diff options
author | Alexandre Oliva <oliva@adacore.com> | 2024-09-02 11:31:59 -0300 |
---|---|---|
committer | Alexandre Oliva <oliva@gnu.org> | 2024-09-02 11:31:59 -0300 |
commit | 410061b15a9b0a464c851173fa568e49c85570dc (patch) | |
tree | 7a88b14b5c8cb25a2b497e2c141953f9a5a26af0 | |
parent | 9223d1715918e4e8e7a59471b228f815b4a3467c (diff) | |
download | gcc-410061b15a9b0a464c851173fa568e49c85570dc.zip gcc-410061b15a9b0a464c851173fa568e49c85570dc.tar.gz gcc-410061b15a9b0a464c851173fa568e49c85570dc.tar.bz2 |
[libstdc++] [testsuite] avoid async.cc loss of precision [PR91486]
When we get to test_pr91486_wait_until(), we're about 10s past the
float_steady_clock epoch. This is enough for the 1s delta for the
timeout to come out slightly lower when the futex-less wait_until
converts the deadline from float_steady_clock to __clock_t. So we may
wake up a little too early, and end up looping one extra time to sleep
for e.g. another 954ns until we hit the deadline.
Each iteration calls float_steady_clock::now(), bumping the call_count
that we VERIFY() at the end of the subtest. Since we expect at most 3
calls, and we're going to have at the very least 3 on futex-less
targets (one in the test proper, one before wait_until_impl to compute
the deadline, and one after wait_until_impl to check whether the
deadline was hit), any such imprecision that causes an extra iteration
will reach 5 and cause the test to fail.
Initializing the epoch in the beginning of the test makes such
spurious fails due to loss of precision far less likely. I don't
suppose allowing for an extra couple of calls would be desirable.
While at that, I'm annotating unused status variables as such.
for libstdc++-v3/ChangeLog
PR libstdc++/91486
* testsuite/30_threads/async/async.cc
(test_pr91486_wait_for): Mark status as unused.
(test_pr91486_wait_until): Likewise. Initialize epoch later.
-rw-r--r-- | libstdc++-v3/testsuite/30_threads/async/async.cc | 19 |
1 files changed, 16 insertions, 3 deletions
diff --git a/libstdc++-v3/testsuite/30_threads/async/async.cc b/libstdc++-v3/testsuite/30_threads/async/async.cc index 3b157ed..2474d31 100644 --- a/libstdc++-v3/testsuite/30_threads/async/async.cc +++ b/libstdc++-v3/testsuite/30_threads/async/async.cc @@ -173,7 +173,7 @@ void test_pr91486_wait_for() std::chrono::duration<float> const wait_time = std::chrono::seconds(1); auto const start_steady = chrono::steady_clock::now(); - auto status = f1.wait_for(wait_time); + auto status __attribute__ ((__unused__)) = f1.wait_for(wait_time); auto const elapsed_steady = chrono::steady_clock::now() - start_steady; VERIFY( elapsed_steady >= std::chrono::seconds(1) ); @@ -209,7 +209,7 @@ struct float_steady_clock } }; -chrono::steady_clock::time_point float_steady_clock::epoch = chrono::steady_clock::now(); +chrono::steady_clock::time_point float_steady_clock::epoch; int float_steady_clock::call_count = 0; void test_pr91486_wait_until() @@ -218,6 +218,19 @@ void test_pr91486_wait_until() std::this_thread::sleep_for(std::chrono::seconds(1)); }); + // When we don't _GLIBCXX_HAVE_LINUX_FUTEX, we use + // condition_variables, whose wait_until converts times using + // deltas, and if too much time has elapsed since we set the epoch + // during program initialization, say if the other tests took over + // 8s and we're unlucky with the numbers, we may lose enough + // precision from the 1s delta that we don't sleep until the + // deadline, and then we may loop more times than expected. Each + // iteration will recompute the wait time from deadline - + // float_steady_clock::now(), and each such computation will bump + // float_steady_clock::call_count, so the call_count check below + // will fail spuriously. Setting the epoch just before running this + // test makes this failure mode far less likely. + float_steady_clock::epoch = chrono::steady_clock::now(); float_steady_clock::time_point const now = float_steady_clock::now(); std::chrono::duration<float> const wait_time = std::chrono::seconds(1); @@ -225,7 +238,7 @@ void test_pr91486_wait_until() VERIFY( expire > now ); auto const start_steady = chrono::steady_clock::now(); - auto status = f1.wait_until(expire); + auto status __attribute__ ((__unused__)) = f1.wait_until(expire); auto const elapsed_steady = chrono::steady_clock::now() - start_steady; // This checks that we didn't come back too soon |