aboutsummaryrefslogtreecommitdiff
path: root/gcc/cfgloop.c
diff options
context:
space:
mode:
authorJan Hubicka <jh@suse.cz>2001-09-10 14:23:08 +0200
committerJan Hubicka <hubicka@gcc.gnu.org>2001-09-10 12:23:08 +0000
commit402209ff48d3e1984111c536033aa638f4271531 (patch)
tree1de90ed0fe72193706efd4b77aee818dfb646ee7 /gcc/cfgloop.c
parent5197bd5062d27d1299ca63c3e252dc7b75bc1e1f (diff)
downloadgcc-402209ff48d3e1984111c536033aa638f4271531.zip
gcc-402209ff48d3e1984111c536033aa638f4271531.tar.gz
gcc-402209ff48d3e1984111c536033aa638f4271531.tar.bz2
Makefile.in (cfg.o, [...]): New.
* Makefile.in (cfg.o, cfganal.o, cfgloop.o, cfgbuild.o, cfgcleanup.o): New. * basic-block.h (flow_obstack, label_value_list, tail_recursion_label_list): Declare (tidy_fallthru_edges): Declare. (expunge_block, last_loop_beg_note): Delete. (can_fallthru, flow_nodes_print, flow_edge_list_print): Declare. * cfg.c: New file (basic_block_for_insn, label_value_list): Move from flow.c; make global. (n_basic_blocks, n_edges, basic_block_info, entry_exit_blocks, init_flow, clear_edges, can_delete_note_p, can_delete_label_p, flow_delete_insn, flow_delete_insn_chain, create_basic_block, expunge_block, flow_delete_block, compute_bb_for_insn, update_bb_for_insn, set_block_for_insn, set_block_for_new_insns, make_edge, remove_edge, redirect_edge_succ, redirect_edge_succ_nodup, redirect_edge_pred, split_block, marge_blocks_nomove, block_label, try_redirect_by_replacing_jump, last_loop_beg_note, redirect_edge_and_branch, redirect_edge_and_branch_force, tidy_fallthru_edge, tidy_fallthru_edges, back_edge_of_syntactic_loop_p, split_edge, insert_insn_on_edge, commit_one_edge_insertion, commit_edge_insertions, dump_flow_info, debug_flow_info, dump_edge_info, dump_bb, debug_bb, debug_bb_n, print_rtl_with_bb, verify_flow_info, purge_dead_edges, purge_all_dead_edges): Move here from flow.c * cfganal.c: New file. (forwarder_block_p, can_fallthru, mark_critical_edges, mark_dfs_back_edges, need_fake_edge_p, flow_call_edges_add, find_unreachable_blocks, create_edge_list, free_edge_list, print_edge_list, verify_edge_list, find_edge_index, flow_nodes_print, flow_edge_list_print, remove_fake_successors, remove_fake_edges, add_noreturn_fake_exit_edges, connect_infinite_loops_to_exit, flow_reverse_top_sort_order_compute, flow_depth_first_order_compute, flow_dfs_compute_reverse_init, flow_dfs-compute_reverse_add_bb, flow_dfs-compute_reverse_execute, flow_dfs_compute_reverse_finish); Move here from flow.c * cfgbuild.c: New file (count_basic_blocks, find_label_refs, make_label_edge, make_eh_edge, make_edges, find_basic_blocks_1, find_basic_blocks, find_sub_basic_blocks): Move here from flow.c * cfgcleanup.c: New file. (try_simplify_condjump, try_forward_edges, tail_recursion_label_p, merge_blocks_move_predecessor_nojumps, merge_blocks_move_successor_nojumps, merge_blocks, flow_find_cross_jump, outgoing_edges_match, try_crossjump_to_edge, try_crossjump_bb, try_optimize_cfg): Move here from flow.c (delete_unreachable_blocks, cleanup_cfg): Likewise; return true if succeeded. * cfgloop.c: New file (flow_loops_cfg_dump, flow_loop_nested_p, flow_loop_dump, flow_loops_dump, flow_loops_free, flow_loop_entry_edges_find, flow_loop_exit_edges_find, flow_loop_nodes_find, flow_loop_pre_header_scan, flow_loop_pre_header_find, flow_loop_tree_node_add, flow_loops_tree_build, flow_loop_level_compute, flow_loops_level_compute, flow_loop_scan, flow_loops_find, flow_loops_update, flow_loop_outside_edge_p): Move here from flow.c * flow.c: Remove everything moved elsewhere * output.h (cleanup_cfg): Return bool. * bb-reorder.c (reorder_block_def): Remove 'index'. (insert_intra_1): Add argument BB, set block for new note. (make_reorder_chain): Do not depdent on BB indexes. (make_reorder_chain_1): Do not use BB indexes. (label_for_bb): Likewise; set BB for new insn. (emit_jump_to_block_after): Likewise. (fixup_reoder_chain): Sanity check that all basic blocks are chained; verify newly created insn chain; remove undocnitional jump simplifying; Do not use BB indexes; properly initialize count and frequency information; dump reordered sequence. (insert_intra_bb_scope_notes): update call of insert_intra_1. (insert_inter_bb_scope_notes): Set block for new insn. (reorder_basic_blocks): Dump flow info before reoredering. From-SVN: r45504
Diffstat (limited to 'gcc/cfgloop.c')
-rw-r--r--gcc/cfgloop.c854
1 files changed, 854 insertions, 0 deletions
diff --git a/gcc/cfgloop.c b/gcc/cfgloop.c
new file mode 100644
index 0000000..d8b5b4d
--- /dev/null
+++ b/gcc/cfgloop.c
@@ -0,0 +1,854 @@
+/* Natural loop discovery code for GNU compiler.
+ Copyright (C) 2000, 2001 Free Software Foundation, Inc.
+
+This file is part of GCC.
+
+GCC is free software; you can redistribute it and/or modify it under
+the terms of the GNU General Public License as published by the Free
+Software Foundation; either version 2, or (at your option) any later
+version.
+
+GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+WARRANTY; without even the implied warranty of MERCHANTABILITY or
+FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+for more details.
+
+You should have received a copy of the GNU General Public License
+along with GCC; see the file COPYING. If not, write to the Free
+Software Foundation, 59 Temple Place - Suite 330, Boston, MA
+02111-1307, USA. */
+
+#include "config.h"
+#include "system.h"
+#include "rtl.h"
+#include "hard-reg-set.h"
+#include "basic-block.h"
+
+static void flow_loops_cfg_dump PARAMS ((const struct loops *,
+ FILE *));
+static int flow_loop_nested_p PARAMS ((struct loop *,
+ struct loop *));
+static int flow_loop_entry_edges_find PARAMS ((basic_block, const sbitmap,
+ edge **));
+static int flow_loop_exit_edges_find PARAMS ((const sbitmap, edge **));
+static int flow_loop_nodes_find PARAMS ((basic_block, basic_block, sbitmap));
+static void flow_loop_pre_header_scan PARAMS ((struct loop *));
+static basic_block flow_loop_pre_header_find PARAMS ((basic_block,
+ const sbitmap *));
+static void flow_loop_tree_node_add PARAMS ((struct loop *, struct loop *));
+static void flow_loops_tree_build PARAMS ((struct loops *));
+static int flow_loop_level_compute PARAMS ((struct loop *, int));
+static int flow_loops_level_compute PARAMS ((struct loops *));
+
+/* Dump loop related CFG information. */
+
+static void
+flow_loops_cfg_dump (loops, file)
+ const struct loops *loops;
+ FILE *file;
+{
+ int i;
+
+ if (! loops->num || ! file || ! loops->cfg.dom)
+ return;
+
+ for (i = 0; i < n_basic_blocks; i++)
+ {
+ edge succ;
+
+ fprintf (file, ";; %d succs { ", i);
+ for (succ = BASIC_BLOCK (i)->succ; succ; succ = succ->succ_next)
+ fprintf (file, "%d ", succ->dest->index);
+ flow_nodes_print ("} dom", loops->cfg.dom[i], file);
+ }
+
+ /* Dump the DFS node order. */
+ if (loops->cfg.dfs_order)
+ {
+ fputs (";; DFS order: ", file);
+ for (i = 0; i < n_basic_blocks; i++)
+ fprintf (file, "%d ", loops->cfg.dfs_order[i]);
+ fputs ("\n", file);
+ }
+ /* Dump the reverse completion node order. */
+ if (loops->cfg.rc_order)
+ {
+ fputs (";; RC order: ", file);
+ for (i = 0; i < n_basic_blocks; i++)
+ fprintf (file, "%d ", loops->cfg.rc_order[i]);
+ fputs ("\n", file);
+ }
+}
+
+/* Return non-zero if the nodes of LOOP are a subset of OUTER. */
+
+static int
+flow_loop_nested_p (outer, loop)
+ struct loop *outer;
+ struct loop *loop;
+{
+ return sbitmap_a_subset_b_p (loop->nodes, outer->nodes);
+}
+
+/* Dump the loop information specified by LOOP to the stream FILE
+ using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
+
+void
+flow_loop_dump (loop, file, loop_dump_aux, verbose)
+ const struct loop *loop;
+ FILE *file;
+ void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
+ int verbose;
+{
+ if (! loop || ! loop->header)
+ return;
+
+ if (loop->first->head && loop->last->end)
+ fprintf (file, ";;\n;; Loop %d (%d to %d):%s%s\n",
+ loop->num, INSN_UID (loop->first->head),
+ INSN_UID (loop->last->end),
+ loop->shared ? " shared" : "",
+ loop->invalid ? " invalid" : "");
+ else
+ fprintf (file, ";;\n;; Loop %d:%s%s\n", loop->num,
+ loop->shared ? " shared" : "",
+ loop->invalid ? " invalid" : "");
+
+ fprintf (file, ";; header %d, latch %d, pre-header %d, first %d, last %d\n",
+ loop->header->index, loop->latch->index,
+ loop->pre_header ? loop->pre_header->index : -1,
+ loop->first->index, loop->last->index);
+ fprintf (file, ";; depth %d, level %d, outer %ld\n",
+ loop->depth, loop->level,
+ (long) (loop->outer ? loop->outer->num : -1));
+
+ if (loop->pre_header_edges)
+ flow_edge_list_print (";; pre-header edges", loop->pre_header_edges,
+ loop->num_pre_header_edges, file);
+ flow_edge_list_print (";; entry edges", loop->entry_edges,
+ loop->num_entries, file);
+ fprintf (file, ";; %d", loop->num_nodes);
+ flow_nodes_print (" nodes", loop->nodes, file);
+ flow_edge_list_print (";; exit edges", loop->exit_edges,
+ loop->num_exits, file);
+ if (loop->exits_doms)
+ flow_nodes_print (";; exit doms", loop->exits_doms, file);
+ if (loop_dump_aux)
+ loop_dump_aux (loop, file, verbose);
+}
+
+/* Dump the loop information specified by LOOPS to the stream FILE,
+ using auxiliary dump callback function LOOP_DUMP_AUX if non null. */
+
+void
+flow_loops_dump (loops, file, loop_dump_aux, verbose)
+ const struct loops *loops;
+ FILE *file;
+ void (*loop_dump_aux) PARAMS((const struct loop *, FILE *, int));
+ int verbose;
+{
+ int i;
+ int num_loops;
+
+ num_loops = loops->num;
+ if (! num_loops || ! file)
+ return;
+
+ fprintf (file, ";; %d loops found, %d levels\n",
+ num_loops, loops->levels);
+
+ for (i = 0; i < num_loops; i++)
+ {
+ struct loop *loop = &loops->array[i];
+
+ flow_loop_dump (loop, file, loop_dump_aux, verbose);
+
+ if (loop->shared)
+ {
+ int j;
+
+ for (j = 0; j < i; j++)
+ {
+ struct loop *oloop = &loops->array[j];
+
+ if (loop->header == oloop->header)
+ {
+ int disjoint;
+ int smaller;
+
+ smaller = loop->num_nodes < oloop->num_nodes;
+
+ /* If the union of LOOP and OLOOP is different than
+ the larger of LOOP and OLOOP then LOOP and OLOOP
+ must be disjoint. */
+ disjoint = ! flow_loop_nested_p (smaller ? loop : oloop,
+ smaller ? oloop : loop);
+ fprintf (file,
+ ";; loop header %d shared by loops %d, %d %s\n",
+ loop->header->index, i, j,
+ disjoint ? "disjoint" : "nested");
+ }
+ }
+ }
+ }
+
+ if (verbose)
+ flow_loops_cfg_dump (loops, file);
+}
+
+/* Free all the memory allocated for LOOPS. */
+
+void
+flow_loops_free (loops)
+ struct loops *loops;
+{
+ if (loops->array)
+ {
+ int i;
+
+ if (! loops->num)
+ abort ();
+
+ /* Free the loop descriptors. */
+ for (i = 0; i < loops->num; i++)
+ {
+ struct loop *loop = &loops->array[i];
+
+ if (loop->pre_header_edges)
+ free (loop->pre_header_edges);
+ if (loop->nodes)
+ sbitmap_free (loop->nodes);
+ if (loop->entry_edges)
+ free (loop->entry_edges);
+ if (loop->exit_edges)
+ free (loop->exit_edges);
+ if (loop->exits_doms)
+ sbitmap_free (loop->exits_doms);
+ }
+ free (loops->array);
+ loops->array = NULL;
+
+ if (loops->cfg.dom)
+ sbitmap_vector_free (loops->cfg.dom);
+ if (loops->cfg.dfs_order)
+ free (loops->cfg.dfs_order);
+
+ if (loops->shared_headers)
+ sbitmap_free (loops->shared_headers);
+ }
+}
+
+/* Find the entry edges into the loop with header HEADER and nodes
+ NODES and store in ENTRY_EDGES array. Return the number of entry
+ edges from the loop. */
+
+static int
+flow_loop_entry_edges_find (header, nodes, entry_edges)
+ basic_block header;
+ const sbitmap nodes;
+ edge **entry_edges;
+{
+ edge e;
+ int num_entries;
+
+ *entry_edges = NULL;
+
+ num_entries = 0;
+ for (e = header->pred; e; e = e->pred_next)
+ {
+ basic_block src = e->src;
+
+ if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
+ num_entries++;
+ }
+
+ if (! num_entries)
+ abort ();
+
+ *entry_edges = (edge *) xmalloc (num_entries * sizeof (edge *));
+
+ num_entries = 0;
+ for (e = header->pred; e; e = e->pred_next)
+ {
+ basic_block src = e->src;
+
+ if (src == ENTRY_BLOCK_PTR || ! TEST_BIT (nodes, src->index))
+ (*entry_edges)[num_entries++] = e;
+ }
+
+ return num_entries;
+}
+
+/* Find the exit edges from the loop using the bitmap of loop nodes
+ NODES and store in EXIT_EDGES array. Return the number of
+ exit edges from the loop. */
+
+static int
+flow_loop_exit_edges_find (nodes, exit_edges)
+ const sbitmap nodes;
+ edge **exit_edges;
+{
+ edge e;
+ int node;
+ int num_exits;
+
+ *exit_edges = NULL;
+
+ /* Check all nodes within the loop to see if there are any
+ successors not in the loop. Note that a node may have multiple
+ exiting edges ????? A node can have one jumping edge and one fallthru
+ edge so only one of these can exit the loop. */
+ num_exits = 0;
+ EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
+ for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
+ {
+ basic_block dest = e->dest;
+
+ if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
+ num_exits++;
+ }
+ });
+
+ if (! num_exits)
+ return 0;
+
+ *exit_edges = (edge *) xmalloc (num_exits * sizeof (edge *));
+
+ /* Store all exiting edges into an array. */
+ num_exits = 0;
+ EXECUTE_IF_SET_IN_SBITMAP (nodes, 0, node, {
+ for (e = BASIC_BLOCK (node)->succ; e; e = e->succ_next)
+ {
+ basic_block dest = e->dest;
+
+ if (dest == EXIT_BLOCK_PTR || ! TEST_BIT (nodes, dest->index))
+ (*exit_edges)[num_exits++] = e;
+ }
+ });
+
+ return num_exits;
+}
+
+/* Find the nodes contained within the loop with header HEADER and
+ latch LATCH and store in NODES. Return the number of nodes within
+ the loop. */
+
+static int
+flow_loop_nodes_find (header, latch, nodes)
+ basic_block header;
+ basic_block latch;
+ sbitmap nodes;
+{
+ basic_block *stack;
+ int sp;
+ int num_nodes = 0;
+
+ stack = (basic_block *) xmalloc (n_basic_blocks * sizeof (basic_block));
+ sp = 0;
+
+ /* Start with only the loop header in the set of loop nodes. */
+ sbitmap_zero (nodes);
+ SET_BIT (nodes, header->index);
+ num_nodes++;
+ header->loop_depth++;
+
+ /* Push the loop latch on to the stack. */
+ if (! TEST_BIT (nodes, latch->index))
+ {
+ SET_BIT (nodes, latch->index);
+ latch->loop_depth++;
+ num_nodes++;
+ stack[sp++] = latch;
+ }
+
+ while (sp)
+ {
+ basic_block node;
+ edge e;
+
+ node = stack[--sp];
+ for (e = node->pred; e; e = e->pred_next)
+ {
+ basic_block ancestor = e->src;
+
+ /* If each ancestor not marked as part of loop, add to set of
+ loop nodes and push on to stack. */
+ if (ancestor != ENTRY_BLOCK_PTR
+ && ! TEST_BIT (nodes, ancestor->index))
+ {
+ SET_BIT (nodes, ancestor->index);
+ ancestor->loop_depth++;
+ num_nodes++;
+ stack[sp++] = ancestor;
+ }
+ }
+ }
+ free (stack);
+ return num_nodes;
+}
+
+/* Find the root node of the loop pre-header extended basic block and
+ the edges along the trace from the root node to the loop header. */
+
+static void
+flow_loop_pre_header_scan (loop)
+ struct loop *loop;
+{
+ int num = 0;
+ basic_block ebb;
+
+ loop->num_pre_header_edges = 0;
+
+ if (loop->num_entries != 1)
+ return;
+
+ ebb = loop->entry_edges[0]->src;
+
+ if (ebb != ENTRY_BLOCK_PTR)
+ {
+ edge e;
+
+ /* Count number of edges along trace from loop header to
+ root of pre-header extended basic block. Usually this is
+ only one or two edges. */
+ num++;
+ while (ebb->pred->src != ENTRY_BLOCK_PTR && ! ebb->pred->pred_next)
+ {
+ ebb = ebb->pred->src;
+ num++;
+ }
+
+ loop->pre_header_edges = (edge *) xmalloc (num * sizeof (edge *));
+ loop->num_pre_header_edges = num;
+
+ /* Store edges in order that they are followed. The source
+ of the first edge is the root node of the pre-header extended
+ basic block and the destination of the last last edge is
+ the loop header. */
+ for (e = loop->entry_edges[0]; num; e = e->src->pred)
+ {
+ loop->pre_header_edges[--num] = e;
+ }
+ }
+}
+
+/* Return the block for the pre-header of the loop with header
+ HEADER where DOM specifies the dominator information. Return NULL if
+ there is no pre-header. */
+
+static basic_block
+flow_loop_pre_header_find (header, dom)
+ basic_block header;
+ const sbitmap *dom;
+{
+ basic_block pre_header;
+ edge e;
+
+ /* If block p is a predecessor of the header and is the only block
+ that the header does not dominate, then it is the pre-header. */
+ pre_header = NULL;
+ for (e = header->pred; e; e = e->pred_next)
+ {
+ basic_block node = e->src;
+
+ if (node != ENTRY_BLOCK_PTR
+ && ! TEST_BIT (dom[node->index], header->index))
+ {
+ if (pre_header == NULL)
+ pre_header = node;
+ else
+ {
+ /* There are multiple edges into the header from outside
+ the loop so there is no pre-header block. */
+ pre_header = NULL;
+ break;
+ }
+ }
+ }
+ return pre_header;
+}
+
+/* Add LOOP to the loop hierarchy tree where PREVLOOP was the loop
+ previously added. The insertion algorithm assumes that the loops
+ are added in the order found by a depth first search of the CFG. */
+
+static void
+flow_loop_tree_node_add (prevloop, loop)
+ struct loop *prevloop;
+ struct loop *loop;
+{
+
+ if (flow_loop_nested_p (prevloop, loop))
+ {
+ prevloop->inner = loop;
+ loop->outer = prevloop;
+ return;
+ }
+
+ while (prevloop->outer)
+ {
+ if (flow_loop_nested_p (prevloop->outer, loop))
+ {
+ prevloop->next = loop;
+ loop->outer = prevloop->outer;
+ return;
+ }
+ prevloop = prevloop->outer;
+ }
+
+ prevloop->next = loop;
+ loop->outer = NULL;
+}
+
+/* Build the loop hierarchy tree for LOOPS. */
+
+static void
+flow_loops_tree_build (loops)
+ struct loops *loops;
+{
+ int i;
+ int num_loops;
+
+ num_loops = loops->num;
+ if (! num_loops)
+ return;
+
+ /* Root the loop hierarchy tree with the first loop found.
+ Since we used a depth first search this should be the
+ outermost loop. */
+ loops->tree_root = &loops->array[0];
+ loops->tree_root->outer = loops->tree_root->inner = loops->tree_root->next = NULL;
+
+ /* Add the remaining loops to the tree. */
+ for (i = 1; i < num_loops; i++)
+ flow_loop_tree_node_add (&loops->array[i - 1], &loops->array[i]);
+}
+
+/* Helper function to compute loop nesting depth and enclosed loop level
+ for the natural loop specified by LOOP at the loop depth DEPTH.
+ Returns the loop level. */
+
+static int
+flow_loop_level_compute (loop, depth)
+ struct loop *loop;
+ int depth;
+{
+ struct loop *inner;
+ int level = 1;
+
+ if (! loop)
+ return 0;
+
+ /* Traverse loop tree assigning depth and computing level as the
+ maximum level of all the inner loops of this loop. The loop
+ level is equivalent to the height of the loop in the loop tree
+ and corresponds to the number of enclosed loop levels (including
+ itself). */
+ for (inner = loop->inner; inner; inner = inner->next)
+ {
+ int ilevel;
+
+ ilevel = flow_loop_level_compute (inner, depth + 1) + 1;
+
+ if (ilevel > level)
+ level = ilevel;
+ }
+ loop->level = level;
+ loop->depth = depth;
+ return level;
+}
+
+/* Compute the loop nesting depth and enclosed loop level for the loop
+ hierarchy tree specfied by LOOPS. Return the maximum enclosed loop
+ level. */
+
+static int
+flow_loops_level_compute (loops)
+ struct loops *loops;
+{
+ struct loop *loop;
+ int level;
+ int levels = 0;
+
+ /* Traverse all the outer level loops. */
+ for (loop = loops->tree_root; loop; loop = loop->next)
+ {
+ level = flow_loop_level_compute (loop, 1);
+ if (level > levels)
+ levels = level;
+ }
+ return levels;
+}
+
+/* Scan a single natural loop specified by LOOP collecting information
+ about it specified by FLAGS. */
+
+int
+flow_loop_scan (loops, loop, flags)
+ struct loops *loops;
+ struct loop *loop;
+ int flags;
+{
+ /* Determine prerequisites. */
+ if ((flags & LOOP_EXITS_DOMS) && ! loop->exit_edges)
+ flags |= LOOP_EXIT_EDGES;
+
+ if (flags & LOOP_ENTRY_EDGES)
+ {
+ /* Find edges which enter the loop header.
+ Note that the entry edges should only
+ enter the header of a natural loop. */
+ loop->num_entries
+ = flow_loop_entry_edges_find (loop->header,
+ loop->nodes,
+ &loop->entry_edges);
+ }
+
+ if (flags & LOOP_EXIT_EDGES)
+ {
+ /* Find edges which exit the loop. */
+ loop->num_exits
+ = flow_loop_exit_edges_find (loop->nodes,
+ &loop->exit_edges);
+ }
+
+ if (flags & LOOP_EXITS_DOMS)
+ {
+ int j;
+
+ /* Determine which loop nodes dominate all the exits
+ of the loop. */
+ loop->exits_doms = sbitmap_alloc (n_basic_blocks);
+ sbitmap_copy (loop->exits_doms, loop->nodes);
+ for (j = 0; j < loop->num_exits; j++)
+ sbitmap_a_and_b (loop->exits_doms, loop->exits_doms,
+ loops->cfg.dom[loop->exit_edges[j]->src->index]);
+
+ /* The header of a natural loop must dominate
+ all exits. */
+ if (! TEST_BIT (loop->exits_doms, loop->header->index))
+ abort ();
+ }
+
+ if (flags & LOOP_PRE_HEADER)
+ {
+ /* Look to see if the loop has a pre-header node. */
+ loop->pre_header
+ = flow_loop_pre_header_find (loop->header, loops->cfg.dom);
+
+ /* Find the blocks within the extended basic block of
+ the loop pre-header. */
+ flow_loop_pre_header_scan (loop);
+ }
+ return 1;
+}
+
+/* Find all the natural loops in the function and save in LOOPS structure
+ and recalculate loop_depth information in basic block structures.
+ FLAGS controls which loop information is collected.
+ Return the number of natural loops found. */
+
+int
+flow_loops_find (loops, flags)
+ struct loops *loops;
+ int flags;
+{
+ int i;
+ int b;
+ int num_loops;
+ edge e;
+ sbitmap headers;
+ sbitmap *dom;
+ int *dfs_order;
+ int *rc_order;
+
+ /* This function cannot be repeatedly called with different
+ flags to build up the loop information. The loop tree
+ must always be built if this function is called. */
+ if (! (flags & LOOP_TREE))
+ abort ();
+
+ memset (loops, 0, sizeof (*loops));
+
+ /* Taking care of this degenerate case makes the rest of
+ this code simpler. */
+ if (n_basic_blocks == 0)
+ return 0;
+
+ dfs_order = NULL;
+ rc_order = NULL;
+
+ /* Compute the dominators. */
+ dom = sbitmap_vector_alloc (n_basic_blocks, n_basic_blocks);
+ calculate_dominance_info (NULL, dom, CDI_DOMINATORS);
+
+ /* Count the number of loop edges (back edges). This should be the
+ same as the number of natural loops. */
+
+ num_loops = 0;
+ for (b = 0; b < n_basic_blocks; b++)
+ {
+ basic_block header;
+
+ header = BASIC_BLOCK (b);
+ header->loop_depth = 0;
+
+ for (e = header->pred; e; e = e->pred_next)
+ {
+ basic_block latch = e->src;
+
+ /* Look for back edges where a predecessor is dominated
+ by this block. A natural loop has a single entry
+ node (header) that dominates all the nodes in the
+ loop. It also has single back edge to the header
+ from a latch node. Note that multiple natural loops
+ may share the same header. */
+ if (b != header->index)
+ abort ();
+
+ if (latch != ENTRY_BLOCK_PTR && TEST_BIT (dom[latch->index], b))
+ num_loops++;
+ }
+ }
+
+ if (num_loops)
+ {
+ /* Compute depth first search order of the CFG so that outer
+ natural loops will be found before inner natural loops. */
+ dfs_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
+ rc_order = (int *) xmalloc (n_basic_blocks * sizeof (int));
+ flow_depth_first_order_compute (dfs_order, rc_order);
+
+ /* Save CFG derived information to avoid recomputing it. */
+ loops->cfg.dom = dom;
+ loops->cfg.dfs_order = dfs_order;
+ loops->cfg.rc_order = rc_order;
+
+ /* Allocate loop structures. */
+ loops->array
+ = (struct loop *) xcalloc (num_loops, sizeof (struct loop));
+
+ headers = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (headers);
+
+ loops->shared_headers = sbitmap_alloc (n_basic_blocks);
+ sbitmap_zero (loops->shared_headers);
+
+ /* Find and record information about all the natural loops
+ in the CFG. */
+ num_loops = 0;
+ for (b = 0; b < n_basic_blocks; b++)
+ {
+ basic_block header;
+
+ /* Search the nodes of the CFG in reverse completion order
+ so that we can find outer loops first. */
+ header = BASIC_BLOCK (rc_order[b]);
+
+ /* Look for all the possible latch blocks for this header. */
+ for (e = header->pred; e; e = e->pred_next)
+ {
+ basic_block latch = e->src;
+
+ /* Look for back edges where a predecessor is dominated
+ by this block. A natural loop has a single entry
+ node (header) that dominates all the nodes in the
+ loop. It also has single back edge to the header
+ from a latch node. Note that multiple natural loops
+ may share the same header. */
+ if (latch != ENTRY_BLOCK_PTR
+ && TEST_BIT (dom[latch->index], header->index))
+ {
+ struct loop *loop;
+
+ loop = loops->array + num_loops;
+
+ loop->header = header;
+ loop->latch = latch;
+ loop->num = num_loops;
+
+ num_loops++;
+ }
+ }
+ }
+
+ for (i = 0; i < num_loops; i++)
+ {
+ struct loop *loop = &loops->array[i];
+
+ /* Keep track of blocks that are loop headers so
+ that we can tell which loops should be merged. */
+ if (TEST_BIT (headers, loop->header->index))
+ SET_BIT (loops->shared_headers, loop->header->index);
+ SET_BIT (headers, loop->header->index);
+
+ /* Find nodes contained within the loop. */
+ loop->nodes = sbitmap_alloc (n_basic_blocks);
+ loop->num_nodes
+ = flow_loop_nodes_find (loop->header, loop->latch, loop->nodes);
+
+ /* Compute first and last blocks within the loop.
+ These are often the same as the loop header and
+ loop latch respectively, but this is not always
+ the case. */
+ loop->first
+ = BASIC_BLOCK (sbitmap_first_set_bit (loop->nodes));
+ loop->last
+ = BASIC_BLOCK (sbitmap_last_set_bit (loop->nodes));
+
+ flow_loop_scan (loops, loop, flags);
+ }
+
+ /* Natural loops with shared headers may either be disjoint or
+ nested. Disjoint loops with shared headers cannot be inner
+ loops and should be merged. For now just mark loops that share
+ headers. */
+ for (i = 0; i < num_loops; i++)
+ if (TEST_BIT (loops->shared_headers, loops->array[i].header->index))
+ loops->array[i].shared = 1;
+
+ sbitmap_free (headers);
+ }
+ else
+ {
+ sbitmap_vector_free (dom);
+ }
+
+ loops->num = num_loops;
+
+ /* Build the loop hierarchy tree. */
+ flow_loops_tree_build (loops);
+
+ /* Assign the loop nesting depth and enclosed loop level for each
+ loop. */
+ loops->levels = flow_loops_level_compute (loops);
+
+ return num_loops;
+}
+
+/* Update the information regarding the loops in the CFG
+ specified by LOOPS. */
+int
+flow_loops_update (loops, flags)
+ struct loops *loops;
+ int flags;
+{
+ /* One day we may want to update the current loop data. For now
+ throw away the old stuff and rebuild what we need. */
+ if (loops->array)
+ flow_loops_free (loops);
+
+ return flow_loops_find (loops, flags);
+}
+
+/* Return non-zero if edge E enters header of LOOP from outside of LOOP. */
+
+int
+flow_loop_outside_edge_p (loop, e)
+ const struct loop *loop;
+ edge e;
+{
+ if (e->dest != loop->header)
+ abort ();
+ return (e->src == ENTRY_BLOCK_PTR) || ! TEST_BIT (loop->nodes, e->src->index);
+}