1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
|
/* CTF string table management.
Copyright (C) 2019-2025 Free Software Foundation, Inc.
This file is part of libctf.
libctf is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not see
<http://www.gnu.org/licenses/>. */
#include <assert.h>
#include <ctf-impl.h>
#include <string.h>
static ctf_str_atom_t *
ctf_str_add_ref_internal (ctf_dict_t *fp, const char *str,
int flags, uint32_t *ref);
/* Convert an encoded CTF string name into a pointer to a C string, possibly
using an explicit internal provisional strtab rather than the fp-based
one. */
const char *
ctf_strraw_explicit (ctf_dict_t *fp, uint32_t name, ctf_strs_t *strtab)
{
int stid_tab = CTF_NAME_STID (name);
ctf_strs_t *ctsp = &fp->ctf_str[stid_tab];
/* For dicts in a parent/child relationship, there are two phases to string
lookup: before writeout, fp->ctf_parent->cts_len is 0, and the parent and
child are uncorrelated and lookups start at offset 0; and after writeout,
the parent's strings are incorporated into the child and further
modification of the parent's strtab (even the addition of new strings) is
prohibited. This prohibition means that ctf_prov_strtab is safe to use:
the "start" of the child strtab will never be observed changing. */
if (stid_tab == CTF_STRTAB_0)
{
if (_libctf_unlikely_ (fp->ctf_flags & LCTF_NO_STR))
{
ctf_set_errno (fp, ECTF_NOPARENT);
ctf_err_warn (fp, 0, 0, _("internal error: attempt to look up strings in child before parent is imported"));
return NULL;
}
if (fp->ctf_parent
&& _libctf_unlikely_ (fp->ctf_header->cth_parent_strlen != 0
&& fp->ctf_header->cth_parent_strlen !=
fp->ctf_parent->ctf_str[CTF_STRTAB_0].cts_len))
{
ctf_set_errno (fp, ECTF_BADNAME);
ctf_err_warn (fp, 0, 0, _("lookup of string in child with wrongly-associated parent: "
"child dict's parent strtab offset: %x; "
"actual parent strtab offset: %zx"),
fp->ctf_header->cth_parent_strlen,
fp->ctf_parent->ctf_str[CTF_STRTAB_0].cts_len);
return NULL;
}
if (name < fp->ctf_header->cth_parent_strlen)
ctsp = &fp->ctf_parent->ctf_str[CTF_STRTAB_0];
else
{
name -= fp->ctf_header->cth_parent_strlen;
if (strtab != NULL)
ctsp = strtab;
else
ctsp = &fp->ctf_str[CTF_STRTAB_0];
}
}
/* If this name is in the external strtab, and there is a synthetic strtab,
use it in preference. (This is used to add the set of strings -- symbol
names, etc -- the linker knows about before the strtab is written out.
The set is added to every dict, so we don't need to scan the parent.) */
if (stid_tab == CTF_STRTAB_1 && fp->ctf_syn_ext_strtab != NULL)
return ctf_dynhash_lookup (fp->ctf_syn_ext_strtab,
(void *) (uintptr_t) name);
/* If the name (adjusted to allow for names in the parent) is in the internal
strtab, and the name offset is beyond the end of the ctsp->cts_len but
below the ctf_str_prov_offset, this is a provisional string added by
ctf_str_add*() but not yet built into a real strtab: get the value out of
the ctf_prov_strtab. */
if (stid_tab == CTF_STRTAB_0
&& name >= ctsp->cts_len && name < fp->ctf_str_prov_offset)
return ctf_dynhash_lookup (fp->ctf_prov_strtab,
(void *) (uintptr_t) name);
if (ctsp->cts_strs != NULL && CTF_NAME_OFFSET (name) < ctsp->cts_len)
return (ctsp->cts_strs + CTF_NAME_OFFSET (name));
ctf_err_warn (fp, 1, 0, _("offset %x: strtab not found or corrupt offset: cts_len is %zx, parent strlen is %u, cts_strs is %p"),
CTF_NAME_OFFSET (name), ctsp->cts_len, fp->ctf_header->cth_parent_strlen, ctsp->cts_strs);
/* String table not loaded or corrupt offset. */
return NULL;
}
/* Convert an encoded CTF string name into a pointer to a C string by looking
up the appropriate string table buffer and then adding the offset. */
const char *
ctf_strraw (ctf_dict_t *fp, uint32_t name)
{
return ctf_strraw_explicit (fp, name, NULL);
}
/* Return a guaranteed-non-NULL pointer to the string with the given CTF
name. */
const char *
ctf_strptr (ctf_dict_t *fp, uint32_t name)
{
const char *s = ctf_strraw (fp, name);
return (s != NULL ? s : "(?)");
}
/* As above, but return info on what is wrong in more detail.
(Used for type lookups.) */
const char *
ctf_strptr_validate (ctf_dict_t *fp, uint32_t name)
{
const char *str;
ctf_set_errno (fp, 0);
str = ctf_strraw (fp, name);
/* Only report errors if ctf_strraw() didn't already. */
if (str == NULL && ctf_errno (fp) == 0)
{
if (CTF_NAME_STID (name) == CTF_STRTAB_1
&& fp->ctf_syn_ext_strtab == NULL
&& fp->ctf_str[CTF_NAME_STID (name)].cts_strs == NULL)
{
ctf_set_errno (fp, ECTF_STRTAB);
return NULL;
}
ctf_set_errno (fp, ECTF_BADNAME);
return NULL;
}
return str;
}
/* Remove all refs to a given atom. */
static void
ctf_str_purge_atom_refs (ctf_dict_t *fp, ctf_str_atom_t *atom)
{
ctf_str_atom_ref_t *ref, *next;
for (ref = ctf_list_next (&atom->csa_refs); ref != NULL; ref = next)
{
next = ctf_list_next (ref);
ctf_list_delete (&atom->csa_refs, ref);
ctf_dynhash_remove (fp->ctf_str_movable_refs, ref);
free (ref);
}
}
/* Free an atom. */
static void
ctf_str_free_atom (void *a, void *fp_)
{
ctf_str_atom_t *atom = a;
ctf_dict_t *fp = fp_;
ctf_str_purge_atom_refs (fp, atom);
if (atom->csa_flags & CTF_STR_ATOM_FREEABLE)
free (atom->csa_str);
free (atom);
}
/* Create the atoms table. There is always at least one atom in it, the null
string: but also pull in atoms from the internal strtab. (We rely on
calls to ctf_str_add_external to populate external strtab entries, since
these are often not quite the same as what appears in any external
strtab, and the external strtab is often huge and best not aggressively
pulled in.)
Note that the *final strtab* may be entirely empty, if all its strings are
shared with the parent: the atoms table is a superset. (But this will never
happen in practice, because some header fields are explicitly never
deduplicated.) */
int
ctf_str_create_atoms (ctf_dict_t *fp)
{
size_t i;
fp->ctf_str_atoms = ctf_dynhash_create_arg (ctf_hash_string, ctf_hash_eq_string,
NULL, ctf_str_free_atom, fp);
if (!fp->ctf_str_atoms)
return -ENOMEM;
if (!fp->ctf_prov_strtab)
fp->ctf_prov_strtab = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_prov_strtab)
goto oom_prov_strtab;
fp->ctf_str_movable_refs = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_str_movable_refs)
goto oom_movable_refs;
errno = 0;
ctf_str_add (fp, "");
if (errno == ENOMEM)
goto oom_str_add;
/* Pull in all the strings in the strtab as new atoms. The provisional
strtab must be empty at this point, so there is no need to populate
atoms from it as well. Types in this subset are frozen and readonly,
so the refs list and movable refs list need not be populated. The
offsets are not parent-relative, so we don't need to have imported any
dicts at this stage, and the parent need not be considered. */
for (i = 0; i < fp->ctf_str[CTF_STRTAB_0].cts_len;
i += strlen (&fp->ctf_str[CTF_STRTAB_0].cts_strs[i]) + 1)
{
ctf_str_atom_t *atom;
if (fp->ctf_str[CTF_STRTAB_0].cts_strs[i] == 0)
continue;
atom = ctf_str_add_ref_internal (fp, &fp->ctf_str[CTF_STRTAB_0].cts_strs[i],
0, 0);
if (!atom)
goto oom_str_add;
atom->csa_offset = i;
}
fp->ctf_str_prov_offset = fp->ctf_str[CTF_STRTAB_0].cts_len + 1;
return 0;
oom_str_add:
ctf_dynhash_destroy (fp->ctf_str_movable_refs);
fp->ctf_str_movable_refs = NULL;
oom_movable_refs:
ctf_dynhash_destroy (fp->ctf_prov_strtab);
fp->ctf_prov_strtab = NULL;
oom_prov_strtab:
ctf_dynhash_destroy (fp->ctf_str_atoms);
fp->ctf_str_atoms = NULL;
return -ENOMEM;
}
/* Destroy the atoms table and associated refs. */
void
ctf_str_free_atoms (ctf_dict_t *fp)
{
ctf_dynhash_destroy (fp->ctf_prov_strtab);
ctf_dynhash_destroy (fp->ctf_str_atoms);
ctf_dynhash_destroy (fp->ctf_str_movable_refs);
if (fp->ctf_dynstrtab)
{
free (fp->ctf_dynstrtab->cts_strs);
free (fp->ctf_dynstrtab);
}
}
#define CTF_STR_ADD_REF 0x1
#define CTF_STR_PROVISIONAL 0x2
#define CTF_STR_MOVABLE 0x4
#define CTF_STR_COPY 0x8
#define CTF_STR_NO_DEDUP 0x10
/* Allocate a ref and bind it into a ref list. */
static ctf_str_atom_ref_t *
aref_create (ctf_dict_t *fp, ctf_str_atom_t *atom, uint32_t *ref, int flags)
{
ctf_str_atom_ref_t *aref;
aref = malloc (sizeof (struct ctf_str_atom_ref));
if (!aref)
return NULL;
aref->caf_ref = ref;
/* Movable refs get a backpointer to them in ctf_str_movable_refs: they can be
moved later in batches via a call to ctf_str_move_refs. */
if (flags & CTF_STR_MOVABLE)
{
if (ctf_dynhash_insert (fp->ctf_str_movable_refs, ref, aref) < 0)
{
free (aref);
return NULL;
}
}
ctf_list_append (&atom->csa_refs, aref);
return aref;
}
/* Add a string to the atoms table, copying the passed-in string if
necessary. Return the atom added. Return NULL only when out of memory
(and do not touch the passed-in string in that case).
Possibly add a provisional entry for this string to the provisional
strtab. If the string is in the provisional strtab, update its ref list
with the passed-in ref, causing the ref to be updated when the strtab is
written out. */
static ctf_str_atom_t *
ctf_str_add_ref_internal (ctf_dict_t *fp, const char *str,
int flags, uint32_t *ref)
{
char *newstr = NULL;
ctf_str_atom_t *atom = NULL;
int added = 0;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, str);
/* Existing atoms get refs added only if they are provisional:
non-provisional strings already have a fixed strtab offset, and just
get their ref updated immediately, since its value cannot change. */
if (atom)
{
if (flags & CTF_STR_NO_DEDUP)
atom->csa_flags |= CTF_STR_ATOM_NO_DEDUP;
if (!ctf_dynhash_lookup (fp->ctf_prov_strtab, (void *) (uintptr_t)
atom->csa_offset))
{
if (flags & CTF_STR_ADD_REF)
{
if (atom->csa_external_offset)
*ref = atom->csa_external_offset;
else
*ref = atom->csa_offset;
}
return atom;
}
if (flags & CTF_STR_ADD_REF)
{
if (!aref_create (fp, atom, ref, flags))
{
ctf_set_errno (fp, ENOMEM);
return NULL;
}
}
return atom;
}
/* New atom. Prohibited if this is a parent dict with children and a
non-empty existing strtab. */
if (fp->ctf_str[CTF_STRTAB_0].cts_len != 0
&& fp->ctf_max_children != 0)
{
ctf_set_errno (fp, ECTF_RDONLY);
ctf_err_warn (fp, 0, 0, _("attempt to add strings to a serialized parent dict"));
return NULL;
}
if ((atom = malloc (sizeof (struct ctf_str_atom))) == NULL)
goto oom;
memset (atom, 0, sizeof (struct ctf_str_atom));
if (flags & CTF_STR_NO_DEDUP)
atom->csa_flags |= CTF_STR_ATOM_NO_DEDUP;
/* Special case: there is always only one "", and it is always in the parent
if there is a parent/child relationship in force (even though it is
explicitly skipped in the deduplicator; see ctf_dedup_strings). */
if (str[0] == 0)
atom->csa_flags |= CTF_STR_ATOM_IN_PARENT;
/* Don't allocate new strings if this string is within an mmapped
strtab, unless forced. */
if (flags & CTF_STR_COPY
|| ((unsigned char *) str < (unsigned char *) fp->ctf_data_mmapped
|| (unsigned char *) str > (unsigned char *) fp->ctf_data_mmapped + fp->ctf_data_mmapped_len))
{
if ((newstr = strdup (str)) == NULL)
goto oom;
atom->csa_flags |= CTF_STR_ATOM_FREEABLE;
atom->csa_str = newstr;
}
else
atom->csa_str = (char *) str;
if (ctf_dynhash_insert (fp->ctf_str_atoms, atom->csa_str, atom) < 0)
goto oom;
added = 1;
atom->csa_snapshot_id = fp->ctf_snapshots;
/* New atoms marked provisional go into the provisional strtab, and get a ref
added. The offset starts at 1, so may overlap with values in the parent:
offsets are always adjusted by the size of the parent strtab before lookup
to compensate for this. */
if (flags & CTF_STR_PROVISIONAL)
{
atom->csa_offset = fp->ctf_str_prov_offset;
if (ctf_dynhash_insert (fp->ctf_prov_strtab, (void *) (uintptr_t)
atom->csa_offset, (void *) atom->csa_str) < 0)
goto oom;
fp->ctf_str_prov_offset += strlen (atom->csa_str) + 1;
if (flags & CTF_STR_ADD_REF)
{
if (!aref_create (fp, atom, ref, flags))
goto oom;
}
}
return atom;
oom:
if (added)
ctf_dynhash_remove (fp->ctf_str_atoms, atom->csa_str);
free (atom);
free (newstr);
ctf_set_errno (fp, ENOMEM);
return NULL;
}
static uint32_t
ctf_str_add_flagged (ctf_dict_t *fp, const char *str, uint32_t *ref,
int flags)
{
ctf_str_atom_t *atom;
uint32_t offset;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, flags, ref);
if (!atom)
return 0;
offset = atom->csa_offset + fp->ctf_header->cth_parent_strlen;
if (atom->csa_external_offset)
offset = atom->csa_external_offset;
return offset;
}
/* Add a string to the atoms table, without augmenting the ref list for this
string: return a 'provisional offset' which can be used to return this string
until ctf_str_write_strtab is called, or 0 on failure. (Everywhere the
provisional offset is assigned to should be added as a ref using
ctf_str_add_ref() as well.)
If this atom is already known to have an external offset, the external offset
is simply returned unchanged. */
uint32_t
ctf_str_add (ctf_dict_t *fp, const char *str)
{
return ctf_str_add_flagged (fp, str, 0, CTF_STR_PROVISIONAL);
}
/* Like ctf_str_add, but always take a copy of the string rather than using a
reference into an mmapped region where possible. Useful only when sharing
strings between dicts (which is rare indeed). */
uint32_t
ctf_str_add_copy (ctf_dict_t *fp, const char *str)
{
return ctf_str_add_flagged (fp, str, 0, CTF_STR_PROVISIONAL | CTF_STR_COPY);
}
/* Like ctf_str_add(), but additionally augment the atom's refs list with the
passed-in ref, whether or not the string is already present. There is no
attempt to deduplicate the refs list (but duplicates are harmless). */
uint32_t
ctf_str_add_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
return ctf_str_add_flagged (fp, str, ref,
CTF_STR_ADD_REF | CTF_STR_PROVISIONAL);
}
/* Like ctf_str_add_ref(), but prevent this string from being deduplicated. */
uint32_t
ctf_str_add_no_dedup_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
return ctf_str_add_flagged (fp, str, ref,
CTF_STR_ADD_REF | CTF_STR_PROVISIONAL
| CTF_STR_NO_DEDUP);
}
/* Like ctf_str_add_ref(), but note that the ref may be moved later on. */
uint32_t
ctf_str_add_movable_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
return ctf_str_add_flagged (fp, str, ref,
CTF_STR_ADD_REF | CTF_STR_PROVISIONAL
| CTF_STR_MOVABLE);
}
/* Add an external strtab reference at OFFSET. Returns zero if the addition
failed, nonzero otherwise. */
int
ctf_str_add_external (ctf_dict_t *fp, const char *str, uint32_t offset)
{
ctf_str_atom_t *atom;
if (!str)
str = "";
atom = ctf_str_add_ref_internal (fp, str, 0, 0);
if (!atom)
return 0;
atom->csa_external_offset = CTF_SET_STID (offset, CTF_STRTAB_1);
if (!fp->ctf_syn_ext_strtab)
fp->ctf_syn_ext_strtab = ctf_dynhash_create (ctf_hash_integer,
ctf_hash_eq_integer,
NULL, NULL);
if (!fp->ctf_syn_ext_strtab)
{
ctf_set_errno (fp, ENOMEM);
return 0;
}
if (ctf_dynhash_insert (fp->ctf_syn_ext_strtab,
(void *) (uintptr_t)
atom->csa_external_offset,
(void *) atom->csa_str) < 0)
{
/* No need to bother freeing the syn_ext_strtab: it will get freed at
ctf_str_write_strtab time if unreferenced. */
ctf_set_errno (fp, ENOMEM);
return 0;
}
return 1;
}
/* Note that refs have moved from (SRC, LEN) to DEST. We use the movable
refs backpointer for this, because it is done an amortized-constant
number of times during structure member and enumerand addition, and if we
did a linear search this would turn such addition into an O(n^2)
operation. */
int
ctf_str_move_refs (ctf_dict_t *fp, void *src, size_t len, void *dest)
{
uintptr_t p;
if (src == dest)
return 0;
for (p = (uintptr_t) src; p - (uintptr_t) src < len; p++)
{
ctf_str_atom_ref_t *ref;
if ((ref = ctf_dynhash_lookup (fp->ctf_str_movable_refs,
(ctf_str_atom_ref_t *) p)) != NULL)
{
int out_of_memory;
ref->caf_ref = (uint32_t *) (((uintptr_t) ref->caf_ref +
(uintptr_t) dest - (uintptr_t) src));
ctf_dynhash_remove (fp->ctf_str_movable_refs,
(ctf_str_atom_ref_t *) p);
out_of_memory = ctf_dynhash_insert (fp->ctf_str_movable_refs,
ref->caf_ref, ref);
assert (out_of_memory == 0);
}
}
return 0;
}
/* Remove a single ref. */
void
ctf_str_remove_ref (ctf_dict_t *fp, const char *str, uint32_t *ref)
{
ctf_str_atom_ref_t *aref, *anext;
ctf_str_atom_t *atom = NULL;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, str);
if (!atom)
return;
for (aref = ctf_list_next (&atom->csa_refs); aref != NULL; aref = anext)
{
anext = ctf_list_next (aref);
if (aref->caf_ref == ref)
{
ctf_list_delete (&atom->csa_refs, aref);
ctf_dynhash_remove (fp->ctf_str_movable_refs, ref);
free (aref);
}
}
}
/* A ctf_dynhash_iter_remove() callback that removes atoms later than a given
snapshot ID. External atoms are never removed, because they came from the
linker string table and are still present even if you roll back type
additions. */
static int
ctf_str_rollback_atom (void *key _libctf_unused_, void *value, void *arg)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_snapshot_id_t *id = (ctf_snapshot_id_t *) arg;
return (atom->csa_snapshot_id > id->snapshot_id)
&& (atom->csa_external_offset == 0);
}
/* Roll back, deleting all (internal) atoms created after a particular ID. */
void
ctf_str_rollback (ctf_dict_t *fp, ctf_snapshot_id_t id)
{
ctf_dynhash_iter_remove (fp->ctf_str_atoms, ctf_str_rollback_atom, &id);
}
/* An adaptor around ctf_purge_atom_refs. */
static void
ctf_str_purge_one_atom_refs (void *key _libctf_unused_, void *value,
void *arg)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) value;
ctf_dict_t *fp = (ctf_dict_t *) arg;
ctf_str_purge_atom_refs (fp, atom);
}
/* Remove all the recorded refs from the atoms table. */
void
ctf_str_purge_refs (ctf_dict_t *fp)
{
ctf_dynhash_iter (fp->ctf_str_atoms, ctf_str_purge_one_atom_refs, fp);
}
/* Update a list of refs to the specified value. */
static void
ctf_str_update_refs (ctf_str_atom_t *refs, uint32_t value)
{
ctf_str_atom_ref_t *ref;
for (ref = ctf_list_next (&refs->csa_refs); ref != NULL;
ref = ctf_list_next (ref))
*(ref->caf_ref) = value;
}
/* Sort the strtab. */
static int
ctf_str_sort_strtab (const void *a, const void *b)
{
ctf_str_atom_t **one = (ctf_str_atom_t **) a;
ctf_str_atom_t **two = (ctf_str_atom_t **) b;
return (strcmp ((*one)->csa_str, (*two)->csa_str));
}
/* Write out and return a strtab containing all strings with recorded refs,
adjusting the refs to refer to the corresponding string. The returned
strtab is already assigned to strtab 0 in this dict, is owned by this
dict, and may be NULL on error. Also populate the synthetic strtab with
mappings from external strtab offsets to names, so we can look them up
with ctf_strptr(). Only external strtab offsets with references are
added.
As a side effect, replaces the strtab of the current dict with the newly-
generated strtab. This is an exception to the general rule that
serialization does not change the dict passed in, because the alternative
is to copy the entire atoms table on every reserialization just to avoid
modifying the original, which is excessively costly for minimal gain.
We use the lazy man's approach and double memory costs by always storing
atoms as individually allocated entities whenever they come from anywhere
but a freshly-opened, mmapped dict, even though after serialization there
is another copy in the strtab; this ensures that ctf_strptr()-returned
pointers to them remain valid for the lifetime of the dict.
This is all rendered more complex because if a dict is ctf_open()ed it
will have a bunch of strings in its strtab already, and their strtab
offsets can never change (without piles of complexity to rescan the
entire dict just to get all the offsets to all of them into the atoms
table). Entries below the existing strtab limit are just copied into the
new dict: entries above it are new, and are are sorted first, then
appended to it. The sorting is purely a compression-efficiency
improvement, and we get nearly as good an improvement from sorting big
chunks like this as we would from sorting the whole thing. */
const ctf_strs_writable_t *
ctf_str_write_strtab (ctf_dict_t *fp)
{
ctf_strs_writable_t *strtab;
size_t strtab_count = 0;
uint32_t cur_stroff = 0;
ctf_str_atom_t **sorttab;
ctf_next_t *it = NULL;
size_t i;
void *v;
int err;
int new_strtab = 0;
int any_external = 0;
/* Writing a full v4 shared-with-parent child strtab is possible only if the
parent has already been written out. */
if (fp->ctf_parent && fp->ctf_header->cth_parent_strlen != 0)
{
if (ctf_dynhash_elements (fp->ctf_parent->ctf_prov_strtab) != 0)
{
ctf_set_errno (fp, ECTF_NOTSERIALIZED);
ctf_err_warn (fp, 0, 0, _("attempt to write strtab with unserialized parent"));
return NULL;
}
/* Writing such a child strtab is possible only if the parent strtab has not
changed length. */
if (fp->ctf_header->cth_parent_strlen != fp->ctf_parent->ctf_str[CTF_STRTAB_0].cts_len)
{
ctf_set_errno (fp, ECTF_WRONGPARENT);
ctf_err_warn (fp, 0, 0, _("cannot serialize child strtab: "
"parent strtab has changed length from %x to %zx\n"),
fp->ctf_header->cth_parent_strlen,
fp->ctf_parent->ctf_str[CTF_STRTAB_0].cts_len);
return NULL;
}
}
strtab = calloc (1, sizeof (ctf_strs_writable_t));
if (!strtab)
return NULL;
/* The strtab contains the existing string table at its start: figure out how
many new strings we need to add. We only need to add new strings that have
no external offset, that have refs, and that are found in the provisional
strtab. If the existing strtab is empty and has no parent strings, we also
need to add the null string at its start. (Dicts promoted from CTFv3 and
below always have no parent strings in this sense.) */
strtab->cts_len = fp->ctf_str[CTF_STRTAB_0].cts_len;
if (strtab->cts_len == 0 && fp->ctf_header->cth_parent_strlen == 0)
{
new_strtab = 1;
strtab->cts_len++; /* For the \0. */
}
/* Count new entries in the strtab: i.e. entries in the provisional
strtab. Ignore any entry for \0, entries which ended up in the
external strtab, and unreferenced entries. */
while ((err = ctf_dynhash_next (fp->ctf_prov_strtab, &it, NULL, &v)) == 0)
{
const char *str = (const char *) v;
ctf_str_atom_t *atom;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, str);
if (!ctf_assert (fp, atom))
goto err_strtab;
if (atom->csa_str[0] == 0 || atom->csa_external_offset
|| ctf_list_empty_p (&atom->csa_refs))
continue;
strtab->cts_len += strlen (atom->csa_str) + 1;
strtab_count++;
}
if (err != ECTF_NEXT_END)
{
ctf_dprintf ("ctf_str_write_strtab: error counting strtab entries: %s\n",
ctf_errmsg (err));
goto err_strtab;
}
ctf_dprintf ("%lu bytes of strings in strtab: %lu pre-existing.\n",
(unsigned long) strtab->cts_len,
(unsigned long) fp->ctf_str[CTF_STRTAB_0].cts_len);
/* Sort the new part of the strtab. */
sorttab = calloc (strtab_count, sizeof (ctf_str_atom_t *));
if (!sorttab)
{
ctf_set_errno (fp, ENOMEM);
goto err_strtab;
}
i = 0;
while ((err = ctf_dynhash_next (fp->ctf_prov_strtab, &it, NULL, &v)) == 0)
{
ctf_str_atom_t *atom;
atom = ctf_dynhash_lookup (fp->ctf_str_atoms, v);
if (!ctf_assert (fp, atom))
goto err_sorttab;
if (atom->csa_str[0] == 0 || atom->csa_external_offset
|| ctf_list_empty_p (&atom->csa_refs))
continue;
sorttab[i++] = atom;
}
qsort (sorttab, strtab_count, sizeof (ctf_str_atom_t *),
ctf_str_sort_strtab);
if ((strtab->cts_strs = malloc (strtab->cts_len)) == NULL)
goto err_sorttab;
cur_stroff = fp->ctf_str[CTF_STRTAB_0].cts_len;
if (new_strtab)
{
strtab->cts_strs[0] = 0;
cur_stroff++;
}
else
memcpy (strtab->cts_strs, fp->ctf_str[CTF_STRTAB_0].cts_strs,
fp->ctf_str[CTF_STRTAB_0].cts_len);
/* Work over the sorttab, add its strings to the strtab, and remember
where they are in the csa_offset for the appropriate atom. No ref
updating is done at this point, because refs might well relate to
already-existing strings, or external strings, which do not need adding
to the strtab and may not be in the sorttab. */
for (i = 0; i < strtab_count; i++)
{
sorttab[i]->csa_offset = cur_stroff;
strcpy (&strtab->cts_strs[cur_stroff], sorttab[i]->csa_str);
cur_stroff += strlen (sorttab[i]->csa_str) + 1;
}
free (sorttab);
sorttab = NULL;
/* Update all refs (incorporating any parent strtab offset adjustment), then
purge them as no longer necessary: also update the strtab appropriately.
Some atoms (with refs updated after the parent was serialized) may be in
the parent: use the parent's csa_offset instead -- but not its ref list,
which will already have been updated and emptied. */
while ((err = ctf_dynhash_next (fp->ctf_str_atoms, &it, NULL, &v)) == 0)
{
ctf_str_atom_t *atom = (ctf_str_atom_t *) v;
uint32_t offset;
if (ctf_list_empty_p (&atom->csa_refs))
continue;
if (atom->csa_external_offset)
{
any_external = 1;
offset = atom->csa_external_offset;
}
else
{
if (atom->csa_flags & CTF_STR_ATOM_IN_PARENT
&& fp->ctf_parent)
{
ctf_str_atom_t *parent_atom;
parent_atom = ctf_dynhash_lookup (fp->ctf_parent->ctf_str_atoms,
atom->csa_str);
if (parent_atom)
offset = parent_atom->csa_offset;
else
offset = atom->csa_offset + fp->ctf_header->cth_parent_strlen;
atom->csa_flags &= ~CTF_STR_ATOM_IN_PARENT;
}
else
offset = atom->csa_offset + fp->ctf_header->cth_parent_strlen;
}
ctf_str_update_refs (atom, offset);
}
if (err != ECTF_NEXT_END)
{
ctf_dprintf ("ctf_str_write_strtab: error iterating over atoms while updating refs: %s\n",
ctf_errmsg (err));
goto err_strtab;
}
ctf_str_purge_refs (fp);
if (!any_external)
{
ctf_dynhash_destroy (fp->ctf_syn_ext_strtab);
fp->ctf_syn_ext_strtab = NULL;
}
/* Replace the old strtab with the new one in this dict. */
if (fp->ctf_dynstrtab)
{
free (fp->ctf_dynstrtab->cts_strs);
free (fp->ctf_dynstrtab);
}
fp->ctf_dynstrtab = strtab;
fp->ctf_str[CTF_STRTAB_0].cts_strs = strtab->cts_strs;
fp->ctf_str[CTF_STRTAB_0].cts_len = strtab->cts_len;
/* All the provisional strtab entries are now real strtab entries, and
ctf_strptr() will find them there. The provisional offset now starts right
beyond the new end of the strtab. */
ctf_dynhash_empty (fp->ctf_prov_strtab);
fp->ctf_str_prov_offset = strtab->cts_len + 1;
return strtab;
err_sorttab:
free (sorttab);
err_strtab:
free (strtab);
return NULL;
}
|