aboutsummaryrefslogtreecommitdiff
path: root/contrib/analyze_brprob.py
diff options
context:
space:
mode:
authorMartin Liska <mliska@suse.cz>2016-04-28 14:02:37 +0200
committerMartin Liska <marxin@gcc.gnu.org>2016-04-28 12:02:37 +0000
commit4877829bff4a8655ff3882986e6c7a20e5c3a9b6 (patch)
tree4c5bcc058ce6317bdb4ffeaa1952b629b0a17d05 /contrib/analyze_brprob.py
parent28633bbd10d6d729708c7bf4de2c1aeae3b4e75e (diff)
downloadgcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.zip
gcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.tar.gz
gcc-4877829bff4a8655ff3882986e6c7a20e5c3a9b6.tar.bz2
Replace AWK script with the python script.
* analyze_brprob: Remove. * analyze_brprob.py: New file. From-SVN: r235560
Diffstat (limited to 'contrib/analyze_brprob.py')
-rw-r--r--contrib/analyze_brprob.py136
1 files changed, 136 insertions, 0 deletions
diff --git a/contrib/analyze_brprob.py b/contrib/analyze_brprob.py
new file mode 100644
index 0000000..36371ff
--- /dev/null
+++ b/contrib/analyze_brprob.py
@@ -0,0 +1,136 @@
+#!/usr/bin/env python3
+#
+# Script to analyze results of our branch prediction heuristics
+#
+# This file is part of GCC.
+#
+# GCC is free software; you can redistribute it and/or modify it under
+# the terms of the GNU General Public License as published by the Free
+# Software Foundation; either version 3, or (at your option) any later
+# version.
+#
+# GCC is distributed in the hope that it will be useful, but WITHOUT ANY
+# WARRANTY; without even the implied warranty of MERCHANTABILITY or
+# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
+# for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with GCC; see the file COPYING3. If not see
+# <http://www.gnu.org/licenses/>. */
+#
+#
+#
+# This script is used to calculate two basic properties of the branch prediction
+# heuristics - coverage and hitrate. Coverage is number of executions
+# of a given branch matched by the heuristics and hitrate is probability
+# that once branch is predicted as taken it is really taken.
+#
+# These values are useful to determine the quality of given heuristics.
+# Hitrate may be directly used in predict.def.
+#
+# Usage:
+# Step 1: Compile and profile your program. You need to use -fprofile-generate
+# flag to get the profiles.
+# Step 2: Make a reference run of the intrumented application.
+# Step 3: Compile the program with collected profile and dump IPA profiles
+# (-fprofile-use -fdump-ipa-profile-details)
+# Step 4: Collect all generated dump files:
+# find . -name '*.profile' | xargs cat > dump_file
+# Step 5: Run the script:
+# ./analyze_brprob.py dump_file
+# and read results. Basically the following table is printed:
+#
+# HEURISTICS BRANCHES (REL) HITRATE COVERAGE (REL)
+# early return (on trees) 3 0.2% 35.83% / 93.64% 66360 0.0%
+# guess loop iv compare 8 0.6% 53.35% / 53.73% 11183344 0.0%
+# call 18 1.4% 31.95% / 69.95% 51880179 0.2%
+# loop guard 23 1.8% 84.13% / 84.85% 13749065956 42.2%
+# opcode values positive (on trees) 42 3.3% 15.71% / 84.81% 6771097902 20.8%
+# opcode values nonequal (on trees) 226 17.6% 72.48% / 72.84% 844753864 2.6%
+# loop exit 231 18.0% 86.97% / 86.98% 8952666897 27.5%
+# loop iterations 239 18.6% 91.10% / 91.10% 3062707264 9.4%
+# DS theory 281 21.9% 82.08% / 83.39% 7787264075 23.9%
+# no prediction 293 22.9% 46.92% / 70.70% 2293267840 7.0%
+# guessed loop iterations 313 24.4% 76.41% / 76.41% 10782750177 33.1%
+# first match 708 55.2% 82.30% / 82.31% 22489588691 69.0%
+# combined 1282 100.0% 79.76% / 81.75% 32570120606 100.0%
+#
+#
+# The heuristics called "first match" is a heuristics used by GCC branch
+# prediction pass and it predicts 55.2% branches correctly. As you can,
+# the heuristics has very good covertage (69.05%). On the other hand,
+# "opcode values nonequal (on trees)" heuristics has good hirate, but poor
+# coverage.
+
+import sys
+import os
+import re
+
+def percentage(a, b):
+ return 100.0 * a / b
+
+class Summary:
+ def __init__(self, name):
+ self.name = name
+ self.branches = 0
+ self.count = 0
+ self.hits = 0
+ self.fits = 0
+
+ def count_formatted(self):
+ v = self.count
+ for unit in ['','K','M','G','T','P','E','Z']:
+ if v < 1000:
+ return "%3.2f%s" % (v, unit)
+ v /= 1000.0
+ return "%.1f%s" % (v, 'Y')
+
+class Profile:
+ def __init__(self, filename):
+ self.filename = filename
+ self.heuristics = {}
+
+ def add(self, name, prediction, count, hits):
+ if not name in self.heuristics:
+ self.heuristics[name] = Summary(name)
+
+ s = self.heuristics[name]
+ s.branches += 1
+ s.count += count
+ if prediction < 50:
+ hits = count - hits
+ s.hits += hits
+ s.fits += max(hits, count - hits)
+
+ def branches_max(self):
+ return max([v.branches for k, v in self.heuristics.items()])
+
+ def count_max(self):
+ return max([v.count for k, v in self.heuristics.items()])
+
+ def dump(self):
+ print('%-36s %8s %6s %-16s %14s %8s %6s' % ('HEURISTICS', 'BRANCHES', '(REL)',
+ 'HITRATE', 'COVERAGE', 'COVERAGE', '(REL)'))
+ for (k, v) in sorted(self.heuristics.items(), key = lambda x: x[1].branches):
+ print('%-36s %8i %5.1f%% %6.2f%% / %6.2f%% %14i %8s %5.1f%%' %
+ (k, v.branches, percentage(v.branches, self.branches_max ()),
+ percentage(v.hits, v.count), percentage(v.fits, v.count),
+ v.count, v.count_formatted(), percentage(v.count, self.count_max()) ))
+
+if len(sys.argv) != 2:
+ print('Usage: ./analyze_brprob.py dump_file')
+ exit(1)
+
+profile = Profile(sys.argv[1])
+r = re.compile(' (.*) heuristics: (.*)%.*exec ([0-9]*) hit ([0-9]*)')
+for l in open(profile.filename).readlines():
+ m = r.match(l)
+ if m != None:
+ name = m.group(1)
+ prediction = float(m.group(2))
+ count = int(m.group(3))
+ hits = int(m.group(4))
+
+ profile.add(name, prediction, count, hits)
+
+profile.dump()