-wrap.c: Moved to... * shrink-wrap.cc: ...here. * simplify-rtx.c: Moved to... * simplify-rtx.cc: ...here. * sparseset.c: Moved to... * sparseset.cc: ...here. * spellcheck-tree.c: Moved to... * spellcheck-tree.cc: ...here. * spellcheck.c: Moved to... * spellcheck.cc: ...here. * sreal.c: Moved to... * sreal.cc: ...here. * stack-ptr-mod.c: Moved to... * stack-ptr-mod.cc: ...here. * statistics.c: Moved to... * statistics.cc: ...here. * stmt.c: Moved to... * stmt.cc: ...here. * stor-layout.c: Moved to... * stor-layout.cc: ...here. * store-motion.c: Moved to... * store-motion.cc: ...here. * streamer-hooks.c: Moved to... * streamer-hooks.cc: ...here. * stringpool.c: Moved to... * stringpool.cc: ...here. * substring-locations.c: Moved to... * substring-locations.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * target-globals.c: Moved to... * target-globals.cc: ...here. * targhooks.c: Moved to... * targhooks.cc: ...here. * timevar.c: Moved to... * timevar.cc: ...here. * toplev.c: Moved to... * toplev.cc: ...here. * tracer.c: Moved to... * tracer.cc: ...here. * trans-mem.c: Moved to... * trans-mem.cc: ...here. * tree-affine.c: Moved to... * tree-affine.cc: ...here. * tree-call-cdce.c: Moved to... * tree-call-cdce.cc: ...here. * tree-cfg.c: Moved to... * tree-cfg.cc: ...here. * tree-cfgcleanup.c: Moved to... * tree-cfgcleanup.cc: ...here. * tree-chrec.c: Moved to... * tree-chrec.cc: ...here. * tree-complex.c: Moved to... * tree-complex.cc: ...here. * tree-data-ref.c: Moved to... * tree-data-ref.cc: ...here. * tree-dfa.c: Moved to... * tree-dfa.cc: ...here. * tree-diagnostic.c: Moved to... * tree-diagnostic.cc: ...here. * tree-dump.c: Moved to... * tree-dump.cc: ...here. * tree-eh.c: Moved to... * tree-eh.cc: ...here. * tree-emutls.c: Moved to... * tree-emutls.cc: ...here. * tree-if-conv.c: Moved to... * tree-if-conv.cc: ...here. * tree-inline.c: Moved to... * tree-inline.cc: ...here. * tree-into-ssa.c: Moved to... * tree-into-ssa.cc: ...here. * tree-iterator.c: Moved to... * tree-iterator.cc: ...here. * tree-loop-distribution.c: Moved to... * tree-loop-distribution.cc: ...here. * tree-nested.c: Moved to... * tree-nested.cc: ...here. * tree-nrv.c: Moved to... * tree-nrv.cc: ...here. * tree-object-size.c: Moved to... * tree-object-size.cc: ...here. * tree-outof-ssa.c: Moved to... * tree-outof-ssa.cc: ...here. * tree-parloops.c: Moved to... * tree-parloops.cc: ...here. * tree-phinodes.c: Moved to... * tree-phinodes.cc: ...here. * tree-predcom.c: Moved to... * tree-predcom.cc: ...here. * tree-pretty-print.c: Moved to... * tree-pretty-print.cc: ...here. * tree-profile.c: Moved to... * tree-profile.cc: ...here. * tree-scalar-evolution.c: Moved to... * tree-scalar-evolution.cc: ...here. * tree-sra.c: Moved to... * tree-sra.cc: ...here. * tree-ssa-address.c: Moved to... * tree-ssa-address.cc: ...here. * tree-ssa-alias.c: Moved to... * tree-ssa-alias.cc: ...here. * tree-ssa-ccp.c: Moved to... * tree-ssa-ccp.cc: ...here. * tree-ssa-coalesce.c: Moved to... * tree-ssa-coalesce.cc: ...here. * tree-ssa-copy.c: Moved to... * tree-ssa-copy.cc: ...here. * tree-ssa-dce.c: Moved to... * tree-ssa-dce.cc: ...here. * tree-ssa-dom.c: Moved to... * tree-ssa-dom.cc: ...here. * tree-ssa-dse.c: Moved to... * tree-ssa-dse.cc: ...here. * tree-ssa-forwprop.c: Moved to... * tree-ssa-forwprop.cc: ...here. * tree-ssa-ifcombine.c: Moved to... * tree-ssa-ifcombine.cc: ...here. * tree-ssa-live.c: Moved to... * tree-ssa-live.cc: ...here. * tree-ssa-loop-ch.c: Moved to... * tree-ssa-loop-ch.cc: ...here. * tree-ssa-loop-im.c: Moved to... * tree-ssa-loop-im.cc: ...here. * tree-ssa-loop-ivcanon.c: Moved to... * tree-ssa-loop-ivcanon.cc: ...here. * tree-ssa-loop-ivopts.c: Moved to... * tree-ssa-loop-ivopts.cc: ...here. * tree-ssa-loop-manip.c: Moved to... * tree-ssa-loop-manip.cc: ...here. * tree-ssa-loop-niter.c: Moved to... * tree-ssa-loop-niter.cc: ...here. * tree-ssa-loop-prefetch.c: Moved to... * tree-ssa-loop-prefetch.cc: ...here. * tree-ssa-loop-split.c: Moved to... * tree-ssa-loop-split.cc: ...here. * tree-ssa-loop-unswitch.c: Moved to... * tree-ssa-loop-unswitch.cc: ...here. * tree-ssa-loop.c: Moved to... * tree-ssa-loop.cc: ...here. * tree-ssa-math-opts.c: Moved to... * tree-ssa-math-opts.cc: ...here. * tree-ssa-operands.c: Moved to... * tree-ssa-operands.cc: ...here. * tree-ssa-phiopt.c: Moved to... * tree-ssa-phiopt.cc: ...here. * tree-ssa-phiprop.c: Moved to... * tree-ssa-phiprop.cc: ...here. * tree-ssa-pre.c: Moved to... * tree-ssa-pre.cc: ...here. * tree-ssa-propagate.c: Moved to... * tree-ssa-propagate.cc: ...here. * tree-ssa-reassoc.c: Moved to... * tree-ssa-reassoc.cc: ...here. * tree-ssa-sccvn.c: Moved to... * tree-ssa-sccvn.cc: ...here. * tree-ssa-scopedtables.c: Moved to... * tree-ssa-scopedtables.cc: ...here. * tree-ssa-sink.c: Moved to... * tree-ssa-sink.cc: ...here. * tree-ssa-strlen.c: Moved to... * tree-ssa-strlen.cc: ...here. * tree-ssa-structalias.c: Moved to... * tree-ssa-structalias.cc: ...here. * tree-ssa-tail-merge.c: Moved to... * tree-ssa-tail-merge.cc: ...here. * tree-ssa-ter.c: Moved to... * tree-ssa-ter.cc: ...here. * tree-ssa-threadbackward.c: Moved to... * tree-ssa-threadbackward.cc: ...here. * tree-ssa-threadedge.c: Moved to... * tree-ssa-threadedge.cc: ...here. * tree-ssa-threadupdate.c: Moved to... * tree-ssa-threadupdate.cc: ...here. * tree-ssa-uncprop.c: Moved to... * tree-ssa-uncprop.cc: ...here. * tree-ssa-uninit.c: Moved to... * tree-ssa-uninit.cc: ...here. * tree-ssa.c: Moved to... * tree-ssa.cc: ...here. * tree-ssanames.c: Moved to... * tree-ssanames.cc: ...here. * tree-stdarg.c: Moved to... * tree-stdarg.cc: ...here. * tree-streamer-in.c: Moved to... * tree-streamer-in.cc: ...here. * tree-streamer-out.c: Moved to... * tree-streamer-out.cc: ...here. * tree-streamer.c: Moved to... * tree-streamer.cc: ...here. * tree-switch-conversion.c: Moved to... * tree-switch-conversion.cc: ...here. * tree-tailcall.c: Moved to... * tree-tailcall.cc: ...here. * tree-vect-data-refs.c: Moved to... * tree-vect-data-refs.cc: ...here. * tree-vect-generic.c: Moved to... * tree-vect-generic.cc: ...here. * tree-vect-loop-manip.c: Moved to... * tree-vect-loop-manip.cc: ...here. * tree-vect-loop.c: Moved to... * tree-vect-loop.cc: ...here. * tree-vect-patterns.c: Moved to... * tree-vect-patterns.cc: ...here. * tree-vect-slp-patterns.c: Moved to... * tree-vect-slp-patterns.cc: ...here. * tree-vect-slp.c: Moved to... * tree-vect-slp.cc: ...here. * tree-vect-stmts.c: Moved to... * tree-vect-stmts.cc: ...here. * tree-vector-builder.c: Moved to... * tree-vector-builder.cc: ...here. * tree-vectorizer.c: Moved to... * tree-vectorizer.cc: ...here. * tree-vrp.c: Moved to... * tree-vrp.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * tsan.c: Moved to... * tsan.cc: ...here. * typed-splay-tree.c: Moved to... * typed-splay-tree.cc: ...here. * ubsan.c: Moved to... * ubsan.cc: ...here. * valtrack.c: Moved to... * valtrack.cc: ...here. * value-prof.c: Moved to... * value-prof.cc: ...here. * var-tracking.c: Moved to... * var-tracking.cc: ...here. * varasm.c: Moved to... * varasm.cc: ...here. * varpool.c: Moved to... * varpool.cc: ...here. * vec-perm-indices.c: Moved to... * vec-perm-indices.cc: ...here. * vec.c: Moved to... * vec.cc: ...here. * vmsdbgout.c: Moved to... * vmsdbgout.cc: ...here. * vr-values.c: Moved to... * vr-values.cc: ...here. * vtable-verify.c: Moved to... * vtable-verify.cc: ...here. * web.c: Moved to... * web.cc: ...here. * xcoffout.c: Moved to... * xcoffout.cc: ...here. gcc/c-family/ChangeLog: * c-ada-spec.c: Moved to... * c-ada-spec.cc: ...here. * c-attribs.c: Moved to... * c-attribs.cc: ...here. * c-common.c: Moved to... * c-common.cc: ...here. * c-cppbuiltin.c: Moved to... * c-cppbuiltin.cc: ...here. * c-dump.c: Moved to... * c-dump.cc: ...here. * c-format.c: Moved to... * c-format.cc: ...here. * c-gimplify.c: Moved to... * c-gimplify.cc: ...here. * c-indentation.c: Moved to... * c-indentation.cc: ...here. * c-lex.c: Moved to... * c-lex.cc: ...here. * c-omp.c: Moved to... * c-omp.cc: ...here. * c-opts.c: Moved to... * c-opts.cc: ...here. * c-pch.c: Moved to... * c-pch.cc: ...here. * c-ppoutput.c: Moved to... * c-ppoutput.cc: ...here. * c-pragma.c: Moved to... * c-pragma.cc: ...here. * c-pretty-print.c: Moved to... * c-pretty-print.cc: ...here. * c-semantics.c: Moved to... * c-semantics.cc: ...here. * c-ubsan.c: Moved to... * c-ubsan.cc: ...here. * c-warn.c: Moved to... * c-warn.cc: ...here. * cppspec.c: Moved to... * cppspec.cc: ...here. * stub-objc.c: Moved to... * stub-objc.cc: ...here. gcc/c/ChangeLog: * c-aux-info.c: Moved to... * c-aux-info.cc: ...here. * c-convert.c: Moved to... * c-convert.cc: ...here. * c-decl.c: Moved to... * c-decl.cc: ...here. * c-errors.c: Moved to... * c-errors.cc: ...here. * c-fold.c: Moved to... * c-fold.cc: ...here. * c-lang.c: Moved to... * c-lang.cc: ...here. * c-objc-common.c: Moved to... * c-objc-common.cc: ...here. * c-parser.c: Moved to... * c-parser.cc: ...here. * c-typeck.c: Moved to... * c-typeck.cc: ...here. * gccspec.c: Moved to... * gccspec.cc: ...here. * gimple-parser.c: Moved to... * gimple-parser.cc: ...here. gcc/cp/ChangeLog: * call.c: Moved to... * call.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constexpr.c: Moved to... * constexpr.cc: ...here. * cp-gimplify.c: Moved to... * cp-gimplify.cc: ...here. * cp-lang.c: Moved to... * cp-lang.cc: ...here. * cp-objcp-common.c: Moved to... * cp-objcp-common.cc: ...here. * cp-ubsan.c: Moved to... * cp-ubsan.cc: ...here. * cvt.c: Moved to... * cvt.cc: ...here. * cxx-pretty-print.c: Moved to... * cxx-pretty-print.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * decl2.c: Moved to... * decl2.cc: ...here. * dump.c: Moved to... * dump.cc: ...here. * error.c: Moved to... * error.cc: ...here. * except.c: Moved to... * except.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * friend.c: Moved to... * friend.cc: ...here. * g++spec.c: Moved to... * g++spec.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lambda.c: Moved to... * lambda.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * mangle.c: Moved to... * mangle.cc: ...here. * method.c: Moved to... * method.cc: ...here. * name-lookup.c: Moved to... * name-lookup.cc: ...here. * optimize.c: Moved to... * optimize.cc: ...here. * parser.c: Moved to... * parser.cc: ...here. * pt.c: Moved to... * pt.cc: ...here. * ptree.c: Moved to... * ptree.cc: ...here. * rtti.c: Moved to... * rtti.cc: ...here. * search.c: Moved to... * search.cc: ...here. * semantics.c: Moved to... * semantics.cc: ...here. * tree.c: Moved to... * tree.cc: ...here. * typeck.c: Moved to... * typeck.cc: ...here. * typeck2.c: Moved to... * typeck2.cc: ...here. * vtable-class-hierarchy.c: Moved to... * vtable-class-hierarchy.cc: ...here. gcc/fortran/ChangeLog: * arith.c: Moved to... * arith.cc: ...here. * array.c: Moved to... * array.cc: ...here. * bbt.c: Moved to... * bbt.cc: ...here. * check.c: Moved to... * check.cc: ...here. * class.c: Moved to... * class.cc: ...here. * constructor.c: Moved to... * constructor.cc: ...here. * convert.c: Moved to... * convert.cc: ...here. * cpp.c: Moved to... * cpp.cc: ...here. * data.c: Moved to... * data.cc: ...here. * decl.c: Moved to... * decl.cc: ...here. * dependency.c: Moved to... * dependency.cc: ...here. * dump-parse-tree.c: Moved to... * dump-parse-tree.cc: ...here. * error.c: Moved to... * error.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * f95-lang.c: Moved to... * f95-lang.cc: ...here. * frontend-passes.c: Moved to... * frontend-passes.cc: ...here. * gfortranspec.c: Moved to... * gfortranspec.cc: ...here. * interface.c: Moved to... * interface.cc: ...here. * intrinsic.c: Moved to... * intrinsic.cc: ...here. * io.c: Moved to... * io.cc: ...here. * iresolve.c: Moved to... * iresolve.cc: ...here. * match.c: Moved to... * match.cc: ...here. * matchexp.c: Moved to... * matchexp.cc: ...here. * misc.c: Moved to... * misc.cc: ...here. * module.c: Moved to... * module.cc: ...here. * openmp.c: Moved to... * openmp.cc: ...here. * options.c: Moved to... * options.cc: ...here. * parse.c: Moved to... * parse.cc: ...here. * primary.c: Moved to... * primary.cc: ...here. * resolve.c: Moved to... * resolve.cc: ...here. * scanner.c: Moved to... * scanner.cc: ...here. * simplify.c: Moved to... * simplify.cc: ...here. * st.c: Moved to... * st.cc: ...here. * symbol.c: Moved to... * symbol.cc: ...here. * target-memory.c: Moved to... * target-memory.cc: ...here. * trans-array.c: Moved to... * trans-array.cc: ...here. * trans-common.c: Moved to... * trans-common.cc: ...here. * trans-const.c: Moved to... * trans-const.cc: ...here. * trans-decl.c: Moved to... * trans-decl.cc: ...here. * trans-expr.c: Moved to... * trans-expr.cc: ...here. * trans-intrinsic.c: Moved to... * trans-intrinsic.cc: ...here. * trans-io.c: Moved to... * trans-io.cc: ...here. * trans-openmp.c: Moved to... * trans-openmp.cc: ...here. * trans-stmt.c: Moved to... * trans-stmt.cc: ...here. * trans-types.c: Moved to... * trans-types.cc: ...here. * trans.c: Moved to... * trans.cc: ...here. gcc/go/ChangeLog: * go-backend.c: Moved to... * go-backend.cc: ...here. * go-lang.c: Moved to... * go-lang.cc: ...here. * gospec.c: Moved to... * gospec.cc: ...here. gcc/jit/ChangeLog: * dummy-frontend.c: Moved to... * dummy-frontend.cc: ...here. * jit-builtins.c: Moved to... * jit-builtins.cc: ...here. * jit-logging.c: Moved to... * jit-logging.cc: ...here. * jit-playback.c: Moved to... * jit-playback.cc: ...here. * jit-recording.c: Moved to... * jit-recording.cc: ...here. * jit-result.c: Moved to... * jit-result.cc: ...here. * jit-spec.c: Moved to... * jit-spec.cc: ...here. * jit-tempdir.c: Moved to... * jit-tempdir.cc: ...here. * jit-w32.c: Moved to... * jit-w32.cc: ...here. * libgccjit.c: Moved to... * libgccjit.cc: ...here. gcc/lto/ChangeLog: * common.c: Moved to... * common.cc: ...here. * lto-common.c: Moved to... * lto-common.cc: ...here. * lto-dump.c: Moved to... * lto-dump.cc: ...here. * lto-lang.c: Moved to... * lto-lang.cc: ...here. * lto-object.c: Moved to... * lto-object.cc: ...here. * lto-partition.c: Moved to... * lto-partition.cc: ...here. * lto-symtab.c: Moved to... * lto-symtab.cc: ...here. * lto.c: Moved to... * lto.cc: ...here. gcc/objc/ChangeLog: * objc-act.c: Moved to... * objc-act.cc: ...here. * objc-encoding.c: Moved to... * objc-encoding.cc: ...here. * objc-gnu-runtime-abi-01.c: Moved to... * objc-gnu-runtime-abi-01.cc: ...here. * objc-lang.c: Moved to... * objc-lang.cc: ...here. * objc-map.c: Moved to... * objc-map.cc: ...here. * objc-next-runtime-abi-01.c: Moved to... * objc-next-runtime-abi-01.cc: ...here. * objc-next-runtime-abi-02.c: Moved to... * objc-next-runtime-abi-02.cc: ...here. * objc-runtime-shared-support.c: Moved to... * objc-runtime-shared-support.cc: ...here. gcc/objcp/ChangeLog: * objcp-decl.c: Moved to... * objcp-decl.cc: ...here. * objcp-lang.c: Moved to... * objcp-lang.cc: ...here. libcpp/ChangeLog: * charset.c: Moved to... * charset.cc: ...here. * directives.c: Moved to... * directives.cc: ...here. * errors.c: Moved to... * errors.cc: ...here. * expr.c: Moved to... * expr.cc: ...here. * files.c: Moved to... * files.cc: ...here. * identifiers.c: Moved to... * identifiers.cc: ...here. * init.c: Moved to... * init.cc: ...here. * lex.c: Moved to... * lex.cc: ...here. * line-map.c: Moved to... * line-map.cc: ...here. * macro.c: Moved to... * macro.cc: ...here. * makeucnid.c: Moved to... * makeucnid.cc: ...here. * mkdeps.c: Moved to... * mkdeps.cc: ...here. * pch.c: Moved to... * pch.cc: ...here. * symtab.c: Moved to... * symtab.cc: ...here. * traditional.c: Moved to... * traditional.cc: ...here.
Diffstat (limited to 'gcc/expr.c')
-rw-r--r--gcc/expr.c13145
1 files changed, 0 insertions, 13145 deletions
diff --git a/gcc/expr.c b/gcc/expr.c
deleted file mode 100644
index 9fb0187..0000000
--- a/gcc/expr.c
+++ /dev/null
@@ -1,13145 +0,0 @@
-/* Convert tree expression to rtl instructions, for GNU compiler.
- Copyright (C) 1988-2022 Free Software Foundation, Inc.
-
-This file is part of GCC.
-
-GCC is free software; you can redistribute it and/or modify it under
-the terms of the GNU General Public License as published by the Free
-Software Foundation; either version 3, or (at your option) any later
-version.
-
-GCC is distributed in the hope that it will be useful, but WITHOUT ANY
-WARRANTY; without even the implied warranty of MERCHANTABILITY or
-FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
-for more details.
-
-You should have received a copy of the GNU General Public License
-along with GCC; see the file COPYING3. If not see
-<http://www.gnu.org/licenses/>. */
-
-#include "config.h"
-#include "system.h"
-#include "coretypes.h"
-#include "backend.h"
-#include "target.h"
-#include "rtl.h"
-#include "tree.h"
-#include "gimple.h"
-#include "predict.h"
-#include "memmodel.h"
-#include "tm_p.h"
-#include "ssa.h"
-#include "optabs.h"
-#include "expmed.h"
-#include "regs.h"
-#include "emit-rtl.h"
-#include "recog.h"
-#include "cgraph.h"
-#include "diagnostic.h"
-#include "alias.h"
-#include "fold-const.h"
-#include "stor-layout.h"
-#include "attribs.h"
-#include "varasm.h"
-#include "except.h"
-#include "insn-attr.h"
-#include "dojump.h"
-#include "explow.h"
-#include "calls.h"
-#include "stmt.h"
-/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
-#include "expr.h"
-#include "optabs-tree.h"
-#include "libfuncs.h"
-#include "reload.h"
-#include "langhooks.h"
-#include "common/common-target.h"
-#include "tree-dfa.h"
-#include "tree-ssa-live.h"
-#include "tree-outof-ssa.h"
-#include "tree-ssa-address.h"
-#include "builtins.h"
-#include "ccmp.h"
-#include "gimple-fold.h"
-#include "rtx-vector-builder.h"
-#include "tree-pretty-print.h"
-#include "flags.h"
-
-
-/* If this is nonzero, we do not bother generating VOLATILE
- around volatile memory references, and we are willing to
- output indirect addresses. If cse is to follow, we reject
- indirect addresses so a useful potential cse is generated;
- if it is used only once, instruction combination will produce
- the same indirect address eventually. */
-int cse_not_expected;
-
-static bool block_move_libcall_safe_for_call_parm (void);
-static bool emit_block_move_via_pattern (rtx, rtx, rtx, unsigned, unsigned,
- HOST_WIDE_INT, unsigned HOST_WIDE_INT,
- unsigned HOST_WIDE_INT,
- unsigned HOST_WIDE_INT, bool);
-static void emit_block_move_via_loop (rtx, rtx, rtx, unsigned);
-static void clear_by_pieces (rtx, unsigned HOST_WIDE_INT, unsigned int);
-static rtx_insn *compress_float_constant (rtx, rtx);
-static rtx get_subtarget (rtx);
-static void store_constructor (tree, rtx, int, poly_int64, bool);
-static rtx store_field (rtx, poly_int64, poly_int64, poly_uint64, poly_uint64,
- machine_mode, tree, alias_set_type, bool, bool);
-
-static unsigned HOST_WIDE_INT highest_pow2_factor_for_target (const_tree, const_tree);
-
-static int is_aligning_offset (const_tree, const_tree);
-static rtx reduce_to_bit_field_precision (rtx, rtx, tree);
-static rtx do_store_flag (sepops, rtx, machine_mode);
-#ifdef PUSH_ROUNDING
-static void emit_single_push_insn (machine_mode, rtx, tree);
-#endif
-static void do_tablejump (rtx, machine_mode, rtx, rtx, rtx,
- profile_probability);
-static rtx const_vector_from_tree (tree);
-static tree tree_expr_size (const_tree);
-static HOST_WIDE_INT int_expr_size (tree);
-static void convert_mode_scalar (rtx, rtx, int);
-
-
-/* This is run to set up which modes can be used
- directly in memory and to initialize the block move optab. It is run
- at the beginning of compilation and when the target is reinitialized. */
-
-void
-init_expr_target (void)
-{
- rtx pat;
- int num_clobbers;
- rtx mem, mem1;
- rtx reg;
-
- /* Try indexing by frame ptr and try by stack ptr.
- It is known that on the Convex the stack ptr isn't a valid index.
- With luck, one or the other is valid on any machine. */
- mem = gen_rtx_MEM (word_mode, stack_pointer_rtx);
- mem1 = gen_rtx_MEM (word_mode, frame_pointer_rtx);
-
- /* A scratch register we can modify in-place below to avoid
- useless RTL allocations. */
- reg = gen_rtx_REG (word_mode, LAST_VIRTUAL_REGISTER + 1);
-
- rtx_insn *insn = as_a<rtx_insn *> (rtx_alloc (INSN));
- pat = gen_rtx_SET (NULL_RTX, NULL_RTX);
- PATTERN (insn) = pat;
-
- for (machine_mode mode = VOIDmode; (int) mode < NUM_MACHINE_MODES;
- mode = (machine_mode) ((int) mode + 1))
- {
- int regno;
-
- direct_load[(int) mode] = direct_store[(int) mode] = 0;
- PUT_MODE (mem, mode);
- PUT_MODE (mem1, mode);
-
- /* See if there is some register that can be used in this mode and
- directly loaded or stored from memory. */
-
- if (mode != VOIDmode && mode != BLKmode)
- for (regno = 0; regno < FIRST_PSEUDO_REGISTER
- && (direct_load[(int) mode] == 0 || direct_store[(int) mode] == 0);
- regno++)
- {
- if (!targetm.hard_regno_mode_ok (regno, mode))
- continue;
-
- set_mode_and_regno (reg, mode, regno);
-
- SET_SRC (pat) = mem;
- SET_DEST (pat) = reg;
- if (recog (pat, insn, &num_clobbers) >= 0)
- direct_load[(int) mode] = 1;
-
- SET_SRC (pat) = mem1;
- SET_DEST (pat) = reg;
- if (recog (pat, insn, &num_clobbers) >= 0)
- direct_load[(int) mode] = 1;
-
- SET_SRC (pat) = reg;
- SET_DEST (pat) = mem;
- if (recog (pat, insn, &num_clobbers) >= 0)
- direct_store[(int) mode] = 1;
-
- SET_SRC (pat) = reg;
- SET_DEST (pat) = mem1;
- if (recog (pat, insn, &num_clobbers) >= 0)
- direct_store[(int) mode] = 1;
- }
- }
-
- mem = gen_rtx_MEM (VOIDmode, gen_raw_REG (Pmode, LAST_VIRTUAL_REGISTER + 1));
-
- opt_scalar_float_mode mode_iter;
- FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_FLOAT)
- {
- scalar_float_mode mode = mode_iter.require ();
- scalar_float_mode srcmode;
- FOR_EACH_MODE_UNTIL (srcmode, mode)
- {
- enum insn_code ic;
-
- ic = can_extend_p (mode, srcmode, 0);
- if (ic == CODE_FOR_nothing)
- continue;
-
- PUT_MODE (mem, srcmode);
-
- if (insn_operand_matches (ic, 1, mem))
- float_extend_from_mem[mode][srcmode] = true;
- }
- }
-}
-
-/* This is run at the start of compiling a function. */
-
-void
-init_expr (void)
-{
- memset (&crtl->expr, 0, sizeof (crtl->expr));
-}
-
-/* Copy data from FROM to TO, where the machine modes are not the same.
- Both modes may be integer, or both may be floating, or both may be
- fixed-point.
- UNSIGNEDP should be nonzero if FROM is an unsigned type.
- This causes zero-extension instead of sign-extension. */
-
-void
-convert_move (rtx to, rtx from, int unsignedp)
-{
- machine_mode to_mode = GET_MODE (to);
- machine_mode from_mode = GET_MODE (from);
-
- gcc_assert (to_mode != BLKmode);
- gcc_assert (from_mode != BLKmode);
-
- /* If the source and destination are already the same, then there's
- nothing to do. */
- if (to == from)
- return;
-
- /* If FROM is a SUBREG that indicates that we have already done at least
- the required extension, strip it. We don't handle such SUBREGs as
- TO here. */
-
- scalar_int_mode to_int_mode;
- if (GET_CODE (from) == SUBREG
- && SUBREG_PROMOTED_VAR_P (from)
- && is_a <scalar_int_mode> (to_mode, &to_int_mode)
- && (GET_MODE_PRECISION (subreg_promoted_mode (from))
- >= GET_MODE_PRECISION (to_int_mode))
- && SUBREG_CHECK_PROMOTED_SIGN (from, unsignedp))
- {
- scalar_int_mode int_orig_mode;
- scalar_int_mode int_inner_mode;
- machine_mode orig_mode = GET_MODE (from);
-
- from = gen_lowpart (to_int_mode, SUBREG_REG (from));
- from_mode = to_int_mode;
-
- /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
- the original mode, but narrower than the inner mode. */
- if (GET_CODE (from) == SUBREG
- && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
- && GET_MODE_PRECISION (to_int_mode)
- > GET_MODE_PRECISION (int_orig_mode)
- && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (from)),
- &int_inner_mode)
- && GET_MODE_PRECISION (int_inner_mode)
- > GET_MODE_PRECISION (to_int_mode))
- {
- SUBREG_PROMOTED_VAR_P (from) = 1;
- SUBREG_PROMOTED_SET (from, unsignedp);
- }
- }
-
- gcc_assert (GET_CODE (to) != SUBREG || !SUBREG_PROMOTED_VAR_P (to));
-
- if (to_mode == from_mode
- || (from_mode == VOIDmode && CONSTANT_P (from)))
- {
- emit_move_insn (to, from);
- return;
- }
-
- if (VECTOR_MODE_P (to_mode) || VECTOR_MODE_P (from_mode))
- {
- if (GET_MODE_UNIT_PRECISION (to_mode)
- > GET_MODE_UNIT_PRECISION (from_mode))
- {
- optab op = unsignedp ? zext_optab : sext_optab;
- insn_code icode = convert_optab_handler (op, to_mode, from_mode);
- if (icode != CODE_FOR_nothing)
- {
- emit_unop_insn (icode, to, from,
- unsignedp ? ZERO_EXTEND : SIGN_EXTEND);
- return;
- }
- }
-
- if (GET_MODE_UNIT_PRECISION (to_mode)
- < GET_MODE_UNIT_PRECISION (from_mode))
- {
- insn_code icode = convert_optab_handler (trunc_optab,
- to_mode, from_mode);
- if (icode != CODE_FOR_nothing)
- {
- emit_unop_insn (icode, to, from, TRUNCATE);
- return;
- }
- }
-
- gcc_assert (known_eq (GET_MODE_BITSIZE (from_mode),
- GET_MODE_BITSIZE (to_mode)));
-
- if (VECTOR_MODE_P (to_mode))
- from = simplify_gen_subreg (to_mode, from, GET_MODE (from), 0);
- else
- to = simplify_gen_subreg (from_mode, to, GET_MODE (to), 0);
-
- emit_move_insn (to, from);
- return;
- }
-
- if (GET_CODE (to) == CONCAT && GET_CODE (from) == CONCAT)
- {
- convert_move (XEXP (to, 0), XEXP (from, 0), unsignedp);
- convert_move (XEXP (to, 1), XEXP (from, 1), unsignedp);
- return;
- }
-
- convert_mode_scalar (to, from, unsignedp);
-}
-
-/* Like convert_move, but deals only with scalar modes. */
-
-static void
-convert_mode_scalar (rtx to, rtx from, int unsignedp)
-{
- /* Both modes should be scalar types. */
- scalar_mode from_mode = as_a <scalar_mode> (GET_MODE (from));
- scalar_mode to_mode = as_a <scalar_mode> (GET_MODE (to));
- bool to_real = SCALAR_FLOAT_MODE_P (to_mode);
- bool from_real = SCALAR_FLOAT_MODE_P (from_mode);
- enum insn_code code;
- rtx libcall;
-
- gcc_assert (to_real == from_real);
-
- /* rtx code for making an equivalent value. */
- enum rtx_code equiv_code = (unsignedp < 0 ? UNKNOWN
- : (unsignedp ? ZERO_EXTEND : SIGN_EXTEND));
-
- if (to_real)
- {
- rtx value;
- rtx_insn *insns;
- convert_optab tab;
-
- gcc_assert ((GET_MODE_PRECISION (from_mode)
- != GET_MODE_PRECISION (to_mode))
- || (DECIMAL_FLOAT_MODE_P (from_mode)
- != DECIMAL_FLOAT_MODE_P (to_mode)));
-
- if (GET_MODE_PRECISION (from_mode) == GET_MODE_PRECISION (to_mode))
- /* Conversion between decimal float and binary float, same size. */
- tab = DECIMAL_FLOAT_MODE_P (from_mode) ? trunc_optab : sext_optab;
- else if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode))
- tab = sext_optab;
- else
- tab = trunc_optab;
-
- /* Try converting directly if the insn is supported. */
-
- code = convert_optab_handler (tab, to_mode, from_mode);
- if (code != CODE_FOR_nothing)
- {
- emit_unop_insn (code, to, from,
- tab == sext_optab ? FLOAT_EXTEND : FLOAT_TRUNCATE);
- return;
- }
-
- /* Otherwise use a libcall. */
- libcall = convert_optab_libfunc (tab, to_mode, from_mode);
-
- /* Is this conversion implemented yet? */
- gcc_assert (libcall);
-
- start_sequence ();
- value = emit_library_call_value (libcall, NULL_RTX, LCT_CONST, to_mode,
- from, from_mode);
- insns = get_insns ();
- end_sequence ();
- emit_libcall_block (insns, to, value,
- tab == trunc_optab ? gen_rtx_FLOAT_TRUNCATE (to_mode,
- from)
- : gen_rtx_FLOAT_EXTEND (to_mode, from));
- return;
- }
-
- /* Handle pointer conversion. */ /* SPEE 900220. */
- /* If the target has a converter from FROM_MODE to TO_MODE, use it. */
- {
- convert_optab ctab;
-
- if (GET_MODE_PRECISION (from_mode) > GET_MODE_PRECISION (to_mode))
- ctab = trunc_optab;
- else if (unsignedp)
- ctab = zext_optab;
- else
- ctab = sext_optab;
-
- if (convert_optab_handler (ctab, to_mode, from_mode)
- != CODE_FOR_nothing)
- {
- emit_unop_insn (convert_optab_handler (ctab, to_mode, from_mode),
- to, from, UNKNOWN);
- return;
- }
- }
-
- /* Targets are expected to provide conversion insns between PxImode and
- xImode for all MODE_PARTIAL_INT modes they use, but no others. */
- if (GET_MODE_CLASS (to_mode) == MODE_PARTIAL_INT)
- {
- scalar_int_mode full_mode
- = smallest_int_mode_for_size (GET_MODE_BITSIZE (to_mode));
-
- gcc_assert (convert_optab_handler (trunc_optab, to_mode, full_mode)
- != CODE_FOR_nothing);
-
- if (full_mode != from_mode)
- from = convert_to_mode (full_mode, from, unsignedp);
- emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, full_mode),
- to, from, UNKNOWN);
- return;
- }
- if (GET_MODE_CLASS (from_mode) == MODE_PARTIAL_INT)
- {
- rtx new_from;
- scalar_int_mode full_mode
- = smallest_int_mode_for_size (GET_MODE_BITSIZE (from_mode));
- convert_optab ctab = unsignedp ? zext_optab : sext_optab;
- enum insn_code icode;
-
- icode = convert_optab_handler (ctab, full_mode, from_mode);
- gcc_assert (icode != CODE_FOR_nothing);
-
- if (to_mode == full_mode)
- {
- emit_unop_insn (icode, to, from, UNKNOWN);
- return;
- }
-
- new_from = gen_reg_rtx (full_mode);
- emit_unop_insn (icode, new_from, from, UNKNOWN);
-
- /* else proceed to integer conversions below. */
- from_mode = full_mode;
- from = new_from;
- }
-
- /* Make sure both are fixed-point modes or both are not. */
- gcc_assert (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode) ==
- ALL_SCALAR_FIXED_POINT_MODE_P (to_mode));
- if (ALL_SCALAR_FIXED_POINT_MODE_P (from_mode))
- {
- /* If we widen from_mode to to_mode and they are in the same class,
- we won't saturate the result.
- Otherwise, always saturate the result to play safe. */
- if (GET_MODE_CLASS (from_mode) == GET_MODE_CLASS (to_mode)
- && GET_MODE_SIZE (from_mode) < GET_MODE_SIZE (to_mode))
- expand_fixed_convert (to, from, 0, 0);
- else
- expand_fixed_convert (to, from, 0, 1);
- return;
- }
-
- /* Now both modes are integers. */
-
- /* Handle expanding beyond a word. */
- if (GET_MODE_PRECISION (from_mode) < GET_MODE_PRECISION (to_mode)
- && GET_MODE_PRECISION (to_mode) > BITS_PER_WORD)
- {
- rtx_insn *insns;
- rtx lowpart;
- rtx fill_value;
- rtx lowfrom;
- int i;
- scalar_mode lowpart_mode;
- int nwords = CEIL (GET_MODE_SIZE (to_mode), UNITS_PER_WORD);
-
- /* Try converting directly if the insn is supported. */
- if ((code = can_extend_p (to_mode, from_mode, unsignedp))
- != CODE_FOR_nothing)
- {
- /* If FROM is a SUBREG, put it into a register. Do this
- so that we always generate the same set of insns for
- better cse'ing; if an intermediate assignment occurred,
- we won't be doing the operation directly on the SUBREG. */
- if (optimize > 0 && GET_CODE (from) == SUBREG)
- from = force_reg (from_mode, from);
- emit_unop_insn (code, to, from, equiv_code);
- return;
- }
- /* Next, try converting via full word. */
- else if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD
- && ((code = can_extend_p (to_mode, word_mode, unsignedp))
- != CODE_FOR_nothing))
- {
- rtx word_to = gen_reg_rtx (word_mode);
- if (REG_P (to))
- {
- if (reg_overlap_mentioned_p (to, from))
- from = force_reg (from_mode, from);
- emit_clobber (to);
- }
- convert_move (word_to, from, unsignedp);
- emit_unop_insn (code, to, word_to, equiv_code);
- return;
- }
-
- /* No special multiword conversion insn; do it by hand. */
- start_sequence ();
-
- /* Since we will turn this into a no conflict block, we must ensure
- the source does not overlap the target so force it into an isolated
- register when maybe so. Likewise for any MEM input, since the
- conversion sequence might require several references to it and we
- must ensure we're getting the same value every time. */
-
- if (MEM_P (from) || reg_overlap_mentioned_p (to, from))
- from = force_reg (from_mode, from);
-
- /* Get a copy of FROM widened to a word, if necessary. */
- if (GET_MODE_PRECISION (from_mode) < BITS_PER_WORD)
- lowpart_mode = word_mode;
- else
- lowpart_mode = from_mode;
-
- lowfrom = convert_to_mode (lowpart_mode, from, unsignedp);
-
- lowpart = gen_lowpart (lowpart_mode, to);
- emit_move_insn (lowpart, lowfrom);
-
- /* Compute the value to put in each remaining word. */
- if (unsignedp)
- fill_value = const0_rtx;
- else
- fill_value = emit_store_flag_force (gen_reg_rtx (word_mode),
- LT, lowfrom, const0_rtx,
- lowpart_mode, 0, -1);
-
- /* Fill the remaining words. */
- for (i = GET_MODE_SIZE (lowpart_mode) / UNITS_PER_WORD; i < nwords; i++)
- {
- int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
- rtx subword = operand_subword (to, index, 1, to_mode);
-
- gcc_assert (subword);
-
- if (fill_value != subword)
- emit_move_insn (subword, fill_value);
- }
-
- insns = get_insns ();
- end_sequence ();
-
- emit_insn (insns);
- return;
- }
-
- /* Truncating multi-word to a word or less. */
- if (GET_MODE_PRECISION (from_mode) > BITS_PER_WORD
- && GET_MODE_PRECISION (to_mode) <= BITS_PER_WORD)
- {
- if (!((MEM_P (from)
- && ! MEM_VOLATILE_P (from)
- && direct_load[(int) to_mode]
- && ! mode_dependent_address_p (XEXP (from, 0),
- MEM_ADDR_SPACE (from)))
- || REG_P (from)
- || GET_CODE (from) == SUBREG))
- from = force_reg (from_mode, from);
- convert_move (to, gen_lowpart (word_mode, from), 0);
- return;
- }
-
- /* Now follow all the conversions between integers
- no more than a word long. */
-
- /* For truncation, usually we can just refer to FROM in a narrower mode. */
- if (GET_MODE_BITSIZE (to_mode) < GET_MODE_BITSIZE (from_mode)
- && TRULY_NOOP_TRUNCATION_MODES_P (to_mode, from_mode))
- {
- if (!((MEM_P (from)
- && ! MEM_VOLATILE_P (from)
- && direct_load[(int) to_mode]
- && ! mode_dependent_address_p (XEXP (from, 0),
- MEM_ADDR_SPACE (from)))
- || REG_P (from)
- || GET_CODE (from) == SUBREG))
- from = force_reg (from_mode, from);
- if (REG_P (from) && REGNO (from) < FIRST_PSEUDO_REGISTER
- && !targetm.hard_regno_mode_ok (REGNO (from), to_mode))
- from = copy_to_reg (from);
- emit_move_insn (to, gen_lowpart (to_mode, from));
- return;
- }
-
- /* Handle extension. */
- if (GET_MODE_PRECISION (to_mode) > GET_MODE_PRECISION (from_mode))
- {
- /* Convert directly if that works. */
- if ((code = can_extend_p (to_mode, from_mode, unsignedp))
- != CODE_FOR_nothing)
- {
- emit_unop_insn (code, to, from, equiv_code);
- return;
- }
- else
- {
- rtx tmp;
- int shift_amount;
-
- /* Search for a mode to convert via. */
- opt_scalar_mode intermediate_iter;
- FOR_EACH_MODE_FROM (intermediate_iter, from_mode)
- {
- scalar_mode intermediate = intermediate_iter.require ();
- if (((can_extend_p (to_mode, intermediate, unsignedp)
- != CODE_FOR_nothing)
- || (GET_MODE_SIZE (to_mode) < GET_MODE_SIZE (intermediate)
- && TRULY_NOOP_TRUNCATION_MODES_P (to_mode,
- intermediate)))
- && (can_extend_p (intermediate, from_mode, unsignedp)
- != CODE_FOR_nothing))
- {
- convert_move (to, convert_to_mode (intermediate, from,
- unsignedp), unsignedp);
- return;
- }
- }
-
- /* No suitable intermediate mode.
- Generate what we need with shifts. */
- shift_amount = (GET_MODE_PRECISION (to_mode)
- - GET_MODE_PRECISION (from_mode));
- from = gen_lowpart (to_mode, force_reg (from_mode, from));
- tmp = expand_shift (LSHIFT_EXPR, to_mode, from, shift_amount,
- to, unsignedp);
- tmp = expand_shift (RSHIFT_EXPR, to_mode, tmp, shift_amount,
- to, unsignedp);
- if (tmp != to)
- emit_move_insn (to, tmp);
- return;
- }
- }
-
- /* Support special truncate insns for certain modes. */
- if (convert_optab_handler (trunc_optab, to_mode,
- from_mode) != CODE_FOR_nothing)
- {
- emit_unop_insn (convert_optab_handler (trunc_optab, to_mode, from_mode),
- to, from, UNKNOWN);
- return;
- }
-
- /* Handle truncation of volatile memrefs, and so on;
- the things that couldn't be truncated directly,
- and for which there was no special instruction.
-
- ??? Code above formerly short-circuited this, for most integer
- mode pairs, with a force_reg in from_mode followed by a recursive
- call to this routine. Appears always to have been wrong. */
- if (GET_MODE_PRECISION (to_mode) < GET_MODE_PRECISION (from_mode))
- {
- rtx temp = force_reg (to_mode, gen_lowpart (to_mode, from));
- emit_move_insn (to, temp);
- return;
- }
-
- /* Mode combination is not recognized. */
- gcc_unreachable ();
-}
-
-/* Return an rtx for a value that would result
- from converting X to mode MODE.
- Both X and MODE may be floating, or both integer.
- UNSIGNEDP is nonzero if X is an unsigned value.
- This can be done by referring to a part of X in place
- or by copying to a new temporary with conversion. */
-
-rtx
-convert_to_mode (machine_mode mode, rtx x, int unsignedp)
-{
- return convert_modes (mode, VOIDmode, x, unsignedp);
-}
-
-/* Return an rtx for a value that would result
- from converting X from mode OLDMODE to mode MODE.
- Both modes may be floating, or both integer.
- UNSIGNEDP is nonzero if X is an unsigned value.
-
- This can be done by referring to a part of X in place
- or by copying to a new temporary with conversion.
-
- You can give VOIDmode for OLDMODE, if you are sure X has a nonvoid mode. */
-
-rtx
-convert_modes (machine_mode mode, machine_mode oldmode, rtx x, int unsignedp)
-{
- rtx temp;
- scalar_int_mode int_mode;
-
- /* If FROM is a SUBREG that indicates that we have already done at least
- the required extension, strip it. */
-
- if (GET_CODE (x) == SUBREG
- && SUBREG_PROMOTED_VAR_P (x)
- && is_a <scalar_int_mode> (mode, &int_mode)
- && (GET_MODE_PRECISION (subreg_promoted_mode (x))
- >= GET_MODE_PRECISION (int_mode))
- && SUBREG_CHECK_PROMOTED_SIGN (x, unsignedp))
- {
- scalar_int_mode int_orig_mode;
- scalar_int_mode int_inner_mode;
- machine_mode orig_mode = GET_MODE (x);
- x = gen_lowpart (int_mode, SUBREG_REG (x));
-
- /* Preserve SUBREG_PROMOTED_VAR_P if the new mode is wider than
- the original mode, but narrower than the inner mode. */
- if (GET_CODE (x) == SUBREG
- && is_a <scalar_int_mode> (orig_mode, &int_orig_mode)
- && GET_MODE_PRECISION (int_mode)
- > GET_MODE_PRECISION (int_orig_mode)
- && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)),
- &int_inner_mode)
- && GET_MODE_PRECISION (int_inner_mode)
- > GET_MODE_PRECISION (int_mode))
- {
- SUBREG_PROMOTED_VAR_P (x) = 1;
- SUBREG_PROMOTED_SET (x, unsignedp);
- }
- }
-
- if (GET_MODE (x) != VOIDmode)
- oldmode = GET_MODE (x);
-
- if (mode == oldmode)
- return x;
-
- if (CONST_SCALAR_INT_P (x)
- && is_a <scalar_int_mode> (mode, &int_mode))
- {
- /* If the caller did not tell us the old mode, then there is not
- much to do with respect to canonicalization. We have to
- assume that all the bits are significant. */
- if (!is_a <scalar_int_mode> (oldmode))
- oldmode = MAX_MODE_INT;
- wide_int w = wide_int::from (rtx_mode_t (x, oldmode),
- GET_MODE_PRECISION (int_mode),
- unsignedp ? UNSIGNED : SIGNED);
- return immed_wide_int_const (w, int_mode);
- }
-
- /* We can do this with a gen_lowpart if both desired and current modes
- are integer, and this is either a constant integer, a register, or a
- non-volatile MEM. */
- scalar_int_mode int_oldmode;
- if (is_int_mode (mode, &int_mode)
- && is_int_mode (oldmode, &int_oldmode)
- && GET_MODE_PRECISION (int_mode) <= GET_MODE_PRECISION (int_oldmode)
- && ((MEM_P (x) && !MEM_VOLATILE_P (x) && direct_load[(int) int_mode])
- || CONST_POLY_INT_P (x)
- || (REG_P (x)
- && (!HARD_REGISTER_P (x)
- || targetm.hard_regno_mode_ok (REGNO (x), int_mode))
- && TRULY_NOOP_TRUNCATION_MODES_P (int_mode, GET_MODE (x)))))
- return gen_lowpart (int_mode, x);
-
- /* Converting from integer constant into mode is always equivalent to an
- subreg operation. */
- if (VECTOR_MODE_P (mode) && GET_MODE (x) == VOIDmode)
- {
- gcc_assert (known_eq (GET_MODE_BITSIZE (mode),
- GET_MODE_BITSIZE (oldmode)));
- return simplify_gen_subreg (mode, x, oldmode, 0);
- }
-
- temp = gen_reg_rtx (mode);
- convert_move (temp, x, unsignedp);
- return temp;
-}
-
-/* Return the largest alignment we can use for doing a move (or store)
- of MAX_PIECES. ALIGN is the largest alignment we could use. */
-
-static unsigned int
-alignment_for_piecewise_move (unsigned int max_pieces, unsigned int align)
-{
- scalar_int_mode tmode
- = int_mode_for_size (max_pieces * BITS_PER_UNIT, 0).require ();
-
- if (align >= GET_MODE_ALIGNMENT (tmode))
- align = GET_MODE_ALIGNMENT (tmode);
- else
- {
- scalar_int_mode xmode = NARROWEST_INT_MODE;
- opt_scalar_int_mode mode_iter;
- FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
- {
- tmode = mode_iter.require ();
- if (GET_MODE_SIZE (tmode) > max_pieces
- || targetm.slow_unaligned_access (tmode, align))
- break;
- xmode = tmode;
- }
-
- align = MAX (align, GET_MODE_ALIGNMENT (xmode));
- }
-
- return align;
-}
-
-/* Return the widest QI vector, if QI_MODE is true, or integer mode
- that is narrower than SIZE bytes. */
-
-static fixed_size_mode
-widest_fixed_size_mode_for_size (unsigned int size, bool qi_vector)
-{
- fixed_size_mode result = NARROWEST_INT_MODE;
-
- gcc_checking_assert (size > 1);
-
- /* Use QI vector only if size is wider than a WORD. */
- if (qi_vector && size > UNITS_PER_WORD)
- {
- machine_mode mode;
- fixed_size_mode candidate;
- FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
- if (is_a<fixed_size_mode> (mode, &candidate)
- && GET_MODE_INNER (candidate) == QImode)
- {
- if (GET_MODE_SIZE (candidate) >= size)
- break;
- if (optab_handler (vec_duplicate_optab, candidate)
- != CODE_FOR_nothing)
- result = candidate;
- }
-
- if (result != NARROWEST_INT_MODE)
- return result;
- }
-
- opt_scalar_int_mode tmode;
- FOR_EACH_MODE_IN_CLASS (tmode, MODE_INT)
- if (GET_MODE_SIZE (tmode.require ()) < size)
- result = tmode.require ();
-
- return result;
-}
-
-/* Determine whether an operation OP on LEN bytes with alignment ALIGN can
- and should be performed piecewise. */
-
-static bool
-can_do_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align,
- enum by_pieces_operation op)
-{
- return targetm.use_by_pieces_infrastructure_p (len, align, op,
- optimize_insn_for_speed_p ());
-}
-
-/* Determine whether the LEN bytes can be moved by using several move
- instructions. Return nonzero if a call to move_by_pieces should
- succeed. */
-
-bool
-can_move_by_pieces (unsigned HOST_WIDE_INT len, unsigned int align)
-{
- return can_do_by_pieces (len, align, MOVE_BY_PIECES);
-}
-
-/* Return number of insns required to perform operation OP by pieces
- for L bytes. ALIGN (in bits) is maximum alignment we can assume. */
-
-unsigned HOST_WIDE_INT
-by_pieces_ninsns (unsigned HOST_WIDE_INT l, unsigned int align,
- unsigned int max_size, by_pieces_operation op)
-{
- unsigned HOST_WIDE_INT n_insns = 0;
- fixed_size_mode mode;
-
- if (targetm.overlap_op_by_pieces_p () && op != COMPARE_BY_PIECES)
- {
- /* NB: Round up L and ALIGN to the widest integer mode for
- MAX_SIZE. */
- mode = widest_fixed_size_mode_for_size (max_size,
- op == SET_BY_PIECES);
- if (optab_handler (mov_optab, mode) != CODE_FOR_nothing)
- {
- unsigned HOST_WIDE_INT up = ROUND_UP (l, GET_MODE_SIZE (mode));
- if (up > l)
- l = up;
- align = GET_MODE_ALIGNMENT (mode);
- }
- }
-
- align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
-
- while (max_size > 1 && l > 0)
- {
- mode = widest_fixed_size_mode_for_size (max_size,
- op == SET_BY_PIECES);
- enum insn_code icode;
-
- unsigned int modesize = GET_MODE_SIZE (mode);
-
- icode = optab_handler (mov_optab, mode);
- if (icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode))
- {
- unsigned HOST_WIDE_INT n_pieces = l / modesize;
- l %= modesize;
- switch (op)
- {
- default:
- n_insns += n_pieces;
- break;
-
- case COMPARE_BY_PIECES:
- int batch = targetm.compare_by_pieces_branch_ratio (mode);
- int batch_ops = 4 * batch - 1;
- unsigned HOST_WIDE_INT full = n_pieces / batch;
- n_insns += full * batch_ops;
- if (n_pieces % batch != 0)
- n_insns++;
- break;
-
- }
- }
- max_size = modesize;
- }
-
- gcc_assert (!l);
- return n_insns;
-}
-
-/* Used when performing piecewise block operations, holds information
- about one of the memory objects involved. The member functions
- can be used to generate code for loading from the object and
- updating the address when iterating. */
-
-class pieces_addr
-{
- /* The object being referenced, a MEM. Can be NULL_RTX to indicate
- stack pushes. */
- rtx m_obj;
- /* The address of the object. Can differ from that seen in the
- MEM rtx if we copied the address to a register. */
- rtx m_addr;
- /* Nonzero if the address on the object has an autoincrement already,
- signifies whether that was an increment or decrement. */
- signed char m_addr_inc;
- /* Nonzero if we intend to use autoinc without the address already
- having autoinc form. We will insert add insns around each memory
- reference, expecting later passes to form autoinc addressing modes.
- The only supported options are predecrement and postincrement. */
- signed char m_explicit_inc;
- /* True if we have either of the two possible cases of using
- autoincrement. */
- bool m_auto;
- /* True if this is an address to be used for load operations rather
- than stores. */
- bool m_is_load;
-
- /* Optionally, a function to obtain constants for any given offset into
- the objects, and data associated with it. */
- by_pieces_constfn m_constfn;
- void *m_cfndata;
-public:
- pieces_addr (rtx, bool, by_pieces_constfn, void *);
- rtx adjust (fixed_size_mode, HOST_WIDE_INT, by_pieces_prev * = nullptr);
- void increment_address (HOST_WIDE_INT);
- void maybe_predec (HOST_WIDE_INT);
- void maybe_postinc (HOST_WIDE_INT);
- void decide_autoinc (machine_mode, bool, HOST_WIDE_INT);
- int get_addr_inc ()
- {
- return m_addr_inc;
- }
-};
-
-/* Initialize a pieces_addr structure from an object OBJ. IS_LOAD is
- true if the operation to be performed on this object is a load
- rather than a store. For stores, OBJ can be NULL, in which case we
- assume the operation is a stack push. For loads, the optional
- CONSTFN and its associated CFNDATA can be used in place of the
- memory load. */
-
-pieces_addr::pieces_addr (rtx obj, bool is_load, by_pieces_constfn constfn,
- void *cfndata)
- : m_obj (obj), m_is_load (is_load), m_constfn (constfn), m_cfndata (cfndata)
-{
- m_addr_inc = 0;
- m_auto = false;
- if (obj)
- {
- rtx addr = XEXP (obj, 0);
- rtx_code code = GET_CODE (addr);
- m_addr = addr;
- bool dec = code == PRE_DEC || code == POST_DEC;
- bool inc = code == PRE_INC || code == POST_INC;
- m_auto = inc || dec;
- if (m_auto)
- m_addr_inc = dec ? -1 : 1;
-
- /* While we have always looked for these codes here, the code
- implementing the memory operation has never handled them.
- Support could be added later if necessary or beneficial. */
- gcc_assert (code != PRE_INC && code != POST_DEC);
- }
- else
- {
- m_addr = NULL_RTX;
- if (!is_load)
- {
- m_auto = true;
- if (STACK_GROWS_DOWNWARD)
- m_addr_inc = -1;
- else
- m_addr_inc = 1;
- }
- else
- gcc_assert (constfn != NULL);
- }
- m_explicit_inc = 0;
- if (constfn)
- gcc_assert (is_load);
-}
-
-/* Decide whether to use autoinc for an address involved in a memory op.
- MODE is the mode of the accesses, REVERSE is true if we've decided to
- perform the operation starting from the end, and LEN is the length of
- the operation. Don't override an earlier decision to set m_auto. */
-
-void
-pieces_addr::decide_autoinc (machine_mode ARG_UNUSED (mode), bool reverse,
- HOST_WIDE_INT len)
-{
- if (m_auto || m_obj == NULL_RTX)
- return;
-
- bool use_predec = (m_is_load
- ? USE_LOAD_PRE_DECREMENT (mode)
- : USE_STORE_PRE_DECREMENT (mode));
- bool use_postinc = (m_is_load
- ? USE_LOAD_POST_INCREMENT (mode)
- : USE_STORE_POST_INCREMENT (mode));
- machine_mode addr_mode = get_address_mode (m_obj);
-
- if (use_predec && reverse)
- {
- m_addr = copy_to_mode_reg (addr_mode,
- plus_constant (addr_mode,
- m_addr, len));
- m_auto = true;
- m_explicit_inc = -1;
- }
- else if (use_postinc && !reverse)
- {
- m_addr = copy_to_mode_reg (addr_mode, m_addr);
- m_auto = true;
- m_explicit_inc = 1;
- }
- else if (CONSTANT_P (m_addr))
- m_addr = copy_to_mode_reg (addr_mode, m_addr);
-}
-
-/* Adjust the address to refer to the data at OFFSET in MODE. If we
- are using autoincrement for this address, we don't add the offset,
- but we still modify the MEM's properties. */
-
-rtx
-pieces_addr::adjust (fixed_size_mode mode, HOST_WIDE_INT offset,
- by_pieces_prev *prev)
-{
- if (m_constfn)
- /* Pass the previous data to m_constfn. */
- return m_constfn (m_cfndata, prev, offset, mode);
- if (m_obj == NULL_RTX)
- return NULL_RTX;
- if (m_auto)
- return adjust_automodify_address (m_obj, mode, m_addr, offset);
- else
- return adjust_address (m_obj, mode, offset);
-}
-
-/* Emit an add instruction to increment the address by SIZE. */
-
-void
-pieces_addr::increment_address (HOST_WIDE_INT size)
-{
- rtx amount = gen_int_mode (size, GET_MODE (m_addr));
- emit_insn (gen_add2_insn (m_addr, amount));
-}
-
-/* If we are supposed to decrement the address after each access, emit code
- to do so now. Increment by SIZE (which has should have the correct sign
- already). */
-
-void
-pieces_addr::maybe_predec (HOST_WIDE_INT size)
-{
- if (m_explicit_inc >= 0)
- return;
- gcc_assert (HAVE_PRE_DECREMENT);
- increment_address (size);
-}
-
-/* If we are supposed to decrement the address after each access, emit code
- to do so now. Increment by SIZE. */
-
-void
-pieces_addr::maybe_postinc (HOST_WIDE_INT size)
-{
- if (m_explicit_inc <= 0)
- return;
- gcc_assert (HAVE_POST_INCREMENT);
- increment_address (size);
-}
-
-/* This structure is used by do_op_by_pieces to describe the operation
- to be performed. */
-
-class op_by_pieces_d
-{
- private:
- fixed_size_mode get_usable_mode (fixed_size_mode, unsigned int);
- fixed_size_mode smallest_fixed_size_mode_for_size (unsigned int);
-
- protected:
- pieces_addr m_to, m_from;
- /* Make m_len read-only so that smallest_fixed_size_mode_for_size can
- use it to check the valid mode size. */
- const unsigned HOST_WIDE_INT m_len;
- HOST_WIDE_INT m_offset;
- unsigned int m_align;
- unsigned int m_max_size;
- bool m_reverse;
- /* True if this is a stack push. */
- bool m_push;
- /* True if targetm.overlap_op_by_pieces_p () returns true. */
- bool m_overlap_op_by_pieces;
- /* True if QI vector mode can be used. */
- bool m_qi_vector_mode;
-
- /* Virtual functions, overriden by derived classes for the specific
- operation. */
- virtual void generate (rtx, rtx, machine_mode) = 0;
- virtual bool prepare_mode (machine_mode, unsigned int) = 0;
- virtual void finish_mode (machine_mode)
- {
- }
-
- public:
- op_by_pieces_d (unsigned int, rtx, bool, rtx, bool, by_pieces_constfn,
- void *, unsigned HOST_WIDE_INT, unsigned int, bool,
- bool = false);
- void run ();
-};
-
-/* The constructor for an op_by_pieces_d structure. We require two
- objects named TO and FROM, which are identified as loads or stores
- by TO_LOAD and FROM_LOAD. If FROM is a load, the optional FROM_CFN
- and its associated FROM_CFN_DATA can be used to replace loads with
- constant values. MAX_PIECES describes the maximum number of bytes
- at a time which can be moved efficiently. LEN describes the length
- of the operation. */
-
-op_by_pieces_d::op_by_pieces_d (unsigned int max_pieces, rtx to,
- bool to_load, rtx from, bool from_load,
- by_pieces_constfn from_cfn,
- void *from_cfn_data,
- unsigned HOST_WIDE_INT len,
- unsigned int align, bool push,
- bool qi_vector_mode)
- : m_to (to, to_load, NULL, NULL),
- m_from (from, from_load, from_cfn, from_cfn_data),
- m_len (len), m_max_size (max_pieces + 1),
- m_push (push), m_qi_vector_mode (qi_vector_mode)
-{
- int toi = m_to.get_addr_inc ();
- int fromi = m_from.get_addr_inc ();
- if (toi >= 0 && fromi >= 0)
- m_reverse = false;
- else if (toi <= 0 && fromi <= 0)
- m_reverse = true;
- else
- gcc_unreachable ();
-
- m_offset = m_reverse ? len : 0;
- align = MIN (to ? MEM_ALIGN (to) : align,
- from ? MEM_ALIGN (from) : align);
-
- /* If copying requires more than two move insns,
- copy addresses to registers (to make displacements shorter)
- and use post-increment if available. */
- if (by_pieces_ninsns (len, align, m_max_size, MOVE_BY_PIECES) > 2)
- {
- /* Find the mode of the largest comparison. */
- fixed_size_mode mode
- = widest_fixed_size_mode_for_size (m_max_size,
- m_qi_vector_mode);
-
- m_from.decide_autoinc (mode, m_reverse, len);
- m_to.decide_autoinc (mode, m_reverse, len);
- }
-
- align = alignment_for_piecewise_move (MOVE_MAX_PIECES, align);
- m_align = align;
-
- m_overlap_op_by_pieces = targetm.overlap_op_by_pieces_p ();
-}
-
-/* This function returns the largest usable integer mode for LEN bytes
- whose size is no bigger than size of MODE. */
-
-fixed_size_mode
-op_by_pieces_d::get_usable_mode (fixed_size_mode mode, unsigned int len)
-{
- unsigned int size;
- do
- {
- size = GET_MODE_SIZE (mode);
- if (len >= size && prepare_mode (mode, m_align))
- break;
- /* widest_fixed_size_mode_for_size checks SIZE > 1. */
- mode = widest_fixed_size_mode_for_size (size, m_qi_vector_mode);
- }
- while (1);
- return mode;
-}
-
-/* Return the smallest integer or QI vector mode that is not narrower
- than SIZE bytes. */
-
-fixed_size_mode
-op_by_pieces_d::smallest_fixed_size_mode_for_size (unsigned int size)
-{
- /* Use QI vector only for > size of WORD. */
- if (m_qi_vector_mode && size > UNITS_PER_WORD)
- {
- machine_mode mode;
- fixed_size_mode candidate;
- FOR_EACH_MODE_IN_CLASS (mode, MODE_VECTOR_INT)
- if (is_a<fixed_size_mode> (mode, &candidate)
- && GET_MODE_INNER (candidate) == QImode)
- {
- /* Don't return a mode wider than M_LEN. */
- if (GET_MODE_SIZE (candidate) > m_len)
- break;
-
- if (GET_MODE_SIZE (candidate) >= size
- && (optab_handler (vec_duplicate_optab, candidate)
- != CODE_FOR_nothing))
- return candidate;
- }
- }
-
- return smallest_int_mode_for_size (size * BITS_PER_UNIT);
-}
-
-/* This function contains the main loop used for expanding a block
- operation. First move what we can in the largest integer mode,
- then go to successively smaller modes. For every access, call
- GENFUN with the two operands and the EXTRA_DATA. */
-
-void
-op_by_pieces_d::run ()
-{
- if (m_len == 0)
- return;
-
- unsigned HOST_WIDE_INT length = m_len;
-
- /* widest_fixed_size_mode_for_size checks M_MAX_SIZE > 1. */
- fixed_size_mode mode
- = widest_fixed_size_mode_for_size (m_max_size, m_qi_vector_mode);
- mode = get_usable_mode (mode, length);
-
- by_pieces_prev to_prev = { nullptr, mode };
- by_pieces_prev from_prev = { nullptr, mode };
-
- do
- {
- unsigned int size = GET_MODE_SIZE (mode);
- rtx to1 = NULL_RTX, from1;
-
- while (length >= size)
- {
- if (m_reverse)
- m_offset -= size;
-
- to1 = m_to.adjust (mode, m_offset, &to_prev);
- to_prev.data = to1;
- to_prev.mode = mode;
- from1 = m_from.adjust (mode, m_offset, &from_prev);
- from_prev.data = from1;
- from_prev.mode = mode;
-
- m_to.maybe_predec (-(HOST_WIDE_INT)size);
- m_from.maybe_predec (-(HOST_WIDE_INT)size);
-
- generate (to1, from1, mode);
-
- m_to.maybe_postinc (size);
- m_from.maybe_postinc (size);
-
- if (!m_reverse)
- m_offset += size;
-
- length -= size;
- }
-
- finish_mode (mode);
-
- if (length == 0)
- return;
-
- if (!m_push && m_overlap_op_by_pieces)
- {
- /* NB: Generate overlapping operations if it is not a stack
- push since stack push must not overlap. Get the smallest
- fixed size mode for M_LEN bytes. */
- mode = smallest_fixed_size_mode_for_size (length);
- mode = get_usable_mode (mode, GET_MODE_SIZE (mode));
- int gap = GET_MODE_SIZE (mode) - length;
- if (gap > 0)
- {
- /* If size of MODE > M_LEN, generate the last operation
- in MODE for the remaining bytes with ovelapping memory
- from the previois operation. */
- if (m_reverse)
- m_offset += gap;
- else
- m_offset -= gap;
- length += gap;
- }
- }
- else
- {
- /* widest_fixed_size_mode_for_size checks SIZE > 1. */
- mode = widest_fixed_size_mode_for_size (size,
- m_qi_vector_mode);
- mode = get_usable_mode (mode, length);
- }
- }
- while (1);
-}
-
-/* Derived class from op_by_pieces_d, providing support for block move
- operations. */
-
-#ifdef PUSH_ROUNDING
-#define PUSHG_P(to) ((to) == nullptr)
-#else
-#define PUSHG_P(to) false
-#endif
-
-class move_by_pieces_d : public op_by_pieces_d
-{
- insn_gen_fn m_gen_fun;
- void generate (rtx, rtx, machine_mode);
- bool prepare_mode (machine_mode, unsigned int);
-
- public:
- move_by_pieces_d (rtx to, rtx from, unsigned HOST_WIDE_INT len,
- unsigned int align)
- : op_by_pieces_d (MOVE_MAX_PIECES, to, false, from, true, NULL,
- NULL, len, align, PUSHG_P (to))
- {
- }
- rtx finish_retmode (memop_ret);
-};
-
-/* Return true if MODE can be used for a set of copies, given an
- alignment ALIGN. Prepare whatever data is necessary for later
- calls to generate. */
-
-bool
-move_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
-{
- insn_code icode = optab_handler (mov_optab, mode);
- m_gen_fun = GEN_FCN (icode);
- return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
-}
-
-/* A callback used when iterating for a compare_by_pieces_operation.
- OP0 and OP1 are the values that have been loaded and should be
- compared in MODE. If OP0 is NULL, this means we should generate a
- push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
- gen function that should be used to generate the mode. */
-
-void
-move_by_pieces_d::generate (rtx op0, rtx op1,
- machine_mode mode ATTRIBUTE_UNUSED)
-{
-#ifdef PUSH_ROUNDING
- if (op0 == NULL_RTX)
- {
- emit_single_push_insn (mode, op1, NULL);
- return;
- }
-#endif
- emit_insn (m_gen_fun (op0, op1));
-}
-
-/* Perform the final adjustment at the end of a string to obtain the
- correct return value for the block operation.
- Return value is based on RETMODE argument. */
-
-rtx
-move_by_pieces_d::finish_retmode (memop_ret retmode)
-{
- gcc_assert (!m_reverse);
- if (retmode == RETURN_END_MINUS_ONE)
- {
- m_to.maybe_postinc (-1);
- --m_offset;
- }
- return m_to.adjust (QImode, m_offset);
-}
-
-/* Generate several move instructions to copy LEN bytes from block FROM to
- block TO. (These are MEM rtx's with BLKmode).
-
- If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
- used to push FROM to the stack.
-
- ALIGN is maximum stack alignment we can assume.
-
- Return value is based on RETMODE argument. */
-
-rtx
-move_by_pieces (rtx to, rtx from, unsigned HOST_WIDE_INT len,
- unsigned int align, memop_ret retmode)
-{
-#ifndef PUSH_ROUNDING
- if (to == NULL)
- gcc_unreachable ();
-#endif
-
- move_by_pieces_d data (to, from, len, align);
-
- data.run ();
-
- if (retmode != RETURN_BEGIN)
- return data.finish_retmode (retmode);
- else
- return to;
-}
-
-/* Derived class from op_by_pieces_d, providing support for block move
- operations. */
-
-class store_by_pieces_d : public op_by_pieces_d
-{
- insn_gen_fn m_gen_fun;
- void generate (rtx, rtx, machine_mode);
- bool prepare_mode (machine_mode, unsigned int);
-
- public:
- store_by_pieces_d (rtx to, by_pieces_constfn cfn, void *cfn_data,
- unsigned HOST_WIDE_INT len, unsigned int align,
- bool qi_vector_mode)
- : op_by_pieces_d (STORE_MAX_PIECES, to, false, NULL_RTX, true, cfn,
- cfn_data, len, align, false, qi_vector_mode)
- {
- }
- rtx finish_retmode (memop_ret);
-};
-
-/* Return true if MODE can be used for a set of stores, given an
- alignment ALIGN. Prepare whatever data is necessary for later
- calls to generate. */
-
-bool
-store_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
-{
- insn_code icode = optab_handler (mov_optab, mode);
- m_gen_fun = GEN_FCN (icode);
- return icode != CODE_FOR_nothing && align >= GET_MODE_ALIGNMENT (mode);
-}
-
-/* A callback used when iterating for a store_by_pieces_operation.
- OP0 and OP1 are the values that have been loaded and should be
- compared in MODE. If OP0 is NULL, this means we should generate a
- push; otherwise EXTRA_DATA holds a pointer to a pointer to the insn
- gen function that should be used to generate the mode. */
-
-void
-store_by_pieces_d::generate (rtx op0, rtx op1, machine_mode)
-{
- emit_insn (m_gen_fun (op0, op1));
-}
-
-/* Perform the final adjustment at the end of a string to obtain the
- correct return value for the block operation.
- Return value is based on RETMODE argument. */
-
-rtx
-store_by_pieces_d::finish_retmode (memop_ret retmode)
-{
- gcc_assert (!m_reverse);
- if (retmode == RETURN_END_MINUS_ONE)
- {
- m_to.maybe_postinc (-1);
- --m_offset;
- }
- return m_to.adjust (QImode, m_offset);
-}
-
-/* Determine whether the LEN bytes generated by CONSTFUN can be
- stored to memory using several move instructions. CONSTFUNDATA is
- a pointer which will be passed as argument in every CONSTFUN call.
- ALIGN is maximum alignment we can assume. MEMSETP is true if this is
- a memset operation and false if it's a copy of a constant string.
- Return nonzero if a call to store_by_pieces should succeed. */
-
-int
-can_store_by_pieces (unsigned HOST_WIDE_INT len,
- by_pieces_constfn constfun,
- void *constfundata, unsigned int align, bool memsetp)
-{
- unsigned HOST_WIDE_INT l;
- unsigned int max_size;
- HOST_WIDE_INT offset = 0;
- enum insn_code icode;
- int reverse;
- /* cst is set but not used if LEGITIMATE_CONSTANT doesn't use it. */
- rtx cst ATTRIBUTE_UNUSED;
-
- if (len == 0)
- return 1;
-
- if (!targetm.use_by_pieces_infrastructure_p (len, align,
- memsetp
- ? SET_BY_PIECES
- : STORE_BY_PIECES,
- optimize_insn_for_speed_p ()))
- return 0;
-
- align = alignment_for_piecewise_move (STORE_MAX_PIECES, align);
-
- /* We would first store what we can in the largest integer mode, then go to
- successively smaller modes. */
-
- for (reverse = 0;
- reverse <= (HAVE_PRE_DECREMENT || HAVE_POST_DECREMENT);
- reverse++)
- {
- l = len;
- max_size = STORE_MAX_PIECES + 1;
- while (max_size > 1 && l > 0)
- {
- fixed_size_mode mode
- = widest_fixed_size_mode_for_size (max_size, memsetp);
-
- icode = optab_handler (mov_optab, mode);
- if (icode != CODE_FOR_nothing
- && align >= GET_MODE_ALIGNMENT (mode))
- {
- unsigned int size = GET_MODE_SIZE (mode);
-
- while (l >= size)
- {
- if (reverse)
- offset -= size;
-
- cst = (*constfun) (constfundata, nullptr, offset, mode);
- /* All CONST_VECTORs can be loaded for memset since
- vec_duplicate_optab is a precondition to pick a
- vector mode for the memset expander. */
- if (!((memsetp && VECTOR_MODE_P (mode))
- || targetm.legitimate_constant_p (mode, cst)))
- return 0;
-
- if (!reverse)
- offset += size;
-
- l -= size;
- }
- }
-
- max_size = GET_MODE_SIZE (mode);
- }
-
- /* The code above should have handled everything. */
- gcc_assert (!l);
- }
-
- return 1;
-}
-
-/* Generate several move instructions to store LEN bytes generated by
- CONSTFUN to block TO. (A MEM rtx with BLKmode). CONSTFUNDATA is a
- pointer which will be passed as argument in every CONSTFUN call.
- ALIGN is maximum alignment we can assume. MEMSETP is true if this is
- a memset operation and false if it's a copy of a constant string.
- Return value is based on RETMODE argument. */
-
-rtx
-store_by_pieces (rtx to, unsigned HOST_WIDE_INT len,
- by_pieces_constfn constfun,
- void *constfundata, unsigned int align, bool memsetp,
- memop_ret retmode)
-{
- if (len == 0)
- {
- gcc_assert (retmode != RETURN_END_MINUS_ONE);
- return to;
- }
-
- gcc_assert (targetm.use_by_pieces_infrastructure_p
- (len, align,
- memsetp ? SET_BY_PIECES : STORE_BY_PIECES,
- optimize_insn_for_speed_p ()));
-
- store_by_pieces_d data (to, constfun, constfundata, len, align,
- memsetp);
- data.run ();
-
- if (retmode != RETURN_BEGIN)
- return data.finish_retmode (retmode);
- else
- return to;
-}
-
-/* Generate several move instructions to clear LEN bytes of block TO. (A MEM
- rtx with BLKmode). ALIGN is maximum alignment we can assume. */
-
-static void
-clear_by_pieces (rtx to, unsigned HOST_WIDE_INT len, unsigned int align)
-{
- if (len == 0)
- return;
-
- /* Use builtin_memset_read_str to support vector mode broadcast. */
- char c = 0;
- store_by_pieces_d data (to, builtin_memset_read_str, &c, len, align,
- true);
- data.run ();
-}
-
-/* Context used by compare_by_pieces_genfn. It stores the fail label
- to jump to in case of miscomparison, and for branch ratios greater than 1,
- it stores an accumulator and the current and maximum counts before
- emitting another branch. */
-
-class compare_by_pieces_d : public op_by_pieces_d
-{
- rtx_code_label *m_fail_label;
- rtx m_accumulator;
- int m_count, m_batch;
-
- void generate (rtx, rtx, machine_mode);
- bool prepare_mode (machine_mode, unsigned int);
- void finish_mode (machine_mode);
- public:
- compare_by_pieces_d (rtx op0, rtx op1, by_pieces_constfn op1_cfn,
- void *op1_cfn_data, HOST_WIDE_INT len, int align,
- rtx_code_label *fail_label)
- : op_by_pieces_d (COMPARE_MAX_PIECES, op0, true, op1, true, op1_cfn,
- op1_cfn_data, len, align, false)
- {
- m_fail_label = fail_label;
- }
-};
-
-/* A callback used when iterating for a compare_by_pieces_operation.
- OP0 and OP1 are the values that have been loaded and should be
- compared in MODE. DATA holds a pointer to the compare_by_pieces_data
- context structure. */
-
-void
-compare_by_pieces_d::generate (rtx op0, rtx op1, machine_mode mode)
-{
- if (m_batch > 1)
- {
- rtx temp = expand_binop (mode, sub_optab, op0, op1, NULL_RTX,
- true, OPTAB_LIB_WIDEN);
- if (m_count != 0)
- temp = expand_binop (mode, ior_optab, m_accumulator, temp, temp,
- true, OPTAB_LIB_WIDEN);
- m_accumulator = temp;
-
- if (++m_count < m_batch)
- return;
-
- m_count = 0;
- op0 = m_accumulator;
- op1 = const0_rtx;
- m_accumulator = NULL_RTX;
- }
- do_compare_rtx_and_jump (op0, op1, NE, true, mode, NULL_RTX, NULL,
- m_fail_label, profile_probability::uninitialized ());
-}
-
-/* Return true if MODE can be used for a set of moves and comparisons,
- given an alignment ALIGN. Prepare whatever data is necessary for
- later calls to generate. */
-
-bool
-compare_by_pieces_d::prepare_mode (machine_mode mode, unsigned int align)
-{
- insn_code icode = optab_handler (mov_optab, mode);
- if (icode == CODE_FOR_nothing
- || align < GET_MODE_ALIGNMENT (mode)
- || !can_compare_p (EQ, mode, ccp_jump))
- return false;
- m_batch = targetm.compare_by_pieces_branch_ratio (mode);
- if (m_batch < 0)
- return false;
- m_accumulator = NULL_RTX;
- m_count = 0;
- return true;
-}
-
-/* Called after expanding a series of comparisons in MODE. If we have
- accumulated results for which we haven't emitted a branch yet, do
- so now. */
-
-void
-compare_by_pieces_d::finish_mode (machine_mode mode)
-{
- if (m_accumulator != NULL_RTX)
- do_compare_rtx_and_jump (m_accumulator, const0_rtx, NE, true, mode,
- NULL_RTX, NULL, m_fail_label,
- profile_probability::uninitialized ());
-}
-
-/* Generate several move instructions to compare LEN bytes from blocks
- ARG0 and ARG1. (These are MEM rtx's with BLKmode).
-
- If PUSH_ROUNDING is defined and TO is NULL, emit_single_push_insn is
- used to push FROM to the stack.
-
- ALIGN is maximum stack alignment we can assume.
-
- Optionally, the caller can pass a constfn and associated data in A1_CFN
- and A1_CFN_DATA. describing that the second operand being compared is a
- known constant and how to obtain its data. */
-
-static rtx
-compare_by_pieces (rtx arg0, rtx arg1, unsigned HOST_WIDE_INT len,
- rtx target, unsigned int align,
- by_pieces_constfn a1_cfn, void *a1_cfn_data)
-{
- rtx_code_label *fail_label = gen_label_rtx ();
- rtx_code_label *end_label = gen_label_rtx ();
-
- if (target == NULL_RTX
- || !REG_P (target) || REGNO (target) < FIRST_PSEUDO_REGISTER)
- target = gen_reg_rtx (TYPE_MODE (integer_type_node));
-
- compare_by_pieces_d data (arg0, arg1, a1_cfn, a1_cfn_data, len, align,
- fail_label);
-
- data.run ();
-
- emit_move_insn (target, const0_rtx);
- emit_jump (end_label);
- emit_barrier ();
- emit_label (fail_label);
- emit_move_insn (target, const1_rtx);
- emit_label (end_label);
-
- return target;
-}
-
-/* Emit code to move a block Y to a block X. This may be done with
- string-move instructions, with multiple scalar move instructions,
- or with a library call.
-
- Both X and Y must be MEM rtx's (perhaps inside VOLATILE) with mode BLKmode.
- SIZE is an rtx that says how long they are.
- ALIGN is the maximum alignment we can assume they have.
- METHOD describes what kind of copy this is, and what mechanisms may be used.
- MIN_SIZE is the minimal size of block to move
- MAX_SIZE is the maximal size of block to move, if it cannot be represented
- in unsigned HOST_WIDE_INT, than it is mask of all ones.
-
- Return the address of the new block, if memcpy is called and returns it,
- 0 otherwise. */
-
-rtx
-emit_block_move_hints (rtx x, rtx y, rtx size, enum block_op_methods method,
- unsigned int expected_align, HOST_WIDE_INT expected_size,
- unsigned HOST_WIDE_INT min_size,
- unsigned HOST_WIDE_INT max_size,
- unsigned HOST_WIDE_INT probable_max_size,
- bool bail_out_libcall, bool *is_move_done,
- bool might_overlap)
-{
- int may_use_call;
- rtx retval = 0;
- unsigned int align;
-
- if (is_move_done)
- *is_move_done = true;
-
- gcc_assert (size);
- if (CONST_INT_P (size) && INTVAL (size) == 0)
- return 0;
-
- switch (method)
- {
- case BLOCK_OP_NORMAL:
- case BLOCK_OP_TAILCALL:
- may_use_call = 1;
- break;
-
- case BLOCK_OP_CALL_PARM:
- may_use_call = block_move_libcall_safe_for_call_parm ();
-
- /* Make inhibit_defer_pop nonzero around the library call
- to force it to pop the arguments right away. */
- NO_DEFER_POP;
- break;
-
- case BLOCK_OP_NO_LIBCALL:
- may_use_call = 0;
- break;
-
- case BLOCK_OP_NO_LIBCALL_RET:
- may_use_call = -1;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- gcc_assert (MEM_P (x) && MEM_P (y));
- align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
- gcc_assert (align >= BITS_PER_UNIT);
-
- /* Make sure we've got BLKmode addresses; store_one_arg can decide that
- block copy is more efficient for other large modes, e.g. DCmode. */
- x = adjust_address (x, BLKmode, 0);
- y = adjust_address (y, BLKmode, 0);
-
- /* If source and destination are the same, no need to copy anything. */
- if (rtx_equal_p (x, y)
- && !MEM_VOLATILE_P (x)
- && !MEM_VOLATILE_P (y))
- return 0;
-
- /* Set MEM_SIZE as appropriate for this block copy. The main place this
- can be incorrect is coming from __builtin_memcpy. */
- poly_int64 const_size;
- if (poly_int_rtx_p (size, &const_size))
- {
- x = shallow_copy_rtx (x);
- y = shallow_copy_rtx (y);
- set_mem_size (x, const_size);
- set_mem_size (y, const_size);
- }
-
- bool pieces_ok = CONST_INT_P (size)
- && can_move_by_pieces (INTVAL (size), align);
- bool pattern_ok = false;
-
- if (!pieces_ok || might_overlap)
- {
- pattern_ok
- = emit_block_move_via_pattern (x, y, size, align,
- expected_align, expected_size,
- min_size, max_size, probable_max_size,
- might_overlap);
- if (!pattern_ok && might_overlap)
- {
- /* Do not try any of the other methods below as they are not safe
- for overlapping moves. */
- *is_move_done = false;
- return retval;
- }
- }
-
- if (pattern_ok)
- ;
- else if (pieces_ok)
- move_by_pieces (x, y, INTVAL (size), align, RETURN_BEGIN);
- else if (may_use_call && !might_overlap
- && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (x))
- && ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (y)))
- {
- if (bail_out_libcall)
- {
- if (is_move_done)
- *is_move_done = false;
- return retval;
- }
-
- if (may_use_call < 0)
- return pc_rtx;
-
- retval = emit_block_copy_via_libcall (x, y, size,
- method == BLOCK_OP_TAILCALL);
- }
- else if (might_overlap)
- *is_move_done = false;
- else
- emit_block_move_via_loop (x, y, size, align);
-
- if (method == BLOCK_OP_CALL_PARM)
- OK_DEFER_POP;
-
- return retval;
-}
-
-rtx
-emit_block_move (rtx x, rtx y, rtx size, enum block_op_methods method)
-{
- unsigned HOST_WIDE_INT max, min = 0;
- if (GET_CODE (size) == CONST_INT)
- min = max = UINTVAL (size);
- else
- max = GET_MODE_MASK (GET_MODE (size));
- return emit_block_move_hints (x, y, size, method, 0, -1,
- min, max, max);
-}
-
-/* A subroutine of emit_block_move. Returns true if calling the
- block move libcall will not clobber any parameters which may have
- already been placed on the stack. */
-
-static bool
-block_move_libcall_safe_for_call_parm (void)
-{
- tree fn;
-
- /* If arguments are pushed on the stack, then they're safe. */
- if (targetm.calls.push_argument (0))
- return true;
-
- /* If registers go on the stack anyway, any argument is sure to clobber
- an outgoing argument. */
-#if defined (REG_PARM_STACK_SPACE)
- fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
- /* Avoid set but not used warning if *REG_PARM_STACK_SPACE doesn't
- depend on its argument. */
- (void) fn;
- if (OUTGOING_REG_PARM_STACK_SPACE ((!fn ? NULL_TREE : TREE_TYPE (fn)))
- && REG_PARM_STACK_SPACE (fn) != 0)
- return false;
-#endif
-
- /* If any argument goes in memory, then it might clobber an outgoing
- argument. */
- {
- CUMULATIVE_ARGS args_so_far_v;
- cumulative_args_t args_so_far;
- tree arg;
-
- fn = builtin_decl_implicit (BUILT_IN_MEMCPY);
- INIT_CUMULATIVE_ARGS (args_so_far_v, TREE_TYPE (fn), NULL_RTX, 0, 3);
- args_so_far = pack_cumulative_args (&args_so_far_v);
-
- arg = TYPE_ARG_TYPES (TREE_TYPE (fn));
- for ( ; arg != void_list_node ; arg = TREE_CHAIN (arg))
- {
- machine_mode mode = TYPE_MODE (TREE_VALUE (arg));
- function_arg_info arg_info (mode, /*named=*/true);
- rtx tmp = targetm.calls.function_arg (args_so_far, arg_info);
- if (!tmp || !REG_P (tmp))
- return false;
- if (targetm.calls.arg_partial_bytes (args_so_far, arg_info))
- return false;
- targetm.calls.function_arg_advance (args_so_far, arg_info);
- }
- }
- return true;
-}
-
-/* A subroutine of emit_block_move. Expand a cpymem or movmem pattern;
- return true if successful.
-
- X is the destination of the copy or move.
- Y is the source of the copy or move.
- SIZE is the size of the block to be moved.
-
- MIGHT_OVERLAP indicates this originated with expansion of a
- builtin_memmove() and the source and destination blocks may
- overlap.
- */
-
-static bool
-emit_block_move_via_pattern (rtx x, rtx y, rtx size, unsigned int align,
- unsigned int expected_align,
- HOST_WIDE_INT expected_size,
- unsigned HOST_WIDE_INT min_size,
- unsigned HOST_WIDE_INT max_size,
- unsigned HOST_WIDE_INT probable_max_size,
- bool might_overlap)
-{
- if (expected_align < align)
- expected_align = align;
- if (expected_size != -1)
- {
- if ((unsigned HOST_WIDE_INT)expected_size > probable_max_size)
- expected_size = probable_max_size;
- if ((unsigned HOST_WIDE_INT)expected_size < min_size)
- expected_size = min_size;
- }
-
- /* Since this is a move insn, we don't care about volatility. */
- temporary_volatile_ok v (true);
-
- /* Try the most limited insn first, because there's no point
- including more than one in the machine description unless
- the more limited one has some advantage. */
-
- opt_scalar_int_mode mode_iter;
- FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
- {
- scalar_int_mode mode = mode_iter.require ();
- enum insn_code code;
- if (might_overlap)
- code = direct_optab_handler (movmem_optab, mode);
- else
- code = direct_optab_handler (cpymem_optab, mode);
-
- if (code != CODE_FOR_nothing
- /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
- here because if SIZE is less than the mode mask, as it is
- returned by the macro, it will definitely be less than the
- actual mode mask. Since SIZE is within the Pmode address
- space, we limit MODE to Pmode. */
- && ((CONST_INT_P (size)
- && ((unsigned HOST_WIDE_INT) INTVAL (size)
- <= (GET_MODE_MASK (mode) >> 1)))
- || max_size <= (GET_MODE_MASK (mode) >> 1)
- || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
- {
- class expand_operand ops[9];
- unsigned int nops;
-
- /* ??? When called via emit_block_move_for_call, it'd be
- nice if there were some way to inform the backend, so
- that it doesn't fail the expansion because it thinks
- emitting the libcall would be more efficient. */
- nops = insn_data[(int) code].n_generator_args;
- gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
-
- create_fixed_operand (&ops[0], x);
- create_fixed_operand (&ops[1], y);
- /* The check above guarantees that this size conversion is valid. */
- create_convert_operand_to (&ops[2], size, mode, true);
- create_integer_operand (&ops[3], align / BITS_PER_UNIT);
- if (nops >= 6)
- {
- create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
- create_integer_operand (&ops[5], expected_size);
- }
- if (nops >= 8)
- {
- create_integer_operand (&ops[6], min_size);
- /* If we cannot represent the maximal size,
- make parameter NULL. */
- if ((HOST_WIDE_INT) max_size != -1)
- create_integer_operand (&ops[7], max_size);
- else
- create_fixed_operand (&ops[7], NULL);
- }
- if (nops == 9)
- {
- /* If we cannot represent the maximal size,
- make parameter NULL. */
- if ((HOST_WIDE_INT) probable_max_size != -1)
- create_integer_operand (&ops[8], probable_max_size);
- else
- create_fixed_operand (&ops[8], NULL);
- }
- if (maybe_expand_insn (code, nops, ops))
- return true;
- }
- }
-
- return false;
-}
-
-/* A subroutine of emit_block_move. Copy the data via an explicit
- loop. This is used only when libcalls are forbidden. */
-/* ??? It'd be nice to copy in hunks larger than QImode. */
-
-static void
-emit_block_move_via_loop (rtx x, rtx y, rtx size,
- unsigned int align ATTRIBUTE_UNUSED)
-{
- rtx_code_label *cmp_label, *top_label;
- rtx iter, x_addr, y_addr, tmp;
- machine_mode x_addr_mode = get_address_mode (x);
- machine_mode y_addr_mode = get_address_mode (y);
- machine_mode iter_mode;
-
- iter_mode = GET_MODE (size);
- if (iter_mode == VOIDmode)
- iter_mode = word_mode;
-
- top_label = gen_label_rtx ();
- cmp_label = gen_label_rtx ();
- iter = gen_reg_rtx (iter_mode);
-
- emit_move_insn (iter, const0_rtx);
-
- x_addr = force_operand (XEXP (x, 0), NULL_RTX);
- y_addr = force_operand (XEXP (y, 0), NULL_RTX);
- do_pending_stack_adjust ();
-
- emit_jump (cmp_label);
- emit_label (top_label);
-
- tmp = convert_modes (x_addr_mode, iter_mode, iter, true);
- x_addr = simplify_gen_binary (PLUS, x_addr_mode, x_addr, tmp);
-
- if (x_addr_mode != y_addr_mode)
- tmp = convert_modes (y_addr_mode, iter_mode, iter, true);
- y_addr = simplify_gen_binary (PLUS, y_addr_mode, y_addr, tmp);
-
- x = change_address (x, QImode, x_addr);
- y = change_address (y, QImode, y_addr);
-
- emit_move_insn (x, y);
-
- tmp = expand_simple_binop (iter_mode, PLUS, iter, const1_rtx, iter,
- true, OPTAB_LIB_WIDEN);
- if (tmp != iter)
- emit_move_insn (iter, tmp);
-
- emit_label (cmp_label);
-
- emit_cmp_and_jump_insns (iter, size, LT, NULL_RTX, iter_mode,
- true, top_label,
- profile_probability::guessed_always ()
- .apply_scale (9, 10));
-}
-
-/* Expand a call to memcpy or memmove or memcmp, and return the result.
- TAILCALL is true if this is a tail call. */
-
-rtx
-emit_block_op_via_libcall (enum built_in_function fncode, rtx dst, rtx src,
- rtx size, bool tailcall)
-{
- rtx dst_addr, src_addr;
- tree call_expr, dst_tree, src_tree, size_tree;
- machine_mode size_mode;
-
- /* Since dst and src are passed to a libcall, mark the corresponding
- tree EXPR as addressable. */
- tree dst_expr = MEM_EXPR (dst);
- tree src_expr = MEM_EXPR (src);
- if (dst_expr)
- mark_addressable (dst_expr);
- if (src_expr)
- mark_addressable (src_expr);
-
- dst_addr = copy_addr_to_reg (XEXP (dst, 0));
- dst_addr = convert_memory_address (ptr_mode, dst_addr);
- dst_tree = make_tree (ptr_type_node, dst_addr);
-
- src_addr = copy_addr_to_reg (XEXP (src, 0));
- src_addr = convert_memory_address (ptr_mode, src_addr);
- src_tree = make_tree (ptr_type_node, src_addr);
-
- size_mode = TYPE_MODE (sizetype);
- size = convert_to_mode (size_mode, size, 1);
- size = copy_to_mode_reg (size_mode, size);
- size_tree = make_tree (sizetype, size);
-
- /* It is incorrect to use the libcall calling conventions for calls to
- memcpy/memmove/memcmp because they can be provided by the user. */
- tree fn = builtin_decl_implicit (fncode);
- call_expr = build_call_expr (fn, 3, dst_tree, src_tree, size_tree);
- CALL_EXPR_TAILCALL (call_expr) = tailcall;
-
- return expand_call (call_expr, NULL_RTX, false);
-}
-
-/* Try to expand cmpstrn or cmpmem operation ICODE with the given operands.
- ARG3_TYPE is the type of ARG3_RTX. Return the result rtx on success,
- otherwise return null. */
-
-rtx
-expand_cmpstrn_or_cmpmem (insn_code icode, rtx target, rtx arg1_rtx,
- rtx arg2_rtx, tree arg3_type, rtx arg3_rtx,
- HOST_WIDE_INT align)
-{
- machine_mode insn_mode = insn_data[icode].operand[0].mode;
-
- if (target && (!REG_P (target) || HARD_REGISTER_P (target)))
- target = NULL_RTX;
-
- class expand_operand ops[5];
- create_output_operand (&ops[0], target, insn_mode);
- create_fixed_operand (&ops[1], arg1_rtx);
- create_fixed_operand (&ops[2], arg2_rtx);
- create_convert_operand_from (&ops[3], arg3_rtx, TYPE_MODE (arg3_type),
- TYPE_UNSIGNED (arg3_type));
- create_integer_operand (&ops[4], align);
- if (maybe_expand_insn (icode, 5, ops))
- return ops[0].value;
- return NULL_RTX;
-}
-
-/* Expand a block compare between X and Y with length LEN using the
- cmpmem optab, placing the result in TARGET. LEN_TYPE is the type
- of the expression that was used to calculate the length. ALIGN
- gives the known minimum common alignment. */
-
-static rtx
-emit_block_cmp_via_cmpmem (rtx x, rtx y, rtx len, tree len_type, rtx target,
- unsigned align)
-{
- /* Note: The cmpstrnsi pattern, if it exists, is not suitable for
- implementing memcmp because it will stop if it encounters two
- zero bytes. */
- insn_code icode = direct_optab_handler (cmpmem_optab, SImode);
-
- if (icode == CODE_FOR_nothing)
- return NULL_RTX;
-
- return expand_cmpstrn_or_cmpmem (icode, target, x, y, len_type, len, align);
-}
-
-/* Emit code to compare a block Y to a block X. This may be done with
- string-compare instructions, with multiple scalar instructions,
- or with a library call.
-
- Both X and Y must be MEM rtx's. LEN is an rtx that says how long
- they are. LEN_TYPE is the type of the expression that was used to
- calculate it.
-
- If EQUALITY_ONLY is true, it means we don't have to return the tri-state
- value of a normal memcmp call, instead we can just compare for equality.
- If FORCE_LIBCALL is true, we should emit a call to memcmp rather than
- returning NULL_RTX.
-
- Optionally, the caller can pass a constfn and associated data in Y_CFN
- and Y_CFN_DATA. describing that the second operand being compared is a
- known constant and how to obtain its data.
- Return the result of the comparison, or NULL_RTX if we failed to
- perform the operation. */
-
-rtx
-emit_block_cmp_hints (rtx x, rtx y, rtx len, tree len_type, rtx target,
- bool equality_only, by_pieces_constfn y_cfn,
- void *y_cfndata)
-{
- rtx result = 0;
-
- if (CONST_INT_P (len) && INTVAL (len) == 0)
- return const0_rtx;
-
- gcc_assert (MEM_P (x) && MEM_P (y));
- unsigned int align = MIN (MEM_ALIGN (x), MEM_ALIGN (y));
- gcc_assert (align >= BITS_PER_UNIT);
-
- x = adjust_address (x, BLKmode, 0);
- y = adjust_address (y, BLKmode, 0);
-
- if (equality_only
- && CONST_INT_P (len)
- && can_do_by_pieces (INTVAL (len), align, COMPARE_BY_PIECES))
- result = compare_by_pieces (x, y, INTVAL (len), target, align,
- y_cfn, y_cfndata);
- else
- result = emit_block_cmp_via_cmpmem (x, y, len, len_type, target, align);
-
- return result;
-}
-
-/* Copy all or part of a value X into registers starting at REGNO.
- The number of registers to be filled is NREGS. */
-
-void
-move_block_to_reg (int regno, rtx x, int nregs, machine_mode mode)
-{
- if (nregs == 0)
- return;
-
- if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
- x = validize_mem (force_const_mem (mode, x));
-
- /* See if the machine can do this with a load multiple insn. */
- if (targetm.have_load_multiple ())
- {
- rtx_insn *last = get_last_insn ();
- rtx first = gen_rtx_REG (word_mode, regno);
- if (rtx_insn *pat = targetm.gen_load_multiple (first, x,
- GEN_INT (nregs)))
- {
- emit_insn (pat);
- return;
- }
- else
- delete_insns_since (last);
- }
-
- for (int i = 0; i < nregs; i++)
- emit_move_insn (gen_rtx_REG (word_mode, regno + i),
- operand_subword_force (x, i, mode));
-}
-
-/* Copy all or part of a BLKmode value X out of registers starting at REGNO.
- The number of registers to be filled is NREGS. */
-
-void
-move_block_from_reg (int regno, rtx x, int nregs)
-{
- if (nregs == 0)
- return;
-
- /* See if the machine can do this with a store multiple insn. */
- if (targetm.have_store_multiple ())
- {
- rtx_insn *last = get_last_insn ();
- rtx first = gen_rtx_REG (word_mode, regno);
- if (rtx_insn *pat = targetm.gen_store_multiple (x, first,
- GEN_INT (nregs)))
- {
- emit_insn (pat);
- return;
- }
- else
- delete_insns_since (last);
- }
-
- for (int i = 0; i < nregs; i++)
- {
- rtx tem = operand_subword (x, i, 1, BLKmode);
-
- gcc_assert (tem);
-
- emit_move_insn (tem, gen_rtx_REG (word_mode, regno + i));
- }
-}
-
-/* Generate a PARALLEL rtx for a new non-consecutive group of registers from
- ORIG, where ORIG is a non-consecutive group of registers represented by
- a PARALLEL. The clone is identical to the original except in that the
- original set of registers is replaced by a new set of pseudo registers.
- The new set has the same modes as the original set. */
-
-rtx
-gen_group_rtx (rtx orig)
-{
- int i, length;
- rtx *tmps;
-
- gcc_assert (GET_CODE (orig) == PARALLEL);
-
- length = XVECLEN (orig, 0);
- tmps = XALLOCAVEC (rtx, length);
-
- /* Skip a NULL entry in first slot. */
- i = XEXP (XVECEXP (orig, 0, 0), 0) ? 0 : 1;
-
- if (i)
- tmps[0] = 0;
-
- for (; i < length; i++)
- {
- machine_mode mode = GET_MODE (XEXP (XVECEXP (orig, 0, i), 0));
- rtx offset = XEXP (XVECEXP (orig, 0, i), 1);
-
- tmps[i] = gen_rtx_EXPR_LIST (VOIDmode, gen_reg_rtx (mode), offset);
- }
-
- return gen_rtx_PARALLEL (GET_MODE (orig), gen_rtvec_v (length, tmps));
-}
-
-/* A subroutine of emit_group_load. Arguments as for emit_group_load,
- except that values are placed in TMPS[i], and must later be moved
- into corresponding XEXP (XVECEXP (DST, 0, i), 0) element. */
-
-static void
-emit_group_load_1 (rtx *tmps, rtx dst, rtx orig_src, tree type,
- poly_int64 ssize)
-{
- rtx src;
- int start, i;
- machine_mode m = GET_MODE (orig_src);
-
- gcc_assert (GET_CODE (dst) == PARALLEL);
-
- if (m != VOIDmode
- && !SCALAR_INT_MODE_P (m)
- && !MEM_P (orig_src)
- && GET_CODE (orig_src) != CONCAT)
- {
- scalar_int_mode imode;
- if (int_mode_for_mode (GET_MODE (orig_src)).exists (&imode))
- {
- src = gen_reg_rtx (imode);
- emit_move_insn (gen_lowpart (GET_MODE (orig_src), src), orig_src);
- }
- else
- {
- src = assign_stack_temp (GET_MODE (orig_src), ssize);
- emit_move_insn (src, orig_src);
- }
- emit_group_load_1 (tmps, dst, src, type, ssize);
- return;
- }
-
- /* Check for a NULL entry, used to indicate that the parameter goes
- both on the stack and in registers. */
- if (XEXP (XVECEXP (dst, 0, 0), 0))
- start = 0;
- else
- start = 1;
-
- /* Process the pieces. */
- for (i = start; i < XVECLEN (dst, 0); i++)
- {
- machine_mode mode = GET_MODE (XEXP (XVECEXP (dst, 0, i), 0));
- poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (dst, 0, i), 1));
- poly_int64 bytelen = GET_MODE_SIZE (mode);
- poly_int64 shift = 0;
-
- /* Handle trailing fragments that run over the size of the struct.
- It's the target's responsibility to make sure that the fragment
- cannot be strictly smaller in some cases and strictly larger
- in others. */
- gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
- if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
- {
- /* Arrange to shift the fragment to where it belongs.
- extract_bit_field loads to the lsb of the reg. */
- if (
-#ifdef BLOCK_REG_PADDING
- BLOCK_REG_PADDING (GET_MODE (orig_src), type, i == start)
- == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
-#else
- BYTES_BIG_ENDIAN
-#endif
- )
- shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
- bytelen = ssize - bytepos;
- gcc_assert (maybe_gt (bytelen, 0));
- }
-
- /* If we won't be loading directly from memory, protect the real source
- from strange tricks we might play; but make sure that the source can
- be loaded directly into the destination. */
- src = orig_src;
- if (!MEM_P (orig_src)
- && (!CONSTANT_P (orig_src)
- || (GET_MODE (orig_src) != mode
- && GET_MODE (orig_src) != VOIDmode)))
- {
- if (GET_MODE (orig_src) == VOIDmode)
- src = gen_reg_rtx (mode);
- else
- src = gen_reg_rtx (GET_MODE (orig_src));
-
- emit_move_insn (src, orig_src);
- }
-
- /* Optimize the access just a bit. */
- if (MEM_P (src)
- && (! targetm.slow_unaligned_access (mode, MEM_ALIGN (src))
- || MEM_ALIGN (src) >= GET_MODE_ALIGNMENT (mode))
- && multiple_p (bytepos * BITS_PER_UNIT, GET_MODE_ALIGNMENT (mode))
- && known_eq (bytelen, GET_MODE_SIZE (mode)))
- {
- tmps[i] = gen_reg_rtx (mode);
- emit_move_insn (tmps[i], adjust_address (src, mode, bytepos));
- }
- else if (COMPLEX_MODE_P (mode)
- && GET_MODE (src) == mode
- && known_eq (bytelen, GET_MODE_SIZE (mode)))
- /* Let emit_move_complex do the bulk of the work. */
- tmps[i] = src;
- else if (GET_CODE (src) == CONCAT)
- {
- poly_int64 slen = GET_MODE_SIZE (GET_MODE (src));
- poly_int64 slen0 = GET_MODE_SIZE (GET_MODE (XEXP (src, 0)));
- unsigned int elt;
- poly_int64 subpos;
-
- if (can_div_trunc_p (bytepos, slen0, &elt, &subpos)
- && known_le (subpos + bytelen, slen0))
- {
- /* The following assumes that the concatenated objects all
- have the same size. In this case, a simple calculation
- can be used to determine the object and the bit field
- to be extracted. */
- tmps[i] = XEXP (src, elt);
- if (maybe_ne (subpos, 0)
- || maybe_ne (subpos + bytelen, slen0)
- || (!CONSTANT_P (tmps[i])
- && (!REG_P (tmps[i]) || GET_MODE (tmps[i]) != mode)))
- tmps[i] = extract_bit_field (tmps[i], bytelen * BITS_PER_UNIT,
- subpos * BITS_PER_UNIT,
- 1, NULL_RTX, mode, mode, false,
- NULL);
- }
- else
- {
- rtx mem;
-
- gcc_assert (known_eq (bytepos, 0));
- mem = assign_stack_temp (GET_MODE (src), slen);
- emit_move_insn (mem, src);
- tmps[i] = extract_bit_field (mem, bytelen * BITS_PER_UNIT,
- 0, 1, NULL_RTX, mode, mode, false,
- NULL);
- }
- }
- else if (CONSTANT_P (src) && GET_MODE (dst) != BLKmode
- && XVECLEN (dst, 0) > 1)
- tmps[i] = simplify_gen_subreg (mode, src, GET_MODE (dst), bytepos);
- else if (CONSTANT_P (src))
- {
- if (known_eq (bytelen, ssize))
- tmps[i] = src;
- else
- {
- rtx first, second;
-
- /* TODO: const_wide_int can have sizes other than this... */
- gcc_assert (known_eq (2 * bytelen, ssize));
- split_double (src, &first, &second);
- if (i)
- tmps[i] = second;
- else
- tmps[i] = first;
- }
- }
- else if (REG_P (src) && GET_MODE (src) == mode)
- tmps[i] = src;
- else
- tmps[i] = extract_bit_field (src, bytelen * BITS_PER_UNIT,
- bytepos * BITS_PER_UNIT, 1, NULL_RTX,
- mode, mode, false, NULL);
-
- if (maybe_ne (shift, 0))
- tmps[i] = expand_shift (LSHIFT_EXPR, mode, tmps[i],
- shift, tmps[i], 0);
- }
-}
-
-/* Emit code to move a block SRC of type TYPE to a block DST,
- where DST is non-consecutive registers represented by a PARALLEL.
- SSIZE represents the total size of block ORIG_SRC in bytes, or -1
- if not known. */
-
-void
-emit_group_load (rtx dst, rtx src, tree type, poly_int64 ssize)
-{
- rtx *tmps;
- int i;
-
- tmps = XALLOCAVEC (rtx, XVECLEN (dst, 0));
- emit_group_load_1 (tmps, dst, src, type, ssize);
-
- /* Copy the extracted pieces into the proper (probable) hard regs. */
- for (i = 0; i < XVECLEN (dst, 0); i++)
- {
- rtx d = XEXP (XVECEXP (dst, 0, i), 0);
- if (d == NULL)
- continue;
- emit_move_insn (d, tmps[i]);
- }
-}
-
-/* Similar, but load SRC into new pseudos in a format that looks like
- PARALLEL. This can later be fed to emit_group_move to get things
- in the right place. */
-
-rtx
-emit_group_load_into_temps (rtx parallel, rtx src, tree type, poly_int64 ssize)
-{
- rtvec vec;
- int i;
-
- vec = rtvec_alloc (XVECLEN (parallel, 0));
- emit_group_load_1 (&RTVEC_ELT (vec, 0), parallel, src, type, ssize);
-
- /* Convert the vector to look just like the original PARALLEL, except
- with the computed values. */
- for (i = 0; i < XVECLEN (parallel, 0); i++)
- {
- rtx e = XVECEXP (parallel, 0, i);
- rtx d = XEXP (e, 0);
-
- if (d)
- {
- d = force_reg (GET_MODE (d), RTVEC_ELT (vec, i));
- e = alloc_EXPR_LIST (REG_NOTE_KIND (e), d, XEXP (e, 1));
- }
- RTVEC_ELT (vec, i) = e;
- }
-
- return gen_rtx_PARALLEL (GET_MODE (parallel), vec);
-}
-
-/* Emit code to move a block SRC to block DST, where SRC and DST are
- non-consecutive groups of registers, each represented by a PARALLEL. */
-
-void
-emit_group_move (rtx dst, rtx src)
-{
- int i;
-
- gcc_assert (GET_CODE (src) == PARALLEL
- && GET_CODE (dst) == PARALLEL
- && XVECLEN (src, 0) == XVECLEN (dst, 0));
-
- /* Skip first entry if NULL. */
- for (i = XEXP (XVECEXP (src, 0, 0), 0) ? 0 : 1; i < XVECLEN (src, 0); i++)
- emit_move_insn (XEXP (XVECEXP (dst, 0, i), 0),
- XEXP (XVECEXP (src, 0, i), 0));
-}
-
-/* Move a group of registers represented by a PARALLEL into pseudos. */
-
-rtx
-emit_group_move_into_temps (rtx src)
-{
- rtvec vec = rtvec_alloc (XVECLEN (src, 0));
- int i;
-
- for (i = 0; i < XVECLEN (src, 0); i++)
- {
- rtx e = XVECEXP (src, 0, i);
- rtx d = XEXP (e, 0);
-
- if (d)
- e = alloc_EXPR_LIST (REG_NOTE_KIND (e), copy_to_reg (d), XEXP (e, 1));
- RTVEC_ELT (vec, i) = e;
- }
-
- return gen_rtx_PARALLEL (GET_MODE (src), vec);
-}
-
-/* Emit code to move a block SRC to a block ORIG_DST of type TYPE,
- where SRC is non-consecutive registers represented by a PARALLEL.
- SSIZE represents the total size of block ORIG_DST, or -1 if not
- known. */
-
-void
-emit_group_store (rtx orig_dst, rtx src, tree type ATTRIBUTE_UNUSED,
- poly_int64 ssize)
-{
- rtx *tmps, dst;
- int start, finish, i;
- machine_mode m = GET_MODE (orig_dst);
-
- gcc_assert (GET_CODE (src) == PARALLEL);
-
- if (!SCALAR_INT_MODE_P (m)
- && !MEM_P (orig_dst) && GET_CODE (orig_dst) != CONCAT)
- {
- scalar_int_mode imode;
- if (int_mode_for_mode (GET_MODE (orig_dst)).exists (&imode))
- {
- dst = gen_reg_rtx (imode);
- emit_group_store (dst, src, type, ssize);
- dst = gen_lowpart (GET_MODE (orig_dst), dst);
- }
- else
- {
- dst = assign_stack_temp (GET_MODE (orig_dst), ssize);
- emit_group_store (dst, src, type, ssize);
- }
- emit_move_insn (orig_dst, dst);
- return;
- }
-
- /* Check for a NULL entry, used to indicate that the parameter goes
- both on the stack and in registers. */
- if (XEXP (XVECEXP (src, 0, 0), 0))
- start = 0;
- else
- start = 1;
- finish = XVECLEN (src, 0);
-
- tmps = XALLOCAVEC (rtx, finish);
-
- /* Copy the (probable) hard regs into pseudos. */
- for (i = start; i < finish; i++)
- {
- rtx reg = XEXP (XVECEXP (src, 0, i), 0);
- if (!REG_P (reg) || REGNO (reg) < FIRST_PSEUDO_REGISTER)
- {
- tmps[i] = gen_reg_rtx (GET_MODE (reg));
- emit_move_insn (tmps[i], reg);
- }
- else
- tmps[i] = reg;
- }
-
- /* If we won't be storing directly into memory, protect the real destination
- from strange tricks we might play. */
- dst = orig_dst;
- if (GET_CODE (dst) == PARALLEL)
- {
- rtx temp;
-
- /* We can get a PARALLEL dst if there is a conditional expression in
- a return statement. In that case, the dst and src are the same,
- so no action is necessary. */
- if (rtx_equal_p (dst, src))
- return;
-
- /* It is unclear if we can ever reach here, but we may as well handle
- it. Allocate a temporary, and split this into a store/load to/from
- the temporary. */
- temp = assign_stack_temp (GET_MODE (dst), ssize);
- emit_group_store (temp, src, type, ssize);
- emit_group_load (dst, temp, type, ssize);
- return;
- }
- else if (!MEM_P (dst) && GET_CODE (dst) != CONCAT)
- {
- machine_mode outer = GET_MODE (dst);
- machine_mode inner;
- poly_int64 bytepos;
- bool done = false;
- rtx temp;
-
- if (!REG_P (dst) || REGNO (dst) < FIRST_PSEUDO_REGISTER)
- dst = gen_reg_rtx (outer);
-
- /* Make life a bit easier for combine. */
- /* If the first element of the vector is the low part
- of the destination mode, use a paradoxical subreg to
- initialize the destination. */
- if (start < finish)
- {
- inner = GET_MODE (tmps[start]);
- bytepos = subreg_lowpart_offset (inner, outer);
- if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, start), 1)),
- bytepos))
- {
- temp = simplify_gen_subreg (outer, tmps[start],
- inner, 0);
- if (temp)
- {
- emit_move_insn (dst, temp);
- done = true;
- start++;
- }
- }
- }
-
- /* If the first element wasn't the low part, try the last. */
- if (!done
- && start < finish - 1)
- {
- inner = GET_MODE (tmps[finish - 1]);
- bytepos = subreg_lowpart_offset (inner, outer);
- if (known_eq (rtx_to_poly_int64 (XEXP (XVECEXP (src, 0,
- finish - 1), 1)),
- bytepos))
- {
- temp = simplify_gen_subreg (outer, tmps[finish - 1],
- inner, 0);
- if (temp)
- {
- emit_move_insn (dst, temp);
- done = true;
- finish--;
- }
- }
- }
-
- /* Otherwise, simply initialize the result to zero. */
- if (!done)
- emit_move_insn (dst, CONST0_RTX (outer));
- }
-
- /* Process the pieces. */
- for (i = start; i < finish; i++)
- {
- poly_int64 bytepos = rtx_to_poly_int64 (XEXP (XVECEXP (src, 0, i), 1));
- machine_mode mode = GET_MODE (tmps[i]);
- poly_int64 bytelen = GET_MODE_SIZE (mode);
- poly_uint64 adj_bytelen;
- rtx dest = dst;
-
- /* Handle trailing fragments that run over the size of the struct.
- It's the target's responsibility to make sure that the fragment
- cannot be strictly smaller in some cases and strictly larger
- in others. */
- gcc_checking_assert (ordered_p (bytepos + bytelen, ssize));
- if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
- adj_bytelen = ssize - bytepos;
- else
- adj_bytelen = bytelen;
-
- if (GET_CODE (dst) == CONCAT)
- {
- if (known_le (bytepos + adj_bytelen,
- GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
- dest = XEXP (dst, 0);
- else if (known_ge (bytepos, GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)))))
- {
- bytepos -= GET_MODE_SIZE (GET_MODE (XEXP (dst, 0)));
- dest = XEXP (dst, 1);
- }
- else
- {
- machine_mode dest_mode = GET_MODE (dest);
- machine_mode tmp_mode = GET_MODE (tmps[i]);
-
- gcc_assert (known_eq (bytepos, 0) && XVECLEN (src, 0));
-
- if (GET_MODE_ALIGNMENT (dest_mode)
- >= GET_MODE_ALIGNMENT (tmp_mode))
- {
- dest = assign_stack_temp (dest_mode,
- GET_MODE_SIZE (dest_mode));
- emit_move_insn (adjust_address (dest,
- tmp_mode,
- bytepos),
- tmps[i]);
- dst = dest;
- }
- else
- {
- dest = assign_stack_temp (tmp_mode,
- GET_MODE_SIZE (tmp_mode));
- emit_move_insn (dest, tmps[i]);
- dst = adjust_address (dest, dest_mode, bytepos);
- }
- break;
- }
- }
-
- /* Handle trailing fragments that run over the size of the struct. */
- if (known_size_p (ssize) && maybe_gt (bytepos + bytelen, ssize))
- {
- /* store_bit_field always takes its value from the lsb.
- Move the fragment to the lsb if it's not already there. */
- if (
-#ifdef BLOCK_REG_PADDING
- BLOCK_REG_PADDING (GET_MODE (orig_dst), type, i == start)
- == (BYTES_BIG_ENDIAN ? PAD_UPWARD : PAD_DOWNWARD)
-#else
- BYTES_BIG_ENDIAN
-#endif
- )
- {
- poly_int64 shift = (bytelen - (ssize - bytepos)) * BITS_PER_UNIT;
- tmps[i] = expand_shift (RSHIFT_EXPR, mode, tmps[i],
- shift, tmps[i], 0);
- }
-
- /* Make sure not to write past the end of the struct. */
- store_bit_field (dest,
- adj_bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
- bytepos * BITS_PER_UNIT, ssize * BITS_PER_UNIT - 1,
- VOIDmode, tmps[i], false);
- }
-
- /* Optimize the access just a bit. */
- else if (MEM_P (dest)
- && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (dest))
- || MEM_ALIGN (dest) >= GET_MODE_ALIGNMENT (mode))
- && multiple_p (bytepos * BITS_PER_UNIT,
- GET_MODE_ALIGNMENT (mode))
- && known_eq (bytelen, GET_MODE_SIZE (mode)))
- emit_move_insn (adjust_address (dest, mode, bytepos), tmps[i]);
-
- else
- store_bit_field (dest, bytelen * BITS_PER_UNIT, bytepos * BITS_PER_UNIT,
- 0, 0, mode, tmps[i], false);
- }
-
- /* Copy from the pseudo into the (probable) hard reg. */
- if (orig_dst != dst)
- emit_move_insn (orig_dst, dst);
-}
-
-/* Return a form of X that does not use a PARALLEL. TYPE is the type
- of the value stored in X. */
-
-rtx
-maybe_emit_group_store (rtx x, tree type)
-{
- machine_mode mode = TYPE_MODE (type);
- gcc_checking_assert (GET_MODE (x) == VOIDmode || GET_MODE (x) == mode);
- if (GET_CODE (x) == PARALLEL)
- {
- rtx result = gen_reg_rtx (mode);
- emit_group_store (result, x, type, int_size_in_bytes (type));
- return result;
- }
- return x;
-}
-
-/* Copy a BLKmode object of TYPE out of a register SRCREG into TARGET.
-
- This is used on targets that return BLKmode values in registers. */
-
-static void
-copy_blkmode_from_reg (rtx target, rtx srcreg, tree type)
-{
- unsigned HOST_WIDE_INT bytes = int_size_in_bytes (type);
- rtx src = NULL, dst = NULL;
- unsigned HOST_WIDE_INT bitsize = MIN (TYPE_ALIGN (type), BITS_PER_WORD);
- unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0;
- /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
- fixed_size_mode mode = as_a <fixed_size_mode> (GET_MODE (srcreg));
- fixed_size_mode tmode = as_a <fixed_size_mode> (GET_MODE (target));
- fixed_size_mode copy_mode;
-
- /* BLKmode registers created in the back-end shouldn't have survived. */
- gcc_assert (mode != BLKmode);
-
- /* If the structure doesn't take up a whole number of words, see whether
- SRCREG is padded on the left or on the right. If it's on the left,
- set PADDING_CORRECTION to the number of bits to skip.
-
- In most ABIs, the structure will be returned at the least end of
- the register, which translates to right padding on little-endian
- targets and left padding on big-endian targets. The opposite
- holds if the structure is returned at the most significant
- end of the register. */
- if (bytes % UNITS_PER_WORD != 0
- && (targetm.calls.return_in_msb (type)
- ? !BYTES_BIG_ENDIAN
- : BYTES_BIG_ENDIAN))
- padding_correction
- = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD) * BITS_PER_UNIT));
-
- /* We can use a single move if we have an exact mode for the size. */
- else if (MEM_P (target)
- && (!targetm.slow_unaligned_access (mode, MEM_ALIGN (target))
- || MEM_ALIGN (target) >= GET_MODE_ALIGNMENT (mode))
- && bytes == GET_MODE_SIZE (mode))
- {
- emit_move_insn (adjust_address (target, mode, 0), srcreg);
- return;
- }
-
- /* And if we additionally have the same mode for a register. */
- else if (REG_P (target)
- && GET_MODE (target) == mode
- && bytes == GET_MODE_SIZE (mode))
- {
- emit_move_insn (target, srcreg);
- return;
- }
-
- /* This code assumes srcreg is at least a full word. If it isn't, copy it
- into a new pseudo which is a full word. */
- if (GET_MODE_SIZE (mode) < UNITS_PER_WORD)
- {
- srcreg = convert_to_mode (word_mode, srcreg, TYPE_UNSIGNED (type));
- mode = word_mode;
- }
-
- /* Copy the structure BITSIZE bits at a time. If the target lives in
- memory, take care of not reading/writing past its end by selecting
- a copy mode suited to BITSIZE. This should always be possible given
- how it is computed.
-
- If the target lives in register, make sure not to select a copy mode
- larger than the mode of the register.
-
- We could probably emit more efficient code for machines which do not use
- strict alignment, but it doesn't seem worth the effort at the current
- time. */
-
- copy_mode = word_mode;
- if (MEM_P (target))
- {
- opt_scalar_int_mode mem_mode = int_mode_for_size (bitsize, 1);
- if (mem_mode.exists ())
- copy_mode = mem_mode.require ();
- }
- else if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
- copy_mode = tmode;
-
- for (bitpos = 0, xbitpos = padding_correction;
- bitpos < bytes * BITS_PER_UNIT;
- bitpos += bitsize, xbitpos += bitsize)
- {
- /* We need a new source operand each time xbitpos is on a
- word boundary and when xbitpos == padding_correction
- (the first time through). */
- if (xbitpos % BITS_PER_WORD == 0 || xbitpos == padding_correction)
- src = operand_subword_force (srcreg, xbitpos / BITS_PER_WORD, mode);
-
- /* We need a new destination operand each time bitpos is on
- a word boundary. */
- if (REG_P (target) && GET_MODE_BITSIZE (tmode) < BITS_PER_WORD)
- dst = target;
- else if (bitpos % BITS_PER_WORD == 0)
- dst = operand_subword (target, bitpos / BITS_PER_WORD, 1, tmode);
-
- /* Use xbitpos for the source extraction (right justified) and
- bitpos for the destination store (left justified). */
- store_bit_field (dst, bitsize, bitpos % BITS_PER_WORD, 0, 0, copy_mode,
- extract_bit_field (src, bitsize,
- xbitpos % BITS_PER_WORD, 1,
- NULL_RTX, copy_mode, copy_mode,
- false, NULL),
- false);
- }
-}
-
-/* Copy BLKmode value SRC into a register of mode MODE_IN. Return the
- register if it contains any data, otherwise return null.
-
- This is used on targets that return BLKmode values in registers. */
-
-rtx
-copy_blkmode_to_reg (machine_mode mode_in, tree src)
-{
- int i, n_regs;
- unsigned HOST_WIDE_INT bitpos, xbitpos, padding_correction = 0, bytes;
- unsigned int bitsize;
- rtx *dst_words, dst, x, src_word = NULL_RTX, dst_word = NULL_RTX;
- /* No current ABI uses variable-sized modes to pass a BLKmnode type. */
- fixed_size_mode mode = as_a <fixed_size_mode> (mode_in);
- fixed_size_mode dst_mode;
- scalar_int_mode min_mode;
-
- gcc_assert (TYPE_MODE (TREE_TYPE (src)) == BLKmode);
-
- x = expand_normal (src);
-
- bytes = arg_int_size_in_bytes (TREE_TYPE (src));
- if (bytes == 0)
- return NULL_RTX;
-
- /* If the structure doesn't take up a whole number of words, see
- whether the register value should be padded on the left or on
- the right. Set PADDING_CORRECTION to the number of padding
- bits needed on the left side.
-
- In most ABIs, the structure will be returned at the least end of
- the register, which translates to right padding on little-endian
- targets and left padding on big-endian targets. The opposite
- holds if the structure is returned at the most significant
- end of the register. */
- if (bytes % UNITS_PER_WORD != 0
- && (targetm.calls.return_in_msb (TREE_TYPE (src))
- ? !BYTES_BIG_ENDIAN
- : BYTES_BIG_ENDIAN))
- padding_correction = (BITS_PER_WORD - ((bytes % UNITS_PER_WORD)
- * BITS_PER_UNIT));
-
- n_regs = (bytes + UNITS_PER_WORD - 1) / UNITS_PER_WORD;
- dst_words = XALLOCAVEC (rtx, n_regs);
- bitsize = MIN (TYPE_ALIGN (TREE_TYPE (src)), BITS_PER_WORD);
- min_mode = smallest_int_mode_for_size (bitsize);
-
- /* Copy the structure BITSIZE bits at a time. */
- for (bitpos = 0, xbitpos = padding_correction;
- bitpos < bytes * BITS_PER_UNIT;
- bitpos += bitsize, xbitpos += bitsize)
- {
- /* We need a new destination pseudo each time xbitpos is
- on a word boundary and when xbitpos == padding_correction
- (the first time through). */
- if (xbitpos % BITS_PER_WORD == 0
- || xbitpos == padding_correction)
- {
- /* Generate an appropriate register. */
- dst_word = gen_reg_rtx (word_mode);
- dst_words[xbitpos / BITS_PER_WORD] = dst_word;
-
- /* Clear the destination before we move anything into it. */
- emit_move_insn (dst_word, CONST0_RTX (word_mode));
- }
-
- /* Find the largest integer mode that can be used to copy all or as
- many bits as possible of the structure if the target supports larger
- copies. There are too many corner cases here w.r.t to alignments on
- the read/writes. So if there is any padding just use single byte
- operations. */
- opt_scalar_int_mode mode_iter;
- if (padding_correction == 0 && !STRICT_ALIGNMENT)
- {
- FOR_EACH_MODE_FROM (mode_iter, min_mode)
- {
- unsigned int msize = GET_MODE_BITSIZE (mode_iter.require ());
- if (msize <= ((bytes * BITS_PER_UNIT) - bitpos)
- && msize <= BITS_PER_WORD)
- bitsize = msize;
- else
- break;
- }
- }
-
- /* We need a new source operand each time bitpos is on a word
- boundary. */
- if (bitpos % BITS_PER_WORD == 0)
- src_word = operand_subword_force (x, bitpos / BITS_PER_WORD, BLKmode);
-
- /* Use bitpos for the source extraction (left justified) and
- xbitpos for the destination store (right justified). */
- store_bit_field (dst_word, bitsize, xbitpos % BITS_PER_WORD,
- 0, 0, word_mode,
- extract_bit_field (src_word, bitsize,
- bitpos % BITS_PER_WORD, 1,
- NULL_RTX, word_mode, word_mode,
- false, NULL),
- false);
- }
-
- if (mode == BLKmode)
- {
- /* Find the smallest integer mode large enough to hold the
- entire structure. */
- opt_scalar_int_mode mode_iter;
- FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
- if (GET_MODE_SIZE (mode_iter.require ()) >= bytes)
- break;
-
- /* A suitable mode should have been found. */
- mode = mode_iter.require ();
- }
-
- if (GET_MODE_SIZE (mode) < GET_MODE_SIZE (word_mode))
- dst_mode = word_mode;
- else
- dst_mode = mode;
- dst = gen_reg_rtx (dst_mode);
-
- for (i = 0; i < n_regs; i++)
- emit_move_insn (operand_subword (dst, i, 0, dst_mode), dst_words[i]);
-
- if (mode != dst_mode)
- dst = gen_lowpart (mode, dst);
-
- return dst;
-}
-
-/* Add a USE expression for REG to the (possibly empty) list pointed
- to by CALL_FUSAGE. REG must denote a hard register. */
-
-void
-use_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
-{
- gcc_assert (REG_P (reg));
-
- if (!HARD_REGISTER_P (reg))
- return;
-
- *call_fusage
- = gen_rtx_EXPR_LIST (mode, gen_rtx_USE (VOIDmode, reg), *call_fusage);
-}
-
-/* Add a CLOBBER expression for REG to the (possibly empty) list pointed
- to by CALL_FUSAGE. REG must denote a hard register. */
-
-void
-clobber_reg_mode (rtx *call_fusage, rtx reg, machine_mode mode)
-{
- gcc_assert (REG_P (reg) && REGNO (reg) < FIRST_PSEUDO_REGISTER);
-
- *call_fusage
- = gen_rtx_EXPR_LIST (mode, gen_rtx_CLOBBER (VOIDmode, reg), *call_fusage);
-}
-
-/* Add USE expressions to *CALL_FUSAGE for each of NREGS consecutive regs,
- starting at REGNO. All of these registers must be hard registers. */
-
-void
-use_regs (rtx *call_fusage, int regno, int nregs)
-{
- int i;
-
- gcc_assert (regno + nregs <= FIRST_PSEUDO_REGISTER);
-
- for (i = 0; i < nregs; i++)
- use_reg (call_fusage, regno_reg_rtx[regno + i]);
-}
-
-/* Add USE expressions to *CALL_FUSAGE for each REG contained in the
- PARALLEL REGS. This is for calls that pass values in multiple
- non-contiguous locations. The Irix 6 ABI has examples of this. */
-
-void
-use_group_regs (rtx *call_fusage, rtx regs)
-{
- int i;
-
- for (i = 0; i < XVECLEN (regs, 0); i++)
- {
- rtx reg = XEXP (XVECEXP (regs, 0, i), 0);
-
- /* A NULL entry means the parameter goes both on the stack and in
- registers. This can also be a MEM for targets that pass values
- partially on the stack and partially in registers. */
- if (reg != 0 && REG_P (reg))
- use_reg (call_fusage, reg);
- }
-}
-
-/* Return the defining gimple statement for SSA_NAME NAME if it is an
- assigment and the code of the expresion on the RHS is CODE. Return
- NULL otherwise. */
-
-static gimple *
-get_def_for_expr (tree name, enum tree_code code)
-{
- gimple *def_stmt;
-
- if (TREE_CODE (name) != SSA_NAME)
- return NULL;
-
- def_stmt = get_gimple_for_ssa_name (name);
- if (!def_stmt
- || gimple_assign_rhs_code (def_stmt) != code)
- return NULL;
-
- return def_stmt;
-}
-
-/* Return the defining gimple statement for SSA_NAME NAME if it is an
- assigment and the class of the expresion on the RHS is CLASS. Return
- NULL otherwise. */
-
-static gimple *
-get_def_for_expr_class (tree name, enum tree_code_class tclass)
-{
- gimple *def_stmt;
-
- if (TREE_CODE (name) != SSA_NAME)
- return NULL;
-
- def_stmt = get_gimple_for_ssa_name (name);
- if (!def_stmt
- || TREE_CODE_CLASS (gimple_assign_rhs_code (def_stmt)) != tclass)
- return NULL;
-
- return def_stmt;
-}
-
-/* Write zeros through the storage of OBJECT. If OBJECT has BLKmode, SIZE is
- its length in bytes. */
-
-rtx
-clear_storage_hints (rtx object, rtx size, enum block_op_methods method,
- unsigned int expected_align, HOST_WIDE_INT expected_size,
- unsigned HOST_WIDE_INT min_size,
- unsigned HOST_WIDE_INT max_size,
- unsigned HOST_WIDE_INT probable_max_size,
- unsigned ctz_size)
-{
- machine_mode mode = GET_MODE (object);
- unsigned int align;
-
- gcc_assert (method == BLOCK_OP_NORMAL || method == BLOCK_OP_TAILCALL);
-
- /* If OBJECT is not BLKmode and SIZE is the same size as its mode,
- just move a zero. Otherwise, do this a piece at a time. */
- poly_int64 size_val;
- if (mode != BLKmode
- && poly_int_rtx_p (size, &size_val)
- && known_eq (size_val, GET_MODE_SIZE (mode)))
- {
- rtx zero = CONST0_RTX (mode);
- if (zero != NULL)
- {
- emit_move_insn (object, zero);
- return NULL;
- }
-
- if (COMPLEX_MODE_P (mode))
- {
- zero = CONST0_RTX (GET_MODE_INNER (mode));
- if (zero != NULL)
- {
- write_complex_part (object, zero, 0);
- write_complex_part (object, zero, 1);
- return NULL;
- }
- }
- }
-
- if (size == const0_rtx)
- return NULL;
-
- align = MEM_ALIGN (object);
-
- if (CONST_INT_P (size)
- && targetm.use_by_pieces_infrastructure_p (INTVAL (size), align,
- CLEAR_BY_PIECES,
- optimize_insn_for_speed_p ()))
- clear_by_pieces (object, INTVAL (size), align);
- else if (set_storage_via_setmem (object, size, const0_rtx, align,
- expected_align, expected_size,
- min_size, max_size, probable_max_size))
- ;
- else if (try_store_by_multiple_pieces (object, size, ctz_size,
- min_size, max_size,
- NULL_RTX, 0, align))
- ;
- else if (ADDR_SPACE_GENERIC_P (MEM_ADDR_SPACE (object)))
- return set_storage_via_libcall (object, size, const0_rtx,
- method == BLOCK_OP_TAILCALL);
- else
- gcc_unreachable ();
-
- return NULL;
-}
-
-rtx
-clear_storage (rtx object, rtx size, enum block_op_methods method)
-{
- unsigned HOST_WIDE_INT max, min = 0;
- if (GET_CODE (size) == CONST_INT)
- min = max = UINTVAL (size);
- else
- max = GET_MODE_MASK (GET_MODE (size));
- return clear_storage_hints (object, size, method, 0, -1, min, max, max, 0);
-}
-
-
-/* A subroutine of clear_storage. Expand a call to memset.
- Return the return value of memset, 0 otherwise. */
-
-rtx
-set_storage_via_libcall (rtx object, rtx size, rtx val, bool tailcall)
-{
- tree call_expr, fn, object_tree, size_tree, val_tree;
- machine_mode size_mode;
-
- object = copy_addr_to_reg (XEXP (object, 0));
- object_tree = make_tree (ptr_type_node, object);
-
- if (!CONST_INT_P (val))
- val = convert_to_mode (TYPE_MODE (integer_type_node), val, 1);
- val_tree = make_tree (integer_type_node, val);
-
- size_mode = TYPE_MODE (sizetype);
- size = convert_to_mode (size_mode, size, 1);
- size = copy_to_mode_reg (size_mode, size);
- size_tree = make_tree (sizetype, size);
-
- /* It is incorrect to use the libcall calling conventions for calls to
- memset because it can be provided by the user. */
- fn = builtin_decl_implicit (BUILT_IN_MEMSET);
- call_expr = build_call_expr (fn, 3, object_tree, val_tree, size_tree);
- CALL_EXPR_TAILCALL (call_expr) = tailcall;
-
- return expand_call (call_expr, NULL_RTX, false);
-}
-
-/* Expand a setmem pattern; return true if successful. */
-
-bool
-set_storage_via_setmem (rtx object, rtx size, rtx val, unsigned int align,
- unsigned int expected_align, HOST_WIDE_INT expected_size,
- unsigned HOST_WIDE_INT min_size,
- unsigned HOST_WIDE_INT max_size,
- unsigned HOST_WIDE_INT probable_max_size)
-{
- /* Try the most limited insn first, because there's no point
- including more than one in the machine description unless
- the more limited one has some advantage. */
-
- if (expected_align < align)
- expected_align = align;
- if (expected_size != -1)
- {
- if ((unsigned HOST_WIDE_INT)expected_size > max_size)
- expected_size = max_size;
- if ((unsigned HOST_WIDE_INT)expected_size < min_size)
- expected_size = min_size;
- }
-
- opt_scalar_int_mode mode_iter;
- FOR_EACH_MODE_IN_CLASS (mode_iter, MODE_INT)
- {
- scalar_int_mode mode = mode_iter.require ();
- enum insn_code code = direct_optab_handler (setmem_optab, mode);
-
- if (code != CODE_FOR_nothing
- /* We don't need MODE to be narrower than BITS_PER_HOST_WIDE_INT
- here because if SIZE is less than the mode mask, as it is
- returned by the macro, it will definitely be less than the
- actual mode mask. Since SIZE is within the Pmode address
- space, we limit MODE to Pmode. */
- && ((CONST_INT_P (size)
- && ((unsigned HOST_WIDE_INT) INTVAL (size)
- <= (GET_MODE_MASK (mode) >> 1)))
- || max_size <= (GET_MODE_MASK (mode) >> 1)
- || GET_MODE_BITSIZE (mode) >= GET_MODE_BITSIZE (Pmode)))
- {
- class expand_operand ops[9];
- unsigned int nops;
-
- nops = insn_data[(int) code].n_generator_args;
- gcc_assert (nops == 4 || nops == 6 || nops == 8 || nops == 9);
-
- create_fixed_operand (&ops[0], object);
- /* The check above guarantees that this size conversion is valid. */
- create_convert_operand_to (&ops[1], size, mode, true);
- create_convert_operand_from (&ops[2], val, byte_mode, true);
- create_integer_operand (&ops[3], align / BITS_PER_UNIT);
- if (nops >= 6)
- {
- create_integer_operand (&ops[4], expected_align / BITS_PER_UNIT);
- create_integer_operand (&ops[5], expected_size);
- }
- if (nops >= 8)
- {
- create_integer_operand (&ops[6], min_size);
- /* If we cannot represent the maximal size,
- make parameter NULL. */
- if ((HOST_WIDE_INT) max_size != -1)
- create_integer_operand (&ops[7], max_size);
- else
- create_fixed_operand (&ops[7], NULL);
- }
- if (nops == 9)
- {
- /* If we cannot represent the maximal size,
- make parameter NULL. */
- if ((HOST_WIDE_INT) probable_max_size != -1)
- create_integer_operand (&ops[8], probable_max_size);
- else
- create_fixed_operand (&ops[8], NULL);
- }
- if (maybe_expand_insn (code, nops, ops))
- return true;
- }
- }
-
- return false;
-}
-
-
-/* Write to one of the components of the complex value CPLX. Write VAL to
- the real part if IMAG_P is false, and the imaginary part if its true. */
-
-void
-write_complex_part (rtx cplx, rtx val, bool imag_p)
-{
- machine_mode cmode;
- scalar_mode imode;
- unsigned ibitsize;
-
- if (GET_CODE (cplx) == CONCAT)
- {
- emit_move_insn (XEXP (cplx, imag_p), val);
- return;
- }
-
- cmode = GET_MODE (cplx);
- imode = GET_MODE_INNER (cmode);
- ibitsize = GET_MODE_BITSIZE (imode);
-
- /* For MEMs simplify_gen_subreg may generate an invalid new address
- because, e.g., the original address is considered mode-dependent
- by the target, which restricts simplify_subreg from invoking
- adjust_address_nv. Instead of preparing fallback support for an
- invalid address, we call adjust_address_nv directly. */
- if (MEM_P (cplx))
- {
- emit_move_insn (adjust_address_nv (cplx, imode,
- imag_p ? GET_MODE_SIZE (imode) : 0),
- val);
- return;
- }
-
- /* If the sub-object is at least word sized, then we know that subregging
- will work. This special case is important, since store_bit_field
- wants to operate on integer modes, and there's rarely an OImode to
- correspond to TCmode. */
- if (ibitsize >= BITS_PER_WORD
- /* For hard regs we have exact predicates. Assume we can split
- the original object if it spans an even number of hard regs.
- This special case is important for SCmode on 64-bit platforms
- where the natural size of floating-point regs is 32-bit. */
- || (REG_P (cplx)
- && REGNO (cplx) < FIRST_PSEUDO_REGISTER
- && REG_NREGS (cplx) % 2 == 0))
- {
- rtx part = simplify_gen_subreg (imode, cplx, cmode,
- imag_p ? GET_MODE_SIZE (imode) : 0);
- if (part)
- {
- emit_move_insn (part, val);
- return;
- }
- else
- /* simplify_gen_subreg may fail for sub-word MEMs. */
- gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
- }
-
- store_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0, 0, 0, imode, val,
- false);
-}
-
-/* Extract one of the components of the complex value CPLX. Extract the
- real part if IMAG_P is false, and the imaginary part if it's true. */
-
-rtx
-read_complex_part (rtx cplx, bool imag_p)
-{
- machine_mode cmode;
- scalar_mode imode;
- unsigned ibitsize;
-
- if (GET_CODE (cplx) == CONCAT)
- return XEXP (cplx, imag_p);
-
- cmode = GET_MODE (cplx);
- imode = GET_MODE_INNER (cmode);
- ibitsize = GET_MODE_BITSIZE (imode);
-
- /* Special case reads from complex constants that got spilled to memory. */
- if (MEM_P (cplx) && GET_CODE (XEXP (cplx, 0)) == SYMBOL_REF)
- {
- tree decl = SYMBOL_REF_DECL (XEXP (cplx, 0));
- if (decl && TREE_CODE (decl) == COMPLEX_CST)
- {
- tree part = imag_p ? TREE_IMAGPART (decl) : TREE_REALPART (decl);
- if (CONSTANT_CLASS_P (part))
- return expand_expr (part, NULL_RTX, imode, EXPAND_NORMAL);
- }
- }
-
- /* For MEMs simplify_gen_subreg may generate an invalid new address
- because, e.g., the original address is considered mode-dependent
- by the target, which restricts simplify_subreg from invoking
- adjust_address_nv. Instead of preparing fallback support for an
- invalid address, we call adjust_address_nv directly. */
- if (MEM_P (cplx))
- return adjust_address_nv (cplx, imode,
- imag_p ? GET_MODE_SIZE (imode) : 0);
-
- /* If the sub-object is at least word sized, then we know that subregging
- will work. This special case is important, since extract_bit_field
- wants to operate on integer modes, and there's rarely an OImode to
- correspond to TCmode. */
- if (ibitsize >= BITS_PER_WORD
- /* For hard regs we have exact predicates. Assume we can split
- the original object if it spans an even number of hard regs.
- This special case is important for SCmode on 64-bit platforms
- where the natural size of floating-point regs is 32-bit. */
- || (REG_P (cplx)
- && REGNO (cplx) < FIRST_PSEUDO_REGISTER
- && REG_NREGS (cplx) % 2 == 0))
- {
- rtx ret = simplify_gen_subreg (imode, cplx, cmode,
- imag_p ? GET_MODE_SIZE (imode) : 0);
- if (ret)
- return ret;
- else
- /* simplify_gen_subreg may fail for sub-word MEMs. */
- gcc_assert (MEM_P (cplx) && ibitsize < BITS_PER_WORD);
- }
-
- return extract_bit_field (cplx, ibitsize, imag_p ? ibitsize : 0,
- true, NULL_RTX, imode, imode, false, NULL);
-}
-
-/* A subroutine of emit_move_insn_1. Yet another lowpart generator.
- NEW_MODE and OLD_MODE are the same size. Return NULL if X cannot be
- represented in NEW_MODE. If FORCE is true, this will never happen, as
- we'll force-create a SUBREG if needed. */
-
-static rtx
-emit_move_change_mode (machine_mode new_mode,
- machine_mode old_mode, rtx x, bool force)
-{
- rtx ret;
-
- if (push_operand (x, GET_MODE (x)))
- {
- ret = gen_rtx_MEM (new_mode, XEXP (x, 0));
- MEM_COPY_ATTRIBUTES (ret, x);
- }
- else if (MEM_P (x))
- {
- /* We don't have to worry about changing the address since the
- size in bytes is supposed to be the same. */
- if (reload_in_progress)
- {
- /* Copy the MEM to change the mode and move any
- substitutions from the old MEM to the new one. */
- ret = adjust_address_nv (x, new_mode, 0);
- copy_replacements (x, ret);
- }
- else
- ret = adjust_address (x, new_mode, 0);
- }
- else
- {
- /* Note that we do want simplify_subreg's behavior of validating
- that the new mode is ok for a hard register. If we were to use
- simplify_gen_subreg, we would create the subreg, but would
- probably run into the target not being able to implement it. */
- /* Except, of course, when FORCE is true, when this is exactly what
- we want. Which is needed for CCmodes on some targets. */
- if (force)
- ret = simplify_gen_subreg (new_mode, x, old_mode, 0);
- else
- ret = simplify_subreg (new_mode, x, old_mode, 0);
- }
-
- return ret;
-}
-
-/* A subroutine of emit_move_insn_1. Generate a move from Y into X using
- an integer mode of the same size as MODE. Returns the instruction
- emitted, or NULL if such a move could not be generated. */
-
-static rtx_insn *
-emit_move_via_integer (machine_mode mode, rtx x, rtx y, bool force)
-{
- scalar_int_mode imode;
- enum insn_code code;
-
- /* There must exist a mode of the exact size we require. */
- if (!int_mode_for_mode (mode).exists (&imode))
- return NULL;
-
- /* The target must support moves in this mode. */
- code = optab_handler (mov_optab, imode);
- if (code == CODE_FOR_nothing)
- return NULL;
-
- x = emit_move_change_mode (imode, mode, x, force);
- if (x == NULL_RTX)
- return NULL;
- y = emit_move_change_mode (imode, mode, y, force);
- if (y == NULL_RTX)
- return NULL;
- return emit_insn (GEN_FCN (code) (x, y));
-}
-
-/* A subroutine of emit_move_insn_1. X is a push_operand in MODE.
- Return an equivalent MEM that does not use an auto-increment. */
-
-rtx
-emit_move_resolve_push (machine_mode mode, rtx x)
-{
- enum rtx_code code = GET_CODE (XEXP (x, 0));
- rtx temp;
-
- poly_int64 adjust = GET_MODE_SIZE (mode);
-#ifdef PUSH_ROUNDING
- adjust = PUSH_ROUNDING (adjust);
-#endif
- if (code == PRE_DEC || code == POST_DEC)
- adjust = -adjust;
- else if (code == PRE_MODIFY || code == POST_MODIFY)
- {
- rtx expr = XEXP (XEXP (x, 0), 1);
-
- gcc_assert (GET_CODE (expr) == PLUS || GET_CODE (expr) == MINUS);
- poly_int64 val = rtx_to_poly_int64 (XEXP (expr, 1));
- if (GET_CODE (expr) == MINUS)
- val = -val;
- gcc_assert (known_eq (adjust, val) || known_eq (adjust, -val));
- adjust = val;
- }
-
- /* Do not use anti_adjust_stack, since we don't want to update
- stack_pointer_delta. */
- temp = expand_simple_binop (Pmode, PLUS, stack_pointer_rtx,
- gen_int_mode (adjust, Pmode), stack_pointer_rtx,
- 0, OPTAB_LIB_WIDEN);
- if (temp != stack_pointer_rtx)
- emit_move_insn (stack_pointer_rtx, temp);
-
- switch (code)
- {
- case PRE_INC:
- case PRE_DEC:
- case PRE_MODIFY:
- temp = stack_pointer_rtx;
- break;
- case POST_INC:
- case POST_DEC:
- case POST_MODIFY:
- temp = plus_constant (Pmode, stack_pointer_rtx, -adjust);
- break;
- default:
- gcc_unreachable ();
- }
-
- return replace_equiv_address (x, temp);
-}
-
-/* A subroutine of emit_move_complex. Generate a move from Y into X.
- X is known to satisfy push_operand, and MODE is known to be complex.
- Returns the last instruction emitted. */
-
-rtx_insn *
-emit_move_complex_push (machine_mode mode, rtx x, rtx y)
-{
- scalar_mode submode = GET_MODE_INNER (mode);
- bool imag_first;
-
-#ifdef PUSH_ROUNDING
- poly_int64 submodesize = GET_MODE_SIZE (submode);
-
- /* In case we output to the stack, but the size is smaller than the
- machine can push exactly, we need to use move instructions. */
- if (maybe_ne (PUSH_ROUNDING (submodesize), submodesize))
- {
- x = emit_move_resolve_push (mode, x);
- return emit_move_insn (x, y);
- }
-#endif
-
- /* Note that the real part always precedes the imag part in memory
- regardless of machine's endianness. */
- switch (GET_CODE (XEXP (x, 0)))
- {
- case PRE_DEC:
- case POST_DEC:
- imag_first = true;
- break;
- case PRE_INC:
- case POST_INC:
- imag_first = false;
- break;
- default:
- gcc_unreachable ();
- }
-
- emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
- read_complex_part (y, imag_first));
- return emit_move_insn (gen_rtx_MEM (submode, XEXP (x, 0)),
- read_complex_part (y, !imag_first));
-}
-
-/* A subroutine of emit_move_complex. Perform the move from Y to X
- via two moves of the parts. Returns the last instruction emitted. */
-
-rtx_insn *
-emit_move_complex_parts (rtx x, rtx y)
-{
- /* Show the output dies here. This is necessary for SUBREGs
- of pseudos since we cannot track their lifetimes correctly;
- hard regs shouldn't appear here except as return values. */
- if (!reload_completed && !reload_in_progress
- && REG_P (x) && !reg_overlap_mentioned_p (x, y))
- emit_clobber (x);
-
- write_complex_part (x, read_complex_part (y, false), false);
- write_complex_part (x, read_complex_part (y, true), true);
-
- return get_last_insn ();
-}
-
-/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
- MODE is known to be complex. Returns the last instruction emitted. */
-
-static rtx_insn *
-emit_move_complex (machine_mode mode, rtx x, rtx y)
-{
- bool try_int;
-
- /* Need to take special care for pushes, to maintain proper ordering
- of the data, and possibly extra padding. */
- if (push_operand (x, mode))
- return emit_move_complex_push (mode, x, y);
-
- /* See if we can coerce the target into moving both values at once, except
- for floating point where we favor moving as parts if this is easy. */
- if (GET_MODE_CLASS (mode) == MODE_COMPLEX_FLOAT
- && optab_handler (mov_optab, GET_MODE_INNER (mode)) != CODE_FOR_nothing
- && !(REG_P (x)
- && HARD_REGISTER_P (x)
- && REG_NREGS (x) == 1)
- && !(REG_P (y)
- && HARD_REGISTER_P (y)
- && REG_NREGS (y) == 1))
- try_int = false;
- /* Not possible if the values are inherently not adjacent. */
- else if (GET_CODE (x) == CONCAT || GET_CODE (y) == CONCAT)
- try_int = false;
- /* Is possible if both are registers (or subregs of registers). */
- else if (register_operand (x, mode) && register_operand (y, mode))
- try_int = true;
- /* If one of the operands is a memory, and alignment constraints
- are friendly enough, we may be able to do combined memory operations.
- We do not attempt this if Y is a constant because that combination is
- usually better with the by-parts thing below. */
- else if ((MEM_P (x) ? !CONSTANT_P (y) : MEM_P (y))
- && (!STRICT_ALIGNMENT
- || get_mode_alignment (mode) == BIGGEST_ALIGNMENT))
- try_int = true;
- else
- try_int = false;
-
- if (try_int)
- {
- rtx_insn *ret;
-
- /* For memory to memory moves, optimal behavior can be had with the
- existing block move logic. But use normal expansion if optimizing
- for size. */
- if (MEM_P (x) && MEM_P (y))
- {
- emit_block_move (x, y, gen_int_mode (GET_MODE_SIZE (mode), Pmode),
- (optimize_insn_for_speed_p()
- ? BLOCK_OP_NO_LIBCALL : BLOCK_OP_NORMAL));
- return get_last_insn ();
- }
-
- ret = emit_move_via_integer (mode, x, y, true);
- if (ret)
- return ret;
- }
-
- return emit_move_complex_parts (x, y);
-}
-
-/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
- MODE is known to be MODE_CC. Returns the last instruction emitted. */
-
-static rtx_insn *
-emit_move_ccmode (machine_mode mode, rtx x, rtx y)
-{
- rtx_insn *ret;
-
- /* Assume all MODE_CC modes are equivalent; if we have movcc, use it. */
- if (mode != CCmode)
- {
- enum insn_code code = optab_handler (mov_optab, CCmode);
- if (code != CODE_FOR_nothing)
- {
- x = emit_move_change_mode (CCmode, mode, x, true);
- y = emit_move_change_mode (CCmode, mode, y, true);
- return emit_insn (GEN_FCN (code) (x, y));
- }
- }
-
- /* Otherwise, find the MODE_INT mode of the same width. */
- ret = emit_move_via_integer (mode, x, y, false);
- gcc_assert (ret != NULL);
- return ret;
-}
-
-/* Return true if word I of OP lies entirely in the
- undefined bits of a paradoxical subreg. */
-
-static bool
-undefined_operand_subword_p (const_rtx op, int i)
-{
- if (GET_CODE (op) != SUBREG)
- return false;
- machine_mode innermostmode = GET_MODE (SUBREG_REG (op));
- poly_int64 offset = i * UNITS_PER_WORD + subreg_memory_offset (op);
- return (known_ge (offset, GET_MODE_SIZE (innermostmode))
- || known_le (offset, -UNITS_PER_WORD));
-}
-
-/* A subroutine of emit_move_insn_1. Generate a move from Y into X.
- MODE is any multi-word or full-word mode that lacks a move_insn
- pattern. Note that you will get better code if you define such
- patterns, even if they must turn into multiple assembler instructions. */
-
-static rtx_insn *
-emit_move_multi_word (machine_mode mode, rtx x, rtx y)
-{
- rtx_insn *last_insn = 0;
- rtx_insn *seq;
- rtx inner;
- bool need_clobber;
- int i, mode_size;
-
- /* This function can only handle cases where the number of words is
- known at compile time. */
- mode_size = GET_MODE_SIZE (mode).to_constant ();
- gcc_assert (mode_size >= UNITS_PER_WORD);
-
- /* If X is a push on the stack, do the push now and replace
- X with a reference to the stack pointer. */
- if (push_operand (x, mode))
- x = emit_move_resolve_push (mode, x);
-
- /* If we are in reload, see if either operand is a MEM whose address
- is scheduled for replacement. */
- if (reload_in_progress && MEM_P (x)
- && (inner = find_replacement (&XEXP (x, 0))) != XEXP (x, 0))
- x = replace_equiv_address_nv (x, inner);
- if (reload_in_progress && MEM_P (y)
- && (inner = find_replacement (&XEXP (y, 0))) != XEXP (y, 0))
- y = replace_equiv_address_nv (y, inner);
-
- start_sequence ();
-
- need_clobber = false;
- for (i = 0; i < CEIL (mode_size, UNITS_PER_WORD); i++)
- {
- /* Do not generate code for a move if it would go entirely
- to the non-existing bits of a paradoxical subreg. */
- if (undefined_operand_subword_p (x, i))
- continue;
-
- rtx xpart = operand_subword (x, i, 1, mode);
- rtx ypart;
-
- /* Do not generate code for a move if it would come entirely
- from the undefined bits of a paradoxical subreg. */
- if (undefined_operand_subword_p (y, i))
- continue;
-
- ypart = operand_subword (y, i, 1, mode);
-
- /* If we can't get a part of Y, put Y into memory if it is a
- constant. Otherwise, force it into a register. Then we must
- be able to get a part of Y. */
- if (ypart == 0 && CONSTANT_P (y))
- {
- y = use_anchored_address (force_const_mem (mode, y));
- ypart = operand_subword (y, i, 1, mode);
- }
- else if (ypart == 0)
- ypart = operand_subword_force (y, i, mode);
-
- gcc_assert (xpart && ypart);
-
- need_clobber |= (GET_CODE (xpart) == SUBREG);
-
- last_insn = emit_move_insn (xpart, ypart);
- }
-
- seq = get_insns ();
- end_sequence ();
-
- /* Show the output dies here. This is necessary for SUBREGs
- of pseudos since we cannot track their lifetimes correctly;
- hard regs shouldn't appear here except as return values.
- We never want to emit such a clobber after reload. */
- if (x != y
- && ! (lra_in_progress || reload_in_progress || reload_completed)
- && need_clobber != 0)
- emit_clobber (x);
-
- emit_insn (seq);
-
- return last_insn;
-}
-
-/* Low level part of emit_move_insn.
- Called just like emit_move_insn, but assumes X and Y
- are basically valid. */
-
-rtx_insn *
-emit_move_insn_1 (rtx x, rtx y)
-{
- machine_mode mode = GET_MODE (x);
- enum insn_code code;
-
- gcc_assert ((unsigned int) mode < (unsigned int) MAX_MACHINE_MODE);
-
- code = optab_handler (mov_optab, mode);
- if (code != CODE_FOR_nothing)
- return emit_insn (GEN_FCN (code) (x, y));
-
- /* Expand complex moves by moving real part and imag part. */
- if (COMPLEX_MODE_P (mode))
- return emit_move_complex (mode, x, y);
-
- if (GET_MODE_CLASS (mode) == MODE_DECIMAL_FLOAT
- || ALL_FIXED_POINT_MODE_P (mode))
- {
- rtx_insn *result = emit_move_via_integer (mode, x, y, true);
-
- /* If we can't find an integer mode, use multi words. */
- if (result)
- return result;
- else
- return emit_move_multi_word (mode, x, y);
- }
-
- if (GET_MODE_CLASS (mode) == MODE_CC)
- return emit_move_ccmode (mode, x, y);
-
- /* Try using a move pattern for the corresponding integer mode. This is
- only safe when simplify_subreg can convert MODE constants into integer
- constants. At present, it can only do this reliably if the value
- fits within a HOST_WIDE_INT. */
- if (!CONSTANT_P (y)
- || known_le (GET_MODE_BITSIZE (mode), HOST_BITS_PER_WIDE_INT))
- {
- rtx_insn *ret = emit_move_via_integer (mode, x, y, lra_in_progress);
-
- if (ret)
- {
- if (! lra_in_progress || recog (PATTERN (ret), ret, 0) >= 0)
- return ret;
- }
- }
-
- return emit_move_multi_word (mode, x, y);
-}
-
-/* Generate code to copy Y into X.
- Both Y and X must have the same mode, except that
- Y can be a constant with VOIDmode.
- This mode cannot be BLKmode; use emit_block_move for that.
-
- Return the last instruction emitted. */
-
-rtx_insn *
-emit_move_insn (rtx x, rtx y)
-{
- machine_mode mode = GET_MODE (x);
- rtx y_cst = NULL_RTX;
- rtx_insn *last_insn;
- rtx set;
-
- gcc_assert (mode != BLKmode
- && (GET_MODE (y) == mode || GET_MODE (y) == VOIDmode));
-
- /* If we have a copy that looks like one of the following patterns:
- (set (subreg:M1 (reg:M2 ...)) (subreg:M1 (reg:M2 ...)))
- (set (subreg:M1 (reg:M2 ...)) (mem:M1 ADDR))
- (set (mem:M1 ADDR) (subreg:M1 (reg:M2 ...)))
- (set (subreg:M1 (reg:M2 ...)) (constant C))
- where mode M1 is equal in size to M2, try to detect whether the
- mode change involves an implicit round trip through memory.
- If so, see if we can avoid that by removing the subregs and
- doing the move in mode M2 instead. */
-
- rtx x_inner = NULL_RTX;
- rtx y_inner = NULL_RTX;
-
- auto candidate_subreg_p = [&](rtx subreg) {
- return (REG_P (SUBREG_REG (subreg))
- && known_eq (GET_MODE_SIZE (GET_MODE (SUBREG_REG (subreg))),
- GET_MODE_SIZE (GET_MODE (subreg)))
- && optab_handler (mov_optab, GET_MODE (SUBREG_REG (subreg)))
- != CODE_FOR_nothing);
- };
-
- auto candidate_mem_p = [&](machine_mode innermode, rtx mem) {
- return (!targetm.can_change_mode_class (innermode, GET_MODE (mem), ALL_REGS)
- && !push_operand (mem, GET_MODE (mem))
- /* Not a candiate if innermode requires too much alignment. */
- && (MEM_ALIGN (mem) >= GET_MODE_ALIGNMENT (innermode)
- || targetm.slow_unaligned_access (GET_MODE (mem),
- MEM_ALIGN (mem))
- || !targetm.slow_unaligned_access (innermode,
- MEM_ALIGN (mem))));
- };
-
- if (SUBREG_P (x) && candidate_subreg_p (x))
- x_inner = SUBREG_REG (x);
-
- if (SUBREG_P (y) && candidate_subreg_p (y))
- y_inner = SUBREG_REG (y);
-
- if (x_inner != NULL_RTX
- && y_inner != NULL_RTX
- && GET_MODE (x_inner) == GET_MODE (y_inner)
- && !targetm.can_change_mode_class (GET_MODE (x_inner), mode, ALL_REGS))
- {
- x = x_inner;
- y = y_inner;
- mode = GET_MODE (x_inner);
- }
- else if (x_inner != NULL_RTX
- && MEM_P (y)
- && candidate_mem_p (GET_MODE (x_inner), y))
- {
- x = x_inner;
- y = adjust_address (y, GET_MODE (x_inner), 0);
- mode = GET_MODE (x_inner);
- }
- else if (y_inner != NULL_RTX
- && MEM_P (x)
- && candidate_mem_p (GET_MODE (y_inner), x))
- {
- x = adjust_address (x, GET_MODE (y_inner), 0);
- y = y_inner;
- mode = GET_MODE (y_inner);
- }
- else if (x_inner != NULL_RTX
- && CONSTANT_P (y)
- && !targetm.can_change_mode_class (GET_MODE (x_inner),
- mode, ALL_REGS)
- && (y_inner = simplify_subreg (GET_MODE (x_inner), y, mode, 0)))
- {
- x = x_inner;
- y = y_inner;
- mode = GET_MODE (x_inner);
- }
-
- if (CONSTANT_P (y))
- {
- if (optimize
- && SCALAR_FLOAT_MODE_P (GET_MODE (x))
- && (last_insn = compress_float_constant (x, y)))
- return last_insn;
-
- y_cst = y;
-
- if (!targetm.legitimate_constant_p (mode, y))
- {
- y = force_const_mem (mode, y);
-
- /* If the target's cannot_force_const_mem prevented the spill,
- assume that the target's move expanders will also take care
- of the non-legitimate constant. */
- if (!y)
- y = y_cst;
- else
- y = use_anchored_address (y);
- }
- }
-
- /* If X or Y are memory references, verify that their addresses are valid
- for the machine. */
- if (MEM_P (x)
- && (! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
- MEM_ADDR_SPACE (x))
- && ! push_operand (x, GET_MODE (x))))
- x = validize_mem (x);
-
- if (MEM_P (y)
- && ! memory_address_addr_space_p (GET_MODE (y), XEXP (y, 0),
- MEM_ADDR_SPACE (y)))
- y = validize_mem (y);
-
- gcc_assert (mode != BLKmode);
-
- last_insn = emit_move_insn_1 (x, y);
-
- if (y_cst && REG_P (x)
- && (set = single_set (last_insn)) != NULL_RTX
- && SET_DEST (set) == x
- && ! rtx_equal_p (y_cst, SET_SRC (set)))
- set_unique_reg_note (last_insn, REG_EQUAL, copy_rtx (y_cst));
-
- return last_insn;
-}
-
-/* Generate the body of an instruction to copy Y into X.
- It may be a list of insns, if one insn isn't enough. */
-
-rtx_insn *
-gen_move_insn (rtx x, rtx y)
-{
- rtx_insn *seq;
-
- start_sequence ();
- emit_move_insn_1 (x, y);
- seq = get_insns ();
- end_sequence ();
- return seq;
-}
-
-/* If Y is representable exactly in a narrower mode, and the target can
- perform the extension directly from constant or memory, then emit the
- move as an extension. */
-
-static rtx_insn *
-compress_float_constant (rtx x, rtx y)
-{
- machine_mode dstmode = GET_MODE (x);
- machine_mode orig_srcmode = GET_MODE (y);
- machine_mode srcmode;
- const REAL_VALUE_TYPE *r;
- int oldcost, newcost;
- bool speed = optimize_insn_for_speed_p ();
-
- r = CONST_DOUBLE_REAL_VALUE (y);
-
- if (targetm.legitimate_constant_p (dstmode, y))
- oldcost = set_src_cost (y, orig_srcmode, speed);
- else
- oldcost = set_src_cost (force_const_mem (dstmode, y), dstmode, speed);
-
- FOR_EACH_MODE_UNTIL (srcmode, orig_srcmode)
- {
- enum insn_code ic;
- rtx trunc_y;
- rtx_insn *last_insn;
-
- /* Skip if the target can't extend this way. */
- ic = can_extend_p (dstmode, srcmode, 0);
- if (ic == CODE_FOR_nothing)
- continue;
-
- /* Skip if the narrowed value isn't exact. */
- if (! exact_real_truncate (srcmode, r))
- continue;
-
- trunc_y = const_double_from_real_value (*r, srcmode);
-
- if (targetm.legitimate_constant_p (srcmode, trunc_y))
- {
- /* Skip if the target needs extra instructions to perform
- the extension. */
- if (!insn_operand_matches (ic, 1, trunc_y))
- continue;
- /* This is valid, but may not be cheaper than the original. */
- newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
- dstmode, speed);
- if (oldcost < newcost)
- continue;
- }
- else if (float_extend_from_mem[dstmode][srcmode])
- {
- trunc_y = force_const_mem (srcmode, trunc_y);
- /* This is valid, but may not be cheaper than the original. */
- newcost = set_src_cost (gen_rtx_FLOAT_EXTEND (dstmode, trunc_y),
- dstmode, speed);
- if (oldcost < newcost)
- continue;
- trunc_y = validize_mem (trunc_y);
- }
- else
- continue;
-
- /* For CSE's benefit, force the compressed constant pool entry
- into a new pseudo. This constant may be used in different modes,
- and if not, combine will put things back together for us. */
- trunc_y = force_reg (srcmode, trunc_y);
-
- /* If x is a hard register, perform the extension into a pseudo,
- so that e.g. stack realignment code is aware of it. */
- rtx target = x;
- if (REG_P (x) && HARD_REGISTER_P (x))
- target = gen_reg_rtx (dstmode);
-
- emit_unop_insn (ic, target, trunc_y, UNKNOWN);
- last_insn = get_last_insn ();
-
- if (REG_P (target))
- set_unique_reg_note (last_insn, REG_EQUAL, y);
-
- if (target != x)
- return emit_move_insn (x, target);
- return last_insn;
- }
-
- return NULL;
-}
-
-/* Pushing data onto the stack. */
-
-/* Push a block of length SIZE (perhaps variable)
- and return an rtx to address the beginning of the block.
- The value may be virtual_outgoing_args_rtx.
-
- EXTRA is the number of bytes of padding to push in addition to SIZE.
- BELOW nonzero means this padding comes at low addresses;
- otherwise, the padding comes at high addresses. */
-
-rtx
-push_block (rtx size, poly_int64 extra, int below)
-{
- rtx temp;
-
- size = convert_modes (Pmode, ptr_mode, size, 1);
- if (CONSTANT_P (size))
- anti_adjust_stack (plus_constant (Pmode, size, extra));
- else if (REG_P (size) && known_eq (extra, 0))
- anti_adjust_stack (size);
- else
- {
- temp = copy_to_mode_reg (Pmode, size);
- if (maybe_ne (extra, 0))
- temp = expand_binop (Pmode, add_optab, temp,
- gen_int_mode (extra, Pmode),
- temp, 0, OPTAB_LIB_WIDEN);
- anti_adjust_stack (temp);
- }
-
- if (STACK_GROWS_DOWNWARD)
- {
- temp = virtual_outgoing_args_rtx;
- if (maybe_ne (extra, 0) && below)
- temp = plus_constant (Pmode, temp, extra);
- }
- else
- {
- poly_int64 csize;
- if (poly_int_rtx_p (size, &csize))
- temp = plus_constant (Pmode, virtual_outgoing_args_rtx,
- -csize - (below ? 0 : extra));
- else if (maybe_ne (extra, 0) && !below)
- temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
- negate_rtx (Pmode, plus_constant (Pmode, size,
- extra)));
- else
- temp = gen_rtx_PLUS (Pmode, virtual_outgoing_args_rtx,
- negate_rtx (Pmode, size));
- }
-
- return memory_address (NARROWEST_INT_MODE, temp);
-}
-
-/* A utility routine that returns the base of an auto-inc memory, or NULL. */
-
-static rtx
-mem_autoinc_base (rtx mem)
-{
- if (MEM_P (mem))
- {
- rtx addr = XEXP (mem, 0);
- if (GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC)
- return XEXP (addr, 0);
- }
- return NULL;
-}
-
-/* A utility routine used here, in reload, and in try_split. The insns
- after PREV up to and including LAST are known to adjust the stack,
- with a final value of END_ARGS_SIZE. Iterate backward from LAST
- placing notes as appropriate. PREV may be NULL, indicating the
- entire insn sequence prior to LAST should be scanned.
-
- The set of allowed stack pointer modifications is small:
- (1) One or more auto-inc style memory references (aka pushes),
- (2) One or more addition/subtraction with the SP as destination,
- (3) A single move insn with the SP as destination,
- (4) A call_pop insn,
- (5) Noreturn call insns if !ACCUMULATE_OUTGOING_ARGS.
-
- Insns in the sequence that do not modify the SP are ignored,
- except for noreturn calls.
-
- The return value is the amount of adjustment that can be trivially
- verified, via immediate operand or auto-inc. If the adjustment
- cannot be trivially extracted, the return value is HOST_WIDE_INT_MIN. */
-
-poly_int64
-find_args_size_adjust (rtx_insn *insn)
-{
- rtx dest, set, pat;
- int i;
-
- pat = PATTERN (insn);
- set = NULL;
-
- /* Look for a call_pop pattern. */
- if (CALL_P (insn))
- {
- /* We have to allow non-call_pop patterns for the case
- of emit_single_push_insn of a TLS address. */
- if (GET_CODE (pat) != PARALLEL)
- return 0;
-
- /* All call_pop have a stack pointer adjust in the parallel.
- The call itself is always first, and the stack adjust is
- usually last, so search from the end. */
- for (i = XVECLEN (pat, 0) - 1; i > 0; --i)
- {
- set = XVECEXP (pat, 0, i);
- if (GET_CODE (set) != SET)
- continue;
- dest = SET_DEST (set);
- if (dest == stack_pointer_rtx)
- break;
- }
- /* We'd better have found the stack pointer adjust. */
- if (i == 0)
- return 0;
- /* Fall through to process the extracted SET and DEST
- as if it was a standalone insn. */
- }
- else if (GET_CODE (pat) == SET)
- set = pat;
- else if ((set = single_set (insn)) != NULL)
- ;
- else if (GET_CODE (pat) == PARALLEL)
- {
- /* ??? Some older ports use a parallel with a stack adjust
- and a store for a PUSH_ROUNDING pattern, rather than a
- PRE/POST_MODIFY rtx. Don't force them to update yet... */
- /* ??? See h8300 and m68k, pushqi1. */
- for (i = XVECLEN (pat, 0) - 1; i >= 0; --i)
- {
- set = XVECEXP (pat, 0, i);
- if (GET_CODE (set) != SET)
- continue;
- dest = SET_DEST (set);
- if (dest == stack_pointer_rtx)
- break;
-
- /* We do not expect an auto-inc of the sp in the parallel. */
- gcc_checking_assert (mem_autoinc_base (dest) != stack_pointer_rtx);
- gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
- != stack_pointer_rtx);
- }
- if (i < 0)
- return 0;
- }
- else
- return 0;
-
- dest = SET_DEST (set);
-
- /* Look for direct modifications of the stack pointer. */
- if (REG_P (dest) && REGNO (dest) == STACK_POINTER_REGNUM)
- {
- /* Look for a trivial adjustment, otherwise assume nothing. */
- /* Note that the SPU restore_stack_block pattern refers to
- the stack pointer in V4SImode. Consider that non-trivial. */
- poly_int64 offset;
- if (SCALAR_INT_MODE_P (GET_MODE (dest))
- && strip_offset (SET_SRC (set), &offset) == stack_pointer_rtx)
- return offset;
- /* ??? Reload can generate no-op moves, which will be cleaned
- up later. Recognize it and continue searching. */
- else if (rtx_equal_p (dest, SET_SRC (set)))
- return 0;
- else
- return HOST_WIDE_INT_MIN;
- }
- else
- {
- rtx mem, addr;
-
- /* Otherwise only think about autoinc patterns. */
- if (mem_autoinc_base (dest) == stack_pointer_rtx)
- {
- mem = dest;
- gcc_checking_assert (mem_autoinc_base (SET_SRC (set))
- != stack_pointer_rtx);
- }
- else if (mem_autoinc_base (SET_SRC (set)) == stack_pointer_rtx)
- mem = SET_SRC (set);
- else
- return 0;
-
- addr = XEXP (mem, 0);
- switch (GET_CODE (addr))
- {
- case PRE_INC:
- case POST_INC:
- return GET_MODE_SIZE (GET_MODE (mem));
- case PRE_DEC:
- case POST_DEC:
- return -GET_MODE_SIZE (GET_MODE (mem));
- case PRE_MODIFY:
- case POST_MODIFY:
- addr = XEXP (addr, 1);
- gcc_assert (GET_CODE (addr) == PLUS);
- gcc_assert (XEXP (addr, 0) == stack_pointer_rtx);
- return rtx_to_poly_int64 (XEXP (addr, 1));
- default:
- gcc_unreachable ();
- }
- }
-}
-
-poly_int64
-fixup_args_size_notes (rtx_insn *prev, rtx_insn *last,
- poly_int64 end_args_size)
-{
- poly_int64 args_size = end_args_size;
- bool saw_unknown = false;
- rtx_insn *insn;
-
- for (insn = last; insn != prev; insn = PREV_INSN (insn))
- {
- if (!NONDEBUG_INSN_P (insn))
- continue;
-
- /* We might have existing REG_ARGS_SIZE notes, e.g. when pushing
- a call argument containing a TLS address that itself requires
- a call to __tls_get_addr. The handling of stack_pointer_delta
- in emit_single_push_insn is supposed to ensure that any such
- notes are already correct. */
- rtx note = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
- gcc_assert (!note || known_eq (args_size, get_args_size (note)));
-
- poly_int64 this_delta = find_args_size_adjust (insn);
- if (known_eq (this_delta, 0))
- {
- if (!CALL_P (insn)
- || ACCUMULATE_OUTGOING_ARGS
- || find_reg_note (insn, REG_NORETURN, NULL_RTX) == NULL_RTX)
- continue;
- }
-
- gcc_assert (!saw_unknown);
- if (known_eq (this_delta, HOST_WIDE_INT_MIN))
- saw_unknown = true;
-
- if (!note)
- add_args_size_note (insn, args_size);
- if (STACK_GROWS_DOWNWARD)
- this_delta = -poly_uint64 (this_delta);
-
- if (saw_unknown)
- args_size = HOST_WIDE_INT_MIN;
- else
- args_size -= this_delta;
- }
-
- return args_size;
-}
-
-#ifdef PUSH_ROUNDING
-/* Emit single push insn. */
-
-static void
-emit_single_push_insn_1 (machine_mode mode, rtx x, tree type)
-{
- rtx dest_addr;
- poly_int64 rounded_size = PUSH_ROUNDING (GET_MODE_SIZE (mode));
- rtx dest;
- enum insn_code icode;
-
- /* If there is push pattern, use it. Otherwise try old way of throwing
- MEM representing push operation to move expander. */
- icode = optab_handler (push_optab, mode);
- if (icode != CODE_FOR_nothing)
- {
- class expand_operand ops[1];
-
- create_input_operand (&ops[0], x, mode);
- if (maybe_expand_insn (icode, 1, ops))
- return;
- }
- if (known_eq (GET_MODE_SIZE (mode), rounded_size))
- dest_addr = gen_rtx_fmt_e (STACK_PUSH_CODE, Pmode, stack_pointer_rtx);
- /* If we are to pad downward, adjust the stack pointer first and
- then store X into the stack location using an offset. This is
- because emit_move_insn does not know how to pad; it does not have
- access to type. */
- else if (targetm.calls.function_arg_padding (mode, type) == PAD_DOWNWARD)
- {
- emit_move_insn (stack_pointer_rtx,
- expand_binop (Pmode,
- STACK_GROWS_DOWNWARD ? sub_optab
- : add_optab,
- stack_pointer_rtx,
- gen_int_mode (rounded_size, Pmode),
- NULL_RTX, 0, OPTAB_LIB_WIDEN));
-
- poly_int64 offset = rounded_size - GET_MODE_SIZE (mode);
- if (STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_DEC)
- /* We have already decremented the stack pointer, so get the
- previous value. */
- offset += rounded_size;
-
- if (!STACK_GROWS_DOWNWARD && STACK_PUSH_CODE == POST_INC)
- /* We have already incremented the stack pointer, so get the
- previous value. */
- offset -= rounded_size;
-
- dest_addr = plus_constant (Pmode, stack_pointer_rtx, offset);
- }
- else
- {
- if (STACK_GROWS_DOWNWARD)
- /* ??? This seems wrong if STACK_PUSH_CODE == POST_DEC. */
- dest_addr = plus_constant (Pmode, stack_pointer_rtx, -rounded_size);
- else
- /* ??? This seems wrong if STACK_PUSH_CODE == POST_INC. */
- dest_addr = plus_constant (Pmode, stack_pointer_rtx, rounded_size);
-
- dest_addr = gen_rtx_PRE_MODIFY (Pmode, stack_pointer_rtx, dest_addr);
- }
-
- dest = gen_rtx_MEM (mode, dest_addr);
-
- if (type != 0)
- {
- set_mem_attributes (dest, type, 1);
-
- if (cfun->tail_call_marked)
- /* Function incoming arguments may overlap with sibling call
- outgoing arguments and we cannot allow reordering of reads
- from function arguments with stores to outgoing arguments
- of sibling calls. */
- set_mem_alias_set (dest, 0);
- }
- emit_move_insn (dest, x);
-}
-
-/* Emit and annotate a single push insn. */
-
-static void
-emit_single_push_insn (machine_mode mode, rtx x, tree type)
-{
- poly_int64 delta, old_delta = stack_pointer_delta;
- rtx_insn *prev = get_last_insn ();
- rtx_insn *last;
-
- emit_single_push_insn_1 (mode, x, type);
-
- /* Adjust stack_pointer_delta to describe the situation after the push
- we just performed. Note that we must do this after the push rather
- than before the push in case calculating X needs pushes and pops of
- its own (e.g. if calling __tls_get_addr). The REG_ARGS_SIZE notes
- for such pushes and pops must not include the effect of the future
- push of X. */
- stack_pointer_delta += PUSH_ROUNDING (GET_MODE_SIZE (mode));
-
- last = get_last_insn ();
-
- /* Notice the common case where we emitted exactly one insn. */
- if (PREV_INSN (last) == prev)
- {
- add_args_size_note (last, stack_pointer_delta);
- return;
- }
-
- delta = fixup_args_size_notes (prev, last, stack_pointer_delta);
- gcc_assert (known_eq (delta, HOST_WIDE_INT_MIN)
- || known_eq (delta, old_delta));
-}
-#endif
-
-/* If reading SIZE bytes from X will end up reading from
- Y return the number of bytes that overlap. Return -1
- if there is no overlap or -2 if we can't determine
- (for example when X and Y have different base registers). */
-
-static int
-memory_load_overlap (rtx x, rtx y, HOST_WIDE_INT size)
-{
- rtx tmp = plus_constant (Pmode, x, size);
- rtx sub = simplify_gen_binary (MINUS, Pmode, tmp, y);
-
- if (!CONST_INT_P (sub))
- return -2;
-
- HOST_WIDE_INT val = INTVAL (sub);
-
- return IN_RANGE (val, 1, size) ? val : -1;
-}
-
-/* Generate code to push X onto the stack, assuming it has mode MODE and
- type TYPE.
- MODE is redundant except when X is a CONST_INT (since they don't
- carry mode info).
- SIZE is an rtx for the size of data to be copied (in bytes),
- needed only if X is BLKmode.
- Return true if successful. May return false if asked to push a
- partial argument during a sibcall optimization (as specified by
- SIBCALL_P) and the incoming and outgoing pointers cannot be shown
- to not overlap.
-
- ALIGN (in bits) is maximum alignment we can assume.
-
- If PARTIAL and REG are both nonzero, then copy that many of the first
- bytes of X into registers starting with REG, and push the rest of X.
- The amount of space pushed is decreased by PARTIAL bytes.
- REG must be a hard register in this case.
- If REG is zero but PARTIAL is not, take any all others actions for an
- argument partially in registers, but do not actually load any
- registers.
-
- EXTRA is the amount in bytes of extra space to leave next to this arg.
- This is ignored if an argument block has already been allocated.
-
- On a machine that lacks real push insns, ARGS_ADDR is the address of
- the bottom of the argument block for this call. We use indexing off there
- to store the arg. On machines with push insns, ARGS_ADDR is 0 when a
- argument block has not been preallocated.
-
- ARGS_SO_FAR is the size of args previously pushed for this call.
-
- REG_PARM_STACK_SPACE is nonzero if functions require stack space
- for arguments passed in registers. If nonzero, it will be the number
- of bytes required. */
-
-bool
-emit_push_insn (rtx x, machine_mode mode, tree type, rtx size,
- unsigned int align, int partial, rtx reg, poly_int64 extra,
- rtx args_addr, rtx args_so_far, int reg_parm_stack_space,
- rtx alignment_pad, bool sibcall_p)
-{
- rtx xinner;
- pad_direction stack_direction
- = STACK_GROWS_DOWNWARD ? PAD_DOWNWARD : PAD_UPWARD;
-
- /* Decide where to pad the argument: PAD_DOWNWARD for below,
- PAD_UPWARD for above, or PAD_NONE for don't pad it.
- Default is below for small data on big-endian machines; else above. */
- pad_direction where_pad = targetm.calls.function_arg_padding (mode, type);
-
- /* Invert direction if stack is post-decrement.
- FIXME: why? */
- if (STACK_PUSH_CODE == POST_DEC)
- if (where_pad != PAD_NONE)
- where_pad = (where_pad == PAD_DOWNWARD ? PAD_UPWARD : PAD_DOWNWARD);
-
- xinner = x;
-
- int nregs = partial / UNITS_PER_WORD;
- rtx *tmp_regs = NULL;
- int overlapping = 0;
-
- if (mode == BLKmode
- || (STRICT_ALIGNMENT && align < GET_MODE_ALIGNMENT (mode)))
- {
- /* Copy a block into the stack, entirely or partially. */
-
- rtx temp;
- int used;
- int offset;
- int skip;
-
- offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
- used = partial - offset;
-
- if (mode != BLKmode)
- {
- /* A value is to be stored in an insufficiently aligned
- stack slot; copy via a suitably aligned slot if
- necessary. */
- size = gen_int_mode (GET_MODE_SIZE (mode), Pmode);
- if (!MEM_P (xinner))
- {
- temp = assign_temp (type, 1, 1);
- emit_move_insn (temp, xinner);
- xinner = temp;
- }
- }
-
- gcc_assert (size);
-
- /* USED is now the # of bytes we need not copy to the stack
- because registers will take care of them. */
-
- if (partial != 0)
- xinner = adjust_address (xinner, BLKmode, used);
-
- /* If the partial register-part of the arg counts in its stack size,
- skip the part of stack space corresponding to the registers.
- Otherwise, start copying to the beginning of the stack space,
- by setting SKIP to 0. */
- skip = (reg_parm_stack_space == 0) ? 0 : used;
-
-#ifdef PUSH_ROUNDING
- /* NB: Let the backend known the number of bytes to push and
- decide if push insns should be generated. */
- unsigned int push_size;
- if (CONST_INT_P (size))
- push_size = INTVAL (size);
- else
- push_size = 0;
-
- /* Do it with several push insns if that doesn't take lots of insns
- and if there is no difficulty with push insns that skip bytes
- on the stack for alignment purposes. */
- if (args_addr == 0
- && targetm.calls.push_argument (push_size)
- && CONST_INT_P (size)
- && skip == 0
- && MEM_ALIGN (xinner) >= align
- && can_move_by_pieces ((unsigned) INTVAL (size) - used, align)
- /* Here we avoid the case of a structure whose weak alignment
- forces many pushes of a small amount of data,
- and such small pushes do rounding that causes trouble. */
- && ((!targetm.slow_unaligned_access (word_mode, align))
- || align >= BIGGEST_ALIGNMENT
- || known_eq (PUSH_ROUNDING (align / BITS_PER_UNIT),
- align / BITS_PER_UNIT))
- && known_eq (PUSH_ROUNDING (INTVAL (size)), INTVAL (size)))
- {
- /* Push padding now if padding above and stack grows down,
- or if padding below and stack grows up.
- But if space already allocated, this has already been done. */
- if (maybe_ne (extra, 0)
- && args_addr == 0
- && where_pad != PAD_NONE
- && where_pad != stack_direction)
- anti_adjust_stack (gen_int_mode (extra, Pmode));
-
- move_by_pieces (NULL, xinner, INTVAL (size) - used, align,
- RETURN_BEGIN);
- }
- else
-#endif /* PUSH_ROUNDING */
- {
- rtx target;
-
- /* Otherwise make space on the stack and copy the data
- to the address of that space. */
-
- /* Deduct words put into registers from the size we must copy. */
- if (partial != 0)
- {
- if (CONST_INT_P (size))
- size = GEN_INT (INTVAL (size) - used);
- else
- size = expand_binop (GET_MODE (size), sub_optab, size,
- gen_int_mode (used, GET_MODE (size)),
- NULL_RTX, 0, OPTAB_LIB_WIDEN);
- }
-
- /* Get the address of the stack space.
- In this case, we do not deal with EXTRA separately.
- A single stack adjust will do. */
- poly_int64 const_args_so_far;
- if (! args_addr)
- {
- temp = push_block (size, extra, where_pad == PAD_DOWNWARD);
- extra = 0;
- }
- else if (poly_int_rtx_p (args_so_far, &const_args_so_far))
- temp = memory_address (BLKmode,
- plus_constant (Pmode, args_addr,
- skip + const_args_so_far));
- else
- temp = memory_address (BLKmode,
- plus_constant (Pmode,
- gen_rtx_PLUS (Pmode,
- args_addr,
- args_so_far),
- skip));
-
- if (!ACCUMULATE_OUTGOING_ARGS)
- {
- /* If the source is referenced relative to the stack pointer,
- copy it to another register to stabilize it. We do not need
- to do this if we know that we won't be changing sp. */
-
- if (reg_mentioned_p (virtual_stack_dynamic_rtx, temp)
- || reg_mentioned_p (virtual_outgoing_args_rtx, temp))
- temp = copy_to_reg (temp);
- }
-
- target = gen_rtx_MEM (BLKmode, temp);
-
- /* We do *not* set_mem_attributes here, because incoming arguments
- may overlap with sibling call outgoing arguments and we cannot
- allow reordering of reads from function arguments with stores
- to outgoing arguments of sibling calls. We do, however, want
- to record the alignment of the stack slot. */
- /* ALIGN may well be better aligned than TYPE, e.g. due to
- PARM_BOUNDARY. Assume the caller isn't lying. */
- set_mem_align (target, align);
-
- /* If part should go in registers and pushing to that part would
- overwrite some of the values that need to go into regs, load the
- overlapping values into temporary pseudos to be moved into the hard
- regs at the end after the stack pushing has completed.
- We cannot load them directly into the hard regs here because
- they can be clobbered by the block move expansions.
- See PR 65358. */
-
- if (partial > 0 && reg != 0 && mode == BLKmode
- && GET_CODE (reg) != PARALLEL)
- {
- overlapping = memory_load_overlap (XEXP (x, 0), temp, partial);
- if (overlapping > 0)
- {
- gcc_assert (overlapping % UNITS_PER_WORD == 0);
- overlapping /= UNITS_PER_WORD;
-
- tmp_regs = XALLOCAVEC (rtx, overlapping);
-
- for (int i = 0; i < overlapping; i++)
- tmp_regs[i] = gen_reg_rtx (word_mode);
-
- for (int i = 0; i < overlapping; i++)
- emit_move_insn (tmp_regs[i],
- operand_subword_force (target, i, mode));
- }
- else if (overlapping == -1)
- overlapping = 0;
- /* Could not determine whether there is overlap.
- Fail the sibcall. */
- else
- {
- overlapping = 0;
- if (sibcall_p)
- return false;
- }
- }
- emit_block_move (target, xinner, size, BLOCK_OP_CALL_PARM);
- }
- }
- else if (partial > 0)
- {
- /* Scalar partly in registers. This case is only supported
- for fixed-wdth modes. */
- int num_words = GET_MODE_SIZE (mode).to_constant ();
- num_words /= UNITS_PER_WORD;
- int i;
- int not_stack;
- /* # bytes of start of argument
- that we must make space for but need not store. */
- int offset = partial % (PARM_BOUNDARY / BITS_PER_UNIT);
- int args_offset = INTVAL (args_so_far);
- int skip;
-
- /* Push padding now if padding above and stack grows down,
- or if padding below and stack grows up.
- But if space already allocated, this has already been done. */
- if (maybe_ne (extra, 0)
- && args_addr == 0
- && where_pad != PAD_NONE
- && where_pad != stack_direction)
- anti_adjust_stack (gen_int_mode (extra, Pmode));
-
- /* If we make space by pushing it, we might as well push
- the real data. Otherwise, we can leave OFFSET nonzero
- and leave the space uninitialized. */
- if (args_addr == 0)
- offset = 0;
-
- /* Now NOT_STACK gets the number of words that we don't need to
- allocate on the stack. Convert OFFSET to words too. */
- not_stack = (partial - offset) / UNITS_PER_WORD;
- offset /= UNITS_PER_WORD;
-
- /* If the partial register-part of the arg counts in its stack size,
- skip the part of stack space corresponding to the registers.
- Otherwise, start copying to the beginning of the stack space,
- by setting SKIP to 0. */
- skip = (reg_parm_stack_space == 0) ? 0 : not_stack;
-
- if (CONSTANT_P (x) && !targetm.legitimate_constant_p (mode, x))
- x = validize_mem (force_const_mem (mode, x));
-
- /* If X is a hard register in a non-integer mode, copy it into a pseudo;
- SUBREGs of such registers are not allowed. */
- if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
- && GET_MODE_CLASS (GET_MODE (x)) != MODE_INT))
- x = copy_to_reg (x);
-
- /* Loop over all the words allocated on the stack for this arg. */
- /* We can do it by words, because any scalar bigger than a word
- has a size a multiple of a word. */
- for (i = num_words - 1; i >= not_stack; i--)
- if (i >= not_stack + offset)
- if (!emit_push_insn (operand_subword_force (x, i, mode),
- word_mode, NULL_TREE, NULL_RTX, align, 0, NULL_RTX,
- 0, args_addr,
- GEN_INT (args_offset + ((i - not_stack + skip)
- * UNITS_PER_WORD)),
- reg_parm_stack_space, alignment_pad, sibcall_p))
- return false;
- }
- else
- {
- rtx addr;
- rtx dest;
-
- /* Push padding now if padding above and stack grows down,
- or if padding below and stack grows up.
- But if space already allocated, this has already been done. */
- if (maybe_ne (extra, 0)
- && args_addr == 0
- && where_pad != PAD_NONE
- && where_pad != stack_direction)
- anti_adjust_stack (gen_int_mode (extra, Pmode));
-
-#ifdef PUSH_ROUNDING
- if (args_addr == 0 && targetm.calls.push_argument (0))
- emit_single_push_insn (mode, x, type);
- else
-#endif
- {
- addr = simplify_gen_binary (PLUS, Pmode, args_addr, args_so_far);
- dest = gen_rtx_MEM (mode, memory_address (mode, addr));
-
- /* We do *not* set_mem_attributes here, because incoming arguments
- may overlap with sibling call outgoing arguments and we cannot
- allow reordering of reads from function arguments with stores
- to outgoing arguments of sibling calls. We do, however, want
- to record the alignment of the stack slot. */
- /* ALIGN may well be better aligned than TYPE, e.g. due to
- PARM_BOUNDARY. Assume the caller isn't lying. */
- set_mem_align (dest, align);
-
- emit_move_insn (dest, x);
- }
- }
-
- /* Move the partial arguments into the registers and any overlapping
- values that we moved into the pseudos in tmp_regs. */
- if (partial > 0 && reg != 0)
- {
- /* Handle calls that pass values in multiple non-contiguous locations.
- The Irix 6 ABI has examples of this. */
- if (GET_CODE (reg) == PARALLEL)
- emit_group_load (reg, x, type, -1);
- else
- {
- gcc_assert (partial % UNITS_PER_WORD == 0);
- move_block_to_reg (REGNO (reg), x, nregs - overlapping, mode);
-
- for (int i = 0; i < overlapping; i++)
- emit_move_insn (gen_rtx_REG (word_mode, REGNO (reg)
- + nregs - overlapping + i),
- tmp_regs[i]);
-
- }
- }
-
- if (maybe_ne (extra, 0) && args_addr == 0 && where_pad == stack_direction)
- anti_adjust_stack (gen_int_mode (extra, Pmode));
-
- if (alignment_pad && args_addr == 0)
- anti_adjust_stack (alignment_pad);
-
- return true;
-}
-
-/* Return X if X can be used as a subtarget in a sequence of arithmetic
- operations. */
-
-static rtx
-get_subtarget (rtx x)
-{
- return (optimize
- || x == 0
- /* Only registers can be subtargets. */
- || !REG_P (x)
- /* Don't use hard regs to avoid extending their life. */
- || REGNO (x) < FIRST_PSEUDO_REGISTER
- ? 0 : x);
-}
-
-/* A subroutine of expand_assignment. Optimize FIELD op= VAL, where
- FIELD is a bitfield. Returns true if the optimization was successful,
- and there's nothing else to do. */
-
-static bool
-optimize_bitfield_assignment_op (poly_uint64 pbitsize,
- poly_uint64 pbitpos,
- poly_uint64 pbitregion_start,
- poly_uint64 pbitregion_end,
- machine_mode mode1, rtx str_rtx,
- tree to, tree src, bool reverse)
-{
- /* str_mode is not guaranteed to be a scalar type. */
- machine_mode str_mode = GET_MODE (str_rtx);
- unsigned int str_bitsize;
- tree op0, op1;
- rtx value, result;
- optab binop;
- gimple *srcstmt;
- enum tree_code code;
-
- unsigned HOST_WIDE_INT bitsize, bitpos, bitregion_start, bitregion_end;
- if (mode1 != VOIDmode
- || !pbitsize.is_constant (&bitsize)
- || !pbitpos.is_constant (&bitpos)
- || !pbitregion_start.is_constant (&bitregion_start)
- || !pbitregion_end.is_constant (&bitregion_end)
- || bitsize >= BITS_PER_WORD
- || !GET_MODE_BITSIZE (str_mode).is_constant (&str_bitsize)
- || str_bitsize > BITS_PER_WORD
- || TREE_SIDE_EFFECTS (to)
- || TREE_THIS_VOLATILE (to))
- return false;
-
- STRIP_NOPS (src);
- if (TREE_CODE (src) != SSA_NAME)
- return false;
- if (TREE_CODE (TREE_TYPE (src)) != INTEGER_TYPE)
- return false;
-
- srcstmt = get_gimple_for_ssa_name (src);
- if (!srcstmt
- || TREE_CODE_CLASS (gimple_assign_rhs_code (srcstmt)) != tcc_binary)
- return false;
-
- code = gimple_assign_rhs_code (srcstmt);
-
- op0 = gimple_assign_rhs1 (srcstmt);
-
- /* If OP0 is an SSA_NAME, then we want to walk the use-def chain
- to find its initialization. Hopefully the initialization will
- be from a bitfield load. */
- if (TREE_CODE (op0) == SSA_NAME)
- {
- gimple *op0stmt = get_gimple_for_ssa_name (op0);
-
- /* We want to eventually have OP0 be the same as TO, which
- should be a bitfield. */
- if (!op0stmt
- || !is_gimple_assign (op0stmt)
- || gimple_assign_rhs_code (op0stmt) != TREE_CODE (to))
- return false;
- op0 = gimple_assign_rhs1 (op0stmt);
- }
-
- op1 = gimple_assign_rhs2 (srcstmt);
-
- if (!operand_equal_p (to, op0, 0))
- return false;
-
- if (MEM_P (str_rtx))
- {
- unsigned HOST_WIDE_INT offset1;
-
- if (str_bitsize == 0 || str_bitsize > BITS_PER_WORD)
- str_bitsize = BITS_PER_WORD;
-
- scalar_int_mode best_mode;
- if (!get_best_mode (bitsize, bitpos, bitregion_start, bitregion_end,
- MEM_ALIGN (str_rtx), str_bitsize, false, &best_mode))
- return false;
- str_mode = best_mode;
- str_bitsize = GET_MODE_BITSIZE (best_mode);
-
- offset1 = bitpos;
- bitpos %= str_bitsize;
- offset1 = (offset1 - bitpos) / BITS_PER_UNIT;
- str_rtx = adjust_address (str_rtx, str_mode, offset1);
- }
- else if (!REG_P (str_rtx) && GET_CODE (str_rtx) != SUBREG)
- return false;
-
- /* If the bit field covers the whole REG/MEM, store_field
- will likely generate better code. */
- if (bitsize >= str_bitsize)
- return false;
-
- /* We can't handle fields split across multiple entities. */
- if (bitpos + bitsize > str_bitsize)
- return false;
-
- if (reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
- bitpos = str_bitsize - bitpos - bitsize;
-
- switch (code)
- {
- case PLUS_EXPR:
- case MINUS_EXPR:
- /* For now, just optimize the case of the topmost bitfield
- where we don't need to do any masking and also
- 1 bit bitfields where xor can be used.
- We might win by one instruction for the other bitfields
- too if insv/extv instructions aren't used, so that
- can be added later. */
- if ((reverse || bitpos + bitsize != str_bitsize)
- && (bitsize != 1 || TREE_CODE (op1) != INTEGER_CST))
- break;
-
- value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
- value = convert_modes (str_mode,
- TYPE_MODE (TREE_TYPE (op1)), value,
- TYPE_UNSIGNED (TREE_TYPE (op1)));
-
- /* We may be accessing data outside the field, which means
- we can alias adjacent data. */
- if (MEM_P (str_rtx))
- {
- str_rtx = shallow_copy_rtx (str_rtx);
- set_mem_alias_set (str_rtx, 0);
- set_mem_expr (str_rtx, 0);
- }
-
- if (bitsize == 1 && (reverse || bitpos + bitsize != str_bitsize))
- {
- value = expand_and (str_mode, value, const1_rtx, NULL);
- binop = xor_optab;
- }
- else
- binop = code == PLUS_EXPR ? add_optab : sub_optab;
-
- value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
- if (reverse)
- value = flip_storage_order (str_mode, value);
- result = expand_binop (str_mode, binop, str_rtx,
- value, str_rtx, 1, OPTAB_WIDEN);
- if (result != str_rtx)
- emit_move_insn (str_rtx, result);
- return true;
-
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- if (TREE_CODE (op1) != INTEGER_CST)
- break;
- value = expand_expr (op1, NULL_RTX, str_mode, EXPAND_NORMAL);
- value = convert_modes (str_mode,
- TYPE_MODE (TREE_TYPE (op1)), value,
- TYPE_UNSIGNED (TREE_TYPE (op1)));
-
- /* We may be accessing data outside the field, which means
- we can alias adjacent data. */
- if (MEM_P (str_rtx))
- {
- str_rtx = shallow_copy_rtx (str_rtx);
- set_mem_alias_set (str_rtx, 0);
- set_mem_expr (str_rtx, 0);
- }
-
- binop = code == BIT_IOR_EXPR ? ior_optab : xor_optab;
- if (bitpos + bitsize != str_bitsize)
- {
- rtx mask = gen_int_mode ((HOST_WIDE_INT_1U << bitsize) - 1,
- str_mode);
- value = expand_and (str_mode, value, mask, NULL_RTX);
- }
- value = expand_shift (LSHIFT_EXPR, str_mode, value, bitpos, NULL_RTX, 1);
- if (reverse)
- value = flip_storage_order (str_mode, value);
- result = expand_binop (str_mode, binop, str_rtx,
- value, str_rtx, 1, OPTAB_WIDEN);
- if (result != str_rtx)
- emit_move_insn (str_rtx, result);
- return true;
-
- default:
- break;
- }
-
- return false;
-}
-
-/* In the C++ memory model, consecutive bit fields in a structure are
- considered one memory location.
-
- Given a COMPONENT_REF EXP at position (BITPOS, OFFSET), this function
- returns the bit range of consecutive bits in which this COMPONENT_REF
- belongs. The values are returned in *BITSTART and *BITEND. *BITPOS
- and *OFFSET may be adjusted in the process.
-
- If the access does not need to be restricted, 0 is returned in both
- *BITSTART and *BITEND. */
-
-void
-get_bit_range (poly_uint64_pod *bitstart, poly_uint64_pod *bitend, tree exp,
- poly_int64_pod *bitpos, tree *offset)
-{
- poly_int64 bitoffset;
- tree field, repr;
-
- gcc_assert (TREE_CODE (exp) == COMPONENT_REF);
-
- field = TREE_OPERAND (exp, 1);
- repr = DECL_BIT_FIELD_REPRESENTATIVE (field);
- /* If we do not have a DECL_BIT_FIELD_REPRESENTATIVE there is no
- need to limit the range we can access. */
- if (!repr)
- {
- *bitstart = *bitend = 0;
- return;
- }
-
- /* If we have a DECL_BIT_FIELD_REPRESENTATIVE but the enclosing record is
- part of a larger bit field, then the representative does not serve any
- useful purpose. This can occur in Ada. */
- if (handled_component_p (TREE_OPERAND (exp, 0)))
- {
- machine_mode rmode;
- poly_int64 rbitsize, rbitpos;
- tree roffset;
- int unsignedp, reversep, volatilep = 0;
- get_inner_reference (TREE_OPERAND (exp, 0), &rbitsize, &rbitpos,
- &roffset, &rmode, &unsignedp, &reversep,
- &volatilep);
- if (!multiple_p (rbitpos, BITS_PER_UNIT))
- {
- *bitstart = *bitend = 0;
- return;
- }
- }
-
- /* Compute the adjustment to bitpos from the offset of the field
- relative to the representative. DECL_FIELD_OFFSET of field and
- repr are the same by construction if they are not constants,
- see finish_bitfield_layout. */
- poly_uint64 field_offset, repr_offset;
- if (poly_int_tree_p (DECL_FIELD_OFFSET (field), &field_offset)
- && poly_int_tree_p (DECL_FIELD_OFFSET (repr), &repr_offset))
- bitoffset = (field_offset - repr_offset) * BITS_PER_UNIT;
- else
- bitoffset = 0;
- bitoffset += (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
- - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
-
- /* If the adjustment is larger than bitpos, we would have a negative bit
- position for the lower bound and this may wreak havoc later. Adjust
- offset and bitpos to make the lower bound non-negative in that case. */
- if (maybe_gt (bitoffset, *bitpos))
- {
- poly_int64 adjust_bits = upper_bound (bitoffset, *bitpos) - *bitpos;
- poly_int64 adjust_bytes = exact_div (adjust_bits, BITS_PER_UNIT);
-
- *bitpos += adjust_bits;
- if (*offset == NULL_TREE)
- *offset = size_int (-adjust_bytes);
- else
- *offset = size_binop (MINUS_EXPR, *offset, size_int (adjust_bytes));
- *bitstart = 0;
- }
- else
- *bitstart = *bitpos - bitoffset;
-
- *bitend = *bitstart + tree_to_poly_uint64 (DECL_SIZE (repr)) - 1;
-}
-
-/* Returns true if BASE is a DECL that does not reside in memory and
- has non-BLKmode. DECL_RTL must not be a MEM; if
- DECL_RTL was not set yet, return false. */
-
-bool
-non_mem_decl_p (tree base)
-{
- if (!DECL_P (base)
- || TREE_ADDRESSABLE (base)
- || DECL_MODE (base) == BLKmode)
- return false;
-
- if (!DECL_RTL_SET_P (base))
- return false;
-
- return (!MEM_P (DECL_RTL (base)));
-}
-
-/* Returns true if REF refers to an object that does not
- reside in memory and has non-BLKmode. */
-
-bool
-mem_ref_refers_to_non_mem_p (tree ref)
-{
- tree base;
-
- if (TREE_CODE (ref) == MEM_REF
- || TREE_CODE (ref) == TARGET_MEM_REF)
- {
- tree addr = TREE_OPERAND (ref, 0);
-
- if (TREE_CODE (addr) != ADDR_EXPR)
- return false;
-
- base = TREE_OPERAND (addr, 0);
- }
- else
- base = ref;
-
- return non_mem_decl_p (base);
-}
-
-/* Expand an assignment that stores the value of FROM into TO. If NONTEMPORAL
- is true, try generating a nontemporal store. */
-
-void
-expand_assignment (tree to, tree from, bool nontemporal)
-{
- rtx to_rtx = 0;
- rtx result;
- machine_mode mode;
- unsigned int align;
- enum insn_code icode;
-
- /* Don't crash if the lhs of the assignment was erroneous. */
- if (TREE_CODE (to) == ERROR_MARK)
- {
- expand_normal (from);
- return;
- }
-
- /* Optimize away no-op moves without side-effects. */
- if (operand_equal_p (to, from, 0))
- return;
-
- /* Handle misaligned stores. */
- mode = TYPE_MODE (TREE_TYPE (to));
- if ((TREE_CODE (to) == MEM_REF
- || TREE_CODE (to) == TARGET_MEM_REF
- || DECL_P (to))
- && mode != BLKmode
- && !mem_ref_refers_to_non_mem_p (to)
- && ((align = get_object_alignment (to))
- < GET_MODE_ALIGNMENT (mode))
- && (((icode = optab_handler (movmisalign_optab, mode))
- != CODE_FOR_nothing)
- || targetm.slow_unaligned_access (mode, align)))
- {
- rtx reg, mem;
-
- reg = expand_expr (from, NULL_RTX, VOIDmode, EXPAND_NORMAL);
- /* Handle PARALLEL. */
- reg = maybe_emit_group_store (reg, TREE_TYPE (from));
- reg = force_not_mem (reg);
- mem = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
- if (TREE_CODE (to) == MEM_REF && REF_REVERSE_STORAGE_ORDER (to))
- reg = flip_storage_order (mode, reg);
-
- if (icode != CODE_FOR_nothing)
- {
- class expand_operand ops[2];
-
- create_fixed_operand (&ops[0], mem);
- create_input_operand (&ops[1], reg, mode);
- /* The movmisalign<mode> pattern cannot fail, else the assignment
- would silently be omitted. */
- expand_insn (icode, 2, ops);
- }
- else
- store_bit_field (mem, GET_MODE_BITSIZE (mode), 0, 0, 0, mode, reg,
- false);
- return;
- }
-
- /* Assignment of a structure component needs special treatment
- if the structure component's rtx is not simply a MEM.
- Assignment of an array element at a constant index, and assignment of
- an array element in an unaligned packed structure field, has the same
- problem. Same for (partially) storing into a non-memory object. */
- if (handled_component_p (to)
- || (TREE_CODE (to) == MEM_REF
- && (REF_REVERSE_STORAGE_ORDER (to)
- || mem_ref_refers_to_non_mem_p (to)))
- || TREE_CODE (TREE_TYPE (to)) == ARRAY_TYPE)
- {
- machine_mode mode1;
- poly_int64 bitsize, bitpos;
- poly_uint64 bitregion_start = 0;
- poly_uint64 bitregion_end = 0;
- tree offset;
- int unsignedp, reversep, volatilep = 0;
- tree tem;
-
- push_temp_slots ();
- tem = get_inner_reference (to, &bitsize, &bitpos, &offset, &mode1,
- &unsignedp, &reversep, &volatilep);
-
- /* Make sure bitpos is not negative, it can wreak havoc later. */
- if (maybe_lt (bitpos, 0))
- {
- gcc_assert (offset == NULL_TREE);
- offset = size_int (bits_to_bytes_round_down (bitpos));
- bitpos = num_trailing_bits (bitpos);
- }
-
- if (TREE_CODE (to) == COMPONENT_REF
- && DECL_BIT_FIELD_TYPE (TREE_OPERAND (to, 1)))
- get_bit_range (&bitregion_start, &bitregion_end, to, &bitpos, &offset);
- /* The C++ memory model naturally applies to byte-aligned fields.
- However, if we do not have a DECL_BIT_FIELD_TYPE but BITPOS or
- BITSIZE are not byte-aligned, there is no need to limit the range
- we can access. This can occur with packed structures in Ada. */
- else if (maybe_gt (bitsize, 0)
- && multiple_p (bitsize, BITS_PER_UNIT)
- && multiple_p (bitpos, BITS_PER_UNIT))
- {
- bitregion_start = bitpos;
- bitregion_end = bitpos + bitsize - 1;
- }
-
- to_rtx = expand_expr (tem, NULL_RTX, VOIDmode, EXPAND_WRITE);
-
- /* If the field has a mode, we want to access it in the
- field's mode, not the computed mode.
- If a MEM has VOIDmode (external with incomplete type),
- use BLKmode for it instead. */
- if (MEM_P (to_rtx))
- {
- if (mode1 != VOIDmode)
- to_rtx = adjust_address (to_rtx, mode1, 0);
- else if (GET_MODE (to_rtx) == VOIDmode)
- to_rtx = adjust_address (to_rtx, BLKmode, 0);
- }
-
- if (offset != 0)
- {
- machine_mode address_mode;
- rtx offset_rtx;
-
- if (!MEM_P (to_rtx))
- {
- /* We can get constant negative offsets into arrays with broken
- user code. Translate this to a trap instead of ICEing. */
- gcc_assert (TREE_CODE (offset) == INTEGER_CST);
- expand_builtin_trap ();
- to_rtx = gen_rtx_MEM (BLKmode, const0_rtx);
- }
-
- offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode, EXPAND_SUM);
- address_mode = get_address_mode (to_rtx);
- if (GET_MODE (offset_rtx) != address_mode)
- {
- /* We cannot be sure that the RTL in offset_rtx is valid outside
- of a memory address context, so force it into a register
- before attempting to convert it to the desired mode. */
- offset_rtx = force_operand (offset_rtx, NULL_RTX);
- offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
- }
-
- /* If we have an expression in OFFSET_RTX and a non-zero
- byte offset in BITPOS, adding the byte offset before the
- OFFSET_RTX results in better intermediate code, which makes
- later rtl optimization passes perform better.
-
- We prefer intermediate code like this:
-
- r124:DI=r123:DI+0x18
- [r124:DI]=r121:DI
-
- ... instead of ...
-
- r124:DI=r123:DI+0x10
- [r124:DI+0x8]=r121:DI
-
- This is only done for aligned data values, as these can
- be expected to result in single move instructions. */
- poly_int64 bytepos;
- if (mode1 != VOIDmode
- && maybe_ne (bitpos, 0)
- && maybe_gt (bitsize, 0)
- && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
- && multiple_p (bitpos, bitsize)
- && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
- && MEM_ALIGN (to_rtx) >= GET_MODE_ALIGNMENT (mode1))
- {
- to_rtx = adjust_address (to_rtx, mode1, bytepos);
- bitregion_start = 0;
- if (known_ge (bitregion_end, poly_uint64 (bitpos)))
- bitregion_end -= bitpos;
- bitpos = 0;
- }
-
- to_rtx = offset_address (to_rtx, offset_rtx,
- highest_pow2_factor_for_target (to,
- offset));
- }
-
- /* No action is needed if the target is not a memory and the field
- lies completely outside that target. This can occur if the source
- code contains an out-of-bounds access to a small array. */
- if (!MEM_P (to_rtx)
- && GET_MODE (to_rtx) != BLKmode
- && known_ge (bitpos, GET_MODE_PRECISION (GET_MODE (to_rtx))))
- {
- expand_normal (from);
- result = NULL;
- }
- /* Handle expand_expr of a complex value returning a CONCAT. */
- else if (GET_CODE (to_rtx) == CONCAT)
- {
- machine_mode to_mode = GET_MODE (to_rtx);
- gcc_checking_assert (COMPLEX_MODE_P (to_mode));
- poly_int64 mode_bitsize = GET_MODE_BITSIZE (to_mode);
- unsigned short inner_bitsize = GET_MODE_UNIT_BITSIZE (to_mode);
- if (TYPE_MODE (TREE_TYPE (from)) == to_mode
- && known_eq (bitpos, 0)
- && known_eq (bitsize, mode_bitsize))
- result = store_expr (from, to_rtx, false, nontemporal, reversep);
- else if (TYPE_MODE (TREE_TYPE (from)) == GET_MODE_INNER (to_mode)
- && known_eq (bitsize, inner_bitsize)
- && (known_eq (bitpos, 0)
- || known_eq (bitpos, inner_bitsize)))
- result = store_expr (from, XEXP (to_rtx, maybe_ne (bitpos, 0)),
- false, nontemporal, reversep);
- else if (known_le (bitpos + bitsize, inner_bitsize))
- result = store_field (XEXP (to_rtx, 0), bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode1, from, get_alias_set (to),
- nontemporal, reversep);
- else if (known_ge (bitpos, inner_bitsize))
- result = store_field (XEXP (to_rtx, 1), bitsize,
- bitpos - inner_bitsize,
- bitregion_start, bitregion_end,
- mode1, from, get_alias_set (to),
- nontemporal, reversep);
- else if (known_eq (bitpos, 0) && known_eq (bitsize, mode_bitsize))
- {
- result = expand_normal (from);
- if (GET_CODE (result) == CONCAT)
- {
- to_mode = GET_MODE_INNER (to_mode);
- machine_mode from_mode = GET_MODE_INNER (GET_MODE (result));
- rtx from_real
- = simplify_gen_subreg (to_mode, XEXP (result, 0),
- from_mode, 0);
- rtx from_imag
- = simplify_gen_subreg (to_mode, XEXP (result, 1),
- from_mode, 0);
- if (!from_real || !from_imag)
- goto concat_store_slow;
- emit_move_insn (XEXP (to_rtx, 0), from_real);
- emit_move_insn (XEXP (to_rtx, 1), from_imag);
- }
- else
- {
- machine_mode from_mode
- = GET_MODE (result) == VOIDmode
- ? TYPE_MODE (TREE_TYPE (from))
- : GET_MODE (result);
- rtx from_rtx;
- if (MEM_P (result))
- from_rtx = change_address (result, to_mode, NULL_RTX);
- else
- from_rtx
- = simplify_gen_subreg (to_mode, result, from_mode, 0);
- if (from_rtx)
- {
- emit_move_insn (XEXP (to_rtx, 0),
- read_complex_part (from_rtx, false));
- emit_move_insn (XEXP (to_rtx, 1),
- read_complex_part (from_rtx, true));
- }
- else
- {
- to_mode = GET_MODE_INNER (to_mode);
- rtx from_real
- = simplify_gen_subreg (to_mode, result, from_mode, 0);
- rtx from_imag
- = simplify_gen_subreg (to_mode, result, from_mode,
- GET_MODE_SIZE (to_mode));
- if (!from_real || !from_imag)
- goto concat_store_slow;
- emit_move_insn (XEXP (to_rtx, 0), from_real);
- emit_move_insn (XEXP (to_rtx, 1), from_imag);
- }
- }
- }
- else
- {
- concat_store_slow:;
- rtx temp = assign_stack_temp (GET_MODE (to_rtx),
- GET_MODE_SIZE (GET_MODE (to_rtx)));
- write_complex_part (temp, XEXP (to_rtx, 0), false);
- write_complex_part (temp, XEXP (to_rtx, 1), true);
- result = store_field (temp, bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode1, from, get_alias_set (to),
- nontemporal, reversep);
- emit_move_insn (XEXP (to_rtx, 0), read_complex_part (temp, false));
- emit_move_insn (XEXP (to_rtx, 1), read_complex_part (temp, true));
- }
- }
- /* For calls to functions returning variable length structures, if TO_RTX
- is not a MEM, go through a MEM because we must not create temporaries
- of the VLA type. */
- else if (!MEM_P (to_rtx)
- && TREE_CODE (from) == CALL_EXPR
- && COMPLETE_TYPE_P (TREE_TYPE (from))
- && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) != INTEGER_CST)
- {
- rtx temp = assign_stack_temp (GET_MODE (to_rtx),
- GET_MODE_SIZE (GET_MODE (to_rtx)));
- result = store_field (temp, bitsize, bitpos, bitregion_start,
- bitregion_end, mode1, from, get_alias_set (to),
- nontemporal, reversep);
- emit_move_insn (to_rtx, temp);
- }
- else
- {
- if (MEM_P (to_rtx))
- {
- /* If the field is at offset zero, we could have been given the
- DECL_RTX of the parent struct. Don't munge it. */
- to_rtx = shallow_copy_rtx (to_rtx);
- set_mem_attributes_minus_bitpos (to_rtx, to, 0, bitpos);
- if (volatilep)
- MEM_VOLATILE_P (to_rtx) = 1;
- }
-
- gcc_checking_assert (known_ge (bitpos, 0));
- if (optimize_bitfield_assignment_op (bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode1, to_rtx, to, from,
- reversep))
- result = NULL;
- else if (SUBREG_P (to_rtx)
- && SUBREG_PROMOTED_VAR_P (to_rtx))
- {
- /* If to_rtx is a promoted subreg, we need to zero or sign
- extend the value afterwards. */
- if (TREE_CODE (to) == MEM_REF
- && TYPE_MODE (TREE_TYPE (from)) != BLKmode
- && !REF_REVERSE_STORAGE_ORDER (to)
- && known_eq (bitpos, 0)
- && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (to_rtx))))
- result = store_expr (from, to_rtx, 0, nontemporal, false);
- else
- {
- rtx to_rtx1
- = lowpart_subreg (subreg_unpromoted_mode (to_rtx),
- SUBREG_REG (to_rtx),
- subreg_promoted_mode (to_rtx));
- result = store_field (to_rtx1, bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode1, from, get_alias_set (to),
- nontemporal, reversep);
- convert_move (SUBREG_REG (to_rtx), to_rtx1,
- SUBREG_PROMOTED_SIGN (to_rtx));
- }
- }
- else
- result = store_field (to_rtx, bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode1, from, get_alias_set (to),
- nontemporal, reversep);
- }
-
- if (result)
- preserve_temp_slots (result);
- pop_temp_slots ();
- return;
- }
-
- /* If the rhs is a function call and its value is not an aggregate,
- call the function before we start to compute the lhs.
- This is needed for correct code for cases such as
- val = setjmp (buf) on machines where reference to val
- requires loading up part of an address in a separate insn.
-
- Don't do this if TO is a VAR_DECL or PARM_DECL whose DECL_RTL is REG
- since it might be a promoted variable where the zero- or sign- extension
- needs to be done. Handling this in the normal way is safe because no
- computation is done before the call. The same is true for SSA names. */
- if (TREE_CODE (from) == CALL_EXPR && ! aggregate_value_p (from, from)
- && COMPLETE_TYPE_P (TREE_TYPE (from))
- && TREE_CODE (TYPE_SIZE (TREE_TYPE (from))) == INTEGER_CST
- && ! (((VAR_P (to)
- || TREE_CODE (to) == PARM_DECL
- || TREE_CODE (to) == RESULT_DECL)
- && REG_P (DECL_RTL (to)))
- || TREE_CODE (to) == SSA_NAME))
- {
- rtx value;
-
- push_temp_slots ();
- value = expand_normal (from);
-
- if (to_rtx == 0)
- to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
-
- /* Handle calls that return values in multiple non-contiguous locations.
- The Irix 6 ABI has examples of this. */
- if (GET_CODE (to_rtx) == PARALLEL)
- {
- if (GET_CODE (value) == PARALLEL)
- emit_group_move (to_rtx, value);
- else
- emit_group_load (to_rtx, value, TREE_TYPE (from),
- int_size_in_bytes (TREE_TYPE (from)));
- }
- else if (GET_CODE (value) == PARALLEL)
- emit_group_store (to_rtx, value, TREE_TYPE (from),
- int_size_in_bytes (TREE_TYPE (from)));
- else if (GET_MODE (to_rtx) == BLKmode)
- {
- /* Handle calls that return BLKmode values in registers. */
- if (REG_P (value))
- copy_blkmode_from_reg (to_rtx, value, TREE_TYPE (from));
- else
- emit_block_move (to_rtx, value, expr_size (from), BLOCK_OP_NORMAL);
- }
- else
- {
- if (POINTER_TYPE_P (TREE_TYPE (to)))
- value = convert_memory_address_addr_space
- (as_a <scalar_int_mode> (GET_MODE (to_rtx)), value,
- TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (to))));
-
- emit_move_insn (to_rtx, value);
- }
-
- preserve_temp_slots (to_rtx);
- pop_temp_slots ();
- return;
- }
-
- /* Ordinary treatment. Expand TO to get a REG or MEM rtx. */
- to_rtx = expand_expr (to, NULL_RTX, VOIDmode, EXPAND_WRITE);
-
- /* Don't move directly into a return register. */
- if (TREE_CODE (to) == RESULT_DECL
- && (REG_P (to_rtx) || GET_CODE (to_rtx) == PARALLEL))
- {
- rtx temp;
-
- push_temp_slots ();
-
- /* If the source is itself a return value, it still is in a pseudo at
- this point so we can move it back to the return register directly. */
- if (REG_P (to_rtx)
- && TYPE_MODE (TREE_TYPE (from)) == BLKmode
- && TREE_CODE (from) != CALL_EXPR)
- temp = copy_blkmode_to_reg (GET_MODE (to_rtx), from);
- else
- temp = expand_expr (from, NULL_RTX, GET_MODE (to_rtx), EXPAND_NORMAL);
-
- /* Handle calls that return values in multiple non-contiguous locations.
- The Irix 6 ABI has examples of this. */
- if (GET_CODE (to_rtx) == PARALLEL)
- {
- if (GET_CODE (temp) == PARALLEL)
- emit_group_move (to_rtx, temp);
- else
- emit_group_load (to_rtx, temp, TREE_TYPE (from),
- int_size_in_bytes (TREE_TYPE (from)));
- }
- else if (temp)
- emit_move_insn (to_rtx, temp);
-
- preserve_temp_slots (to_rtx);
- pop_temp_slots ();
- return;
- }
-
- /* In case we are returning the contents of an object which overlaps
- the place the value is being stored, use a safe function when copying
- a value through a pointer into a structure value return block. */
- if (TREE_CODE (to) == RESULT_DECL
- && TREE_CODE (from) == INDIRECT_REF
- && ADDR_SPACE_GENERIC_P
- (TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (from, 0)))))
- && refs_may_alias_p (to, from)
- && cfun->returns_struct
- && !cfun->returns_pcc_struct)
- {
- rtx from_rtx, size;
-
- push_temp_slots ();
- size = expr_size (from);
- from_rtx = expand_normal (from);
-
- emit_block_move_via_libcall (XEXP (to_rtx, 0), XEXP (from_rtx, 0), size);
-
- preserve_temp_slots (to_rtx);
- pop_temp_slots ();
- return;
- }
-
- /* Compute FROM and store the value in the rtx we got. */
-
- push_temp_slots ();
- result = store_expr (from, to_rtx, 0, nontemporal, false);
- preserve_temp_slots (result);
- pop_temp_slots ();
- return;
-}
-
-/* Emits nontemporal store insn that moves FROM to TO. Returns true if this
- succeeded, false otherwise. */
-
-bool
-emit_storent_insn (rtx to, rtx from)
-{
- class expand_operand ops[2];
- machine_mode mode = GET_MODE (to);
- enum insn_code code = optab_handler (storent_optab, mode);
-
- if (code == CODE_FOR_nothing)
- return false;
-
- create_fixed_operand (&ops[0], to);
- create_input_operand (&ops[1], from, mode);
- return maybe_expand_insn (code, 2, ops);
-}
-
-/* Helper function for store_expr storing of STRING_CST. */
-
-static rtx
-string_cst_read_str (void *data, void *, HOST_WIDE_INT offset,
- fixed_size_mode mode)
-{
- tree str = (tree) data;
-
- gcc_assert (offset >= 0);
- if (offset >= TREE_STRING_LENGTH (str))
- return const0_rtx;
-
- if ((unsigned HOST_WIDE_INT) offset + GET_MODE_SIZE (mode)
- > (unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (str))
- {
- char *p = XALLOCAVEC (char, GET_MODE_SIZE (mode));
- size_t l = TREE_STRING_LENGTH (str) - offset;
- memcpy (p, TREE_STRING_POINTER (str) + offset, l);
- memset (p + l, '\0', GET_MODE_SIZE (mode) - l);
- return c_readstr (p, as_a <scalar_int_mode> (mode), false);
- }
-
- /* The by-pieces infrastructure does not try to pick a vector mode
- for storing STRING_CST. */
- return c_readstr (TREE_STRING_POINTER (str) + offset,
- as_a <scalar_int_mode> (mode), false);
-}
-
-/* Generate code for computing expression EXP,
- and storing the value into TARGET.
-
- If the mode is BLKmode then we may return TARGET itself.
- It turns out that in BLKmode it doesn't cause a problem.
- because C has no operators that could combine two different
- assignments into the same BLKmode object with different values
- with no sequence point. Will other languages need this to
- be more thorough?
-
- If CALL_PARAM_P is nonzero, this is a store into a call param on the
- stack, and block moves may need to be treated specially.
-
- If NONTEMPORAL is true, try using a nontemporal store instruction.
-
- If REVERSE is true, the store is to be done in reverse order. */
-
-rtx
-store_expr (tree exp, rtx target, int call_param_p,
- bool nontemporal, bool reverse)
-{
- rtx temp;
- rtx alt_rtl = NULL_RTX;
- location_t loc = curr_insn_location ();
- bool shortened_string_cst = false;
-
- if (VOID_TYPE_P (TREE_TYPE (exp)))
- {
- /* C++ can generate ?: expressions with a throw expression in one
- branch and an rvalue in the other. Here, we resolve attempts to
- store the throw expression's nonexistent result. */
- gcc_assert (!call_param_p);
- expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
- return NULL_RTX;
- }
- if (TREE_CODE (exp) == COMPOUND_EXPR)
- {
- /* Perform first part of compound expression, then assign from second
- part. */
- expand_expr (TREE_OPERAND (exp, 0), const0_rtx, VOIDmode,
- call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
- return store_expr (TREE_OPERAND (exp, 1), target,
- call_param_p, nontemporal, reverse);
- }
- else if (TREE_CODE (exp) == COND_EXPR && GET_MODE (target) == BLKmode)
- {
- /* For conditional expression, get safe form of the target. Then
- test the condition, doing the appropriate assignment on either
- side. This avoids the creation of unnecessary temporaries.
- For non-BLKmode, it is more efficient not to do this. */
-
- rtx_code_label *lab1 = gen_label_rtx (), *lab2 = gen_label_rtx ();
-
- do_pending_stack_adjust ();
- NO_DEFER_POP;
- jumpifnot (TREE_OPERAND (exp, 0), lab1,
- profile_probability::uninitialized ());
- store_expr (TREE_OPERAND (exp, 1), target, call_param_p,
- nontemporal, reverse);
- emit_jump_insn (targetm.gen_jump (lab2));
- emit_barrier ();
- emit_label (lab1);
- store_expr (TREE_OPERAND (exp, 2), target, call_param_p,
- nontemporal, reverse);
- emit_label (lab2);
- OK_DEFER_POP;
-
- return NULL_RTX;
- }
- else if (GET_CODE (target) == SUBREG && SUBREG_PROMOTED_VAR_P (target))
- /* If this is a scalar in a register that is stored in a wider mode
- than the declared mode, compute the result into its declared mode
- and then convert to the wider mode. Our value is the computed
- expression. */
- {
- rtx inner_target = 0;
- scalar_int_mode outer_mode = subreg_unpromoted_mode (target);
- scalar_int_mode inner_mode = subreg_promoted_mode (target);
-
- /* We can do the conversion inside EXP, which will often result
- in some optimizations. Do the conversion in two steps: first
- change the signedness, if needed, then the extend. But don't
- do this if the type of EXP is a subtype of something else
- since then the conversion might involve more than just
- converting modes. */
- if (INTEGRAL_TYPE_P (TREE_TYPE (exp))
- && TREE_TYPE (TREE_TYPE (exp)) == 0
- && GET_MODE_PRECISION (outer_mode)
- == TYPE_PRECISION (TREE_TYPE (exp)))
- {
- if (!SUBREG_CHECK_PROMOTED_SIGN (target,
- TYPE_UNSIGNED (TREE_TYPE (exp))))
- {
- /* Some types, e.g. Fortran's logical*4, won't have a signed
- version, so use the mode instead. */
- tree ntype
- = (signed_or_unsigned_type_for
- (SUBREG_PROMOTED_SIGN (target), TREE_TYPE (exp)));
- if (ntype == NULL)
- ntype = lang_hooks.types.type_for_mode
- (TYPE_MODE (TREE_TYPE (exp)),
- SUBREG_PROMOTED_SIGN (target));
-
- exp = fold_convert_loc (loc, ntype, exp);
- }
-
- exp = fold_convert_loc (loc, lang_hooks.types.type_for_mode
- (inner_mode, SUBREG_PROMOTED_SIGN (target)),
- exp);
-
- inner_target = SUBREG_REG (target);
- }
-
- temp = expand_expr (exp, inner_target, VOIDmode,
- call_param_p ? EXPAND_STACK_PARM : EXPAND_NORMAL);
-
-
- /* If TEMP is a VOIDmode constant, use convert_modes to make
- sure that we properly convert it. */
- if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode)
- {
- temp = convert_modes (outer_mode, TYPE_MODE (TREE_TYPE (exp)),
- temp, SUBREG_PROMOTED_SIGN (target));
- temp = convert_modes (inner_mode, outer_mode, temp,
- SUBREG_PROMOTED_SIGN (target));
- }
-
- convert_move (SUBREG_REG (target), temp,
- SUBREG_PROMOTED_SIGN (target));
-
- return NULL_RTX;
- }
- else if ((TREE_CODE (exp) == STRING_CST
- || (TREE_CODE (exp) == MEM_REF
- && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
- && TREE_CODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
- == STRING_CST
- && integer_zerop (TREE_OPERAND (exp, 1))))
- && !nontemporal && !call_param_p
- && MEM_P (target))
- {
- /* Optimize initialization of an array with a STRING_CST. */
- HOST_WIDE_INT exp_len, str_copy_len;
- rtx dest_mem;
- tree str = TREE_CODE (exp) == STRING_CST
- ? exp : TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
-
- exp_len = int_expr_size (exp);
- if (exp_len <= 0)
- goto normal_expr;
-
- if (TREE_STRING_LENGTH (str) <= 0)
- goto normal_expr;
-
- if (can_store_by_pieces (exp_len, string_cst_read_str, (void *) str,
- MEM_ALIGN (target), false))
- {
- store_by_pieces (target, exp_len, string_cst_read_str, (void *) str,
- MEM_ALIGN (target), false, RETURN_BEGIN);
- return NULL_RTX;
- }
-
- str_copy_len = TREE_STRING_LENGTH (str);
- if ((STORE_MAX_PIECES & (STORE_MAX_PIECES - 1)) == 0)
- {
- str_copy_len += STORE_MAX_PIECES - 1;
- str_copy_len &= ~(STORE_MAX_PIECES - 1);
- }
- if (str_copy_len >= exp_len)
- goto normal_expr;
-
- if (!can_store_by_pieces (str_copy_len, string_cst_read_str,
- (void *) str, MEM_ALIGN (target), false))
- goto normal_expr;
-
- dest_mem = store_by_pieces (target, str_copy_len, string_cst_read_str,
- (void *) str, MEM_ALIGN (target), false,
- RETURN_END);
- clear_storage (adjust_address_1 (dest_mem, BLKmode, 0, 1, 1, 0,
- exp_len - str_copy_len),
- GEN_INT (exp_len - str_copy_len), BLOCK_OP_NORMAL);
- return NULL_RTX;
- }
- else
- {
- rtx tmp_target;
-
- normal_expr:
- /* If we want to use a nontemporal or a reverse order store, force the
- value into a register first. */
- tmp_target = nontemporal || reverse ? NULL_RTX : target;
- tree rexp = exp;
- if (TREE_CODE (exp) == STRING_CST
- && tmp_target == target
- && GET_MODE (target) == BLKmode
- && TYPE_MODE (TREE_TYPE (exp)) == BLKmode)
- {
- rtx size = expr_size (exp);
- if (CONST_INT_P (size)
- && size != const0_rtx
- && (UINTVAL (size)
- > ((unsigned HOST_WIDE_INT) TREE_STRING_LENGTH (exp) + 32)))
- {
- /* If the STRING_CST has much larger array type than
- TREE_STRING_LENGTH, only emit the TREE_STRING_LENGTH part of
- it into the rodata section as the code later on will use
- memset zero for the remainder anyway. See PR95052. */
- tmp_target = NULL_RTX;
- rexp = copy_node (exp);
- tree index
- = build_index_type (size_int (TREE_STRING_LENGTH (exp) - 1));
- TREE_TYPE (rexp) = build_array_type (TREE_TYPE (TREE_TYPE (exp)),
- index);
- shortened_string_cst = true;
- }
- }
- temp = expand_expr_real (rexp, tmp_target, GET_MODE (target),
- (call_param_p
- ? EXPAND_STACK_PARM : EXPAND_NORMAL),
- &alt_rtl, false);
- if (shortened_string_cst)
- {
- gcc_assert (MEM_P (temp));
- temp = change_address (temp, BLKmode, NULL_RTX);
- }
- }
-
- /* If TEMP is a VOIDmode constant and the mode of the type of EXP is not
- the same as that of TARGET, adjust the constant. This is needed, for
- example, in case it is a CONST_DOUBLE or CONST_WIDE_INT and we want
- only a word-sized value. */
- if (CONSTANT_P (temp) && GET_MODE (temp) == VOIDmode
- && TREE_CODE (exp) != ERROR_MARK
- && GET_MODE (target) != TYPE_MODE (TREE_TYPE (exp)))
- {
- gcc_assert (!shortened_string_cst);
- if (GET_MODE_CLASS (GET_MODE (target))
- != GET_MODE_CLASS (TYPE_MODE (TREE_TYPE (exp)))
- && known_eq (GET_MODE_BITSIZE (GET_MODE (target)),
- GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (exp)))))
- {
- rtx t = simplify_gen_subreg (GET_MODE (target), temp,
- TYPE_MODE (TREE_TYPE (exp)), 0);
- if (t)
- temp = t;
- }
- if (GET_MODE (temp) == VOIDmode)
- temp = convert_modes (GET_MODE (target), TYPE_MODE (TREE_TYPE (exp)),
- temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
- }
-
- /* If value was not generated in the target, store it there.
- Convert the value to TARGET's type first if necessary and emit the
- pending incrementations that have been queued when expanding EXP.
- Note that we cannot emit the whole queue blindly because this will
- effectively disable the POST_INC optimization later.
-
- If TEMP and TARGET compare equal according to rtx_equal_p, but
- one or both of them are volatile memory refs, we have to distinguish
- two cases:
- - expand_expr has used TARGET. In this case, we must not generate
- another copy. This can be detected by TARGET being equal according
- to == .
- - expand_expr has not used TARGET - that means that the source just
- happens to have the same RTX form. Since temp will have been created
- by expand_expr, it will compare unequal according to == .
- We must generate a copy in this case, to reach the correct number
- of volatile memory references. */
-
- if ((! rtx_equal_p (temp, target)
- || (temp != target && (side_effects_p (temp)
- || side_effects_p (target))))
- && TREE_CODE (exp) != ERROR_MARK
- /* If store_expr stores a DECL whose DECL_RTL(exp) == TARGET,
- but TARGET is not valid memory reference, TEMP will differ
- from TARGET although it is really the same location. */
- && !(alt_rtl
- && rtx_equal_p (alt_rtl, target)
- && !side_effects_p (alt_rtl)
- && !side_effects_p (target))
- /* If there's nothing to copy, don't bother. Don't call
- expr_size unless necessary, because some front-ends (C++)
- expr_size-hook must not be given objects that are not
- supposed to be bit-copied or bit-initialized. */
- && expr_size (exp) != const0_rtx)
- {
- if (GET_MODE (temp) != GET_MODE (target) && GET_MODE (temp) != VOIDmode)
- {
- gcc_assert (!shortened_string_cst);
- if (GET_MODE (target) == BLKmode)
- {
- /* Handle calls that return BLKmode values in registers. */
- if (REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
- copy_blkmode_from_reg (target, temp, TREE_TYPE (exp));
- else
- store_bit_field (target,
- rtx_to_poly_int64 (expr_size (exp))
- * BITS_PER_UNIT,
- 0, 0, 0, GET_MODE (temp), temp, reverse);
- }
- else
- convert_move (target, temp, TYPE_UNSIGNED (TREE_TYPE (exp)));
- }
-
- else if (GET_MODE (temp) == BLKmode && TREE_CODE (exp) == STRING_CST)
- {
- /* Handle copying a string constant into an array. The string
- constant may be shorter than the array. So copy just the string's
- actual length, and clear the rest. First get the size of the data
- type of the string, which is actually the size of the target. */
- rtx size = expr_size (exp);
-
- if (CONST_INT_P (size)
- && INTVAL (size) < TREE_STRING_LENGTH (exp))
- emit_block_move (target, temp, size,
- (call_param_p
- ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
- else
- {
- machine_mode pointer_mode
- = targetm.addr_space.pointer_mode (MEM_ADDR_SPACE (target));
- machine_mode address_mode = get_address_mode (target);
-
- /* Compute the size of the data to copy from the string. */
- tree copy_size
- = size_binop_loc (loc, MIN_EXPR,
- make_tree (sizetype, size),
- size_int (TREE_STRING_LENGTH (exp)));
- rtx copy_size_rtx
- = expand_expr (copy_size, NULL_RTX, VOIDmode,
- (call_param_p
- ? EXPAND_STACK_PARM : EXPAND_NORMAL));
- rtx_code_label *label = 0;
-
- /* Copy that much. */
- copy_size_rtx = convert_to_mode (pointer_mode, copy_size_rtx,
- TYPE_UNSIGNED (sizetype));
- emit_block_move (target, temp, copy_size_rtx,
- (call_param_p
- ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
-
- /* Figure out how much is left in TARGET that we have to clear.
- Do all calculations in pointer_mode. */
- poly_int64 const_copy_size;
- if (poly_int_rtx_p (copy_size_rtx, &const_copy_size))
- {
- size = plus_constant (address_mode, size, -const_copy_size);
- target = adjust_address (target, BLKmode, const_copy_size);
- }
- else
- {
- size = expand_binop (TYPE_MODE (sizetype), sub_optab, size,
- copy_size_rtx, NULL_RTX, 0,
- OPTAB_LIB_WIDEN);
-
- if (GET_MODE (copy_size_rtx) != address_mode)
- copy_size_rtx = convert_to_mode (address_mode,
- copy_size_rtx,
- TYPE_UNSIGNED (sizetype));
-
- target = offset_address (target, copy_size_rtx,
- highest_pow2_factor (copy_size));
- label = gen_label_rtx ();
- emit_cmp_and_jump_insns (size, const0_rtx, LT, NULL_RTX,
- GET_MODE (size), 0, label);
- }
-
- if (size != const0_rtx)
- clear_storage (target, size, BLOCK_OP_NORMAL);
-
- if (label)
- emit_label (label);
- }
- }
- else if (shortened_string_cst)
- gcc_unreachable ();
- /* Handle calls that return values in multiple non-contiguous locations.
- The Irix 6 ABI has examples of this. */
- else if (GET_CODE (target) == PARALLEL)
- {
- if (GET_CODE (temp) == PARALLEL)
- emit_group_move (target, temp);
- else
- emit_group_load (target, temp, TREE_TYPE (exp),
- int_size_in_bytes (TREE_TYPE (exp)));
- }
- else if (GET_CODE (temp) == PARALLEL)
- emit_group_store (target, temp, TREE_TYPE (exp),
- int_size_in_bytes (TREE_TYPE (exp)));
- else if (GET_MODE (temp) == BLKmode)
- emit_block_move (target, temp, expr_size (exp),
- (call_param_p
- ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
- /* If we emit a nontemporal store, there is nothing else to do. */
- else if (nontemporal && emit_storent_insn (target, temp))
- ;
- else
- {
- if (reverse)
- temp = flip_storage_order (GET_MODE (target), temp);
- temp = force_operand (temp, target);
- if (temp != target)
- emit_move_insn (target, temp);
- }
- }
- else
- gcc_assert (!shortened_string_cst);
-
- return NULL_RTX;
-}
-
-/* Return true if field F of structure TYPE is a flexible array. */
-
-static bool
-flexible_array_member_p (const_tree f, const_tree type)
-{
- const_tree tf;
-
- tf = TREE_TYPE (f);
- return (DECL_CHAIN (f) == NULL
- && TREE_CODE (tf) == ARRAY_TYPE
- && TYPE_DOMAIN (tf)
- && TYPE_MIN_VALUE (TYPE_DOMAIN (tf))
- && integer_zerop (TYPE_MIN_VALUE (TYPE_DOMAIN (tf)))
- && !TYPE_MAX_VALUE (TYPE_DOMAIN (tf))
- && int_size_in_bytes (type) >= 0);
-}
-
-/* If FOR_CTOR_P, return the number of top-level elements that a constructor
- must have in order for it to completely initialize a value of type TYPE.
- Return -1 if the number isn't known.
-
- If !FOR_CTOR_P, return an estimate of the number of scalars in TYPE. */
-
-static HOST_WIDE_INT
-count_type_elements (const_tree type, bool for_ctor_p)
-{
- switch (TREE_CODE (type))
- {
- case ARRAY_TYPE:
- {
- tree nelts;
-
- nelts = array_type_nelts (type);
- if (nelts && tree_fits_uhwi_p (nelts))
- {
- unsigned HOST_WIDE_INT n;
-
- n = tree_to_uhwi (nelts) + 1;
- if (n == 0 || for_ctor_p)
- return n;
- else
- return n * count_type_elements (TREE_TYPE (type), false);
- }
- return for_ctor_p ? -1 : 1;
- }
-
- case RECORD_TYPE:
- {
- unsigned HOST_WIDE_INT n;
- tree f;
-
- n = 0;
- for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
- if (TREE_CODE (f) == FIELD_DECL)
- {
- if (!for_ctor_p)
- n += count_type_elements (TREE_TYPE (f), false);
- else if (!flexible_array_member_p (f, type))
- /* Don't count flexible arrays, which are not supposed
- to be initialized. */
- n += 1;
- }
-
- return n;
- }
-
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- {
- tree f;
- HOST_WIDE_INT n, m;
-
- gcc_assert (!for_ctor_p);
- /* Estimate the number of scalars in each field and pick the
- maximum. Other estimates would do instead; the idea is simply
- to make sure that the estimate is not sensitive to the ordering
- of the fields. */
- n = 1;
- for (f = TYPE_FIELDS (type); f ; f = DECL_CHAIN (f))
- if (TREE_CODE (f) == FIELD_DECL)
- {
- m = count_type_elements (TREE_TYPE (f), false);
- /* If the field doesn't span the whole union, add an extra
- scalar for the rest. */
- if (simple_cst_equal (TYPE_SIZE (TREE_TYPE (f)),
- TYPE_SIZE (type)) != 1)
- m++;
- if (n < m)
- n = m;
- }
- return n;
- }
-
- case COMPLEX_TYPE:
- return 2;
-
- case VECTOR_TYPE:
- {
- unsigned HOST_WIDE_INT nelts;
- if (TYPE_VECTOR_SUBPARTS (type).is_constant (&nelts))
- return nelts;
- else
- return -1;
- }
-
- case INTEGER_TYPE:
- case REAL_TYPE:
- case FIXED_POINT_TYPE:
- case ENUMERAL_TYPE:
- case BOOLEAN_TYPE:
- case POINTER_TYPE:
- case OFFSET_TYPE:
- case REFERENCE_TYPE:
- case NULLPTR_TYPE:
- return 1;
-
- case ERROR_MARK:
- return 0;
-
- case VOID_TYPE:
- case OPAQUE_TYPE:
- case METHOD_TYPE:
- case FUNCTION_TYPE:
- case LANG_TYPE:
- default:
- gcc_unreachable ();
- }
-}
-
-/* Helper for categorize_ctor_elements. Identical interface. */
-
-static bool
-categorize_ctor_elements_1 (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
- HOST_WIDE_INT *p_unique_nz_elts,
- HOST_WIDE_INT *p_init_elts, bool *p_complete)
-{
- unsigned HOST_WIDE_INT idx;
- HOST_WIDE_INT nz_elts, unique_nz_elts, init_elts, num_fields;
- tree value, purpose, elt_type;
-
- /* Whether CTOR is a valid constant initializer, in accordance with what
- initializer_constant_valid_p does. If inferred from the constructor
- elements, true until proven otherwise. */
- bool const_from_elts_p = constructor_static_from_elts_p (ctor);
- bool const_p = const_from_elts_p ? true : TREE_STATIC (ctor);
-
- nz_elts = 0;
- unique_nz_elts = 0;
- init_elts = 0;
- num_fields = 0;
- elt_type = NULL_TREE;
-
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), idx, purpose, value)
- {
- HOST_WIDE_INT mult = 1;
-
- if (purpose && TREE_CODE (purpose) == RANGE_EXPR)
- {
- tree lo_index = TREE_OPERAND (purpose, 0);
- tree hi_index = TREE_OPERAND (purpose, 1);
-
- if (tree_fits_uhwi_p (lo_index) && tree_fits_uhwi_p (hi_index))
- mult = (tree_to_uhwi (hi_index)
- - tree_to_uhwi (lo_index) + 1);
- }
- num_fields += mult;
- elt_type = TREE_TYPE (value);
-
- switch (TREE_CODE (value))
- {
- case CONSTRUCTOR:
- {
- HOST_WIDE_INT nz = 0, unz = 0, ic = 0;
-
- bool const_elt_p = categorize_ctor_elements_1 (value, &nz, &unz,
- &ic, p_complete);
-
- nz_elts += mult * nz;
- unique_nz_elts += unz;
- init_elts += mult * ic;
-
- if (const_from_elts_p && const_p)
- const_p = const_elt_p;
- }
- break;
-
- case INTEGER_CST:
- case REAL_CST:
- case FIXED_CST:
- if (!initializer_zerop (value))
- {
- nz_elts += mult;
- unique_nz_elts++;
- }
- init_elts += mult;
- break;
-
- case STRING_CST:
- nz_elts += mult * TREE_STRING_LENGTH (value);
- unique_nz_elts += TREE_STRING_LENGTH (value);
- init_elts += mult * TREE_STRING_LENGTH (value);
- break;
-
- case COMPLEX_CST:
- if (!initializer_zerop (TREE_REALPART (value)))
- {
- nz_elts += mult;
- unique_nz_elts++;
- }
- if (!initializer_zerop (TREE_IMAGPART (value)))
- {
- nz_elts += mult;
- unique_nz_elts++;
- }
- init_elts += 2 * mult;
- break;
-
- case VECTOR_CST:
- {
- /* We can only construct constant-length vectors using
- CONSTRUCTOR. */
- unsigned int nunits = VECTOR_CST_NELTS (value).to_constant ();
- for (unsigned int i = 0; i < nunits; ++i)
- {
- tree v = VECTOR_CST_ELT (value, i);
- if (!initializer_zerop (v))
- {
- nz_elts += mult;
- unique_nz_elts++;
- }
- init_elts += mult;
- }
- }
- break;
-
- default:
- {
- HOST_WIDE_INT tc = count_type_elements (elt_type, false);
- nz_elts += mult * tc;
- unique_nz_elts += tc;
- init_elts += mult * tc;
-
- if (const_from_elts_p && const_p)
- const_p
- = initializer_constant_valid_p (value,
- elt_type,
- TYPE_REVERSE_STORAGE_ORDER
- (TREE_TYPE (ctor)))
- != NULL_TREE;
- }
- break;
- }
- }
-
- if (*p_complete && !complete_ctor_at_level_p (TREE_TYPE (ctor),
- num_fields, elt_type))
- *p_complete = false;
-
- *p_nz_elts += nz_elts;
- *p_unique_nz_elts += unique_nz_elts;
- *p_init_elts += init_elts;
-
- return const_p;
-}
-
-/* Examine CTOR to discover:
- * how many scalar fields are set to nonzero values,
- and place it in *P_NZ_ELTS;
- * the same, but counting RANGE_EXPRs as multiplier of 1 instead of
- high - low + 1 (this can be useful for callers to determine ctors
- that could be cheaply initialized with - perhaps nested - loops
- compared to copied from huge read-only data),
- and place it in *P_UNIQUE_NZ_ELTS;
- * how many scalar fields in total are in CTOR,
- and place it in *P_ELT_COUNT.
- * whether the constructor is complete -- in the sense that every
- meaningful byte is explicitly given a value --
- and place it in *P_COMPLETE.
-
- Return whether or not CTOR is a valid static constant initializer, the same
- as "initializer_constant_valid_p (CTOR, TREE_TYPE (CTOR)) != 0". */
-
-bool
-categorize_ctor_elements (const_tree ctor, HOST_WIDE_INT *p_nz_elts,
- HOST_WIDE_INT *p_unique_nz_elts,
- HOST_WIDE_INT *p_init_elts, bool *p_complete)
-{
- *p_nz_elts = 0;
- *p_unique_nz_elts = 0;
- *p_init_elts = 0;
- *p_complete = true;
-
- return categorize_ctor_elements_1 (ctor, p_nz_elts, p_unique_nz_elts,
- p_init_elts, p_complete);
-}
-
-/* TYPE is initialized by a constructor with NUM_ELTS elements, the last
- of which had type LAST_TYPE. Each element was itself a complete
- initializer, in the sense that every meaningful byte was explicitly
- given a value. Return true if the same is true for the constructor
- as a whole. */
-
-bool
-complete_ctor_at_level_p (const_tree type, HOST_WIDE_INT num_elts,
- const_tree last_type)
-{
- if (TREE_CODE (type) == UNION_TYPE
- || TREE_CODE (type) == QUAL_UNION_TYPE)
- {
- if (num_elts == 0)
- return false;
-
- gcc_assert (num_elts == 1 && last_type);
-
- /* ??? We could look at each element of the union, and find the
- largest element. Which would avoid comparing the size of the
- initialized element against any tail padding in the union.
- Doesn't seem worth the effort... */
- return simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (last_type)) == 1;
- }
-
- return count_type_elements (type, true) == num_elts;
-}
-
-/* Return 1 if EXP contains mostly (3/4) zeros. */
-
-static int
-mostly_zeros_p (const_tree exp)
-{
- if (TREE_CODE (exp) == CONSTRUCTOR)
- {
- HOST_WIDE_INT nz_elts, unz_elts, init_elts;
- bool complete_p;
-
- categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
- &complete_p);
- return !complete_p || nz_elts < init_elts / 4;
- }
-
- return initializer_zerop (exp);
-}
-
-/* Return 1 if EXP contains all zeros. */
-
-static int
-all_zeros_p (const_tree exp)
-{
- if (TREE_CODE (exp) == CONSTRUCTOR)
- {
- HOST_WIDE_INT nz_elts, unz_elts, init_elts;
- bool complete_p;
-
- categorize_ctor_elements (exp, &nz_elts, &unz_elts, &init_elts,
- &complete_p);
- return nz_elts == 0;
- }
-
- return initializer_zerop (exp);
-}
-
-/* Helper function for store_constructor.
- TARGET, BITSIZE, BITPOS, MODE, EXP are as for store_field.
- CLEARED is as for store_constructor.
- ALIAS_SET is the alias set to use for any stores.
- If REVERSE is true, the store is to be done in reverse order.
-
- This provides a recursive shortcut back to store_constructor when it isn't
- necessary to go through store_field. This is so that we can pass through
- the cleared field to let store_constructor know that we may not have to
- clear a substructure if the outer structure has already been cleared. */
-
-static void
-store_constructor_field (rtx target, poly_uint64 bitsize, poly_int64 bitpos,
- poly_uint64 bitregion_start,
- poly_uint64 bitregion_end,
- machine_mode mode,
- tree exp, int cleared,
- alias_set_type alias_set, bool reverse)
-{
- poly_int64 bytepos;
- poly_uint64 bytesize;
- if (TREE_CODE (exp) == CONSTRUCTOR
- /* We can only call store_constructor recursively if the size and
- bit position are on a byte boundary. */
- && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
- && maybe_ne (bitsize, 0U)
- && multiple_p (bitsize, BITS_PER_UNIT, &bytesize)
- /* If we have a nonzero bitpos for a register target, then we just
- let store_field do the bitfield handling. This is unlikely to
- generate unnecessary clear instructions anyways. */
- && (known_eq (bitpos, 0) || MEM_P (target)))
- {
- if (MEM_P (target))
- {
- machine_mode target_mode = GET_MODE (target);
- if (target_mode != BLKmode
- && !multiple_p (bitpos, GET_MODE_ALIGNMENT (target_mode)))
- target_mode = BLKmode;
- target = adjust_address (target, target_mode, bytepos);
- }
-
-
- /* Update the alias set, if required. */
- if (MEM_P (target) && ! MEM_KEEP_ALIAS_SET_P (target)
- && MEM_ALIAS_SET (target) != 0)
- {
- target = copy_rtx (target);
- set_mem_alias_set (target, alias_set);
- }
-
- store_constructor (exp, target, cleared, bytesize, reverse);
- }
- else
- store_field (target, bitsize, bitpos, bitregion_start, bitregion_end, mode,
- exp, alias_set, false, reverse);
-}
-
-
-/* Returns the number of FIELD_DECLs in TYPE. */
-
-static int
-fields_length (const_tree type)
-{
- tree t = TYPE_FIELDS (type);
- int count = 0;
-
- for (; t; t = DECL_CHAIN (t))
- if (TREE_CODE (t) == FIELD_DECL)
- ++count;
-
- return count;
-}
-
-
-/* Store the value of constructor EXP into the rtx TARGET.
- TARGET is either a REG or a MEM; we know it cannot conflict, since
- safe_from_p has been called.
- CLEARED is true if TARGET is known to have been zero'd.
- SIZE is the number of bytes of TARGET we are allowed to modify: this
- may not be the same as the size of EXP if we are assigning to a field
- which has been packed to exclude padding bits.
- If REVERSE is true, the store is to be done in reverse order. */
-
-static void
-store_constructor (tree exp, rtx target, int cleared, poly_int64 size,
- bool reverse)
-{
- tree type = TREE_TYPE (exp);
- HOST_WIDE_INT exp_size = int_size_in_bytes (type);
- poly_int64 bitregion_end = known_gt (size, 0) ? size * BITS_PER_UNIT - 1 : 0;
-
- switch (TREE_CODE (type))
- {
- case RECORD_TYPE:
- case UNION_TYPE:
- case QUAL_UNION_TYPE:
- {
- unsigned HOST_WIDE_INT idx;
- tree field, value;
-
- /* The storage order is specified for every aggregate type. */
- reverse = TYPE_REVERSE_STORAGE_ORDER (type);
-
- /* If size is zero or the target is already cleared, do nothing. */
- if (known_eq (size, 0) || cleared)
- cleared = 1;
- /* We either clear the aggregate or indicate the value is dead. */
- else if ((TREE_CODE (type) == UNION_TYPE
- || TREE_CODE (type) == QUAL_UNION_TYPE)
- && ! CONSTRUCTOR_ELTS (exp))
- /* If the constructor is empty, clear the union. */
- {
- clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
- cleared = 1;
- }
-
- /* If we are building a static constructor into a register,
- set the initial value as zero so we can fold the value into
- a constant. But if more than one register is involved,
- this probably loses. */
- else if (REG_P (target) && TREE_STATIC (exp)
- && known_le (GET_MODE_SIZE (GET_MODE (target)),
- REGMODE_NATURAL_SIZE (GET_MODE (target))))
- {
- emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
- cleared = 1;
- }
-
- /* If the constructor has fewer fields than the structure or
- if we are initializing the structure to mostly zeros, clear
- the whole structure first. Don't do this if TARGET is a
- register whose mode size isn't equal to SIZE since
- clear_storage can't handle this case. */
- else if (known_size_p (size)
- && (((int) CONSTRUCTOR_NELTS (exp) != fields_length (type))
- || mostly_zeros_p (exp))
- && (!REG_P (target)
- || known_eq (GET_MODE_SIZE (GET_MODE (target)), size)))
- {
- clear_storage (target, gen_int_mode (size, Pmode),
- BLOCK_OP_NORMAL);
- cleared = 1;
- }
-
- if (REG_P (target) && !cleared)
- emit_clobber (target);
-
- /* Store each element of the constructor into the
- corresponding field of TARGET. */
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, field, value)
- {
- machine_mode mode;
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos = 0;
- tree offset;
- rtx to_rtx = target;
-
- /* Just ignore missing fields. We cleared the whole
- structure, above, if any fields are missing. */
- if (field == 0)
- continue;
-
- if (cleared && initializer_zerop (value))
- continue;
-
- if (tree_fits_uhwi_p (DECL_SIZE (field)))
- bitsize = tree_to_uhwi (DECL_SIZE (field));
- else
- gcc_unreachable ();
-
- mode = DECL_MODE (field);
- if (DECL_BIT_FIELD (field))
- mode = VOIDmode;
-
- offset = DECL_FIELD_OFFSET (field);
- if (tree_fits_shwi_p (offset)
- && tree_fits_shwi_p (bit_position (field)))
- {
- bitpos = int_bit_position (field);
- offset = NULL_TREE;
- }
- else
- gcc_unreachable ();
-
- /* If this initializes a field that is smaller than a
- word, at the start of a word, try to widen it to a full
- word. This special case allows us to output C++ member
- function initializations in a form that the optimizers
- can understand. */
- if (WORD_REGISTER_OPERATIONS
- && REG_P (target)
- && bitsize < BITS_PER_WORD
- && bitpos % BITS_PER_WORD == 0
- && GET_MODE_CLASS (mode) == MODE_INT
- && TREE_CODE (value) == INTEGER_CST
- && exp_size >= 0
- && bitpos + BITS_PER_WORD <= exp_size * BITS_PER_UNIT)
- {
- type = TREE_TYPE (value);
-
- if (TYPE_PRECISION (type) < BITS_PER_WORD)
- {
- type = lang_hooks.types.type_for_mode
- (word_mode, TYPE_UNSIGNED (type));
- value = fold_convert (type, value);
- /* Make sure the bits beyond the original bitsize are zero
- so that we can correctly avoid extra zeroing stores in
- later constructor elements. */
- tree bitsize_mask
- = wide_int_to_tree (type, wi::mask (bitsize, false,
- BITS_PER_WORD));
- value = fold_build2 (BIT_AND_EXPR, type, value, bitsize_mask);
- }
-
- if (BYTES_BIG_ENDIAN)
- value
- = fold_build2 (LSHIFT_EXPR, type, value,
- build_int_cst (type,
- BITS_PER_WORD - bitsize));
- bitsize = BITS_PER_WORD;
- mode = word_mode;
- }
-
- if (MEM_P (to_rtx) && !MEM_KEEP_ALIAS_SET_P (to_rtx)
- && DECL_NONADDRESSABLE_P (field))
- {
- to_rtx = copy_rtx (to_rtx);
- MEM_KEEP_ALIAS_SET_P (to_rtx) = 1;
- }
-
- store_constructor_field (to_rtx, bitsize, bitpos,
- 0, bitregion_end, mode,
- value, cleared,
- get_alias_set (TREE_TYPE (field)),
- reverse);
- }
- break;
- }
- case ARRAY_TYPE:
- {
- tree value, index;
- unsigned HOST_WIDE_INT i;
- int need_to_clear;
- tree domain;
- tree elttype = TREE_TYPE (type);
- int const_bounds_p;
- HOST_WIDE_INT minelt = 0;
- HOST_WIDE_INT maxelt = 0;
-
- /* The storage order is specified for every aggregate type. */
- reverse = TYPE_REVERSE_STORAGE_ORDER (type);
-
- domain = TYPE_DOMAIN (type);
- const_bounds_p = (TYPE_MIN_VALUE (domain)
- && TYPE_MAX_VALUE (domain)
- && tree_fits_shwi_p (TYPE_MIN_VALUE (domain))
- && tree_fits_shwi_p (TYPE_MAX_VALUE (domain)));
-
- /* If we have constant bounds for the range of the type, get them. */
- if (const_bounds_p)
- {
- minelt = tree_to_shwi (TYPE_MIN_VALUE (domain));
- maxelt = tree_to_shwi (TYPE_MAX_VALUE (domain));
- }
-
- /* If the constructor has fewer elements than the array, clear
- the whole array first. Similarly if this is static
- constructor of a non-BLKmode object. */
- if (cleared)
- need_to_clear = 0;
- else if (REG_P (target) && TREE_STATIC (exp))
- need_to_clear = 1;
- else
- {
- unsigned HOST_WIDE_INT idx;
- HOST_WIDE_INT count = 0, zero_count = 0;
- need_to_clear = ! const_bounds_p;
-
- /* This loop is a more accurate version of the loop in
- mostly_zeros_p (it handles RANGE_EXPR in an index). It
- is also needed to check for missing elements. */
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), idx, index, value)
- {
- HOST_WIDE_INT this_node_count;
-
- if (need_to_clear)
- break;
-
- if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
- {
- tree lo_index = TREE_OPERAND (index, 0);
- tree hi_index = TREE_OPERAND (index, 1);
-
- if (! tree_fits_uhwi_p (lo_index)
- || ! tree_fits_uhwi_p (hi_index))
- {
- need_to_clear = 1;
- break;
- }
-
- this_node_count = (tree_to_uhwi (hi_index)
- - tree_to_uhwi (lo_index) + 1);
- }
- else
- this_node_count = 1;
-
- count += this_node_count;
- if (mostly_zeros_p (value))
- zero_count += this_node_count;
- }
-
- /* Clear the entire array first if there are any missing
- elements, or if the incidence of zero elements is >=
- 75%. */
- if (! need_to_clear
- && (count < maxelt - minelt + 1
- || 4 * zero_count >= 3 * count))
- need_to_clear = 1;
- }
-
- if (need_to_clear && maybe_gt (size, 0))
- {
- if (REG_P (target))
- emit_move_insn (target, CONST0_RTX (GET_MODE (target)));
- else
- clear_storage (target, gen_int_mode (size, Pmode),
- BLOCK_OP_NORMAL);
- cleared = 1;
- }
-
- if (!cleared && REG_P (target))
- /* Inform later passes that the old value is dead. */
- emit_clobber (target);
-
- /* Store each element of the constructor into the
- corresponding element of TARGET, determined by counting the
- elements. */
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (exp), i, index, value)
- {
- machine_mode mode;
- poly_int64 bitsize;
- HOST_WIDE_INT bitpos;
- rtx xtarget = target;
-
- if (cleared && initializer_zerop (value))
- continue;
-
- mode = TYPE_MODE (elttype);
- if (mode != BLKmode)
- bitsize = GET_MODE_BITSIZE (mode);
- else if (!poly_int_tree_p (TYPE_SIZE (elttype), &bitsize))
- bitsize = -1;
-
- if (index != NULL_TREE && TREE_CODE (index) == RANGE_EXPR)
- {
- tree lo_index = TREE_OPERAND (index, 0);
- tree hi_index = TREE_OPERAND (index, 1);
- rtx index_r, pos_rtx;
- HOST_WIDE_INT lo, hi, count;
- tree position;
-
- /* If the range is constant and "small", unroll the loop. */
- if (const_bounds_p
- && tree_fits_shwi_p (lo_index)
- && tree_fits_shwi_p (hi_index)
- && (lo = tree_to_shwi (lo_index),
- hi = tree_to_shwi (hi_index),
- count = hi - lo + 1,
- (!MEM_P (target)
- || count <= 2
- || (tree_fits_uhwi_p (TYPE_SIZE (elttype))
- && (tree_to_uhwi (TYPE_SIZE (elttype)) * count
- <= 40 * 8)))))
- {
- lo -= minelt; hi -= minelt;
- for (; lo <= hi; lo++)
- {
- bitpos = lo * tree_to_shwi (TYPE_SIZE (elttype));
-
- if (MEM_P (target)
- && !MEM_KEEP_ALIAS_SET_P (target)
- && TREE_CODE (type) == ARRAY_TYPE
- && TYPE_NONALIASED_COMPONENT (type))
- {
- target = copy_rtx (target);
- MEM_KEEP_ALIAS_SET_P (target) = 1;
- }
-
- store_constructor_field
- (target, bitsize, bitpos, 0, bitregion_end,
- mode, value, cleared,
- get_alias_set (elttype), reverse);
- }
- }
- else
- {
- rtx_code_label *loop_start = gen_label_rtx ();
- rtx_code_label *loop_end = gen_label_rtx ();
- tree exit_cond;
-
- expand_normal (hi_index);
-
- index = build_decl (EXPR_LOCATION (exp),
- VAR_DECL, NULL_TREE, domain);
- index_r = gen_reg_rtx (promote_decl_mode (index, NULL));
- SET_DECL_RTL (index, index_r);
- store_expr (lo_index, index_r, 0, false, reverse);
-
- /* Build the head of the loop. */
- do_pending_stack_adjust ();
- emit_label (loop_start);
-
- /* Assign value to element index. */
- position =
- fold_convert (ssizetype,
- fold_build2 (MINUS_EXPR,
- TREE_TYPE (index),
- index,
- TYPE_MIN_VALUE (domain)));
-
- position =
- size_binop (MULT_EXPR, position,
- fold_convert (ssizetype,
- TYPE_SIZE_UNIT (elttype)));
-
- pos_rtx = expand_normal (position);
- xtarget = offset_address (target, pos_rtx,
- highest_pow2_factor (position));
- xtarget = adjust_address (xtarget, mode, 0);
- if (TREE_CODE (value) == CONSTRUCTOR)
- store_constructor (value, xtarget, cleared,
- exact_div (bitsize, BITS_PER_UNIT),
- reverse);
- else
- store_expr (value, xtarget, 0, false, reverse);
-
- /* Generate a conditional jump to exit the loop. */
- exit_cond = build2 (LT_EXPR, integer_type_node,
- index, hi_index);
- jumpif (exit_cond, loop_end,
- profile_probability::uninitialized ());
-
- /* Update the loop counter, and jump to the head of
- the loop. */
- expand_assignment (index,
- build2 (PLUS_EXPR, TREE_TYPE (index),
- index, integer_one_node),
- false);
-
- emit_jump (loop_start);
-
- /* Build the end of the loop. */
- emit_label (loop_end);
- }
- }
- else if ((index != 0 && ! tree_fits_shwi_p (index))
- || ! tree_fits_uhwi_p (TYPE_SIZE (elttype)))
- {
- tree position;
-
- if (index == 0)
- index = ssize_int (1);
-
- if (minelt)
- index = fold_convert (ssizetype,
- fold_build2 (MINUS_EXPR,
- TREE_TYPE (index),
- index,
- TYPE_MIN_VALUE (domain)));
-
- position =
- size_binop (MULT_EXPR, index,
- fold_convert (ssizetype,
- TYPE_SIZE_UNIT (elttype)));
- xtarget = offset_address (target,
- expand_normal (position),
- highest_pow2_factor (position));
- xtarget = adjust_address (xtarget, mode, 0);
- store_expr (value, xtarget, 0, false, reverse);
- }
- else
- {
- if (index != 0)
- bitpos = ((tree_to_shwi (index) - minelt)
- * tree_to_uhwi (TYPE_SIZE (elttype)));
- else
- bitpos = (i * tree_to_uhwi (TYPE_SIZE (elttype)));
-
- if (MEM_P (target) && !MEM_KEEP_ALIAS_SET_P (target)
- && TREE_CODE (type) == ARRAY_TYPE
- && TYPE_NONALIASED_COMPONENT (type))
- {
- target = copy_rtx (target);
- MEM_KEEP_ALIAS_SET_P (target) = 1;
- }
- store_constructor_field (target, bitsize, bitpos, 0,
- bitregion_end, mode, value,
- cleared, get_alias_set (elttype),
- reverse);
- }
- }
- break;
- }
-
- case VECTOR_TYPE:
- {
- unsigned HOST_WIDE_INT idx;
- constructor_elt *ce;
- int i;
- int need_to_clear;
- insn_code icode = CODE_FOR_nothing;
- tree elt;
- tree elttype = TREE_TYPE (type);
- int elt_size = vector_element_bits (type);
- machine_mode eltmode = TYPE_MODE (elttype);
- HOST_WIDE_INT bitsize;
- HOST_WIDE_INT bitpos;
- rtvec vector = NULL;
- poly_uint64 n_elts;
- unsigned HOST_WIDE_INT const_n_elts;
- alias_set_type alias;
- bool vec_vec_init_p = false;
- machine_mode mode = GET_MODE (target);
-
- gcc_assert (eltmode != BLKmode);
-
- /* Try using vec_duplicate_optab for uniform vectors. */
- if (!TREE_SIDE_EFFECTS (exp)
- && VECTOR_MODE_P (mode)
- && eltmode == GET_MODE_INNER (mode)
- && ((icode = optab_handler (vec_duplicate_optab, mode))
- != CODE_FOR_nothing)
- && (elt = uniform_vector_p (exp))
- && !VECTOR_TYPE_P (TREE_TYPE (elt)))
- {
- class expand_operand ops[2];
- create_output_operand (&ops[0], target, mode);
- create_input_operand (&ops[1], expand_normal (elt), eltmode);
- expand_insn (icode, 2, ops);
- if (!rtx_equal_p (target, ops[0].value))
- emit_move_insn (target, ops[0].value);
- break;
- }
-
- n_elts = TYPE_VECTOR_SUBPARTS (type);
- if (REG_P (target)
- && VECTOR_MODE_P (mode)
- && n_elts.is_constant (&const_n_elts))
- {
- machine_mode emode = eltmode;
- bool vector_typed_elts_p = false;
-
- if (CONSTRUCTOR_NELTS (exp)
- && (TREE_CODE (TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value))
- == VECTOR_TYPE))
- {
- tree etype = TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value);
- gcc_assert (known_eq (CONSTRUCTOR_NELTS (exp)
- * TYPE_VECTOR_SUBPARTS (etype),
- n_elts));
- emode = TYPE_MODE (etype);
- vector_typed_elts_p = true;
- }
- icode = convert_optab_handler (vec_init_optab, mode, emode);
- if (icode != CODE_FOR_nothing)
- {
- unsigned int n = const_n_elts;
-
- if (vector_typed_elts_p)
- {
- n = CONSTRUCTOR_NELTS (exp);
- vec_vec_init_p = true;
- }
- vector = rtvec_alloc (n);
- for (unsigned int k = 0; k < n; k++)
- RTVEC_ELT (vector, k) = CONST0_RTX (emode);
- }
- }
-
- /* Compute the size of the elements in the CTOR. It differs
- from the size of the vector type elements only when the
- CTOR elements are vectors themselves. */
- tree val_type = (CONSTRUCTOR_NELTS (exp) != 0
- ? TREE_TYPE (CONSTRUCTOR_ELT (exp, 0)->value)
- : elttype);
- if (VECTOR_TYPE_P (val_type))
- bitsize = tree_to_uhwi (TYPE_SIZE (val_type));
- else
- bitsize = elt_size;
-
- /* If the constructor has fewer elements than the vector,
- clear the whole array first. Similarly if this is static
- constructor of a non-BLKmode object. */
- if (cleared)
- need_to_clear = 0;
- else if (REG_P (target) && TREE_STATIC (exp))
- need_to_clear = 1;
- else
- {
- unsigned HOST_WIDE_INT count = 0, zero_count = 0;
- tree value;
-
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
- {
- int n_elts_here = bitsize / elt_size;
- count += n_elts_here;
- if (mostly_zeros_p (value))
- zero_count += n_elts_here;
- }
-
- /* Clear the entire vector first if there are any missing elements,
- or if the incidence of zero elements is >= 75%. */
- need_to_clear = (maybe_lt (count, n_elts)
- || 4 * zero_count >= 3 * count);
- }
-
- if (need_to_clear && maybe_gt (size, 0) && !vector)
- {
- if (REG_P (target))
- emit_move_insn (target, CONST0_RTX (mode));
- else
- clear_storage (target, gen_int_mode (size, Pmode),
- BLOCK_OP_NORMAL);
- cleared = 1;
- }
-
- /* Inform later passes that the old value is dead. */
- if (!cleared && !vector && REG_P (target))
- emit_move_insn (target, CONST0_RTX (mode));
-
- if (MEM_P (target))
- alias = MEM_ALIAS_SET (target);
- else
- alias = get_alias_set (elttype);
-
- /* Store each element of the constructor into the corresponding
- element of TARGET, determined by counting the elements. */
- for (idx = 0, i = 0;
- vec_safe_iterate (CONSTRUCTOR_ELTS (exp), idx, &ce);
- idx++, i += bitsize / elt_size)
- {
- HOST_WIDE_INT eltpos;
- tree value = ce->value;
-
- if (cleared && initializer_zerop (value))
- continue;
-
- if (ce->index)
- eltpos = tree_to_uhwi (ce->index);
- else
- eltpos = i;
-
- if (vector)
- {
- if (vec_vec_init_p)
- {
- gcc_assert (ce->index == NULL_TREE);
- gcc_assert (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE);
- eltpos = idx;
- }
- else
- gcc_assert (TREE_CODE (TREE_TYPE (value)) != VECTOR_TYPE);
- RTVEC_ELT (vector, eltpos) = expand_normal (value);
- }
- else
- {
- machine_mode value_mode
- = (TREE_CODE (TREE_TYPE (value)) == VECTOR_TYPE
- ? TYPE_MODE (TREE_TYPE (value)) : eltmode);
- bitpos = eltpos * elt_size;
- store_constructor_field (target, bitsize, bitpos, 0,
- bitregion_end, value_mode,
- value, cleared, alias, reverse);
- }
- }
-
- if (vector)
- emit_insn (GEN_FCN (icode) (target,
- gen_rtx_PARALLEL (mode, vector)));
- break;
- }
-
- default:
- gcc_unreachable ();
- }
-}
-
-/* Store the value of EXP (an expression tree)
- into a subfield of TARGET which has mode MODE and occupies
- BITSIZE bits, starting BITPOS bits from the start of TARGET.
- If MODE is VOIDmode, it means that we are storing into a bit-field.
-
- BITREGION_START is bitpos of the first bitfield in this region.
- BITREGION_END is the bitpos of the ending bitfield in this region.
- These two fields are 0, if the C++ memory model does not apply,
- or we are not interested in keeping track of bitfield regions.
-
- Always return const0_rtx unless we have something particular to
- return.
-
- ALIAS_SET is the alias set for the destination. This value will
- (in general) be different from that for TARGET, since TARGET is a
- reference to the containing structure.
-
- If NONTEMPORAL is true, try generating a nontemporal store.
-
- If REVERSE is true, the store is to be done in reverse order. */
-
-static rtx
-store_field (rtx target, poly_int64 bitsize, poly_int64 bitpos,
- poly_uint64 bitregion_start, poly_uint64 bitregion_end,
- machine_mode mode, tree exp,
- alias_set_type alias_set, bool nontemporal, bool reverse)
-{
- if (TREE_CODE (exp) == ERROR_MARK)
- return const0_rtx;
-
- /* If we have nothing to store, do nothing unless the expression has
- side-effects. Don't do that for zero sized addressable lhs of
- calls. */
- if (known_eq (bitsize, 0)
- && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
- || TREE_CODE (exp) != CALL_EXPR))
- return expand_expr (exp, const0_rtx, VOIDmode, EXPAND_NORMAL);
-
- if (GET_CODE (target) == CONCAT)
- {
- /* We're storing into a struct containing a single __complex. */
-
- gcc_assert (known_eq (bitpos, 0));
- return store_expr (exp, target, 0, nontemporal, reverse);
- }
-
- /* If the structure is in a register or if the component
- is a bit field, we cannot use addressing to access it.
- Use bit-field techniques or SUBREG to store in it. */
-
- poly_int64 decl_bitsize;
- if (mode == VOIDmode
- || (mode != BLKmode && ! direct_store[(int) mode]
- && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
- && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT)
- || REG_P (target)
- || GET_CODE (target) == SUBREG
- /* If the field isn't aligned enough to store as an ordinary memref,
- store it as a bit field. */
- || (mode != BLKmode
- && ((((MEM_ALIGN (target) < GET_MODE_ALIGNMENT (mode))
- || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
- && targetm.slow_unaligned_access (mode, MEM_ALIGN (target)))
- || !multiple_p (bitpos, BITS_PER_UNIT)))
- || (known_size_p (bitsize)
- && mode != BLKmode
- && maybe_gt (GET_MODE_BITSIZE (mode), bitsize))
- /* If the RHS and field are a constant size and the size of the
- RHS isn't the same size as the bitfield, we must use bitfield
- operations. */
- || (known_size_p (bitsize)
- && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
- && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
- bitsize)
- /* Except for initialization of full bytes from a CONSTRUCTOR, which
- we will handle specially below. */
- && !(TREE_CODE (exp) == CONSTRUCTOR
- && multiple_p (bitsize, BITS_PER_UNIT))
- /* And except for bitwise copying of TREE_ADDRESSABLE types,
- where the FIELD_DECL has the right bitsize, but TREE_TYPE (exp)
- includes some extra padding. store_expr / expand_expr will in
- that case call get_inner_reference that will have the bitsize
- we check here and thus the block move will not clobber the
- padding that shouldn't be clobbered. In the future we could
- replace the TREE_ADDRESSABLE check with a check that
- get_base_address needs to live in memory. */
- && (!TREE_ADDRESSABLE (TREE_TYPE (exp))
- || TREE_CODE (exp) != COMPONENT_REF
- || !multiple_p (bitsize, BITS_PER_UNIT)
- || !multiple_p (bitpos, BITS_PER_UNIT)
- || !poly_int_tree_p (DECL_SIZE (TREE_OPERAND (exp, 1)),
- &decl_bitsize)
- || maybe_ne (decl_bitsize, bitsize))
- /* A call with an addressable return type and return-slot
- optimization must not need bitfield operations but we must
- pass down the original target. */
- && (TREE_CODE (exp) != CALL_EXPR
- || !TREE_ADDRESSABLE (TREE_TYPE (exp))
- || !CALL_EXPR_RETURN_SLOT_OPT (exp)))
- /* If we are expanding a MEM_REF of a non-BLKmode non-addressable
- decl we must use bitfield operations. */
- || (known_size_p (bitsize)
- && TREE_CODE (exp) == MEM_REF
- && TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR
- && DECL_P (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
- && !TREE_ADDRESSABLE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0))
- && DECL_MODE (TREE_OPERAND (TREE_OPERAND (exp, 0), 0)) != BLKmode))
- {
- rtx temp;
- gimple *nop_def;
-
- /* If EXP is a NOP_EXPR of precision less than its mode, then that
- implies a mask operation. If the precision is the same size as
- the field we're storing into, that mask is redundant. This is
- particularly common with bit field assignments generated by the
- C front end. */
- nop_def = get_def_for_expr (exp, NOP_EXPR);
- if (nop_def)
- {
- tree type = TREE_TYPE (exp);
- if (INTEGRAL_TYPE_P (type)
- && maybe_ne (TYPE_PRECISION (type),
- GET_MODE_BITSIZE (TYPE_MODE (type)))
- && known_eq (bitsize, TYPE_PRECISION (type)))
- {
- tree op = gimple_assign_rhs1 (nop_def);
- type = TREE_TYPE (op);
- if (INTEGRAL_TYPE_P (type)
- && known_ge (TYPE_PRECISION (type), bitsize))
- exp = op;
- }
- }
-
- temp = expand_normal (exp);
-
- /* We don't support variable-sized BLKmode bitfields, since our
- handling of BLKmode is bound up with the ability to break
- things into words. */
- gcc_assert (mode != BLKmode || bitsize.is_constant ());
-
- /* Handle calls that return values in multiple non-contiguous locations.
- The Irix 6 ABI has examples of this. */
- if (GET_CODE (temp) == PARALLEL)
- {
- HOST_WIDE_INT size = int_size_in_bytes (TREE_TYPE (exp));
- machine_mode temp_mode = GET_MODE (temp);
- if (temp_mode == BLKmode || temp_mode == VOIDmode)
- temp_mode = smallest_int_mode_for_size (size * BITS_PER_UNIT);
- rtx temp_target = gen_reg_rtx (temp_mode);
- emit_group_store (temp_target, temp, TREE_TYPE (exp), size);
- temp = temp_target;
- }
-
- /* Handle calls that return BLKmode values in registers. */
- else if (mode == BLKmode && REG_P (temp) && TREE_CODE (exp) == CALL_EXPR)
- {
- rtx temp_target = gen_reg_rtx (GET_MODE (temp));
- copy_blkmode_from_reg (temp_target, temp, TREE_TYPE (exp));
- temp = temp_target;
- }
-
- /* If the value has aggregate type and an integral mode then, if BITSIZE
- is narrower than this mode and this is for big-endian data, we first
- need to put the value into the low-order bits for store_bit_field,
- except when MODE is BLKmode and BITSIZE larger than the word size
- (see the handling of fields larger than a word in store_bit_field).
- Moreover, the field may be not aligned on a byte boundary; in this
- case, if it has reverse storage order, it needs to be accessed as a
- scalar field with reverse storage order and we must first put the
- value into target order. */
- scalar_int_mode temp_mode;
- if (AGGREGATE_TYPE_P (TREE_TYPE (exp))
- && is_int_mode (GET_MODE (temp), &temp_mode))
- {
- HOST_WIDE_INT size = GET_MODE_BITSIZE (temp_mode);
-
- reverse = TYPE_REVERSE_STORAGE_ORDER (TREE_TYPE (exp));
-
- if (reverse)
- temp = flip_storage_order (temp_mode, temp);
-
- gcc_checking_assert (known_le (bitsize, size));
- if (maybe_lt (bitsize, size)
- && reverse ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN
- /* Use of to_constant for BLKmode was checked above. */
- && !(mode == BLKmode && bitsize.to_constant () > BITS_PER_WORD))
- temp = expand_shift (RSHIFT_EXPR, temp_mode, temp,
- size - bitsize, NULL_RTX, 1);
- }
-
- /* Unless MODE is VOIDmode or BLKmode, convert TEMP to MODE. */
- if (mode != VOIDmode && mode != BLKmode
- && mode != TYPE_MODE (TREE_TYPE (exp)))
- temp = convert_modes (mode, TYPE_MODE (TREE_TYPE (exp)), temp, 1);
-
- /* If the mode of TEMP and TARGET is BLKmode, both must be in memory
- and BITPOS must be aligned on a byte boundary. If so, we simply do
- a block copy. Likewise for a BLKmode-like TARGET. */
- if (GET_MODE (temp) == BLKmode
- && (GET_MODE (target) == BLKmode
- || (MEM_P (target)
- && GET_MODE_CLASS (GET_MODE (target)) == MODE_INT
- && multiple_p (bitpos, BITS_PER_UNIT)
- && multiple_p (bitsize, BITS_PER_UNIT))))
- {
- gcc_assert (MEM_P (target) && MEM_P (temp));
- poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
- poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
-
- target = adjust_address (target, VOIDmode, bytepos);
- emit_block_move (target, temp,
- gen_int_mode (bytesize, Pmode),
- BLOCK_OP_NORMAL);
-
- return const0_rtx;
- }
-
- /* If the mode of TEMP is still BLKmode and BITSIZE not larger than the
- word size, we need to load the value (see again store_bit_field). */
- if (GET_MODE (temp) == BLKmode && known_le (bitsize, BITS_PER_WORD))
- {
- temp_mode = smallest_int_mode_for_size (bitsize);
- temp = extract_bit_field (temp, bitsize, 0, 1, NULL_RTX, temp_mode,
- temp_mode, false, NULL);
- }
-
- /* Store the value in the bitfield. */
- gcc_checking_assert (known_ge (bitpos, 0));
- store_bit_field (target, bitsize, bitpos,
- bitregion_start, bitregion_end,
- mode, temp, reverse);
-
- return const0_rtx;
- }
- else
- {
- /* Now build a reference to just the desired component. */
- rtx to_rtx = adjust_address (target, mode,
- exact_div (bitpos, BITS_PER_UNIT));
-
- if (to_rtx == target)
- to_rtx = copy_rtx (to_rtx);
-
- if (!MEM_KEEP_ALIAS_SET_P (to_rtx) && MEM_ALIAS_SET (to_rtx) != 0)
- set_mem_alias_set (to_rtx, alias_set);
-
- /* Above we avoided using bitfield operations for storing a CONSTRUCTOR
- into a target smaller than its type; handle that case now. */
- if (TREE_CODE (exp) == CONSTRUCTOR && known_size_p (bitsize))
- {
- poly_int64 bytesize = exact_div (bitsize, BITS_PER_UNIT);
- store_constructor (exp, to_rtx, 0, bytesize, reverse);
- return to_rtx;
- }
-
- return store_expr (exp, to_rtx, 0, nontemporal, reverse);
- }
-}
-
-/* Given an expression EXP that may be a COMPONENT_REF, a BIT_FIELD_REF,
- an ARRAY_REF, or an ARRAY_RANGE_REF, look for nested operations of these
- codes and find the ultimate containing object, which we return.
-
- We set *PBITSIZE to the size in bits that we want, *PBITPOS to the
- bit position, *PUNSIGNEDP to the signedness and *PREVERSEP to the
- storage order of the field.
- If the position of the field is variable, we store a tree
- giving the variable offset (in units) in *POFFSET.
- This offset is in addition to the bit position.
- If the position is not variable, we store 0 in *POFFSET.
-
- If any of the extraction expressions is volatile,
- we store 1 in *PVOLATILEP. Otherwise we don't change that.
-
- If the field is a non-BLKmode bit-field, *PMODE is set to VOIDmode.
- Otherwise, it is a mode that can be used to access the field.
-
- If the field describes a variable-sized object, *PMODE is set to
- BLKmode and *PBITSIZE is set to -1. An access cannot be made in
- this case, but the address of the object can be found. */
-
-tree
-get_inner_reference (tree exp, poly_int64_pod *pbitsize,
- poly_int64_pod *pbitpos, tree *poffset,
- machine_mode *pmode, int *punsignedp,
- int *preversep, int *pvolatilep)
-{
- tree size_tree = 0;
- machine_mode mode = VOIDmode;
- bool blkmode_bitfield = false;
- tree offset = size_zero_node;
- poly_offset_int bit_offset = 0;
-
- /* First get the mode, signedness, storage order and size. We do this from
- just the outermost expression. */
- *pbitsize = -1;
- if (TREE_CODE (exp) == COMPONENT_REF)
- {
- tree field = TREE_OPERAND (exp, 1);
- size_tree = DECL_SIZE (field);
- if (flag_strict_volatile_bitfields > 0
- && TREE_THIS_VOLATILE (exp)
- && DECL_BIT_FIELD_TYPE (field)
- && DECL_MODE (field) != BLKmode)
- /* Volatile bitfields should be accessed in the mode of the
- field's type, not the mode computed based on the bit
- size. */
- mode = TYPE_MODE (DECL_BIT_FIELD_TYPE (field));
- else if (!DECL_BIT_FIELD (field))
- {
- mode = DECL_MODE (field);
- /* For vector fields re-check the target flags, as DECL_MODE
- could have been set with different target flags than
- the current function has. */
- if (mode == BLKmode
- && VECTOR_TYPE_P (TREE_TYPE (field))
- && VECTOR_MODE_P (TYPE_MODE_RAW (TREE_TYPE (field))))
- mode = TYPE_MODE (TREE_TYPE (field));
- }
- else if (DECL_MODE (field) == BLKmode)
- blkmode_bitfield = true;
-
- *punsignedp = DECL_UNSIGNED (field);
- }
- else if (TREE_CODE (exp) == BIT_FIELD_REF)
- {
- size_tree = TREE_OPERAND (exp, 1);
- *punsignedp = (! INTEGRAL_TYPE_P (TREE_TYPE (exp))
- || TYPE_UNSIGNED (TREE_TYPE (exp)));
-
- /* For vector element types with the correct size of access or for
- vector typed accesses use the mode of the access type. */
- if ((TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == VECTOR_TYPE
- && TREE_TYPE (exp) == TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)))
- && tree_int_cst_equal (size_tree, TYPE_SIZE (TREE_TYPE (exp))))
- || VECTOR_TYPE_P (TREE_TYPE (exp)))
- mode = TYPE_MODE (TREE_TYPE (exp));
- }
- else
- {
- mode = TYPE_MODE (TREE_TYPE (exp));
- *punsignedp = TYPE_UNSIGNED (TREE_TYPE (exp));
-
- if (mode == BLKmode)
- size_tree = TYPE_SIZE (TREE_TYPE (exp));
- else
- *pbitsize = GET_MODE_BITSIZE (mode);
- }
-
- if (size_tree != 0)
- {
- if (! tree_fits_uhwi_p (size_tree))
- mode = BLKmode, *pbitsize = -1;
- else
- *pbitsize = tree_to_uhwi (size_tree);
- }
-
- *preversep = reverse_storage_order_for_component_p (exp);
-
- /* Compute cumulative bit-offset for nested component-refs and array-refs,
- and find the ultimate containing object. */
- while (1)
- {
- switch (TREE_CODE (exp))
- {
- case BIT_FIELD_REF:
- bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
- break;
-
- case COMPONENT_REF:
- {
- tree field = TREE_OPERAND (exp, 1);
- tree this_offset = component_ref_field_offset (exp);
-
- /* If this field hasn't been filled in yet, don't go past it.
- This should only happen when folding expressions made during
- type construction. */
- if (this_offset == 0)
- break;
-
- offset = size_binop (PLUS_EXPR, offset, this_offset);
- bit_offset += wi::to_poly_offset (DECL_FIELD_BIT_OFFSET (field));
-
- /* ??? Right now we don't do anything with DECL_OFFSET_ALIGN. */
- }
- break;
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- {
- tree index = TREE_OPERAND (exp, 1);
- tree low_bound = array_ref_low_bound (exp);
- tree unit_size = array_ref_element_size (exp);
-
- /* We assume all arrays have sizes that are a multiple of a byte.
- First subtract the lower bound, if any, in the type of the
- index, then convert to sizetype and multiply by the size of
- the array element. */
- if (! integer_zerop (low_bound))
- index = fold_build2 (MINUS_EXPR, TREE_TYPE (index),
- index, low_bound);
-
- offset = size_binop (PLUS_EXPR, offset,
- size_binop (MULT_EXPR,
- fold_convert (sizetype, index),
- unit_size));
- }
- break;
-
- case REALPART_EXPR:
- break;
-
- case IMAGPART_EXPR:
- bit_offset += *pbitsize;
- break;
-
- case VIEW_CONVERT_EXPR:
- break;
-
- case MEM_REF:
- /* Hand back the decl for MEM[&decl, off]. */
- if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
- {
- tree off = TREE_OPERAND (exp, 1);
- if (!integer_zerop (off))
- {
- poly_offset_int boff = mem_ref_offset (exp);
- boff <<= LOG2_BITS_PER_UNIT;
- bit_offset += boff;
- }
- exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
- }
- goto done;
-
- default:
- goto done;
- }
-
- /* If any reference in the chain is volatile, the effect is volatile. */
- if (TREE_THIS_VOLATILE (exp))
- *pvolatilep = 1;
-
- exp = TREE_OPERAND (exp, 0);
- }
- done:
-
- /* If OFFSET is constant, see if we can return the whole thing as a
- constant bit position. Make sure to handle overflow during
- this conversion. */
- if (poly_int_tree_p (offset))
- {
- poly_offset_int tem = wi::sext (wi::to_poly_offset (offset),
- TYPE_PRECISION (sizetype));
- tem <<= LOG2_BITS_PER_UNIT;
- tem += bit_offset;
- if (tem.to_shwi (pbitpos))
- *poffset = offset = NULL_TREE;
- }
-
- /* Otherwise, split it up. */
- if (offset)
- {
- /* Avoid returning a negative bitpos as this may wreak havoc later. */
- if (!bit_offset.to_shwi (pbitpos) || maybe_lt (*pbitpos, 0))
- {
- *pbitpos = num_trailing_bits (bit_offset.force_shwi ());
- poly_offset_int bytes = bits_to_bytes_round_down (bit_offset);
- offset = size_binop (PLUS_EXPR, offset,
- build_int_cst (sizetype, bytes.force_shwi ()));
- }
-
- *poffset = offset;
- }
-
- /* We can use BLKmode for a byte-aligned BLKmode bitfield. */
- if (mode == VOIDmode
- && blkmode_bitfield
- && multiple_p (*pbitpos, BITS_PER_UNIT)
- && multiple_p (*pbitsize, BITS_PER_UNIT))
- *pmode = BLKmode;
- else
- *pmode = mode;
-
- return exp;
-}
-
-/* Alignment in bits the TARGET of an assignment may be assumed to have. */
-
-static unsigned HOST_WIDE_INT
-target_align (const_tree target)
-{
- /* We might have a chain of nested references with intermediate misaligning
- bitfields components, so need to recurse to find out. */
-
- unsigned HOST_WIDE_INT this_align, outer_align;
-
- switch (TREE_CODE (target))
- {
- case BIT_FIELD_REF:
- return 1;
-
- case COMPONENT_REF:
- this_align = DECL_ALIGN (TREE_OPERAND (target, 1));
- outer_align = target_align (TREE_OPERAND (target, 0));
- return MIN (this_align, outer_align);
-
- case ARRAY_REF:
- case ARRAY_RANGE_REF:
- this_align = TYPE_ALIGN (TREE_TYPE (target));
- outer_align = target_align (TREE_OPERAND (target, 0));
- return MIN (this_align, outer_align);
-
- CASE_CONVERT:
- case NON_LVALUE_EXPR:
- case VIEW_CONVERT_EXPR:
- this_align = TYPE_ALIGN (TREE_TYPE (target));
- outer_align = target_align (TREE_OPERAND (target, 0));
- return MAX (this_align, outer_align);
-
- default:
- return TYPE_ALIGN (TREE_TYPE (target));
- }
-}
-
-
-/* Given an rtx VALUE that may contain additions and multiplications, return
- an equivalent value that just refers to a register, memory, or constant.
- This is done by generating instructions to perform the arithmetic and
- returning a pseudo-register containing the value.
-
- The returned value may be a REG, SUBREG, MEM or constant. */
-
-rtx
-force_operand (rtx value, rtx target)
-{
- rtx op1, op2;
- /* Use subtarget as the target for operand 0 of a binary operation. */
- rtx subtarget = get_subtarget (target);
- enum rtx_code code = GET_CODE (value);
-
- /* Check for subreg applied to an expression produced by loop optimizer. */
- if (code == SUBREG
- && !REG_P (SUBREG_REG (value))
- && !MEM_P (SUBREG_REG (value)))
- {
- value
- = simplify_gen_subreg (GET_MODE (value),
- force_reg (GET_MODE (SUBREG_REG (value)),
- force_operand (SUBREG_REG (value),
- NULL_RTX)),
- GET_MODE (SUBREG_REG (value)),
- SUBREG_BYTE (value));
- code = GET_CODE (value);
- }
-
- /* Check for a PIC address load. */
- if ((code == PLUS || code == MINUS)
- && XEXP (value, 0) == pic_offset_table_rtx
- && (GET_CODE (XEXP (value, 1)) == SYMBOL_REF
- || GET_CODE (XEXP (value, 1)) == LABEL_REF
- || GET_CODE (XEXP (value, 1)) == CONST))
- {
- if (!subtarget)
- subtarget = gen_reg_rtx (GET_MODE (value));
- emit_move_insn (subtarget, value);
- return subtarget;
- }
-
- if (ARITHMETIC_P (value))
- {
- op2 = XEXP (value, 1);
- if (!CONSTANT_P (op2) && !(REG_P (op2) && op2 != subtarget))
- subtarget = 0;
- if (code == MINUS && CONST_INT_P (op2))
- {
- code = PLUS;
- op2 = negate_rtx (GET_MODE (value), op2);
- }
-
- /* Check for an addition with OP2 a constant integer and our first
- operand a PLUS of a virtual register and something else. In that
- case, we want to emit the sum of the virtual register and the
- constant first and then add the other value. This allows virtual
- register instantiation to simply modify the constant rather than
- creating another one around this addition. */
- if (code == PLUS && CONST_INT_P (op2)
- && GET_CODE (XEXP (value, 0)) == PLUS
- && REG_P (XEXP (XEXP (value, 0), 0))
- && REGNO (XEXP (XEXP (value, 0), 0)) >= FIRST_VIRTUAL_REGISTER
- && REGNO (XEXP (XEXP (value, 0), 0)) <= LAST_VIRTUAL_REGISTER)
- {
- rtx temp = expand_simple_binop (GET_MODE (value), code,
- XEXP (XEXP (value, 0), 0), op2,
- subtarget, 0, OPTAB_LIB_WIDEN);
- return expand_simple_binop (GET_MODE (value), code, temp,
- force_operand (XEXP (XEXP (value,
- 0), 1), 0),
- target, 0, OPTAB_LIB_WIDEN);
- }
-
- op1 = force_operand (XEXP (value, 0), subtarget);
- op2 = force_operand (op2, NULL_RTX);
- switch (code)
- {
- case MULT:
- return expand_mult (GET_MODE (value), op1, op2, target, 1);
- case DIV:
- if (!INTEGRAL_MODE_P (GET_MODE (value)))
- return expand_simple_binop (GET_MODE (value), code, op1, op2,
- target, 1, OPTAB_LIB_WIDEN);
- else
- return expand_divmod (0,
- FLOAT_MODE_P (GET_MODE (value))
- ? RDIV_EXPR : TRUNC_DIV_EXPR,
- GET_MODE (value), op1, op2, target, 0);
- case MOD:
- return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
- target, 0);
- case UDIV:
- return expand_divmod (0, TRUNC_DIV_EXPR, GET_MODE (value), op1, op2,
- target, 1);
- case UMOD:
- return expand_divmod (1, TRUNC_MOD_EXPR, GET_MODE (value), op1, op2,
- target, 1);
- case ASHIFTRT:
- return expand_simple_binop (GET_MODE (value), code, op1, op2,
- target, 0, OPTAB_LIB_WIDEN);
- default:
- return expand_simple_binop (GET_MODE (value), code, op1, op2,
- target, 1, OPTAB_LIB_WIDEN);
- }
- }
- if (UNARY_P (value))
- {
- if (!target)
- target = gen_reg_rtx (GET_MODE (value));
- op1 = force_operand (XEXP (value, 0), NULL_RTX);
- switch (code)
- {
- case ZERO_EXTEND:
- case SIGN_EXTEND:
- case TRUNCATE:
- case FLOAT_EXTEND:
- case FLOAT_TRUNCATE:
- convert_move (target, op1, code == ZERO_EXTEND);
- return target;
-
- case FIX:
- case UNSIGNED_FIX:
- expand_fix (target, op1, code == UNSIGNED_FIX);
- return target;
-
- case FLOAT:
- case UNSIGNED_FLOAT:
- expand_float (target, op1, code == UNSIGNED_FLOAT);
- return target;
-
- default:
- return expand_simple_unop (GET_MODE (value), code, op1, target, 0);
- }
- }
-
-#ifdef INSN_SCHEDULING
- /* On machines that have insn scheduling, we want all memory reference to be
- explicit, so we need to deal with such paradoxical SUBREGs. */
- if (paradoxical_subreg_p (value) && MEM_P (SUBREG_REG (value)))
- value
- = simplify_gen_subreg (GET_MODE (value),
- force_reg (GET_MODE (SUBREG_REG (value)),
- force_operand (SUBREG_REG (value),
- NULL_RTX)),
- GET_MODE (SUBREG_REG (value)),
- SUBREG_BYTE (value));
-#endif
-
- return value;
-}
-
-/* Subroutine of expand_expr: return nonzero iff there is no way that
- EXP can reference X, which is being modified. TOP_P is nonzero if this
- call is going to be used to determine whether we need a temporary
- for EXP, as opposed to a recursive call to this function.
-
- It is always safe for this routine to return zero since it merely
- searches for optimization opportunities. */
-
-int
-safe_from_p (const_rtx x, tree exp, int top_p)
-{
- rtx exp_rtl = 0;
- int i, nops;
-
- if (x == 0
- /* If EXP has varying size, we MUST use a target since we currently
- have no way of allocating temporaries of variable size
- (except for arrays that have TYPE_ARRAY_MAX_SIZE set).
- So we assume here that something at a higher level has prevented a
- clash. This is somewhat bogus, but the best we can do. Only
- do this when X is BLKmode and when we are at the top level. */
- || (top_p && TREE_TYPE (exp) != 0 && COMPLETE_TYPE_P (TREE_TYPE (exp))
- && TREE_CODE (TYPE_SIZE (TREE_TYPE (exp))) != INTEGER_CST
- && (TREE_CODE (TREE_TYPE (exp)) != ARRAY_TYPE
- || TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)) == NULL_TREE
- || TREE_CODE (TYPE_ARRAY_MAX_SIZE (TREE_TYPE (exp)))
- != INTEGER_CST)
- && GET_MODE (x) == BLKmode)
- /* If X is in the outgoing argument area, it is always safe. */
- || (MEM_P (x)
- && (XEXP (x, 0) == virtual_outgoing_args_rtx
- || (GET_CODE (XEXP (x, 0)) == PLUS
- && XEXP (XEXP (x, 0), 0) == virtual_outgoing_args_rtx))))
- return 1;
-
- /* If this is a subreg of a hard register, declare it unsafe, otherwise,
- find the underlying pseudo. */
- if (GET_CODE (x) == SUBREG)
- {
- x = SUBREG_REG (x);
- if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
- return 0;
- }
-
- /* Now look at our tree code and possibly recurse. */
- switch (TREE_CODE_CLASS (TREE_CODE (exp)))
- {
- case tcc_declaration:
- exp_rtl = DECL_RTL_IF_SET (exp);
- break;
-
- case tcc_constant:
- return 1;
-
- case tcc_exceptional:
- if (TREE_CODE (exp) == TREE_LIST)
- {
- while (1)
- {
- if (TREE_VALUE (exp) && !safe_from_p (x, TREE_VALUE (exp), 0))
- return 0;
- exp = TREE_CHAIN (exp);
- if (!exp)
- return 1;
- if (TREE_CODE (exp) != TREE_LIST)
- return safe_from_p (x, exp, 0);
- }
- }
- else if (TREE_CODE (exp) == CONSTRUCTOR)
- {
- constructor_elt *ce;
- unsigned HOST_WIDE_INT idx;
-
- FOR_EACH_VEC_SAFE_ELT (CONSTRUCTOR_ELTS (exp), idx, ce)
- if ((ce->index != NULL_TREE && !safe_from_p (x, ce->index, 0))
- || !safe_from_p (x, ce->value, 0))
- return 0;
- return 1;
- }
- else if (TREE_CODE (exp) == ERROR_MARK)
- return 1; /* An already-visited SAVE_EXPR? */
- else
- return 0;
-
- case tcc_statement:
- /* The only case we look at here is the DECL_INITIAL inside a
- DECL_EXPR. */
- return (TREE_CODE (exp) != DECL_EXPR
- || TREE_CODE (DECL_EXPR_DECL (exp)) != VAR_DECL
- || !DECL_INITIAL (DECL_EXPR_DECL (exp))
- || safe_from_p (x, DECL_INITIAL (DECL_EXPR_DECL (exp)), 0));
-
- case tcc_binary:
- case tcc_comparison:
- if (!safe_from_p (x, TREE_OPERAND (exp, 1), 0))
- return 0;
- /* Fall through. */
-
- case tcc_unary:
- return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
-
- case tcc_expression:
- case tcc_reference:
- case tcc_vl_exp:
- /* Now do code-specific tests. EXP_RTL is set to any rtx we find in
- the expression. If it is set, we conflict iff we are that rtx or
- both are in memory. Otherwise, we check all operands of the
- expression recursively. */
-
- switch (TREE_CODE (exp))
- {
- case ADDR_EXPR:
- /* If the operand is static or we are static, we can't conflict.
- Likewise if we don't conflict with the operand at all. */
- if (staticp (TREE_OPERAND (exp, 0))
- || TREE_STATIC (exp)
- || safe_from_p (x, TREE_OPERAND (exp, 0), 0))
- return 1;
-
- /* Otherwise, the only way this can conflict is if we are taking
- the address of a DECL a that address if part of X, which is
- very rare. */
- exp = TREE_OPERAND (exp, 0);
- if (DECL_P (exp))
- {
- if (!DECL_RTL_SET_P (exp)
- || !MEM_P (DECL_RTL (exp)))
- return 0;
- else
- exp_rtl = XEXP (DECL_RTL (exp), 0);
- }
- break;
-
- case MEM_REF:
- if (MEM_P (x)
- && alias_sets_conflict_p (MEM_ALIAS_SET (x),
- get_alias_set (exp)))
- return 0;
- break;
-
- case CALL_EXPR:
- /* Assume that the call will clobber all hard registers and
- all of memory. */
- if ((REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
- || MEM_P (x))
- return 0;
- break;
-
- case WITH_CLEANUP_EXPR:
- case CLEANUP_POINT_EXPR:
- /* Lowered by gimplify.c. */
- gcc_unreachable ();
-
- case SAVE_EXPR:
- return safe_from_p (x, TREE_OPERAND (exp, 0), 0);
-
- default:
- break;
- }
-
- /* If we have an rtx, we do not need to scan our operands. */
- if (exp_rtl)
- break;
-
- nops = TREE_OPERAND_LENGTH (exp);
- for (i = 0; i < nops; i++)
- if (TREE_OPERAND (exp, i) != 0
- && ! safe_from_p (x, TREE_OPERAND (exp, i), 0))
- return 0;
-
- break;
-
- case tcc_type:
- /* Should never get a type here. */
- gcc_unreachable ();
- }
-
- /* If we have an rtl, find any enclosed object. Then see if we conflict
- with it. */
- if (exp_rtl)
- {
- if (GET_CODE (exp_rtl) == SUBREG)
- {
- exp_rtl = SUBREG_REG (exp_rtl);
- if (REG_P (exp_rtl)
- && REGNO (exp_rtl) < FIRST_PSEUDO_REGISTER)
- return 0;
- }
-
- /* If the rtl is X, then it is not safe. Otherwise, it is unless both
- are memory and they conflict. */
- return ! (rtx_equal_p (x, exp_rtl)
- || (MEM_P (x) && MEM_P (exp_rtl)
- && true_dependence (exp_rtl, VOIDmode, x)));
- }
-
- /* If we reach here, it is safe. */
- return 1;
-}
-
-
-/* Return the highest power of two that EXP is known to be a multiple of.
- This is used in updating alignment of MEMs in array references. */
-
-unsigned HOST_WIDE_INT
-highest_pow2_factor (const_tree exp)
-{
- unsigned HOST_WIDE_INT ret;
- int trailing_zeros = tree_ctz (exp);
- if (trailing_zeros >= HOST_BITS_PER_WIDE_INT)
- return BIGGEST_ALIGNMENT;
- ret = HOST_WIDE_INT_1U << trailing_zeros;
- if (ret > BIGGEST_ALIGNMENT)
- return BIGGEST_ALIGNMENT;
- return ret;
-}
-
-/* Similar, except that the alignment requirements of TARGET are
- taken into account. Assume it is at least as aligned as its
- type, unless it is a COMPONENT_REF in which case the layout of
- the structure gives the alignment. */
-
-static unsigned HOST_WIDE_INT
-highest_pow2_factor_for_target (const_tree target, const_tree exp)
-{
- unsigned HOST_WIDE_INT talign = target_align (target) / BITS_PER_UNIT;
- unsigned HOST_WIDE_INT factor = highest_pow2_factor (exp);
-
- return MAX (factor, talign);
-}
-
-/* Convert the tree comparison code TCODE to the rtl one where the
- signedness is UNSIGNEDP. */
-
-static enum rtx_code
-convert_tree_comp_to_rtx (enum tree_code tcode, int unsignedp)
-{
- enum rtx_code code;
- switch (tcode)
- {
- case EQ_EXPR:
- code = EQ;
- break;
- case NE_EXPR:
- code = NE;
- break;
- case LT_EXPR:
- code = unsignedp ? LTU : LT;
- break;
- case LE_EXPR:
- code = unsignedp ? LEU : LE;
- break;
- case GT_EXPR:
- code = unsignedp ? GTU : GT;
- break;
- case GE_EXPR:
- code = unsignedp ? GEU : GE;
- break;
- case UNORDERED_EXPR:
- code = UNORDERED;
- break;
- case ORDERED_EXPR:
- code = ORDERED;
- break;
- case UNLT_EXPR:
- code = UNLT;
- break;
- case UNLE_EXPR:
- code = UNLE;
- break;
- case UNGT_EXPR:
- code = UNGT;
- break;
- case UNGE_EXPR:
- code = UNGE;
- break;
- case UNEQ_EXPR:
- code = UNEQ;
- break;
- case LTGT_EXPR:
- code = LTGT;
- break;
-
- default:
- gcc_unreachable ();
- }
- return code;
-}
-
-/* Subroutine of expand_expr. Expand the two operands of a binary
- expression EXP0 and EXP1 placing the results in OP0 and OP1.
- The value may be stored in TARGET if TARGET is nonzero. The
- MODIFIER argument is as documented by expand_expr. */
-
-void
-expand_operands (tree exp0, tree exp1, rtx target, rtx *op0, rtx *op1,
- enum expand_modifier modifier)
-{
- if (! safe_from_p (target, exp1, 1))
- target = 0;
- if (operand_equal_p (exp0, exp1, 0))
- {
- *op0 = expand_expr (exp0, target, VOIDmode, modifier);
- *op1 = copy_rtx (*op0);
- }
- else
- {
- *op0 = expand_expr (exp0, target, VOIDmode, modifier);
- *op1 = expand_expr (exp1, NULL_RTX, VOIDmode, modifier);
- }
-}
-
-
-/* Return a MEM that contains constant EXP. DEFER is as for
- output_constant_def and MODIFIER is as for expand_expr. */
-
-static rtx
-expand_expr_constant (tree exp, int defer, enum expand_modifier modifier)
-{
- rtx mem;
-
- mem = output_constant_def (exp, defer);
- if (modifier != EXPAND_INITIALIZER)
- mem = use_anchored_address (mem);
- return mem;
-}
-
-/* A subroutine of expand_expr_addr_expr. Evaluate the address of EXP.
- The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
-
-static rtx
-expand_expr_addr_expr_1 (tree exp, rtx target, scalar_int_mode tmode,
- enum expand_modifier modifier, addr_space_t as)
-{
- rtx result, subtarget;
- tree inner, offset;
- poly_int64 bitsize, bitpos;
- int unsignedp, reversep, volatilep = 0;
- machine_mode mode1;
-
- /* If we are taking the address of a constant and are at the top level,
- we have to use output_constant_def since we can't call force_const_mem
- at top level. */
- /* ??? This should be considered a front-end bug. We should not be
- generating ADDR_EXPR of something that isn't an LVALUE. The only
- exception here is STRING_CST. */
- if (CONSTANT_CLASS_P (exp))
- {
- result = XEXP (expand_expr_constant (exp, 0, modifier), 0);
- if (modifier < EXPAND_SUM)
- result = force_operand (result, target);
- return result;
- }
-
- /* Everything must be something allowed by is_gimple_addressable. */
- switch (TREE_CODE (exp))
- {
- case INDIRECT_REF:
- /* This case will happen via recursion for &a->b. */
- return expand_expr (TREE_OPERAND (exp, 0), target, tmode, modifier);
-
- case MEM_REF:
- {
- tree tem = TREE_OPERAND (exp, 0);
- if (!integer_zerop (TREE_OPERAND (exp, 1)))
- tem = fold_build_pointer_plus (tem, TREE_OPERAND (exp, 1));
- return expand_expr (tem, target, tmode, modifier);
- }
-
- case TARGET_MEM_REF:
- return addr_for_mem_ref (exp, as, true);
-
- case CONST_DECL:
- /* Expand the initializer like constants above. */
- result = XEXP (expand_expr_constant (DECL_INITIAL (exp),
- 0, modifier), 0);
- if (modifier < EXPAND_SUM)
- result = force_operand (result, target);
- return result;
-
- case REALPART_EXPR:
- /* The real part of the complex number is always first, therefore
- the address is the same as the address of the parent object. */
- offset = 0;
- bitpos = 0;
- inner = TREE_OPERAND (exp, 0);
- break;
-
- case IMAGPART_EXPR:
- /* The imaginary part of the complex number is always second.
- The expression is therefore always offset by the size of the
- scalar type. */
- offset = 0;
- bitpos = GET_MODE_BITSIZE (SCALAR_TYPE_MODE (TREE_TYPE (exp)));
- inner = TREE_OPERAND (exp, 0);
- break;
-
- case COMPOUND_LITERAL_EXPR:
- /* Allow COMPOUND_LITERAL_EXPR in initializers or coming from
- initializers, if e.g. rtl_for_decl_init is called on DECL_INITIAL
- with COMPOUND_LITERAL_EXPRs in it, or ARRAY_REF on a const static
- array with address of COMPOUND_LITERAL_EXPR in DECL_INITIAL;
- the initializers aren't gimplified. */
- if (COMPOUND_LITERAL_EXPR_DECL (exp)
- && is_global_var (COMPOUND_LITERAL_EXPR_DECL (exp)))
- return expand_expr_addr_expr_1 (COMPOUND_LITERAL_EXPR_DECL (exp),
- target, tmode, modifier, as);
- /* FALLTHRU */
- default:
- /* If the object is a DECL, then expand it for its rtl. Don't bypass
- expand_expr, as that can have various side effects; LABEL_DECLs for
- example, may not have their DECL_RTL set yet. Expand the rtl of
- CONSTRUCTORs too, which should yield a memory reference for the
- constructor's contents. Assume language specific tree nodes can
- be expanded in some interesting way. */
- gcc_assert (TREE_CODE (exp) < LAST_AND_UNUSED_TREE_CODE);
- if (DECL_P (exp)
- || TREE_CODE (exp) == CONSTRUCTOR
- || TREE_CODE (exp) == COMPOUND_LITERAL_EXPR)
- {
- result = expand_expr (exp, target, tmode,
- modifier == EXPAND_INITIALIZER
- ? EXPAND_INITIALIZER : EXPAND_CONST_ADDRESS);
-
- /* If the DECL isn't in memory, then the DECL wasn't properly
- marked TREE_ADDRESSABLE, which will be either a front-end
- or a tree optimizer bug. */
-
- gcc_assert (MEM_P (result));
- result = XEXP (result, 0);
-
- /* ??? Is this needed anymore? */
- if (DECL_P (exp))
- TREE_USED (exp) = 1;
-
- if (modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_SUM)
- result = force_operand (result, target);
- return result;
- }
-
- /* Pass FALSE as the last argument to get_inner_reference although
- we are expanding to RTL. The rationale is that we know how to
- handle "aligning nodes" here: we can just bypass them because
- they won't change the final object whose address will be returned
- (they actually exist only for that purpose). */
- inner = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
- &unsignedp, &reversep, &volatilep);
- break;
- }
-
- /* We must have made progress. */
- gcc_assert (inner != exp);
-
- subtarget = offset || maybe_ne (bitpos, 0) ? NULL_RTX : target;
- /* For VIEW_CONVERT_EXPR, where the outer alignment is bigger than
- inner alignment, force the inner to be sufficiently aligned. */
- if (CONSTANT_CLASS_P (inner)
- && TYPE_ALIGN (TREE_TYPE (inner)) < TYPE_ALIGN (TREE_TYPE (exp)))
- {
- inner = copy_node (inner);
- TREE_TYPE (inner) = copy_node (TREE_TYPE (inner));
- SET_TYPE_ALIGN (TREE_TYPE (inner), TYPE_ALIGN (TREE_TYPE (exp)));
- TYPE_USER_ALIGN (TREE_TYPE (inner)) = 1;
- }
- result = expand_expr_addr_expr_1 (inner, subtarget, tmode, modifier, as);
-
- if (offset)
- {
- rtx tmp;
-
- if (modifier != EXPAND_NORMAL)
- result = force_operand (result, NULL);
- tmp = expand_expr (offset, NULL_RTX, tmode,
- modifier == EXPAND_INITIALIZER
- ? EXPAND_INITIALIZER : EXPAND_NORMAL);
-
- /* expand_expr is allowed to return an object in a mode other
- than TMODE. If it did, we need to convert. */
- if (GET_MODE (tmp) != VOIDmode && tmode != GET_MODE (tmp))
- tmp = convert_modes (tmode, GET_MODE (tmp),
- tmp, TYPE_UNSIGNED (TREE_TYPE (offset)));
- result = convert_memory_address_addr_space (tmode, result, as);
- tmp = convert_memory_address_addr_space (tmode, tmp, as);
-
- if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
- result = simplify_gen_binary (PLUS, tmode, result, tmp);
- else
- {
- subtarget = maybe_ne (bitpos, 0) ? NULL_RTX : target;
- result = expand_simple_binop (tmode, PLUS, result, tmp, subtarget,
- 1, OPTAB_LIB_WIDEN);
- }
- }
-
- if (maybe_ne (bitpos, 0))
- {
- /* Someone beforehand should have rejected taking the address
- of an object that isn't byte-aligned. */
- poly_int64 bytepos = exact_div (bitpos, BITS_PER_UNIT);
- result = convert_memory_address_addr_space (tmode, result, as);
- result = plus_constant (tmode, result, bytepos);
- if (modifier < EXPAND_SUM)
- result = force_operand (result, target);
- }
-
- return result;
-}
-
-/* A subroutine of expand_expr. Evaluate EXP, which is an ADDR_EXPR.
- The TARGET, TMODE and MODIFIER arguments are as for expand_expr. */
-
-static rtx
-expand_expr_addr_expr (tree exp, rtx target, machine_mode tmode,
- enum expand_modifier modifier)
-{
- addr_space_t as = ADDR_SPACE_GENERIC;
- scalar_int_mode address_mode = Pmode;
- scalar_int_mode pointer_mode = ptr_mode;
- machine_mode rmode;
- rtx result;
-
- /* Target mode of VOIDmode says "whatever's natural". */
- if (tmode == VOIDmode)
- tmode = TYPE_MODE (TREE_TYPE (exp));
-
- if (POINTER_TYPE_P (TREE_TYPE (exp)))
- {
- as = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (exp)));
- address_mode = targetm.addr_space.address_mode (as);
- pointer_mode = targetm.addr_space.pointer_mode (as);
- }
-
- /* We can get called with some Weird Things if the user does silliness
- like "(short) &a". In that case, convert_memory_address won't do
- the right thing, so ignore the given target mode. */
- scalar_int_mode new_tmode = (tmode == pointer_mode
- ? pointer_mode
- : address_mode);
-
- result = expand_expr_addr_expr_1 (TREE_OPERAND (exp, 0), target,
- new_tmode, modifier, as);
-
- /* Despite expand_expr claims concerning ignoring TMODE when not
- strictly convenient, stuff breaks if we don't honor it. Note
- that combined with the above, we only do this for pointer modes. */
- rmode = GET_MODE (result);
- if (rmode == VOIDmode)
- rmode = new_tmode;
- if (rmode != new_tmode)
- result = convert_memory_address_addr_space (new_tmode, result, as);
-
- return result;
-}
-
-/* Generate code for computing CONSTRUCTOR EXP.
- An rtx for the computed value is returned. If AVOID_TEMP_MEM
- is TRUE, instead of creating a temporary variable in memory
- NULL is returned and the caller needs to handle it differently. */
-
-static rtx
-expand_constructor (tree exp, rtx target, enum expand_modifier modifier,
- bool avoid_temp_mem)
-{
- tree type = TREE_TYPE (exp);
- machine_mode mode = TYPE_MODE (type);
-
- /* Try to avoid creating a temporary at all. This is possible
- if all of the initializer is zero.
- FIXME: try to handle all [0..255] initializers we can handle
- with memset. */
- if (TREE_STATIC (exp)
- && !TREE_ADDRESSABLE (exp)
- && target != 0 && mode == BLKmode
- && all_zeros_p (exp))
- {
- clear_storage (target, expr_size (exp), BLOCK_OP_NORMAL);
- return target;
- }
-
- /* All elts simple constants => refer to a constant in memory. But
- if this is a non-BLKmode mode, let it store a field at a time
- since that should make a CONST_INT, CONST_WIDE_INT or
- CONST_DOUBLE when we fold. Likewise, if we have a target we can
- use, it is best to store directly into the target unless the type
- is large enough that memcpy will be used. If we are making an
- initializer and all operands are constant, put it in memory as
- well.
-
- FIXME: Avoid trying to fill vector constructors piece-meal.
- Output them with output_constant_def below unless we're sure
- they're zeros. This should go away when vector initializers
- are treated like VECTOR_CST instead of arrays. */
- if ((TREE_STATIC (exp)
- && ((mode == BLKmode
- && ! (target != 0 && safe_from_p (target, exp, 1)))
- || TREE_ADDRESSABLE (exp)
- || (tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
- && (! can_move_by_pieces
- (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
- TYPE_ALIGN (type)))
- && ! mostly_zeros_p (exp))))
- || ((modifier == EXPAND_INITIALIZER || modifier == EXPAND_CONST_ADDRESS)
- && TREE_CONSTANT (exp)))
- {
- rtx constructor;
-
- if (avoid_temp_mem)
- return NULL_RTX;
-
- constructor = expand_expr_constant (exp, 1, modifier);
-
- if (modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_SUM)
- constructor = validize_mem (constructor);
-
- return constructor;
- }
-
- /* If the CTOR is available in static storage and not mostly
- zeros and we can move it by pieces prefer to do so since
- that's usually more efficient than performing a series of
- stores from immediates. */
- if (avoid_temp_mem
- && TREE_STATIC (exp)
- && TREE_CONSTANT (exp)
- && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
- && can_move_by_pieces (tree_to_uhwi (TYPE_SIZE_UNIT (type)),
- TYPE_ALIGN (type))
- && ! mostly_zeros_p (exp))
- return NULL_RTX;
-
- /* Handle calls that pass values in multiple non-contiguous
- locations. The Irix 6 ABI has examples of this. */
- if (target == 0 || ! safe_from_p (target, exp, 1)
- || GET_CODE (target) == PARALLEL || modifier == EXPAND_STACK_PARM
- /* Also make a temporary if the store is to volatile memory, to
- avoid individual accesses to aggregate members. */
- || (GET_CODE (target) == MEM
- && MEM_VOLATILE_P (target)
- && !TREE_ADDRESSABLE (TREE_TYPE (exp))))
- {
- if (avoid_temp_mem)
- return NULL_RTX;
-
- target = assign_temp (type, TREE_ADDRESSABLE (exp), 1);
- }
-
- store_constructor (exp, target, 0, int_expr_size (exp), false);
- return target;
-}
-
-
-/* expand_expr: generate code for computing expression EXP.
- An rtx for the computed value is returned. The value is never null.
- In the case of a void EXP, const0_rtx is returned.
-
- The value may be stored in TARGET if TARGET is nonzero.
- TARGET is just a suggestion; callers must assume that
- the rtx returned may not be the same as TARGET.
-
- If TARGET is CONST0_RTX, it means that the value will be ignored.
-
- If TMODE is not VOIDmode, it suggests generating the
- result in mode TMODE. But this is done only when convenient.
- Otherwise, TMODE is ignored and the value generated in its natural mode.
- TMODE is just a suggestion; callers must assume that
- the rtx returned may not have mode TMODE.
-
- Note that TARGET may have neither TMODE nor MODE. In that case, it
- probably will not be used.
-
- If MODIFIER is EXPAND_SUM then when EXP is an addition
- we can return an rtx of the form (MULT (REG ...) (CONST_INT ...))
- or a nest of (PLUS ...) and (MINUS ...) where the terms are
- products as above, or REG or MEM, or constant.
- Ordinarily in such cases we would output mul or add instructions
- and then return a pseudo reg containing the sum.
-
- EXPAND_INITIALIZER is much like EXPAND_SUM except that
- it also marks a label as absolutely required (it can't be dead).
- It also makes a ZERO_EXTEND or SIGN_EXTEND instead of emitting extend insns.
- This is used for outputting expressions used in initializers.
-
- EXPAND_CONST_ADDRESS says that it is okay to return a MEM
- with a constant address even if that address is not normally legitimate.
- EXPAND_INITIALIZER and EXPAND_SUM also have this effect.
-
- EXPAND_STACK_PARM is used when expanding to a TARGET on the stack for
- a call parameter. Such targets require special care as we haven't yet
- marked TARGET so that it's safe from being trashed by libcalls. We
- don't want to use TARGET for anything but the final result;
- Intermediate values must go elsewhere. Additionally, calls to
- emit_block_move will be flagged with BLOCK_OP_CALL_PARM.
-
- If EXP is a VAR_DECL whose DECL_RTL was a MEM with an invalid
- address, and ALT_RTL is non-NULL, then *ALT_RTL is set to the
- DECL_RTL of the VAR_DECL. *ALT_RTL is also set if EXP is a
- COMPOUND_EXPR whose second argument is such a VAR_DECL, and so on
- recursively.
- If the result can be stored at TARGET, and ALT_RTL is non-NULL,
- then *ALT_RTL is set to TARGET (before legitimziation).
-
- If INNER_REFERENCE_P is true, we are expanding an inner reference.
- In this case, we don't adjust a returned MEM rtx that wouldn't be
- sufficiently aligned for its mode; instead, it's up to the caller
- to deal with it afterwards. This is used to make sure that unaligned
- base objects for which out-of-bounds accesses are supported, for
- example record types with trailing arrays, aren't realigned behind
- the back of the caller.
- The normal operating mode is to pass FALSE for this parameter. */
-
-rtx
-expand_expr_real (tree exp, rtx target, machine_mode tmode,
- enum expand_modifier modifier, rtx *alt_rtl,
- bool inner_reference_p)
-{
- rtx ret;
-
- /* Handle ERROR_MARK before anybody tries to access its type. */
- if (TREE_CODE (exp) == ERROR_MARK
- || (TREE_CODE (TREE_TYPE (exp)) == ERROR_MARK))
- {
- ret = CONST0_RTX (tmode);
- return ret ? ret : const0_rtx;
- }
-
- ret = expand_expr_real_1 (exp, target, tmode, modifier, alt_rtl,
- inner_reference_p);
- return ret;
-}
-
-/* Try to expand the conditional expression which is represented by
- TREEOP0 ? TREEOP1 : TREEOP2 using conditonal moves. If it succeeds
- return the rtl reg which represents the result. Otherwise return
- NULL_RTX. */
-
-static rtx
-expand_cond_expr_using_cmove (tree treeop0 ATTRIBUTE_UNUSED,
- tree treeop1 ATTRIBUTE_UNUSED,
- tree treeop2 ATTRIBUTE_UNUSED)
-{
- rtx insn;
- rtx op00, op01, op1, op2;
- enum rtx_code comparison_code;
- machine_mode comparison_mode;
- gimple *srcstmt;
- rtx temp;
- tree type = TREE_TYPE (treeop1);
- int unsignedp = TYPE_UNSIGNED (type);
- machine_mode mode = TYPE_MODE (type);
- machine_mode orig_mode = mode;
- static bool expanding_cond_expr_using_cmove = false;
-
- /* Conditional move expansion can end up TERing two operands which,
- when recursively hitting conditional expressions can result in
- exponential behavior if the cmove expansion ultimatively fails.
- It's hardly profitable to TER a cmove into a cmove so avoid doing
- that by failing early if we end up recursing. */
- if (expanding_cond_expr_using_cmove)
- return NULL_RTX;
-
- /* If we cannot do a conditional move on the mode, try doing it
- with the promoted mode. */
- if (!can_conditionally_move_p (mode))
- {
- mode = promote_mode (type, mode, &unsignedp);
- if (!can_conditionally_move_p (mode))
- return NULL_RTX;
- temp = assign_temp (type, 0, 0); /* Use promoted mode for temp. */
- }
- else
- temp = assign_temp (type, 0, 1);
-
- expanding_cond_expr_using_cmove = true;
- start_sequence ();
- expand_operands (treeop1, treeop2,
- temp, &op1, &op2, EXPAND_NORMAL);
-
- if (TREE_CODE (treeop0) == SSA_NAME
- && (srcstmt = get_def_for_expr_class (treeop0, tcc_comparison)))
- {
- type = TREE_TYPE (gimple_assign_rhs1 (srcstmt));
- enum tree_code cmpcode = gimple_assign_rhs_code (srcstmt);
- op00 = expand_normal (gimple_assign_rhs1 (srcstmt));
- op01 = expand_normal (gimple_assign_rhs2 (srcstmt));
- comparison_mode = TYPE_MODE (type);
- unsignedp = TYPE_UNSIGNED (type);
- comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
- }
- else if (COMPARISON_CLASS_P (treeop0))
- {
- type = TREE_TYPE (TREE_OPERAND (treeop0, 0));
- enum tree_code cmpcode = TREE_CODE (treeop0);
- op00 = expand_normal (TREE_OPERAND (treeop0, 0));
- op01 = expand_normal (TREE_OPERAND (treeop0, 1));
- unsignedp = TYPE_UNSIGNED (type);
- comparison_mode = TYPE_MODE (type);
- comparison_code = convert_tree_comp_to_rtx (cmpcode, unsignedp);
- }
- else
- {
- op00 = expand_normal (treeop0);
- op01 = const0_rtx;
- comparison_code = NE;
- comparison_mode = GET_MODE (op00);
- if (comparison_mode == VOIDmode)
- comparison_mode = TYPE_MODE (TREE_TYPE (treeop0));
- }
- expanding_cond_expr_using_cmove = false;
-
- if (GET_MODE (op1) != mode)
- op1 = gen_lowpart (mode, op1);
-
- if (GET_MODE (op2) != mode)
- op2 = gen_lowpart (mode, op2);
-
- /* Try to emit the conditional move. */
- insn = emit_conditional_move (temp, comparison_code,
- op00, op01, comparison_mode,
- op1, op2, mode,
- unsignedp);
-
- /* If we could do the conditional move, emit the sequence,
- and return. */
- if (insn)
- {
- rtx_insn *seq = get_insns ();
- end_sequence ();
- emit_insn (seq);
- return convert_modes (orig_mode, mode, temp, 0);
- }
-
- /* Otherwise discard the sequence and fall back to code with
- branches. */
- end_sequence ();
- return NULL_RTX;
-}
-
-/* A helper function for expand_expr_real_2 to be used with a
- misaligned mem_ref TEMP. Assume an unsigned type if UNSIGNEDP
- is nonzero, with alignment ALIGN in bits.
- Store the value at TARGET if possible (if TARGET is nonzero).
- Regardless of TARGET, we return the rtx for where the value is placed.
- If the result can be stored at TARGET, and ALT_RTL is non-NULL,
- then *ALT_RTL is set to TARGET (before legitimziation). */
-
-static rtx
-expand_misaligned_mem_ref (rtx temp, machine_mode mode, int unsignedp,
- unsigned int align, rtx target, rtx *alt_rtl)
-{
- enum insn_code icode;
-
- if ((icode = optab_handler (movmisalign_optab, mode))
- != CODE_FOR_nothing)
- {
- class expand_operand ops[2];
-
- /* We've already validated the memory, and we're creating a
- new pseudo destination. The predicates really can't fail,
- nor can the generator. */
- create_output_operand (&ops[0], NULL_RTX, mode);
- create_fixed_operand (&ops[1], temp);
- expand_insn (icode, 2, ops);
- temp = ops[0].value;
- }
- else if (targetm.slow_unaligned_access (mode, align))
- temp = extract_bit_field (temp, GET_MODE_BITSIZE (mode),
- 0, unsignedp, target,
- mode, mode, false, alt_rtl);
- return temp;
-}
-
-/* Helper function of expand_expr_2, expand a division or modulo.
- op0 and op1 should be already expanded treeop0 and treeop1, using
- expand_operands. */
-
-static rtx
-expand_expr_divmod (tree_code code, machine_mode mode, tree treeop0,
- tree treeop1, rtx op0, rtx op1, rtx target, int unsignedp)
-{
- bool mod_p = (code == TRUNC_MOD_EXPR || code == FLOOR_MOD_EXPR
- || code == CEIL_MOD_EXPR || code == ROUND_MOD_EXPR);
- if (SCALAR_INT_MODE_P (mode)
- && optimize >= 2
- && get_range_pos_neg (treeop0) == 1
- && get_range_pos_neg (treeop1) == 1)
- {
- /* If both arguments are known to be positive when interpreted
- as signed, we can expand it as both signed and unsigned
- division or modulo. Choose the cheaper sequence in that case. */
- bool speed_p = optimize_insn_for_speed_p ();
- do_pending_stack_adjust ();
- start_sequence ();
- rtx uns_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 1);
- rtx_insn *uns_insns = get_insns ();
- end_sequence ();
- start_sequence ();
- rtx sgn_ret = expand_divmod (mod_p, code, mode, op0, op1, target, 0);
- rtx_insn *sgn_insns = get_insns ();
- end_sequence ();
- unsigned uns_cost = seq_cost (uns_insns, speed_p);
- unsigned sgn_cost = seq_cost (sgn_insns, speed_p);
-
- /* If costs are the same then use as tie breaker the other other
- factor. */
- if (uns_cost == sgn_cost)
- {
- uns_cost = seq_cost (uns_insns, !speed_p);
- sgn_cost = seq_cost (sgn_insns, !speed_p);
- }
-
- if (uns_cost < sgn_cost || (uns_cost == sgn_cost && unsignedp))
- {
- emit_insn (uns_insns);
- return uns_ret;
- }
- emit_insn (sgn_insns);
- return sgn_ret;
- }
- return expand_divmod (mod_p, code, mode, op0, op1, target, unsignedp);
-}
-
-rtx
-expand_expr_real_2 (sepops ops, rtx target, machine_mode tmode,
- enum expand_modifier modifier)
-{
- rtx op0, op1, op2, temp;
- rtx_code_label *lab;
- tree type;
- int unsignedp;
- machine_mode mode;
- scalar_int_mode int_mode;
- enum tree_code code = ops->code;
- optab this_optab;
- rtx subtarget, original_target;
- int ignore;
- bool reduce_bit_field;
- location_t loc = ops->location;
- tree treeop0, treeop1, treeop2;
-#define REDUCE_BIT_FIELD(expr) (reduce_bit_field \
- ? reduce_to_bit_field_precision ((expr), \
- target, \
- type) \
- : (expr))
-
- type = ops->type;
- mode = TYPE_MODE (type);
- unsignedp = TYPE_UNSIGNED (type);
-
- treeop0 = ops->op0;
- treeop1 = ops->op1;
- treeop2 = ops->op2;
-
- /* We should be called only on simple (binary or unary) expressions,
- exactly those that are valid in gimple expressions that aren't
- GIMPLE_SINGLE_RHS (or invalid). */
- gcc_assert (get_gimple_rhs_class (code) == GIMPLE_UNARY_RHS
- || get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS
- || get_gimple_rhs_class (code) == GIMPLE_TERNARY_RHS);
-
- ignore = (target == const0_rtx
- || ((CONVERT_EXPR_CODE_P (code)
- || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
- && TREE_CODE (type) == VOID_TYPE));
-
- /* We should be called only if we need the result. */
- gcc_assert (!ignore);
-
- /* An operation in what may be a bit-field type needs the
- result to be reduced to the precision of the bit-field type,
- which is narrower than that of the type's mode. */
- reduce_bit_field = (INTEGRAL_TYPE_P (type)
- && !type_has_mode_precision_p (type));
-
- if (reduce_bit_field
- && (modifier == EXPAND_STACK_PARM
- || (target && GET_MODE (target) != mode)))
- target = 0;
-
- /* Use subtarget as the target for operand 0 of a binary operation. */
- subtarget = get_subtarget (target);
- original_target = target;
-
- switch (code)
- {
- case NON_LVALUE_EXPR:
- case PAREN_EXPR:
- CASE_CONVERT:
- if (treeop0 == error_mark_node)
- return const0_rtx;
-
- if (TREE_CODE (type) == UNION_TYPE)
- {
- tree valtype = TREE_TYPE (treeop0);
-
- /* If both input and output are BLKmode, this conversion isn't doing
- anything except possibly changing memory attribute. */
- if (mode == BLKmode && TYPE_MODE (valtype) == BLKmode)
- {
- rtx result = expand_expr (treeop0, target, tmode,
- modifier);
-
- result = copy_rtx (result);
- set_mem_attributes (result, type, 0);
- return result;
- }
-
- if (target == 0)
- {
- if (TYPE_MODE (type) != BLKmode)
- target = gen_reg_rtx (TYPE_MODE (type));
- else
- target = assign_temp (type, 1, 1);
- }
-
- if (MEM_P (target))
- /* Store data into beginning of memory target. */
- store_expr (treeop0,
- adjust_address (target, TYPE_MODE (valtype), 0),
- modifier == EXPAND_STACK_PARM,
- false, TYPE_REVERSE_STORAGE_ORDER (type));
-
- else
- {
- gcc_assert (REG_P (target)
- && !TYPE_REVERSE_STORAGE_ORDER (type));
-
- /* Store this field into a union of the proper type. */
- poly_uint64 op0_size
- = tree_to_poly_uint64 (TYPE_SIZE (TREE_TYPE (treeop0)));
- poly_uint64 union_size = GET_MODE_BITSIZE (mode);
- store_field (target,
- /* The conversion must be constructed so that
- we know at compile time how many bits
- to preserve. */
- ordered_min (op0_size, union_size),
- 0, 0, 0, TYPE_MODE (valtype), treeop0, 0,
- false, false);
- }
-
- /* Return the entire union. */
- return target;
- }
-
- if (mode == TYPE_MODE (TREE_TYPE (treeop0)))
- {
- op0 = expand_expr (treeop0, target, VOIDmode,
- modifier);
-
- /* If the signedness of the conversion differs and OP0 is
- a promoted SUBREG, clear that indication since we now
- have to do the proper extension. */
- if (TYPE_UNSIGNED (TREE_TYPE (treeop0)) != unsignedp
- && GET_CODE (op0) == SUBREG)
- SUBREG_PROMOTED_VAR_P (op0) = 0;
-
- return REDUCE_BIT_FIELD (op0);
- }
-
- op0 = expand_expr (treeop0, NULL_RTX, mode,
- modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier);
- if (GET_MODE (op0) == mode)
- ;
-
- /* If OP0 is a constant, just convert it into the proper mode. */
- else if (CONSTANT_P (op0))
- {
- tree inner_type = TREE_TYPE (treeop0);
- machine_mode inner_mode = GET_MODE (op0);
-
- if (inner_mode == VOIDmode)
- inner_mode = TYPE_MODE (inner_type);
-
- if (modifier == EXPAND_INITIALIZER)
- op0 = lowpart_subreg (mode, op0, inner_mode);
- else
- op0= convert_modes (mode, inner_mode, op0,
- TYPE_UNSIGNED (inner_type));
- }
-
- else if (modifier == EXPAND_INITIALIZER)
- op0 = gen_rtx_fmt_e (TYPE_UNSIGNED (TREE_TYPE (treeop0))
- ? ZERO_EXTEND : SIGN_EXTEND, mode, op0);
-
- else if (target == 0)
- op0 = convert_to_mode (mode, op0,
- TYPE_UNSIGNED (TREE_TYPE
- (treeop0)));
- else
- {
- convert_move (target, op0,
- TYPE_UNSIGNED (TREE_TYPE (treeop0)));
- op0 = target;
- }
-
- return REDUCE_BIT_FIELD (op0);
-
- case ADDR_SPACE_CONVERT_EXPR:
- {
- tree treeop0_type = TREE_TYPE (treeop0);
-
- gcc_assert (POINTER_TYPE_P (type));
- gcc_assert (POINTER_TYPE_P (treeop0_type));
-
- addr_space_t as_to = TYPE_ADDR_SPACE (TREE_TYPE (type));
- addr_space_t as_from = TYPE_ADDR_SPACE (TREE_TYPE (treeop0_type));
-
- /* Conversions between pointers to the same address space should
- have been implemented via CONVERT_EXPR / NOP_EXPR. */
- gcc_assert (as_to != as_from);
-
- op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
-
- /* Ask target code to handle conversion between pointers
- to overlapping address spaces. */
- if (targetm.addr_space.subset_p (as_to, as_from)
- || targetm.addr_space.subset_p (as_from, as_to))
- {
- op0 = targetm.addr_space.convert (op0, treeop0_type, type);
- }
- else
- {
- /* For disjoint address spaces, converting anything but a null
- pointer invokes undefined behavior. We truncate or extend the
- value as if we'd converted via integers, which handles 0 as
- required, and all others as the programmer likely expects. */
-#ifndef POINTERS_EXTEND_UNSIGNED
- const int POINTERS_EXTEND_UNSIGNED = 1;
-#endif
- op0 = convert_modes (mode, TYPE_MODE (treeop0_type),
- op0, POINTERS_EXTEND_UNSIGNED);
- }
- gcc_assert (op0);
- return op0;
- }
-
- case POINTER_PLUS_EXPR:
- /* Even though the sizetype mode and the pointer's mode can be different
- expand is able to handle this correctly and get the correct result out
- of the PLUS_EXPR code. */
- /* Make sure to sign-extend the sizetype offset in a POINTER_PLUS_EXPR
- if sizetype precision is smaller than pointer precision. */
- if (TYPE_PRECISION (sizetype) < TYPE_PRECISION (type))
- treeop1 = fold_convert_loc (loc, type,
- fold_convert_loc (loc, ssizetype,
- treeop1));
- /* If sizetype precision is larger than pointer precision, truncate the
- offset to have matching modes. */
- else if (TYPE_PRECISION (sizetype) > TYPE_PRECISION (type))
- treeop1 = fold_convert_loc (loc, type, treeop1);
- /* FALLTHRU */
-
- case PLUS_EXPR:
- /* If we are adding a constant, a VAR_DECL that is sp, fp, or ap, and
- something else, make sure we add the register to the constant and
- then to the other thing. This case can occur during strength
- reduction and doing it this way will produce better code if the
- frame pointer or argument pointer is eliminated.
-
- fold-const.c will ensure that the constant is always in the inner
- PLUS_EXPR, so the only case we need to do anything about is if
- sp, ap, or fp is our second argument, in which case we must swap
- the innermost first argument and our second argument. */
-
- if (TREE_CODE (treeop0) == PLUS_EXPR
- && TREE_CODE (TREE_OPERAND (treeop0, 1)) == INTEGER_CST
- && VAR_P (treeop1)
- && (DECL_RTL (treeop1) == frame_pointer_rtx
- || DECL_RTL (treeop1) == stack_pointer_rtx
- || DECL_RTL (treeop1) == arg_pointer_rtx))
- {
- gcc_unreachable ();
- }
-
- /* If the result is to be ptr_mode and we are adding an integer to
- something, we might be forming a constant. So try to use
- plus_constant. If it produces a sum and we can't accept it,
- use force_operand. This allows P = &ARR[const] to generate
- efficient code on machines where a SYMBOL_REF is not a valid
- address.
-
- If this is an EXPAND_SUM call, always return the sum. */
- if (modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER
- || (mode == ptr_mode && (unsignedp || ! flag_trapv)))
- {
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- if (TREE_CODE (treeop0) == INTEGER_CST
- && HWI_COMPUTABLE_MODE_P (mode)
- && TREE_CONSTANT (treeop1))
- {
- rtx constant_part;
- HOST_WIDE_INT wc;
- machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop1));
-
- op1 = expand_expr (treeop1, subtarget, VOIDmode,
- EXPAND_SUM);
- /* Use wi::shwi to ensure that the constant is
- truncated according to the mode of OP1, then sign extended
- to a HOST_WIDE_INT. Using the constant directly can result
- in non-canonical RTL in a 64x32 cross compile. */
- wc = TREE_INT_CST_LOW (treeop0);
- constant_part =
- immed_wide_int_const (wi::shwi (wc, wmode), wmode);
- op1 = plus_constant (mode, op1, INTVAL (constant_part));
- if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
- op1 = force_operand (op1, target);
- return REDUCE_BIT_FIELD (op1);
- }
-
- else if (TREE_CODE (treeop1) == INTEGER_CST
- && HWI_COMPUTABLE_MODE_P (mode)
- && TREE_CONSTANT (treeop0))
- {
- rtx constant_part;
- HOST_WIDE_INT wc;
- machine_mode wmode = TYPE_MODE (TREE_TYPE (treeop0));
-
- op0 = expand_expr (treeop0, subtarget, VOIDmode,
- (modifier == EXPAND_INITIALIZER
- ? EXPAND_INITIALIZER : EXPAND_SUM));
- if (! CONSTANT_P (op0))
- {
- op1 = expand_expr (treeop1, NULL_RTX,
- VOIDmode, modifier);
- /* Return a PLUS if modifier says it's OK. */
- if (modifier == EXPAND_SUM
- || modifier == EXPAND_INITIALIZER)
- return simplify_gen_binary (PLUS, mode, op0, op1);
- goto binop2;
- }
- /* Use wi::shwi to ensure that the constant is
- truncated according to the mode of OP1, then sign extended
- to a HOST_WIDE_INT. Using the constant directly can result
- in non-canonical RTL in a 64x32 cross compile. */
- wc = TREE_INT_CST_LOW (treeop1);
- constant_part
- = immed_wide_int_const (wi::shwi (wc, wmode), wmode);
- op0 = plus_constant (mode, op0, INTVAL (constant_part));
- if (modifier != EXPAND_SUM && modifier != EXPAND_INITIALIZER)
- op0 = force_operand (op0, target);
- return REDUCE_BIT_FIELD (op0);
- }
- }
-
- /* Use TER to expand pointer addition of a negated value
- as pointer subtraction. */
- if ((POINTER_TYPE_P (TREE_TYPE (treeop0))
- || (TREE_CODE (TREE_TYPE (treeop0)) == VECTOR_TYPE
- && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (treeop0)))))
- && TREE_CODE (treeop1) == SSA_NAME
- && TYPE_MODE (TREE_TYPE (treeop0))
- == TYPE_MODE (TREE_TYPE (treeop1)))
- {
- gimple *def = get_def_for_expr (treeop1, NEGATE_EXPR);
- if (def)
- {
- treeop1 = gimple_assign_rhs1 (def);
- code = MINUS_EXPR;
- goto do_minus;
- }
- }
-
- /* No sense saving up arithmetic to be done
- if it's all in the wrong mode to form part of an address.
- And force_operand won't know whether to sign-extend or
- zero-extend. */
- if (modifier != EXPAND_INITIALIZER
- && (modifier != EXPAND_SUM || mode != ptr_mode))
- {
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, modifier);
- if (op0 == const0_rtx)
- return op1;
- if (op1 == const0_rtx)
- return op0;
- goto binop2;
- }
-
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, modifier);
- return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
-
- case MINUS_EXPR:
- case POINTER_DIFF_EXPR:
- do_minus:
- /* For initializers, we are allowed to return a MINUS of two
- symbolic constants. Here we handle all cases when both operands
- are constant. */
- /* Handle difference of two symbolic constants,
- for the sake of an initializer. */
- if ((modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
- && really_constant_p (treeop0)
- && really_constant_p (treeop1))
- {
- expand_operands (treeop0, treeop1,
- NULL_RTX, &op0, &op1, modifier);
- return simplify_gen_binary (MINUS, mode, op0, op1);
- }
-
- /* No sense saving up arithmetic to be done
- if it's all in the wrong mode to form part of an address.
- And force_operand won't know whether to sign-extend or
- zero-extend. */
- if (modifier != EXPAND_INITIALIZER
- && (modifier != EXPAND_SUM || mode != ptr_mode))
- goto binop;
-
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, modifier);
-
- /* Convert A - const to A + (-const). */
- if (CONST_INT_P (op1))
- {
- op1 = negate_rtx (mode, op1);
- return REDUCE_BIT_FIELD (simplify_gen_binary (PLUS, mode, op0, op1));
- }
-
- goto binop2;
-
- case WIDEN_MULT_PLUS_EXPR:
- case WIDEN_MULT_MINUS_EXPR:
- expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- op2 = expand_normal (treeop2);
- target = expand_widen_pattern_expr (ops, op0, op1, op2,
- target, unsignedp);
- return target;
-
- case WIDEN_PLUS_EXPR:
- case WIDEN_MINUS_EXPR:
- case WIDEN_MULT_EXPR:
- /* If first operand is constant, swap them.
- Thus the following special case checks need only
- check the second operand. */
- if (TREE_CODE (treeop0) == INTEGER_CST)
- std::swap (treeop0, treeop1);
-
- /* First, check if we have a multiplication of one signed and one
- unsigned operand. */
- if (TREE_CODE (treeop1) != INTEGER_CST
- && (TYPE_UNSIGNED (TREE_TYPE (treeop0))
- != TYPE_UNSIGNED (TREE_TYPE (treeop1))))
- {
- machine_mode innermode = TYPE_MODE (TREE_TYPE (treeop0));
- this_optab = usmul_widen_optab;
- if (find_widening_optab_handler (this_optab, mode, innermode)
- != CODE_FOR_nothing)
- {
- if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
- expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
- EXPAND_NORMAL);
- else
- expand_operands (treeop0, treeop1, NULL_RTX, &op1, &op0,
- EXPAND_NORMAL);
- /* op0 and op1 might still be constant, despite the above
- != INTEGER_CST check. Handle it. */
- if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
- {
- op0 = convert_modes (mode, innermode, op0, true);
- op1 = convert_modes (mode, innermode, op1, false);
- return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
- target, unsignedp));
- }
- goto binop3;
- }
- }
- /* Check for a multiplication with matching signedness. */
- else if ((TREE_CODE (treeop1) == INTEGER_CST
- && int_fits_type_p (treeop1, TREE_TYPE (treeop0)))
- || (TYPE_UNSIGNED (TREE_TYPE (treeop1))
- == TYPE_UNSIGNED (TREE_TYPE (treeop0))))
- {
- tree op0type = TREE_TYPE (treeop0);
- machine_mode innermode = TYPE_MODE (op0type);
- bool zextend_p = TYPE_UNSIGNED (op0type);
- optab other_optab = zextend_p ? smul_widen_optab : umul_widen_optab;
- this_optab = zextend_p ? umul_widen_optab : smul_widen_optab;
-
- if (TREE_CODE (treeop0) != INTEGER_CST)
- {
- if (find_widening_optab_handler (this_optab, mode, innermode)
- != CODE_FOR_nothing)
- {
- expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1,
- EXPAND_NORMAL);
- /* op0 and op1 might still be constant, despite the above
- != INTEGER_CST check. Handle it. */
- if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
- {
- widen_mult_const:
- op0 = convert_modes (mode, innermode, op0, zextend_p);
- op1
- = convert_modes (mode, innermode, op1,
- TYPE_UNSIGNED (TREE_TYPE (treeop1)));
- return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1,
- target,
- unsignedp));
- }
- temp = expand_widening_mult (mode, op0, op1, target,
- unsignedp, this_optab);
- return REDUCE_BIT_FIELD (temp);
- }
- if (find_widening_optab_handler (other_optab, mode, innermode)
- != CODE_FOR_nothing
- && innermode == word_mode)
- {
- rtx htem, hipart;
- op0 = expand_normal (treeop0);
- op1 = expand_normal (treeop1);
- /* op0 and op1 might be constants, despite the above
- != INTEGER_CST check. Handle it. */
- if (GET_MODE (op0) == VOIDmode && GET_MODE (op1) == VOIDmode)
- goto widen_mult_const;
- temp = expand_binop (mode, other_optab, op0, op1, target,
- unsignedp, OPTAB_LIB_WIDEN);
- hipart = gen_highpart (word_mode, temp);
- htem = expand_mult_highpart_adjust (word_mode, hipart,
- op0, op1, hipart,
- zextend_p);
- if (htem != hipart)
- emit_move_insn (hipart, htem);
- return REDUCE_BIT_FIELD (temp);
- }
- }
- }
- treeop0 = fold_build1 (CONVERT_EXPR, type, treeop0);
- treeop1 = fold_build1 (CONVERT_EXPR, type, treeop1);
- expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
- return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
-
- case MULT_EXPR:
- /* If this is a fixed-point operation, then we cannot use the code
- below because "expand_mult" doesn't support sat/no-sat fixed-point
- multiplications. */
- if (ALL_FIXED_POINT_MODE_P (mode))
- goto binop;
-
- /* If first operand is constant, swap them.
- Thus the following special case checks need only
- check the second operand. */
- if (TREE_CODE (treeop0) == INTEGER_CST)
- std::swap (treeop0, treeop1);
-
- /* Attempt to return something suitable for generating an
- indexed address, for machines that support that. */
-
- if (modifier == EXPAND_SUM && mode == ptr_mode
- && tree_fits_shwi_p (treeop1))
- {
- tree exp1 = treeop1;
-
- op0 = expand_expr (treeop0, subtarget, VOIDmode,
- EXPAND_SUM);
-
- if (!REG_P (op0))
- op0 = force_operand (op0, NULL_RTX);
- if (!REG_P (op0))
- op0 = copy_to_mode_reg (mode, op0);
-
- op1 = gen_int_mode (tree_to_shwi (exp1),
- TYPE_MODE (TREE_TYPE (exp1)));
- return REDUCE_BIT_FIELD (gen_rtx_MULT (mode, op0, op1));
- }
-
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
-
- if (SCALAR_INT_MODE_P (mode) && optimize >= 2)
- {
- gimple *def_stmt0 = get_def_for_expr (treeop0, TRUNC_DIV_EXPR);
- gimple *def_stmt1 = get_def_for_expr (treeop1, TRUNC_DIV_EXPR);
- if (def_stmt0
- && !operand_equal_p (treeop1, gimple_assign_rhs2 (def_stmt0), 0))
- def_stmt0 = NULL;
- if (def_stmt1
- && !operand_equal_p (treeop0, gimple_assign_rhs2 (def_stmt1), 0))
- def_stmt1 = NULL;
-
- if (def_stmt0 || def_stmt1)
- {
- /* X / Y * Y can be expanded as X - X % Y too.
- Choose the cheaper sequence of those two. */
- if (def_stmt0)
- treeop0 = gimple_assign_rhs1 (def_stmt0);
- else
- {
- treeop1 = treeop0;
- treeop0 = gimple_assign_rhs1 (def_stmt1);
- }
- expand_operands (treeop0, treeop1, subtarget, &op0, &op1,
- EXPAND_NORMAL);
- bool speed_p = optimize_insn_for_speed_p ();
- do_pending_stack_adjust ();
- start_sequence ();
- rtx divmul_ret
- = expand_expr_divmod (TRUNC_DIV_EXPR, mode, treeop0, treeop1,
- op0, op1, NULL_RTX, unsignedp);
- divmul_ret = expand_mult (mode, divmul_ret, op1, target,
- unsignedp);
- rtx_insn *divmul_insns = get_insns ();
- end_sequence ();
- start_sequence ();
- rtx modsub_ret
- = expand_expr_divmod (TRUNC_MOD_EXPR, mode, treeop0, treeop1,
- op0, op1, NULL_RTX, unsignedp);
- this_optab = optab_for_tree_code (MINUS_EXPR, type,
- optab_default);
- modsub_ret = expand_binop (mode, this_optab, op0, modsub_ret,
- target, unsignedp, OPTAB_LIB_WIDEN);
- rtx_insn *modsub_insns = get_insns ();
- end_sequence ();
- unsigned divmul_cost = seq_cost (divmul_insns, speed_p);
- unsigned modsub_cost = seq_cost (modsub_insns, speed_p);
- /* If costs are the same then use as tie breaker the other other
- factor. */
- if (divmul_cost == modsub_cost)
- {
- divmul_cost = seq_cost (divmul_insns, !speed_p);
- modsub_cost = seq_cost (modsub_insns, !speed_p);
- }
-
- if (divmul_cost <= modsub_cost)
- {
- emit_insn (divmul_insns);
- return REDUCE_BIT_FIELD (divmul_ret);
- }
- emit_insn (modsub_insns);
- return REDUCE_BIT_FIELD (modsub_ret);
- }
- }
-
- expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
- return REDUCE_BIT_FIELD (expand_mult (mode, op0, op1, target, unsignedp));
-
- case TRUNC_MOD_EXPR:
- case FLOOR_MOD_EXPR:
- case CEIL_MOD_EXPR:
- case ROUND_MOD_EXPR:
-
- case TRUNC_DIV_EXPR:
- case FLOOR_DIV_EXPR:
- case CEIL_DIV_EXPR:
- case ROUND_DIV_EXPR:
- case EXACT_DIV_EXPR:
- /* If this is a fixed-point operation, then we cannot use the code
- below because "expand_divmod" doesn't support sat/no-sat fixed-point
- divisions. */
- if (ALL_FIXED_POINT_MODE_P (mode))
- goto binop;
-
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- /* Possible optimization: compute the dividend with EXPAND_SUM
- then if the divisor is constant can optimize the case
- where some terms of the dividend have coeffs divisible by it. */
- expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
- return expand_expr_divmod (code, mode, treeop0, treeop1, op0, op1,
- target, unsignedp);
-
- case RDIV_EXPR:
- goto binop;
-
- case MULT_HIGHPART_EXPR:
- expand_operands (treeop0, treeop1, subtarget, &op0, &op1, EXPAND_NORMAL);
- temp = expand_mult_highpart (mode, op0, op1, target, unsignedp);
- gcc_assert (temp);
- return temp;
-
- case FIXED_CONVERT_EXPR:
- op0 = expand_normal (treeop0);
- if (target == 0 || modifier == EXPAND_STACK_PARM)
- target = gen_reg_rtx (mode);
-
- if ((TREE_CODE (TREE_TYPE (treeop0)) == INTEGER_TYPE
- && TYPE_UNSIGNED (TREE_TYPE (treeop0)))
- || (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type)))
- expand_fixed_convert (target, op0, 1, TYPE_SATURATING (type));
- else
- expand_fixed_convert (target, op0, 0, TYPE_SATURATING (type));
- return target;
-
- case FIX_TRUNC_EXPR:
- op0 = expand_normal (treeop0);
- if (target == 0 || modifier == EXPAND_STACK_PARM)
- target = gen_reg_rtx (mode);
- expand_fix (target, op0, unsignedp);
- return target;
-
- case FLOAT_EXPR:
- op0 = expand_normal (treeop0);
- if (target == 0 || modifier == EXPAND_STACK_PARM)
- target = gen_reg_rtx (mode);
- /* expand_float can't figure out what to do if FROM has VOIDmode.
- So give it the correct mode. With -O, cse will optimize this. */
- if (GET_MODE (op0) == VOIDmode)
- op0 = copy_to_mode_reg (TYPE_MODE (TREE_TYPE (treeop0)),
- op0);
- expand_float (target, op0,
- TYPE_UNSIGNED (TREE_TYPE (treeop0)));
- return target;
-
- case NEGATE_EXPR:
- op0 = expand_expr (treeop0, subtarget,
- VOIDmode, EXPAND_NORMAL);
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- temp = expand_unop (mode,
- optab_for_tree_code (NEGATE_EXPR, type,
- optab_default),
- op0, target, 0);
- gcc_assert (temp);
- return REDUCE_BIT_FIELD (temp);
-
- case ABS_EXPR:
- case ABSU_EXPR:
- op0 = expand_expr (treeop0, subtarget,
- VOIDmode, EXPAND_NORMAL);
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
-
- /* ABS_EXPR is not valid for complex arguments. */
- gcc_assert (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
- && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT);
-
- /* Unsigned abs is simply the operand. Testing here means we don't
- risk generating incorrect code below. */
- if (TYPE_UNSIGNED (TREE_TYPE (treeop0)))
- return op0;
-
- return expand_abs (mode, op0, target, unsignedp,
- safe_from_p (target, treeop0, 1));
-
- case MAX_EXPR:
- case MIN_EXPR:
- target = original_target;
- if (target == 0
- || modifier == EXPAND_STACK_PARM
- || (MEM_P (target) && MEM_VOLATILE_P (target))
- || GET_MODE (target) != mode
- || (REG_P (target)
- && REGNO (target) < FIRST_PSEUDO_REGISTER))
- target = gen_reg_rtx (mode);
- expand_operands (treeop0, treeop1,
- target, &op0, &op1, EXPAND_NORMAL);
-
- /* First try to do it with a special MIN or MAX instruction.
- If that does not win, use a conditional jump to select the proper
- value. */
- this_optab = optab_for_tree_code (code, type, optab_default);
- temp = expand_binop (mode, this_optab, op0, op1, target, unsignedp,
- OPTAB_WIDEN);
- if (temp != 0)
- return temp;
-
- if (VECTOR_TYPE_P (type))
- gcc_unreachable ();
-
- /* At this point, a MEM target is no longer useful; we will get better
- code without it. */
-
- if (! REG_P (target))
- target = gen_reg_rtx (mode);
-
- /* If op1 was placed in target, swap op0 and op1. */
- if (target != op0 && target == op1)
- std::swap (op0, op1);
-
- /* We generate better code and avoid problems with op1 mentioning
- target by forcing op1 into a pseudo if it isn't a constant. */
- if (! CONSTANT_P (op1))
- op1 = force_reg (mode, op1);
-
- {
- enum rtx_code comparison_code;
- rtx cmpop1 = op1;
-
- if (code == MAX_EXPR)
- comparison_code = unsignedp ? GEU : GE;
- else
- comparison_code = unsignedp ? LEU : LE;
-
- /* Canonicalize to comparisons against 0. */
- if (op1 == const1_rtx)
- {
- /* Converting (a >= 1 ? a : 1) into (a > 0 ? a : 1)
- or (a != 0 ? a : 1) for unsigned.
- For MIN we are safe converting (a <= 1 ? a : 1)
- into (a <= 0 ? a : 1) */
- cmpop1 = const0_rtx;
- if (code == MAX_EXPR)
- comparison_code = unsignedp ? NE : GT;
- }
- if (op1 == constm1_rtx && !unsignedp)
- {
- /* Converting (a >= -1 ? a : -1) into (a >= 0 ? a : -1)
- and (a <= -1 ? a : -1) into (a < 0 ? a : -1) */
- cmpop1 = const0_rtx;
- if (code == MIN_EXPR)
- comparison_code = LT;
- }
-
- /* Use a conditional move if possible. */
- if (can_conditionally_move_p (mode))
- {
- rtx insn;
-
- start_sequence ();
-
- /* Try to emit the conditional move. */
- insn = emit_conditional_move (target, comparison_code,
- op0, cmpop1, mode,
- op0, op1, mode,
- unsignedp);
-
- /* If we could do the conditional move, emit the sequence,
- and return. */
- if (insn)
- {
- rtx_insn *seq = get_insns ();
- end_sequence ();
- emit_insn (seq);
- return target;
- }
-
- /* Otherwise discard the sequence and fall back to code with
- branches. */
- end_sequence ();
- }
-
- if (target != op0)
- emit_move_insn (target, op0);
-
- lab = gen_label_rtx ();
- do_compare_rtx_and_jump (target, cmpop1, comparison_code,
- unsignedp, mode, NULL_RTX, NULL, lab,
- profile_probability::uninitialized ());
- }
- emit_move_insn (target, op1);
- emit_label (lab);
- return target;
-
- case BIT_NOT_EXPR:
- op0 = expand_expr (treeop0, subtarget,
- VOIDmode, EXPAND_NORMAL);
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- /* In case we have to reduce the result to bitfield precision
- for unsigned bitfield expand this as XOR with a proper constant
- instead. */
- if (reduce_bit_field && TYPE_UNSIGNED (type))
- {
- int_mode = SCALAR_INT_TYPE_MODE (type);
- wide_int mask = wi::mask (TYPE_PRECISION (type),
- false, GET_MODE_PRECISION (int_mode));
-
- temp = expand_binop (int_mode, xor_optab, op0,
- immed_wide_int_const (mask, int_mode),
- target, 1, OPTAB_LIB_WIDEN);
- }
- else
- temp = expand_unop (mode, one_cmpl_optab, op0, target, 1);
- gcc_assert (temp);
- return temp;
-
- /* ??? Can optimize bitwise operations with one arg constant.
- Can optimize (a bitwise1 n) bitwise2 (a bitwise3 b)
- and (a bitwise1 b) bitwise2 b (etc)
- but that is probably not worth while. */
-
- case BIT_AND_EXPR:
- case BIT_IOR_EXPR:
- case BIT_XOR_EXPR:
- goto binop;
-
- case LROTATE_EXPR:
- case RROTATE_EXPR:
- gcc_assert (VECTOR_MODE_P (TYPE_MODE (type))
- || type_has_mode_precision_p (type));
- /* fall through */
-
- case LSHIFT_EXPR:
- case RSHIFT_EXPR:
- {
- /* If this is a fixed-point operation, then we cannot use the code
- below because "expand_shift" doesn't support sat/no-sat fixed-point
- shifts. */
- if (ALL_FIXED_POINT_MODE_P (mode))
- goto binop;
-
- if (! safe_from_p (subtarget, treeop1, 1))
- subtarget = 0;
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- op0 = expand_expr (treeop0, subtarget,
- VOIDmode, EXPAND_NORMAL);
-
- /* Left shift optimization when shifting across word_size boundary.
-
- If mode == GET_MODE_WIDER_MODE (word_mode), then normally
- there isn't native instruction to support this wide mode
- left shift. Given below scenario:
-
- Type A = (Type) B << C
-
- |< T >|
- | dest_high | dest_low |
-
- | word_size |
-
- If the shift amount C caused we shift B to across the word
- size boundary, i.e part of B shifted into high half of
- destination register, and part of B remains in the low
- half, then GCC will use the following left shift expand
- logic:
-
- 1. Initialize dest_low to B.
- 2. Initialize every bit of dest_high to the sign bit of B.
- 3. Logic left shift dest_low by C bit to finalize dest_low.
- The value of dest_low before this shift is kept in a temp D.
- 4. Logic left shift dest_high by C.
- 5. Logic right shift D by (word_size - C).
- 6. Or the result of 4 and 5 to finalize dest_high.
-
- While, by checking gimple statements, if operand B is
- coming from signed extension, then we can simplify above
- expand logic into:
-
- 1. dest_high = src_low >> (word_size - C).
- 2. dest_low = src_low << C.
-
- We can use one arithmetic right shift to finish all the
- purpose of steps 2, 4, 5, 6, thus we reduce the steps
- needed from 6 into 2.
-
- The case is similar for zero extension, except that we
- initialize dest_high to zero rather than copies of the sign
- bit from B. Furthermore, we need to use a logical right shift
- in this case.
-
- The choice of sign-extension versus zero-extension is
- determined entirely by whether or not B is signed and is
- independent of the current setting of unsignedp. */
-
- temp = NULL_RTX;
- if (code == LSHIFT_EXPR
- && target
- && REG_P (target)
- && GET_MODE_2XWIDER_MODE (word_mode).exists (&int_mode)
- && mode == int_mode
- && TREE_CONSTANT (treeop1)
- && TREE_CODE (treeop0) == SSA_NAME)
- {
- gimple *def = SSA_NAME_DEF_STMT (treeop0);
- if (is_gimple_assign (def)
- && gimple_assign_rhs_code (def) == NOP_EXPR)
- {
- scalar_int_mode rmode = SCALAR_INT_TYPE_MODE
- (TREE_TYPE (gimple_assign_rhs1 (def)));
-
- if (GET_MODE_SIZE (rmode) < GET_MODE_SIZE (int_mode)
- && TREE_INT_CST_LOW (treeop1) < GET_MODE_BITSIZE (word_mode)
- && ((TREE_INT_CST_LOW (treeop1) + GET_MODE_BITSIZE (rmode))
- >= GET_MODE_BITSIZE (word_mode)))
- {
- rtx_insn *seq, *seq_old;
- poly_uint64 high_off = subreg_highpart_offset (word_mode,
- int_mode);
- bool extend_unsigned
- = TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def)));
- rtx low = lowpart_subreg (word_mode, op0, int_mode);
- rtx dest_low = lowpart_subreg (word_mode, target, int_mode);
- rtx dest_high = simplify_gen_subreg (word_mode, target,
- int_mode, high_off);
- HOST_WIDE_INT ramount = (BITS_PER_WORD
- - TREE_INT_CST_LOW (treeop1));
- tree rshift = build_int_cst (TREE_TYPE (treeop1), ramount);
-
- start_sequence ();
- /* dest_high = src_low >> (word_size - C). */
- temp = expand_variable_shift (RSHIFT_EXPR, word_mode, low,
- rshift, dest_high,
- extend_unsigned);
- if (temp != dest_high)
- emit_move_insn (dest_high, temp);
-
- /* dest_low = src_low << C. */
- temp = expand_variable_shift (LSHIFT_EXPR, word_mode, low,
- treeop1, dest_low, unsignedp);
- if (temp != dest_low)
- emit_move_insn (dest_low, temp);
-
- seq = get_insns ();
- end_sequence ();
- temp = target ;
-
- if (have_insn_for (ASHIFT, int_mode))
- {
- bool speed_p = optimize_insn_for_speed_p ();
- start_sequence ();
- rtx ret_old = expand_variable_shift (code, int_mode,
- op0, treeop1,
- target,
- unsignedp);
-
- seq_old = get_insns ();
- end_sequence ();
- if (seq_cost (seq, speed_p)
- >= seq_cost (seq_old, speed_p))
- {
- seq = seq_old;
- temp = ret_old;
- }
- }
- emit_insn (seq);
- }
- }
- }
-
- if (temp == NULL_RTX)
- temp = expand_variable_shift (code, mode, op0, treeop1, target,
- unsignedp);
- if (code == LSHIFT_EXPR)
- temp = REDUCE_BIT_FIELD (temp);
- return temp;
- }
-
- /* Could determine the answer when only additive constants differ. Also,
- the addition of one can be handled by changing the condition. */
- case LT_EXPR:
- case LE_EXPR:
- case GT_EXPR:
- case GE_EXPR:
- case EQ_EXPR:
- case NE_EXPR:
- case UNORDERED_EXPR:
- case ORDERED_EXPR:
- case UNLT_EXPR:
- case UNLE_EXPR:
- case UNGT_EXPR:
- case UNGE_EXPR:
- case UNEQ_EXPR:
- case LTGT_EXPR:
- {
- temp = do_store_flag (ops,
- modifier != EXPAND_STACK_PARM ? target : NULL_RTX,
- tmode != VOIDmode ? tmode : mode);
- if (temp)
- return temp;
-
- /* Use a compare and a jump for BLKmode comparisons, or for function
- type comparisons is have_canonicalize_funcptr_for_compare. */
-
- if ((target == 0
- || modifier == EXPAND_STACK_PARM
- || ! safe_from_p (target, treeop0, 1)
- || ! safe_from_p (target, treeop1, 1)
- /* Make sure we don't have a hard reg (such as function's return
- value) live across basic blocks, if not optimizing. */
- || (!optimize && REG_P (target)
- && REGNO (target) < FIRST_PSEUDO_REGISTER)))
- target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
-
- emit_move_insn (target, const0_rtx);
-
- rtx_code_label *lab1 = gen_label_rtx ();
- jumpifnot_1 (code, treeop0, treeop1, lab1,
- profile_probability::uninitialized ());
-
- if (TYPE_PRECISION (type) == 1 && !TYPE_UNSIGNED (type))
- emit_move_insn (target, constm1_rtx);
- else
- emit_move_insn (target, const1_rtx);
-
- emit_label (lab1);
- return target;
- }
- case COMPLEX_EXPR:
- /* Get the rtx code of the operands. */
- op0 = expand_normal (treeop0);
- op1 = expand_normal (treeop1);
-
- if (!target)
- target = gen_reg_rtx (TYPE_MODE (type));
- else
- /* If target overlaps with op1, then either we need to force
- op1 into a pseudo (if target also overlaps with op0),
- or write the complex parts in reverse order. */
- switch (GET_CODE (target))
- {
- case CONCAT:
- if (reg_overlap_mentioned_p (XEXP (target, 0), op1))
- {
- if (reg_overlap_mentioned_p (XEXP (target, 1), op0))
- {
- complex_expr_force_op1:
- temp = gen_reg_rtx (GET_MODE_INNER (GET_MODE (target)));
- emit_move_insn (temp, op1);
- op1 = temp;
- break;
- }
- complex_expr_swap_order:
- /* Move the imaginary (op1) and real (op0) parts to their
- location. */
- write_complex_part (target, op1, true);
- write_complex_part (target, op0, false);
-
- return target;
- }
- break;
- case MEM:
- temp = adjust_address_nv (target,
- GET_MODE_INNER (GET_MODE (target)), 0);
- if (reg_overlap_mentioned_p (temp, op1))
- {
- scalar_mode imode = GET_MODE_INNER (GET_MODE (target));
- temp = adjust_address_nv (target, imode,
- GET_MODE_SIZE (imode));
- if (reg_overlap_mentioned_p (temp, op0))
- goto complex_expr_force_op1;
- goto complex_expr_swap_order;
- }
- break;
- default:
- if (reg_overlap_mentioned_p (target, op1))
- {
- if (reg_overlap_mentioned_p (target, op0))
- goto complex_expr_force_op1;
- goto complex_expr_swap_order;
- }
- break;
- }
-
- /* Move the real (op0) and imaginary (op1) parts to their location. */
- write_complex_part (target, op0, false);
- write_complex_part (target, op1, true);
-
- return target;
-
- case WIDEN_SUM_EXPR:
- {
- tree oprnd0 = treeop0;
- tree oprnd1 = treeop1;
-
- expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- target = expand_widen_pattern_expr (ops, op0, NULL_RTX, op1,
- target, unsignedp);
- return target;
- }
-
- case VEC_UNPACK_HI_EXPR:
- case VEC_UNPACK_LO_EXPR:
- case VEC_UNPACK_FIX_TRUNC_HI_EXPR:
- case VEC_UNPACK_FIX_TRUNC_LO_EXPR:
- {
- op0 = expand_normal (treeop0);
- temp = expand_widen_pattern_expr (ops, op0, NULL_RTX, NULL_RTX,
- target, unsignedp);
- gcc_assert (temp);
- return temp;
- }
-
- case VEC_UNPACK_FLOAT_HI_EXPR:
- case VEC_UNPACK_FLOAT_LO_EXPR:
- {
- op0 = expand_normal (treeop0);
- /* The signedness is determined from input operand. */
- temp = expand_widen_pattern_expr
- (ops, op0, NULL_RTX, NULL_RTX,
- target, TYPE_UNSIGNED (TREE_TYPE (treeop0)));
-
- gcc_assert (temp);
- return temp;
- }
-
- case VEC_WIDEN_PLUS_HI_EXPR:
- case VEC_WIDEN_PLUS_LO_EXPR:
- case VEC_WIDEN_MINUS_HI_EXPR:
- case VEC_WIDEN_MINUS_LO_EXPR:
- case VEC_WIDEN_MULT_HI_EXPR:
- case VEC_WIDEN_MULT_LO_EXPR:
- case VEC_WIDEN_MULT_EVEN_EXPR:
- case VEC_WIDEN_MULT_ODD_EXPR:
- case VEC_WIDEN_LSHIFT_HI_EXPR:
- case VEC_WIDEN_LSHIFT_LO_EXPR:
- expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- target = expand_widen_pattern_expr (ops, op0, op1, NULL_RTX,
- target, unsignedp);
- gcc_assert (target);
- return target;
-
- case VEC_PACK_SAT_EXPR:
- case VEC_PACK_FIX_TRUNC_EXPR:
- mode = TYPE_MODE (TREE_TYPE (treeop0));
- subtarget = NULL_RTX;
- goto binop;
-
- case VEC_PACK_TRUNC_EXPR:
- if (VECTOR_BOOLEAN_TYPE_P (type)
- && VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (treeop0))
- && mode == TYPE_MODE (TREE_TYPE (treeop0))
- && SCALAR_INT_MODE_P (mode))
- {
- class expand_operand eops[4];
- machine_mode imode = TYPE_MODE (TREE_TYPE (treeop0));
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, EXPAND_NORMAL);
- this_optab = vec_pack_sbool_trunc_optab;
- enum insn_code icode = optab_handler (this_optab, imode);
- create_output_operand (&eops[0], target, mode);
- create_convert_operand_from (&eops[1], op0, imode, false);
- create_convert_operand_from (&eops[2], op1, imode, false);
- temp = GEN_INT (TYPE_VECTOR_SUBPARTS (type).to_constant ());
- create_input_operand (&eops[3], temp, imode);
- expand_insn (icode, 4, eops);
- return eops[0].value;
- }
- mode = TYPE_MODE (TREE_TYPE (treeop0));
- subtarget = NULL_RTX;
- goto binop;
-
- case VEC_PACK_FLOAT_EXPR:
- mode = TYPE_MODE (TREE_TYPE (treeop0));
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, EXPAND_NORMAL);
- this_optab = optab_for_tree_code (code, TREE_TYPE (treeop0),
- optab_default);
- target = expand_binop (mode, this_optab, op0, op1, target,
- TYPE_UNSIGNED (TREE_TYPE (treeop0)),
- OPTAB_LIB_WIDEN);
- gcc_assert (target);
- return target;
-
- case VEC_PERM_EXPR:
- {
- expand_operands (treeop0, treeop1, target, &op0, &op1, EXPAND_NORMAL);
- vec_perm_builder sel;
- if (TREE_CODE (treeop2) == VECTOR_CST
- && tree_to_vec_perm_builder (&sel, treeop2))
- {
- machine_mode sel_mode = TYPE_MODE (TREE_TYPE (treeop2));
- temp = expand_vec_perm_const (mode, op0, op1, sel,
- sel_mode, target);
- }
- else
- {
- op2 = expand_normal (treeop2);
- temp = expand_vec_perm_var (mode, op0, op1, op2, target);
- }
- gcc_assert (temp);
- return temp;
- }
-
- case DOT_PROD_EXPR:
- {
- tree oprnd0 = treeop0;
- tree oprnd1 = treeop1;
- tree oprnd2 = treeop2;
-
- expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- op2 = expand_normal (oprnd2);
- target = expand_widen_pattern_expr (ops, op0, op1, op2,
- target, unsignedp);
- return target;
- }
-
- case SAD_EXPR:
- {
- tree oprnd0 = treeop0;
- tree oprnd1 = treeop1;
- tree oprnd2 = treeop2;
-
- expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- op2 = expand_normal (oprnd2);
- target = expand_widen_pattern_expr (ops, op0, op1, op2,
- target, unsignedp);
- return target;
- }
-
- case REALIGN_LOAD_EXPR:
- {
- tree oprnd0 = treeop0;
- tree oprnd1 = treeop1;
- tree oprnd2 = treeop2;
-
- this_optab = optab_for_tree_code (code, type, optab_default);
- expand_operands (oprnd0, oprnd1, NULL_RTX, &op0, &op1, EXPAND_NORMAL);
- op2 = expand_normal (oprnd2);
- temp = expand_ternary_op (mode, this_optab, op0, op1, op2,
- target, unsignedp);
- gcc_assert (temp);
- return temp;
- }
-
- case COND_EXPR:
- {
- /* A COND_EXPR with its type being VOID_TYPE represents a
- conditional jump and is handled in
- expand_gimple_cond_expr. */
- gcc_assert (!VOID_TYPE_P (type));
-
- /* Note that COND_EXPRs whose type is a structure or union
- are required to be constructed to contain assignments of
- a temporary variable, so that we can evaluate them here
- for side effect only. If type is void, we must do likewise. */
-
- gcc_assert (!TREE_ADDRESSABLE (type)
- && !ignore
- && TREE_TYPE (treeop1) != void_type_node
- && TREE_TYPE (treeop2) != void_type_node);
-
- temp = expand_cond_expr_using_cmove (treeop0, treeop1, treeop2);
- if (temp)
- return temp;
-
- /* If we are not to produce a result, we have no target. Otherwise,
- if a target was specified use it; it will not be used as an
- intermediate target unless it is safe. If no target, use a
- temporary. */
-
- if (modifier != EXPAND_STACK_PARM
- && original_target
- && safe_from_p (original_target, treeop0, 1)
- && GET_MODE (original_target) == mode
- && !MEM_P (original_target))
- temp = original_target;
- else
- temp = assign_temp (type, 0, 1);
-
- do_pending_stack_adjust ();
- NO_DEFER_POP;
- rtx_code_label *lab0 = gen_label_rtx ();
- rtx_code_label *lab1 = gen_label_rtx ();
- jumpifnot (treeop0, lab0,
- profile_probability::uninitialized ());
- store_expr (treeop1, temp,
- modifier == EXPAND_STACK_PARM,
- false, false);
-
- emit_jump_insn (targetm.gen_jump (lab1));
- emit_barrier ();
- emit_label (lab0);
- store_expr (treeop2, temp,
- modifier == EXPAND_STACK_PARM,
- false, false);
-
- emit_label (lab1);
- OK_DEFER_POP;
- return temp;
- }
-
- case VEC_DUPLICATE_EXPR:
- op0 = expand_expr (treeop0, NULL_RTX, VOIDmode, modifier);
- target = expand_vector_broadcast (mode, op0);
- gcc_assert (target);
- return target;
-
- case VEC_SERIES_EXPR:
- expand_operands (treeop0, treeop1, NULL_RTX, &op0, &op1, modifier);
- return expand_vec_series_expr (mode, op0, op1, target);
-
- case BIT_INSERT_EXPR:
- {
- unsigned bitpos = tree_to_uhwi (treeop2);
- unsigned bitsize;
- if (INTEGRAL_TYPE_P (TREE_TYPE (treeop1)))
- bitsize = TYPE_PRECISION (TREE_TYPE (treeop1));
- else
- bitsize = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (treeop1)));
- op0 = expand_normal (treeop0);
- op1 = expand_normal (treeop1);
- rtx dst = gen_reg_rtx (mode);
- emit_move_insn (dst, op0);
- store_bit_field (dst, bitsize, bitpos, 0, 0,
- TYPE_MODE (TREE_TYPE (treeop1)), op1, false);
- return dst;
- }
-
- default:
- gcc_unreachable ();
- }
-
- /* Here to do an ordinary binary operator. */
- binop:
- expand_operands (treeop0, treeop1,
- subtarget, &op0, &op1, EXPAND_NORMAL);
- binop2:
- this_optab = optab_for_tree_code (code, type, optab_default);
- binop3:
- if (modifier == EXPAND_STACK_PARM)
- target = 0;
- temp = expand_binop (mode, this_optab, op0, op1, target,
- unsignedp, OPTAB_LIB_WIDEN);
- gcc_assert (temp);
- /* Bitwise operations do not need bitfield reduction as we expect their
- operands being properly truncated. */
- if (code == BIT_XOR_EXPR
- || code == BIT_AND_EXPR
- || code == BIT_IOR_EXPR)
- return temp;
- return REDUCE_BIT_FIELD (temp);
-}
-#undef REDUCE_BIT_FIELD
-
-
-/* Return TRUE if expression STMT is suitable for replacement.
- Never consider memory loads as replaceable, because those don't ever lead
- into constant expressions. */
-
-static bool
-stmt_is_replaceable_p (gimple *stmt)
-{
- if (ssa_is_replaceable_p (stmt))
- {
- /* Don't move around loads. */
- if (!gimple_assign_single_p (stmt)
- || is_gimple_val (gimple_assign_rhs1 (stmt)))
- return true;
- }
- return false;
-}
-
-rtx
-expand_expr_real_1 (tree exp, rtx target, machine_mode tmode,
- enum expand_modifier modifier, rtx *alt_rtl,
- bool inner_reference_p)
-{
- rtx op0, op1, temp, decl_rtl;
- tree type;
- int unsignedp;
- machine_mode mode, dmode;
- enum tree_code code = TREE_CODE (exp);
- rtx subtarget, original_target;
- int ignore;
- bool reduce_bit_field;
- location_t loc = EXPR_LOCATION (exp);
- struct separate_ops ops;
- tree treeop0, treeop1, treeop2;
- tree ssa_name = NULL_TREE;
- gimple *g;
-
- type = TREE_TYPE (exp);
- mode = TYPE_MODE (type);
- unsignedp = TYPE_UNSIGNED (type);
-
- treeop0 = treeop1 = treeop2 = NULL_TREE;
- if (!VL_EXP_CLASS_P (exp))
- switch (TREE_CODE_LENGTH (code))
- {
- default:
- case 3: treeop2 = TREE_OPERAND (exp, 2); /* FALLTHRU */
- case 2: treeop1 = TREE_OPERAND (exp, 1); /* FALLTHRU */
- case 1: treeop0 = TREE_OPERAND (exp, 0); /* FALLTHRU */
- case 0: break;
- }
- ops.code = code;
- ops.type = type;
- ops.op0 = treeop0;
- ops.op1 = treeop1;
- ops.op2 = treeop2;
- ops.location = loc;
-
- ignore = (target == const0_rtx
- || ((CONVERT_EXPR_CODE_P (code)
- || code == COND_EXPR || code == VIEW_CONVERT_EXPR)
- && TREE_CODE (type) == VOID_TYPE));
-
- /* An operation in what may be a bit-field type needs the
- result to be reduced to the precision of the bit-field type,
- which is narrower than that of the type's mode. */
- reduce_bit_field = (!ignore
- && INTEGRAL_TYPE_P (type)
- && !type_has_mode_precision_p (type));
-
- /* If we are going to ignore this result, we need only do something
- if there is a side-effect somewhere in the expression. If there
- is, short-circuit the most common cases here. Note that we must
- not call expand_expr with anything but const0_rtx in case this
- is an initial expansion of a size that contains a PLACEHOLDER_EXPR. */
-
- if (ignore)
- {
- if (! TREE_SIDE_EFFECTS (exp))
- return const0_rtx;
-
- /* Ensure we reference a volatile object even if value is ignored, but
- don't do this if all we are doing is taking its address. */
- if (TREE_THIS_VOLATILE (exp)
- && TREE_CODE (exp) != FUNCTION_DECL
- && mode != VOIDmode && mode != BLKmode
- && modifier != EXPAND_CONST_ADDRESS)
- {
- temp = expand_expr (exp, NULL_RTX, VOIDmode, modifier);
- if (MEM_P (temp))
- copy_to_reg (temp);
- return const0_rtx;
- }
-
- if (TREE_CODE_CLASS (code) == tcc_unary
- || code == BIT_FIELD_REF
- || code == COMPONENT_REF
- || code == INDIRECT_REF)
- return expand_expr (treeop0, const0_rtx, VOIDmode,
- modifier);
-
- else if (TREE_CODE_CLASS (code) == tcc_binary
- || TREE_CODE_CLASS (code) == tcc_comparison
- || code == ARRAY_REF || code == ARRAY_RANGE_REF)
- {
- expand_expr (treeop0, const0_rtx, VOIDmode, modifier);
- expand_expr (treeop1, const0_rtx, VOIDmode, modifier);
- return const0_rtx;
- }
-
- target = 0;
- }
-
- if (reduce_bit_field && modifier == EXPAND_STACK_PARM)
- target = 0;
-
- /* Use subtarget as the target for operand 0 of a binary operation. */
- subtarget = get_subtarget (target);
- original_target = target;
-
- switch (code)
- {
- case LABEL_DECL:
- {
- tree function = decl_function_context (exp);
-
- temp = label_rtx (exp);
- temp = gen_rtx_LABEL_REF (Pmode, temp);
-
- if (function != current_function_decl
- && function != 0)
- LABEL_REF_NONLOCAL_P (temp) = 1;
-
- temp = gen_rtx_MEM (FUNCTION_MODE, temp);
- return temp;
- }
-
- case SSA_NAME:
- /* ??? ivopts calls expander, without any preparation from
- out-of-ssa. So fake instructions as if this was an access to the
- base variable. This unnecessarily allocates a pseudo, see how we can
- reuse it, if partition base vars have it set already. */
- if (!currently_expanding_to_rtl)
- {
- tree var = SSA_NAME_VAR (exp);
- if (var && DECL_RTL_SET_P (var))
- return DECL_RTL (var);
- return gen_raw_REG (TYPE_MODE (TREE_TYPE (exp)),
- LAST_VIRTUAL_REGISTER + 1);
- }
-
- g = get_gimple_for_ssa_name (exp);
- /* For EXPAND_INITIALIZER try harder to get something simpler. */
- if (g == NULL
- && modifier == EXPAND_INITIALIZER
- && !SSA_NAME_IS_DEFAULT_DEF (exp)
- && (optimize || !SSA_NAME_VAR (exp)
- || DECL_IGNORED_P (SSA_NAME_VAR (exp)))
- && stmt_is_replaceable_p (SSA_NAME_DEF_STMT (exp)))
- g = SSA_NAME_DEF_STMT (exp);
- if (g)
- {
- rtx r;
- location_t saved_loc = curr_insn_location ();
- loc = gimple_location (g);
- if (loc != UNKNOWN_LOCATION)
- set_curr_insn_location (loc);
- ops.code = gimple_assign_rhs_code (g);
- switch (get_gimple_rhs_class (ops.code))
- {
- case GIMPLE_TERNARY_RHS:
- ops.op2 = gimple_assign_rhs3 (g);
- /* Fallthru */
- case GIMPLE_BINARY_RHS:
- ops.op1 = gimple_assign_rhs2 (g);
-
- /* Try to expand conditonal compare. */
- if (targetm.gen_ccmp_first)
- {
- gcc_checking_assert (targetm.gen_ccmp_next != NULL);
- r = expand_ccmp_expr (g, mode);
- if (r)
- break;
- }
- /* Fallthru */
- case GIMPLE_UNARY_RHS:
- ops.op0 = gimple_assign_rhs1 (g);
- ops.type = TREE_TYPE (gimple_assign_lhs (g));
- ops.location = loc;
- r = expand_expr_real_2 (&ops, target, tmode, modifier);
- break;
- case GIMPLE_SINGLE_RHS:
- {
- r = expand_expr_real (gimple_assign_rhs1 (g), target,
- tmode, modifier, alt_rtl,
- inner_reference_p);
- break;
- }
- default:
- gcc_unreachable ();
- }
- set_curr_insn_location (saved_loc);
- if (REG_P (r) && !REG_EXPR (r))
- set_reg_attrs_for_decl_rtl (SSA_NAME_VAR (exp), r);
- return r;
- }
-
- ssa_name = exp;
- decl_rtl = get_rtx_for_ssa_name (ssa_name);
- exp = SSA_NAME_VAR (ssa_name);
- goto expand_decl_rtl;
-
- case VAR_DECL:
- /* Allow accel compiler to handle variables that require special
- treatment, e.g. if they have been modified in some way earlier in
- compilation by the adjust_private_decl OpenACC hook. */
- if (flag_openacc && targetm.goacc.expand_var_decl)
- {
- temp = targetm.goacc.expand_var_decl (exp);
- if (temp)
- return temp;
- }
- /* ... fall through ... */
-
- case PARM_DECL:
- /* If a static var's type was incomplete when the decl was written,
- but the type is complete now, lay out the decl now. */
- if (DECL_SIZE (exp) == 0
- && COMPLETE_OR_UNBOUND_ARRAY_TYPE_P (TREE_TYPE (exp))
- && (TREE_STATIC (exp) || DECL_EXTERNAL (exp)))
- layout_decl (exp, 0);
-
- /* fall through */
-
- case FUNCTION_DECL:
- case RESULT_DECL:
- decl_rtl = DECL_RTL (exp);
- expand_decl_rtl:
- gcc_assert (decl_rtl);
-
- /* DECL_MODE might change when TYPE_MODE depends on attribute target
- settings for VECTOR_TYPE_P that might switch for the function. */
- if (currently_expanding_to_rtl
- && code == VAR_DECL && MEM_P (decl_rtl)
- && VECTOR_TYPE_P (type) && exp && DECL_MODE (exp) != mode)
- decl_rtl = change_address (decl_rtl, TYPE_MODE (type), 0);
- else
- decl_rtl = copy_rtx (decl_rtl);
-
- /* Record writes to register variables. */
- if (modifier == EXPAND_WRITE
- && REG_P (decl_rtl)
- && HARD_REGISTER_P (decl_rtl))
- add_to_hard_reg_set (&crtl->asm_clobbers,
- GET_MODE (decl_rtl), REGNO (decl_rtl));
-
- /* Ensure variable marked as used even if it doesn't go through
- a parser. If it hasn't be used yet, write out an external
- definition. */
- if (exp)
- TREE_USED (exp) = 1;
-
- /* Show we haven't gotten RTL for this yet. */
- temp = 0;
-
- /* Variables inherited from containing functions should have
- been lowered by this point. */
- if (exp)
- {
- tree context = decl_function_context (exp);
- gcc_assert (SCOPE_FILE_SCOPE_P (context)
- || context == current_function_decl
- || TREE_STATIC (exp)
- || DECL_EXTERNAL (exp)
- /* ??? C++ creates functions that are not
- TREE_STATIC. */
- || TREE_CODE (exp) == FUNCTION_DECL);
- }
-
- /* This is the case of an array whose size is to be determined
- from its initializer, while the initializer is still being parsed.
- ??? We aren't parsing while expanding anymore. */
-
- if (MEM_P (decl_rtl) && REG_P (XEXP (decl_rtl, 0)))
- temp = validize_mem (decl_rtl);
-
- /* If DECL_RTL is memory, we are in the normal case and the
- address is not valid, get the address into a register. */
-
- else if (MEM_P (decl_rtl) && modifier != EXPAND_INITIALIZER)
- {
- if (alt_rtl)
- *alt_rtl = decl_rtl;
- decl_rtl = use_anchored_address (decl_rtl);
- if (modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_SUM
- && !memory_address_addr_space_p (exp ? DECL_MODE (exp)
- : GET_MODE (decl_rtl),
- XEXP (decl_rtl, 0),
- MEM_ADDR_SPACE (decl_rtl)))
- temp = replace_equiv_address (decl_rtl,
- copy_rtx (XEXP (decl_rtl, 0)));
- }
-
- /* If we got something, return it. But first, set the alignment
- if the address is a register. */
- if (temp != 0)
- {
- if (exp && MEM_P (temp) && REG_P (XEXP (temp, 0)))
- mark_reg_pointer (XEXP (temp, 0), DECL_ALIGN (exp));
- }
- else if (MEM_P (decl_rtl))
- temp = decl_rtl;
-
- if (temp != 0)
- {
- if (MEM_P (temp)
- && modifier != EXPAND_WRITE
- && modifier != EXPAND_MEMORY
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_SUM
- && !inner_reference_p
- && mode != BLKmode
- && MEM_ALIGN (temp) < GET_MODE_ALIGNMENT (mode))
- temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
- MEM_ALIGN (temp), NULL_RTX, NULL);
-
- return temp;
- }
-
- if (exp)
- dmode = DECL_MODE (exp);
- else
- dmode = TYPE_MODE (TREE_TYPE (ssa_name));
-
- /* If the mode of DECL_RTL does not match that of the decl,
- there are two cases: we are dealing with a BLKmode value
- that is returned in a register, or we are dealing with
- a promoted value. In the latter case, return a SUBREG
- of the wanted mode, but mark it so that we know that it
- was already extended. */
- if (REG_P (decl_rtl)
- && dmode != BLKmode
- && GET_MODE (decl_rtl) != dmode)
- {
- machine_mode pmode;
-
- /* Get the signedness to be used for this variable. Ensure we get
- the same mode we got when the variable was declared. */
- if (code != SSA_NAME)
- pmode = promote_decl_mode (exp, &unsignedp);
- else if ((g = SSA_NAME_DEF_STMT (ssa_name))
- && gimple_code (g) == GIMPLE_CALL
- && !gimple_call_internal_p (g))
- pmode = promote_function_mode (type, mode, &unsignedp,
- gimple_call_fntype (g),
- 2);
- else
- pmode = promote_ssa_mode (ssa_name, &unsignedp);
- gcc_assert (GET_MODE (decl_rtl) == pmode);
-
- temp = gen_lowpart_SUBREG (mode, decl_rtl);
- SUBREG_PROMOTED_VAR_P (temp) = 1;
- SUBREG_PROMOTED_SET (temp, unsignedp);
- return temp;
- }
-
- return decl_rtl;
-
- case INTEGER_CST:
- {
- /* Given that TYPE_PRECISION (type) is not always equal to
- GET_MODE_PRECISION (TYPE_MODE (type)), we need to extend from
- the former to the latter according to the signedness of the
- type. */
- scalar_int_mode int_mode = SCALAR_INT_TYPE_MODE (type);
- temp = immed_wide_int_const
- (wi::to_wide (exp, GET_MODE_PRECISION (int_mode)), int_mode);
- return temp;
- }
-
- case VECTOR_CST:
- {
- tree tmp = NULL_TREE;
- if (VECTOR_MODE_P (mode))
- return const_vector_from_tree (exp);
- scalar_int_mode int_mode;
- if (is_int_mode (mode, &int_mode))
- {
- tree type_for_mode = lang_hooks.types.type_for_mode (int_mode, 1);
- if (type_for_mode)
- tmp = fold_unary_loc (loc, VIEW_CONVERT_EXPR,
- type_for_mode, exp);
- }
- if (!tmp)
- {
- vec<constructor_elt, va_gc> *v;
- /* Constructors need to be fixed-length. FIXME. */
- unsigned int nunits = VECTOR_CST_NELTS (exp).to_constant ();
- vec_alloc (v, nunits);
- for (unsigned int i = 0; i < nunits; ++i)
- CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, VECTOR_CST_ELT (exp, i));
- tmp = build_constructor (type, v);
- }
- return expand_expr (tmp, ignore ? const0_rtx : target,
- tmode, modifier);
- }
-
- case CONST_DECL:
- if (modifier == EXPAND_WRITE)
- {
- /* Writing into CONST_DECL is always invalid, but handle it
- gracefully. */
- addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (exp));
- scalar_int_mode address_mode = targetm.addr_space.address_mode (as);
- op0 = expand_expr_addr_expr_1 (exp, NULL_RTX, address_mode,
- EXPAND_NORMAL, as);
- op0 = memory_address_addr_space (mode, op0, as);
- temp = gen_rtx_MEM (mode, op0);
- set_mem_addr_space (temp, as);
- return temp;
- }
- return expand_expr (DECL_INITIAL (exp), target, VOIDmode, modifier);
-
- case REAL_CST:
- /* If optimized, generate immediate CONST_DOUBLE
- which will be turned into memory by reload if necessary.
-
- We used to force a register so that loop.c could see it. But
- this does not allow gen_* patterns to perform optimizations with
- the constants. It also produces two insns in cases like "x = 1.0;".
- On most machines, floating-point constants are not permitted in
- many insns, so we'd end up copying it to a register in any case.
-
- Now, we do the copying in expand_binop, if appropriate. */
- return const_double_from_real_value (TREE_REAL_CST (exp),
- TYPE_MODE (TREE_TYPE (exp)));
-
- case FIXED_CST:
- return CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (exp),
- TYPE_MODE (TREE_TYPE (exp)));
-
- case COMPLEX_CST:
- /* Handle evaluating a complex constant in a CONCAT target. */
- if (original_target && GET_CODE (original_target) == CONCAT)
- {
- rtx rtarg, itarg;
-
- mode = TYPE_MODE (TREE_TYPE (TREE_TYPE (exp)));
- rtarg = XEXP (original_target, 0);
- itarg = XEXP (original_target, 1);
-
- /* Move the real and imaginary parts separately. */
- op0 = expand_expr (TREE_REALPART (exp), rtarg, mode, EXPAND_NORMAL);
- op1 = expand_expr (TREE_IMAGPART (exp), itarg, mode, EXPAND_NORMAL);
-
- if (op0 != rtarg)
- emit_move_insn (rtarg, op0);
- if (op1 != itarg)
- emit_move_insn (itarg, op1);
-
- return original_target;
- }
-
- /* fall through */
-
- case STRING_CST:
- temp = expand_expr_constant (exp, 1, modifier);
-
- /* temp contains a constant address.
- On RISC machines where a constant address isn't valid,
- make some insns to get that address into a register. */
- if (modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_SUM
- && ! memory_address_addr_space_p (mode, XEXP (temp, 0),
- MEM_ADDR_SPACE (temp)))
- return replace_equiv_address (temp,
- copy_rtx (XEXP (temp, 0)));
- return temp;
-
- case POLY_INT_CST:
- return immed_wide_int_const (poly_int_cst_value (exp), mode);
-
- case SAVE_EXPR:
- {
- tree val = treeop0;
- rtx ret = expand_expr_real_1 (val, target, tmode, modifier, alt_rtl,
- inner_reference_p);
-
- if (!SAVE_EXPR_RESOLVED_P (exp))
- {
- /* We can indeed still hit this case, typically via builtin
- expanders calling save_expr immediately before expanding
- something. Assume this means that we only have to deal
- with non-BLKmode values. */
- gcc_assert (GET_MODE (ret) != BLKmode);
-
- val = build_decl (curr_insn_location (),
- VAR_DECL, NULL, TREE_TYPE (exp));
- DECL_ARTIFICIAL (val) = 1;
- DECL_IGNORED_P (val) = 1;
- treeop0 = val;
- TREE_OPERAND (exp, 0) = treeop0;
- SAVE_EXPR_RESOLVED_P (exp) = 1;
-
- if (!CONSTANT_P (ret))
- ret = copy_to_reg (ret);
- SET_DECL_RTL (val, ret);
- }
-
- return ret;
- }
-
-
- case CONSTRUCTOR:
- /* If we don't need the result, just ensure we evaluate any
- subexpressions. */
- if (ignore)
- {
- unsigned HOST_WIDE_INT idx;
- tree value;
-
- FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (exp), idx, value)
- expand_expr (value, const0_rtx, VOIDmode, EXPAND_NORMAL);
-
- return const0_rtx;
- }
-
- return expand_constructor (exp, target, modifier, false);
-
- case TARGET_MEM_REF:
- {
- addr_space_t as
- = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
- unsigned int align;
-
- op0 = addr_for_mem_ref (exp, as, true);
- op0 = memory_address_addr_space (mode, op0, as);
- temp = gen_rtx_MEM (mode, op0);
- set_mem_attributes (temp, exp, 0);
- set_mem_addr_space (temp, as);
- align = get_object_alignment (exp);
- if (modifier != EXPAND_WRITE
- && modifier != EXPAND_MEMORY
- && mode != BLKmode
- && align < GET_MODE_ALIGNMENT (mode))
- temp = expand_misaligned_mem_ref (temp, mode, unsignedp,
- align, NULL_RTX, NULL);
- return temp;
- }
-
- case MEM_REF:
- {
- const bool reverse = REF_REVERSE_STORAGE_ORDER (exp);
- addr_space_t as
- = TYPE_ADDR_SPACE (TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0))));
- machine_mode address_mode;
- tree base = TREE_OPERAND (exp, 0);
- gimple *def_stmt;
- unsigned align;
- /* Handle expansion of non-aliased memory with non-BLKmode. That
- might end up in a register. */
- if (mem_ref_refers_to_non_mem_p (exp))
- {
- poly_int64 offset = mem_ref_offset (exp).force_shwi ();
- base = TREE_OPERAND (base, 0);
- poly_uint64 type_size;
- if (known_eq (offset, 0)
- && !reverse
- && poly_int_tree_p (TYPE_SIZE (type), &type_size)
- && known_eq (GET_MODE_BITSIZE (DECL_MODE (base)), type_size))
- return expand_expr (build1 (VIEW_CONVERT_EXPR, type, base),
- target, tmode, modifier);
- if (TYPE_MODE (type) == BLKmode)
- {
- temp = assign_stack_temp (DECL_MODE (base),
- GET_MODE_SIZE (DECL_MODE (base)));
- store_expr (base, temp, 0, false, false);
- temp = adjust_address (temp, BLKmode, offset);
- set_mem_size (temp, int_size_in_bytes (type));
- return temp;
- }
- exp = build3 (BIT_FIELD_REF, type, base, TYPE_SIZE (type),
- bitsize_int (offset * BITS_PER_UNIT));
- REF_REVERSE_STORAGE_ORDER (exp) = reverse;
- return expand_expr (exp, target, tmode, modifier);
- }
- address_mode = targetm.addr_space.address_mode (as);
- if ((def_stmt = get_def_for_expr (base, BIT_AND_EXPR)))
- {
- tree mask = gimple_assign_rhs2 (def_stmt);
- base = build2 (BIT_AND_EXPR, TREE_TYPE (base),
- gimple_assign_rhs1 (def_stmt), mask);
- TREE_OPERAND (exp, 0) = base;
- }
- align = get_object_alignment (exp);
- op0 = expand_expr (base, NULL_RTX, VOIDmode, EXPAND_SUM);
- op0 = memory_address_addr_space (mode, op0, as);
- if (!integer_zerop (TREE_OPERAND (exp, 1)))
- {
- rtx off = immed_wide_int_const (mem_ref_offset (exp), address_mode);
- op0 = simplify_gen_binary (PLUS, address_mode, op0, off);
- op0 = memory_address_addr_space (mode, op0, as);
- }
- temp = gen_rtx_MEM (mode, op0);
- set_mem_attributes (temp, exp, 0);
- set_mem_addr_space (temp, as);
- if (TREE_THIS_VOLATILE (exp))
- MEM_VOLATILE_P (temp) = 1;
- if (modifier != EXPAND_WRITE
- && modifier != EXPAND_MEMORY
- && !inner_reference_p
- && mode != BLKmode
- && align < GET_MODE_ALIGNMENT (mode))
- temp = expand_misaligned_mem_ref (temp, mode, unsignedp, align,
- modifier == EXPAND_STACK_PARM
- ? NULL_RTX : target, alt_rtl);
- if (reverse
- && modifier != EXPAND_MEMORY
- && modifier != EXPAND_WRITE)
- temp = flip_storage_order (mode, temp);
- return temp;
- }
-
- case ARRAY_REF:
-
- {
- tree array = treeop0;
- tree index = treeop1;
- tree init;
-
- /* Fold an expression like: "foo"[2].
- This is not done in fold so it won't happen inside &.
- Don't fold if this is for wide characters since it's too
- difficult to do correctly and this is a very rare case. */
-
- if (modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_MEMORY)
- {
- tree t = fold_read_from_constant_string (exp);
-
- if (t)
- return expand_expr (t, target, tmode, modifier);
- }
-
- /* If this is a constant index into a constant array,
- just get the value from the array. Handle both the cases when
- we have an explicit constructor and when our operand is a variable
- that was declared const. */
-
- if (modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_MEMORY
- && TREE_CODE (array) == CONSTRUCTOR
- && ! TREE_SIDE_EFFECTS (array)
- && TREE_CODE (index) == INTEGER_CST)
- {
- unsigned HOST_WIDE_INT ix;
- tree field, value;
-
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (array), ix,
- field, value)
- if (tree_int_cst_equal (field, index))
- {
- if (!TREE_SIDE_EFFECTS (value))
- return expand_expr (fold (value), target, tmode, modifier);
- break;
- }
- }
-
- else if (optimize >= 1
- && modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_MEMORY
- && TREE_READONLY (array) && ! TREE_SIDE_EFFECTS (array)
- && TREE_CODE (index) == INTEGER_CST
- && (VAR_P (array) || TREE_CODE (array) == CONST_DECL)
- && (init = ctor_for_folding (array)) != error_mark_node)
- {
- if (init == NULL_TREE)
- {
- tree value = build_zero_cst (type);
- if (TREE_CODE (value) == CONSTRUCTOR)
- {
- /* If VALUE is a CONSTRUCTOR, this optimization is only
- useful if this doesn't store the CONSTRUCTOR into
- memory. If it does, it is more efficient to just
- load the data from the array directly. */
- rtx ret = expand_constructor (value, target,
- modifier, true);
- if (ret == NULL_RTX)
- value = NULL_TREE;
- }
-
- if (value)
- return expand_expr (value, target, tmode, modifier);
- }
- else if (TREE_CODE (init) == CONSTRUCTOR)
- {
- unsigned HOST_WIDE_INT ix;
- tree field, value;
-
- FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (init), ix,
- field, value)
- if (tree_int_cst_equal (field, index))
- {
- if (TREE_SIDE_EFFECTS (value))
- break;
-
- if (TREE_CODE (value) == CONSTRUCTOR)
- {
- /* If VALUE is a CONSTRUCTOR, this
- optimization is only useful if
- this doesn't store the CONSTRUCTOR
- into memory. If it does, it is more
- efficient to just load the data from
- the array directly. */
- rtx ret = expand_constructor (value, target,
- modifier, true);
- if (ret == NULL_RTX)
- break;
- }
-
- return
- expand_expr (fold (value), target, tmode, modifier);
- }
- }
- else if (TREE_CODE (init) == STRING_CST)
- {
- tree low_bound = array_ref_low_bound (exp);
- tree index1 = fold_convert_loc (loc, sizetype, treeop1);
-
- /* Optimize the special case of a zero lower bound.
-
- We convert the lower bound to sizetype to avoid problems
- with constant folding. E.g. suppose the lower bound is
- 1 and its mode is QI. Without the conversion
- (ARRAY + (INDEX - (unsigned char)1))
- becomes
- (ARRAY + (-(unsigned char)1) + INDEX)
- which becomes
- (ARRAY + 255 + INDEX). Oops! */
- if (!integer_zerop (low_bound))
- index1 = size_diffop_loc (loc, index1,
- fold_convert_loc (loc, sizetype,
- low_bound));
-
- if (tree_fits_uhwi_p (index1)
- && compare_tree_int (index1, TREE_STRING_LENGTH (init)) < 0)
- {
- tree char_type = TREE_TYPE (TREE_TYPE (init));
- scalar_int_mode char_mode;
-
- if (is_int_mode (TYPE_MODE (char_type), &char_mode)
- && GET_MODE_SIZE (char_mode) == 1)
- return gen_int_mode (TREE_STRING_POINTER (init)
- [TREE_INT_CST_LOW (index1)],
- char_mode);
- }
- }
- }
- }
- goto normal_inner_ref;
-
- case COMPONENT_REF:
- gcc_assert (TREE_CODE (treeop0) != CONSTRUCTOR);
- /* Fall through. */
- case BIT_FIELD_REF:
- case ARRAY_RANGE_REF:
- normal_inner_ref:
- {
- machine_mode mode1, mode2;
- poly_int64 bitsize, bitpos, bytepos;
- tree offset;
- int reversep, volatilep = 0, must_force_mem;
- tree tem
- = get_inner_reference (exp, &bitsize, &bitpos, &offset, &mode1,
- &unsignedp, &reversep, &volatilep);
- rtx orig_op0, memloc;
- bool clear_mem_expr = false;
-
- /* If we got back the original object, something is wrong. Perhaps
- we are evaluating an expression too early. In any event, don't
- infinitely recurse. */
- gcc_assert (tem != exp);
-
- /* If TEM's type is a union of variable size, pass TARGET to the inner
- computation, since it will need a temporary and TARGET is known
- to have to do. This occurs in unchecked conversion in Ada. */
- orig_op0 = op0
- = expand_expr_real (tem,
- (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
- && COMPLETE_TYPE_P (TREE_TYPE (tem))
- && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
- != INTEGER_CST)
- && modifier != EXPAND_STACK_PARM
- ? target : NULL_RTX),
- VOIDmode,
- modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
- NULL, true);
-
- /* If the field has a mode, we want to access it in the
- field's mode, not the computed mode.
- If a MEM has VOIDmode (external with incomplete type),
- use BLKmode for it instead. */
- if (MEM_P (op0))
- {
- if (mode1 != VOIDmode)
- op0 = adjust_address (op0, mode1, 0);
- else if (GET_MODE (op0) == VOIDmode)
- op0 = adjust_address (op0, BLKmode, 0);
- }
-
- mode2
- = CONSTANT_P (op0) ? TYPE_MODE (TREE_TYPE (tem)) : GET_MODE (op0);
-
- /* Make sure bitpos is not negative, it can wreak havoc later. */
- if (maybe_lt (bitpos, 0))
- {
- gcc_checking_assert (offset == NULL_TREE);
- offset = size_int (bits_to_bytes_round_down (bitpos));
- bitpos = num_trailing_bits (bitpos);
- }
-
- /* If we have either an offset, a BLKmode result, or a reference
- outside the underlying object, we must force it to memory.
- Such a case can occur in Ada if we have unchecked conversion
- of an expression from a scalar type to an aggregate type or
- for an ARRAY_RANGE_REF whose type is BLKmode, or if we were
- passed a partially uninitialized object or a view-conversion
- to a larger size. */
- must_force_mem = (offset
- || mode1 == BLKmode
- || (mode == BLKmode
- && !int_mode_for_size (bitsize, 1).exists ())
- || maybe_gt (bitpos + bitsize,
- GET_MODE_BITSIZE (mode2)));
-
- /* Handle CONCAT first. */
- if (GET_CODE (op0) == CONCAT && !must_force_mem)
- {
- if (known_eq (bitpos, 0)
- && known_eq (bitsize, GET_MODE_BITSIZE (GET_MODE (op0)))
- && COMPLEX_MODE_P (mode1)
- && COMPLEX_MODE_P (GET_MODE (op0))
- && (GET_MODE_PRECISION (GET_MODE_INNER (mode1))
- == GET_MODE_PRECISION (GET_MODE_INNER (GET_MODE (op0)))))
- {
- if (reversep)
- op0 = flip_storage_order (GET_MODE (op0), op0);
- if (mode1 != GET_MODE (op0))
- {
- rtx parts[2];
- for (int i = 0; i < 2; i++)
- {
- rtx op = read_complex_part (op0, i != 0);
- if (GET_CODE (op) == SUBREG)
- op = force_reg (GET_MODE (op), op);
- temp = gen_lowpart_common (GET_MODE_INNER (mode1), op);
- if (temp)
- op = temp;
- else
- {
- if (!REG_P (op) && !MEM_P (op))
- op = force_reg (GET_MODE (op), op);
- op = gen_lowpart (GET_MODE_INNER (mode1), op);
- }
- parts[i] = op;
- }
- op0 = gen_rtx_CONCAT (mode1, parts[0], parts[1]);
- }
- return op0;
- }
- if (known_eq (bitpos, 0)
- && known_eq (bitsize,
- GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
- && maybe_ne (bitsize, 0))
- {
- op0 = XEXP (op0, 0);
- mode2 = GET_MODE (op0);
- }
- else if (known_eq (bitpos,
- GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 0))))
- && known_eq (bitsize,
- GET_MODE_BITSIZE (GET_MODE (XEXP (op0, 1))))
- && maybe_ne (bitpos, 0)
- && maybe_ne (bitsize, 0))
- {
- op0 = XEXP (op0, 1);
- bitpos = 0;
- mode2 = GET_MODE (op0);
- }
- else
- /* Otherwise force into memory. */
- must_force_mem = 1;
- }
-
- /* If this is a constant, put it in a register if it is a legitimate
- constant and we don't need a memory reference. */
- if (CONSTANT_P (op0)
- && mode2 != BLKmode
- && targetm.legitimate_constant_p (mode2, op0)
- && !must_force_mem)
- op0 = force_reg (mode2, op0);
-
- /* Otherwise, if this is a constant, try to force it to the constant
- pool. Note that back-ends, e.g. MIPS, may refuse to do so if it
- is a legitimate constant. */
- else if (CONSTANT_P (op0) && (memloc = force_const_mem (mode2, op0)))
- op0 = validize_mem (memloc);
-
- /* Otherwise, if this is a constant or the object is not in memory
- and need be, put it there. */
- else if (CONSTANT_P (op0) || (!MEM_P (op0) && must_force_mem))
- {
- memloc = assign_temp (TREE_TYPE (tem), 1, 1);
- emit_move_insn (memloc, op0);
- op0 = memloc;
- clear_mem_expr = true;
- }
-
- if (offset)
- {
- machine_mode address_mode;
- rtx offset_rtx = expand_expr (offset, NULL_RTX, VOIDmode,
- EXPAND_SUM);
-
- gcc_assert (MEM_P (op0));
-
- address_mode = get_address_mode (op0);
- if (GET_MODE (offset_rtx) != address_mode)
- {
- /* We cannot be sure that the RTL in offset_rtx is valid outside
- of a memory address context, so force it into a register
- before attempting to convert it to the desired mode. */
- offset_rtx = force_operand (offset_rtx, NULL_RTX);
- offset_rtx = convert_to_mode (address_mode, offset_rtx, 0);
- }
-
- /* See the comment in expand_assignment for the rationale. */
- if (mode1 != VOIDmode
- && maybe_ne (bitpos, 0)
- && maybe_gt (bitsize, 0)
- && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
- && multiple_p (bitpos, bitsize)
- && multiple_p (bitsize, GET_MODE_ALIGNMENT (mode1))
- && MEM_ALIGN (op0) >= GET_MODE_ALIGNMENT (mode1))
- {
- op0 = adjust_address (op0, mode1, bytepos);
- bitpos = 0;
- }
-
- op0 = offset_address (op0, offset_rtx,
- highest_pow2_factor (offset));
- }
-
- /* If OFFSET is making OP0 more aligned than BIGGEST_ALIGNMENT,
- record its alignment as BIGGEST_ALIGNMENT. */
- if (MEM_P (op0)
- && known_eq (bitpos, 0)
- && offset != 0
- && is_aligning_offset (offset, tem))
- set_mem_align (op0, BIGGEST_ALIGNMENT);
-
- /* Don't forget about volatility even if this is a bitfield. */
- if (MEM_P (op0) && volatilep && ! MEM_VOLATILE_P (op0))
- {
- if (op0 == orig_op0)
- op0 = copy_rtx (op0);
-
- MEM_VOLATILE_P (op0) = 1;
- }
-
- if (MEM_P (op0) && TREE_CODE (tem) == FUNCTION_DECL)
- {
- if (op0 == orig_op0)
- op0 = copy_rtx (op0);
-
- set_mem_align (op0, BITS_PER_UNIT);
- }
-
- /* In cases where an aligned union has an unaligned object
- as a field, we might be extracting a BLKmode value from
- an integer-mode (e.g., SImode) object. Handle this case
- by doing the extract into an object as wide as the field
- (which we know to be the width of a basic mode), then
- storing into memory, and changing the mode to BLKmode. */
- if (mode1 == VOIDmode
- || REG_P (op0) || GET_CODE (op0) == SUBREG
- || (mode1 != BLKmode && ! direct_load[(int) mode1]
- && GET_MODE_CLASS (mode) != MODE_COMPLEX_INT
- && GET_MODE_CLASS (mode) != MODE_COMPLEX_FLOAT
- && modifier != EXPAND_CONST_ADDRESS
- && modifier != EXPAND_INITIALIZER
- && modifier != EXPAND_MEMORY)
- /* If the bitfield is volatile and the bitsize
- is narrower than the access size of the bitfield,
- we need to extract bitfields from the access. */
- || (volatilep && TREE_CODE (exp) == COMPONENT_REF
- && DECL_BIT_FIELD_TYPE (TREE_OPERAND (exp, 1))
- && mode1 != BLKmode
- && maybe_lt (bitsize, GET_MODE_SIZE (mode1) * BITS_PER_UNIT))
- /* If the field isn't aligned enough to fetch as a memref,
- fetch it as a bit field. */
- || (mode1 != BLKmode
- && (((MEM_P (op0)
- ? MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode1)
- || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode1))
- : TYPE_ALIGN (TREE_TYPE (tem)) < GET_MODE_ALIGNMENT (mode)
- || !multiple_p (bitpos, GET_MODE_ALIGNMENT (mode)))
- && modifier != EXPAND_MEMORY
- && ((modifier == EXPAND_CONST_ADDRESS
- || modifier == EXPAND_INITIALIZER)
- ? STRICT_ALIGNMENT
- : targetm.slow_unaligned_access (mode1,
- MEM_ALIGN (op0))))
- || !multiple_p (bitpos, BITS_PER_UNIT)))
- /* If the type and the field are a constant size and the
- size of the type isn't the same size as the bitfield,
- we must use bitfield operations. */
- || (known_size_p (bitsize)
- && TYPE_SIZE (TREE_TYPE (exp))
- && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
- && maybe_ne (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp))),
- bitsize)))
- {
- machine_mode ext_mode = mode;
-
- if (ext_mode == BLKmode
- && ! (target != 0 && MEM_P (op0)
- && MEM_P (target)
- && multiple_p (bitpos, BITS_PER_UNIT)))
- ext_mode = int_mode_for_size (bitsize, 1).else_blk ();
-
- if (ext_mode == BLKmode)
- {
- if (target == 0)
- target = assign_temp (type, 1, 1);
-
- /* ??? Unlike the similar test a few lines below, this one is
- very likely obsolete. */
- if (known_eq (bitsize, 0))
- return target;
-
- /* In this case, BITPOS must start at a byte boundary and
- TARGET, if specified, must be a MEM. */
- gcc_assert (MEM_P (op0)
- && (!target || MEM_P (target)));
-
- bytepos = exact_div (bitpos, BITS_PER_UNIT);
- poly_int64 bytesize = bits_to_bytes_round_up (bitsize);
- emit_block_move (target,
- adjust_address (op0, VOIDmode, bytepos),
- gen_int_mode (bytesize, Pmode),
- (modifier == EXPAND_STACK_PARM
- ? BLOCK_OP_CALL_PARM : BLOCK_OP_NORMAL));
-
- return target;
- }
-
- /* If we have nothing to extract, the result will be 0 for targets
- with SHIFT_COUNT_TRUNCATED == 0 and garbage otherwise. Always
- return 0 for the sake of consistency, as reading a zero-sized
- bitfield is valid in Ada and the value is fully specified. */
- if (known_eq (bitsize, 0))
- return const0_rtx;
-
- op0 = validize_mem (op0);
-
- if (MEM_P (op0) && REG_P (XEXP (op0, 0)))
- mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
-
- /* If the result has aggregate type and the extraction is done in
- an integral mode, then the field may be not aligned on a byte
- boundary; in this case, if it has reverse storage order, it
- needs to be extracted as a scalar field with reverse storage
- order and put back into memory order afterwards. */
- if (AGGREGATE_TYPE_P (type)
- && GET_MODE_CLASS (ext_mode) == MODE_INT)
- reversep = TYPE_REVERSE_STORAGE_ORDER (type);
-
- gcc_checking_assert (known_ge (bitpos, 0));
- op0 = extract_bit_field (op0, bitsize, bitpos, unsignedp,
- (modifier == EXPAND_STACK_PARM
- ? NULL_RTX : target),
- ext_mode, ext_mode, reversep, alt_rtl);
-
- /* If the result has aggregate type and the mode of OP0 is an
- integral mode then, if BITSIZE is narrower than this mode
- and this is for big-endian data, we must put the field
- into the high-order bits. And we must also put it back
- into memory order if it has been previously reversed. */
- scalar_int_mode op0_mode;
- if (AGGREGATE_TYPE_P (type)
- && is_int_mode (GET_MODE (op0), &op0_mode))
- {
- HOST_WIDE_INT size = GET_MODE_BITSIZE (op0_mode);
-
- gcc_checking_assert (known_le (bitsize, size));
- if (maybe_lt (bitsize, size)
- && reversep ? !BYTES_BIG_ENDIAN : BYTES_BIG_ENDIAN)
- op0 = expand_shift (LSHIFT_EXPR, op0_mode, op0,
- size - bitsize, op0, 1);
-
- if (reversep)
- op0 = flip_storage_order (op0_mode, op0);
- }
-
- /* If the result type is BLKmode, store the data into a temporary
- of the appropriate type, but with the mode corresponding to the
- mode for the data we have (op0's mode). */
- if (mode == BLKmode)
- {
- rtx new_rtx
- = assign_stack_temp_for_type (ext_mode,
- GET_MODE_BITSIZE (ext_mode),
- type);
- emit_move_insn (new_rtx, op0);
- op0 = copy_rtx (new_rtx);
- PUT_MODE (op0, BLKmode);
- }
-
- return op0;
- }
-
- /* If the result is BLKmode, use that to access the object
- now as well. */
- if (mode == BLKmode)
- mode1 = BLKmode;
-
- /* Get a reference to just this component. */
- bytepos = bits_to_bytes_round_down (bitpos);
- if (modifier == EXPAND_CONST_ADDRESS
- || modifier == EXPAND_SUM || modifier == EXPAND_INITIALIZER)
- op0 = adjust_address_nv (op0, mode1, bytepos);
- else
- op0 = adjust_address (op0, mode1, bytepos);
-
- if (op0 == orig_op0)
- op0 = copy_rtx (op0);
-
- /* Don't set memory attributes if the base expression is
- SSA_NAME that got expanded as a MEM or a CONSTANT. In that case,
- we should just honor its original memory attributes. */
- if (!(TREE_CODE (tem) == SSA_NAME
- && (MEM_P (orig_op0) || CONSTANT_P (orig_op0))))
- set_mem_attributes (op0, exp, 0);
-
- if (REG_P (XEXP (op0, 0)))
- mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
-
- /* If op0 is a temporary because the original expressions was forced
- to memory, clear MEM_EXPR so that the original expression cannot
- be marked as addressable through MEM_EXPR of the temporary. */
- if (clear_mem_expr)
- set_mem_expr (op0, NULL_TREE);
-
- MEM_VOLATILE_P (op0) |= volatilep;
-
- if (reversep
- && modifier != EXPAND_MEMORY
- && modifier != EXPAND_WRITE)
- op0 = flip_storage_order (mode1, op0);
-
- if (mode == mode1 || mode1 == BLKmode || mode1 == tmode
- || modifier == EXPAND_CONST_ADDRESS
- || modifier == EXPAND_INITIALIZER)
- return op0;
-
- if (target == 0)
- target = gen_reg_rtx (tmode != VOIDmode ? tmode : mode);
-
- convert_move (target, op0, unsignedp);
- return target;
- }
-
- case OBJ_TYPE_REF:
- return expand_expr (OBJ_TYPE_REF_EXPR (exp), target, tmode, modifier);
-
- case CALL_EXPR:
- /* All valid uses of __builtin_va_arg_pack () are removed during
- inlining. */
- if (CALL_EXPR_VA_ARG_PACK (exp))
- error ("invalid use of %<__builtin_va_arg_pack ()%>");
- {
- tree fndecl = get_callee_fndecl (exp), attr;
-
- if (fndecl
- /* Don't diagnose the error attribute in thunks, those are
- artificially created. */
- && !CALL_FROM_THUNK_P (exp)
- && (attr = lookup_attribute ("error",
- DECL_ATTRIBUTES (fndecl))) != NULL)
- {
- const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
- error ("call to %qs declared with attribute error: %s",
- identifier_to_locale (ident),
- TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
- }
- if (fndecl
- /* Don't diagnose the warning attribute in thunks, those are
- artificially created. */
- && !CALL_FROM_THUNK_P (exp)
- && (attr = lookup_attribute ("warning",
- DECL_ATTRIBUTES (fndecl))) != NULL)
- {
- const char *ident = lang_hooks.decl_printable_name (fndecl, 1);
- warning_at (EXPR_LOCATION (exp),
- OPT_Wattribute_warning,
- "call to %qs declared with attribute warning: %s",
- identifier_to_locale (ident),
- TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
- }
-
- /* Check for a built-in function. */
- if (fndecl && fndecl_built_in_p (fndecl))
- {
- gcc_assert (DECL_BUILT_IN_CLASS (fndecl) != BUILT_IN_FRONTEND);
- return expand_builtin (exp, target, subtarget, tmode, ignore);
- }
- }
- return expand_call (exp, target, ignore);
-
- case VIEW_CONVERT_EXPR:
- op0 = NULL_RTX;
-
- /* If we are converting to BLKmode, try to avoid an intermediate
- temporary by fetching an inner memory reference. */
- if (mode == BLKmode
- && poly_int_tree_p (TYPE_SIZE (type))
- && TYPE_MODE (TREE_TYPE (treeop0)) != BLKmode
- && handled_component_p (treeop0))
- {
- machine_mode mode1;
- poly_int64 bitsize, bitpos, bytepos;
- tree offset;
- int reversep, volatilep = 0;
- tree tem
- = get_inner_reference (treeop0, &bitsize, &bitpos, &offset, &mode1,
- &unsignedp, &reversep, &volatilep);
-
- /* ??? We should work harder and deal with non-zero offsets. */
- if (!offset
- && multiple_p (bitpos, BITS_PER_UNIT, &bytepos)
- && !reversep
- && known_size_p (bitsize)
- && known_eq (wi::to_poly_offset (TYPE_SIZE (type)), bitsize))
- {
- /* See the normal_inner_ref case for the rationale. */
- rtx orig_op0
- = expand_expr_real (tem,
- (TREE_CODE (TREE_TYPE (tem)) == UNION_TYPE
- && (TREE_CODE (TYPE_SIZE (TREE_TYPE (tem)))
- != INTEGER_CST)
- && modifier != EXPAND_STACK_PARM
- ? target : NULL_RTX),
- VOIDmode,
- modifier == EXPAND_SUM ? EXPAND_NORMAL : modifier,
- NULL, true);
-
- if (MEM_P (orig_op0))
- {
- op0 = orig_op0;
-
- /* Get a reference to just this component. */
- if (modifier == EXPAND_CONST_ADDRESS
- || modifier == EXPAND_SUM
- || modifier == EXPAND_INITIALIZER)
- op0 = adjust_address_nv (op0, mode, bytepos);
- else
- op0 = adjust_address (op0, mode, bytepos);
-
- if (op0 == orig_op0)
- op0 = copy_rtx (op0);
-
- set_mem_attributes (op0, treeop0, 0);
- if (REG_P (XEXP (op0, 0)))
- mark_reg_pointer (XEXP (op0, 0), MEM_ALIGN (op0));
-
- MEM_VOLATILE_P (op0) |= volatilep;
- }
- }
- }
-
- if (!op0)
- op0 = expand_expr_real (treeop0, NULL_RTX, VOIDmode, modifier,
- NULL, inner_reference_p);
-
- /* If the input and output modes are both the same, we are done. */
- if (mode == GET_MODE (op0))
- ;
- /* If neither mode is BLKmode, and both modes are the same size
- then we can use gen_lowpart. */
- else if (mode != BLKmode
- && GET_MODE (op0) != BLKmode
- && known_eq (GET_MODE_PRECISION (mode),
- GET_MODE_PRECISION (GET_MODE (op0)))
- && !COMPLEX_MODE_P (GET_MODE (op0)))
- {
- if (GET_CODE (op0) == SUBREG)
- op0 = force_reg (GET_MODE (op0), op0);
- temp = gen_lowpart_common (mode, op0);
- if (temp)
- op0 = temp;
- else
- {
- if (!REG_P (op0) && !MEM_P (op0))
- op0 = force_reg (GET_MODE (op0), op0);
- op0 = gen_lowpart (mode, op0);
- }
- }
- /* If both types are integral, convert from one mode to the other. */
- else if (INTEGRAL_TYPE_P (type) && INTEGRAL_TYPE_P (TREE_TYPE (treeop0)))
- op0 = convert_modes (mode, GET_MODE (op0), op0,
- TYPE_UNSIGNED (TREE_TYPE (treeop0)));
- /* If the output type is a bit-field type, do an extraction. */
- else if (reduce_bit_field)
- return extract_bit_field (op0, TYPE_PRECISION (type), 0,
- TYPE_UNSIGNED (type), NULL_RTX,
- mode, mode, false, NULL);
- /* As a last resort, spill op0 to memory, and reload it in a
- different mode. */
- else if (!MEM_P (op0))
- {
- /* If the operand is not a MEM, force it into memory. Since we
- are going to be changing the mode of the MEM, don't call
- force_const_mem for constants because we don't allow pool
- constants to change mode. */
- tree inner_type = TREE_TYPE (treeop0);
-
- gcc_assert (!TREE_ADDRESSABLE (exp));
-
- if (target == 0 || GET_MODE (target) != TYPE_MODE (inner_type))
- target
- = assign_stack_temp_for_type
- (TYPE_MODE (inner_type),
- GET_MODE_SIZE (TYPE_MODE (inner_type)), inner_type);
-
- emit_move_insn (target, op0);
- op0 = target;
- }
-
- /* If OP0 is (now) a MEM, we need to deal with alignment issues. If the
- output type is such that the operand is known to be aligned, indicate
- that it is. Otherwise, we need only be concerned about alignment for
- non-BLKmode results. */
- if (MEM_P (op0))
- {
- enum insn_code icode;
-
- if (modifier != EXPAND_WRITE
- && modifier != EXPAND_MEMORY
- && !inner_reference_p
- && mode != BLKmode
- && MEM_ALIGN (op0) < GET_MODE_ALIGNMENT (mode))
- {
- /* If the target does have special handling for unaligned
- loads of mode then use them. */
- if ((icode = optab_handler (movmisalign_optab, mode))
- != CODE_FOR_nothing)
- {
- rtx reg;
-
- op0 = adjust_address (op0, mode, 0);
- /* We've already validated the memory, and we're creating a
- new pseudo destination. The predicates really can't
- fail. */
- reg = gen_reg_rtx (mode);
-
- /* Nor can the insn generator. */
- rtx_insn *insn = GEN_FCN (icode) (reg, op0);
- emit_insn (insn);
- return reg;
- }
- else if (STRICT_ALIGNMENT)
- {
- poly_uint64 mode_size = GET_MODE_SIZE (mode);
- poly_uint64 temp_size = mode_size;
- if (GET_MODE (op0) != BLKmode)
- temp_size = upper_bound (temp_size,
- GET_MODE_SIZE (GET_MODE (op0)));
- rtx new_rtx
- = assign_stack_temp_for_type (mode, temp_size, type);
- rtx new_with_op0_mode
- = adjust_address (new_rtx, GET_MODE (op0), 0);
-
- gcc_assert (!TREE_ADDRESSABLE (exp));
-
- if (GET_MODE (op0) == BLKmode)
- {
- rtx size_rtx = gen_int_mode (mode_size, Pmode);
- emit_block_move (new_with_op0_mode, op0, size_rtx,
- (modifier == EXPAND_STACK_PARM
- ? BLOCK_OP_CALL_PARM
- : BLOCK_OP_NORMAL));
- }
- else
- emit_move_insn (new_with_op0_mode, op0);
-
- op0 = new_rtx;
- }
- }
-
- op0 = adjust_address (op0, mode, 0);
- }
-
- return op0;
-
- case MODIFY_EXPR:
- {
- tree lhs = treeop0;
- tree rhs = treeop1;
- gcc_assert (ignore);
-
- /* Check for |= or &= of a bitfield of size one into another bitfield
- of size 1. In this case, (unless we need the result of the
- assignment) we can do this more efficiently with a
- test followed by an assignment, if necessary.
-
- ??? At this point, we can't get a BIT_FIELD_REF here. But if
- things change so we do, this code should be enhanced to
- support it. */
- if (TREE_CODE (lhs) == COMPONENT_REF
- && (TREE_CODE (rhs) == BIT_IOR_EXPR
- || TREE_CODE (rhs) == BIT_AND_EXPR)
- && TREE_OPERAND (rhs, 0) == lhs
- && TREE_CODE (TREE_OPERAND (rhs, 1)) == COMPONENT_REF
- && integer_onep (DECL_SIZE (TREE_OPERAND (lhs, 1)))
- && integer_onep (DECL_SIZE (TREE_OPERAND (TREE_OPERAND (rhs, 1), 1))))
- {
- rtx_code_label *label = gen_label_rtx ();
- int value = TREE_CODE (rhs) == BIT_IOR_EXPR;
- profile_probability prob = profile_probability::uninitialized ();
- if (value)
- jumpifnot (TREE_OPERAND (rhs, 1), label, prob);
- else
- jumpif (TREE_OPERAND (rhs, 1), label, prob);
- expand_assignment (lhs, build_int_cst (TREE_TYPE (rhs), value),
- false);
- do_pending_stack_adjust ();
- emit_label (label);
- return const0_rtx;
- }
-
- expand_assignment (lhs, rhs, false);
- return const0_rtx;
- }
-
- case ADDR_EXPR:
- return expand_expr_addr_expr (exp, target, tmode, modifier);
-
- case REALPART_EXPR:
- op0 = expand_normal (treeop0);
- return read_complex_part (op0, false);
-
- case IMAGPART_EXPR:
- op0 = expand_normal (treeop0);
- return read_complex_part (op0, true);
-
- case RETURN_EXPR:
- case LABEL_EXPR:
- case GOTO_EXPR:
- case SWITCH_EXPR:
- case ASM_EXPR:
- /* Expanded in cfgexpand.c. */
- gcc_unreachable ();
-
- case TRY_CATCH_EXPR:
- case CATCH_EXPR:
- case EH_FILTER_EXPR:
- case TRY_FINALLY_EXPR:
- case EH_ELSE_EXPR:
- /* Lowered by tree-eh.c. */
- gcc_unreachable ();
-
- case WITH_CLEANUP_EXPR:
- case CLEANUP_POINT_EXPR:
- case TARGET_EXPR:
- case CASE_LABEL_EXPR:
- case VA_ARG_EXPR:
- case BIND_EXPR:
- case INIT_EXPR:
- case CONJ_EXPR:
- case COMPOUND_EXPR:
- case PREINCREMENT_EXPR:
- case PREDECREMENT_EXPR:
- case POSTINCREMENT_EXPR:
- case POSTDECREMENT_EXPR:
- case LOOP_EXPR:
- case EXIT_EXPR:
- case COMPOUND_LITERAL_EXPR:
- /* Lowered by gimplify.c. */
- gcc_unreachable ();
-
- case FDESC_EXPR:
- /* Function descriptors are not valid except for as
- initialization constants, and should not be expanded. */
- gcc_unreachable ();
-
- case WITH_SIZE_EXPR:
- /* WITH_SIZE_EXPR expands to its first argument. The caller should
- have pulled out the size to use in whatever context it needed. */
- return expand_expr_real (treeop0, original_target, tmode,
- modifier, alt_rtl, inner_reference_p);
-
- default:
- return expand_expr_real_2 (&ops, target, tmode, modifier);
- }
-}
-
-/* Subroutine of above: reduce EXP to the precision of TYPE (in the
- signedness of TYPE), possibly returning the result in TARGET.
- TYPE is known to be a partial integer type. */
-static rtx
-reduce_to_bit_field_precision (rtx exp, rtx target, tree type)
-{
- scalar_int_mode mode = SCALAR_INT_TYPE_MODE (type);
- HOST_WIDE_INT prec = TYPE_PRECISION (type);
- gcc_assert ((GET_MODE (exp) == VOIDmode || GET_MODE (exp) == mode)
- && (!target || GET_MODE (target) == mode));
-
- /* For constant values, reduce using wide_int_to_tree. */
- if (poly_int_rtx_p (exp))
- {
- auto value = wi::to_poly_wide (exp, mode);
- tree t = wide_int_to_tree (type, value);
- return expand_expr (t, target, VOIDmode, EXPAND_NORMAL);
- }
- else if (TYPE_UNSIGNED (type))
- {
- rtx mask = immed_wide_int_const
- (wi::mask (prec, false, GET_MODE_PRECISION (mode)), mode);
- return expand_and (mode, exp, mask, target);
- }
- else
- {
- int count = GET_MODE_PRECISION (mode) - prec;
- exp = expand_shift (LSHIFT_EXPR, mode, exp, count, target, 0);
- return expand_shift (RSHIFT_EXPR, mode, exp, count, target, 0);
- }
-}
-
-/* Subroutine of above: returns 1 if OFFSET corresponds to an offset that
- when applied to the address of EXP produces an address known to be
- aligned more than BIGGEST_ALIGNMENT. */
-
-static int
-is_aligning_offset (const_tree offset, const_tree exp)
-{
- /* Strip off any conversions. */
- while (CONVERT_EXPR_P (offset))
- offset = TREE_OPERAND (offset, 0);
-
- /* We must now have a BIT_AND_EXPR with a constant that is one less than
- power of 2 and which is larger than BIGGEST_ALIGNMENT. */
- if (TREE_CODE (offset) != BIT_AND_EXPR
- || !tree_fits_uhwi_p (TREE_OPERAND (offset, 1))
- || compare_tree_int (TREE_OPERAND (offset, 1),
- BIGGEST_ALIGNMENT / BITS_PER_UNIT) <= 0
- || !pow2p_hwi (tree_to_uhwi (TREE_OPERAND (offset, 1)) + 1))
- return 0;
-
- /* Look at the first operand of BIT_AND_EXPR and strip any conversion.
- It must be NEGATE_EXPR. Then strip any more conversions. */
- offset = TREE_OPERAND (offset, 0);
- while (CONVERT_EXPR_P (offset))
- offset = TREE_OPERAND (offset, 0);
-
- if (TREE_CODE (offset) != NEGATE_EXPR)
- return 0;
-
- offset = TREE_OPERAND (offset, 0);
- while (CONVERT_EXPR_P (offset))
- offset = TREE_OPERAND (offset, 0);
-
- /* This must now be the address of EXP. */
- return TREE_CODE (offset) == ADDR_EXPR && TREE_OPERAND (offset, 0) == exp;
-}
-
-/* Return a STRING_CST corresponding to ARG's constant initializer either
- if it's a string constant, or, when VALREP is set, any other constant,
- or null otherwise.
- On success, set *PTR_OFFSET to the (possibly non-constant) byte offset
- within the byte string that ARG is references. If nonnull set *MEM_SIZE
- to the size of the byte string. If nonnull, set *DECL to the constant
- declaration ARG refers to. */
-
-static tree
-constant_byte_string (tree arg, tree *ptr_offset, tree *mem_size, tree *decl,
- bool valrep = false)
-{
- tree dummy = NULL_TREE;
- if (!mem_size)
- mem_size = &dummy;
-
- /* Store the type of the original expression before conversions
- via NOP_EXPR or POINTER_PLUS_EXPR to other types have been
- removed. */
- tree argtype = TREE_TYPE (arg);
-
- tree array;
- STRIP_NOPS (arg);
-
- /* Non-constant index into the character array in an ARRAY_REF
- expression or null. */
- tree varidx = NULL_TREE;
-
- poly_int64 base_off = 0;
-
- if (TREE_CODE (arg) == ADDR_EXPR)
- {
- arg = TREE_OPERAND (arg, 0);
- tree ref = arg;
- if (TREE_CODE (arg) == ARRAY_REF)
- {
- tree idx = TREE_OPERAND (arg, 1);
- if (TREE_CODE (idx) != INTEGER_CST)
- {
- /* From a pointer (but not array) argument extract the variable
- index to prevent get_addr_base_and_unit_offset() from failing
- due to it. Use it later to compute the non-constant offset
- into the string and return it to the caller. */
- varidx = idx;
- ref = TREE_OPERAND (arg, 0);
-
- if (TREE_CODE (TREE_TYPE (arg)) == ARRAY_TYPE)
- return NULL_TREE;
-
- if (!integer_zerop (array_ref_low_bound (arg)))
- return NULL_TREE;
-
- if (!integer_onep (array_ref_element_size (arg)))
- return NULL_TREE;
- }
- }
- array = get_addr_base_and_unit_offset (ref, &base_off);
- if (!array
- || (TREE_CODE (array) != VAR_DECL
- && TREE_CODE (array) != CONST_DECL
- && TREE_CODE (array) != STRING_CST))
- return NULL_TREE;
- }
- else if (TREE_CODE (arg) == PLUS_EXPR || TREE_CODE (arg) == POINTER_PLUS_EXPR)
- {
- tree arg0 = TREE_OPERAND (arg, 0);
- tree arg1 = TREE_OPERAND (arg, 1);
-
- tree offset;
- tree str = string_constant (arg0, &offset, mem_size, decl);
- if (!str)
- {
- str = string_constant (arg1, &offset, mem_size, decl);
- arg1 = arg0;
- }
-
- if (str)
- {
- /* Avoid pointers to arrays (see bug 86622). */
- if (POINTER_TYPE_P (TREE_TYPE (arg))
- && TREE_CODE (TREE_TYPE (TREE_TYPE (arg))) == ARRAY_TYPE
- && !(decl && !*decl)
- && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
- && tree_fits_uhwi_p (*mem_size)
- && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
- return NULL_TREE;
-
- tree type = TREE_TYPE (offset);
- arg1 = fold_convert (type, arg1);
- *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, arg1);
- return str;
- }
- return NULL_TREE;
- }
- else if (TREE_CODE (arg) == SSA_NAME)
- {
- gimple *stmt = SSA_NAME_DEF_STMT (arg);
- if (!is_gimple_assign (stmt))
- return NULL_TREE;
-
- tree rhs1 = gimple_assign_rhs1 (stmt);
- tree_code code = gimple_assign_rhs_code (stmt);
- if (code == ADDR_EXPR)
- return string_constant (rhs1, ptr_offset, mem_size, decl);
- else if (code != POINTER_PLUS_EXPR)
- return NULL_TREE;
-
- tree offset;
- if (tree str = string_constant (rhs1, &offset, mem_size, decl))
- {
- /* Avoid pointers to arrays (see bug 86622). */
- if (POINTER_TYPE_P (TREE_TYPE (rhs1))
- && TREE_CODE (TREE_TYPE (TREE_TYPE (rhs1))) == ARRAY_TYPE
- && !(decl && !*decl)
- && !(decl && tree_fits_uhwi_p (DECL_SIZE_UNIT (*decl))
- && tree_fits_uhwi_p (*mem_size)
- && tree_int_cst_equal (*mem_size, DECL_SIZE_UNIT (*decl))))
- return NULL_TREE;
-
- tree rhs2 = gimple_assign_rhs2 (stmt);
- tree type = TREE_TYPE (offset);
- rhs2 = fold_convert (type, rhs2);
- *ptr_offset = fold_build2 (PLUS_EXPR, type, offset, rhs2);
- return str;
- }
- return NULL_TREE;
- }
- else if (DECL_P (arg))
- array = arg;
- else
- return NULL_TREE;
-
- tree offset = wide_int_to_tree (sizetype, base_off);
- if (varidx)
- {
- if (TREE_CODE (TREE_TYPE (array)) != ARRAY_TYPE)
- return NULL_TREE;
-
- gcc_assert (TREE_CODE (arg) == ARRAY_REF);
- tree chartype = TREE_TYPE (TREE_TYPE (TREE_OPERAND (arg, 0)));
- if (TREE_CODE (chartype) != INTEGER_TYPE)
- return NULL;
-
- offset = fold_convert (sizetype, varidx);
- }
-
- if (TREE_CODE (array) == STRING_CST)
- {
- *ptr_offset = fold_convert (sizetype, offset);
- *mem_size = TYPE_SIZE_UNIT (TREE_TYPE (array));
- if (decl)
- *decl = NULL_TREE;
- gcc_checking_assert (tree_to_shwi (TYPE_SIZE_UNIT (TREE_TYPE (array)))
- >= TREE_STRING_LENGTH (array));
- return array;
- }
-
- tree init = ctor_for_folding (array);
- if (!init || init == error_mark_node)
- return NULL_TREE;
-
- if (valrep)
- {
- HOST_WIDE_INT cstoff;
- if (!base_off.is_constant (&cstoff))
- return NULL_TREE;
-
- /* Check that the host and target are sane. */
- if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
- return NULL_TREE;
-
- HOST_WIDE_INT typesz = int_size_in_bytes (TREE_TYPE (init));
- if (typesz <= 0 || (int) typesz != typesz)
- return NULL_TREE;
-
- HOST_WIDE_INT size = typesz;
- if (VAR_P (array)
- && DECL_SIZE_UNIT (array)
- && tree_fits_shwi_p (DECL_SIZE_UNIT (array)))
- {
- size = tree_to_shwi (DECL_SIZE_UNIT (array));
- gcc_checking_assert (size >= typesz);
- }
-
- /* If value representation was requested convert the initializer
- for the whole array or object into a string of bytes forming
- its value representation and return it. */
- unsigned char *bytes = XNEWVEC (unsigned char, size);
- int r = native_encode_initializer (init, bytes, size);
- if (r < typesz)
- {
- XDELETEVEC (bytes);
- return NULL_TREE;
- }
-
- if (r < size)
- memset (bytes + r, '\0', size - r);
-
- const char *p = reinterpret_cast<const char *>(bytes);
- init = build_string_literal (size, p, char_type_node);
- init = TREE_OPERAND (init, 0);
- init = TREE_OPERAND (init, 0);
- XDELETE (bytes);
-
- *mem_size = size_int (TREE_STRING_LENGTH (init));
- *ptr_offset = wide_int_to_tree (ssizetype, base_off);
-
- if (decl)
- *decl = array;
-
- return init;
- }
-
- if (TREE_CODE (init) == CONSTRUCTOR)
- {
- /* Convert the 64-bit constant offset to a wider type to avoid
- overflow and use it to obtain the initializer for the subobject
- it points into. */
- offset_int wioff;
- if (!base_off.is_constant (&wioff))
- return NULL_TREE;
-
- wioff *= BITS_PER_UNIT;
- if (!wi::fits_uhwi_p (wioff))
- return NULL_TREE;
-
- base_off = wioff.to_uhwi ();
- unsigned HOST_WIDE_INT fieldoff = 0;
- init = fold_ctor_reference (TREE_TYPE (arg), init, base_off, 0, array,
- &fieldoff);
- if (!init || init == error_mark_node)
- return NULL_TREE;
-
- HOST_WIDE_INT cstoff;
- if (!base_off.is_constant (&cstoff))
- return NULL_TREE;
-
- cstoff = (cstoff - fieldoff) / BITS_PER_UNIT;
- tree off = build_int_cst (sizetype, cstoff);
- if (varidx)
- offset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset, off);
- else
- offset = off;
- }
-
- *ptr_offset = offset;
-
- tree inittype = TREE_TYPE (init);
-
- if (TREE_CODE (init) == INTEGER_CST
- && (TREE_CODE (TREE_TYPE (array)) == INTEGER_TYPE
- || TYPE_MAIN_VARIANT (inittype) == char_type_node))
- {
- /* Check that the host and target are sane. */
- if (CHAR_BIT != 8 || BITS_PER_UNIT != 8)
- return NULL_TREE;
-
- /* For a reference to (address of) a single constant character,
- store the native representation of the character in CHARBUF.
- If the reference is to an element of an array or a member
- of a struct, only consider narrow characters until ctors
- for wide character arrays are transformed to STRING_CSTs
- like those for narrow arrays. */
- unsigned char charbuf[MAX_BITSIZE_MODE_ANY_MODE / BITS_PER_UNIT];
- int len = native_encode_expr (init, charbuf, sizeof charbuf, 0);
- if (len > 0)
- {
- /* Construct a string literal with elements of INITTYPE and
- the representation above. Then strip
- the ADDR_EXPR (ARRAY_REF (...)) around the STRING_CST. */
- init = build_string_literal (len, (char *)charbuf, inittype);
- init = TREE_OPERAND (TREE_OPERAND (init, 0), 0);
- }
- }
-
- tree initsize = TYPE_SIZE_UNIT (inittype);
-
- if (TREE_CODE (init) == CONSTRUCTOR && initializer_zerop (init))
- {
- /* Fold an empty/zero constructor for an implicitly initialized
- object or subobject into the empty string. */
-
- /* Determine the character type from that of the original
- expression. */
- tree chartype = argtype;
- if (POINTER_TYPE_P (chartype))
- chartype = TREE_TYPE (chartype);
- while (TREE_CODE (chartype) == ARRAY_TYPE)
- chartype = TREE_TYPE (chartype);
-
- if (INTEGRAL_TYPE_P (chartype)
- && TYPE_PRECISION (chartype) == TYPE_PRECISION (char_type_node))
- {
- /* Convert a char array to an empty STRING_CST having an array
- of the expected type and size. */
- if (!initsize)
- initsize = integer_zero_node;
-
- unsigned HOST_WIDE_INT size = tree_to_uhwi (initsize);
- if (size > (unsigned HOST_WIDE_INT) INT_MAX)
- return NULL_TREE;
-
- init = build_string_literal (size, NULL, chartype, size);
- init = TREE_OPERAND (init, 0);
- init = TREE_OPERAND (init, 0);
-
- *ptr_offset = integer_zero_node;
- }
- }
-
- if (decl)
- *decl = array;
-
- if (TREE_CODE (init) != STRING_CST)
- return NULL_TREE;
-
- *mem_size = initsize;
-
- gcc_checking_assert (tree_to_shwi (initsize) >= TREE_STRING_LENGTH (init));
-
- return init;
-}
-
-/* Return STRING_CST if an ARG corresponds to a string constant or zero
- if it doesn't. If we return nonzero, set *PTR_OFFSET to the (possibly
- non-constant) offset in bytes within the string that ARG is accessing.
- If MEM_SIZE is non-zero the storage size of the memory is returned.
- If DECL is non-zero the constant declaration is returned if available. */
-
-tree
-string_constant (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
-{
- return constant_byte_string (arg, ptr_offset, mem_size, decl, false);
-}
-
-/* Similar to string_constant, return a STRING_CST corresponding
- to the value representation of the first argument if it's
- a constant. */
-
-tree
-byte_representation (tree arg, tree *ptr_offset, tree *mem_size, tree *decl)
-{
- return constant_byte_string (arg, ptr_offset, mem_size, decl, true);
-}
-
-/* Optimize x % C1 == C2 for signed modulo if C1 is a power of two and C2
- is non-zero and C3 ((1<<(prec-1)) | (C1 - 1)):
- for C2 > 0 to x & C3 == C2
- for C2 < 0 to x & C3 == (C2 & C3). */
-enum tree_code
-maybe_optimize_pow2p_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
-{
- gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
- tree treeop0 = gimple_assign_rhs1 (stmt);
- tree treeop1 = gimple_assign_rhs2 (stmt);
- tree type = TREE_TYPE (*arg0);
- scalar_int_mode mode;
- if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
- return code;
- if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
- || TYPE_PRECISION (type) <= 1
- || TYPE_UNSIGNED (type)
- /* Signed x % c == 0 should have been optimized into unsigned modulo
- earlier. */
- || integer_zerop (*arg1)
- /* If c is known to be non-negative, modulo will be expanded as unsigned
- modulo. */
- || get_range_pos_neg (treeop0) == 1)
- return code;
-
- /* x % c == d where d < 0 && d <= -c should be always false. */
- if (tree_int_cst_sgn (*arg1) == -1
- && -wi::to_widest (treeop1) >= wi::to_widest (*arg1))
- return code;
-
- int prec = TYPE_PRECISION (type);
- wide_int w = wi::to_wide (treeop1) - 1;
- w |= wi::shifted_mask (0, prec - 1, true, prec);
- tree c3 = wide_int_to_tree (type, w);
- tree c4 = *arg1;
- if (tree_int_cst_sgn (*arg1) == -1)
- c4 = wide_int_to_tree (type, w & wi::to_wide (*arg1));
-
- rtx op0 = expand_normal (treeop0);
- treeop0 = make_tree (TREE_TYPE (treeop0), op0);
-
- bool speed_p = optimize_insn_for_speed_p ();
-
- do_pending_stack_adjust ();
-
- location_t loc = gimple_location (stmt);
- struct separate_ops ops;
- ops.code = TRUNC_MOD_EXPR;
- ops.location = loc;
- ops.type = TREE_TYPE (treeop0);
- ops.op0 = treeop0;
- ops.op1 = treeop1;
- ops.op2 = NULL_TREE;
- start_sequence ();
- rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
- EXPAND_NORMAL);
- rtx_insn *moinsns = get_insns ();
- end_sequence ();
-
- unsigned mocost = seq_cost (moinsns, speed_p);
- mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
- mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
-
- ops.code = BIT_AND_EXPR;
- ops.location = loc;
- ops.type = TREE_TYPE (treeop0);
- ops.op0 = treeop0;
- ops.op1 = c3;
- ops.op2 = NULL_TREE;
- start_sequence ();
- rtx mur = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
- EXPAND_NORMAL);
- rtx_insn *muinsns = get_insns ();
- end_sequence ();
-
- unsigned mucost = seq_cost (muinsns, speed_p);
- mucost += rtx_cost (mur, mode, EQ, 0, speed_p);
- mucost += rtx_cost (expand_normal (c4), mode, EQ, 1, speed_p);
-
- if (mocost <= mucost)
- {
- emit_insn (moinsns);
- *arg0 = make_tree (TREE_TYPE (*arg0), mor);
- return code;
- }
-
- emit_insn (muinsns);
- *arg0 = make_tree (TREE_TYPE (*arg0), mur);
- *arg1 = c4;
- return code;
-}
-
-/* Attempt to optimize unsigned (X % C1) == C2 (or (X % C1) != C2).
- If C1 is odd to:
- (X - C2) * C3 <= C4 (or >), where
- C3 is modular multiplicative inverse of C1 and 1<<prec and
- C4 is ((1<<prec) - 1) / C1 or ((1<<prec) - 1) / C1 - 1 (the latter
- if C2 > ((1<<prec) - 1) % C1).
- If C1 is even, S = ctz (C1) and C2 is 0, use
- ((X * C3) r>> S) <= C4, where C3 is modular multiplicative
- inverse of C1>>S and 1<<prec and C4 is (((1<<prec) - 1) / (C1>>S)) >> S.
-
- For signed (X % C1) == 0 if C1 is odd to (all operations in it
- unsigned):
- (X * C3) + C4 <= 2 * C4, where
- C3 is modular multiplicative inverse of (unsigned) C1 and 1<<prec and
- C4 is ((1<<(prec - 1) - 1) / C1).
- If C1 is even, S = ctz(C1), use
- ((X * C3) + C4) r>> S <= (C4 >> (S - 1))
- where C3 is modular multiplicative inverse of (unsigned)(C1>>S) and 1<<prec
- and C4 is ((1<<(prec - 1) - 1) / (C1>>S)) & (-1<<S).
-
- See the Hacker's Delight book, section 10-17. */
-enum tree_code
-maybe_optimize_mod_cmp (enum tree_code code, tree *arg0, tree *arg1)
-{
- gcc_checking_assert (code == EQ_EXPR || code == NE_EXPR);
- gcc_checking_assert (TREE_CODE (*arg1) == INTEGER_CST);
-
- if (optimize < 2)
- return code;
-
- gimple *stmt = get_def_for_expr (*arg0, TRUNC_MOD_EXPR);
- if (stmt == NULL)
- return code;
-
- tree treeop0 = gimple_assign_rhs1 (stmt);
- tree treeop1 = gimple_assign_rhs2 (stmt);
- if (TREE_CODE (treeop0) != SSA_NAME
- || TREE_CODE (treeop1) != INTEGER_CST
- /* Don't optimize the undefined behavior case x % 0;
- x % 1 should have been optimized into zero, punt if
- it makes it here for whatever reason;
- x % -c should have been optimized into x % c. */
- || compare_tree_int (treeop1, 2) <= 0
- /* Likewise x % c == d where d >= c should be always false. */
- || tree_int_cst_le (treeop1, *arg1))
- return code;
-
- /* Unsigned x % pow2 is handled right already, for signed
- modulo handle it in maybe_optimize_pow2p_mod_cmp. */
- if (integer_pow2p (treeop1))
- return maybe_optimize_pow2p_mod_cmp (code, arg0, arg1);
-
- tree type = TREE_TYPE (*arg0);
- scalar_int_mode mode;
- if (!is_a <scalar_int_mode> (TYPE_MODE (type), &mode))
- return code;
- if (GET_MODE_BITSIZE (mode) != TYPE_PRECISION (type)
- || TYPE_PRECISION (type) <= 1)
- return code;
-
- signop sgn = UNSIGNED;
- /* If both operands are known to have the sign bit clear, handle
- even the signed modulo case as unsigned. treeop1 is always
- positive >= 2, checked above. */
- if (!TYPE_UNSIGNED (type) && get_range_pos_neg (treeop0) != 1)
- sgn = SIGNED;
-
- if (!TYPE_UNSIGNED (type))
- {
- if (tree_int_cst_sgn (*arg1) == -1)
- return code;
- type = unsigned_type_for (type);
- if (!type || TYPE_MODE (type) != TYPE_MODE (TREE_TYPE (*arg0)))
- return code;
- }
-
- int prec = TYPE_PRECISION (type);
- wide_int w = wi::to_wide (treeop1);
- int shift = wi::ctz (w);
- /* Unsigned (X % C1) == C2 is equivalent to (X - C2) % C1 == 0 if
- C2 <= -1U % C1, because for any Z >= 0U - C2 in that case (Z % C1) != 0.
- If C1 is odd, we can handle all cases by subtracting
- C4 below. We could handle even the even C1 and C2 > -1U % C1 cases
- e.g. by testing for overflow on the subtraction, punt on that for now
- though. */
- if ((sgn == SIGNED || shift) && !integer_zerop (*arg1))
- {
- if (sgn == SIGNED)
- return code;
- wide_int x = wi::umod_trunc (wi::mask (prec, false, prec), w);
- if (wi::gtu_p (wi::to_wide (*arg1), x))
- return code;
- }
-
- imm_use_iterator imm_iter;
- use_operand_p use_p;
- FOR_EACH_IMM_USE_FAST (use_p, imm_iter, treeop0)
- {
- gimple *use_stmt = USE_STMT (use_p);
- /* Punt if treeop0 is used in the same bb in a division
- or another modulo with the same divisor. We should expect
- the division and modulo combined together. */
- if (use_stmt == stmt
- || gimple_bb (use_stmt) != gimple_bb (stmt))
- continue;
- if (!is_gimple_assign (use_stmt)
- || (gimple_assign_rhs_code (use_stmt) != TRUNC_DIV_EXPR
- && gimple_assign_rhs_code (use_stmt) != TRUNC_MOD_EXPR))
- continue;
- if (gimple_assign_rhs1 (use_stmt) != treeop0
- || !operand_equal_p (gimple_assign_rhs2 (use_stmt), treeop1, 0))
- continue;
- return code;
- }
-
- w = wi::lrshift (w, shift);
- wide_int a = wide_int::from (w, prec + 1, UNSIGNED);
- wide_int b = wi::shifted_mask (prec, 1, false, prec + 1);
- wide_int m = wide_int::from (wi::mod_inv (a, b), prec, UNSIGNED);
- tree c3 = wide_int_to_tree (type, m);
- tree c5 = NULL_TREE;
- wide_int d, e;
- if (sgn == UNSIGNED)
- {
- d = wi::divmod_trunc (wi::mask (prec, false, prec), w, UNSIGNED, &e);
- /* Use <= floor ((1<<prec) - 1) / C1 only if C2 <= ((1<<prec) - 1) % C1,
- otherwise use < or subtract one from C4. E.g. for
- x % 3U == 0 we transform this into x * 0xaaaaaaab <= 0x55555555, but
- x % 3U == 1 already needs to be
- (x - 1) * 0xaaaaaaabU <= 0x55555554. */
- if (!shift && wi::gtu_p (wi::to_wide (*arg1), e))
- d -= 1;
- if (shift)
- d = wi::lrshift (d, shift);
- }
- else
- {
- e = wi::udiv_trunc (wi::mask (prec - 1, false, prec), w);
- if (!shift)
- d = wi::lshift (e, 1);
- else
- {
- e = wi::bit_and (e, wi::mask (shift, true, prec));
- d = wi::lrshift (e, shift - 1);
- }
- c5 = wide_int_to_tree (type, e);
- }
- tree c4 = wide_int_to_tree (type, d);
-
- rtx op0 = expand_normal (treeop0);
- treeop0 = make_tree (TREE_TYPE (treeop0), op0);
-
- bool speed_p = optimize_insn_for_speed_p ();
-
- do_pending_stack_adjust ();
-
- location_t loc = gimple_location (stmt);
- struct separate_ops ops;
- ops.code = TRUNC_MOD_EXPR;
- ops.location = loc;
- ops.type = TREE_TYPE (treeop0);
- ops.op0 = treeop0;
- ops.op1 = treeop1;
- ops.op2 = NULL_TREE;
- start_sequence ();
- rtx mor = expand_expr_real_2 (&ops, NULL_RTX, TYPE_MODE (ops.type),
- EXPAND_NORMAL);
- rtx_insn *moinsns = get_insns ();
- end_sequence ();
-
- unsigned mocost = seq_cost (moinsns, speed_p);
- mocost += rtx_cost (mor, mode, EQ, 0, speed_p);
- mocost += rtx_cost (expand_normal (*arg1), mode, EQ, 1, speed_p);
-
- tree t = fold_convert_loc (loc, type, treeop0);
- if (!integer_zerop (*arg1))
- t = fold_build2_loc (loc, MINUS_EXPR, type, t, fold_convert (type, *arg1));
- t = fold_build2_loc (loc, MULT_EXPR, type, t, c3);
- if (sgn == SIGNED)
- t = fold_build2_loc (loc, PLUS_EXPR, type, t, c5);
- if (shift)
- {
- tree s = build_int_cst (NULL_TREE, shift);
- t = fold_build2_loc (loc, RROTATE_EXPR, type, t, s);
- }
-
- start_sequence ();
- rtx mur = expand_normal (t);
- rtx_insn *muinsns = get_insns ();
- end_sequence ();
-
- unsigned mucost = seq_cost (muinsns, speed_p);
- mucost += rtx_cost (mur, mode, LE, 0, speed_p);
- mucost += rtx_cost (expand_normal (c4), mode, LE, 1, speed_p);
-
- if (mocost <= mucost)
- {
- emit_insn (moinsns);
- *arg0 = make_tree (TREE_TYPE (*arg0), mor);
- return code;
- }
-
- emit_insn (muinsns);
- *arg0 = make_tree (type, mur);
- *arg1 = c4;
- return code == EQ_EXPR ? LE_EXPR : GT_EXPR;
-}
-
-/* Optimize x - y < 0 into x < 0 if x - y has undefined overflow. */
-
-void
-maybe_optimize_sub_cmp_0 (enum tree_code code, tree *arg0, tree *arg1)
-{
- gcc_checking_assert (code == GT_EXPR || code == GE_EXPR
- || code == LT_EXPR || code == LE_EXPR);
- gcc_checking_assert (integer_zerop (*arg1));
-
- if (!optimize)
- return;
-
- gimple *stmt = get_def_for_expr (*arg0, MINUS_EXPR);
- if (stmt == NULL)
- return;
-
- tree treeop0 = gimple_assign_rhs1 (stmt);
- tree treeop1 = gimple_assign_rhs2 (stmt);
- if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (treeop0)))
- return;
-
- if (issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_COMPARISON))
- warning_at (gimple_location (stmt), OPT_Wstrict_overflow,
- "assuming signed overflow does not occur when "
- "simplifying %<X - Y %s 0%> to %<X %s Y%>",
- op_symbol_code (code), op_symbol_code (code));
-
- *arg0 = treeop0;
- *arg1 = treeop1;
-}
-
-/* Generate code to calculate OPS, and exploded expression
- using a store-flag instruction and return an rtx for the result.
- OPS reflects a comparison.
-
- If TARGET is nonzero, store the result there if convenient.
-
- Return zero if there is no suitable set-flag instruction
- available on this machine.
-
- Once expand_expr has been called on the arguments of the comparison,
- we are committed to doing the store flag, since it is not safe to
- re-evaluate the expression. We emit the store-flag insn by calling
- emit_store_flag, but only expand the arguments if we have a reason
- to believe that emit_store_flag will be successful. If we think that
- it will, but it isn't, we have to simulate the store-flag with a
- set/jump/set sequence. */
-
-static rtx
-do_store_flag (sepops ops, rtx target, machine_mode mode)
-{
- enum rtx_code code;
- tree arg0, arg1, type;
- machine_mode operand_mode;
- int unsignedp;
- rtx op0, op1;
- rtx subtarget = target;
- location_t loc = ops->location;
-
- arg0 = ops->op0;
- arg1 = ops->op1;
-
- /* Don't crash if the comparison was erroneous. */
- if (arg0 == error_mark_node || arg1 == error_mark_node)
- return const0_rtx;
-
- type = TREE_TYPE (arg0);
- operand_mode = TYPE_MODE (type);
- unsignedp = TYPE_UNSIGNED (type);
-
- /* We won't bother with BLKmode store-flag operations because it would mean
- passing a lot of information to emit_store_flag. */
- if (operand_mode == BLKmode)
- return 0;
-
- /* We won't bother with store-flag operations involving function pointers
- when function pointers must be canonicalized before comparisons. */
- if (targetm.have_canonicalize_funcptr_for_compare ()
- && ((POINTER_TYPE_P (TREE_TYPE (arg0))
- && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg0))))
- || (POINTER_TYPE_P (TREE_TYPE (arg1))
- && FUNC_OR_METHOD_TYPE_P (TREE_TYPE (TREE_TYPE (arg1))))))
- return 0;
-
- STRIP_NOPS (arg0);
- STRIP_NOPS (arg1);
-
- /* For vector typed comparisons emit code to generate the desired
- all-ones or all-zeros mask. */
- if (TREE_CODE (ops->type) == VECTOR_TYPE)
- {
- tree ifexp = build2 (ops->code, ops->type, arg0, arg1);
- if (VECTOR_BOOLEAN_TYPE_P (ops->type)
- && expand_vec_cmp_expr_p (TREE_TYPE (arg0), ops->type, ops->code))
- return expand_vec_cmp_expr (ops->type, ifexp, target);
- else
- gcc_unreachable ();
- }
-
- /* Optimize (x % C1) == C2 or (x % C1) != C2 if it is beneficial
- into (x - C2) * C3 < C4. */
- if ((ops->code == EQ_EXPR || ops->code == NE_EXPR)
- && TREE_CODE (arg0) == SSA_NAME
- && TREE_CODE (arg1) == INTEGER_CST)
- {
- enum tree_code new_code = maybe_optimize_mod_cmp (ops->code,
- &arg0, &arg1);
- if (new_code != ops->code)
- {
- struct separate_ops nops = *ops;
- nops.code = ops->code = new_code;
- nops.op0 = arg0;
- nops.op1 = arg1;
- nops.type = TREE_TYPE (arg0);
- return do_store_flag (&nops, target, mode);
- }
- }
-
- /* Optimize (x - y) < 0 into x < y if x - y has undefined overflow. */
- if (!unsignedp
- && (ops->code == LT_EXPR || ops->code == LE_EXPR
- || ops->code == GT_EXPR || ops->code == GE_EXPR)
- && integer_zerop (arg1)
- && TREE_CODE (arg0) == SSA_NAME)
- maybe_optimize_sub_cmp_0 (ops->code, &arg0, &arg1);
-
- /* Get the rtx comparison code to use. We know that EXP is a comparison
- operation of some type. Some comparisons against 1 and -1 can be
- converted to comparisons with zero. Do so here so that the tests
- below will be aware that we have a comparison with zero. These
- tests will not catch constants in the first operand, but constants
- are rarely passed as the first operand. */
-
- switch (ops->code)
- {
- case EQ_EXPR:
- code = EQ;
- break;
- case NE_EXPR:
- code = NE;
- break;
- case LT_EXPR:
- if (integer_onep (arg1))
- arg1 = integer_zero_node, code = unsignedp ? LEU : LE;
- else
- code = unsignedp ? LTU : LT;
- break;
- case LE_EXPR:
- if (! unsignedp && integer_all_onesp (arg1))
- arg1 = integer_zero_node, code = LT;
- else
- code = unsignedp ? LEU : LE;
- break;
- case GT_EXPR:
- if (! unsignedp && integer_all_onesp (arg1))
- arg1 = integer_zero_node, code = GE;
- else
- code = unsignedp ? GTU : GT;
- break;
- case GE_EXPR:
- if (integer_onep (arg1))
- arg1 = integer_zero_node, code = unsignedp ? GTU : GT;
- else
- code = unsignedp ? GEU : GE;
- break;
-
- case UNORDERED_EXPR:
- code = UNORDERED;
- break;
- case ORDERED_EXPR:
- code = ORDERED;
- break;
- case UNLT_EXPR:
- code = UNLT;
- break;
- case UNLE_EXPR:
- code = UNLE;
- break;
- case UNGT_EXPR:
- code = UNGT;
- break;
- case UNGE_EXPR:
- code = UNGE;
- break;
- case UNEQ_EXPR:
- code = UNEQ;
- break;
- case LTGT_EXPR:
- code = LTGT;
- break;
-
- default:
- gcc_unreachable ();
- }
-
- /* Put a constant second. */
- if (TREE_CODE (arg0) == REAL_CST || TREE_CODE (arg0) == INTEGER_CST
- || TREE_CODE (arg0) == FIXED_CST)
- {
- std::swap (arg0, arg1);
- code = swap_condition (code);
- }
-
- /* If this is an equality or inequality test of a single bit, we can
- do this by shifting the bit being tested to the low-order bit and
- masking the result with the constant 1. If the condition was EQ,
- we xor it with 1. This does not require an scc insn and is faster
- than an scc insn even if we have it.
-
- The code to make this transformation was moved into fold_single_bit_test,
- so we just call into the folder and expand its result. */
-
- if ((code == NE || code == EQ)
- && integer_zerop (arg1)
- && (TYPE_PRECISION (ops->type) != 1 || TYPE_UNSIGNED (ops->type)))
- {
- gimple *srcstmt = get_def_for_expr (arg0, BIT_AND_EXPR);
- if (srcstmt
- && integer_pow2p (gimple_assign_rhs2 (srcstmt)))
- {
- enum tree_code tcode = code == NE ? NE_EXPR : EQ_EXPR;
- type = lang_hooks.types.type_for_mode (mode, unsignedp);
- tree temp = fold_build2_loc (loc, BIT_AND_EXPR, TREE_TYPE (arg1),
- gimple_assign_rhs1 (srcstmt),
- gimple_assign_rhs2 (srcstmt));
- temp = fold_single_bit_test (loc, tcode, temp, arg1, type);
- if (temp)
- return expand_expr (temp, target, VOIDmode, EXPAND_NORMAL);
- }
- }
-
- if (! get_subtarget (target)
- || GET_MODE (subtarget) != operand_mode)
- subtarget = 0;
-
- expand_operands (arg0, arg1, subtarget, &op0, &op1, EXPAND_NORMAL);
-
- if (target == 0)
- target = gen_reg_rtx (mode);
-
- /* Try a cstore if possible. */
- return emit_store_flag_force (target, code, op0, op1,
- operand_mode, unsignedp,
- (TYPE_PRECISION (ops->type) == 1
- && !TYPE_UNSIGNED (ops->type)) ? -1 : 1);
-}
-
-/* Attempt to generate a casesi instruction. Returns 1 if successful,
- 0 otherwise (i.e. if there is no casesi instruction).
-
- DEFAULT_PROBABILITY is the probability of jumping to the default
- label. */
-int
-try_casesi (tree index_type, tree index_expr, tree minval, tree range,
- rtx table_label, rtx default_label, rtx fallback_label,
- profile_probability default_probability)
-{
- class expand_operand ops[5];
- scalar_int_mode index_mode = SImode;
- rtx op1, op2, index;
-
- if (! targetm.have_casesi ())
- return 0;
-
- /* The index must be some form of integer. Convert it to SImode. */
- scalar_int_mode omode = SCALAR_INT_TYPE_MODE (index_type);
- if (GET_MODE_BITSIZE (omode) > GET_MODE_BITSIZE (index_mode))
- {
- rtx rangertx = expand_normal (range);
-
- /* We must handle the endpoints in the original mode. */
- index_expr = build2 (MINUS_EXPR, index_type,
- index_expr, minval);
- minval = integer_zero_node;
- index = expand_normal (index_expr);
- if (default_label)
- emit_cmp_and_jump_insns (rangertx, index, LTU, NULL_RTX,
- omode, 1, default_label,
- default_probability);
- /* Now we can safely truncate. */
- index = convert_to_mode (index_mode, index, 0);
- }
- else
- {
- if (omode != index_mode)
- {
- index_type = lang_hooks.types.type_for_mode (index_mode, 0);
- index_expr = fold_convert (index_type, index_expr);
- }
-
- index = expand_normal (index_expr);
- }
-
- do_pending_stack_adjust ();
-
- op1 = expand_normal (minval);
- op2 = expand_normal (range);
-
- create_input_operand (&ops[0], index, index_mode);
- create_convert_operand_from_type (&ops[1], op1, TREE_TYPE (minval));
- create_convert_operand_from_type (&ops[2], op2, TREE_TYPE (range));
- create_fixed_operand (&ops[3], table_label);
- create_fixed_operand (&ops[4], (default_label
- ? default_label
- : fallback_label));
- expand_jump_insn (targetm.code_for_casesi, 5, ops);
- return 1;
-}
-
-/* Attempt to generate a tablejump instruction; same concept. */
-/* Subroutine of the next function.
-
- INDEX is the value being switched on, with the lowest value
- in the table already subtracted.
- MODE is its expected mode (needed if INDEX is constant).
- RANGE is the length of the jump table.
- TABLE_LABEL is a CODE_LABEL rtx for the table itself.
-
- DEFAULT_LABEL is a CODE_LABEL rtx to jump to if the
- index value is out of range.
- DEFAULT_PROBABILITY is the probability of jumping to
- the default label. */
-
-static void
-do_tablejump (rtx index, machine_mode mode, rtx range, rtx table_label,
- rtx default_label, profile_probability default_probability)
-{
- rtx temp, vector;
-
- if (INTVAL (range) > cfun->cfg->max_jumptable_ents)
- cfun->cfg->max_jumptable_ents = INTVAL (range);
-
- /* Do an unsigned comparison (in the proper mode) between the index
- expression and the value which represents the length of the range.
- Since we just finished subtracting the lower bound of the range
- from the index expression, this comparison allows us to simultaneously
- check that the original index expression value is both greater than
- or equal to the minimum value of the range and less than or equal to
- the maximum value of the range. */
-
- if (default_label)
- emit_cmp_and_jump_insns (index, range, GTU, NULL_RTX, mode, 1,
- default_label, default_probability);
-
- /* If index is in range, it must fit in Pmode.
- Convert to Pmode so we can index with it. */
- if (mode != Pmode)
- {
- unsigned int width;
-
- /* We know the value of INDEX is between 0 and RANGE. If we have a
- sign-extended subreg, and RANGE does not have the sign bit set, then
- we have a value that is valid for both sign and zero extension. In
- this case, we get better code if we sign extend. */
- if (GET_CODE (index) == SUBREG
- && SUBREG_PROMOTED_VAR_P (index)
- && SUBREG_PROMOTED_SIGNED_P (index)
- && ((width = GET_MODE_PRECISION (as_a <scalar_int_mode> (mode)))
- <= HOST_BITS_PER_WIDE_INT)
- && ! (UINTVAL (range) & (HOST_WIDE_INT_1U << (width - 1))))
- index = convert_to_mode (Pmode, index, 0);
- else
- index = convert_to_mode (Pmode, index, 1);
- }
-
- /* Don't let a MEM slip through, because then INDEX that comes
- out of PIC_CASE_VECTOR_ADDRESS won't be a valid address,
- and break_out_memory_refs will go to work on it and mess it up. */
-#ifdef PIC_CASE_VECTOR_ADDRESS
- if (flag_pic && !REG_P (index))
- index = copy_to_mode_reg (Pmode, index);
-#endif
-
- /* ??? The only correct use of CASE_VECTOR_MODE is the one inside the
- GET_MODE_SIZE, because this indicates how large insns are. The other
- uses should all be Pmode, because they are addresses. This code
- could fail if addresses and insns are not the same size. */
- index = simplify_gen_binary (MULT, Pmode, index,
- gen_int_mode (GET_MODE_SIZE (CASE_VECTOR_MODE),
- Pmode));
- index = simplify_gen_binary (PLUS, Pmode, index,
- gen_rtx_LABEL_REF (Pmode, table_label));
-
-#ifdef PIC_CASE_VECTOR_ADDRESS
- if (flag_pic)
- index = PIC_CASE_VECTOR_ADDRESS (index);
- else
-#endif
- index = memory_address (CASE_VECTOR_MODE, index);
- temp = gen_reg_rtx (CASE_VECTOR_MODE);
- vector = gen_const_mem (CASE_VECTOR_MODE, index);
- convert_move (temp, vector, 0);
-
- emit_jump_insn (targetm.gen_tablejump (temp, table_label));
-
- /* If we are generating PIC code or if the table is PC-relative, the
- table and JUMP_INSN must be adjacent, so don't output a BARRIER. */
- if (! CASE_VECTOR_PC_RELATIVE && ! flag_pic)
- emit_barrier ();
-}
-
-int
-try_tablejump (tree index_type, tree index_expr, tree minval, tree range,
- rtx table_label, rtx default_label,
- profile_probability default_probability)
-{
- rtx index;
-
- if (! targetm.have_tablejump ())
- return 0;
-
- index_expr = fold_build2 (MINUS_EXPR, index_type,
- fold_convert (index_type, index_expr),
- fold_convert (index_type, minval));
- index = expand_normal (index_expr);
- do_pending_stack_adjust ();
-
- do_tablejump (index, TYPE_MODE (index_type),
- convert_modes (TYPE_MODE (index_type),
- TYPE_MODE (TREE_TYPE (range)),
- expand_normal (range),
- TYPE_UNSIGNED (TREE_TYPE (range))),
- table_label, default_label, default_probability);
- return 1;
-}
-
-/* Return a CONST_VECTOR rtx representing vector mask for
- a VECTOR_CST of booleans. */
-static rtx
-const_vector_mask_from_tree (tree exp)
-{
- machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
- machine_mode inner = GET_MODE_INNER (mode);
-
- rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
- VECTOR_CST_NELTS_PER_PATTERN (exp));
- unsigned int count = builder.encoded_nelts ();
- for (unsigned int i = 0; i < count; ++i)
- {
- tree elt = VECTOR_CST_ELT (exp, i);
- gcc_assert (TREE_CODE (elt) == INTEGER_CST);
- if (integer_zerop (elt))
- builder.quick_push (CONST0_RTX (inner));
- else if (integer_onep (elt)
- || integer_minus_onep (elt))
- builder.quick_push (CONSTM1_RTX (inner));
- else
- gcc_unreachable ();
- }
- return builder.build ();
-}
-
-/* Return a CONST_VECTOR rtx for a VECTOR_CST tree. */
-static rtx
-const_vector_from_tree (tree exp)
-{
- machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
-
- if (initializer_zerop (exp))
- return CONST0_RTX (mode);
-
- if (VECTOR_BOOLEAN_TYPE_P (TREE_TYPE (exp)))
- return const_vector_mask_from_tree (exp);
-
- machine_mode inner = GET_MODE_INNER (mode);
-
- rtx_vector_builder builder (mode, VECTOR_CST_NPATTERNS (exp),
- VECTOR_CST_NELTS_PER_PATTERN (exp));
- unsigned int count = builder.encoded_nelts ();
- for (unsigned int i = 0; i < count; ++i)
- {
- tree elt = VECTOR_CST_ELT (exp, i);
- if (TREE_CODE (elt) == REAL_CST)
- builder.quick_push (const_double_from_real_value (TREE_REAL_CST (elt),
- inner));
- else if (TREE_CODE (elt) == FIXED_CST)
- builder.quick_push (CONST_FIXED_FROM_FIXED_VALUE (TREE_FIXED_CST (elt),
- inner));
- else
- builder.quick_push (immed_wide_int_const (wi::to_poly_wide (elt),
- inner));
- }
- return builder.build ();
-}
-
-/* Build a decl for a personality function given a language prefix. */
-
-tree
-build_personality_function (const char *lang)
-{
- const char *unwind_and_version;
- tree decl, type;
- char *name;
-
- switch (targetm_common.except_unwind_info (&global_options))
- {
- case UI_NONE:
- return NULL;
- case UI_SJLJ:
- unwind_and_version = "_sj0";
- break;
- case UI_DWARF2:
- case UI_TARGET:
- unwind_and_version = "_v0";
- break;
- case UI_SEH:
- unwind_and_version = "_seh0";
- break;
- default:
- gcc_unreachable ();
- }
-
- name = ACONCAT (("__", lang, "_personality", unwind_and_version, NULL));
-
- type = build_function_type_list (unsigned_type_node,
- integer_type_node, integer_type_node,
- long_long_unsigned_type_node,
- ptr_type_node, ptr_type_node, NULL_TREE);
- decl = build_decl (UNKNOWN_LOCATION, FUNCTION_DECL,
- get_identifier (name), type);
- DECL_ARTIFICIAL (decl) = 1;
- DECL_EXTERNAL (decl) = 1;
- TREE_PUBLIC (decl) = 1;
-
- /* Zap the nonsensical SYMBOL_REF_DECL for this. What we're left with
- are the flags assigned by targetm.encode_section_info. */
- SET_SYMBOL_REF_DECL (XEXP (DECL_RTL (decl), 0), NULL);
-
- return decl;
-}
-
-/* Extracts the personality function of DECL and returns the corresponding
- libfunc. */
-
-rtx
-get_personality_function (tree decl)
-{
- tree personality = DECL_FUNCTION_PERSONALITY (decl);
- enum eh_personality_kind pk;
-
- pk = function_needs_eh_personality (DECL_STRUCT_FUNCTION (decl));
- if (pk == eh_personality_none)
- return NULL;
-
- if (!personality
- && pk == eh_personality_any)
- personality = lang_hooks.eh_personality ();
-
- if (pk == eh_personality_lang)
- gcc_assert (personality != NULL_TREE);
-
- return XEXP (DECL_RTL (personality), 0);
-}
-
-/* Returns a tree for the size of EXP in bytes. */
-
-static tree
-tree_expr_size (const_tree exp)
-{
- if (DECL_P (exp)
- && DECL_SIZE_UNIT (exp) != 0)
- return DECL_SIZE_UNIT (exp);
- else
- return size_in_bytes (TREE_TYPE (exp));
-}
-
-/* Return an rtx for the size in bytes of the value of EXP. */
-
-rtx
-expr_size (tree exp)
-{
- tree size;
-
- if (TREE_CODE (exp) == WITH_SIZE_EXPR)
- size = TREE_OPERAND (exp, 1);
- else
- {
- size = tree_expr_size (exp);
- gcc_assert (size);
- gcc_assert (size == SUBSTITUTE_PLACEHOLDER_IN_EXPR (size, exp));
- }
-
- return expand_expr (size, NULL_RTX, TYPE_MODE (sizetype), EXPAND_NORMAL);
-}
-
-/* Return a wide integer for the size in bytes of the value of EXP, or -1
- if the size can vary or is larger than an integer. */
-
-static HOST_WIDE_INT
-int_expr_size (tree exp)
-{
- tree size;
-
- if (TREE_CODE (exp) == WITH_SIZE_EXPR)
- size = TREE_OPERAND (exp, 1);
- else
- {
- size = tree_expr_size (exp);
- gcc_assert (size);
- }
-
- if (size == 0 || !tree_fits_shwi_p (size))
- return -1;
-
- return tree_to_shwi (size);
-}