diff options
author | Arnaud Charlet <charlet@gcc.gnu.org> | 2008-07-29 20:51:30 +0200 |
---|---|---|
committer | Arnaud Charlet <charlet@gcc.gnu.org> | 2008-07-29 20:51:30 +0200 |
commit | 68c989b06ffec3e3c2af0c54c97f1f049876faa8 (patch) | |
tree | 9f03a1a76be106e6602a2161a6abf9c0787154e6 /gcc/ada/utils.c | |
parent | 54dfd46bffb35c49935053bd9bc2997f77e26902 (diff) | |
download | gcc-68c989b06ffec3e3c2af0c54c97f1f049876faa8.zip gcc-68c989b06ffec3e3c2af0c54c97f1f049876faa8.tar.gz gcc-68c989b06ffec3e3c2af0c54c97f1f049876faa8.tar.bz2 |
Moved to gcc-interface.
From-SVN: r138260
Diffstat (limited to 'gcc/ada/utils.c')
-rw-r--r-- | gcc/ada/utils.c | 4895 |
1 files changed, 0 insertions, 4895 deletions
diff --git a/gcc/ada/utils.c b/gcc/ada/utils.c deleted file mode 100644 index cde8d4d..0000000 --- a/gcc/ada/utils.c +++ /dev/null @@ -1,4895 +0,0 @@ -/**************************************************************************** - * * - * GNAT COMPILER COMPONENTS * - * * - * U T I L S * - * * - * C Implementation File * - * * - * Copyright (C) 1992-2008, Free Software Foundation, Inc. * - * * - * GNAT is free software; you can redistribute it and/or modify it under * - * terms of the GNU General Public License as published by the Free Soft- * - * ware Foundation; either version 3, or (at your option) any later ver- * - * sion. GNAT is distributed in the hope that it will be useful, but WITH- * - * OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * - * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * - * for more details. You should have received a copy of the GNU General * - * Public License along with GCC; see the file COPYING3. If not see * - * <http://www.gnu.org/licenses/>. * - * * - * GNAT was originally developed by the GNAT team at New York University. * - * Extensive contributions were provided by Ada Core Technologies Inc. * - * * - ****************************************************************************/ - -/* We have attribute handlers using C specific format specifiers in warning - messages. Make sure they are properly recognized. */ -#define GCC_DIAG_STYLE __gcc_cdiag__ - -#include "config.h" -#include "system.h" -#include "coretypes.h" -#include "tm.h" -#include "tree.h" -#include "flags.h" -#include "defaults.h" -#include "toplev.h" -#include "output.h" -#include "ggc.h" -#include "debug.h" -#include "convert.h" -#include "target.h" -#include "function.h" -#include "cgraph.h" -#include "tree-inline.h" -#include "tree-iterator.h" -#include "gimple.h" -#include "tree-dump.h" -#include "pointer-set.h" -#include "langhooks.h" - -#include "ada.h" -#include "types.h" -#include "atree.h" -#include "elists.h" -#include "namet.h" -#include "nlists.h" -#include "stringt.h" -#include "uintp.h" -#include "fe.h" -#include "sinfo.h" -#include "einfo.h" -#include "ada-tree.h" -#include "gigi.h" - -#ifndef MAX_FIXED_MODE_SIZE -#define MAX_FIXED_MODE_SIZE GET_MODE_BITSIZE (DImode) -#endif - -#ifndef MAX_BITS_PER_WORD -#define MAX_BITS_PER_WORD BITS_PER_WORD -#endif - -/* If nonzero, pretend we are allocating at global level. */ -int force_global; - -/* Tree nodes for the various types and decls we create. */ -tree gnat_std_decls[(int) ADT_LAST]; - -/* Functions to call for each of the possible raise reasons. */ -tree gnat_raise_decls[(int) LAST_REASON_CODE + 1]; - -/* Forward declarations for handlers of attributes. */ -static tree handle_const_attribute (tree *, tree, tree, int, bool *); -static tree handle_nothrow_attribute (tree *, tree, tree, int, bool *); -static tree handle_pure_attribute (tree *, tree, tree, int, bool *); -static tree handle_novops_attribute (tree *, tree, tree, int, bool *); -static tree handle_nonnull_attribute (tree *, tree, tree, int, bool *); -static tree handle_sentinel_attribute (tree *, tree, tree, int, bool *); -static tree handle_noreturn_attribute (tree *, tree, tree, int, bool *); -static tree handle_malloc_attribute (tree *, tree, tree, int, bool *); -static tree handle_type_generic_attribute (tree *, tree, tree, int, bool *); - -/* Fake handler for attributes we don't properly support, typically because - they'd require dragging a lot of the common-c front-end circuitry. */ -static tree fake_attribute_handler (tree *, tree, tree, int, bool *); - -/* Table of machine-independent internal attributes for Ada. We support - this minimal set of attributes to accommodate the needs of builtins. */ -const struct attribute_spec gnat_internal_attribute_table[] = -{ - /* { name, min_len, max_len, decl_req, type_req, fn_type_req, handler } */ - { "const", 0, 0, true, false, false, handle_const_attribute }, - { "nothrow", 0, 0, true, false, false, handle_nothrow_attribute }, - { "pure", 0, 0, true, false, false, handle_pure_attribute }, - { "no vops", 0, 0, true, false, false, handle_novops_attribute }, - { "nonnull", 0, -1, false, true, true, handle_nonnull_attribute }, - { "sentinel", 0, 1, false, true, true, handle_sentinel_attribute }, - { "noreturn", 0, 0, true, false, false, handle_noreturn_attribute }, - { "malloc", 0, 0, true, false, false, handle_malloc_attribute }, - { "type generic", 0, 0, false, true, true, handle_type_generic_attribute }, - - /* ??? format and format_arg are heavy and not supported, which actually - prevents support for stdio builtins, which we however declare as part - of the common builtins.def contents. */ - { "format", 3, 3, false, true, true, fake_attribute_handler }, - { "format_arg", 1, 1, false, true, true, fake_attribute_handler }, - - { NULL, 0, 0, false, false, false, NULL } -}; - -/* Associates a GNAT tree node to a GCC tree node. It is used in - `save_gnu_tree', `get_gnu_tree' and `present_gnu_tree'. See documentation - of `save_gnu_tree' for more info. */ -static GTY((length ("max_gnat_nodes"))) tree *associate_gnat_to_gnu; - -#define GET_GNU_TREE(GNAT_ENTITY) \ - associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] - -#define SET_GNU_TREE(GNAT_ENTITY,VAL) \ - associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] = (VAL) - -#define PRESENT_GNU_TREE(GNAT_ENTITY) \ - (associate_gnat_to_gnu[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE) - -/* Associates a GNAT entity to a GCC tree node used as a dummy, if any. */ -static GTY((length ("max_gnat_nodes"))) tree *dummy_node_table; - -#define GET_DUMMY_NODE(GNAT_ENTITY) \ - dummy_node_table[(GNAT_ENTITY) - First_Node_Id] - -#define SET_DUMMY_NODE(GNAT_ENTITY,VAL) \ - dummy_node_table[(GNAT_ENTITY) - First_Node_Id] = (VAL) - -#define PRESENT_DUMMY_NODE(GNAT_ENTITY) \ - (dummy_node_table[(GNAT_ENTITY) - First_Node_Id] != NULL_TREE) - -/* This variable keeps a table for types for each precision so that we only - allocate each of them once. Signed and unsigned types are kept separate. - - Note that these types are only used when fold-const requests something - special. Perhaps we should NOT share these types; we'll see how it - goes later. */ -static GTY(()) tree signed_and_unsigned_types[2 * MAX_BITS_PER_WORD + 1][2]; - -/* Likewise for float types, but record these by mode. */ -static GTY(()) tree float_types[NUM_MACHINE_MODES]; - -/* For each binding contour we allocate a binding_level structure to indicate - the binding depth. */ - -struct gnat_binding_level GTY((chain_next ("%h.chain"))) -{ - /* The binding level containing this one (the enclosing binding level). */ - struct gnat_binding_level *chain; - /* The BLOCK node for this level. */ - tree block; - /* If nonzero, the setjmp buffer that needs to be updated for any - variable-sized definition within this context. */ - tree jmpbuf_decl; -}; - -/* The binding level currently in effect. */ -static GTY(()) struct gnat_binding_level *current_binding_level; - -/* A chain of gnat_binding_level structures awaiting reuse. */ -static GTY((deletable)) struct gnat_binding_level *free_binding_level; - -/* An array of global declarations. */ -static GTY(()) VEC(tree,gc) *global_decls; - -/* An array of builtin function declarations. */ -static GTY(()) VEC(tree,gc) *builtin_decls; - -/* An array of global renaming pointers. */ -static GTY(()) VEC(tree,gc) *global_renaming_pointers; - -/* A chain of unused BLOCK nodes. */ -static GTY((deletable)) tree free_block_chain; - -static void gnat_install_builtins (void); -static tree merge_sizes (tree, tree, tree, bool, bool); -static tree compute_related_constant (tree, tree); -static tree split_plus (tree, tree *); -static void gnat_gimplify_function (tree); -static tree float_type_for_precision (int, enum machine_mode); -static tree convert_to_fat_pointer (tree, tree); -static tree convert_to_thin_pointer (tree, tree); -static tree make_descriptor_field (const char *,tree, tree, tree); -static bool potential_alignment_gap (tree, tree, tree); - -/* Initialize the association of GNAT nodes to GCC trees. */ - -void -init_gnat_to_gnu (void) -{ - associate_gnat_to_gnu - = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree)); -} - -/* GNAT_ENTITY is a GNAT tree node for an entity. GNU_DECL is the GCC tree - which is to be associated with GNAT_ENTITY. Such GCC tree node is always - a ..._DECL node. If NO_CHECK is nonzero, the latter check is suppressed. - - If GNU_DECL is zero, a previous association is to be reset. */ - -void -save_gnu_tree (Entity_Id gnat_entity, tree gnu_decl, bool no_check) -{ - /* Check that GNAT_ENTITY is not already defined and that it is being set - to something which is a decl. Raise gigi 401 if not. Usually, this - means GNAT_ENTITY is defined twice, but occasionally is due to some - Gigi problem. */ - gcc_assert (!(gnu_decl - && (PRESENT_GNU_TREE (gnat_entity) - || (!no_check && !DECL_P (gnu_decl))))); - - SET_GNU_TREE (gnat_entity, gnu_decl); -} - -/* GNAT_ENTITY is a GNAT tree node for a defining identifier. - Return the ..._DECL node that was associated with it. If there is no tree - node associated with GNAT_ENTITY, abort. - - In some cases, such as delayed elaboration or expressions that need to - be elaborated only once, GNAT_ENTITY is really not an entity. */ - -tree -get_gnu_tree (Entity_Id gnat_entity) -{ - gcc_assert (PRESENT_GNU_TREE (gnat_entity)); - return GET_GNU_TREE (gnat_entity); -} - -/* Return nonzero if a GCC tree has been associated with GNAT_ENTITY. */ - -bool -present_gnu_tree (Entity_Id gnat_entity) -{ - return PRESENT_GNU_TREE (gnat_entity); -} - -/* Initialize the association of GNAT nodes to GCC trees as dummies. */ - -void -init_dummy_type (void) -{ - dummy_node_table - = (tree *) ggc_alloc_cleared (max_gnat_nodes * sizeof (tree)); -} - -/* Make a dummy type corresponding to GNAT_TYPE. */ - -tree -make_dummy_type (Entity_Id gnat_type) -{ - Entity_Id gnat_underlying = Gigi_Equivalent_Type (gnat_type); - tree gnu_type; - - /* If there is an equivalent type, get its underlying type. */ - if (Present (gnat_underlying)) - gnat_underlying = Underlying_Type (gnat_underlying); - - /* If there was no equivalent type (can only happen when just annotating - types) or underlying type, go back to the original type. */ - if (No (gnat_underlying)) - gnat_underlying = gnat_type; - - /* If it there already a dummy type, use that one. Else make one. */ - if (PRESENT_DUMMY_NODE (gnat_underlying)) - return GET_DUMMY_NODE (gnat_underlying); - - /* If this is a record, make a RECORD_TYPE or UNION_TYPE; else make - an ENUMERAL_TYPE. */ - gnu_type = make_node (Is_Record_Type (gnat_underlying) - ? tree_code_for_record_type (gnat_underlying) - : ENUMERAL_TYPE); - TYPE_NAME (gnu_type) = get_entity_name (gnat_type); - TYPE_DUMMY_P (gnu_type) = 1; - if (AGGREGATE_TYPE_P (gnu_type)) - { - TYPE_STUB_DECL (gnu_type) = build_decl (TYPE_DECL, NULL_TREE, gnu_type); - TYPE_BY_REFERENCE_P (gnu_type) = Is_By_Reference_Type (gnat_type); - } - - SET_DUMMY_NODE (gnat_underlying, gnu_type); - - return gnu_type; -} - -/* Return nonzero if we are currently in the global binding level. */ - -int -global_bindings_p (void) -{ - return ((force_global || !current_function_decl) ? -1 : 0); -} - -/* Enter a new binding level. */ - -void -gnat_pushlevel () -{ - struct gnat_binding_level *newlevel = NULL; - - /* Reuse a struct for this binding level, if there is one. */ - if (free_binding_level) - { - newlevel = free_binding_level; - free_binding_level = free_binding_level->chain; - } - else - newlevel - = (struct gnat_binding_level *) - ggc_alloc (sizeof (struct gnat_binding_level)); - - /* Use a free BLOCK, if any; otherwise, allocate one. */ - if (free_block_chain) - { - newlevel->block = free_block_chain; - free_block_chain = BLOCK_CHAIN (free_block_chain); - BLOCK_CHAIN (newlevel->block) = NULL_TREE; - } - else - newlevel->block = make_node (BLOCK); - - /* Point the BLOCK we just made to its parent. */ - if (current_binding_level) - BLOCK_SUPERCONTEXT (newlevel->block) = current_binding_level->block; - - BLOCK_VARS (newlevel->block) = BLOCK_SUBBLOCKS (newlevel->block) = NULL_TREE; - TREE_USED (newlevel->block) = 1; - - /* Add this level to the front of the chain (stack) of levels that are - active. */ - newlevel->chain = current_binding_level; - newlevel->jmpbuf_decl = NULL_TREE; - current_binding_level = newlevel; -} - -/* Set SUPERCONTEXT of the BLOCK for the current binding level to FNDECL - and point FNDECL to this BLOCK. */ - -void -set_current_block_context (tree fndecl) -{ - BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl; - DECL_INITIAL (fndecl) = current_binding_level->block; -} - -/* Set the jmpbuf_decl for the current binding level to DECL. */ - -void -set_block_jmpbuf_decl (tree decl) -{ - current_binding_level->jmpbuf_decl = decl; -} - -/* Get the jmpbuf_decl, if any, for the current binding level. */ - -tree -get_block_jmpbuf_decl () -{ - return current_binding_level->jmpbuf_decl; -} - -/* Exit a binding level. Set any BLOCK into the current code group. */ - -void -gnat_poplevel () -{ - struct gnat_binding_level *level = current_binding_level; - tree block = level->block; - - BLOCK_VARS (block) = nreverse (BLOCK_VARS (block)); - BLOCK_SUBBLOCKS (block) = nreverse (BLOCK_SUBBLOCKS (block)); - - /* If this is a function-level BLOCK don't do anything. Otherwise, if there - are no variables free the block and merge its subblocks into those of its - parent block. Otherwise, add it to the list of its parent. */ - if (TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL) - ; - else if (BLOCK_VARS (block) == NULL_TREE) - { - BLOCK_SUBBLOCKS (level->chain->block) - = chainon (BLOCK_SUBBLOCKS (block), - BLOCK_SUBBLOCKS (level->chain->block)); - BLOCK_CHAIN (block) = free_block_chain; - free_block_chain = block; - } - else - { - BLOCK_CHAIN (block) = BLOCK_SUBBLOCKS (level->chain->block); - BLOCK_SUBBLOCKS (level->chain->block) = block; - TREE_USED (block) = 1; - set_block_for_group (block); - } - - /* Free this binding structure. */ - current_binding_level = level->chain; - level->chain = free_binding_level; - free_binding_level = level; -} - - -/* Records a ..._DECL node DECL as belonging to the current lexical scope - and uses GNAT_NODE for location information and propagating flags. */ - -void -gnat_pushdecl (tree decl, Node_Id gnat_node) -{ - /* If this decl is public external or at toplevel, there is no context. - But PARM_DECLs always go in the level of its function. */ - if (TREE_CODE (decl) != PARM_DECL - && ((DECL_EXTERNAL (decl) && TREE_PUBLIC (decl)) - || global_bindings_p ())) - DECL_CONTEXT (decl) = 0; - else - { - DECL_CONTEXT (decl) = current_function_decl; - - /* Functions imported in another function are not really nested. */ - if (TREE_CODE (decl) == FUNCTION_DECL && TREE_PUBLIC (decl)) - DECL_NO_STATIC_CHAIN (decl) = 1; - } - - TREE_NO_WARNING (decl) = (gnat_node == Empty || Warnings_Off (gnat_node)); - - /* Set the location of DECL and emit a declaration for it. */ - if (Present (gnat_node)) - Sloc_to_locus (Sloc (gnat_node), &DECL_SOURCE_LOCATION (decl)); - add_decl_expr (decl, gnat_node); - - /* Put the declaration on the list. The list of declarations is in reverse - order. The list will be reversed later. Put global variables in the - globals list and builtin functions in a dedicated list to speed up - further lookups. Don't put TYPE_DECLs for UNCONSTRAINED_ARRAY_TYPE into - the list, as they will cause trouble with the debugger and aren't needed - anyway. */ - if (TREE_CODE (decl) != TYPE_DECL - || TREE_CODE (TREE_TYPE (decl)) != UNCONSTRAINED_ARRAY_TYPE) - { - if (global_bindings_p ()) - { - VEC_safe_push (tree, gc, global_decls, decl); - - if (TREE_CODE (decl) == FUNCTION_DECL && DECL_BUILT_IN (decl)) - VEC_safe_push (tree, gc, builtin_decls, decl); - } - else - { - TREE_CHAIN (decl) = BLOCK_VARS (current_binding_level->block); - BLOCK_VARS (current_binding_level->block) = decl; - } - } - - /* For the declaration of a type, set its name if it either is not already - set, was set to an IDENTIFIER_NODE, indicating an internal name, - or if the previous type name was not derived from a source name. - We'd rather have the type named with a real name and all the pointer - types to the same object have the same POINTER_TYPE node. Code in the - equivalent function of c-decl.c makes a copy of the type node here, but - that may cause us trouble with incomplete types. We make an exception - for fat pointer types because the compiler automatically builds them - for unconstrained array types and the debugger uses them to represent - both these and pointers to these. */ - if (TREE_CODE (decl) == TYPE_DECL && DECL_NAME (decl)) - { - tree t = TREE_TYPE (decl); - - if (!TYPE_NAME (t) || TREE_CODE (TYPE_NAME (t)) == IDENTIFIER_NODE) - ; - else if (TYPE_FAT_POINTER_P (t)) - { - tree tt = build_variant_type_copy (t); - TYPE_NAME (tt) = decl; - TREE_USED (tt) = TREE_USED (t); - TREE_TYPE (decl) = tt; - DECL_ORIGINAL_TYPE (decl) = t; - t = NULL_TREE; - } - else if (DECL_ARTIFICIAL (TYPE_NAME (t)) && !DECL_ARTIFICIAL (decl)) - ; - else - t = NULL_TREE; - - /* Propagate the name to all the variants. This is needed for - the type qualifiers machinery to work properly. */ - if (t) - for (t = TYPE_MAIN_VARIANT (t); t; t = TYPE_NEXT_VARIANT (t)) - TYPE_NAME (t) = decl; - } -} - -/* Do little here. Set up the standard declarations later after the - front end has been run. */ - -void -gnat_init_decl_processing (void) -{ - /* Make the binding_level structure for global names. */ - current_function_decl = 0; - current_binding_level = 0; - free_binding_level = 0; - gnat_pushlevel (); - - build_common_tree_nodes (true, true); - - /* In Ada, we use a signed type for SIZETYPE. Use the signed type - corresponding to the size of Pmode. In most cases when ptr_mode and - Pmode differ, C will use the width of ptr_mode as sizetype. But we get - far better code using the width of Pmode. Make this here since we need - this before we can expand the GNAT types. */ - size_type_node = gnat_type_for_size (GET_MODE_BITSIZE (Pmode), 0); - set_sizetype (size_type_node); - build_common_tree_nodes_2 (0); - - ptr_void_type_node = build_pointer_type (void_type_node); -} - -/* Create the predefined scalar types such as `integer_type_node' needed - in the gcc back-end and initialize the global binding level. */ - -void -init_gigi_decls (tree long_long_float_type, tree exception_type) -{ - tree endlink, decl; - unsigned int i; - - /* Set the types that GCC and Gigi use from the front end. We would like - to do this for char_type_node, but it needs to correspond to the C - char type. */ - if (TREE_CODE (TREE_TYPE (long_long_float_type)) == INTEGER_TYPE) - { - /* In this case, the builtin floating point types are VAX float, - so make up a type for use. */ - longest_float_type_node = make_node (REAL_TYPE); - TYPE_PRECISION (longest_float_type_node) = LONG_DOUBLE_TYPE_SIZE; - layout_type (longest_float_type_node); - create_type_decl (get_identifier ("longest float type"), - longest_float_type_node, NULL, false, true, Empty); - } - else - longest_float_type_node = TREE_TYPE (long_long_float_type); - - except_type_node = TREE_TYPE (exception_type); - - unsigned_type_node = gnat_type_for_size (INT_TYPE_SIZE, 1); - create_type_decl (get_identifier ("unsigned int"), unsigned_type_node, - NULL, false, true, Empty); - - void_type_decl_node = create_type_decl (get_identifier ("void"), - void_type_node, NULL, false, true, - Empty); - - void_ftype = build_function_type (void_type_node, NULL_TREE); - ptr_void_ftype = build_pointer_type (void_ftype); - - /* Build the special descriptor type and its null node if needed. */ - if (TARGET_VTABLE_USES_DESCRIPTORS) - { - tree field_list = NULL_TREE, null_list = NULL_TREE; - int j; - - fdesc_type_node = make_node (RECORD_TYPE); - - for (j = 0; j < TARGET_VTABLE_USES_DESCRIPTORS; j++) - { - tree field = create_field_decl (NULL_TREE, ptr_void_ftype, - fdesc_type_node, 0, 0, 0, 1); - TREE_CHAIN (field) = field_list; - field_list = field; - null_list = tree_cons (field, null_pointer_node, null_list); - } - - finish_record_type (fdesc_type_node, nreverse (field_list), 0, false); - null_fdesc_node = gnat_build_constructor (fdesc_type_node, null_list); - } - - /* Now declare runtime functions. */ - endlink = tree_cons (NULL_TREE, void_type_node, NULL_TREE); - - /* malloc is a function declaration tree for a function to allocate - memory. */ - malloc_decl = create_subprog_decl (get_identifier ("__gnat_malloc"), - NULL_TREE, - build_function_type (ptr_void_type_node, - tree_cons (NULL_TREE, - sizetype, - endlink)), - NULL_TREE, false, true, true, NULL, - Empty); - DECL_IS_MALLOC (malloc_decl) = 1; - - /* malloc32 is a function declaration tree for a function to allocate - 32bit memory on a 64bit system. Needed only on 64bit VMS. */ - malloc32_decl = create_subprog_decl (get_identifier ("__gnat_malloc32"), - NULL_TREE, - build_function_type (ptr_void_type_node, - tree_cons (NULL_TREE, - sizetype, - endlink)), - NULL_TREE, false, true, true, NULL, - Empty); - DECL_IS_MALLOC (malloc32_decl) = 1; - - /* free is a function declaration tree for a function to free memory. */ - free_decl - = create_subprog_decl (get_identifier ("__gnat_free"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - ptr_void_type_node, - endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - /* Make the types and functions used for exception processing. */ - jmpbuf_type - = build_array_type (gnat_type_for_mode (Pmode, 0), - build_index_type (build_int_cst (NULL_TREE, 5))); - create_type_decl (get_identifier ("JMPBUF_T"), jmpbuf_type, NULL, - true, true, Empty); - jmpbuf_ptr_type = build_pointer_type (jmpbuf_type); - - /* Functions to get and set the jumpbuf pointer for the current thread. */ - get_jmpbuf_decl - = create_subprog_decl - (get_identifier ("system__soft_links__get_jmpbuf_address_soft"), - NULL_TREE, build_function_type (jmpbuf_ptr_type, NULL_TREE), - NULL_TREE, false, true, true, NULL, Empty); - /* Avoid creating superfluous edges to __builtin_setjmp receivers. */ - DECL_PURE_P (get_jmpbuf_decl) = 1; - - set_jmpbuf_decl - = create_subprog_decl - (get_identifier ("system__soft_links__set_jmpbuf_address_soft"), - NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - /* Function to get the current exception. */ - get_excptr_decl - = create_subprog_decl - (get_identifier ("system__soft_links__get_gnat_exception"), - NULL_TREE, - build_function_type (build_pointer_type (except_type_node), NULL_TREE), - NULL_TREE, false, true, true, NULL, Empty); - /* Avoid creating superfluous edges to __builtin_setjmp receivers. */ - DECL_PURE_P (get_excptr_decl) = 1; - - /* Functions that raise exceptions. */ - raise_nodefer_decl - = create_subprog_decl - (get_identifier ("__gnat_raise_nodefer_with_msg"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - build_pointer_type (except_type_node), - endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - /* Dummy objects to materialize "others" and "all others" in the exception - tables. These are exported by a-exexpr.adb, so see this unit for the - types to use. */ - - others_decl - = create_var_decl (get_identifier ("OTHERS"), - get_identifier ("__gnat_others_value"), - integer_type_node, 0, 1, 0, 1, 1, 0, Empty); - - all_others_decl - = create_var_decl (get_identifier ("ALL_OTHERS"), - get_identifier ("__gnat_all_others_value"), - integer_type_node, 0, 1, 0, 1, 1, 0, Empty); - - /* Hooks to call when entering/leaving an exception handler. */ - begin_handler_decl - = create_subprog_decl (get_identifier ("__gnat_begin_handler"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - ptr_void_type_node, - endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - end_handler_decl - = create_subprog_decl (get_identifier ("__gnat_end_handler"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - ptr_void_type_node, - endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - /* If in no exception handlers mode, all raise statements are redirected to - __gnat_last_chance_handler. No need to redefine raise_nodefer_decl, since - this procedure will never be called in this mode. */ - if (No_Exception_Handlers_Set ()) - { - decl - = create_subprog_decl - (get_identifier ("__gnat_last_chance_handler"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - build_pointer_type (char_type_node), - tree_cons (NULL_TREE, - integer_type_node, - endlink))), - NULL_TREE, false, true, true, NULL, Empty); - - for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++) - gnat_raise_decls[i] = decl; - } - else - /* Otherwise, make one decl for each exception reason. */ - for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++) - { - char name[17]; - - sprintf (name, "__gnat_rcheck_%.2d", i); - gnat_raise_decls[i] - = create_subprog_decl - (get_identifier (name), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, - build_pointer_type - (char_type_node), - tree_cons (NULL_TREE, - integer_type_node, - endlink))), - NULL_TREE, false, true, true, NULL, Empty); - } - - /* Indicate that these never return. */ - TREE_THIS_VOLATILE (raise_nodefer_decl) = 1; - TREE_SIDE_EFFECTS (raise_nodefer_decl) = 1; - TREE_TYPE (raise_nodefer_decl) - = build_qualified_type (TREE_TYPE (raise_nodefer_decl), - TYPE_QUAL_VOLATILE); - - for (i = 0; i < ARRAY_SIZE (gnat_raise_decls); i++) - { - TREE_THIS_VOLATILE (gnat_raise_decls[i]) = 1; - TREE_SIDE_EFFECTS (gnat_raise_decls[i]) = 1; - TREE_TYPE (gnat_raise_decls[i]) - = build_qualified_type (TREE_TYPE (gnat_raise_decls[i]), - TYPE_QUAL_VOLATILE); - } - - /* setjmp returns an integer and has one operand, which is a pointer to - a jmpbuf. */ - setjmp_decl - = create_subprog_decl - (get_identifier ("__builtin_setjmp"), NULL_TREE, - build_function_type (integer_type_node, - tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - DECL_BUILT_IN_CLASS (setjmp_decl) = BUILT_IN_NORMAL; - DECL_FUNCTION_CODE (setjmp_decl) = BUILT_IN_SETJMP; - - /* update_setjmp_buf updates a setjmp buffer from the current stack pointer - address. */ - update_setjmp_buf_decl - = create_subprog_decl - (get_identifier ("__builtin_update_setjmp_buf"), NULL_TREE, - build_function_type (void_type_node, - tree_cons (NULL_TREE, jmpbuf_ptr_type, endlink)), - NULL_TREE, false, true, true, NULL, Empty); - - DECL_BUILT_IN_CLASS (update_setjmp_buf_decl) = BUILT_IN_NORMAL; - DECL_FUNCTION_CODE (update_setjmp_buf_decl) = BUILT_IN_UPDATE_SETJMP_BUF; - - main_identifier_node = get_identifier ("main"); - - /* Install the builtins we might need, either internally or as - user available facilities for Intrinsic imports. */ - gnat_install_builtins (); -} - -/* Given a record type RECORD_TYPE and a chain of FIELD_DECL nodes FIELDLIST, - finish constructing the record or union type. If REP_LEVEL is zero, this - record has no representation clause and so will be entirely laid out here. - If REP_LEVEL is one, this record has a representation clause and has been - laid out already; only set the sizes and alignment. If REP_LEVEL is two, - this record is derived from a parent record and thus inherits its layout; - only make a pass on the fields to finalize them. If DO_NOT_FINALIZE is - true, the record type is expected to be modified afterwards so it will - not be sent to the back-end for finalization. */ - -void -finish_record_type (tree record_type, tree fieldlist, int rep_level, - bool do_not_finalize) -{ - enum tree_code code = TREE_CODE (record_type); - tree name = TYPE_NAME (record_type); - tree ada_size = bitsize_zero_node; - tree size = bitsize_zero_node; - bool had_size = TYPE_SIZE (record_type) != 0; - bool had_size_unit = TYPE_SIZE_UNIT (record_type) != 0; - bool had_align = TYPE_ALIGN (record_type) != 0; - tree field; - - if (name && TREE_CODE (name) == TYPE_DECL) - name = DECL_NAME (name); - - TYPE_FIELDS (record_type) = fieldlist; - TYPE_STUB_DECL (record_type) = build_decl (TYPE_DECL, name, record_type); - - /* We don't need both the typedef name and the record name output in - the debugging information, since they are the same. */ - DECL_ARTIFICIAL (TYPE_STUB_DECL (record_type)) = 1; - - /* Globally initialize the record first. If this is a rep'ed record, - that just means some initializations; otherwise, layout the record. */ - if (rep_level > 0) - { - TYPE_ALIGN (record_type) = MAX (BITS_PER_UNIT, TYPE_ALIGN (record_type)); - TYPE_MODE (record_type) = BLKmode; - - if (!had_size_unit) - TYPE_SIZE_UNIT (record_type) = size_zero_node; - if (!had_size) - TYPE_SIZE (record_type) = bitsize_zero_node; - - /* For all-repped records with a size specified, lay the QUAL_UNION_TYPE - out just like a UNION_TYPE, since the size will be fixed. */ - else if (code == QUAL_UNION_TYPE) - code = UNION_TYPE; - } - else - { - /* Ensure there isn't a size already set. There can be in an error - case where there is a rep clause but all fields have errors and - no longer have a position. */ - TYPE_SIZE (record_type) = 0; - layout_type (record_type); - } - - /* At this point, the position and size of each field is known. It was - either set before entry by a rep clause, or by laying out the type above. - - We now run a pass over the fields (in reverse order for QUAL_UNION_TYPEs) - to compute the Ada size; the GCC size and alignment (for rep'ed records - that are not padding types); and the mode (for rep'ed records). We also - clear the DECL_BIT_FIELD indication for the cases we know have not been - handled yet, and adjust DECL_NONADDRESSABLE_P accordingly. */ - - if (code == QUAL_UNION_TYPE) - fieldlist = nreverse (fieldlist); - - for (field = fieldlist; field; field = TREE_CHAIN (field)) - { - tree type = TREE_TYPE (field); - tree pos = bit_position (field); - tree this_size = DECL_SIZE (field); - tree this_ada_size; - - if ((TREE_CODE (type) == RECORD_TYPE - || TREE_CODE (type) == UNION_TYPE - || TREE_CODE (type) == QUAL_UNION_TYPE) - && !TYPE_IS_FAT_POINTER_P (type) - && !TYPE_CONTAINS_TEMPLATE_P (type) - && TYPE_ADA_SIZE (type)) - this_ada_size = TYPE_ADA_SIZE (type); - else - this_ada_size = this_size; - - /* Clear DECL_BIT_FIELD for the cases layout_decl does not handle. */ - if (DECL_BIT_FIELD (field) - && operand_equal_p (this_size, TYPE_SIZE (type), 0)) - { - unsigned int align = TYPE_ALIGN (type); - - /* In the general case, type alignment is required. */ - if (value_factor_p (pos, align)) - { - /* The enclosing record type must be sufficiently aligned. - Otherwise, if no alignment was specified for it and it - has been laid out already, bump its alignment to the - desired one if this is compatible with its size. */ - if (TYPE_ALIGN (record_type) >= align) - { - DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align); - DECL_BIT_FIELD (field) = 0; - } - else if (!had_align - && rep_level == 0 - && value_factor_p (TYPE_SIZE (record_type), align)) - { - TYPE_ALIGN (record_type) = align; - DECL_ALIGN (field) = MAX (DECL_ALIGN (field), align); - DECL_BIT_FIELD (field) = 0; - } - } - - /* In the non-strict alignment case, only byte alignment is. */ - if (!STRICT_ALIGNMENT - && DECL_BIT_FIELD (field) - && value_factor_p (pos, BITS_PER_UNIT)) - DECL_BIT_FIELD (field) = 0; - } - - /* If we still have DECL_BIT_FIELD set at this point, we know the field - is technically not addressable. Except that it can actually be - addressed if the field is BLKmode and happens to be properly - aligned. */ - DECL_NONADDRESSABLE_P (field) - |= DECL_BIT_FIELD (field) && DECL_MODE (field) != BLKmode; - - /* A type must be as aligned as its most aligned field that is not - a bit-field. But this is already enforced by layout_type. */ - if (rep_level > 0 && !DECL_BIT_FIELD (field)) - TYPE_ALIGN (record_type) - = MAX (TYPE_ALIGN (record_type), DECL_ALIGN (field)); - - switch (code) - { - case UNION_TYPE: - ada_size = size_binop (MAX_EXPR, ada_size, this_ada_size); - size = size_binop (MAX_EXPR, size, this_size); - break; - - case QUAL_UNION_TYPE: - ada_size - = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field), - this_ada_size, ada_size); - size = fold_build3 (COND_EXPR, bitsizetype, DECL_QUALIFIER (field), - this_size, size); - break; - - case RECORD_TYPE: - /* Since we know here that all fields are sorted in order of - increasing bit position, the size of the record is one - higher than the ending bit of the last field processed - unless we have a rep clause, since in that case we might - have a field outside a QUAL_UNION_TYPE that has a higher ending - position. So use a MAX in that case. Also, if this field is a - QUAL_UNION_TYPE, we need to take into account the previous size in - the case of empty variants. */ - ada_size - = merge_sizes (ada_size, pos, this_ada_size, - TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0); - size - = merge_sizes (size, pos, this_size, - TREE_CODE (type) == QUAL_UNION_TYPE, rep_level > 0); - break; - - default: - gcc_unreachable (); - } - } - - if (code == QUAL_UNION_TYPE) - nreverse (fieldlist); - - if (rep_level < 2) - { - /* If this is a padding record, we never want to make the size smaller - than what was specified in it, if any. */ - if (TREE_CODE (record_type) == RECORD_TYPE - && TYPE_IS_PADDING_P (record_type) && TYPE_SIZE (record_type)) - size = TYPE_SIZE (record_type); - - /* Now set any of the values we've just computed that apply. */ - if (!TYPE_IS_FAT_POINTER_P (record_type) - && !TYPE_CONTAINS_TEMPLATE_P (record_type)) - SET_TYPE_ADA_SIZE (record_type, ada_size); - - if (rep_level > 0) - { - tree size_unit = had_size_unit - ? TYPE_SIZE_UNIT (record_type) - : convert (sizetype, - size_binop (CEIL_DIV_EXPR, size, - bitsize_unit_node)); - unsigned int align = TYPE_ALIGN (record_type); - - TYPE_SIZE (record_type) = variable_size (round_up (size, align)); - TYPE_SIZE_UNIT (record_type) - = variable_size (round_up (size_unit, align / BITS_PER_UNIT)); - - compute_record_mode (record_type); - } - } - - if (!do_not_finalize) - rest_of_record_type_compilation (record_type); -} - -/* Wrap up compilation of RECORD_TYPE, i.e. most notably output all - the debug information associated with it. It need not be invoked - directly in most cases since finish_record_type takes care of doing - so, unless explicitly requested not to through DO_NOT_FINALIZE. */ - -void -rest_of_record_type_compilation (tree record_type) -{ - tree fieldlist = TYPE_FIELDS (record_type); - tree field; - enum tree_code code = TREE_CODE (record_type); - bool var_size = false; - - for (field = fieldlist; field; field = TREE_CHAIN (field)) - { - /* We need to make an XVE/XVU record if any field has variable size, - whether or not the record does. For example, if we have a union, - it may be that all fields, rounded up to the alignment, have the - same size, in which case we'll use that size. But the debug - output routines (except Dwarf2) won't be able to output the fields, - so we need to make the special record. */ - if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST - /* If a field has a non-constant qualifier, the record will have - variable size too. */ - || (code == QUAL_UNION_TYPE - && TREE_CODE (DECL_QUALIFIER (field)) != INTEGER_CST)) - { - var_size = true; - break; - } - } - - /* If this record is of variable size, rename it so that the - debugger knows it is and make a new, parallel, record - that tells the debugger how the record is laid out. See - exp_dbug.ads. But don't do this for records that are padding - since they confuse GDB. */ - if (var_size - && !(TREE_CODE (record_type) == RECORD_TYPE - && TYPE_IS_PADDING_P (record_type))) - { - tree new_record_type - = make_node (TREE_CODE (record_type) == QUAL_UNION_TYPE - ? UNION_TYPE : TREE_CODE (record_type)); - tree orig_name = TYPE_NAME (record_type); - tree orig_id - = (TREE_CODE (orig_name) == TYPE_DECL ? DECL_NAME (orig_name) - : orig_name); - tree new_id - = concat_id_with_name (orig_id, - TREE_CODE (record_type) == QUAL_UNION_TYPE - ? "XVU" : "XVE"); - tree last_pos = bitsize_zero_node; - tree old_field; - tree prev_old_field = 0; - - TYPE_NAME (new_record_type) = new_id; - TYPE_ALIGN (new_record_type) = BIGGEST_ALIGNMENT; - TYPE_STUB_DECL (new_record_type) - = build_decl (TYPE_DECL, new_id, new_record_type); - DECL_ARTIFICIAL (TYPE_STUB_DECL (new_record_type)) = 1; - DECL_IGNORED_P (TYPE_STUB_DECL (new_record_type)) - = DECL_IGNORED_P (TYPE_STUB_DECL (record_type)); - TYPE_SIZE (new_record_type) = size_int (TYPE_ALIGN (record_type)); - TYPE_SIZE_UNIT (new_record_type) - = size_int (TYPE_ALIGN (record_type) / BITS_PER_UNIT); - - add_parallel_type (TYPE_STUB_DECL (record_type), new_record_type); - - /* Now scan all the fields, replacing each field with a new - field corresponding to the new encoding. */ - for (old_field = TYPE_FIELDS (record_type); old_field; - old_field = TREE_CHAIN (old_field)) - { - tree field_type = TREE_TYPE (old_field); - tree field_name = DECL_NAME (old_field); - tree new_field; - tree curpos = bit_position (old_field); - bool var = false; - unsigned int align = 0; - tree pos; - - /* See how the position was modified from the last position. - - There are two basic cases we support: a value was added - to the last position or the last position was rounded to - a boundary and they something was added. Check for the - first case first. If not, see if there is any evidence - of rounding. If so, round the last position and try - again. - - If this is a union, the position can be taken as zero. */ - - /* Some computations depend on the shape of the position expression, - so strip conversions to make sure it's exposed. */ - curpos = remove_conversions (curpos, true); - - if (TREE_CODE (new_record_type) == UNION_TYPE) - pos = bitsize_zero_node, align = 0; - else - pos = compute_related_constant (curpos, last_pos); - - if (!pos && TREE_CODE (curpos) == MULT_EXPR - && host_integerp (TREE_OPERAND (curpos, 1), 1)) - { - tree offset = TREE_OPERAND (curpos, 0); - align = tree_low_cst (TREE_OPERAND (curpos, 1), 1); - - /* An offset which is a bitwise AND with a negative power of 2 - means an alignment corresponding to this power of 2. */ - offset = remove_conversions (offset, true); - if (TREE_CODE (offset) == BIT_AND_EXPR - && host_integerp (TREE_OPERAND (offset, 1), 0) - && tree_int_cst_sgn (TREE_OPERAND (offset, 1)) < 0) - { - unsigned int pow - = - tree_low_cst (TREE_OPERAND (offset, 1), 0); - if (exact_log2 (pow) > 0) - align *= pow; - } - - pos = compute_related_constant (curpos, - round_up (last_pos, align)); - } - else if (!pos && TREE_CODE (curpos) == PLUS_EXPR - && TREE_CODE (TREE_OPERAND (curpos, 1)) == INTEGER_CST - && TREE_CODE (TREE_OPERAND (curpos, 0)) == MULT_EXPR - && host_integerp (TREE_OPERAND - (TREE_OPERAND (curpos, 0), 1), - 1)) - { - align - = tree_low_cst - (TREE_OPERAND (TREE_OPERAND (curpos, 0), 1), 1); - pos = compute_related_constant (curpos, - round_up (last_pos, align)); - } - else if (potential_alignment_gap (prev_old_field, old_field, - pos)) - { - align = TYPE_ALIGN (field_type); - pos = compute_related_constant (curpos, - round_up (last_pos, align)); - } - - /* If we can't compute a position, set it to zero. - - ??? We really should abort here, but it's too much work - to get this correct for all cases. */ - - if (!pos) - pos = bitsize_zero_node; - - /* See if this type is variable-sized and make a pointer type - and indicate the indirection if so. Beware that the debug - back-end may adjust the position computed above according - to the alignment of the field type, i.e. the pointer type - in this case, if we don't preventively counter that. */ - if (TREE_CODE (DECL_SIZE (old_field)) != INTEGER_CST) - { - field_type = build_pointer_type (field_type); - if (align != 0 && TYPE_ALIGN (field_type) > align) - { - field_type = copy_node (field_type); - TYPE_ALIGN (field_type) = align; - } - var = true; - } - - /* Make a new field name, if necessary. */ - if (var || align != 0) - { - char suffix[16]; - - if (align != 0) - sprintf (suffix, "XV%c%u", var ? 'L' : 'A', - align / BITS_PER_UNIT); - else - strcpy (suffix, "XVL"); - - field_name = concat_id_with_name (field_name, suffix); - } - - new_field = create_field_decl (field_name, field_type, - new_record_type, 0, - DECL_SIZE (old_field), pos, 0); - TREE_CHAIN (new_field) = TYPE_FIELDS (new_record_type); - TYPE_FIELDS (new_record_type) = new_field; - - /* If old_field is a QUAL_UNION_TYPE, take its size as being - zero. The only time it's not the last field of the record - is when there are other components at fixed positions after - it (meaning there was a rep clause for every field) and we - want to be able to encode them. */ - last_pos = size_binop (PLUS_EXPR, bit_position (old_field), - (TREE_CODE (TREE_TYPE (old_field)) - == QUAL_UNION_TYPE) - ? bitsize_zero_node - : DECL_SIZE (old_field)); - prev_old_field = old_field; - } - - TYPE_FIELDS (new_record_type) - = nreverse (TYPE_FIELDS (new_record_type)); - - rest_of_type_decl_compilation (TYPE_STUB_DECL (new_record_type)); - } - - rest_of_type_decl_compilation (TYPE_STUB_DECL (record_type)); -} - -/* Append PARALLEL_TYPE on the chain of parallel types for decl. */ - -void -add_parallel_type (tree decl, tree parallel_type) -{ - tree d = decl; - - while (DECL_PARALLEL_TYPE (d)) - d = TYPE_STUB_DECL (DECL_PARALLEL_TYPE (d)); - - SET_DECL_PARALLEL_TYPE (d, parallel_type); -} - -/* Return the parallel type associated to a type, if any. */ - -tree -get_parallel_type (tree type) -{ - if (TYPE_STUB_DECL (type)) - return DECL_PARALLEL_TYPE (TYPE_STUB_DECL (type)); - else - return NULL_TREE; -} - -/* Utility function of above to merge LAST_SIZE, the previous size of a record - with FIRST_BIT and SIZE that describe a field. SPECIAL is nonzero - if this represents a QUAL_UNION_TYPE in which case we must look for - COND_EXPRs and replace a value of zero with the old size. If HAS_REP - is nonzero, we must take the MAX of the end position of this field - with LAST_SIZE. In all other cases, we use FIRST_BIT plus SIZE. - - We return an expression for the size. */ - -static tree -merge_sizes (tree last_size, tree first_bit, tree size, bool special, - bool has_rep) -{ - tree type = TREE_TYPE (last_size); - tree new; - - if (!special || TREE_CODE (size) != COND_EXPR) - { - new = size_binop (PLUS_EXPR, first_bit, size); - if (has_rep) - new = size_binop (MAX_EXPR, last_size, new); - } - - else - new = fold_build3 (COND_EXPR, type, TREE_OPERAND (size, 0), - integer_zerop (TREE_OPERAND (size, 1)) - ? last_size : merge_sizes (last_size, first_bit, - TREE_OPERAND (size, 1), - 1, has_rep), - integer_zerop (TREE_OPERAND (size, 2)) - ? last_size : merge_sizes (last_size, first_bit, - TREE_OPERAND (size, 2), - 1, has_rep)); - - /* We don't need any NON_VALUE_EXPRs and they can confuse us (especially - when fed through substitute_in_expr) into thinking that a constant - size is not constant. */ - while (TREE_CODE (new) == NON_LVALUE_EXPR) - new = TREE_OPERAND (new, 0); - - return new; -} - -/* Utility function of above to see if OP0 and OP1, both of SIZETYPE, are - related by the addition of a constant. Return that constant if so. */ - -static tree -compute_related_constant (tree op0, tree op1) -{ - tree op0_var, op1_var; - tree op0_con = split_plus (op0, &op0_var); - tree op1_con = split_plus (op1, &op1_var); - tree result = size_binop (MINUS_EXPR, op0_con, op1_con); - - if (operand_equal_p (op0_var, op1_var, 0)) - return result; - else if (operand_equal_p (op0, size_binop (PLUS_EXPR, op1_var, result), 0)) - return result; - else - return 0; -} - -/* Utility function of above to split a tree OP which may be a sum, into a - constant part, which is returned, and a variable part, which is stored - in *PVAR. *PVAR may be bitsize_zero_node. All operations must be of - bitsizetype. */ - -static tree -split_plus (tree in, tree *pvar) -{ - /* Strip NOPS in order to ease the tree traversal and maximize the - potential for constant or plus/minus discovery. We need to be careful - to always return and set *pvar to bitsizetype trees, but it's worth - the effort. */ - STRIP_NOPS (in); - - *pvar = convert (bitsizetype, in); - - if (TREE_CODE (in) == INTEGER_CST) - { - *pvar = bitsize_zero_node; - return convert (bitsizetype, in); - } - else if (TREE_CODE (in) == PLUS_EXPR || TREE_CODE (in) == MINUS_EXPR) - { - tree lhs_var, rhs_var; - tree lhs_con = split_plus (TREE_OPERAND (in, 0), &lhs_var); - tree rhs_con = split_plus (TREE_OPERAND (in, 1), &rhs_var); - - if (lhs_var == TREE_OPERAND (in, 0) - && rhs_var == TREE_OPERAND (in, 1)) - return bitsize_zero_node; - - *pvar = size_binop (TREE_CODE (in), lhs_var, rhs_var); - return size_binop (TREE_CODE (in), lhs_con, rhs_con); - } - else - return bitsize_zero_node; -} - -/* Return a FUNCTION_TYPE node. RETURN_TYPE is the type returned by the - subprogram. If it is void_type_node, then we are dealing with a procedure, - otherwise we are dealing with a function. PARAM_DECL_LIST is a list of - PARM_DECL nodes that are the subprogram arguments. CICO_LIST is the - copy-in/copy-out list to be stored into TYPE_CICO_LIST. - RETURNS_UNCONSTRAINED is true if the function returns an unconstrained - object. RETURNS_BY_REF is true if the function returns by reference. - RETURNS_BY_TARGET_PTR is true if the function is to be passed (as its - first parameter) the address of the place to copy its result. */ - -tree -create_subprog_type (tree return_type, tree param_decl_list, tree cico_list, - bool returns_unconstrained, bool returns_by_ref, - bool returns_by_target_ptr) -{ - /* A chain of TREE_LIST nodes whose TREE_VALUEs are the data type nodes of - the subprogram formal parameters. This list is generated by traversing the - input list of PARM_DECL nodes. */ - tree param_type_list = NULL; - tree param_decl; - tree type; - - for (param_decl = param_decl_list; param_decl; - param_decl = TREE_CHAIN (param_decl)) - param_type_list = tree_cons (NULL_TREE, TREE_TYPE (param_decl), - param_type_list); - - /* The list of the function parameter types has to be terminated by the void - type to signal to the back-end that we are not dealing with a variable - parameter subprogram, but that the subprogram has a fixed number of - parameters. */ - param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list); - - /* The list of argument types has been created in reverse - so nreverse it. */ - param_type_list = nreverse (param_type_list); - - type = build_function_type (return_type, param_type_list); - - /* TYPE may have been shared since GCC hashes types. If it has a CICO_LIST - or the new type should, make a copy of TYPE. Likewise for - RETURNS_UNCONSTRAINED and RETURNS_BY_REF. */ - if (TYPE_CI_CO_LIST (type) || cico_list - || TYPE_RETURNS_UNCONSTRAINED_P (type) != returns_unconstrained - || TYPE_RETURNS_BY_REF_P (type) != returns_by_ref - || TYPE_RETURNS_BY_TARGET_PTR_P (type) != returns_by_target_ptr) - type = copy_type (type); - - TYPE_CI_CO_LIST (type) = cico_list; - TYPE_RETURNS_UNCONSTRAINED_P (type) = returns_unconstrained; - TYPE_RETURNS_BY_REF_P (type) = returns_by_ref; - TYPE_RETURNS_BY_TARGET_PTR_P (type) = returns_by_target_ptr; - return type; -} - -/* Return a copy of TYPE but safe to modify in any way. */ - -tree -copy_type (tree type) -{ - tree new = copy_node (type); - - /* copy_node clears this field instead of copying it, because it is - aliased with TREE_CHAIN. */ - TYPE_STUB_DECL (new) = TYPE_STUB_DECL (type); - - TYPE_POINTER_TO (new) = 0; - TYPE_REFERENCE_TO (new) = 0; - TYPE_MAIN_VARIANT (new) = new; - TYPE_NEXT_VARIANT (new) = 0; - - return new; -} - -/* Return an INTEGER_TYPE of SIZETYPE with range MIN to MAX and whose - TYPE_INDEX_TYPE is INDEX. GNAT_NODE is used for the position of - the decl. */ - -tree -create_index_type (tree min, tree max, tree index, Node_Id gnat_node) -{ - /* First build a type for the desired range. */ - tree type = build_index_2_type (min, max); - - /* If this type has the TYPE_INDEX_TYPE we want, return it. Otherwise, if it - doesn't have TYPE_INDEX_TYPE set, set it to INDEX. If TYPE_INDEX_TYPE - is set, but not to INDEX, make a copy of this type with the requested - index type. Note that we have no way of sharing these types, but that's - only a small hole. */ - if (TYPE_INDEX_TYPE (type) == index) - return type; - else if (TYPE_INDEX_TYPE (type)) - type = copy_type (type); - - SET_TYPE_INDEX_TYPE (type, index); - create_type_decl (NULL_TREE, type, NULL, true, false, gnat_node); - return type; -} - -/* Return a TYPE_DECL node. TYPE_NAME gives the name of the type (a character - string) and TYPE is a ..._TYPE node giving its data type. - ARTIFICIAL_P is true if this is a declaration that was generated - by the compiler. DEBUG_INFO_P is true if we need to write debugging - information about this type. GNAT_NODE is used for the position of - the decl. */ - -tree -create_type_decl (tree type_name, tree type, struct attrib *attr_list, - bool artificial_p, bool debug_info_p, Node_Id gnat_node) -{ - tree type_decl = build_decl (TYPE_DECL, type_name, type); - enum tree_code code = TREE_CODE (type); - - DECL_ARTIFICIAL (type_decl) = artificial_p; - - if (!TYPE_IS_DUMMY_P (type)) - gnat_pushdecl (type_decl, gnat_node); - - process_attributes (type_decl, attr_list); - - /* Pass type declaration information to the debugger unless this is an - UNCONSTRAINED_ARRAY_TYPE, which the debugger does not support, - and ENUMERAL_TYPE or RECORD_TYPE which is handled separately, or - type for which debugging information was not requested. */ - if (code == UNCONSTRAINED_ARRAY_TYPE || !debug_info_p) - DECL_IGNORED_P (type_decl) = 1; - else if (code != ENUMERAL_TYPE - && (code != RECORD_TYPE || TYPE_IS_FAT_POINTER_P (type)) - && !((code == POINTER_TYPE || code == REFERENCE_TYPE) - && TYPE_IS_DUMMY_P (TREE_TYPE (type)))) - rest_of_type_decl_compilation (type_decl); - - return type_decl; -} - -/* Return a VAR_DECL or CONST_DECL node. - - VAR_NAME gives the name of the variable. ASM_NAME is its assembler name - (if provided). TYPE is its data type (a GCC ..._TYPE node). VAR_INIT is - the GCC tree for an optional initial expression; NULL_TREE if none. - - CONST_FLAG is true if this variable is constant, in which case we might - return a CONST_DECL node unless CONST_DECL_ALLOWED_P is false. - - PUBLIC_FLAG is true if this is for a reference to a public entity or for a - definition to be made visible outside of the current compilation unit, for - instance variable definitions in a package specification. - - EXTERN_FLAG is nonzero when processing an external variable declaration (as - opposed to a definition: no storage is to be allocated for the variable). - - STATIC_FLAG is only relevant when not at top level. In that case - it indicates whether to always allocate storage to the variable. - - GNAT_NODE is used for the position of the decl. */ - -tree -create_var_decl_1 (tree var_name, tree asm_name, tree type, tree var_init, - bool const_flag, bool public_flag, bool extern_flag, - bool static_flag, bool const_decl_allowed_p, - struct attrib *attr_list, Node_Id gnat_node) -{ - bool init_const - = (var_init != 0 - && gnat_types_compatible_p (type, TREE_TYPE (var_init)) - && (global_bindings_p () || static_flag - ? initializer_constant_valid_p (var_init, TREE_TYPE (var_init)) != 0 - : TREE_CONSTANT (var_init))); - - /* Whether we will make TREE_CONSTANT the DECL we produce here, in which - case the initializer may be used in-lieu of the DECL node (as done in - Identifier_to_gnu). This is useful to prevent the need of elaboration - code when an identifier for which such a decl is made is in turn used as - an initializer. We used to rely on CONST vs VAR_DECL for this purpose, - but extra constraints apply to this choice (see below) and are not - relevant to the distinction we wish to make. */ - bool constant_p = const_flag && init_const; - - /* The actual DECL node. CONST_DECL was initially intended for enumerals - and may be used for scalars in general but not for aggregates. */ - tree var_decl - = build_decl ((constant_p && const_decl_allowed_p - && !AGGREGATE_TYPE_P (type)) ? CONST_DECL : VAR_DECL, - var_name, type); - - /* If this is external, throw away any initializations (they will be done - elsewhere) unless this is a constant for which we would like to remain - able to get the initializer. If we are defining a global here, leave a - constant initialization and save any variable elaborations for the - elaboration routine. If we are just annotating types, throw away the - initialization if it isn't a constant. */ - if ((extern_flag && !constant_p) - || (type_annotate_only && var_init && !TREE_CONSTANT (var_init))) - var_init = NULL_TREE; - - /* At the global level, an initializer requiring code to be generated - produces elaboration statements. Check that such statements are allowed, - that is, not violating a No_Elaboration_Code restriction. */ - if (global_bindings_p () && var_init != 0 && ! init_const) - Check_Elaboration_Code_Allowed (gnat_node); - - /* Ada doesn't feature Fortran-like COMMON variables so we shouldn't - try to fiddle with DECL_COMMON. However, on platforms that don't - support global BSS sections, uninitialized global variables would - go in DATA instead, thus increasing the size of the executable. */ - if (!flag_no_common - && TREE_CODE (var_decl) == VAR_DECL - && !have_global_bss_p ()) - DECL_COMMON (var_decl) = 1; - DECL_INITIAL (var_decl) = var_init; - TREE_READONLY (var_decl) = const_flag; - DECL_EXTERNAL (var_decl) = extern_flag; - TREE_PUBLIC (var_decl) = public_flag || extern_flag; - TREE_CONSTANT (var_decl) = constant_p; - TREE_THIS_VOLATILE (var_decl) = TREE_SIDE_EFFECTS (var_decl) - = TYPE_VOLATILE (type); - - /* If it's public and not external, always allocate storage for it. - At the global binding level we need to allocate static storage for the - variable if and only if it's not external. If we are not at the top level - we allocate automatic storage unless requested not to. */ - TREE_STATIC (var_decl) - = !extern_flag && (public_flag || static_flag || global_bindings_p ()); - - if (asm_name && VAR_OR_FUNCTION_DECL_P (var_decl)) - SET_DECL_ASSEMBLER_NAME (var_decl, asm_name); - - process_attributes (var_decl, attr_list); - - /* Add this decl to the current binding level. */ - gnat_pushdecl (var_decl, gnat_node); - - if (TREE_SIDE_EFFECTS (var_decl)) - TREE_ADDRESSABLE (var_decl) = 1; - - if (TREE_CODE (var_decl) != CONST_DECL) - { - if (global_bindings_p ()) - rest_of_decl_compilation (var_decl, true, 0); - } - else - expand_decl (var_decl); - - return var_decl; -} - -/* Return true if TYPE, an aggregate type, contains (or is) an array. */ - -static bool -aggregate_type_contains_array_p (tree type) -{ - switch (TREE_CODE (type)) - { - case RECORD_TYPE: - case UNION_TYPE: - case QUAL_UNION_TYPE: - { - tree field; - for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field)) - if (AGGREGATE_TYPE_P (TREE_TYPE (field)) - && aggregate_type_contains_array_p (TREE_TYPE (field))) - return true; - return false; - } - - case ARRAY_TYPE: - return true; - - default: - gcc_unreachable (); - } -} - -/* Returns a FIELD_DECL node. FIELD_NAME the field name, FIELD_TYPE is its - type, and RECORD_TYPE is the type of the parent. PACKED is nonzero if - this field is in a record type with a "pragma pack". If SIZE is nonzero - it is the specified size for this field. If POS is nonzero, it is the bit - position. If ADDRESSABLE is nonzero, it means we are allowed to take - the address of this field for aliasing purposes. If it is negative, we - should not make a bitfield, which is used by make_aligning_type. */ - -tree -create_field_decl (tree field_name, tree field_type, tree record_type, - int packed, tree size, tree pos, int addressable) -{ - tree field_decl = build_decl (FIELD_DECL, field_name, field_type); - - DECL_CONTEXT (field_decl) = record_type; - TREE_READONLY (field_decl) = TYPE_READONLY (field_type); - - /* If FIELD_TYPE is BLKmode, we must ensure this is aligned to at least a - byte boundary since GCC cannot handle less-aligned BLKmode bitfields. - Likewise for an aggregate without specified position that contains an - array, because in this case slices of variable length of this array - must be handled by GCC and variable-sized objects need to be aligned - to at least a byte boundary. */ - if (packed && (TYPE_MODE (field_type) == BLKmode - || (!pos - && AGGREGATE_TYPE_P (field_type) - && aggregate_type_contains_array_p (field_type)))) - DECL_ALIGN (field_decl) = BITS_PER_UNIT; - - /* If a size is specified, use it. Otherwise, if the record type is packed - compute a size to use, which may differ from the object's natural size. - We always set a size in this case to trigger the checks for bitfield - creation below, which is typically required when no position has been - specified. */ - if (size) - size = convert (bitsizetype, size); - else if (packed == 1) - { - size = rm_size (field_type); - - /* For a constant size larger than MAX_FIXED_MODE_SIZE, round up to - byte. */ - if (TREE_CODE (size) == INTEGER_CST - && compare_tree_int (size, MAX_FIXED_MODE_SIZE) > 0) - size = round_up (size, BITS_PER_UNIT); - } - - /* If we may, according to ADDRESSABLE, make a bitfield if a size is - specified for two reasons: first if the size differs from the natural - size. Second, if the alignment is insufficient. There are a number of - ways the latter can be true. - - We never make a bitfield if the type of the field has a nonconstant size, - because no such entity requiring bitfield operations should reach here. - - We do *preventively* make a bitfield when there might be the need for it - but we don't have all the necessary information to decide, as is the case - of a field with no specified position in a packed record. - - We also don't look at STRICT_ALIGNMENT here, and rely on later processing - in layout_decl or finish_record_type to clear the bit_field indication if - it is in fact not needed. */ - if (addressable >= 0 - && size - && TREE_CODE (size) == INTEGER_CST - && TREE_CODE (TYPE_SIZE (field_type)) == INTEGER_CST - && (!tree_int_cst_equal (size, TYPE_SIZE (field_type)) - || (pos && !value_factor_p (pos, TYPE_ALIGN (field_type))) - || packed - || (TYPE_ALIGN (record_type) != 0 - && TYPE_ALIGN (record_type) < TYPE_ALIGN (field_type)))) - { - DECL_BIT_FIELD (field_decl) = 1; - DECL_SIZE (field_decl) = size; - if (!packed && !pos) - DECL_ALIGN (field_decl) - = (TYPE_ALIGN (record_type) != 0 - ? MIN (TYPE_ALIGN (record_type), TYPE_ALIGN (field_type)) - : TYPE_ALIGN (field_type)); - } - - DECL_PACKED (field_decl) = pos ? DECL_BIT_FIELD (field_decl) : packed; - - /* Bump the alignment if need be, either for bitfield/packing purposes or - to satisfy the type requirements if no such consideration applies. When - we get the alignment from the type, indicate if this is from an explicit - user request, which prevents stor-layout from lowering it later on. */ - { - int bit_align - = (DECL_BIT_FIELD (field_decl) ? 1 - : packed && TYPE_MODE (field_type) != BLKmode ? BITS_PER_UNIT : 0); - - if (bit_align > DECL_ALIGN (field_decl)) - DECL_ALIGN (field_decl) = bit_align; - else if (!bit_align && TYPE_ALIGN (field_type) > DECL_ALIGN (field_decl)) - { - DECL_ALIGN (field_decl) = TYPE_ALIGN (field_type); - DECL_USER_ALIGN (field_decl) = TYPE_USER_ALIGN (field_type); - } - } - - if (pos) - { - /* We need to pass in the alignment the DECL is known to have. - This is the lowest-order bit set in POS, but no more than - the alignment of the record, if one is specified. Note - that an alignment of 0 is taken as infinite. */ - unsigned int known_align; - - if (host_integerp (pos, 1)) - known_align = tree_low_cst (pos, 1) & - tree_low_cst (pos, 1); - else - known_align = BITS_PER_UNIT; - - if (TYPE_ALIGN (record_type) - && (known_align == 0 || known_align > TYPE_ALIGN (record_type))) - known_align = TYPE_ALIGN (record_type); - - layout_decl (field_decl, known_align); - SET_DECL_OFFSET_ALIGN (field_decl, - host_integerp (pos, 1) ? BIGGEST_ALIGNMENT - : BITS_PER_UNIT); - pos_from_bit (&DECL_FIELD_OFFSET (field_decl), - &DECL_FIELD_BIT_OFFSET (field_decl), - DECL_OFFSET_ALIGN (field_decl), pos); - - DECL_HAS_REP_P (field_decl) = 1; - } - - /* In addition to what our caller says, claim the field is addressable if we - know that its type is not suitable. - - The field may also be "technically" nonaddressable, meaning that even if - we attempt to take the field's address we will actually get the address - of a copy. This is the case for true bitfields, but the DECL_BIT_FIELD - value we have at this point is not accurate enough, so we don't account - for this here and let finish_record_type decide. */ - if (!type_for_nonaliased_component_p (field_type)) - addressable = 1; - - DECL_NONADDRESSABLE_P (field_decl) = !addressable; - - return field_decl; -} - -/* Returns a PARM_DECL node. PARAM_NAME is the name of the parameter, - PARAM_TYPE is its type. READONLY is true if the parameter is - readonly (either an In parameter or an address of a pass-by-ref - parameter). */ - -tree -create_param_decl (tree param_name, tree param_type, bool readonly) -{ - tree param_decl = build_decl (PARM_DECL, param_name, param_type); - - /* Honor targetm.calls.promote_prototypes(), as not doing so can - lead to various ABI violations. */ - if (targetm.calls.promote_prototypes (param_type) - && (TREE_CODE (param_type) == INTEGER_TYPE - || TREE_CODE (param_type) == ENUMERAL_TYPE) - && TYPE_PRECISION (param_type) < TYPE_PRECISION (integer_type_node)) - { - /* We have to be careful about biased types here. Make a subtype - of integer_type_node with the proper biasing. */ - if (TREE_CODE (param_type) == INTEGER_TYPE - && TYPE_BIASED_REPRESENTATION_P (param_type)) - { - param_type - = copy_type (build_range_type (integer_type_node, - TYPE_MIN_VALUE (param_type), - TYPE_MAX_VALUE (param_type))); - - TYPE_BIASED_REPRESENTATION_P (param_type) = 1; - } - else - param_type = integer_type_node; - } - - DECL_ARG_TYPE (param_decl) = param_type; - TREE_READONLY (param_decl) = readonly; - return param_decl; -} - -/* Given a DECL and ATTR_LIST, process the listed attributes. */ - -void -process_attributes (tree decl, struct attrib *attr_list) -{ - for (; attr_list; attr_list = attr_list->next) - switch (attr_list->type) - { - case ATTR_MACHINE_ATTRIBUTE: - decl_attributes (&decl, tree_cons (attr_list->name, attr_list->args, - NULL_TREE), - ATTR_FLAG_TYPE_IN_PLACE); - break; - - case ATTR_LINK_ALIAS: - if (! DECL_EXTERNAL (decl)) - { - TREE_STATIC (decl) = 1; - assemble_alias (decl, attr_list->name); - } - break; - - case ATTR_WEAK_EXTERNAL: - if (SUPPORTS_WEAK) - declare_weak (decl); - else - post_error ("?weak declarations not supported on this target", - attr_list->error_point); - break; - - case ATTR_LINK_SECTION: - if (targetm.have_named_sections) - { - DECL_SECTION_NAME (decl) - = build_string (IDENTIFIER_LENGTH (attr_list->name), - IDENTIFIER_POINTER (attr_list->name)); - DECL_COMMON (decl) = 0; - } - else - post_error ("?section attributes are not supported for this target", - attr_list->error_point); - break; - - case ATTR_LINK_CONSTRUCTOR: - DECL_STATIC_CONSTRUCTOR (decl) = 1; - TREE_USED (decl) = 1; - break; - - case ATTR_LINK_DESTRUCTOR: - DECL_STATIC_DESTRUCTOR (decl) = 1; - TREE_USED (decl) = 1; - break; - } -} - -/* Record a global renaming pointer. */ - -void -record_global_renaming_pointer (tree decl) -{ - gcc_assert (DECL_RENAMED_OBJECT (decl)); - VEC_safe_push (tree, gc, global_renaming_pointers, decl); -} - -/* Invalidate the global renaming pointers. */ - -void -invalidate_global_renaming_pointers (void) -{ - unsigned int i; - tree iter; - - for (i = 0; VEC_iterate(tree, global_renaming_pointers, i, iter); i++) - SET_DECL_RENAMED_OBJECT (iter, NULL_TREE); - - VEC_free (tree, gc, global_renaming_pointers); -} - -/* Return true if VALUE is a known to be a multiple of FACTOR, which must be - a power of 2. */ - -bool -value_factor_p (tree value, HOST_WIDE_INT factor) -{ - if (host_integerp (value, 1)) - return tree_low_cst (value, 1) % factor == 0; - - if (TREE_CODE (value) == MULT_EXPR) - return (value_factor_p (TREE_OPERAND (value, 0), factor) - || value_factor_p (TREE_OPERAND (value, 1), factor)); - - return false; -} - -/* Given 2 consecutive field decls PREV_FIELD and CURR_FIELD, return true - unless we can prove these 2 fields are laid out in such a way that no gap - exist between the end of PREV_FIELD and the beginning of CURR_FIELD. OFFSET - is the distance in bits between the end of PREV_FIELD and the starting - position of CURR_FIELD. It is ignored if null. */ - -static bool -potential_alignment_gap (tree prev_field, tree curr_field, tree offset) -{ - /* If this is the first field of the record, there cannot be any gap */ - if (!prev_field) - return false; - - /* If the previous field is a union type, then return False: The only - time when such a field is not the last field of the record is when - there are other components at fixed positions after it (meaning there - was a rep clause for every field), in which case we don't want the - alignment constraint to override them. */ - if (TREE_CODE (TREE_TYPE (prev_field)) == QUAL_UNION_TYPE) - return false; - - /* If the distance between the end of prev_field and the beginning of - curr_field is constant, then there is a gap if the value of this - constant is not null. */ - if (offset && host_integerp (offset, 1)) - return !integer_zerop (offset); - - /* If the size and position of the previous field are constant, - then check the sum of this size and position. There will be a gap - iff it is not multiple of the current field alignment. */ - if (host_integerp (DECL_SIZE (prev_field), 1) - && host_integerp (bit_position (prev_field), 1)) - return ((tree_low_cst (bit_position (prev_field), 1) - + tree_low_cst (DECL_SIZE (prev_field), 1)) - % DECL_ALIGN (curr_field) != 0); - - /* If both the position and size of the previous field are multiples - of the current field alignment, there cannot be any gap. */ - if (value_factor_p (bit_position (prev_field), DECL_ALIGN (curr_field)) - && value_factor_p (DECL_SIZE (prev_field), DECL_ALIGN (curr_field))) - return false; - - /* Fallback, return that there may be a potential gap */ - return true; -} - -/* Returns a LABEL_DECL node for LABEL_NAME. */ - -tree -create_label_decl (tree label_name) -{ - tree label_decl = build_decl (LABEL_DECL, label_name, void_type_node); - - DECL_CONTEXT (label_decl) = current_function_decl; - DECL_MODE (label_decl) = VOIDmode; - DECL_SOURCE_LOCATION (label_decl) = input_location; - - return label_decl; -} - -/* Returns a FUNCTION_DECL node. SUBPROG_NAME is the name of the subprogram, - ASM_NAME is its assembler name, SUBPROG_TYPE is its type (a FUNCTION_TYPE - node), PARAM_DECL_LIST is the list of the subprogram arguments (a list of - PARM_DECL nodes chained through the TREE_CHAIN field). - - INLINE_FLAG, PUBLIC_FLAG, EXTERN_FLAG, and ATTR_LIST are used to set the - appropriate fields in the FUNCTION_DECL. GNAT_NODE gives the location. */ - -tree -create_subprog_decl (tree subprog_name, tree asm_name, - tree subprog_type, tree param_decl_list, bool inline_flag, - bool public_flag, bool extern_flag, - struct attrib *attr_list, Node_Id gnat_node) -{ - tree return_type = TREE_TYPE (subprog_type); - tree subprog_decl = build_decl (FUNCTION_DECL, subprog_name, subprog_type); - - /* If this is a function nested inside an inlined external function, it - means we aren't going to compile the outer function unless it is - actually inlined, so do the same for us. */ - if (current_function_decl && DECL_INLINE (current_function_decl) - && DECL_EXTERNAL (current_function_decl)) - extern_flag = true; - - DECL_EXTERNAL (subprog_decl) = extern_flag; - TREE_PUBLIC (subprog_decl) = public_flag; - TREE_STATIC (subprog_decl) = 1; - TREE_READONLY (subprog_decl) = TYPE_READONLY (subprog_type); - TREE_THIS_VOLATILE (subprog_decl) = TYPE_VOLATILE (subprog_type); - TREE_SIDE_EFFECTS (subprog_decl) = TYPE_VOLATILE (subprog_type); - DECL_ARGUMENTS (subprog_decl) = param_decl_list; - DECL_RESULT (subprog_decl) = build_decl (RESULT_DECL, 0, return_type); - DECL_ARTIFICIAL (DECL_RESULT (subprog_decl)) = 1; - DECL_IGNORED_P (DECL_RESULT (subprog_decl)) = 1; - - /* TREE_ADDRESSABLE is set on the result type to request the use of the - target by-reference return mechanism. This is not supported all the - way down to RTL expansion with GCC 4, which ICEs on temporary creation - attempts with such a type and expects DECL_BY_REFERENCE to be set on - the RESULT_DECL instead - see gnat_genericize for more details. */ - if (TREE_ADDRESSABLE (TREE_TYPE (DECL_RESULT (subprog_decl)))) - { - tree result_decl = DECL_RESULT (subprog_decl); - - TREE_ADDRESSABLE (TREE_TYPE (result_decl)) = 0; - DECL_BY_REFERENCE (result_decl) = 1; - } - - if (inline_flag) - DECL_DECLARED_INLINE_P (subprog_decl) = 1; - - if (asm_name) - { - SET_DECL_ASSEMBLER_NAME (subprog_decl, asm_name); - - /* The expand_main_function circuitry expects "main_identifier_node" to - designate the DECL_NAME of the 'main' entry point, in turn expected - to be declared as the "main" function literally by default. Ada - program entry points are typically declared with a different name - within the binder generated file, exported as 'main' to satisfy the - system expectations. Redirect main_identifier_node in this case. */ - if (asm_name == main_identifier_node) - main_identifier_node = DECL_NAME (subprog_decl); - } - - process_attributes (subprog_decl, attr_list); - - /* Add this decl to the current binding level. */ - gnat_pushdecl (subprog_decl, gnat_node); - - /* Output the assembler code and/or RTL for the declaration. */ - rest_of_decl_compilation (subprog_decl, global_bindings_p (), 0); - - return subprog_decl; -} - -/* Set up the framework for generating code for SUBPROG_DECL, a subprogram - body. This routine needs to be invoked before processing the declarations - appearing in the subprogram. */ - -void -begin_subprog_body (tree subprog_decl) -{ - tree param_decl; - - current_function_decl = subprog_decl; - announce_function (subprog_decl); - - /* Enter a new binding level and show that all the parameters belong to - this function. */ - gnat_pushlevel (); - for (param_decl = DECL_ARGUMENTS (subprog_decl); param_decl; - param_decl = TREE_CHAIN (param_decl)) - DECL_CONTEXT (param_decl) = subprog_decl; - - make_decl_rtl (subprog_decl); - - /* We handle pending sizes via the elaboration of types, so we don't need to - save them. This causes them to be marked as part of the outer function - and then discarded. */ - get_pending_sizes (); -} - - -/* Helper for the genericization callback. Return a dereference of VAL - if it is of a reference type. */ - -static tree -convert_from_reference (tree val) -{ - tree value_type, ref; - - if (TREE_CODE (TREE_TYPE (val)) != REFERENCE_TYPE) - return val; - - value_type = TREE_TYPE (TREE_TYPE (val)); - ref = build1 (INDIRECT_REF, value_type, val); - - /* See if what we reference is CONST or VOLATILE, which requires - looking into array types to get to the component type. */ - - while (TREE_CODE (value_type) == ARRAY_TYPE) - value_type = TREE_TYPE (value_type); - - TREE_READONLY (ref) - = (TYPE_QUALS (value_type) & TYPE_QUAL_CONST); - TREE_THIS_VOLATILE (ref) - = (TYPE_QUALS (value_type) & TYPE_QUAL_VOLATILE); - - TREE_SIDE_EFFECTS (ref) - = (TREE_THIS_VOLATILE (ref) || TREE_SIDE_EFFECTS (val)); - - return ref; -} - -/* Helper for the genericization callback. Returns true if T denotes - a RESULT_DECL with DECL_BY_REFERENCE set. */ - -static inline bool -is_byref_result (tree t) -{ - return (TREE_CODE (t) == RESULT_DECL && DECL_BY_REFERENCE (t)); -} - - -/* Tree walking callback for gnat_genericize. Currently ... - - o Adjust references to the function's DECL_RESULT if it is marked - DECL_BY_REFERENCE and so has had its type turned into a reference - type at the end of the function compilation. */ - -static tree -gnat_genericize_r (tree *stmt_p, int *walk_subtrees, void *data) -{ - /* This implementation is modeled after what the C++ front-end is - doing, basis of the downstream passes behavior. */ - - tree stmt = *stmt_p; - struct pointer_set_t *p_set = (struct pointer_set_t*) data; - - /* If we have a direct mention of the result decl, dereference. */ - if (is_byref_result (stmt)) - { - *stmt_p = convert_from_reference (stmt); - *walk_subtrees = 0; - return NULL; - } - - /* Otherwise, no need to walk the same tree twice. */ - if (pointer_set_contains (p_set, stmt)) - { - *walk_subtrees = 0; - return NULL_TREE; - } - - /* If we are taking the address of what now is a reference, just get the - reference value. */ - if (TREE_CODE (stmt) == ADDR_EXPR - && is_byref_result (TREE_OPERAND (stmt, 0))) - { - *stmt_p = convert (TREE_TYPE (stmt), TREE_OPERAND (stmt, 0)); - *walk_subtrees = 0; - } - - /* Don't dereference an by-reference RESULT_DECL inside a RETURN_EXPR. */ - else if (TREE_CODE (stmt) == RETURN_EXPR - && TREE_OPERAND (stmt, 0) - && is_byref_result (TREE_OPERAND (stmt, 0))) - *walk_subtrees = 0; - - /* Don't look inside trees that cannot embed references of interest. */ - else if (IS_TYPE_OR_DECL_P (stmt)) - *walk_subtrees = 0; - - pointer_set_insert (p_set, *stmt_p); - - return NULL; -} - -/* Perform lowering of Ada trees to GENERIC. In particular: - - o Turn a DECL_BY_REFERENCE RESULT_DECL into a real by-reference decl - and adjust all the references to this decl accordingly. */ - -static void -gnat_genericize (tree fndecl) -{ - /* Prior to GCC 4, an explicit By_Reference result mechanism for a function - was handled by simply setting TREE_ADDRESSABLE on the result type. - Everything required to actually pass by invisible ref using the target - mechanism (e.g. extra parameter) was handled at RTL expansion time. - - This doesn't work with GCC 4 any more for several reasons. First, the - gimplification process might need the creation of temporaries of this - type, and the gimplifier ICEs on such attempts. Second, the middle-end - now relies on a different attribute for such cases (DECL_BY_REFERENCE on - RESULT/PARM_DECLs), and expects the user invisible by-reference-ness to - be explicitly accounted for by the front-end in the function body. - - We achieve the complete transformation in two steps: - - 1/ create_subprog_decl performs early attribute tweaks: it clears - TREE_ADDRESSABLE from the result type and sets DECL_BY_REFERENCE on - the result decl. The former ensures that the bit isn't set in the GCC - tree saved for the function, so prevents ICEs on temporary creation. - The latter we use here to trigger the rest of the processing. - - 2/ This function performs the type transformation on the result decl - and adjusts all the references to this decl from the function body - accordingly. - - Clearing TREE_ADDRESSABLE from the type differs from the C++ front-end - strategy, which escapes the gimplifier temporary creation issues by - creating it's own temporaries using TARGET_EXPR nodes. Our way relies - on simple specific support code in aggregate_value_p to look at the - target function result decl explicitly. */ - - struct pointer_set_t *p_set; - tree decl_result = DECL_RESULT (fndecl); - - if (!DECL_BY_REFERENCE (decl_result)) - return; - - /* Make the DECL_RESULT explicitly by-reference and adjust all the - occurrences in the function body using the common tree-walking facility. - We want to see every occurrence of the result decl to adjust the - referencing tree, so need to use our own pointer set to control which - trees should be visited again or not. */ - - p_set = pointer_set_create (); - - TREE_TYPE (decl_result) = build_reference_type (TREE_TYPE (decl_result)); - TREE_ADDRESSABLE (decl_result) = 0; - relayout_decl (decl_result); - - walk_tree (&DECL_SAVED_TREE (fndecl), gnat_genericize_r, p_set, NULL); - - pointer_set_destroy (p_set); -} - -/* Finish the definition of the current subprogram BODY and compile it all the - way to assembler language output. ELAB_P tells if this is called for an - elaboration routine, to be entirely discarded if empty. */ - -void -end_subprog_body (tree body, bool elab_p) -{ - tree fndecl = current_function_decl; - - /* Mark the BLOCK for this level as being for this function and pop the - level. Since the vars in it are the parameters, clear them. */ - BLOCK_VARS (current_binding_level->block) = 0; - BLOCK_SUPERCONTEXT (current_binding_level->block) = fndecl; - DECL_INITIAL (fndecl) = current_binding_level->block; - gnat_poplevel (); - - /* Deal with inline. If declared inline or we should default to inline, - set the flag in the decl. */ - DECL_INLINE (fndecl) = 1; - - /* We handle pending sizes via the elaboration of types, so we don't - need to save them. */ - get_pending_sizes (); - - /* Mark the RESULT_DECL as being in this subprogram. */ - DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl; - - DECL_SAVED_TREE (fndecl) = body; - - current_function_decl = DECL_CONTEXT (fndecl); - set_cfun (NULL); - - /* We cannot track the location of errors past this point. */ - error_gnat_node = Empty; - - /* If we're only annotating types, don't actually compile this function. */ - if (type_annotate_only) - return; - - /* Perform the required pre-gimplification transformations on the tree. */ - gnat_genericize (fndecl); - - /* We do different things for nested and non-nested functions. - ??? This should be in cgraph. */ - if (!DECL_CONTEXT (fndecl)) - { - gnat_gimplify_function (fndecl); - - /* If this is an empty elaboration proc, just discard the node. - Otherwise, compile further. */ - if (elab_p && empty_body_p (gimple_body (fndecl))) - cgraph_remove_node (cgraph_node (fndecl)); - else - cgraph_finalize_function (fndecl, false); - } - else - /* Register this function with cgraph just far enough to get it - added to our parent's nested function list. */ - (void) cgraph_node (fndecl); -} - -/* Convert FNDECL's code to GIMPLE and handle any nested functions. */ - -static void -gnat_gimplify_function (tree fndecl) -{ - struct cgraph_node *cgn; - - dump_function (TDI_original, fndecl); - gimplify_function_tree (fndecl); - dump_function (TDI_generic, fndecl); - - /* Convert all nested functions to GIMPLE now. We do things in this order - so that items like VLA sizes are expanded properly in the context of the - correct function. */ - cgn = cgraph_node (fndecl); - for (cgn = cgn->nested; cgn; cgn = cgn->next_nested) - gnat_gimplify_function (cgn->decl); -} - - -tree -gnat_builtin_function (tree decl) -{ - gnat_pushdecl (decl, Empty); - return decl; -} - -/* Return an integer type with the number of bits of precision given by - PRECISION. UNSIGNEDP is nonzero if the type is unsigned; otherwise - it is a signed type. */ - -tree -gnat_type_for_size (unsigned precision, int unsignedp) -{ - tree t; - char type_name[20]; - - if (precision <= 2 * MAX_BITS_PER_WORD - && signed_and_unsigned_types[precision][unsignedp]) - return signed_and_unsigned_types[precision][unsignedp]; - - if (unsignedp) - t = make_unsigned_type (precision); - else - t = make_signed_type (precision); - - if (precision <= 2 * MAX_BITS_PER_WORD) - signed_and_unsigned_types[precision][unsignedp] = t; - - if (!TYPE_NAME (t)) - { - sprintf (type_name, "%sSIGNED_%d", unsignedp ? "UN" : "", precision); - TYPE_NAME (t) = get_identifier (type_name); - } - - return t; -} - -/* Likewise for floating-point types. */ - -static tree -float_type_for_precision (int precision, enum machine_mode mode) -{ - tree t; - char type_name[20]; - - if (float_types[(int) mode]) - return float_types[(int) mode]; - - float_types[(int) mode] = t = make_node (REAL_TYPE); - TYPE_PRECISION (t) = precision; - layout_type (t); - - gcc_assert (TYPE_MODE (t) == mode); - if (!TYPE_NAME (t)) - { - sprintf (type_name, "FLOAT_%d", precision); - TYPE_NAME (t) = get_identifier (type_name); - } - - return t; -} - -/* Return a data type that has machine mode MODE. UNSIGNEDP selects - an unsigned type; otherwise a signed type is returned. */ - -tree -gnat_type_for_mode (enum machine_mode mode, int unsignedp) -{ - if (mode == BLKmode) - return NULL_TREE; - else if (mode == VOIDmode) - return void_type_node; - else if (COMPLEX_MODE_P (mode)) - return NULL_TREE; - else if (SCALAR_FLOAT_MODE_P (mode)) - return float_type_for_precision (GET_MODE_PRECISION (mode), mode); - else if (SCALAR_INT_MODE_P (mode)) - return gnat_type_for_size (GET_MODE_BITSIZE (mode), unsignedp); - else - return NULL_TREE; -} - -/* Return the unsigned version of a TYPE_NODE, a scalar type. */ - -tree -gnat_unsigned_type (tree type_node) -{ - tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 1); - - if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node)) - { - type = copy_node (type); - TREE_TYPE (type) = type_node; - } - else if (TREE_TYPE (type_node) - && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE - && TYPE_MODULAR_P (TREE_TYPE (type_node))) - { - type = copy_node (type); - TREE_TYPE (type) = TREE_TYPE (type_node); - } - - return type; -} - -/* Return the signed version of a TYPE_NODE, a scalar type. */ - -tree -gnat_signed_type (tree type_node) -{ - tree type = gnat_type_for_size (TYPE_PRECISION (type_node), 0); - - if (TREE_CODE (type_node) == INTEGER_TYPE && TYPE_MODULAR_P (type_node)) - { - type = copy_node (type); - TREE_TYPE (type) = type_node; - } - else if (TREE_TYPE (type_node) - && TREE_CODE (TREE_TYPE (type_node)) == INTEGER_TYPE - && TYPE_MODULAR_P (TREE_TYPE (type_node))) - { - type = copy_node (type); - TREE_TYPE (type) = TREE_TYPE (type_node); - } - - return type; -} - -/* Return 1 if the types T1 and T2 are compatible, i.e. if they can be - transparently converted to each other. */ - -int -gnat_types_compatible_p (tree t1, tree t2) -{ - enum tree_code code; - - /* This is the default criterion. */ - if (TYPE_MAIN_VARIANT (t1) == TYPE_MAIN_VARIANT (t2)) - return 1; - - /* We only check structural equivalence here. */ - if ((code = TREE_CODE (t1)) != TREE_CODE (t2)) - return 0; - - /* Array types are also compatible if they are constrained and have - the same component type and the same domain. */ - if (code == ARRAY_TYPE - && TREE_TYPE (t1) == TREE_TYPE (t2) - && tree_int_cst_equal (TYPE_MIN_VALUE (TYPE_DOMAIN (t1)), - TYPE_MIN_VALUE (TYPE_DOMAIN (t2))) - && tree_int_cst_equal (TYPE_MAX_VALUE (TYPE_DOMAIN (t1)), - TYPE_MAX_VALUE (TYPE_DOMAIN (t2)))) - return 1; - - /* Padding record types are also compatible if they pad the same - type and have the same constant size. */ - if (code == RECORD_TYPE - && TYPE_IS_PADDING_P (t1) && TYPE_IS_PADDING_P (t2) - && TREE_TYPE (TYPE_FIELDS (t1)) == TREE_TYPE (TYPE_FIELDS (t2)) - && tree_int_cst_equal (TYPE_SIZE (t1), TYPE_SIZE (t2))) - return 1; - - return 0; -} - -/* EXP is an expression for the size of an object. If this size contains - discriminant references, replace them with the maximum (if MAX_P) or - minimum (if !MAX_P) possible value of the discriminant. */ - -tree -max_size (tree exp, bool max_p) -{ - enum tree_code code = TREE_CODE (exp); - tree type = TREE_TYPE (exp); - - switch (TREE_CODE_CLASS (code)) - { - case tcc_declaration: - case tcc_constant: - return exp; - - case tcc_vl_exp: - if (code == CALL_EXPR) - { - tree *argarray; - int i, n = call_expr_nargs (exp); - gcc_assert (n > 0); - - argarray = (tree *) alloca (n * sizeof (tree)); - for (i = 0; i < n; i++) - argarray[i] = max_size (CALL_EXPR_ARG (exp, i), max_p); - return build_call_array (type, CALL_EXPR_FN (exp), n, argarray); - } - break; - - case tcc_reference: - /* If this contains a PLACEHOLDER_EXPR, it is the thing we want to - modify. Otherwise, we treat it like a variable. */ - if (!CONTAINS_PLACEHOLDER_P (exp)) - return exp; - - type = TREE_TYPE (TREE_OPERAND (exp, 1)); - return - max_size (max_p ? TYPE_MAX_VALUE (type) : TYPE_MIN_VALUE (type), true); - - case tcc_comparison: - return max_p ? size_one_node : size_zero_node; - - case tcc_unary: - case tcc_binary: - case tcc_expression: - switch (TREE_CODE_LENGTH (code)) - { - case 1: - if (code == NON_LVALUE_EXPR) - return max_size (TREE_OPERAND (exp, 0), max_p); - else - return - fold_build1 (code, type, - max_size (TREE_OPERAND (exp, 0), - code == NEGATE_EXPR ? !max_p : max_p)); - - case 2: - if (code == COMPOUND_EXPR) - return max_size (TREE_OPERAND (exp, 1), max_p); - - /* Calculate "(A ? B : C) - D" as "A ? B - D : C - D" which - may provide a tighter bound on max_size. */ - if (code == MINUS_EXPR - && TREE_CODE (TREE_OPERAND (exp, 0)) == COND_EXPR) - { - tree lhs = fold_build2 (MINUS_EXPR, type, - TREE_OPERAND (TREE_OPERAND (exp, 0), 1), - TREE_OPERAND (exp, 1)); - tree rhs = fold_build2 (MINUS_EXPR, type, - TREE_OPERAND (TREE_OPERAND (exp, 0), 2), - TREE_OPERAND (exp, 1)); - return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type, - max_size (lhs, max_p), - max_size (rhs, max_p)); - } - - { - tree lhs = max_size (TREE_OPERAND (exp, 0), max_p); - tree rhs = max_size (TREE_OPERAND (exp, 1), - code == MINUS_EXPR ? !max_p : max_p); - - /* Special-case wanting the maximum value of a MIN_EXPR. - In that case, if one side overflows, return the other. - sizetype is signed, but we know sizes are non-negative. - Likewise, handle a MINUS_EXPR or PLUS_EXPR with the LHS - overflowing or the maximum possible value and the RHS - a variable. */ - if (max_p - && code == MIN_EXPR - && TREE_CODE (rhs) == INTEGER_CST - && TREE_OVERFLOW (rhs)) - return lhs; - else if (max_p - && code == MIN_EXPR - && TREE_CODE (lhs) == INTEGER_CST - && TREE_OVERFLOW (lhs)) - return rhs; - else if ((code == MINUS_EXPR || code == PLUS_EXPR) - && ((TREE_CODE (lhs) == INTEGER_CST - && TREE_OVERFLOW (lhs)) - || operand_equal_p (lhs, TYPE_MAX_VALUE (type), 0)) - && !TREE_CONSTANT (rhs)) - return lhs; - else - return fold_build2 (code, type, lhs, rhs); - } - - case 3: - if (code == SAVE_EXPR) - return exp; - else if (code == COND_EXPR) - return fold_build2 (max_p ? MAX_EXPR : MIN_EXPR, type, - max_size (TREE_OPERAND (exp, 1), max_p), - max_size (TREE_OPERAND (exp, 2), max_p)); - } - - /* Other tree classes cannot happen. */ - default: - break; - } - - gcc_unreachable (); -} - -/* Build a template of type TEMPLATE_TYPE from the array bounds of ARRAY_TYPE. - EXPR is an expression that we can use to locate any PLACEHOLDER_EXPRs. - Return a constructor for the template. */ - -tree -build_template (tree template_type, tree array_type, tree expr) -{ - tree template_elts = NULL_TREE; - tree bound_list = NULL_TREE; - tree field; - - while (TREE_CODE (array_type) == RECORD_TYPE - && (TYPE_IS_PADDING_P (array_type) - || TYPE_JUSTIFIED_MODULAR_P (array_type))) - array_type = TREE_TYPE (TYPE_FIELDS (array_type)); - - if (TREE_CODE (array_type) == ARRAY_TYPE - || (TREE_CODE (array_type) == INTEGER_TYPE - && TYPE_HAS_ACTUAL_BOUNDS_P (array_type))) - bound_list = TYPE_ACTUAL_BOUNDS (array_type); - - /* First make the list for a CONSTRUCTOR for the template. Go down the - field list of the template instead of the type chain because this - array might be an Ada array of arrays and we can't tell where the - nested arrays stop being the underlying object. */ - - for (field = TYPE_FIELDS (template_type); field; - (bound_list - ? (bound_list = TREE_CHAIN (bound_list)) - : (array_type = TREE_TYPE (array_type))), - field = TREE_CHAIN (TREE_CHAIN (field))) - { - tree bounds, min, max; - - /* If we have a bound list, get the bounds from there. Likewise - for an ARRAY_TYPE. Otherwise, if expr is a PARM_DECL with - DECL_BY_COMPONENT_PTR_P, use the bounds of the field in the template. - This will give us a maximum range. */ - if (bound_list) - bounds = TREE_VALUE (bound_list); - else if (TREE_CODE (array_type) == ARRAY_TYPE) - bounds = TYPE_INDEX_TYPE (TYPE_DOMAIN (array_type)); - else if (expr && TREE_CODE (expr) == PARM_DECL - && DECL_BY_COMPONENT_PTR_P (expr)) - bounds = TREE_TYPE (field); - else - gcc_unreachable (); - - min = convert (TREE_TYPE (field), TYPE_MIN_VALUE (bounds)); - max = convert (TREE_TYPE (TREE_CHAIN (field)), TYPE_MAX_VALUE (bounds)); - - /* If either MIN or MAX involve a PLACEHOLDER_EXPR, we must - substitute it from OBJECT. */ - min = SUBSTITUTE_PLACEHOLDER_IN_EXPR (min, expr); - max = SUBSTITUTE_PLACEHOLDER_IN_EXPR (max, expr); - - template_elts = tree_cons (TREE_CHAIN (field), max, - tree_cons (field, min, template_elts)); - } - - return gnat_build_constructor (template_type, nreverse (template_elts)); -} - -/* Build a VMS descriptor from a Mechanism_Type, which must specify - a descriptor type, and the GCC type of an object. Each FIELD_DECL - in the type contains in its DECL_INITIAL the expression to use when - a constructor is made for the type. GNAT_ENTITY is an entity used - to print out an error message if the mechanism cannot be applied to - an object of that type and also for the name. */ - -tree -build_vms_descriptor (tree type, Mechanism_Type mech, Entity_Id gnat_entity) -{ - tree record_type = make_node (RECORD_TYPE); - tree pointer32_type; - tree field_list = 0; - int class; - int dtype = 0; - tree inner_type; - int ndim; - int i; - tree *idx_arr; - tree tem; - - /* If TYPE is an unconstrained array, use the underlying array type. */ - if (TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE) - type = TREE_TYPE (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (type)))); - - /* If this is an array, compute the number of dimensions in the array, - get the index types, and point to the inner type. */ - if (TREE_CODE (type) != ARRAY_TYPE) - ndim = 0; - else - for (ndim = 1, inner_type = type; - TREE_CODE (TREE_TYPE (inner_type)) == ARRAY_TYPE - && TYPE_MULTI_ARRAY_P (TREE_TYPE (inner_type)); - ndim++, inner_type = TREE_TYPE (inner_type)) - ; - - idx_arr = (tree *) alloca (ndim * sizeof (tree)); - - if (mech != By_Descriptor_NCA - && TREE_CODE (type) == ARRAY_TYPE && TYPE_CONVENTION_FORTRAN_P (type)) - for (i = ndim - 1, inner_type = type; - i >= 0; - i--, inner_type = TREE_TYPE (inner_type)) - idx_arr[i] = TYPE_DOMAIN (inner_type); - else - for (i = 0, inner_type = type; - i < ndim; - i++, inner_type = TREE_TYPE (inner_type)) - idx_arr[i] = TYPE_DOMAIN (inner_type); - - /* Now get the DTYPE value. */ - switch (TREE_CODE (type)) - { - case INTEGER_TYPE: - case ENUMERAL_TYPE: - if (TYPE_VAX_FLOATING_POINT_P (type)) - switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) - { - case 6: - dtype = 10; - break; - case 9: - dtype = 11; - break; - case 15: - dtype = 27; - break; - } - else - switch (GET_MODE_BITSIZE (TYPE_MODE (type))) - { - case 8: - dtype = TYPE_UNSIGNED (type) ? 2 : 6; - break; - case 16: - dtype = TYPE_UNSIGNED (type) ? 3 : 7; - break; - case 32: - dtype = TYPE_UNSIGNED (type) ? 4 : 8; - break; - case 64: - dtype = TYPE_UNSIGNED (type) ? 5 : 9; - break; - case 128: - dtype = TYPE_UNSIGNED (type) ? 25 : 26; - break; - } - break; - - case REAL_TYPE: - dtype = GET_MODE_BITSIZE (TYPE_MODE (type)) == 32 ? 52 : 53; - break; - - case COMPLEX_TYPE: - if (TREE_CODE (TREE_TYPE (type)) == INTEGER_TYPE - && TYPE_VAX_FLOATING_POINT_P (type)) - switch (tree_low_cst (TYPE_DIGITS_VALUE (type), 1)) - { - case 6: - dtype = 12; - break; - case 9: - dtype = 13; - break; - case 15: - dtype = 29; - } - else - dtype = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (type))) == 32 ? 54: 55; - break; - - case ARRAY_TYPE: - dtype = 14; - break; - - default: - break; - } - - /* Get the CLASS value. */ - switch (mech) - { - case By_Descriptor_A: - class = 4; - break; - case By_Descriptor_NCA: - class = 10; - break; - case By_Descriptor_SB: - class = 15; - break; - case By_Descriptor: - case By_Descriptor_S: - default: - class = 1; - break; - } - - /* Make the type for a descriptor for VMS. The first four fields - are the same for all types. */ - - field_list - = chainon (field_list, - make_descriptor_field - ("LENGTH", gnat_type_for_size (16, 1), record_type, - size_in_bytes (mech == By_Descriptor_A ? inner_type : type))); - - field_list = chainon (field_list, - make_descriptor_field ("DTYPE", - gnat_type_for_size (8, 1), - record_type, size_int (dtype))); - field_list = chainon (field_list, - make_descriptor_field ("CLASS", - gnat_type_for_size (8, 1), - record_type, size_int (class))); - - /* Of course this will crash at run-time if the address space is not - within the low 32 bits, but there is nothing else we can do. */ - pointer32_type = build_pointer_type_for_mode (type, SImode, false); - - field_list - = chainon (field_list, - make_descriptor_field - ("POINTER", pointer32_type, record_type, - build_unary_op (ADDR_EXPR, - pointer32_type, - build0 (PLACEHOLDER_EXPR, type)))); - - switch (mech) - { - case By_Descriptor: - case By_Descriptor_S: - break; - - case By_Descriptor_SB: - field_list - = chainon (field_list, - make_descriptor_field - ("SB_L1", gnat_type_for_size (32, 1), record_type, - TREE_CODE (type) == ARRAY_TYPE - ? TYPE_MIN_VALUE (TYPE_DOMAIN (type)) : size_zero_node)); - field_list - = chainon (field_list, - make_descriptor_field - ("SB_U1", gnat_type_for_size (32, 1), record_type, - TREE_CODE (type) == ARRAY_TYPE - ? TYPE_MAX_VALUE (TYPE_DOMAIN (type)) : size_zero_node)); - break; - - case By_Descriptor_A: - case By_Descriptor_NCA: - field_list = chainon (field_list, - make_descriptor_field ("SCALE", - gnat_type_for_size (8, 1), - record_type, - size_zero_node)); - - field_list = chainon (field_list, - make_descriptor_field ("DIGITS", - gnat_type_for_size (8, 1), - record_type, - size_zero_node)); - - field_list - = chainon (field_list, - make_descriptor_field - ("AFLAGS", gnat_type_for_size (8, 1), record_type, - size_int (mech == By_Descriptor_NCA - ? 0 - /* Set FL_COLUMN, FL_COEFF, and FL_BOUNDS. */ - : (TREE_CODE (type) == ARRAY_TYPE - && TYPE_CONVENTION_FORTRAN_P (type) - ? 224 : 192)))); - - field_list = chainon (field_list, - make_descriptor_field ("DIMCT", - gnat_type_for_size (8, 1), - record_type, - size_int (ndim))); - - field_list = chainon (field_list, - make_descriptor_field ("ARSIZE", - gnat_type_for_size (32, 1), - record_type, - size_in_bytes (type))); - - /* Now build a pointer to the 0,0,0... element. */ - tem = build0 (PLACEHOLDER_EXPR, type); - for (i = 0, inner_type = type; i < ndim; - i++, inner_type = TREE_TYPE (inner_type)) - tem = build4 (ARRAY_REF, TREE_TYPE (inner_type), tem, - convert (TYPE_DOMAIN (inner_type), size_zero_node), - NULL_TREE, NULL_TREE); - - field_list - = chainon (field_list, - make_descriptor_field - ("A0", - build_pointer_type_for_mode (inner_type, SImode, false), - record_type, - build1 (ADDR_EXPR, - build_pointer_type_for_mode (inner_type, SImode, - false), - tem))); - - /* Next come the addressing coefficients. */ - tem = size_one_node; - for (i = 0; i < ndim; i++) - { - char fname[3]; - tree idx_length - = size_binop (MULT_EXPR, tem, - size_binop (PLUS_EXPR, - size_binop (MINUS_EXPR, - TYPE_MAX_VALUE (idx_arr[i]), - TYPE_MIN_VALUE (idx_arr[i])), - size_int (1))); - - fname[0] = (mech == By_Descriptor_NCA ? 'S' : 'M'); - fname[1] = '0' + i, fname[2] = 0; - field_list - = chainon (field_list, - make_descriptor_field (fname, - gnat_type_for_size (32, 1), - record_type, idx_length)); - - if (mech == By_Descriptor_NCA) - tem = idx_length; - } - - /* Finally here are the bounds. */ - for (i = 0; i < ndim; i++) - { - char fname[3]; - - fname[0] = 'L', fname[1] = '0' + i, fname[2] = 0; - field_list - = chainon (field_list, - make_descriptor_field - (fname, gnat_type_for_size (32, 1), record_type, - TYPE_MIN_VALUE (idx_arr[i]))); - - fname[0] = 'U'; - field_list - = chainon (field_list, - make_descriptor_field - (fname, gnat_type_for_size (32, 1), record_type, - TYPE_MAX_VALUE (idx_arr[i]))); - } - break; - - default: - post_error ("unsupported descriptor type for &", gnat_entity); - } - - finish_record_type (record_type, field_list, 0, true); - create_type_decl (create_concat_name (gnat_entity, "DESC"), record_type, - NULL, true, false, gnat_entity); - - return record_type; -} - -/* Utility routine for above code to make a field. */ - -static tree -make_descriptor_field (const char *name, tree type, - tree rec_type, tree initial) -{ - tree field - = create_field_decl (get_identifier (name), type, rec_type, 0, 0, 0, 0); - - DECL_INITIAL (field) = initial; - return field; -} - -/* Convert GNU_EXPR, a pointer to a VMS descriptor, to GNU_TYPE, a regular - pointer or fat pointer type. GNAT_SUBPROG is the subprogram to which - the VMS descriptor is passed. */ - -static tree -convert_vms_descriptor (tree gnu_type, tree gnu_expr, Entity_Id gnat_subprog) -{ - tree desc_type = TREE_TYPE (TREE_TYPE (gnu_expr)); - tree desc = build1 (INDIRECT_REF, desc_type, gnu_expr); - /* The CLASS field is the 3rd field in the descriptor. */ - tree class = TREE_CHAIN (TREE_CHAIN (TYPE_FIELDS (desc_type))); - /* The POINTER field is the 4th field in the descriptor. */ - tree pointer = TREE_CHAIN (class); - - /* Retrieve the value of the POINTER field. */ - gnu_expr - = build3 (COMPONENT_REF, TREE_TYPE (pointer), desc, pointer, NULL_TREE); - - if (POINTER_TYPE_P (gnu_type)) - return convert (gnu_type, gnu_expr); - - else if (TYPE_FAT_POINTER_P (gnu_type)) - { - tree p_array_type = TREE_TYPE (TYPE_FIELDS (gnu_type)); - tree p_bounds_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (gnu_type))); - tree template_type = TREE_TYPE (p_bounds_type); - tree min_field = TYPE_FIELDS (template_type); - tree max_field = TREE_CHAIN (TYPE_FIELDS (template_type)); - tree template, template_addr, aflags, dimct, t, u; - /* See the head comment of build_vms_descriptor. */ - int iclass = TREE_INT_CST_LOW (DECL_INITIAL (class)); - - /* Convert POINTER to the type of the P_ARRAY field. */ - gnu_expr = convert (p_array_type, gnu_expr); - - switch (iclass) - { - case 1: /* Class S */ - case 15: /* Class SB */ - /* Build {1, LENGTH} template; LENGTH is the 1st field. */ - t = TYPE_FIELDS (desc_type); - t = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); - t = tree_cons (min_field, - convert (TREE_TYPE (min_field), integer_one_node), - tree_cons (max_field, - convert (TREE_TYPE (max_field), t), - NULL_TREE)); - template = gnat_build_constructor (template_type, t); - template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template); - - /* For class S, we are done. */ - if (iclass == 1) - break; - - /* Test that we really have a SB descriptor, like DEC Ada. */ - t = build3 (COMPONENT_REF, TREE_TYPE (class), desc, class, NULL); - u = convert (TREE_TYPE (class), DECL_INITIAL (class)); - u = build_binary_op (EQ_EXPR, integer_type_node, t, u); - /* If so, there is already a template in the descriptor and - it is located right after the POINTER field. */ - t = TREE_CHAIN (pointer); - template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); - /* Otherwise use the {1, LENGTH} template we build above. */ - template_addr = build3 (COND_EXPR, p_bounds_type, u, - build_unary_op (ADDR_EXPR, p_bounds_type, - template), - template_addr); - break; - - case 4: /* Class A */ - /* The AFLAGS field is the 7th field in the descriptor. */ - t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (pointer))); - aflags = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); - /* The DIMCT field is the 8th field in the descriptor. */ - t = TREE_CHAIN (t); - dimct = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); - /* Raise CONSTRAINT_ERROR if either more than 1 dimension - or FL_COEFF or FL_BOUNDS not set. */ - u = build_int_cst (TREE_TYPE (aflags), 192); - u = build_binary_op (TRUTH_OR_EXPR, integer_type_node, - build_binary_op (NE_EXPR, integer_type_node, - dimct, - convert (TREE_TYPE (dimct), - size_one_node)), - build_binary_op (NE_EXPR, integer_type_node, - build2 (BIT_AND_EXPR, - TREE_TYPE (aflags), - aflags, u), - u)); - add_stmt (build3 (COND_EXPR, void_type_node, u, - build_call_raise (CE_Length_Check_Failed, Empty, - N_Raise_Constraint_Error), - NULL_TREE)); - /* There is already a template in the descriptor and it is - located at the start of block 3 (12th field). */ - t = TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (t)))); - template = build3 (COMPONENT_REF, TREE_TYPE (t), desc, t, NULL_TREE); - template_addr = build_unary_op (ADDR_EXPR, p_bounds_type, template); - break; - - case 10: /* Class NCA */ - default: - post_error ("unsupported descriptor type for &", gnat_subprog); - template_addr = integer_zero_node; - break; - } - - /* Build the fat pointer in the form of a constructor. */ - t = tree_cons (TYPE_FIELDS (gnu_type), gnu_expr, - tree_cons (TREE_CHAIN (TYPE_FIELDS (gnu_type)), - template_addr, NULL_TREE)); - return gnat_build_constructor (gnu_type, t); - } - - else - gcc_unreachable (); -} - -/* Build a stub for the subprogram specified by the GCC tree GNU_SUBPROG - and the GNAT node GNAT_SUBPROG. */ - -void -build_function_stub (tree gnu_subprog, Entity_Id gnat_subprog) -{ - tree gnu_subprog_type, gnu_subprog_addr, gnu_subprog_call; - tree gnu_stub_param, gnu_param_list, gnu_arg_types, gnu_param; - tree gnu_stub_decl = DECL_FUNCTION_STUB (gnu_subprog); - tree gnu_body; - - gnu_subprog_type = TREE_TYPE (gnu_subprog); - gnu_param_list = NULL_TREE; - - begin_subprog_body (gnu_stub_decl); - gnat_pushlevel (); - - start_stmt_group (); - - /* Loop over the parameters of the stub and translate any of them - passed by descriptor into a by reference one. */ - for (gnu_stub_param = DECL_ARGUMENTS (gnu_stub_decl), - gnu_arg_types = TYPE_ARG_TYPES (gnu_subprog_type); - gnu_stub_param; - gnu_stub_param = TREE_CHAIN (gnu_stub_param), - gnu_arg_types = TREE_CHAIN (gnu_arg_types)) - { - if (DECL_BY_DESCRIPTOR_P (gnu_stub_param)) - gnu_param = convert_vms_descriptor (TREE_VALUE (gnu_arg_types), - gnu_stub_param, gnat_subprog); - else - gnu_param = gnu_stub_param; - - gnu_param_list = tree_cons (NULL_TREE, gnu_param, gnu_param_list); - } - - gnu_body = end_stmt_group (); - - /* Invoke the internal subprogram. */ - gnu_subprog_addr = build1 (ADDR_EXPR, build_pointer_type (gnu_subprog_type), - gnu_subprog); - gnu_subprog_call = build_call_list (TREE_TYPE (gnu_subprog_type), - gnu_subprog_addr, - nreverse (gnu_param_list)); - - /* Propagate the return value, if any. */ - if (VOID_TYPE_P (TREE_TYPE (gnu_subprog_type))) - append_to_statement_list (gnu_subprog_call, &gnu_body); - else - append_to_statement_list (build_return_expr (DECL_RESULT (gnu_stub_decl), - gnu_subprog_call), - &gnu_body); - - gnat_poplevel (); - - allocate_struct_function (gnu_stub_decl, false); - end_subprog_body (gnu_body, false); -} - -/* Build a type to be used to represent an aliased object whose nominal - type is an unconstrained array. This consists of a RECORD_TYPE containing - a field of TEMPLATE_TYPE and a field of OBJECT_TYPE, which is an - ARRAY_TYPE. If ARRAY_TYPE is that of the unconstrained array, this - is used to represent an arbitrary unconstrained object. Use NAME - as the name of the record. */ - -tree -build_unc_object_type (tree template_type, tree object_type, tree name) -{ - tree type = make_node (RECORD_TYPE); - tree template_field = create_field_decl (get_identifier ("BOUNDS"), - template_type, type, 0, 0, 0, 1); - tree array_field = create_field_decl (get_identifier ("ARRAY"), object_type, - type, 0, 0, 0, 1); - - TYPE_NAME (type) = name; - TYPE_CONTAINS_TEMPLATE_P (type) = 1; - finish_record_type (type, - chainon (chainon (NULL_TREE, template_field), - array_field), - 0, false); - - return type; -} - -/* Same, taking a thin or fat pointer type instead of a template type. */ - -tree -build_unc_object_type_from_ptr (tree thin_fat_ptr_type, tree object_type, - tree name) -{ - tree template_type; - - gcc_assert (TYPE_FAT_OR_THIN_POINTER_P (thin_fat_ptr_type)); - - template_type - = (TYPE_FAT_POINTER_P (thin_fat_ptr_type) - ? TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (thin_fat_ptr_type)))) - : TREE_TYPE (TYPE_FIELDS (TREE_TYPE (thin_fat_ptr_type)))); - return build_unc_object_type (template_type, object_type, name); -} - -/* Shift the component offsets within an unconstrained object TYPE to make it - suitable for use as a designated type for thin pointers. */ - -void -shift_unc_components_for_thin_pointers (tree type) -{ - /* Thin pointer values designate the ARRAY data of an unconstrained object, - allocated past the BOUNDS template. The designated type is adjusted to - have ARRAY at position zero and the template at a negative offset, so - that COMPONENT_REFs on (*thin_ptr) designate the proper location. */ - - tree bounds_field = TYPE_FIELDS (type); - tree array_field = TREE_CHAIN (TYPE_FIELDS (type)); - - DECL_FIELD_OFFSET (bounds_field) - = size_binop (MINUS_EXPR, size_zero_node, byte_position (array_field)); - - DECL_FIELD_OFFSET (array_field) = size_zero_node; - DECL_FIELD_BIT_OFFSET (array_field) = bitsize_zero_node; -} - -/* Update anything previously pointing to OLD_TYPE to point to NEW_TYPE. In - the normal case this is just two adjustments, but we have more to do - if NEW is an UNCONSTRAINED_ARRAY_TYPE. */ - -void -update_pointer_to (tree old_type, tree new_type) -{ - tree ptr = TYPE_POINTER_TO (old_type); - tree ref = TYPE_REFERENCE_TO (old_type); - tree ptr1, ref1; - tree type; - - /* If this is the main variant, process all the other variants first. */ - if (TYPE_MAIN_VARIANT (old_type) == old_type) - for (type = TYPE_NEXT_VARIANT (old_type); type; - type = TYPE_NEXT_VARIANT (type)) - update_pointer_to (type, new_type); - - /* If no pointer or reference, we are done. */ - if (!ptr && !ref) - return; - - /* Merge the old type qualifiers in the new type. - - Each old variant has qualifiers for specific reasons, and the new - designated type as well. Each set of qualifiers represents useful - information grabbed at some point, and merging the two simply unifies - these inputs into the final type description. - - Consider for instance a volatile type frozen after an access to constant - type designating it. After the designated type freeze, we get here with a - volatile new_type and a dummy old_type with a readonly variant, created - when the access type was processed. We shall make a volatile and readonly - designated type, because that's what it really is. - - We might also get here for a non-dummy old_type variant with different - qualifiers than the new_type ones, for instance in some cases of pointers - to private record type elaboration (see the comments around the call to - this routine from gnat_to_gnu_entity/E_Access_Type). We have to merge the - qualifiers in those cases too, to avoid accidentally discarding the - initial set, and will often end up with old_type == new_type then. */ - new_type = build_qualified_type (new_type, - TYPE_QUALS (old_type) - | TYPE_QUALS (new_type)); - - /* If the new type and the old one are identical, there is nothing to - update. */ - if (old_type == new_type) - return; - - /* Otherwise, first handle the simple case. */ - if (TREE_CODE (new_type) != UNCONSTRAINED_ARRAY_TYPE) - { - TYPE_POINTER_TO (new_type) = ptr; - TYPE_REFERENCE_TO (new_type) = ref; - - for (; ptr; ptr = TYPE_NEXT_PTR_TO (ptr)) - for (ptr1 = TYPE_MAIN_VARIANT (ptr); ptr1; - ptr1 = TYPE_NEXT_VARIANT (ptr1)) - TREE_TYPE (ptr1) = new_type; - - for (; ref; ref = TYPE_NEXT_REF_TO (ref)) - for (ref1 = TYPE_MAIN_VARIANT (ref); ref1; - ref1 = TYPE_NEXT_VARIANT (ref1)) - TREE_TYPE (ref1) = new_type; - } - - /* Now deal with the unconstrained array case. In this case the "pointer" - is actually a RECORD_TYPE where both fields are pointers to dummy nodes. - Turn them into pointers to the correct types using update_pointer_to. */ - else if (TREE_CODE (ptr) != RECORD_TYPE || !TYPE_IS_FAT_POINTER_P (ptr)) - gcc_unreachable (); - - else - { - tree new_obj_rec = TYPE_OBJECT_RECORD_TYPE (new_type); - tree array_field = TYPE_FIELDS (ptr); - tree bounds_field = TREE_CHAIN (TYPE_FIELDS (ptr)); - tree new_ptr = TYPE_POINTER_TO (new_type); - tree new_ref; - tree var; - - /* Make pointers to the dummy template point to the real template. */ - update_pointer_to - (TREE_TYPE (TREE_TYPE (bounds_field)), - TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_ptr))))); - - /* The references to the template bounds present in the array type - are made through a PLACEHOLDER_EXPR of type new_ptr. Since we - are updating ptr to make it a full replacement for new_ptr as - pointer to new_type, we must rework the PLACEHOLDER_EXPR so as - to make it of type ptr. */ - new_ref = build3 (COMPONENT_REF, TREE_TYPE (bounds_field), - build0 (PLACEHOLDER_EXPR, ptr), - bounds_field, NULL_TREE); - - /* Create the new array for the new PLACEHOLDER_EXPR and make - pointers to the dummy array point to it. - - ??? This is now the only use of substitute_in_type, - which is a very "heavy" routine to do this, so it - should be replaced at some point. */ - update_pointer_to - (TREE_TYPE (TREE_TYPE (array_field)), - substitute_in_type (TREE_TYPE (TREE_TYPE (TYPE_FIELDS (new_ptr))), - TREE_CHAIN (TYPE_FIELDS (new_ptr)), new_ref)); - - /* Make ptr the pointer to new_type. */ - TYPE_POINTER_TO (new_type) = TYPE_REFERENCE_TO (new_type) - = TREE_TYPE (new_type) = ptr; - - for (var = TYPE_MAIN_VARIANT (ptr); var; var = TYPE_NEXT_VARIANT (var)) - SET_TYPE_UNCONSTRAINED_ARRAY (var, new_type); - - /* Now handle updating the allocation record, what the thin pointer - points to. Update all pointers from the old record into the new - one, update the type of the array field, and recompute the size. */ - update_pointer_to (TYPE_OBJECT_RECORD_TYPE (old_type), new_obj_rec); - - TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) - = TREE_TYPE (TREE_TYPE (array_field)); - - /* The size recomputation needs to account for alignment constraints, so - we let layout_type work it out. This will reset the field offsets to - what they would be in a regular record, so we shift them back to what - we want them to be for a thin pointer designated type afterwards. */ - DECL_SIZE (TYPE_FIELDS (new_obj_rec)) = 0; - DECL_SIZE (TREE_CHAIN (TYPE_FIELDS (new_obj_rec))) = 0; - TYPE_SIZE (new_obj_rec) = 0; - layout_type (new_obj_rec); - - shift_unc_components_for_thin_pointers (new_obj_rec); - - /* We are done, at last. */ - rest_of_record_type_compilation (ptr); - } -} - -/* Convert a pointer to a constrained array into a pointer to a fat - pointer. This involves making or finding a template. */ - -static tree -convert_to_fat_pointer (tree type, tree expr) -{ - tree template_type = TREE_TYPE (TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type)))); - tree template, template_addr; - tree etype = TREE_TYPE (expr); - - /* If EXPR is a constant of zero, we make a fat pointer that has a null - pointer to the template and array. */ - if (integer_zerop (expr)) - return - gnat_build_constructor - (type, - tree_cons (TYPE_FIELDS (type), - convert (TREE_TYPE (TYPE_FIELDS (type)), expr), - tree_cons (TREE_CHAIN (TYPE_FIELDS (type)), - convert (build_pointer_type (template_type), - expr), - NULL_TREE))); - - /* If EXPR is a thin pointer, make the template and data from the record. */ - - else if (TYPE_THIN_POINTER_P (etype)) - { - tree fields = TYPE_FIELDS (TREE_TYPE (etype)); - - expr = save_expr (expr); - if (TREE_CODE (expr) == ADDR_EXPR) - expr = TREE_OPERAND (expr, 0); - else - expr = build1 (INDIRECT_REF, TREE_TYPE (etype), expr); - - template = build_component_ref (expr, NULL_TREE, fields, false); - expr = build_unary_op (ADDR_EXPR, NULL_TREE, - build_component_ref (expr, NULL_TREE, - TREE_CHAIN (fields), false)); - } - else - /* Otherwise, build the constructor for the template. */ - template = build_template (template_type, TREE_TYPE (etype), expr); - - template_addr = build_unary_op (ADDR_EXPR, NULL_TREE, template); - - /* The result is a CONSTRUCTOR for the fat pointer. - - If expr is an argument of a foreign convention subprogram, the type it - points to is directly the component type. In this case, the expression - type may not match the corresponding FIELD_DECL type at this point, so we - call "convert" here to fix that up if necessary. This type consistency is - required, for instance because it ensures that possible later folding of - component_refs against this constructor always yields something of the - same type as the initial reference. - - Note that the call to "build_template" above is still fine, because it - will only refer to the provided template_type in this case. */ - return - gnat_build_constructor - (type, tree_cons (TYPE_FIELDS (type), - convert (TREE_TYPE (TYPE_FIELDS (type)), expr), - tree_cons (TREE_CHAIN (TYPE_FIELDS (type)), - template_addr, NULL_TREE))); -} - -/* Convert to a thin pointer type, TYPE. The only thing we know how to convert - is something that is a fat pointer, so convert to it first if it EXPR - is not already a fat pointer. */ - -static tree -convert_to_thin_pointer (tree type, tree expr) -{ - if (!TYPE_FAT_POINTER_P (TREE_TYPE (expr))) - expr - = convert_to_fat_pointer - (TREE_TYPE (TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))), expr); - - /* We get the pointer to the data and use a NOP_EXPR to make it the - proper GCC type. */ - expr = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (TREE_TYPE (expr)), - false); - expr = build1 (NOP_EXPR, type, expr); - - return expr; -} - -/* Create an expression whose value is that of EXPR, - converted to type TYPE. The TREE_TYPE of the value - is always TYPE. This function implements all reasonable - conversions; callers should filter out those that are - not permitted by the language being compiled. */ - -tree -convert (tree type, tree expr) -{ - enum tree_code code = TREE_CODE (type); - tree etype = TREE_TYPE (expr); - enum tree_code ecode = TREE_CODE (etype); - - /* If EXPR is already the right type, we are done. */ - if (type == etype) - return expr; - - /* If both input and output have padding and are of variable size, do this - as an unchecked conversion. Likewise if one is a mere variant of the - other, so we avoid a pointless unpad/repad sequence. */ - else if (code == RECORD_TYPE && ecode == RECORD_TYPE - && TYPE_IS_PADDING_P (type) && TYPE_IS_PADDING_P (etype) - && (!TREE_CONSTANT (TYPE_SIZE (type)) - || !TREE_CONSTANT (TYPE_SIZE (etype)) - || gnat_types_compatible_p (type, etype) - || TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type))) - == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (etype))))) - ; - - /* If the output type has padding, convert to the inner type and - make a constructor to build the record. */ - else if (code == RECORD_TYPE && TYPE_IS_PADDING_P (type)) - { - /* If we previously converted from another type and our type is - of variable size, remove the conversion to avoid the need for - variable-size temporaries. Likewise for a conversion between - original and packable version. */ - if (TREE_CODE (expr) == VIEW_CONVERT_EXPR - && (!TREE_CONSTANT (TYPE_SIZE (type)) - || (ecode == RECORD_TYPE - && TYPE_NAME (etype) - == TYPE_NAME (TREE_TYPE (TREE_OPERAND (expr, 0)))))) - expr = TREE_OPERAND (expr, 0); - - /* If we are just removing the padding from expr, convert the original - object if we have variable size in order to avoid the need for some - variable-size temporaries. Likewise if the padding is a mere variant - of the other, so we avoid a pointless unpad/repad sequence. */ - if (TREE_CODE (expr) == COMPONENT_REF - && TREE_CODE (TREE_TYPE (TREE_OPERAND (expr, 0))) == RECORD_TYPE - && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (expr, 0))) - && (!TREE_CONSTANT (TYPE_SIZE (type)) - || gnat_types_compatible_p (type, - TREE_TYPE (TREE_OPERAND (expr, 0))) - || (ecode == RECORD_TYPE - && TYPE_NAME (etype) - == TYPE_NAME (TREE_TYPE (TYPE_FIELDS (type)))))) - return convert (type, TREE_OPERAND (expr, 0)); - - /* If the result type is a padded type with a self-referentially-sized - field and the expression type is a record, do this as an - unchecked conversion. */ - else if (TREE_CODE (etype) == RECORD_TYPE - && CONTAINS_PLACEHOLDER_P (DECL_SIZE (TYPE_FIELDS (type)))) - return unchecked_convert (type, expr, false); - - else - return - gnat_build_constructor (type, - tree_cons (TYPE_FIELDS (type), - convert (TREE_TYPE - (TYPE_FIELDS (type)), - expr), - NULL_TREE)); - } - - /* If the input type has padding, remove it and convert to the output type. - The conditions ordering is arranged to ensure that the output type is not - a padding type here, as it is not clear whether the conversion would - always be correct if this was to happen. */ - else if (ecode == RECORD_TYPE && TYPE_IS_PADDING_P (etype)) - { - tree unpadded; - - /* If we have just converted to this padded type, just get the - inner expression. */ - if (TREE_CODE (expr) == CONSTRUCTOR - && !VEC_empty (constructor_elt, CONSTRUCTOR_ELTS (expr)) - && VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->index - == TYPE_FIELDS (etype)) - unpadded - = VEC_index (constructor_elt, CONSTRUCTOR_ELTS (expr), 0)->value; - - /* Otherwise, build an explicit component reference. */ - else - unpadded - = build_component_ref (expr, NULL_TREE, TYPE_FIELDS (etype), false); - - return convert (type, unpadded); - } - - /* If the input is a biased type, adjust first. */ - if (ecode == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (etype)) - return convert (type, fold_build2 (PLUS_EXPR, TREE_TYPE (etype), - fold_convert (TREE_TYPE (etype), - expr), - TYPE_MIN_VALUE (etype))); - - /* If the input is a justified modular type, we need to extract the actual - object before converting it to any other type with the exceptions of an - unconstrained array or of a mere type variant. It is useful to avoid the - extraction and conversion in the type variant case because it could end - up replacing a VAR_DECL expr by a constructor and we might be about the - take the address of the result. */ - if (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype) - && code != UNCONSTRAINED_ARRAY_TYPE - && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (etype)) - return convert (type, build_component_ref (expr, NULL_TREE, - TYPE_FIELDS (etype), false)); - - /* If converting to a type that contains a template, convert to the data - type and then build the template. */ - if (code == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (type)) - { - tree obj_type = TREE_TYPE (TREE_CHAIN (TYPE_FIELDS (type))); - - /* If the source already has a template, get a reference to the - associated array only, as we are going to rebuild a template - for the target type anyway. */ - expr = maybe_unconstrained_array (expr); - - return - gnat_build_constructor - (type, - tree_cons (TYPE_FIELDS (type), - build_template (TREE_TYPE (TYPE_FIELDS (type)), - obj_type, NULL_TREE), - tree_cons (TREE_CHAIN (TYPE_FIELDS (type)), - convert (obj_type, expr), NULL_TREE))); - } - - /* There are some special cases of expressions that we process - specially. */ - switch (TREE_CODE (expr)) - { - case ERROR_MARK: - return expr; - - case NULL_EXPR: - /* Just set its type here. For TRANSFORM_EXPR, we will do the actual - conversion in gnat_expand_expr. NULL_EXPR does not represent - and actual value, so no conversion is needed. */ - expr = copy_node (expr); - TREE_TYPE (expr) = type; - return expr; - - case STRING_CST: - /* If we are converting a STRING_CST to another constrained array type, - just make a new one in the proper type. */ - if (code == ecode && AGGREGATE_TYPE_P (etype) - && !(TREE_CODE (TYPE_SIZE (etype)) == INTEGER_CST - && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)) - { - expr = copy_node (expr); - TREE_TYPE (expr) = type; - return expr; - } - break; - - case CONSTRUCTOR: - /* If we are converting a CONSTRUCTOR to a mere variant type, just make - a new one in the proper type. */ - if (code == ecode && gnat_types_compatible_p (type, etype)) - { - expr = copy_node (expr); - TREE_TYPE (expr) = type; - return expr; - } - - /* Likewise for a conversion between original and packable version, but - we have to work harder in order to preserve type consistency. */ - if (code == ecode - && code == RECORD_TYPE - && TYPE_NAME (type) == TYPE_NAME (etype)) - { - VEC(constructor_elt,gc) *e = CONSTRUCTOR_ELTS (expr); - unsigned HOST_WIDE_INT len = VEC_length (constructor_elt, e); - VEC(constructor_elt,gc) *v = VEC_alloc (constructor_elt, gc, len); - tree efield = TYPE_FIELDS (etype), field = TYPE_FIELDS (type); - unsigned HOST_WIDE_INT idx; - tree index, value; - - FOR_EACH_CONSTRUCTOR_ELT(e, idx, index, value) - { - constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL); - /* We expect only simple constructors. Otherwise, punt. */ - if (!(index == efield || index == DECL_ORIGINAL_FIELD (efield))) - break; - elt->index = field; - elt->value = convert (TREE_TYPE (field), value); - efield = TREE_CHAIN (efield); - field = TREE_CHAIN (field); - } - - if (idx == len) - { - expr = copy_node (expr); - TREE_TYPE (expr) = type; - CONSTRUCTOR_ELTS (expr) = v; - return expr; - } - } - break; - - case UNCONSTRAINED_ARRAY_REF: - /* Convert this to the type of the inner array by getting the address of - the array from the template. */ - expr = build_unary_op (INDIRECT_REF, NULL_TREE, - build_component_ref (TREE_OPERAND (expr, 0), - get_identifier ("P_ARRAY"), - NULL_TREE, false)); - etype = TREE_TYPE (expr); - ecode = TREE_CODE (etype); - break; - - case VIEW_CONVERT_EXPR: - { - /* GCC 4.x is very sensitive to type consistency overall, and view - conversions thus are very frequent. Even though just "convert"ing - the inner operand to the output type is fine in most cases, it - might expose unexpected input/output type mismatches in special - circumstances so we avoid such recursive calls when we can. */ - tree op0 = TREE_OPERAND (expr, 0); - - /* If we are converting back to the original type, we can just - lift the input conversion. This is a common occurrence with - switches back-and-forth amongst type variants. */ - if (type == TREE_TYPE (op0)) - return op0; - - /* Otherwise, if we're converting between two aggregate types, we - might be allowed to substitute the VIEW_CONVERT_EXPR target type - in place or to just convert the inner expression. */ - if (AGGREGATE_TYPE_P (type) && AGGREGATE_TYPE_P (etype)) - { - /* If we are converting between mere variants, we can just - substitute the VIEW_CONVERT_EXPR in place. */ - if (gnat_types_compatible_p (type, etype)) - return build1 (VIEW_CONVERT_EXPR, type, op0); - - /* Otherwise, we may just bypass the input view conversion unless - one of the types is a fat pointer, which is handled by - specialized code below which relies on exact type matching. */ - else if (!TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype)) - return convert (type, op0); - } - } - break; - - case INDIRECT_REF: - /* If both types are record types, just convert the pointer and - make a new INDIRECT_REF. - - ??? Disable this for now since it causes problems with the - code in build_binary_op for MODIFY_EXPR which wants to - strip off conversions. But that code really is a mess and - we need to do this a much better way some time. */ - if (0 - && (TREE_CODE (type) == RECORD_TYPE - || TREE_CODE (type) == UNION_TYPE) - && (TREE_CODE (etype) == RECORD_TYPE - || TREE_CODE (etype) == UNION_TYPE) - && !TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype)) - return build_unary_op (INDIRECT_REF, NULL_TREE, - convert (build_pointer_type (type), - TREE_OPERAND (expr, 0))); - break; - - default: - break; - } - - /* Check for converting to a pointer to an unconstrained array. */ - if (TYPE_FAT_POINTER_P (type) && !TYPE_FAT_POINTER_P (etype)) - return convert_to_fat_pointer (type, expr); - - /* If we are converting between two aggregate types that are mere - variants, just make a VIEW_CONVERT_EXPR. */ - else if (code == ecode - && AGGREGATE_TYPE_P (type) - && gnat_types_compatible_p (type, etype)) - return build1 (VIEW_CONVERT_EXPR, type, expr); - - /* In all other cases of related types, make a NOP_EXPR. */ - else if (TYPE_MAIN_VARIANT (type) == TYPE_MAIN_VARIANT (etype) - || (code == INTEGER_CST && ecode == INTEGER_CST - && (type == TREE_TYPE (etype) || etype == TREE_TYPE (type)))) - return fold_convert (type, expr); - - switch (code) - { - case VOID_TYPE: - return fold_build1 (CONVERT_EXPR, type, expr); - - case BOOLEAN_TYPE: - return fold_convert (type, gnat_truthvalue_conversion (expr)); - - case INTEGER_TYPE: - if (TYPE_HAS_ACTUAL_BOUNDS_P (type) - && (ecode == ARRAY_TYPE || ecode == UNCONSTRAINED_ARRAY_TYPE - || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype)))) - return unchecked_convert (type, expr, false); - else if (TYPE_BIASED_REPRESENTATION_P (type)) - return fold_convert (type, - fold_build2 (MINUS_EXPR, TREE_TYPE (type), - convert (TREE_TYPE (type), expr), - TYPE_MIN_VALUE (type))); - - /* ... fall through ... */ - - case ENUMERAL_TYPE: - /* If we are converting an additive expression to an integer type - with lower precision, be wary of the optimization that can be - applied by convert_to_integer. There are 2 problematic cases: - - if the first operand was originally of a biased type, - because we could be recursively called to convert it - to an intermediate type and thus rematerialize the - additive operator endlessly, - - if the expression contains a placeholder, because an - intermediate conversion that changes the sign could - be inserted and thus introduce an artificial overflow - at compile time when the placeholder is substituted. */ - if (code == INTEGER_TYPE - && ecode == INTEGER_TYPE - && TYPE_PRECISION (type) < TYPE_PRECISION (etype) - && (TREE_CODE (expr) == PLUS_EXPR || TREE_CODE (expr) == MINUS_EXPR)) - { - tree op0 = get_unwidened (TREE_OPERAND (expr, 0), type); - - if ((TREE_CODE (TREE_TYPE (op0)) == INTEGER_TYPE - && TYPE_BIASED_REPRESENTATION_P (TREE_TYPE (op0))) - || CONTAINS_PLACEHOLDER_P (expr)) - return build1 (NOP_EXPR, type, expr); - } - - return fold (convert_to_integer (type, expr)); - - case POINTER_TYPE: - case REFERENCE_TYPE: - /* If converting between two pointers to records denoting - both a template and type, adjust if needed to account - for any differing offsets, since one might be negative. */ - if (TYPE_THIN_POINTER_P (etype) && TYPE_THIN_POINTER_P (type)) - { - tree bit_diff - = size_diffop (bit_position (TYPE_FIELDS (TREE_TYPE (etype))), - bit_position (TYPE_FIELDS (TREE_TYPE (type)))); - tree byte_diff = size_binop (CEIL_DIV_EXPR, bit_diff, - sbitsize_int (BITS_PER_UNIT)); - - expr = build1 (NOP_EXPR, type, expr); - TREE_CONSTANT (expr) = TREE_CONSTANT (TREE_OPERAND (expr, 0)); - if (integer_zerop (byte_diff)) - return expr; - - return build_binary_op (POINTER_PLUS_EXPR, type, expr, - fold (convert (sizetype, byte_diff))); - } - - /* If converting to a thin pointer, handle specially. */ - if (TYPE_THIN_POINTER_P (type) - && TYPE_UNCONSTRAINED_ARRAY (TREE_TYPE (type))) - return convert_to_thin_pointer (type, expr); - - /* If converting fat pointer to normal pointer, get the pointer to the - array and then convert it. */ - else if (TYPE_FAT_POINTER_P (etype)) - expr = build_component_ref (expr, get_identifier ("P_ARRAY"), - NULL_TREE, false); - - return fold (convert_to_pointer (type, expr)); - - case REAL_TYPE: - return fold (convert_to_real (type, expr)); - - case RECORD_TYPE: - if (TYPE_JUSTIFIED_MODULAR_P (type) && !AGGREGATE_TYPE_P (etype)) - return - gnat_build_constructor - (type, tree_cons (TYPE_FIELDS (type), - convert (TREE_TYPE (TYPE_FIELDS (type)), expr), - NULL_TREE)); - - /* ... fall through ... */ - - case ARRAY_TYPE: - /* In these cases, assume the front-end has validated the conversion. - If the conversion is valid, it will be a bit-wise conversion, so - it can be viewed as an unchecked conversion. */ - return unchecked_convert (type, expr, false); - - case UNION_TYPE: - /* This is a either a conversion between a tagged type and some - subtype, which we have to mark as a UNION_TYPE because of - overlapping fields or a conversion of an Unchecked_Union. */ - return unchecked_convert (type, expr, false); - - case UNCONSTRAINED_ARRAY_TYPE: - /* If EXPR is a constrained array, take its address, convert it to a - fat pointer, and then dereference it. Likewise if EXPR is a - record containing both a template and a constrained array. - Note that a record representing a justified modular type - always represents a packed constrained array. */ - if (ecode == ARRAY_TYPE - || (ecode == INTEGER_TYPE && TYPE_HAS_ACTUAL_BOUNDS_P (etype)) - || (ecode == RECORD_TYPE && TYPE_CONTAINS_TEMPLATE_P (etype)) - || (ecode == RECORD_TYPE && TYPE_JUSTIFIED_MODULAR_P (etype))) - return - build_unary_op - (INDIRECT_REF, NULL_TREE, - convert_to_fat_pointer (TREE_TYPE (type), - build_unary_op (ADDR_EXPR, - NULL_TREE, expr))); - - /* Do something very similar for converting one unconstrained - array to another. */ - else if (ecode == UNCONSTRAINED_ARRAY_TYPE) - return - build_unary_op (INDIRECT_REF, NULL_TREE, - convert (TREE_TYPE (type), - build_unary_op (ADDR_EXPR, - NULL_TREE, expr))); - else - gcc_unreachable (); - - case COMPLEX_TYPE: - return fold (convert_to_complex (type, expr)); - - default: - gcc_unreachable (); - } -} - -/* Remove all conversions that are done in EXP. This includes converting - from a padded type or to a justified modular type. If TRUE_ADDRESS - is true, always return the address of the containing object even if - the address is not bit-aligned. */ - -tree -remove_conversions (tree exp, bool true_address) -{ - switch (TREE_CODE (exp)) - { - case CONSTRUCTOR: - if (true_address - && TREE_CODE (TREE_TYPE (exp)) == RECORD_TYPE - && TYPE_JUSTIFIED_MODULAR_P (TREE_TYPE (exp))) - return - remove_conversions (VEC_index (constructor_elt, - CONSTRUCTOR_ELTS (exp), 0)->value, - true); - break; - - case COMPONENT_REF: - if (TREE_CODE (TREE_TYPE (TREE_OPERAND (exp, 0))) == RECORD_TYPE - && TYPE_IS_PADDING_P (TREE_TYPE (TREE_OPERAND (exp, 0)))) - return remove_conversions (TREE_OPERAND (exp, 0), true_address); - break; - - case VIEW_CONVERT_EXPR: case NON_LVALUE_EXPR: - CASE_CONVERT: - return remove_conversions (TREE_OPERAND (exp, 0), true_address); - - default: - break; - } - - return exp; -} - -/* If EXP's type is an UNCONSTRAINED_ARRAY_TYPE, return an expression that - refers to the underlying array. If its type has TYPE_CONTAINS_TEMPLATE_P, - likewise return an expression pointing to the underlying array. */ - -tree -maybe_unconstrained_array (tree exp) -{ - enum tree_code code = TREE_CODE (exp); - tree new; - - switch (TREE_CODE (TREE_TYPE (exp))) - { - case UNCONSTRAINED_ARRAY_TYPE: - if (code == UNCONSTRAINED_ARRAY_REF) - { - new - = build_unary_op (INDIRECT_REF, NULL_TREE, - build_component_ref (TREE_OPERAND (exp, 0), - get_identifier ("P_ARRAY"), - NULL_TREE, false)); - TREE_READONLY (new) = TREE_STATIC (new) = TREE_READONLY (exp); - return new; - } - - else if (code == NULL_EXPR) - return build1 (NULL_EXPR, - TREE_TYPE (TREE_TYPE (TYPE_FIELDS - (TREE_TYPE (TREE_TYPE (exp))))), - TREE_OPERAND (exp, 0)); - - case RECORD_TYPE: - /* If this is a padded type, convert to the unpadded type and see if - it contains a template. */ - if (TYPE_IS_PADDING_P (TREE_TYPE (exp))) - { - new = convert (TREE_TYPE (TYPE_FIELDS (TREE_TYPE (exp))), exp); - if (TREE_CODE (TREE_TYPE (new)) == RECORD_TYPE - && TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (new))) - return - build_component_ref (new, NULL_TREE, - TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (new))), - 0); - } - else if (TYPE_CONTAINS_TEMPLATE_P (TREE_TYPE (exp))) - return - build_component_ref (exp, NULL_TREE, - TREE_CHAIN (TYPE_FIELDS (TREE_TYPE (exp))), 0); - break; - - default: - break; - } - - return exp; -} - -/* Return an expression that does an unchecked conversion of EXPR to TYPE. - If NOTRUNC_P is true, truncation operations should be suppressed. */ - -tree -unchecked_convert (tree type, tree expr, bool notrunc_p) -{ - tree etype = TREE_TYPE (expr); - - /* If the expression is already the right type, we are done. */ - if (etype == type) - return expr; - - /* If both types types are integral just do a normal conversion. - Likewise for a conversion to an unconstrained array. */ - if ((((INTEGRAL_TYPE_P (type) - && !(TREE_CODE (type) == INTEGER_TYPE - && TYPE_VAX_FLOATING_POINT_P (type))) - || (POINTER_TYPE_P (type) && ! TYPE_THIN_POINTER_P (type)) - || (TREE_CODE (type) == RECORD_TYPE - && TYPE_JUSTIFIED_MODULAR_P (type))) - && ((INTEGRAL_TYPE_P (etype) - && !(TREE_CODE (etype) == INTEGER_TYPE - && TYPE_VAX_FLOATING_POINT_P (etype))) - || (POINTER_TYPE_P (etype) && !TYPE_THIN_POINTER_P (etype)) - || (TREE_CODE (etype) == RECORD_TYPE - && TYPE_JUSTIFIED_MODULAR_P (etype)))) - || TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE) - { - tree rtype = type; - bool final_unchecked = false; - - if (TREE_CODE (etype) == INTEGER_TYPE - && TYPE_BIASED_REPRESENTATION_P (etype)) - { - tree ntype = copy_type (etype); - - TYPE_BIASED_REPRESENTATION_P (ntype) = 0; - TYPE_MAIN_VARIANT (ntype) = ntype; - expr = build1 (NOP_EXPR, ntype, expr); - } - - if (TREE_CODE (type) == INTEGER_TYPE - && TYPE_BIASED_REPRESENTATION_P (type)) - { - rtype = copy_type (type); - TYPE_BIASED_REPRESENTATION_P (rtype) = 0; - TYPE_MAIN_VARIANT (rtype) = rtype; - } - - /* We have another special case: if we are unchecked converting subtype - into a base type, we need to ensure that VRP doesn't propagate range - information since this conversion may be done precisely to validate - that the object is within the range it is supposed to have. */ - else if (TREE_CODE (expr) != INTEGER_CST - && TREE_CODE (type) == INTEGER_TYPE && !TREE_TYPE (type) - && ((TREE_CODE (etype) == INTEGER_TYPE && TREE_TYPE (etype)) - || TREE_CODE (etype) == ENUMERAL_TYPE - || TREE_CODE (etype) == BOOLEAN_TYPE)) - { - /* The optimization barrier is a VIEW_CONVERT_EXPR node; moreover, - in order not to be deemed an useless type conversion, it must - be from subtype to base type. - - ??? This may raise addressability and/or aliasing issues because - VIEW_CONVERT_EXPR gets gimplified as an lvalue, thus causing the - address of its operand to be taken if it is deemed addressable - and not already in GIMPLE form. */ - rtype = gnat_type_for_mode (TYPE_MODE (type), TYPE_UNSIGNED (type)); - rtype = copy_type (rtype); - TYPE_MAIN_VARIANT (rtype) = rtype; - TREE_TYPE (rtype) = type; - final_unchecked = true; - } - - expr = convert (rtype, expr); - if (type != rtype) - expr = fold_build1 (final_unchecked ? VIEW_CONVERT_EXPR : NOP_EXPR, - type, expr); - } - - /* If we are converting TO an integral type whose precision is not the - same as its size, first unchecked convert to a record that contains - an object of the output type. Then extract the field. */ - else if (INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) - && 0 != compare_tree_int (TYPE_RM_SIZE (type), - GET_MODE_BITSIZE (TYPE_MODE (type)))) - { - tree rec_type = make_node (RECORD_TYPE); - tree field = create_field_decl (get_identifier ("OBJ"), type, - rec_type, 1, 0, 0, 0); - - TYPE_FIELDS (rec_type) = field; - layout_type (rec_type); - - expr = unchecked_convert (rec_type, expr, notrunc_p); - expr = build_component_ref (expr, NULL_TREE, field, 0); - } - - /* Similarly for integral input type whose precision is not equal to its - size. */ - else if (INTEGRAL_TYPE_P (etype) && TYPE_RM_SIZE (etype) - && 0 != compare_tree_int (TYPE_RM_SIZE (etype), - GET_MODE_BITSIZE (TYPE_MODE (etype)))) - { - tree rec_type = make_node (RECORD_TYPE); - tree field - = create_field_decl (get_identifier ("OBJ"), etype, rec_type, - 1, 0, 0, 0); - - TYPE_FIELDS (rec_type) = field; - layout_type (rec_type); - - expr = gnat_build_constructor (rec_type, build_tree_list (field, expr)); - expr = unchecked_convert (type, expr, notrunc_p); - } - - /* We have a special case when we are converting between two - unconstrained array types. In that case, take the address, - convert the fat pointer types, and dereference. */ - else if (TREE_CODE (etype) == UNCONSTRAINED_ARRAY_TYPE - && TREE_CODE (type) == UNCONSTRAINED_ARRAY_TYPE) - expr = build_unary_op (INDIRECT_REF, NULL_TREE, - build1 (VIEW_CONVERT_EXPR, TREE_TYPE (type), - build_unary_op (ADDR_EXPR, NULL_TREE, - expr))); - else - { - expr = maybe_unconstrained_array (expr); - etype = TREE_TYPE (expr); - expr = fold_build1 (VIEW_CONVERT_EXPR, type, expr); - } - - /* If the result is an integral type whose size is not equal to - the size of the underlying machine type, sign- or zero-extend - the result. We need not do this in the case where the input is - an integral type of the same precision and signedness or if the output - is a biased type or if both the input and output are unsigned. */ - if (!notrunc_p - && INTEGRAL_TYPE_P (type) && TYPE_RM_SIZE (type) - && !(TREE_CODE (type) == INTEGER_TYPE - && TYPE_BIASED_REPRESENTATION_P (type)) - && 0 != compare_tree_int (TYPE_RM_SIZE (type), - GET_MODE_BITSIZE (TYPE_MODE (type))) - && !(INTEGRAL_TYPE_P (etype) - && TYPE_UNSIGNED (type) == TYPE_UNSIGNED (etype) - && operand_equal_p (TYPE_RM_SIZE (type), - (TYPE_RM_SIZE (etype) != 0 - ? TYPE_RM_SIZE (etype) : TYPE_SIZE (etype)), - 0)) - && !(TYPE_UNSIGNED (type) && TYPE_UNSIGNED (etype))) - { - tree base_type = gnat_type_for_mode (TYPE_MODE (type), - TYPE_UNSIGNED (type)); - tree shift_expr - = convert (base_type, - size_binop (MINUS_EXPR, - bitsize_int - (GET_MODE_BITSIZE (TYPE_MODE (type))), - TYPE_RM_SIZE (type))); - expr - = convert (type, - build_binary_op (RSHIFT_EXPR, base_type, - build_binary_op (LSHIFT_EXPR, base_type, - convert (base_type, expr), - shift_expr), - shift_expr)); - } - - /* An unchecked conversion should never raise Constraint_Error. The code - below assumes that GCC's conversion routines overflow the same way that - the underlying hardware does. This is probably true. In the rare case - when it is false, we can rely on the fact that such conversions are - erroneous anyway. */ - if (TREE_CODE (expr) == INTEGER_CST) - TREE_OVERFLOW (expr) = 0; - - /* If the sizes of the types differ and this is an VIEW_CONVERT_EXPR, - show no longer constant. */ - if (TREE_CODE (expr) == VIEW_CONVERT_EXPR - && !operand_equal_p (TYPE_SIZE_UNIT (type), TYPE_SIZE_UNIT (etype), - OEP_ONLY_CONST)) - TREE_CONSTANT (expr) = 0; - - return expr; -} - -/* Return the appropriate GCC tree code for the specified GNAT type, - the latter being a record type as predicated by Is_Record_Type. */ - -enum tree_code -tree_code_for_record_type (Entity_Id gnat_type) -{ - Node_Id component_list - = Component_List (Type_Definition - (Declaration_Node - (Implementation_Base_Type (gnat_type)))); - Node_Id component; - - /* Make this a UNION_TYPE unless it's either not an Unchecked_Union or - we have a non-discriminant field outside a variant. In either case, - it's a RECORD_TYPE. */ - - if (!Is_Unchecked_Union (gnat_type)) - return RECORD_TYPE; - - for (component = First_Non_Pragma (Component_Items (component_list)); - Present (component); - component = Next_Non_Pragma (component)) - if (Ekind (Defining_Entity (component)) == E_Component) - return RECORD_TYPE; - - return UNION_TYPE; -} - -/* Return true if GNU_TYPE is suitable as the type of a non-aliased - component of an aggregate type. */ - -bool -type_for_nonaliased_component_p (tree gnu_type) -{ - /* If the type is passed by reference, we may have pointers to the - component so it cannot be made non-aliased. */ - if (must_pass_by_ref (gnu_type) || default_pass_by_ref (gnu_type)) - return false; - - /* We used to say that any component of aggregate type is aliased - because the front-end may take 'Reference of it. The front-end - has been enhanced in the meantime so as to use a renaming instead - in most cases, but the back-end can probably take the address of - such a component too so we go for the conservative stance. - - For instance, we might need the address of any array type, even - if normally passed by copy, to construct a fat pointer if the - component is used as an actual for an unconstrained formal. - - Likewise for record types: even if a specific record subtype is - passed by copy, the parent type might be passed by ref (e.g. if - it's of variable size) and we might take the address of a child - component to pass to a parent formal. We have no way to check - for such conditions here. */ - if (AGGREGATE_TYPE_P (gnu_type)) - return false; - - return true; -} - -/* Perform final processing on global variables. */ - -void -gnat_write_global_declarations (void) -{ - /* Proceed to optimize and emit assembly. - FIXME: shouldn't be the front end's responsibility to call this. */ - cgraph_optimize (); - - /* Emit debug info for all global declarations. */ - emit_debug_global_declarations (VEC_address (tree, global_decls), - VEC_length (tree, global_decls)); -} - -/* ************************************************************************ - * * GCC builtins support * - * ************************************************************************ */ - -/* The general scheme is fairly simple: - - For each builtin function/type to be declared, gnat_install_builtins calls - internal facilities which eventually get to gnat_push_decl, which in turn - tracks the so declared builtin function decls in the 'builtin_decls' global - datastructure. When an Intrinsic subprogram declaration is processed, we - search this global datastructure to retrieve the associated BUILT_IN DECL - node. */ - -/* Search the chain of currently available builtin declarations for a node - corresponding to function NAME (an IDENTIFIER_NODE). Return the first node - found, if any, or NULL_TREE otherwise. */ -tree -builtin_decl_for (tree name) -{ - unsigned i; - tree decl; - - for (i = 0; VEC_iterate(tree, builtin_decls, i, decl); i++) - if (DECL_NAME (decl) == name) - return decl; - - return NULL_TREE; -} - -/* The code below eventually exposes gnat_install_builtins, which declares - the builtin types and functions we might need, either internally or as - user accessible facilities. - - ??? This is a first implementation shot, still in rough shape. It is - heavily inspired from the "C" family implementation, with chunks copied - verbatim from there. - - Two obvious TODO candidates are - o Use a more efficient name/decl mapping scheme - o Devise a middle-end infrastructure to avoid having to copy - pieces between front-ends. */ - -/* ----------------------------------------------------------------------- * - * BUILTIN ELEMENTARY TYPES * - * ----------------------------------------------------------------------- */ - -/* Standard data types to be used in builtin argument declarations. */ - -enum c_tree_index -{ - CTI_SIGNED_SIZE_TYPE, /* For format checking only. */ - CTI_STRING_TYPE, - CTI_CONST_STRING_TYPE, - - CTI_MAX -}; - -static tree c_global_trees[CTI_MAX]; - -#define signed_size_type_node c_global_trees[CTI_SIGNED_SIZE_TYPE] -#define string_type_node c_global_trees[CTI_STRING_TYPE] -#define const_string_type_node c_global_trees[CTI_CONST_STRING_TYPE] - -/* ??? In addition some attribute handlers, we currently don't support a - (small) number of builtin-types, which in turns inhibits support for a - number of builtin functions. */ -#define wint_type_node void_type_node -#define intmax_type_node void_type_node -#define uintmax_type_node void_type_node - -/* Build the void_list_node (void_type_node having been created). */ - -static tree -build_void_list_node (void) -{ - tree t = build_tree_list (NULL_TREE, void_type_node); - return t; -} - -/* Used to help initialize the builtin-types.def table. When a type of - the correct size doesn't exist, use error_mark_node instead of NULL. - The later results in segfaults even when a decl using the type doesn't - get invoked. */ - -static tree -builtin_type_for_size (int size, bool unsignedp) -{ - tree type = lang_hooks.types.type_for_size (size, unsignedp); - return type ? type : error_mark_node; -} - -/* Build/push the elementary type decls that builtin functions/types - will need. */ - -static void -install_builtin_elementary_types (void) -{ - signed_size_type_node = size_type_node; - pid_type_node = integer_type_node; - void_list_node = build_void_list_node (); - - string_type_node = build_pointer_type (char_type_node); - const_string_type_node - = build_pointer_type (build_qualified_type - (char_type_node, TYPE_QUAL_CONST)); -} - -/* ----------------------------------------------------------------------- * - * BUILTIN FUNCTION TYPES * - * ----------------------------------------------------------------------- */ - -/* Now, builtin function types per se. */ - -enum c_builtin_type -{ -#define DEF_PRIMITIVE_TYPE(NAME, VALUE) NAME, -#define DEF_FUNCTION_TYPE_0(NAME, RETURN) NAME, -#define DEF_FUNCTION_TYPE_1(NAME, RETURN, ARG1) NAME, -#define DEF_FUNCTION_TYPE_2(NAME, RETURN, ARG1, ARG2) NAME, -#define DEF_FUNCTION_TYPE_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME, -#define DEF_FUNCTION_TYPE_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME, -#define DEF_FUNCTION_TYPE_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) NAME, -#define DEF_FUNCTION_TYPE_6(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6) NAME, -#define DEF_FUNCTION_TYPE_7(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7) NAME, -#define DEF_FUNCTION_TYPE_VAR_0(NAME, RETURN) NAME, -#define DEF_FUNCTION_TYPE_VAR_1(NAME, RETURN, ARG1) NAME, -#define DEF_FUNCTION_TYPE_VAR_2(NAME, RETURN, ARG1, ARG2) NAME, -#define DEF_FUNCTION_TYPE_VAR_3(NAME, RETURN, ARG1, ARG2, ARG3) NAME, -#define DEF_FUNCTION_TYPE_VAR_4(NAME, RETURN, ARG1, ARG2, ARG3, ARG4) NAME, -#define DEF_FUNCTION_TYPE_VAR_5(NAME, RETURN, ARG1, ARG2, ARG3, ARG4, ARG6) \ - NAME, -#define DEF_POINTER_TYPE(NAME, TYPE) NAME, -#include "builtin-types.def" -#undef DEF_PRIMITIVE_TYPE -#undef DEF_FUNCTION_TYPE_0 -#undef DEF_FUNCTION_TYPE_1 -#undef DEF_FUNCTION_TYPE_2 -#undef DEF_FUNCTION_TYPE_3 -#undef DEF_FUNCTION_TYPE_4 -#undef DEF_FUNCTION_TYPE_5 -#undef DEF_FUNCTION_TYPE_6 -#undef DEF_FUNCTION_TYPE_7 -#undef DEF_FUNCTION_TYPE_VAR_0 -#undef DEF_FUNCTION_TYPE_VAR_1 -#undef DEF_FUNCTION_TYPE_VAR_2 -#undef DEF_FUNCTION_TYPE_VAR_3 -#undef DEF_FUNCTION_TYPE_VAR_4 -#undef DEF_FUNCTION_TYPE_VAR_5 -#undef DEF_POINTER_TYPE - BT_LAST -}; - -typedef enum c_builtin_type builtin_type; - -/* A temporary array used in communication with def_fn_type. */ -static GTY(()) tree builtin_types[(int) BT_LAST + 1]; - -/* A helper function for install_builtin_types. Build function type - for DEF with return type RET and N arguments. If VAR is true, then the - function should be variadic after those N arguments. - - Takes special care not to ICE if any of the types involved are - error_mark_node, which indicates that said type is not in fact available - (see builtin_type_for_size). In which case the function type as a whole - should be error_mark_node. */ - -static void -def_fn_type (builtin_type def, builtin_type ret, bool var, int n, ...) -{ - tree args = NULL, t; - va_list list; - int i; - - va_start (list, n); - for (i = 0; i < n; ++i) - { - builtin_type a = va_arg (list, builtin_type); - t = builtin_types[a]; - if (t == error_mark_node) - goto egress; - args = tree_cons (NULL_TREE, t, args); - } - va_end (list); - - args = nreverse (args); - if (!var) - args = chainon (args, void_list_node); - - t = builtin_types[ret]; - if (t == error_mark_node) - goto egress; - t = build_function_type (t, args); - - egress: - builtin_types[def] = t; -} - -/* Build the builtin function types and install them in the builtin_types - array for later use in builtin function decls. */ - -static void -install_builtin_function_types (void) -{ - tree va_list_ref_type_node; - tree va_list_arg_type_node; - - if (TREE_CODE (va_list_type_node) == ARRAY_TYPE) - { - va_list_arg_type_node = va_list_ref_type_node = - build_pointer_type (TREE_TYPE (va_list_type_node)); - } - else - { - va_list_arg_type_node = va_list_type_node; - va_list_ref_type_node = build_reference_type (va_list_type_node); - } - -#define DEF_PRIMITIVE_TYPE(ENUM, VALUE) \ - builtin_types[ENUM] = VALUE; -#define DEF_FUNCTION_TYPE_0(ENUM, RETURN) \ - def_fn_type (ENUM, RETURN, 0, 0); -#define DEF_FUNCTION_TYPE_1(ENUM, RETURN, ARG1) \ - def_fn_type (ENUM, RETURN, 0, 1, ARG1); -#define DEF_FUNCTION_TYPE_2(ENUM, RETURN, ARG1, ARG2) \ - def_fn_type (ENUM, RETURN, 0, 2, ARG1, ARG2); -#define DEF_FUNCTION_TYPE_3(ENUM, RETURN, ARG1, ARG2, ARG3) \ - def_fn_type (ENUM, RETURN, 0, 3, ARG1, ARG2, ARG3); -#define DEF_FUNCTION_TYPE_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \ - def_fn_type (ENUM, RETURN, 0, 4, ARG1, ARG2, ARG3, ARG4); -#define DEF_FUNCTION_TYPE_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \ - def_fn_type (ENUM, RETURN, 0, 5, ARG1, ARG2, ARG3, ARG4, ARG5); -#define DEF_FUNCTION_TYPE_6(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \ - ARG6) \ - def_fn_type (ENUM, RETURN, 0, 6, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6); -#define DEF_FUNCTION_TYPE_7(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5, \ - ARG6, ARG7) \ - def_fn_type (ENUM, RETURN, 0, 7, ARG1, ARG2, ARG3, ARG4, ARG5, ARG6, ARG7); -#define DEF_FUNCTION_TYPE_VAR_0(ENUM, RETURN) \ - def_fn_type (ENUM, RETURN, 1, 0); -#define DEF_FUNCTION_TYPE_VAR_1(ENUM, RETURN, ARG1) \ - def_fn_type (ENUM, RETURN, 1, 1, ARG1); -#define DEF_FUNCTION_TYPE_VAR_2(ENUM, RETURN, ARG1, ARG2) \ - def_fn_type (ENUM, RETURN, 1, 2, ARG1, ARG2); -#define DEF_FUNCTION_TYPE_VAR_3(ENUM, RETURN, ARG1, ARG2, ARG3) \ - def_fn_type (ENUM, RETURN, 1, 3, ARG1, ARG2, ARG3); -#define DEF_FUNCTION_TYPE_VAR_4(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4) \ - def_fn_type (ENUM, RETURN, 1, 4, ARG1, ARG2, ARG3, ARG4); -#define DEF_FUNCTION_TYPE_VAR_5(ENUM, RETURN, ARG1, ARG2, ARG3, ARG4, ARG5) \ - def_fn_type (ENUM, RETURN, 1, 5, ARG1, ARG2, ARG3, ARG4, ARG5); -#define DEF_POINTER_TYPE(ENUM, TYPE) \ - builtin_types[(int) ENUM] = build_pointer_type (builtin_types[(int) TYPE]); - -#include "builtin-types.def" - -#undef DEF_PRIMITIVE_TYPE -#undef DEF_FUNCTION_TYPE_1 -#undef DEF_FUNCTION_TYPE_2 -#undef DEF_FUNCTION_TYPE_3 -#undef DEF_FUNCTION_TYPE_4 -#undef DEF_FUNCTION_TYPE_5 -#undef DEF_FUNCTION_TYPE_6 -#undef DEF_FUNCTION_TYPE_VAR_0 -#undef DEF_FUNCTION_TYPE_VAR_1 -#undef DEF_FUNCTION_TYPE_VAR_2 -#undef DEF_FUNCTION_TYPE_VAR_3 -#undef DEF_FUNCTION_TYPE_VAR_4 -#undef DEF_FUNCTION_TYPE_VAR_5 -#undef DEF_POINTER_TYPE - builtin_types[(int) BT_LAST] = NULL_TREE; -} - -/* ----------------------------------------------------------------------- * - * BUILTIN ATTRIBUTES * - * ----------------------------------------------------------------------- */ - -enum built_in_attribute -{ -#define DEF_ATTR_NULL_TREE(ENUM) ENUM, -#define DEF_ATTR_INT(ENUM, VALUE) ENUM, -#define DEF_ATTR_IDENT(ENUM, STRING) ENUM, -#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) ENUM, -#include "builtin-attrs.def" -#undef DEF_ATTR_NULL_TREE -#undef DEF_ATTR_INT -#undef DEF_ATTR_IDENT -#undef DEF_ATTR_TREE_LIST - ATTR_LAST -}; - -static GTY(()) tree built_in_attributes[(int) ATTR_LAST]; - -static void -install_builtin_attributes (void) -{ - /* Fill in the built_in_attributes array. */ -#define DEF_ATTR_NULL_TREE(ENUM) \ - built_in_attributes[(int) ENUM] = NULL_TREE; -#define DEF_ATTR_INT(ENUM, VALUE) \ - built_in_attributes[(int) ENUM] = build_int_cst (NULL_TREE, VALUE); -#define DEF_ATTR_IDENT(ENUM, STRING) \ - built_in_attributes[(int) ENUM] = get_identifier (STRING); -#define DEF_ATTR_TREE_LIST(ENUM, PURPOSE, VALUE, CHAIN) \ - built_in_attributes[(int) ENUM] \ - = tree_cons (built_in_attributes[(int) PURPOSE], \ - built_in_attributes[(int) VALUE], \ - built_in_attributes[(int) CHAIN]); -#include "builtin-attrs.def" -#undef DEF_ATTR_NULL_TREE -#undef DEF_ATTR_INT -#undef DEF_ATTR_IDENT -#undef DEF_ATTR_TREE_LIST -} - -/* Handle a "const" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_const_attribute (tree *node, tree ARG_UNUSED (name), - tree ARG_UNUSED (args), int ARG_UNUSED (flags), - bool *no_add_attrs) -{ - if (TREE_CODE (*node) == FUNCTION_DECL) - TREE_READONLY (*node) = 1; - else - *no_add_attrs = true; - - return NULL_TREE; -} - -/* Handle a "nothrow" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_nothrow_attribute (tree *node, tree ARG_UNUSED (name), - tree ARG_UNUSED (args), int ARG_UNUSED (flags), - bool *no_add_attrs) -{ - if (TREE_CODE (*node) == FUNCTION_DECL) - TREE_NOTHROW (*node) = 1; - else - *no_add_attrs = true; - - return NULL_TREE; -} - -/* Handle a "pure" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_pure_attribute (tree *node, tree name, tree ARG_UNUSED (args), - int ARG_UNUSED (flags), bool *no_add_attrs) -{ - if (TREE_CODE (*node) == FUNCTION_DECL) - DECL_PURE_P (*node) = 1; - /* ??? TODO: Support types. */ - else - { - warning (OPT_Wattributes, "%qE attribute ignored", name); - *no_add_attrs = true; - } - - return NULL_TREE; -} - -/* Handle a "no vops" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_novops_attribute (tree *node, tree ARG_UNUSED (name), - tree ARG_UNUSED (args), int ARG_UNUSED (flags), - bool *ARG_UNUSED (no_add_attrs)) -{ - gcc_assert (TREE_CODE (*node) == FUNCTION_DECL); - DECL_IS_NOVOPS (*node) = 1; - return NULL_TREE; -} - -/* Helper for nonnull attribute handling; fetch the operand number - from the attribute argument list. */ - -static bool -get_nonnull_operand (tree arg_num_expr, unsigned HOST_WIDE_INT *valp) -{ - /* Verify the arg number is a constant. */ - if (TREE_CODE (arg_num_expr) != INTEGER_CST - || TREE_INT_CST_HIGH (arg_num_expr) != 0) - return false; - - *valp = TREE_INT_CST_LOW (arg_num_expr); - return true; -} - -/* Handle the "nonnull" attribute. */ -static tree -handle_nonnull_attribute (tree *node, tree ARG_UNUSED (name), - tree args, int ARG_UNUSED (flags), - bool *no_add_attrs) -{ - tree type = *node; - unsigned HOST_WIDE_INT attr_arg_num; - - /* If no arguments are specified, all pointer arguments should be - non-null. Verify a full prototype is given so that the arguments - will have the correct types when we actually check them later. */ - if (!args) - { - if (!TYPE_ARG_TYPES (type)) - { - error ("nonnull attribute without arguments on a non-prototype"); - *no_add_attrs = true; - } - return NULL_TREE; - } - - /* Argument list specified. Verify that each argument number references - a pointer argument. */ - for (attr_arg_num = 1; args; args = TREE_CHAIN (args)) - { - tree argument; - unsigned HOST_WIDE_INT arg_num = 0, ck_num; - - if (!get_nonnull_operand (TREE_VALUE (args), &arg_num)) - { - error ("nonnull argument has invalid operand number (argument %lu)", - (unsigned long) attr_arg_num); - *no_add_attrs = true; - return NULL_TREE; - } - - argument = TYPE_ARG_TYPES (type); - if (argument) - { - for (ck_num = 1; ; ck_num++) - { - if (!argument || ck_num == arg_num) - break; - argument = TREE_CHAIN (argument); - } - - if (!argument - || TREE_CODE (TREE_VALUE (argument)) == VOID_TYPE) - { - error ("nonnull argument with out-of-range operand number (argument %lu, operand %lu)", - (unsigned long) attr_arg_num, (unsigned long) arg_num); - *no_add_attrs = true; - return NULL_TREE; - } - - if (TREE_CODE (TREE_VALUE (argument)) != POINTER_TYPE) - { - error ("nonnull argument references non-pointer operand (argument %lu, operand %lu)", - (unsigned long) attr_arg_num, (unsigned long) arg_num); - *no_add_attrs = true; - return NULL_TREE; - } - } - } - - return NULL_TREE; -} - -/* Handle a "sentinel" attribute. */ - -static tree -handle_sentinel_attribute (tree *node, tree name, tree args, - int ARG_UNUSED (flags), bool *no_add_attrs) -{ - tree params = TYPE_ARG_TYPES (*node); - - if (!params) - { - warning (OPT_Wattributes, - "%qE attribute requires prototypes with named arguments", name); - *no_add_attrs = true; - } - else - { - while (TREE_CHAIN (params)) - params = TREE_CHAIN (params); - - if (VOID_TYPE_P (TREE_VALUE (params))) - { - warning (OPT_Wattributes, - "%qE attribute only applies to variadic functions", name); - *no_add_attrs = true; - } - } - - if (args) - { - tree position = TREE_VALUE (args); - - if (TREE_CODE (position) != INTEGER_CST) - { - warning (0, "requested position is not an integer constant"); - *no_add_attrs = true; - } - else - { - if (tree_int_cst_lt (position, integer_zero_node)) - { - warning (0, "requested position is less than zero"); - *no_add_attrs = true; - } - } - } - - return NULL_TREE; -} - -/* Handle a "noreturn" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_noreturn_attribute (tree *node, tree name, tree ARG_UNUSED (args), - int ARG_UNUSED (flags), bool *no_add_attrs) -{ - tree type = TREE_TYPE (*node); - - /* See FIXME comment in c_common_attribute_table. */ - if (TREE_CODE (*node) == FUNCTION_DECL) - TREE_THIS_VOLATILE (*node) = 1; - else if (TREE_CODE (type) == POINTER_TYPE - && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE) - TREE_TYPE (*node) - = build_pointer_type - (build_type_variant (TREE_TYPE (type), - TYPE_READONLY (TREE_TYPE (type)), 1)); - else - { - warning (OPT_Wattributes, "%qE attribute ignored", name); - *no_add_attrs = true; - } - - return NULL_TREE; -} - -/* Handle a "malloc" attribute; arguments as in - struct attribute_spec.handler. */ - -static tree -handle_malloc_attribute (tree *node, tree name, tree ARG_UNUSED (args), - int ARG_UNUSED (flags), bool *no_add_attrs) -{ - if (TREE_CODE (*node) == FUNCTION_DECL - && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (*node)))) - DECL_IS_MALLOC (*node) = 1; - else - { - warning (OPT_Wattributes, "%qE attribute ignored", name); - *no_add_attrs = true; - } - - return NULL_TREE; -} - -/* Fake handler for attributes we don't properly support. */ - -tree -fake_attribute_handler (tree * ARG_UNUSED (node), - tree ARG_UNUSED (name), - tree ARG_UNUSED (args), - int ARG_UNUSED (flags), - bool * ARG_UNUSED (no_add_attrs)) -{ - return NULL_TREE; -} - -/* Handle a "type_generic" attribute. */ - -static tree -handle_type_generic_attribute (tree *node, tree ARG_UNUSED (name), - tree ARG_UNUSED (args), int ARG_UNUSED (flags), - bool * ARG_UNUSED (no_add_attrs)) -{ - tree params; - - /* Ensure we have a function type. */ - gcc_assert (TREE_CODE (*node) == FUNCTION_TYPE); - - params = TYPE_ARG_TYPES (*node); - while (params && ! VOID_TYPE_P (TREE_VALUE (params))) - params = TREE_CHAIN (params); - - /* Ensure we have a variadic function. */ - gcc_assert (!params); - - return NULL_TREE; -} - -/* ----------------------------------------------------------------------- * - * BUILTIN FUNCTIONS * - * ----------------------------------------------------------------------- */ - -/* Worker for DEF_BUILTIN. Possibly define a builtin function with one or two - names. Does not declare a non-__builtin_ function if flag_no_builtin, or - if nonansi_p and flag_no_nonansi_builtin. */ - -static void -def_builtin_1 (enum built_in_function fncode, - const char *name, - enum built_in_class fnclass, - tree fntype, tree libtype, - bool both_p, bool fallback_p, - bool nonansi_p ATTRIBUTE_UNUSED, - tree fnattrs, bool implicit_p) -{ - tree decl; - const char *libname; - - /* Preserve an already installed decl. It most likely was setup in advance - (e.g. as part of the internal builtins) for specific reasons. */ - if (built_in_decls[(int) fncode] != NULL_TREE) - return; - - gcc_assert ((!both_p && !fallback_p) - || !strncmp (name, "__builtin_", - strlen ("__builtin_"))); - - libname = name + strlen ("__builtin_"); - decl = add_builtin_function (name, fntype, fncode, fnclass, - (fallback_p ? libname : NULL), - fnattrs); - if (both_p) - /* ??? This is normally further controlled by command-line options - like -fno-builtin, but we don't have them for Ada. */ - add_builtin_function (libname, libtype, fncode, fnclass, - NULL, fnattrs); - - built_in_decls[(int) fncode] = decl; - if (implicit_p) - implicit_built_in_decls[(int) fncode] = decl; -} - -static int flag_isoc94 = 0; -static int flag_isoc99 = 0; - -/* Install what the common builtins.def offers. */ - -static void -install_builtin_functions (void) -{ -#define DEF_BUILTIN(ENUM, NAME, CLASS, TYPE, LIBTYPE, BOTH_P, FALLBACK_P, \ - NONANSI_P, ATTRS, IMPLICIT, COND) \ - if (NAME && COND) \ - def_builtin_1 (ENUM, NAME, CLASS, \ - builtin_types[(int) TYPE], \ - builtin_types[(int) LIBTYPE], \ - BOTH_P, FALLBACK_P, NONANSI_P, \ - built_in_attributes[(int) ATTRS], IMPLICIT); -#include "builtins.def" -#undef DEF_BUILTIN -} - -/* ----------------------------------------------------------------------- * - * BUILTIN FUNCTIONS * - * ----------------------------------------------------------------------- */ - -/* Install the builtin functions we might need. */ - -void -gnat_install_builtins (void) -{ - install_builtin_elementary_types (); - install_builtin_function_types (); - install_builtin_attributes (); - - /* Install builtins used by generic middle-end pieces first. Some of these - know about internal specificities and control attributes accordingly, for - instance __builtin_alloca vs no-throw and -fstack-check. We will ignore - the generic definition from builtins.def. */ - build_common_builtin_nodes (); - - /* Now, install the target specific builtins, such as the AltiVec family on - ppc, and the common set as exposed by builtins.def. */ - targetm.init_builtins (); - install_builtin_functions (); -} - -#include "gt-ada-utils.h" -#include "gtype-ada.h" |