aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorJonathan Wright <jonathan.wright@arm.com>2021-02-16 23:59:22 +0000
committerJonathan Wright <jonathan.wright@arm.com>2021-04-30 18:41:11 +0100
commit1baf4ed878639536c50a7aab9e7be64da43356fd (patch)
tree1599683c4163adb622fc03dbc9345966ba3e9a03
parentb0d9aac8992c1f8c3198d9528a9867c653623dfb (diff)
downloadgcc-1baf4ed878639536c50a7aab9e7be64da43356fd.zip
gcc-1baf4ed878639536c50a7aab9e7be64da43356fd.tar.gz
gcc-1baf4ed878639536c50a7aab9e7be64da43356fd.tar.bz2
aarch64: Use RTL builtins for FP ml[as][q]_lane intrinsics
Rewrite floating-point vml[as][q]_lane Neon intrinsics to use RTL builtins rather than relying on the GCC vector extensions. Using RTL builtins allows control over the emission of fmla/fmls instructions (which we don't want here.) With this commit, the code generated by these intrinsics changes from a fused multiply-add/subtract instruction to an fmul followed by an fadd/fsub instruction. If the programmer really wants fmla/fmls instructions, they can use the vfm[as] intrinsics. gcc/ChangeLog: 2021-02-16 Jonathan Wright <jonathan.wright@arm.com> * config/aarch64/aarch64-simd-builtins.def: Add float_ml[as]_lane builtin generator macros. * config/aarch64/aarch64-simd.md (*aarch64_mul3_elt<mode>): Rename to... (mul_lane<mode>3): This, and re-order arguments. (aarch64_float_mla_lane<mode>): Define. (aarch64_float_mls_lane<mode>): Define. * config/aarch64/arm_neon.h (vmla_lane_f32): Use RTL builtin instead of GCC vector extensions. (vmlaq_lane_f32): Likewise. (vmls_lane_f32): Likewise. (vmlsq_lane_f32): Likewise.
-rw-r--r--gcc/config/aarch64/aarch64-simd-builtins.def2
-rw-r--r--gcc/config/aarch64/aarch64-simd.md58
-rw-r--r--gcc/config/aarch64/arm_neon.h8
3 files changed, 55 insertions, 13 deletions
diff --git a/gcc/config/aarch64/aarch64-simd-builtins.def b/gcc/config/aarch64/aarch64-simd-builtins.def
index 2a2fc20..8e4b4ed 100644
--- a/gcc/config/aarch64/aarch64-simd-builtins.def
+++ b/gcc/config/aarch64/aarch64-simd-builtins.def
@@ -672,6 +672,8 @@
BUILTIN_VDQF_DF (TERNOP, float_mls, 0, FP)
BUILTIN_VDQSF (TERNOP, float_mla_n, 0, FP)
BUILTIN_VDQSF (TERNOP, float_mls_n, 0, FP)
+ BUILTIN_VDQSF (QUADOP_LANE, float_mla_lane, 0, FP)
+ BUILTIN_VDQSF (QUADOP_LANE, float_mls_lane, 0, FP)
/* Implemented by aarch64_simd_bsl<mode>. */
BUILTIN_VDQQH (BSL_P, simd_bsl, 0, NONE)
diff --git a/gcc/config/aarch64/aarch64-simd.md b/gcc/config/aarch64/aarch64-simd.md
index 0f96cd0..bdee49f 100644
--- a/gcc/config/aarch64/aarch64-simd.md
+++ b/gcc/config/aarch64/aarch64-simd.md
@@ -718,18 +718,18 @@
}
)
-(define_insn "*aarch64_mul3_elt<mode>"
+(define_insn "mul_lane<mode>3"
[(set (match_operand:VMUL 0 "register_operand" "=w")
- (mult:VMUL
- (vec_duplicate:VMUL
- (vec_select:<VEL>
- (match_operand:VMUL 1 "register_operand" "<h_con>")
- (parallel [(match_operand:SI 2 "immediate_operand")])))
- (match_operand:VMUL 3 "register_operand" "w")))]
+ (mult:VMUL
+ (vec_duplicate:VMUL
+ (vec_select:<VEL>
+ (match_operand:VMUL 2 "register_operand" "<h_con>")
+ (parallel [(match_operand:SI 3 "immediate_operand" "i")])))
+ (match_operand:VMUL 1 "register_operand" "w")))]
"TARGET_SIMD"
{
- operands[2] = aarch64_endian_lane_rtx (<MODE>mode, INTVAL (operands[2]));
- return "<f>mul\\t%0.<Vtype>, %3.<Vtype>, %1.<Vetype>[%2]";
+ operands[3] = aarch64_endian_lane_rtx (<MODE>mode, INTVAL (operands[3]));
+ return "<f>mul\\t%0.<Vtype>, %1.<Vtype>, %2.<Vetype>[%3]";
}
[(set_attr "type" "neon<fp>_mul_<stype>_scalar<q>")]
)
@@ -2702,6 +2702,46 @@
}
)
+(define_expand "aarch64_float_mla_lane<mode>"
+ [(set (match_operand:VDQSF 0 "register_operand")
+ (plus:VDQSF
+ (mult:VDQSF
+ (vec_duplicate:VDQSF
+ (vec_select:<VEL>
+ (match_operand:V2SF 3 "register_operand")
+ (parallel [(match_operand:SI 4 "immediate_operand")])))
+ (match_operand:VDQSF 2 "register_operand"))
+ (match_operand:VDQSF 1 "register_operand")))]
+ "TARGET_SIMD"
+ {
+ rtx scratch = gen_reg_rtx (<MODE>mode);
+ emit_insn (gen_mul_lane<mode>3 (scratch, operands[2],
+ operands[3], operands[4]));
+ emit_insn (gen_add<mode>3 (operands[0], operands[1], scratch));
+ DONE;
+ }
+)
+
+(define_expand "aarch64_float_mls_lane<mode>"
+ [(set (match_operand:VDQSF 0 "register_operand")
+ (minus:VDQSF
+ (match_operand:VDQSF 1 "register_operand")
+ (mult:VDQSF
+ (vec_duplicate:VDQSF
+ (vec_select:<VEL>
+ (match_operand:V2SF 3 "register_operand")
+ (parallel [(match_operand:SI 4 "immediate_operand")])))
+ (match_operand:VDQSF 2 "register_operand"))))]
+ "TARGET_SIMD"
+ {
+ rtx scratch = gen_reg_rtx (<MODE>mode);
+ emit_insn (gen_mul_lane<mode>3 (scratch, operands[2],
+ operands[3], operands[4]));
+ emit_insn (gen_sub<mode>3 (operands[0], operands[1], scratch));
+ DONE;
+ }
+)
+
(define_insn "fma<mode>4"
[(set (match_operand:VHSDF 0 "register_operand" "=w")
(fma:VHSDF (match_operand:VHSDF 1 "register_operand" "w")
diff --git a/gcc/config/aarch64/arm_neon.h b/gcc/config/aarch64/arm_neon.h
index 0227cad..5328d44 100644
--- a/gcc/config/aarch64/arm_neon.h
+++ b/gcc/config/aarch64/arm_neon.h
@@ -20378,7 +20378,7 @@ __attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vmla_lane_f32 (float32x2_t __a, float32x2_t __b,
float32x2_t __c, const int __lane)
{
- return (__a + (__b * __aarch64_vget_lane_any (__c, __lane)));
+ return __builtin_aarch64_float_mla_lanev2sf (__a, __b, __c, __lane);
}
__extension__ extern __inline int16x4_t
@@ -20462,7 +20462,7 @@ __attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vmlaq_lane_f32 (float32x4_t __a, float32x4_t __b,
float32x2_t __c, const int __lane)
{
- return (__a + (__b * __aarch64_vget_lane_any (__c, __lane)));
+ return __builtin_aarch64_float_mla_lanev4sf (__a, __b, __c, __lane);
}
__extension__ extern __inline int16x8_t
@@ -20576,7 +20576,7 @@ __attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vmls_lane_f32 (float32x2_t __a, float32x2_t __b,
float32x2_t __c, const int __lane)
{
- return (__a - (__b * __aarch64_vget_lane_any (__c, __lane)));
+ return __builtin_aarch64_float_mls_lanev2sf (__a, __b, __c, __lane);
}
__extension__ extern __inline int16x4_t
@@ -20660,7 +20660,7 @@ __attribute__ ((__always_inline__, __gnu_inline__, __artificial__))
vmlsq_lane_f32 (float32x4_t __a, float32x4_t __b,
float32x2_t __c, const int __lane)
{
- return (__a - (__b * __aarch64_vget_lane_any (__c, __lane)));
+ return __builtin_aarch64_float_mls_lanev4sf (__a, __b, __c, __lane);
}
__extension__ extern __inline int16x8_t