diff options
author | Richard Kenner <kenner@gcc.gnu.org> | 2001-10-02 10:52:00 -0400 |
---|---|---|
committer | Richard Kenner <kenner@gcc.gnu.org> | 2001-10-02 10:52:00 -0400 |
commit | 996ae0b0aeb9e07a4d7d7ff2926625fd0a58349e (patch) | |
tree | 2e58881ac983eb14cefbc37dcb02b8fd6e9f6990 /gcc/ada/sem_ch5.adb | |
parent | 2b3d3db68da14b782f8d69ccebc18af04c61ce15 (diff) | |
download | gcc-996ae0b0aeb9e07a4d7d7ff2926625fd0a58349e.zip gcc-996ae0b0aeb9e07a4d7d7ff2926625fd0a58349e.tar.gz gcc-996ae0b0aeb9e07a4d7d7ff2926625fd0a58349e.tar.bz2 |
New Language: Ada
From-SVN: r45959
Diffstat (limited to 'gcc/ada/sem_ch5.adb')
-rw-r--r-- | gcc/ada/sem_ch5.adb | 1256 |
1 files changed, 1256 insertions, 0 deletions
diff --git a/gcc/ada/sem_ch5.adb b/gcc/ada/sem_ch5.adb new file mode 100644 index 0000000..658a685 --- /dev/null +++ b/gcc/ada/sem_ch5.adb @@ -0,0 +1,1256 @@ +------------------------------------------------------------------------------ +-- -- +-- GNAT COMPILER COMPONENTS -- +-- -- +-- S E M _ C H 5 -- +-- -- +-- B o d y -- +-- -- +-- $Revision: 1.262 $ +-- -- +-- Copyright (C) 1992-2001 Free Software Foundation, Inc. -- +-- -- +-- GNAT is free software; you can redistribute it and/or modify it under -- +-- terms of the GNU General Public License as published by the Free Soft- -- +-- ware Foundation; either version 2, or (at your option) any later ver- -- +-- sion. GNAT is distributed in the hope that it will be useful, but WITH- -- +-- OUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY -- +-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License -- +-- for more details. You should have received a copy of the GNU General -- +-- Public License distributed with GNAT; see file COPYING. If not, write -- +-- to the Free Software Foundation, 59 Temple Place - Suite 330, Boston, -- +-- MA 02111-1307, USA. -- +-- -- +-- GNAT was originally developed by the GNAT team at New York University. -- +-- It is now maintained by Ada Core Technologies Inc (http://www.gnat.com). -- +-- -- +------------------------------------------------------------------------------ + +with Atree; use Atree; +with Checks; use Checks; +with Einfo; use Einfo; +with Errout; use Errout; +with Expander; use Expander; +with Exp_Util; use Exp_Util; +with Freeze; use Freeze; +with Lib.Xref; use Lib.Xref; +with Nlists; use Nlists; +with Opt; use Opt; +with Sem; use Sem; +with Sem_Case; use Sem_Case; +with Sem_Ch3; use Sem_Ch3; +with Sem_Ch8; use Sem_Ch8; +with Sem_Disp; use Sem_Disp; +with Sem_Eval; use Sem_Eval; +with Sem_Res; use Sem_Res; +with Sem_Type; use Sem_Type; +with Sem_Util; use Sem_Util; +with Sem_Warn; use Sem_Warn; +with Stand; use Stand; +with Sinfo; use Sinfo; +with Tbuild; use Tbuild; +with Uintp; use Uintp; + +package body Sem_Ch5 is + + Unblocked_Exit_Count : Nat := 0; + -- This variable is used when processing if statements or case + -- statements, it counts the number of branches of the conditional + -- that are not blocked by unconditional transfer instructions. At + -- the end of processing, if the count is zero, it means that control + -- cannot fall through the conditional statement. This is used for + -- the generation of warning messages. This variable is recursively + -- saved on entry to processing an if or case, and restored on exit. + + ----------------------- + -- Local Subprograms -- + ----------------------- + + procedure Analyze_Iteration_Scheme (N : Node_Id); + + ------------------------ + -- Analyze_Assignment -- + ------------------------ + + procedure Analyze_Assignment (N : Node_Id) is + Lhs : constant Node_Id := Name (N); + Rhs : constant Node_Id := Expression (N); + T1, T2 : Entity_Id; + Decl : Node_Id; + + procedure Diagnose_Non_Variable_Lhs (N : Node_Id); + -- N is the node for the left hand side of an assignment, and it + -- is not a variable. This routine issues an appropriate diagnostic. + + procedure Set_Assignment_Type + (Opnd : Node_Id; + Opnd_Type : in out Entity_Id); + -- Opnd is either the Lhs or Rhs of the assignment, and Opnd_Type + -- is the nominal subtype. This procedure is used to deal with cases + -- where the nominal subtype must be replaced by the actual subtype. + + ------------------------------- + -- Diagnose_Non_Variable_Lhs -- + ------------------------------- + + procedure Diagnose_Non_Variable_Lhs (N : Node_Id) is + begin + -- Not worth posting another error if left hand side already + -- flagged as being illegal in some respect + + if Error_Posted (N) then + return; + + -- Some special bad cases of entity names + + elsif Is_Entity_Name (N) then + + if Ekind (Entity (N)) = E_In_Parameter then + Error_Msg_N + ("assignment to IN mode parameter not allowed", N); + return; + + -- Private declarations in a protected object are turned into + -- constants when compiling a protected function. + + elsif Present (Scope (Entity (N))) + and then Is_Protected_Type (Scope (Entity (N))) + and then + (Ekind (Current_Scope) = E_Function + or else + Ekind (Enclosing_Dynamic_Scope (Current_Scope)) = E_Function) + then + Error_Msg_N + ("protected function cannot modify protected object", N); + return; + + elsif Ekind (Entity (N)) = E_Loop_Parameter then + Error_Msg_N + ("assignment to loop parameter not allowed", N); + return; + + end if; + + -- For indexed components, or selected components, test prefix + + elsif Nkind (N) = N_Indexed_Component + or else Nkind (N) = N_Selected_Component + then + Diagnose_Non_Variable_Lhs (Prefix (N)); + return; + end if; + + -- If we fall through, we have no special message to issue! + + Error_Msg_N ("left hand side of assignment must be a variable", N); + + end Diagnose_Non_Variable_Lhs; + + ------------------------- + -- Set_Assignment_Type -- + ------------------------- + + procedure Set_Assignment_Type + (Opnd : Node_Id; + Opnd_Type : in out Entity_Id) + is + begin + -- If the assignment operand is an in-out or out parameter, then we + -- get the actual subtype (needed for the unconstrained case). + + if Is_Entity_Name (Opnd) + and then (Ekind (Entity (Opnd)) = E_Out_Parameter + or else Ekind (Entity (Opnd)) = + E_In_Out_Parameter + or else Ekind (Entity (Opnd)) = + E_Generic_In_Out_Parameter) + then + Opnd_Type := Get_Actual_Subtype (Opnd); + + -- If assignment operand is a component reference, then we get the + -- actual subtype of the component for the unconstrained case. + + elsif Nkind (Opnd) = N_Selected_Component + or else Nkind (Opnd) = N_Explicit_Dereference + then + Decl := Build_Actual_Subtype_Of_Component (Opnd_Type, Opnd); + + if Present (Decl) then + Insert_Action (N, Decl); + Mark_Rewrite_Insertion (Decl); + Analyze (Decl); + Opnd_Type := Defining_Identifier (Decl); + Set_Etype (Opnd, Opnd_Type); + Freeze_Itype (Opnd_Type, N); + + elsif Is_Constrained (Etype (Opnd)) then + Opnd_Type := Etype (Opnd); + end if; + + -- For slice, use the constrained subtype created for the slice + + elsif Nkind (Opnd) = N_Slice then + Opnd_Type := Etype (Opnd); + end if; + end Set_Assignment_Type; + + -- Start of processing for Analyze_Assignment + + begin + Analyze (Rhs); + Analyze (Lhs); + T1 := Etype (Lhs); + + -- In the most general case, both Lhs and Rhs can be overloaded, and we + -- must compute the intersection of the possible types on each side. + + if Is_Overloaded (Lhs) then + declare + I : Interp_Index; + It : Interp; + + begin + T1 := Any_Type; + Get_First_Interp (Lhs, I, It); + + while Present (It.Typ) loop + if Has_Compatible_Type (Rhs, It.Typ) then + + if T1 /= Any_Type then + + -- An explicit dereference is overloaded if the prefix + -- is. Try to remove the ambiguity on the prefix, the + -- error will be posted there if the ambiguity is real. + + if Nkind (Lhs) = N_Explicit_Dereference then + declare + PI : Interp_Index; + PI1 : Interp_Index := 0; + PIt : Interp; + Found : Boolean; + + begin + Found := False; + Get_First_Interp (Prefix (Lhs), PI, PIt); + + while Present (PIt.Typ) loop + if Has_Compatible_Type (Rhs, + Designated_Type (PIt.Typ)) + then + if Found then + PIt := + Disambiguate (Prefix (Lhs), + PI1, PI, Any_Type); + + if PIt = No_Interp then + return; + else + Resolve (Prefix (Lhs), PIt.Typ); + end if; + + exit; + else + Found := True; + PI1 := PI; + end if; + end if; + + Get_Next_Interp (PI, PIt); + end loop; + end; + + else + Error_Msg_N + ("ambiguous left-hand side in assignment", Lhs); + exit; + end if; + else + T1 := It.Typ; + end if; + end if; + + Get_Next_Interp (I, It); + end loop; + end; + + if T1 = Any_Type then + Error_Msg_N + ("no valid types for left-hand side for assignment", Lhs); + return; + end if; + end if; + + Resolve (Lhs, T1); + + if not Is_Variable (Lhs) then + Diagnose_Non_Variable_Lhs (Lhs); + return; + + elsif Is_Limited_Type (T1) + and then not Assignment_OK (Lhs) + and then not Assignment_OK (Original_Node (Lhs)) + then + Error_Msg_N + ("left hand of assignment must not be limited type", Lhs); + return; + end if; + + -- Resolution may have updated the subtype, in case the left-hand + -- side is a private protected component. Use the correct subtype + -- to avoid scoping issues in the back-end. + + T1 := Etype (Lhs); + Set_Assignment_Type (Lhs, T1); + + Resolve (Rhs, T1); + + -- Remaining steps are skipped if Rhs was synatactically in error + + if Rhs = Error then + return; + end if; + + T2 := Etype (Rhs); + Check_Unset_Reference (Rhs); + Note_Possible_Modification (Lhs); + + if Covers (T1, T2) then + null; + else + Wrong_Type (Rhs, Etype (Lhs)); + return; + end if; + + Set_Assignment_Type (Rhs, T2); + + if T1 = Any_Type or else T2 = Any_Type then + return; + end if; + + if (Is_Class_Wide_Type (T2) or else Is_Dynamically_Tagged (Rhs)) + and then not Is_Class_Wide_Type (T1) + then + Error_Msg_N ("dynamically tagged expression not allowed!", Rhs); + + elsif Is_Class_Wide_Type (T1) + and then not Is_Class_Wide_Type (T2) + and then not Is_Tag_Indeterminate (Rhs) + and then not Is_Dynamically_Tagged (Rhs) + then + Error_Msg_N ("dynamically tagged expression required!", Rhs); + end if; + + -- Tag propagation is done only in semantics mode only. If expansion + -- is on, the rhs tag indeterminate function call has been expanded + -- and tag propagation would have happened too late, so the + -- propagation take place in expand_call instead. + + if not Expander_Active + and then Is_Class_Wide_Type (T1) + and then Is_Tag_Indeterminate (Rhs) + then + Propagate_Tag (Lhs, Rhs); + end if; + + if Is_Scalar_Type (T1) then + Apply_Scalar_Range_Check (Rhs, Etype (Lhs)); + + elsif Is_Array_Type (T1) then + + -- Assignment verifies that the length of the Lsh and Rhs are equal, + -- but of course the indices do not have to match. + + Apply_Length_Check (Rhs, Etype (Lhs)); + + else + -- Discriminant checks are applied in the course of expansion. + null; + end if; + + -- ??? a real accessibility check is needed when ??? + + -- Post warning for useless assignment + + if Warn_On_Redundant_Constructs + + -- We only warn for source constructs + + and then Comes_From_Source (N) + + -- Where the entity is the same on both sides + + and then Is_Entity_Name (Lhs) + and then Is_Entity_Name (Rhs) + and then Entity (Lhs) = Entity (Rhs) + + -- But exclude the case where the right side was an operation + -- that got rewritten (e.g. JUNK + K, where K was known to be + -- zero). We don't want to warn in such a case, since it is + -- reasonable to write such expressions especially when K is + -- defined symbolically in some other package. + + and then Nkind (Original_Node (Rhs)) not in N_Op + then + Error_Msg_NE + ("?useless assignment of & to itself", N, Entity (Lhs)); + end if; + end Analyze_Assignment; + + ----------------------------- + -- Analyze_Block_Statement -- + ----------------------------- + + procedure Analyze_Block_Statement (N : Node_Id) is + Decls : constant List_Id := Declarations (N); + Id : constant Node_Id := Identifier (N); + Ent : Entity_Id; + + begin + -- If a label is present analyze it and mark it as referenced + + if Present (Id) then + Analyze (Id); + Ent := Entity (Id); + Set_Ekind (Ent, E_Block); + Generate_Reference (Ent, N, ' '); + Generate_Definition (Ent); + + if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then + Set_Label_Construct (Parent (Ent), N); + end if; + + -- Otherwise create a label entity + + else + Ent := New_Internal_Entity (E_Block, Current_Scope, Sloc (N), 'B'); + Set_Identifier (N, New_Occurrence_Of (Ent, Sloc (N))); + end if; + + Set_Etype (Ent, Standard_Void_Type); + Set_Block_Node (Ent, N); + New_Scope (Ent); + + if Present (Decls) then + Analyze_Declarations (Decls); + Check_Completion; + end if; + + Analyze (Handled_Statement_Sequence (N)); + Process_End_Label (Handled_Statement_Sequence (N), 'e'); + + -- Analyze exception handlers if present. Note that the test for + -- HSS being present is an error defence against previous errors. + + if Present (Handled_Statement_Sequence (N)) + and then Present (Exception_Handlers (Handled_Statement_Sequence (N))) + then + declare + S : Entity_Id := Scope (Ent); + + begin + -- Indicate that enclosing scopes contain a block with handlers. + -- Only non-generic scopes need to be marked. + + loop + Set_Has_Nested_Block_With_Handler (S); + exit when Is_Overloadable (S) + or else Ekind (S) = E_Package + or else Ekind (S) = E_Generic_Function + or else Ekind (S) = E_Generic_Package + or else Ekind (S) = E_Generic_Procedure; + S := Scope (S); + end loop; + end; + end if; + + Check_References (Ent); + End_Scope; + end Analyze_Block_Statement; + + ---------------------------- + -- Analyze_Case_Statement -- + ---------------------------- + + procedure Analyze_Case_Statement (N : Node_Id) is + + Statements_Analyzed : Boolean := False; + -- Set True if at least some statement sequences get analyzed. + -- If False on exit, means we had a serious error that prevented + -- full analysis of the case statement, and as a result it is not + -- a good idea to output warning messages about unreachable code. + + Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count; + -- Recursively save value of this global, will be restored on exit + + procedure Non_Static_Choice_Error (Choice : Node_Id); + -- Error routine invoked by the generic instantiation below when + -- the case statment has a non static choice. + + procedure Process_Statements (Alternative : Node_Id); + -- Analyzes all the statements associated to a case alternative. + -- Needed by the generic instantiation below. + + package Case_Choices_Processing is new + Generic_Choices_Processing + (Get_Alternatives => Alternatives, + Get_Choices => Discrete_Choices, + Process_Empty_Choice => No_OP, + Process_Non_Static_Choice => Non_Static_Choice_Error, + Process_Associated_Node => Process_Statements); + use Case_Choices_Processing; + -- Instantiation of the generic choice processing package. + + ----------------------------- + -- Non_Static_Choice_Error -- + ----------------------------- + + procedure Non_Static_Choice_Error (Choice : Node_Id) is + begin + Error_Msg_N ("choice given in case statement is not static", Choice); + end Non_Static_Choice_Error; + + ------------------------ + -- Process_Statements -- + ------------------------ + + procedure Process_Statements (Alternative : Node_Id) is + begin + Unblocked_Exit_Count := Unblocked_Exit_Count + 1; + Statements_Analyzed := True; + Analyze_Statements (Statements (Alternative)); + end Process_Statements; + + -- Variables local to Analyze_Case_Statement. + + Exp : Node_Id; + Exp_Type : Entity_Id; + Exp_Btype : Entity_Id; + + Case_Table : Choice_Table_Type (1 .. Number_Of_Choices (N)); + Last_Choice : Nat; + Dont_Care : Boolean; + Others_Present : Boolean; + + -- Start of processing for Analyze_Case_Statement + + begin + Unblocked_Exit_Count := 0; + Exp := Expression (N); + Analyze_And_Resolve (Exp, Any_Discrete); + Check_Unset_Reference (Exp); + Exp_Type := Etype (Exp); + Exp_Btype := Base_Type (Exp_Type); + + -- The expression must be of a discrete type which must be determinable + -- independently of the context in which the expression occurs, but + -- using the fact that the expression must be of a discrete type. + -- Moreover, the type this expression must not be a character literal + -- (which is always ambiguous) or, for Ada-83, a generic formal type. + + -- If error already reported by Resolve, nothing more to do + + if Exp_Btype = Any_Discrete + or else Exp_Btype = Any_Type + then + return; + + elsif Exp_Btype = Any_Character then + Error_Msg_N + ("character literal as case expression is ambiguous", Exp); + return; + + elsif Ada_83 + and then (Is_Generic_Type (Exp_Btype) + or else Is_Generic_Type (Root_Type (Exp_Btype))) + then + Error_Msg_N + ("(Ada 83) case expression cannot be of a generic type", Exp); + return; + end if; + + -- If the case expression is a formal object of mode in out, + -- then treat it as having a nonstatic subtype by forcing + -- use of the base type (which has to get passed to + -- Check_Case_Choices below). Also use base type when + -- the case expression is parenthesized. + + if Paren_Count (Exp) > 0 + or else (Is_Entity_Name (Exp) + and then Ekind (Entity (Exp)) = E_Generic_In_Out_Parameter) + then + Exp_Type := Exp_Btype; + end if; + + -- Call the instantiated Analyze_Choices which does the rest of the work + + Analyze_Choices + (N, Exp_Type, Case_Table, Last_Choice, Dont_Care, Others_Present); + + if Exp_Type = Universal_Integer and then not Others_Present then + Error_Msg_N ("case on universal integer requires OTHERS choice", Exp); + end if; + + -- If all our exits were blocked by unconditional transfers of control, + -- then the entire CASE statement acts as an unconditional transfer of + -- control, so treat it like one, and check unreachable code. Skip this + -- test if we had serious errors preventing any statement analysis. + + if Unblocked_Exit_Count = 0 and then Statements_Analyzed then + Unblocked_Exit_Count := Save_Unblocked_Exit_Count; + Check_Unreachable_Code (N); + else + Unblocked_Exit_Count := Save_Unblocked_Exit_Count; + end if; + end Analyze_Case_Statement; + + ---------------------------- + -- Analyze_Exit_Statement -- + ---------------------------- + + -- If the exit includes a name, it must be the name of a currently open + -- loop. Otherwise there must be an innermost open loop on the stack, + -- to which the statement implicitly refers. + + procedure Analyze_Exit_Statement (N : Node_Id) is + Target : constant Node_Id := Name (N); + Cond : constant Node_Id := Condition (N); + Scope_Id : Entity_Id; + U_Name : Entity_Id; + Kind : Entity_Kind; + + begin + if No (Cond) then + Check_Unreachable_Code (N); + end if; + + if Present (Target) then + Analyze (Target); + U_Name := Entity (Target); + + if not In_Open_Scopes (U_Name) or else Ekind (U_Name) /= E_Loop then + Error_Msg_N ("invalid loop name in exit statement", N); + return; + else + Set_Has_Exit (U_Name); + end if; + + else + U_Name := Empty; + end if; + + for J in reverse 0 .. Scope_Stack.Last loop + Scope_Id := Scope_Stack.Table (J).Entity; + Kind := Ekind (Scope_Id); + + if Kind = E_Loop + and then (No (Target) or else Scope_Id = U_Name) then + Set_Has_Exit (Scope_Id); + exit; + + elsif Kind = E_Block or else Kind = E_Loop then + null; + + else + Error_Msg_N + ("cannot exit from program unit or accept statement", N); + exit; + end if; + end loop; + + -- Verify that if present the condition is a Boolean expression. + + if Present (Cond) then + Analyze_And_Resolve (Cond, Any_Boolean); + Check_Unset_Reference (Cond); + end if; + end Analyze_Exit_Statement; + + ---------------------------- + -- Analyze_Goto_Statement -- + ---------------------------- + + procedure Analyze_Goto_Statement (N : Node_Id) is + Label : constant Node_Id := Name (N); + Scope_Id : Entity_Id; + Label_Scope : Entity_Id; + + begin + Check_Unreachable_Code (N); + + Analyze (Label); + + if Entity (Label) = Any_Id then + return; + + elsif Ekind (Entity (Label)) /= E_Label then + Error_Msg_N ("target of goto statement must be a label", Label); + return; + + elsif not Reachable (Entity (Label)) then + Error_Msg_N ("target of goto statement is not reachable", Label); + return; + end if; + + Label_Scope := Enclosing_Scope (Entity (Label)); + + for J in reverse 0 .. Scope_Stack.Last loop + Scope_Id := Scope_Stack.Table (J).Entity; + + if Label_Scope = Scope_Id + or else (Ekind (Scope_Id) /= E_Block + and then Ekind (Scope_Id) /= E_Loop) + then + if Scope_Id /= Label_Scope then + Error_Msg_N + ("cannot exit from program unit or accept statement", N); + end if; + + return; + end if; + end loop; + + raise Program_Error; + + end Analyze_Goto_Statement; + + -------------------------- + -- Analyze_If_Statement -- + -------------------------- + + -- A special complication arises in the analysis of if statements. + -- The expander has circuitry to completely deleted code that it + -- can tell will not be executed (as a result of compile time known + -- conditions). In the analyzer, we ensure that code that will be + -- deleted in this manner is analyzed but not expanded. This is + -- obviously more efficient, but more significantly, difficulties + -- arise if code is expanded and then eliminated (e.g. exception + -- table entries disappear). + + procedure Analyze_If_Statement (N : Node_Id) is + E : Node_Id; + + Save_Unblocked_Exit_Count : constant Nat := Unblocked_Exit_Count; + -- Recursively save value of this global, will be restored on exit + + Del : Boolean := False; + -- This flag gets set True if a True condition has been found, + -- which means that remaining ELSE/ELSIF parts are deleted. + + procedure Analyze_Cond_Then (Cnode : Node_Id); + -- This is applied to either the N_If_Statement node itself or + -- to an N_Elsif_Part node. It deals with analyzing the condition + -- and the THEN statements associated with it. + + procedure Analyze_Cond_Then (Cnode : Node_Id) is + Cond : constant Node_Id := Condition (Cnode); + Tstm : constant List_Id := Then_Statements (Cnode); + + begin + Unblocked_Exit_Count := Unblocked_Exit_Count + 1; + Analyze_And_Resolve (Cond, Any_Boolean); + Check_Unset_Reference (Cond); + + -- If already deleting, then just analyze then statements + + if Del then + Analyze_Statements (Tstm); + + -- Compile time known value, not deleting yet + + elsif Compile_Time_Known_Value (Cond) then + + -- If condition is True, then analyze the THEN statements + -- and set no expansion for ELSE and ELSIF parts. + + if Is_True (Expr_Value (Cond)) then + Analyze_Statements (Tstm); + Del := True; + Expander_Mode_Save_And_Set (False); + + -- If condition is False, analyze THEN with expansion off + + else -- Is_False (Expr_Value (Cond)) + Expander_Mode_Save_And_Set (False); + Analyze_Statements (Tstm); + Expander_Mode_Restore; + end if; + + -- Not known at compile time, not deleting, normal analysis + + else + Analyze_Statements (Tstm); + end if; + end Analyze_Cond_Then; + + -- Start of Analyze_If_Statement + + begin + -- Initialize exit count for else statements. If there is no else + -- part, this count will stay non-zero reflecting the fact that the + -- uncovered else case is an unblocked exit. + + Unblocked_Exit_Count := 1; + Analyze_Cond_Then (N); + + -- Now to analyze the elsif parts if any are present + + if Present (Elsif_Parts (N)) then + E := First (Elsif_Parts (N)); + while Present (E) loop + Analyze_Cond_Then (E); + Next (E); + end loop; + end if; + + if Present (Else_Statements (N)) then + Analyze_Statements (Else_Statements (N)); + end if; + + -- If all our exits were blocked by unconditional transfers of control, + -- then the entire IF statement acts as an unconditional transfer of + -- control, so treat it like one, and check unreachable code. + + if Unblocked_Exit_Count = 0 then + Unblocked_Exit_Count := Save_Unblocked_Exit_Count; + Check_Unreachable_Code (N); + else + Unblocked_Exit_Count := Save_Unblocked_Exit_Count; + end if; + + if Del then + Expander_Mode_Restore; + end if; + + end Analyze_If_Statement; + + ---------------------------------------- + -- Analyze_Implicit_Label_Declaration -- + ---------------------------------------- + + -- An implicit label declaration is generated in the innermost + -- enclosing declarative part. This is done for labels as well as + -- block and loop names. + + -- Note: any changes in this routine may need to be reflected in + -- Analyze_Label_Entity. + + procedure Analyze_Implicit_Label_Declaration (N : Node_Id) is + Id : Node_Id := Defining_Identifier (N); + + begin + Enter_Name (Id); + Set_Ekind (Id, E_Label); + Set_Etype (Id, Standard_Void_Type); + Set_Enclosing_Scope (Id, Current_Scope); + end Analyze_Implicit_Label_Declaration; + + ------------------------------ + -- Analyze_Iteration_Scheme -- + ------------------------------ + + procedure Analyze_Iteration_Scheme (N : Node_Id) is + begin + -- For an infinite loop, there is no iteration scheme + + if No (N) then + return; + + else + declare + Cond : constant Node_Id := Condition (N); + + begin + -- For WHILE loop, verify that the condition is a Boolean + -- expression and resolve and check it. + + if Present (Cond) then + Analyze_And_Resolve (Cond, Any_Boolean); + Check_Unset_Reference (Cond); + + -- Else we have a FOR loop + + else + declare + LP : constant Node_Id := Loop_Parameter_Specification (N); + Id : constant Entity_Id := Defining_Identifier (LP); + DS : constant Node_Id := Discrete_Subtype_Definition (LP); + F : List_Id; + + begin + Enter_Name (Id); + + -- We always consider the loop variable to be referenced, + -- since the loop may be used just for counting purposes. + + Generate_Reference (Id, N, ' '); + + -- Check for case of loop variable hiding a local + -- variable (used later on to give a nice warning + -- if the hidden variable is never assigned). + + declare + H : constant Entity_Id := Homonym (Id); + + begin + if Present (H) + and then Enclosing_Dynamic_Scope (H) = + Enclosing_Dynamic_Scope (Id) + and then Ekind (H) = E_Variable + and then Is_Discrete_Type (Etype (H)) + then + Set_Hiding_Loop_Variable (H, Id); + end if; + end; + + -- Now analyze the subtype definition + + Analyze (DS); + + if DS = Error then + return; + end if; + + -- The subtype indication may denote the completion + -- of an incomplete type declaration. + + if Is_Entity_Name (DS) + and then Present (Entity (DS)) + and then Is_Type (Entity (DS)) + and then Ekind (Entity (DS)) = E_Incomplete_Type + then + Set_Entity (DS, Get_Full_View (Entity (DS))); + Set_Etype (DS, Entity (DS)); + end if; + + if not Is_Discrete_Type (Etype (DS)) then + Wrong_Type (DS, Any_Discrete); + Set_Etype (DS, Any_Type); + end if; + + Make_Index (DS, LP); + + Set_Ekind (Id, E_Loop_Parameter); + Set_Etype (Id, Etype (DS)); + Set_Is_Known_Valid (Id, True); + + -- The loop is not a declarative part, so the only entity + -- declared "within" must be frozen explicitly. Since the + -- type of this entity has already been frozen, this cannot + -- generate any freezing actions. + + F := Freeze_Entity (Id, Sloc (LP)); + pragma Assert (F = No_List); + + -- Check for null or possibly null range and issue warning + + if Nkind (DS) = N_Range + and then Comes_From_Source (N) + and then not Inside_A_Generic + then + declare + L : constant Node_Id := Low_Bound (DS); + H : constant Node_Id := High_Bound (DS); + + Llo : Uint; + Lhi : Uint; + LOK : Boolean; + Hlo : Uint; + Hhi : Uint; + HOK : Boolean; + + begin + Determine_Range (L, LOK, Llo, Lhi); + Determine_Range (H, HOK, Hlo, Hhi); + + -- If range of loop is null, issue warning + + if (LOK and HOK) and then Llo > Hhi then + Warn_On_Instance := True; + Error_Msg_N + ("?loop range is null, loop will not execute", + DS); + Warn_On_Instance := False; + + -- The other case for a warning is a reverse loop + -- where the upper bound is the integer literal + -- zero or one, and the lower bound can be positive. + + elsif Reverse_Present (LP) + and then Nkind (H) = N_Integer_Literal + and then (Intval (H) = Uint_0 + or else + Intval (H) = Uint_1) + and then Lhi > Hhi + then + Warn_On_Instance := True; + Error_Msg_N ("?loop range may be null", DS); + Warn_On_Instance := False; + end if; + end; + end if; + end; + end if; + end; + end if; + end Analyze_Iteration_Scheme; + + ------------------- + -- Analyze_Label -- + ------------------- + + -- Important note: normally this routine is called from Analyze_Statements + -- which does a prescan, to make sure that the Reachable flags are set on + -- all labels before encountering a possible goto to one of these labels. + -- If expanded code analyzes labels via the normal Sem path, then it must + -- ensure that Reachable is set early enough to avoid problems in the case + -- of a forward goto. + + procedure Analyze_Label (N : Node_Id) is + Lab : Entity_Id; + + begin + Analyze (Identifier (N)); + Lab := Entity (Identifier (N)); + + -- If we found a label mark it as reachable. + + if Ekind (Lab) = E_Label then + Generate_Definition (Lab); + Set_Reachable (Lab); + + if Nkind (Parent (Lab)) = N_Implicit_Label_Declaration then + Set_Label_Construct (Parent (Lab), N); + end if; + + -- If we failed to find a label, it means the implicit declaration + -- of the label was hidden. A for-loop parameter can do this to a + -- label with the same name inside the loop, since the implicit label + -- declaration is in the innermost enclosing body or block statement. + + else + Error_Msg_Sloc := Sloc (Lab); + Error_Msg_N + ("implicit label declaration for & is hidden#", + Identifier (N)); + end if; + end Analyze_Label; + + -------------------------- + -- Analyze_Label_Entity -- + -------------------------- + + procedure Analyze_Label_Entity (E : Entity_Id) is + begin + Set_Ekind (E, E_Label); + Set_Etype (E, Standard_Void_Type); + Set_Enclosing_Scope (E, Current_Scope); + Set_Reachable (E, True); + end Analyze_Label_Entity; + + ---------------------------- + -- Analyze_Loop_Statement -- + ---------------------------- + + procedure Analyze_Loop_Statement (N : Node_Id) is + Id : constant Node_Id := Identifier (N); + Ent : Entity_Id; + + begin + if Present (Id) then + + -- Make name visible, e.g. for use in exit statements. Loop + -- labels are always considered to be referenced. + + Analyze (Id); + Ent := Entity (Id); + Generate_Reference (Ent, N, ' '); + Generate_Definition (Ent); + + -- If we found a label, mark its type. If not, ignore it, since it + -- means we have a conflicting declaration, which would already have + -- been diagnosed at declaration time. Set Label_Construct of the + -- implicit label declaration, which is not created by the parser + -- for generic units. + + if Ekind (Ent) = E_Label then + Set_Ekind (Ent, E_Loop); + + if Nkind (Parent (Ent)) = N_Implicit_Label_Declaration then + Set_Label_Construct (Parent (Ent), N); + end if; + end if; + + -- Case of no identifier present + + else + Ent := New_Internal_Entity (E_Loop, Current_Scope, Sloc (N), 'L'); + Set_Etype (Ent, Standard_Void_Type); + Set_Parent (Ent, N); + end if; + + New_Scope (Ent); + Analyze_Iteration_Scheme (Iteration_Scheme (N)); + Analyze_Statements (Statements (N)); + Process_End_Label (N, 'e'); + End_Scope; + end Analyze_Loop_Statement; + + ---------------------------- + -- Analyze_Null_Statement -- + ---------------------------- + + -- Note: the semantics of the null statement is implemented by a single + -- null statement, too bad everything isn't as simple as this! + + procedure Analyze_Null_Statement (N : Node_Id) is + begin + null; + end Analyze_Null_Statement; + + ------------------------ + -- Analyze_Statements -- + ------------------------ + + procedure Analyze_Statements (L : List_Id) is + S : Node_Id; + + begin + -- The labels declared in the statement list are reachable from + -- statements in the list. We do this as a prepass so that any + -- goto statement will be properly flagged if its target is not + -- reachable. This is not required, but is nice behavior! + + S := First (L); + + while Present (S) loop + if Nkind (S) = N_Label then + Analyze_Label (S); + end if; + + Next (S); + end loop; + + -- Perform semantic analysis on all statements + + S := First (L); + + while Present (S) loop + + if Nkind (S) /= N_Label then + Analyze (S); + end if; + + Next (S); + end loop; + + -- Make labels unreachable. Visibility is not sufficient, because + -- labels in one if-branch for example are not reachable from the + -- other branch, even though their declarations are in the enclosing + -- declarative part. + + S := First (L); + + while Present (S) loop + if Nkind (S) = N_Label then + Set_Reachable (Entity (Identifier (S)), False); + end if; + + Next (S); + end loop; + end Analyze_Statements; + + ---------------------------- + -- Check_Unreachable_Code -- + ---------------------------- + + procedure Check_Unreachable_Code (N : Node_Id) is + Error_Loc : Source_Ptr; + P : Node_Id; + + begin + if Is_List_Member (N) + and then Comes_From_Source (N) + then + declare + Nxt : Node_Id; + + begin + Nxt := Original_Node (Next (N)); + + if Present (Nxt) + and then Comes_From_Source (Nxt) + and then Is_Statement (Nxt) + then + -- Special very annoying exception. If we have a return that + -- follows a raise, then we allow it without a warning, since + -- the Ada RM annoyingly requires a useless return here! + + if Nkind (Original_Node (N)) /= N_Raise_Statement + or else Nkind (Nxt) /= N_Return_Statement + then + -- The rather strange shenanigans with the warning message + -- here reflects the fact that Kill_Dead_Code is very good + -- at removing warnings in deleted code, and this is one + -- warning we would prefer NOT to have removed :-) + + Error_Loc := Sloc (Nxt); + + -- If we have unreachable code, analyze and remove the + -- unreachable code, since it is useless and we don't + -- want to generate junk warnings. + + -- We skip this step if we are not in code generation mode. + -- This is the one case where we remove dead code in the + -- semantics as opposed to the expander, and we do not want + -- to remove code if we are not in code generation mode, + -- since this messes up the ASIS trees. + + -- Note that one might react by moving the whole circuit to + -- exp_ch5, but then we lose the warning in -gnatc mode. + + if Operating_Mode = Generate_Code then + loop + Nxt := Next (N); + exit when No (Nxt) or else not Is_Statement (Nxt); + Analyze (Nxt); + Remove (Nxt); + Kill_Dead_Code (Nxt); + end loop; + end if; + + -- Now issue the warning + + Error_Msg ("?unreachable code", Error_Loc); + end if; + + -- If the unconditional transfer of control instruction is + -- the last statement of a sequence, then see if our parent + -- is an IF statement, and if so adjust the unblocked exit + -- count of the if statement to reflect the fact that this + -- branch of the if is indeed blocked by a transfer of control. + + else + P := Parent (N); + + if Nkind (P) = N_If_Statement then + null; + + elsif Nkind (P) = N_Elsif_Part then + P := Parent (P); + pragma Assert (Nkind (P) = N_If_Statement); + + elsif Nkind (P) = N_Case_Statement_Alternative then + P := Parent (P); + pragma Assert (Nkind (P) = N_Case_Statement); + + else + return; + end if; + + Unblocked_Exit_Count := Unblocked_Exit_Count - 1; + end if; + end; + end if; + end Check_Unreachable_Code; + +end Sem_Ch5; |