diff options
author | Martin Liska <mliska@suse.cz> | 2017-05-30 09:16:31 +0200 |
---|---|---|
committer | Martin Liska <marxin@gcc.gnu.org> | 2017-05-30 07:16:31 +0000 |
commit | 59075bc80894016c6f7fbf4b52bcd678601fce14 (patch) | |
tree | ecd603e749dd6ccba367799fb55aada072d1af15 /contrib/analyze_brprob.py | |
parent | a582436140d3d79d43a5af27ba1601d16e3a51f8 (diff) | |
download | gcc-59075bc80894016c6f7fbf4b52bcd678601fce14.zip gcc-59075bc80894016c6f7fbf4b52bcd678601fce14.tar.gz gcc-59075bc80894016c6f7fbf4b52bcd678601fce14.tar.bz2 |
Compare predictor values with these defined in predict.def.
2017-05-30 Martin Liska <mliska@suse.cz>
* analyze_brprob.py: Add new argument to parse and modify
predict.def file.
* analyze_brprob_spec.py: Likewise.
From-SVN: r248600
Diffstat (limited to 'contrib/analyze_brprob.py')
-rwxr-xr-x | contrib/analyze_brprob.py | 80 |
1 files changed, 70 insertions, 10 deletions
diff --git a/contrib/analyze_brprob.py b/contrib/analyze_brprob.py index b4dbbc4..8f83b5a 100755 --- a/contrib/analyze_brprob.py +++ b/contrib/analyze_brprob.py @@ -90,6 +90,48 @@ def median(values): values.sort() return values[int(len(values) / 2)] +class PredictDefFile: + def __init__(self, path): + self.path = path + self.predictors = {} + + def parse_and_modify(self, heuristics, write_def_file): + lines = [x.rstrip() for x in open(self.path).readlines()] + + p = None + modified_lines = [] + for l in lines: + if l.startswith('DEF_PREDICTOR'): + m = re.match('.*"(.*)".*', l) + p = m.group(1) + elif l == '': + p = None + + if p != None: + heuristic = [x for x in heuristics if x.name == p] + heuristic = heuristic[0] if len(heuristic) == 1 else None + + m = re.match('.*HITRATE \(([^)]*)\).*', l) + if (m != None): + self.predictors[p] = int(m.group(1)) + + # modify the line + if heuristic != None: + new_line = (l[:m.start(1)] + + str(round(heuristic.get_hitrate())) + + l[m.end(1):]) + l = new_line + p = None + elif 'PROB_VERY_LIKELY' in l: + self.predictors[p] = 100 + modified_lines.append(l) + + # save the file + if write_def_file: + with open(self.path, 'w+') as f: + for l in modified_lines: + f.write(l + '\n') + class Summary: def __init__(self, name): self.name = name @@ -113,7 +155,11 @@ class Summary: v /= 1000.0 return "%.1f%s" % (v, 'Y') - def print(self, branches_max, count_max): + def print(self, branches_max, count_max, predict_def): + predicted_as = None + if predict_def != None and self.name in predict_def.predictors: + predicted_as = predict_def.predictors[self.name] + print('%-40s %8i %5.1f%% %11.2f%% %7.2f%% / %6.2f%% %14i %8s %5.1f%%' % (self.name, self.branches, percentage(self.branches, branches_max), @@ -121,7 +167,12 @@ class Summary: self.get_hitrate(), percentage(self.fits, self.count), self.count, self.count_formatted(), - percentage(self.count, count_max))) + percentage(self.count, count_max)), end = '') + + if predicted_as != None: + print('%12i%% %5.1f%%' % (predicted_as, + self.get_hitrate() - predicted_as), end = '') + print() class Profile: def __init__(self, filename): @@ -156,7 +207,7 @@ class Profile: def count_max(self): return max([v.count for k, v in self.heuristics.items()]) - def print_group(self, sorting, group_name, heuristics): + def print_group(self, sorting, group_name, heuristics, predict_def): count_max = self.count_max() branches_max = self.branches_max() @@ -170,11 +221,12 @@ class Profile: elif sorting == 'name': sorter = lambda x: x.name.lower() - print('%-40s %8s %6s %12s %18s %14s %8s %6s' % + print('%-40s %8s %6s %12s %18s %14s %8s %6s %12s %6s' % ('HEURISTICS', 'BRANCHES', '(REL)', - 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)')) + 'BR. HITRATE', 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)', + 'predict.def', '(REL)')) for h in sorted(heuristics, key = sorter): - h.print(branches_max, count_max) + h.print(branches_max, count_max, predict_def) def dump(self, sorting): heuristics = self.heuristics.values() @@ -182,14 +234,19 @@ class Profile: print('No heuristics available') return + predict_def = None + if args.def_file != None: + predict_def = PredictDefFile(args.def_file) + predict_def.parse_and_modify(heuristics, args.write_def_file) + special = list(filter(lambda x: x.name in counter_aggregates, heuristics)) normal = list(filter(lambda x: x.name not in counter_aggregates, heuristics)) - self.print_group(sorting, 'HEURISTICS', normal) + self.print_group(sorting, 'HEURISTICS', normal, predict_def) print() - self.print_group(sorting, 'HEURISTIC AGGREGATES', special) + self.print_group(sorting, 'HEURISTIC AGGREGATES', special, predict_def) if len(self.niter_vector) > 0: print ('\nLoop count: %d' % len(self.niter_vector)), @@ -206,13 +263,16 @@ parser.add_argument('dump_file', metavar = 'dump_file', parser.add_argument('-s', '--sorting', dest = 'sorting', choices = ['branches', 'branch-hitrate', 'hitrate', 'coverage', 'name'], default = 'branches') +parser.add_argument('-d', '--def-file', help = 'path to predict.def') +parser.add_argument('-w', '--write-def-file', action = 'store_true', + help = 'Modify predict.def file in order to set new numbers') args = parser.parse_args() -profile = Profile(sys.argv[1]) +profile = Profile(args.dump_file) r = re.compile(' (.*) heuristics( of edge [0-9]*->[0-9]*)?( \\(.*\\))?: (.*)%.*exec ([0-9]*) hit ([0-9]*)') loop_niter_str = ';; profile-based iteration count: ' -for l in open(args.dump_file).readlines(): +for l in open(args.dump_file): m = r.match(l) if m != None and m.group(3) == None: name = m.group(1) |