diff options
author | Martin Liska <mliska@suse.cz> | 2016-04-28 14:02:37 +0200 |
---|---|---|
committer | Martin Liska <marxin@gcc.gnu.org> | 2016-04-28 12:02:37 +0000 |
commit | 4877829bff4a8655ff3882986e6c7a20e5c3a9b6 (patch) | |
tree | 4c5bcc058ce6317bdb4ffeaa1952b629b0a17d05 /contrib/analyze_brprob.py | |
parent | 28633bbd10d6d729708c7bf4de2c1aeae3b4e75e (diff) | |
download | gcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.zip gcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.tar.gz gcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.tar.bz2 |
Replace AWK script with the python script.
* analyze_brprob: Remove.
* analyze_brprob.py: New file.
From-SVN: r235560
Diffstat (limited to 'contrib/analyze_brprob.py')
-rw-r--r-- | contrib/analyze_brprob.py | 136 |
1 files changed, 136 insertions, 0 deletions
diff --git a/contrib/analyze_brprob.py b/contrib/analyze_brprob.py new file mode 100644 index 0000000..36371ff --- /dev/null +++ b/contrib/analyze_brprob.py @@ -0,0 +1,136 @@ +#!/usr/bin/env python3 +# +# Script to analyze results of our branch prediction heuristics +# +# This file is part of GCC. +# +# GCC is free software; you can redistribute it and/or modify it under +# the terms of the GNU General Public License as published by the Free +# Software Foundation; either version 3, or (at your option) any later +# version. +# +# GCC is distributed in the hope that it will be useful, but WITHOUT ANY +# WARRANTY; without even the implied warranty of MERCHANTABILITY or +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License +# for more details. +# +# You should have received a copy of the GNU General Public License +# along with GCC; see the file COPYING3. If not see +# <http://www.gnu.org/licenses/>. */ +# +# +# +# This script is used to calculate two basic properties of the branch prediction +# heuristics - coverage and hitrate. Coverage is number of executions +# of a given branch matched by the heuristics and hitrate is probability +# that once branch is predicted as taken it is really taken. +# +# These values are useful to determine the quality of given heuristics. +# Hitrate may be directly used in predict.def. +# +# Usage: +# Step 1: Compile and profile your program. You need to use -fprofile-generate +# flag to get the profiles. +# Step 2: Make a reference run of the intrumented application. +# Step 3: Compile the program with collected profile and dump IPA profiles +# (-fprofile-use -fdump-ipa-profile-details) +# Step 4: Collect all generated dump files: +# find . -name '*.profile' | xargs cat > dump_file +# Step 5: Run the script: +# ./analyze_brprob.py dump_file +# and read results. Basically the following table is printed: +# +# HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL) +# early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0% +# guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0% +# call 18 1.4% 31.95% / 69.95% 51880179 0.2% +# loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2% +# opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8% +# opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6% +# loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5% +# loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4% +# DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9% +# no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0% +# guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1% +# first match 708 55.2% 82.30% / 82.31% 22489588691 69.0% +# combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0% +# +# +# The heuristics called "first match" is a heuristics used by GCC branch +# prediction pass and it predicts 55.2% branches correctly. As you can, +# the heuristics has very good covertage (69.05%). On the other hand, +# "opcode values nonequal (on trees)" heuristics has good hirate, but poor +# coverage. + +import sys +import os +import re + +def percentage(a, b): + return 100.0 * a / b + +class Summary: + def __init__(self, name): + self.name = name + self.branches = 0 + self.count = 0 + self.hits = 0 + self.fits = 0 + + def count_formatted(self): + v = self.count + for unit in ['','K','M','G','T','P','E','Z']: + if v < 1000: + return "%3.2f%s" % (v, unit) + v /= 1000.0 + return "%.1f%s" % (v, 'Y') + +class Profile: + def __init__(self, filename): + self.filename = filename + self.heuristics = {} + + def add(self, name, prediction, count, hits): + if not name in self.heuristics: + self.heuristics[name] = Summary(name) + + s = self.heuristics[name] + s.branches += 1 + s.count += count + if prediction < 50: + hits = count - hits + s.hits += hits + s.fits += max(hits, count - hits) + + def branches_max(self): + return max([v.branches for k, v in self.heuristics.items()]) + + def count_max(self): + return max([v.count for k, v in self.heuristics.items()]) + + def dump(self): + print('%-36s %8s %6s %-16s %14s %8s %6s' % ('HEURISTICS', 'BRANCHES', '(REL)', + 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)')) + for (k, v) in sorted(self.heuristics.items(), key = lambda x: x[1].branches): + print('%-36s %8i %5.1f%% %6.2f%% / %6.2f%% %14i %8s %5.1f%%' % + (k, v.branches, percentage(v.branches, self.branches_max ()), + percentage(v.hits, v.count), percentage(v.fits, v.count), + v.count, v.count_formatted(), percentage(v.count, self.count_max()) )) + +if len(sys.argv) != 2: + print('Usage: ./analyze_brprob.py dump_file') + exit(1) + +profile = Profile(sys.argv[1]) +r = re.compile(' (.*) heuristics: (.*)%.*exec ([0-9]*) hit ([0-9]*)') +for l in open(profile.filename).readlines(): + m = r.match(l) + if m != None: + name = m.group(1) + prediction = float(m.group(2)) + count = int(m.group(3)) + hits = int(m.group(4)) + + profile.add(name, prediction, count, hits) + +profile.dump() |