diff options
author | Richard Sandiford <richard.sandiford@linaro.org> | 2017-08-30 11:11:32 +0000 |
---|---|---|
committer | Richard Sandiford <rsandifo@gcc.gnu.org> | 2017-08-30 11:11:32 +0000 |
commit | 7c61657f68cc45bdbbfcfd762dbfd7021f3acb3f (patch) | |
tree | 983ecb0098267a20b4cb1756c1fd29aebe17c9bd /gcc/combine.c | |
parent | 64ab8765d7e45ed19d4a571b2aaba0abf7f834c3 (diff) | |
download | gcc-7c61657f68cc45bdbbfcfd762dbfd7021f3acb3f.zip gcc-7c61657f68cc45bdbbfcfd762dbfd7021f3acb3f.tar.gz gcc-7c61657f68cc45bdbbfcfd762dbfd7021f3acb3f.tar.bz2 |
[25/77] Use is_a <scalar_int_mode> for bitmask optimisations
Explicitly check for scalar_int_mode in code that maps arithmetic
to full-mode bit operations. These operations wouldn't work correctly
for vector modes, for example. In many cases this is enforced also by
checking whether an operand is CONST_INT_P, but there were other cases
where the condition is more indirect.
2017-08-30 Richard Sandiford <richard.sandiford@linaro.org>
Alan Hayward <alan.hayward@arm.com>
David Sherwood <david.sherwood@arm.com>
gcc/
* combine.c (combine_simplify_rtx): Add checks for
is_a <scalar_int_mode>.
(simplify_if_then_else): Likewise.
(make_field_assignment): Likewise.
(simplify_comparison): Likewise.
* ifcvt.c (noce_try_bitop): Likewise.
* loop-invariant.c (canonicalize_address_mult): Likewise.
* simplify-rtx.c (simplify_unary_operation_1): Likewise.
Co-Authored-By: Alan Hayward <alan.hayward@arm.com>
Co-Authored-By: David Sherwood <david.sherwood@arm.com>
From-SVN: r251477
Diffstat (limited to 'gcc/combine.c')
-rw-r--r-- | gcc/combine.c | 131 |
1 files changed, 77 insertions, 54 deletions
diff --git a/gcc/combine.c b/gcc/combine.c index 7239ae3..65877e9 100644 --- a/gcc/combine.c +++ b/gcc/combine.c @@ -5850,13 +5850,14 @@ combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest, if (!REG_P (temp) && ! (GET_CODE (temp) == SUBREG && REG_P (SUBREG_REG (temp))) - && (i = exact_log2 (nonzero_bits (temp, mode))) >= 0) + && is_a <scalar_int_mode> (mode, &int_mode) + && (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0) { rtx temp1 = simplify_shift_const - (NULL_RTX, ASHIFTRT, mode, - simplify_shift_const (NULL_RTX, ASHIFT, mode, temp, - GET_MODE_PRECISION (mode) - 1 - i), - GET_MODE_PRECISION (mode) - 1 - i); + (NULL_RTX, ASHIFTRT, int_mode, + simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp, + GET_MODE_PRECISION (int_mode) - 1 - i), + GET_MODE_PRECISION (int_mode) - 1 - i); /* If all we did was surround TEMP with the two shifts, we haven't improved anything, so don't use it. Otherwise, @@ -5947,12 +5948,15 @@ combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest, && !REG_P (XEXP (x, 0)) && ! (GET_CODE (XEXP (x, 0)) == SUBREG && REG_P (SUBREG_REG (XEXP (x, 0)))) - && nonzero_bits (XEXP (x, 0), mode) == 1) - return simplify_shift_const (NULL_RTX, ASHIFTRT, mode, - simplify_shift_const (NULL_RTX, ASHIFT, mode, - gen_rtx_XOR (mode, XEXP (x, 0), const1_rtx), - GET_MODE_PRECISION (mode) - 1), - GET_MODE_PRECISION (mode) - 1); + && is_a <scalar_int_mode> (mode, &int_mode) + && nonzero_bits (XEXP (x, 0), int_mode) == 1) + return simplify_shift_const + (NULL_RTX, ASHIFTRT, int_mode, + simplify_shift_const (NULL_RTX, ASHIFT, int_mode, + gen_rtx_XOR (int_mode, XEXP (x, 0), + const1_rtx), + GET_MODE_PRECISION (int_mode) - 1), + GET_MODE_PRECISION (int_mode) - 1); /* If we are adding two things that have no bits in common, convert the addition into an IOR. This will often be further simplified, @@ -5990,11 +5994,12 @@ combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest, case MINUS: /* (minus <foo> (and <foo> (const_int -pow2))) becomes (and <foo> (const_int pow2-1)) */ - if (GET_CODE (XEXP (x, 1)) == AND + if (is_a <scalar_int_mode> (mode, &int_mode) + && GET_CODE (XEXP (x, 1)) == AND && CONST_INT_P (XEXP (XEXP (x, 1), 1)) && pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1))) && rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0))) - return simplify_and_const_int (NULL_RTX, mode, XEXP (x, 0), + return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0), -INTVAL (XEXP (XEXP (x, 1), 1)) - 1); break; @@ -6025,14 +6030,16 @@ combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest, case UDIV: /* If this is a divide by a power of two, treat it as a shift if its first operand is a shift. */ - if (CONST_INT_P (XEXP (x, 1)) + if (is_a <scalar_int_mode> (mode, &int_mode) + && CONST_INT_P (XEXP (x, 1)) && (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0 && (GET_CODE (XEXP (x, 0)) == ASHIFT || GET_CODE (XEXP (x, 0)) == LSHIFTRT || GET_CODE (XEXP (x, 0)) == ASHIFTRT || GET_CODE (XEXP (x, 0)) == ROTATE || GET_CODE (XEXP (x, 0)) == ROTATERT)) - return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (x, 0), i); + return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode, + XEXP (x, 0), i); break; case EQ: case NE: @@ -6316,22 +6323,28 @@ simplify_if_then_else (rtx x) std::swap (true_rtx, false_rtx); } - /* If we are comparing against zero and the expression being tested has - only a single bit that might be nonzero, that is its value when it is - not equal to zero. Similarly if it is known to be -1 or 0. */ - - if (true_code == EQ && true_val == const0_rtx - && pow2p_hwi (nzb = nonzero_bits (from, GET_MODE (from)))) + scalar_int_mode from_mode; + if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode)) { - false_code = EQ; - false_val = gen_int_mode (nzb, GET_MODE (from)); - } - else if (true_code == EQ && true_val == const0_rtx - && (num_sign_bit_copies (from, GET_MODE (from)) - == GET_MODE_PRECISION (GET_MODE (from)))) - { - false_code = EQ; - false_val = constm1_rtx; + /* If we are comparing against zero and the expression being + tested has only a single bit that might be nonzero, that is + its value when it is not equal to zero. Similarly if it is + known to be -1 or 0. */ + if (true_code == EQ + && true_val == const0_rtx + && pow2p_hwi (nzb = nonzero_bits (from, from_mode))) + { + false_code = EQ; + false_val = gen_int_mode (nzb, from_mode); + } + else if (true_code == EQ + && true_val == const0_rtx + && (num_sign_bit_copies (from, from_mode) + == GET_MODE_PRECISION (from_mode))) + { + false_code = EQ; + false_val = constm1_rtx; + } } /* Now simplify an arm if we know the value of the register in the @@ -6581,16 +6594,19 @@ simplify_if_then_else (rtx x) negation of a single bit, we can convert this operation to a shift. We can actually do this more generally, but it doesn't seem worth it. */ - if (true_code == NE && XEXP (cond, 1) == const0_rtx - && false_rtx == const0_rtx && CONST_INT_P (true_rtx) - && ((1 == nonzero_bits (XEXP (cond, 0), mode) + if (true_code == NE + && is_a <scalar_int_mode> (mode, &int_mode) + && XEXP (cond, 1) == const0_rtx + && false_rtx == const0_rtx + && CONST_INT_P (true_rtx) + && ((1 == nonzero_bits (XEXP (cond, 0), int_mode) && (i = exact_log2 (UINTVAL (true_rtx))) >= 0) - || ((num_sign_bit_copies (XEXP (cond, 0), mode) - == GET_MODE_PRECISION (mode)) + || ((num_sign_bit_copies (XEXP (cond, 0), int_mode) + == GET_MODE_PRECISION (int_mode)) && (i = exact_log2 (-UINTVAL (true_rtx))) >= 0))) return - simplify_shift_const (NULL_RTX, ASHIFT, mode, - gen_lowpart (mode, XEXP (cond, 0)), i); + simplify_shift_const (NULL_RTX, ASHIFT, int_mode, + gen_lowpart (int_mode, XEXP (cond, 0)), i); /* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only non-zero bit in A is C1. */ @@ -9461,7 +9477,11 @@ make_field_assignment (rtx x) HOST_WIDE_INT pos; unsigned HOST_WIDE_INT len; rtx other; - machine_mode mode; + + /* All the rules in this function are specific to scalar integers. */ + scalar_int_mode mode; + if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode)) + return x; /* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is a clear of a one-bit field. We will have changed it to @@ -9534,7 +9554,6 @@ make_field_assignment (rtx x) /* Partial overlap. We can reduce the source AND. */ if ((and_mask & ze_mask) != and_mask) { - mode = GET_MODE (src); src = gen_rtx_AND (mode, XEXP (src, 0), gen_int_mode (and_mask & ze_mask, mode)); return gen_rtx_SET (dest, src); @@ -9553,7 +9572,10 @@ make_field_assignment (rtx x) assignment. The first one we are likely to encounter is an outer narrowing SUBREG, which we can just strip for the purposes of identifying the constant-field assignment. */ - if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)) + scalar_int_mode src_mode = mode; + if (GET_CODE (src) == SUBREG + && subreg_lowpart_p (src) + && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode)) src = SUBREG_REG (src); if (GET_CODE (src) != IOR && GET_CODE (src) != XOR) @@ -9599,10 +9621,11 @@ make_field_assignment (rtx x) else return x; - pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (GET_MODE (dest)), &len); - if (pos < 0 || pos + len > GET_MODE_PRECISION (GET_MODE (dest)) - || GET_MODE_PRECISION (GET_MODE (dest)) > HOST_BITS_PER_WIDE_INT - || (c1 & nonzero_bits (other, GET_MODE (dest))) != 0) + pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len); + if (pos < 0 + || pos + len > GET_MODE_PRECISION (mode) + || GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT + || (c1 & nonzero_bits (other, mode)) != 0) return x; assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0); @@ -9611,17 +9634,16 @@ make_field_assignment (rtx x) /* The mode to use for the source is the mode of the assignment, or of what is inside a possible STRICT_LOW_PART. */ - mode = (GET_CODE (assign) == STRICT_LOW_PART - ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign)); + machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART + ? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign)); /* Shift OTHER right POS places and make it the source, restricting it to the proper length and mode. */ src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT, - GET_MODE (src), - other, pos), + src_mode, other, pos), dest); - src = force_to_mode (src, mode, + src = force_to_mode (src, new_mode, len >= HOST_BITS_PER_WIDE_INT ? HOST_WIDE_INT_M1U : (HOST_WIDE_INT_1U << len) - 1, @@ -11745,16 +11767,17 @@ simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1) && GET_CODE (XEXP (op1, 0)) == ASHIFT && GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG && GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG - && (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))) - == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))) + && is_a <scalar_int_mode> (GET_MODE (op0), &mode) + && (is_a <scalar_int_mode> + (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode)) + && inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0))) && CONST_INT_P (XEXP (op0, 1)) && XEXP (op0, 1) == XEXP (op1, 1) && XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1) && XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1) && (INTVAL (XEXP (op0, 1)) - == (GET_MODE_PRECISION (GET_MODE (op0)) - - (GET_MODE_PRECISION - (GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0)))))))) + == (GET_MODE_PRECISION (mode) + - GET_MODE_PRECISION (inner_mode)))) { op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0)); op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0)); |