aboutsummaryrefslogtreecommitdiff
path: root/libctf/ctf-open.c
blob: 3a09908e49005829f2c88c07233ea0476b9736d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
/* Opening CTF files.
   Copyright (C) 2019-2025 Free Software Foundation, Inc.

   This file is part of libctf.

   libctf is free software; you can redistribute it and/or modify it under
   the terms of the GNU General Public License as published by the Free
   Software Foundation; either version 3, or (at your option) any later
   version.

   This program is distributed in the hope that it will be useful, but
   WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
   See the GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; see the file COPYING.  If not see
   <http://www.gnu.org/licenses/>.  */

#include <ctf-impl.h>
#include <stddef.h>
#include <string.h>
#include <sys/types.h>
#include <elf.h>
#include "swap.h"
#include <bfd.h>
#include <zlib.h>

static const ctf_dmodel_t _libctf_models[] = {
  {"ILP32", CTF_MODEL_ILP32, 4, 1, 2, 4, 4},
  {"LP64", CTF_MODEL_LP64, 8, 1, 2, 4, 8},
  {NULL, 0, 0, 0, 0, 0, 0}
};

const char _CTF_SECTION[] = ".ctf";
const char _CTF_NULLSTR[] = "";

/* Version-sensitive accessors.  */

static uint32_t
get_kind_v1 (uint32_t info)
{
  return (CTF_V1_INFO_KIND (info));
}

static uint32_t
get_prefixed_kind_v1 (const ctf_type_t *tp)
{
  return (CTF_V1_INFO_KIND (tp->info));
}

static uint32_t
get_root_v1 (uint32_t info)
{
  return !!(CTF_V1_INFO_ISROOT (info));
}

static uint32_t
get_vlen_v1 (uint32_t info)
{
  return (CTF_V1_INFO_VLEN (info));
}

static uint32_t
get_prefixed_vlen_v1 (const ctf_type_t *tp)
{
  return (CTF_V1_INFO_VLEN (tp->info));
}

static uint32_t
get_kind_v2 (uint32_t info)
{
  return (CTF_V2_INFO_KIND (info));
}

static uint32_t
get_prefixed_kind_v2 (const ctf_type_t *tp)
{
  return (CTF_V2_INFO_KIND (tp->info));
}

static uint32_t
get_root_v2 (uint32_t info)
{
  return !!(CTF_V2_INFO_ISROOT (info));
}

static uint32_t
get_vlen_v2 (uint32_t info)
{
  return (CTF_V2_INFO_VLEN (info));
}

static uint32_t
get_prefixed_vlen_v2 (const ctf_type_t *tp)
{
  return (CTF_V2_INFO_VLEN (tp->info));
}

static uint32_t
get_kind_v4 (uint32_t info)
{
  return (CTF_INFO_KIND (info));
}

static uint32_t
get_prefixed_kind_v4 (const ctf_type_t *tp)
{
  uint32_t kind;

  /* Resolve away as many prefixes as exist.  */

  while (LCTF_IS_PREFIXED_KIND (tp->info))
    tp++;

  return CTF_INFO_KIND (tp->info);
}

static uint32_t
get_root_v4 (uint32_t info)
{
  return (CTF_INFO_KIND (info) == CTF_K_CONFLICTING);
}

static uint32_t
get_vlen_v4 (uint32_t info)
{
  return (CTF_INFO_VLEN (info));
}

static uint32_t
get_prefixed_vlen_v4 (const ctf_type_t *tp)
{
  ctf_type_t *suffix;

  /* Resolve away non-BIG prefixes (which have no affect on vlen).  */

  while (LCTF_IS_PREFIXED_KIND (tp->info)
	 && CTF_INFO_KIND (info) != CTF_K_BIG)
    tp++;

  if (!LCTF_IS_PREFIXED_KIND (CTF_INFO_KIND (tp->info)))
    return (CTF_INFO_VLEN (tp->info));

  suffix = tp + 1;

  /* CTF_K_BIG.  */
  return (CTF_INFO_VLEN (tp->info) << 16 | CTF_INFO_VLEN (suffix->info));
}

static inline ssize_t
get_ctt_size_old (const ctf_dict_t *fp _libctf_unused_,
		  const ctf_type_t *tp _libctf_unused_,
		  ssize_t *sizep, ssize_t *incrementp, size_t lsize,
		  size_t csize, size_t ctf_type_size,
		  size_t ctf_stype_size, size_t ctf_lsize_sent)
{
  ssize_t size, increment;

  if (csize == ctf_lsize_sent)
    {
      size = lsize;
      increment = ctf_type_size;
    }
  else
    {
      size = csize;
      increment = ctf_stype_size;
    }

  if (sizep)
    *sizep = size;
  if (incrementp)
    *incrementp = increment;

  return size;
}

static ssize_t
get_ctt_size_v1 (const ctf_dict_t *fp, const ctf_type_t *tp,
		 ssize_t *sizep, ssize_t *incrementp)
{
  ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;

  return (get_ctt_size_old (fp, tp, sizep, incrementp,
			    CTF_V3_TYPE_LSIZE (t1p), t1p->ctt_size,
			    sizeof (ctf_type_v1_t), sizeof (ctf_stype_v1_t),
			    CTF_LSIZE_SENT_V1));
}

/* Return the size that a v1 will be once it is converted to v2.  */

static ssize_t
get_ctt_size_v2_unconverted (const ctf_dict_t *fp, const ctf_type_t *tp,
			     ssize_t *sizep, ssize_t *incrementp)
{
  ctf_type_v1_t *t1p = (ctf_type_v1_t *) tp;

  return (get_ctt_size_old (fp, tp, sizep, incrementp,
			    CTF_V3_TYPE_LSIZE (t1p), t1p->ctt_size,
			    sizeof (ctf_type_v2_t), sizeof (ctf_stype_v2_t),
			    CTF_LSIZE_SENT));
}

static ssize_t
get_ctt_size_v2 (const ctf_dict_t *fp, const ctf_type_t *tp,
		 ssize_t *sizep, ssize_t *incrementp)
{
  ctf_type_v2_t *t2p = (ctf_type_v2_t *) tp;

  return (get_ctt_size_old (fp, tp, sizep, incrementp,
			    CTF_V3_TYPE_LSIZE (t2p), t2p->ctt_size,
			    sizeof (ctf_type_v2_t), sizeof (ctf_stype_v2_t),
			    CTF_LSIZE_SENT));
}

static ssize_t
get_ctt_size_v4 (const ctf_dict_t *fp, const ctf_type_t *tp,
		 ssize_t *sizep, ssize_t *incrementp)
{
  ssize_t size = 0;

  /* Figure out how many prefixes there are, and adjust the size appropriately
     if we pass a BIG.  */

  while (LCTF_IS_PREFIXED_KIND (tp->info))
    {
      if (CTF_INFO_KIND (tp->info) == CTF_KIND_BIG)
	size = tp->ctt_size << 32;

      if (incrementp)
	*increment += sizeof (ctf_type_t);

      tp++;
    }

  size |= tp->ctt_size;

  if (sizep)
    *sizep = size;

  return size;
}

static ssize_t
get_vbytes_old (ctf_dict_t *fp, unsigned short kind, size_t vlen)
{
  switch (kind)
    {
    case CTF_V3_K_INTEGER:
    case CTF_V3_K_FLOAT:
      return (sizeof (uint32_t));
    case CTF_V3_K_SLICE:
      return (sizeof (ctf_slice_t));
    case CTF_V3_K_ENUM:
      return (sizeof (ctf_enum_t) * vlen);
    case CTF_V3_K_FORWARD:
    case CTF_V3_K_UNKNOWN:
    case CTF_V3_K_POINTER:
    case CTF_V3_K_TYPEDEF:
    case CTF_V3_K_VOLATILE:
    case CTF_V3_K_CONST:
    case CTF_V3_K_RESTRICT:
      return 0;
    default:
      ctf_set_errno (fp, ECTF_CORRUPT);
      ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
      return -1;
    }
}

static ssize_t
get_vbytes_v1 (ctf_dict_t *fp, const ctf_type_t *tp, ssize_t size)
{
  unsigned short kind = CTF_V1_INFO_KIND (tp->info);
  size_t vlen = CTF_V1_INFO_VLEN (tp->info);

  switch (kind)
    {
    case CTF_V3_K_ARRAY:
      return (sizeof (ctf_array_v1_t));
    case CTF_V3_K_FUNCTION:
      return (sizeof (unsigned short) * (vlen + (vlen & 1)));
    case CTF_V3_K_STRUCT:
    case CTF_V3_K_UNION:
      if (size < CTF_LSTRUCT_THRESH_V1)
	return (sizeof (ctf_member_v1_t) * vlen);
      else
	return (sizeof (ctf_lmember_v1_t) * vlen);
    }

  return (get_vbytes_old (fp, kind, vlen));
}

static ssize_t
get_vbytes_v2 (ctf_dict_t *fp, const ctf_type_t *tp, ssize_t size)
{
  unsigned short kind = CTF_V2_INFO_KIND (tp->info);
  size_t vlen = CTF_V2_INFO_VLEN (tp->info);

  switch (kind)
    {
    case CTF_V3_K_ARRAY:
      return (sizeof (ctf_array_t));
    case CTF_V3_K_FUNCTION:
      return (sizeof (uint32_t) * (vlen + (vlen & 1)));
    case CTF_V3_K_STRUCT:
    case CTF_V3_K_UNION:
      if (size < CTF_LSTRUCT_THRESH)
	return (sizeof (ctf_member_v2_t) * vlen);
      else
	return (sizeof (ctf_lmember_v2_t) * vlen);
    }

  return (get_vbytes_old (fp, kind, vlen));
}

static ssize_t
get_vbytes_v4 (ctf_dict_t *fp, const ctf_type_t *tp,
	       ssize_t size _libctf_unused_)
{
  unsigned short kind = LCTF_KIND (fp, tp, NULL);
  ssize_t vlen = LCTF_VLEN (fp, tp, NULL);

  switch (kind)
    {
    case CTF_K_INTEGER:
    case CTF_K_FLOAT:
      return (sizeof (uint32_t));
    case CTF_K_SLICE:
      return (sizeof (ctf_slice_t));
    case CTF_K_ENUM:
      return (sizeof (ctf_enum_t) * vlen);
    case CTF_K_ENUM64:
      return (sizeof (ctf_enum64_t) * vlen);
    case CTF_K_ARRAY:
      return (sizeof (ctf_array_t));
    case CTF_K_STRUCT:
    case CTF_K_UNION:
      return (sizeof (ctf_member_t) * vlen);
    case CTF_K_FUNCTION:
      return (sizeof (ctf_param_t) * vlen);
    case CTF_K_FUNC_LINKAGE:
    case CTF_K_VAR:
      return (sizeof (ctf_linkage_t));
    case CTF_K_DATASEC:
      return (sizeof (ctf_var_secinfo_t) * vlen);
    case CTF_K_DECL_TAG:
      return (sizeof (ctf_decl_tag_t));
    case CTF_K_TYPE_TAG:
    case CTF_K_FORWARD:
    case CTF_K_UNKNOWN:
    case CTF_K_POINTER:
    case CTF_K_TYPEDEF:
    case CTF_K_VOLATILE:
    case CTF_K_CONST:
    case CTF_K_RESTRICT:
    case CTF_K_BTF_FLOAT:
      return 0;
    /* These should have been resolved away by LCTF_KIND.
       If this somehow didn't work, fail.  */
    case CTF_K_BIG:
    case CTF_K_CONFLICTING:
      ctf_set_errno (fp, ECTF_INTERNAL);
      ctf_err_warn (fp, 0, 0, _("internal error: prefixed kind seen in get_vbytes_v4: %x"), kind);
      return -1;
    default:
      ctf_set_errno (fp, ECTF_CORRUPT);
      ctf_err_warn (fp, 0, 0, _("detected invalid CTF kind: %x"), kind);
      return -1;
    }
}

static const ctf_dictops_t ctf_dictops[] = {
  {NULL, NULL, NULL, NULL, NULL},
  /* CTF_VERSION_1 */
  {get_kind_v1, get_prefixed_kind_v1, get_root_v1, get_vlen_v1,
   get_prefixed_vlen_v1, get_ctt_size_v1, get_vbytes_v1},
  /* CTF_VERSION_1_UPGRADED_3 */
  {get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
   get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
  /* CTF_VERSION_2 */
  {get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
   get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
  /* CTF_VERSION_3, identical to 2: only new type kinds */
  {get_kind_v2, get_prefixed_kind_v2, get_root_v2, get_vlen_v2,
   get_prefixed_vlen_v2, get_ctt_size_v2, get_vbytes_v2},
  /* CTF_VERSION_4, always BTF-compatible.  */
  {get_kind_v4, get_prefixed_kind_v4, get_root_v4, get_vlen_v4,
   get_prefixed_vlen_v1, get_ctt_size_v4, get_vbytes_v4},
};

/* Initialize the symtab translation table as appropriate for its indexing
   state.  For unindexed symtypetabs, fill each entry with the offset of the CTF
   type or function data corresponding to each STT_FUNC or STT_OBJECT entry in
   the symbol table.  For indexed symtypetabs, do nothing: the needed
   initialization for indexed lookups may be quite expensive, so it is done only
   as needed, when lookups happen.  (In particular, the majority of indexed
   symtypetabs come from the compiler, and all the linker does is iteration over
   all entries, which doesn't need this initialization.)

   The SP symbol table section may be NULL if there is no symtab.

   If init_symtab works on one call, it cannot fail on future calls to the same
   fp: ctf_symsect_endianness relies on this.  */

static int
init_symtab (ctf_dict_t *fp, const ctf_header_t *hp, const ctf_sect_t *sp)
{
  const unsigned char *symp;
  int skip_func_info = 0;
  int i;
  uint32_t *xp = fp->ctf_sxlate;
  uint32_t *xend = PTR_ADD (xp, fp->ctf_nsyms);

  uint32_t objtoff = hp->cth_objtoff;
  uint32_t funcoff = hp->cth_funcoff;

  /* If this is a v3 dict, and the CTF_F_NEWFUNCINFO flag is not set, pretend
     the func info section is empty: this compiler is too old to emit a function
     info section we understand.  */

  if (fp->ctf_v3_header && (fp->ctf_v3_header->cth_flags & CTF_F_NEWFUNCINFO))
    skip_func_info = 1;

  if (hp->cth_objtidx_off + hp->cth_objtidx_len <= hp->cth_funcidx_off)
    fp->ctf_objtidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_objtidx_off);
  if (hp->cth_funcidx_off + hp->cth_funcidx_len <= hp->cth_varoff && !skip_func_info)
    fp->ctf_funcidx_names = (uint32_t *) (fp->ctf_buf + hp->cth_funcidx_off);

  /* Don't bother doing the rest if everything is indexed, or if we don't have a
     symbol table: we will never use it.  */
  if ((fp->ctf_objtidx_names && fp->ctf_funcidx_names) || !sp || !sp->cts_data)
    return 0;

  /* The CTF data object and function type sections are ordered to match the
     relative order of the respective symbol types in the symtab, unless there
     is an index section, in which case the order is arbitrary and the index
     gives the mapping.  If no type information is available for a symbol table
     entry, a pad is inserted in the CTF section.  As a further optimization,
     anonymous or undefined symbols are omitted from the CTF data.  If an
     index is available for function symbols but not object symbols, or vice
     versa, we populate the xslate table for the unindexed symbols only.  */

  for (i = 0, symp = sp->cts_data; xp < xend; xp++, symp += sp->cts_entsize,
	 i++)
    {
      ctf_link_sym_t sym;

      switch (sp->cts_entsize)
	{
	case sizeof (Elf64_Sym):
	  {
	    const Elf64_Sym *symp64 = (Elf64_Sym *) (uintptr_t) symp;
	    ctf_elf64_to_link_sym (fp, &sym, symp64, i);
	  }
	  break;
	case sizeof (Elf32_Sym):
	  {
	    const Elf32_Sym *symp32 = (Elf32_Sym *) (uintptr_t) symp;
	    ctf_elf32_to_link_sym (fp, &sym, symp32, i);
	  }
	  break;
	default:
	  return ECTF_SYMTAB;
	}

      /* This call may be led astray if our idea of the symtab's endianness is
	 wrong, but when this is fixed by a call to ctf_symsect_endianness,
	 init_symtab will be called again with the right endianness in
	 force.  */
      if (ctf_symtab_skippable (&sym))
	{
	  *xp = -1u;
	  continue;
	}

      switch (sym.st_type)
	{
	case STT_OBJECT:
	  if (fp->ctf_objtidx_names || (objtoff - hp->cth_objt_off) > hp->cth_objt_len)
	    {
	      *xp = -1u;
	      break;
	    }

	  *xp = objtoff;
	  objtoff += sizeof (uint32_t);
	  break;

	case STT_FUNC:
	  if (fp->ctf_funcidx_names || (funcoff - hp->cth_func_off) > hp->cth_func_len
	      || skip_func_info)
	    {
	      *xp = -1u;
	      break;
	    }

	  *xp = funcoff;
	  funcoff += sizeof (uint32_t);
	  break;

	default:
	  *xp = -1u;
	  break;
	}
    }

  ctf_dprintf ("loaded %lu symtab entries\n", fp->ctf_nsyms);
  return 0;
}

/* Reset the CTF base pointer and derive the buf pointer from it, initializing
   everything in the ctf_dict that depends on the base or buf pointers.

   The original gap between the buf and base pointers, if any -- the original,
   unconverted CTF header -- is kept, but its contents are not specified and are
   never used.  */

static void
ctf_set_base (ctf_dict_t *fp, const ctf_header_t *hp, unsigned char *base)
{
  fp->ctf_buf = base + (fp->ctf_buf - fp->ctf_base);
  fp->ctf_base = base;

  fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
    + hp->btf.bth_str_off;
  fp->ctf_str[CTF_STRTAB_0].cts_len = hp->btf.bth_str_len;

  /* If we have a parent dict name and label, store the relocated string
     pointers in the CTF dict for easy access later. */

  /* Note: before conversion, these will be set to values that will be
     immediately invalidated by the conversion process, but the conversion
     process will call ctf_set_base() again to fix things up.

     These labels are explicitly constrained from being deduplicated (even though
     .ctf is usually a duplicated name), because they are the key to identifying
     the parent dict (and determining that this dict is a child) in the first
     place.  */

  if (hp->cth_parent_name != 0)
    fp->ctf_parent_name = ctf_strptr (fp, hp->cth_parent_name);
  if (hp->cth_cu_name != 0)
    fp->ctf_cu_name = ctf_strptr (fp, hp->cth_cu_name);

  if (fp->ctf_cu_name)
    ctf_dprintf ("ctf_set_base: CU name %s\n", fp->ctf_cu_name);
  if (fp->ctf_parent_name)
    ctf_dprintf ("ctf_set_base: parent name %s\n" fp->ctf_parent_name);
}

static int
init_static_types_names (ctf_dict_t *fp, ctf_header_t *cth, int is_btf);

/* Populate statically-defined types (those loaded from a saved buffer).

   Initialize the type ID translation table with the byte offset of each type,
   and initialize the hash tables of each named type.  Upgrade the type table to
   the latest supported representation in the process, if needed, and if this
   recension of libctf supports upgrading.

   Returns zero on success and a *positive* ECTF_* or errno value on error.

   This is a wrapper to simplify memory allocation on error in the _internal
   function that does all the actual work.  */

static int
init_static_types (ctf_dict_t *fp, ctf_header_t *cth, int is_btf)
{
  const ctf_type_t *tbuf;
  const ctf_type_t *tend;

  unsigned long pop[CTF_K_MAX + 1] = { 0 };
  int pop_enumerators = 0;
  const ctf_type_t *tp;
  unsigned long typemax = 0;

  /* Provisional types always start from the top of the type space and work
     down.  */

  fp->ctf_provtypemax = (uint32_t) -1;

  /* We determine whether the dict is a child or a parent based on the value of
     cth_parent_name.  */

  int child = cth->cth_parent_name != 0;

  if (fp->ctf_version < CTF_VERSION_4)
    {
#if 0
      int err;

      if ((err = upgrade_types (fp, cth)) != 0)
	return err;				/* Upgrade failed.  */
#endif
      ctf_err_warn (ECTF_INTERNAL, "Implementation of backward-compatible CTF reading still underway\n");
      return (ctf_set_open_errno (errp, ECTF_INTERNAL));
    }

  tbuf = (ctf_type_t *) (fp->ctf_buf + cth->btf.bth_type_off);
  tend = (ctf_type_t *) (tbuf + cth->btf.bth_type_len);

  /* We make two passes through the entire type section, and one third pass
     through part of it: but only the first is guaranteed to happen at this
     stage.  The second and third passes require working string lookup, so in
     child dicts can only happen at ctf_import time.

     For prefixed kinds, we are interested in the thing we are prefixing:
     that is the true type.

     In this first pass, we count the number of each type and type-like
     identifier (like enumerators) and the total number of types.  */

  for (tp = tbuf; tp < tend; typemax++)
    {
      unsigned short kind = LCTF_INFO_UNPREFIXED_KIND (fp, tp->ctt_info);
      size_t vlen = LCTF_VLEN (fp, tp);
      int nonroot = 0;
      ssize_t size, increment, vbytes;
      ctf_type_t *suffix = tp;

      (void) ctf_get_ctt_size (fp, tp, &size, &increment);

      /* Go to the first unprefixed type, incrementing all prefixed types'
	 popcounts along the way.  If we find a CTF_K_CONFLICTING, stop: these
	 counts are used to increment identifier hashtab sizes, and conflicting
	 types do not appear in identifier hashtabs.  */

      while (LCTF_IS_PREFIXED_KIND (kind))
	{
	  if (is_btf)
	    return ECTF_CORRUPT;

	  pop[suffix->ctt_type]++;

	  if (kind == CTF_K_CONFLICTING)
	    {
	      nonroot = 1;
	      break;
	    }

	  suffix++;
	  if (suffix >= tend)
	    return ECTF_CORRUPT;

	  kind = LCTF_INFO_UNPREFIXED_KIND (fp, suffix->ctt_info);
	}

      if (nonroot)
	continue;

      if (is_btf && kind > CTF_BTF_K_MAX)
	return ECTF_CORRUPT;

      vbytes = LCTF_VBYTES (fp, suffix, size);

      if (vbytes < 0)
	return ECTF_CORRUPT;

      /* For forward declarations, ctt_type is the CTF_K_* kind for the tag,
	 so bump that population count too.  */
      if (kind == CTF_K_FORWARD)
	pop[suffix->ctt_type]++;

      if (kind == CTF_K_ENUM)
	pop_enumerators += vlen;

      tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
      pop[kind]++;
    }

  if (child)
    {
      ctf_dprintf ("CTF dict %p is a child\n", (void *) fp);
      fp->ctf_flags |= LCTF_CHILD;
    }
  else
    ctf_dprintf ("CTF dict %p is a parent\n", (void *) fp);

  /* Now that we've counted up the number of each type, we can allocate
     the hash tables, type translation table, and pointer table.  */

  if ((fp->ctf_structs
       = ctf_dynhash_create_sized (pop[CTF_K_STRUCT], ctf_hash_string,
				   ctf_hash_eq_string,
				   NULL, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_unions
       = ctf_dynhash_create_sized (pop[CTF_K_UNION], ctf_hash_string,
				   ctf_hash_eq_string,
				   NULL, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_enums
       = ctf_dynhash_create_sized (pop[CTF_K_ENUM], ctf_hash_string,
				   ctf_hash_eq_string,
				   NULL, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_datasecs
       = ctf_dynhash_create_sized (pop[CTF_K_DATASEC], ctf_hash_string,
				   ctf_hash_eq_string,
				   NULL, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_tags
       = ctf_dynhash_create_sized (pop[CTF_K_DECL_TAG] + pop [CTF_K_TYPE_TAG],
				   ctf_hash_string, ctf_hash_eq_string,
				   NULL, (ctf_hash_free_fun) ctf_dynset_destroy,
				   NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_names
       = ctf_dynhash_create_sized (pop[CTF_K_UNKNOWN] +
				   pop[CTF_K_INTEGER] +
				   pop[CTF_K_FLOAT] +
				   pop[CTF_K_FUNC_LINKAGE] +
				   pop[CTF_K_TYPEDEF] +
				   pop_enumerators,
				   ctf_hash_string,
				   ctf_hash_eq_string,
				   NULL, NULL, NULL)) == NULL)
    return ENOMEM;

  if ((fp->ctf_var_datasecs
       = ctf_dynhash_create (ctf_hash_pointer, ctf_hash_pointer, NULL, NULL))
      == NULL)
    return ENOMEM;

  if ((fp->ctf_conflicting_enums
       = ctf_dynset_create (htab_hash_string, htab_eq_string, NULL)) == NULL)
    return ENOMEM;

  /* The ptrtab and txlate can be appropriately sized for precisely this set
     of types: the txlate because it is only used to look up static types,
     so dynamic types added later will never go through it, and the ptrtab
     because later-added types will call grow_ptrtab() automatically, as
     needed.  */

  fp->ctf_txlate = calloc (typemax + 1, sizeof (uint32_t));
  fp->ctf_ptrtab = calloc (typemax + 1, sizeof (uint32_t));
  fp->ctf_ptrtab_len = typemax + 1;
  fp->ctf_stypes = typemax;
  fp->ctf_typemax = typemax;
  fp->ctf_idmax = typemax;

  if (fp->ctf_txlate == NULL || fp->ctf_ptrtab == NULL)
    return ENOMEM;		/* Memory allocation failed.  */

  if (child && cth->cth_parent_strlen != 0)
    {
      fp->ctf_flags |= LCTF_NO_STR;
      return 0;
    }

  ctf_dprintf ("%u types initialized (other than names)\n", fp->ctf_typemax);

  return init_static_types_names (fp, cth, is_btf);
}

static int
init_static_types_names_internal (ctf_dict_t *fp, ctf_header_t *cth, int is_btf,
				  ctf_dynset_t *all_enums);

/* A wrapper to simplify memory allocation.  */

static int
init_static_types_names (ctf_dict_t *fp, ctf_header_t *cth, int is_btf)
{
  ctf_dynset_t *all_enums;
  int err;

  if ((all_enums = ctf_dynset_create (htab_hash_pointer, htab_eq_pointer,
				      NULL)) == NULL)
    return ENOMEM;

  err = init_static_types_names_internal (fp, cth, is_btf, all_enums);
  ctf_dynset_destroy (all_enums);
  return err;
}

/* Initialize the parts of the CTF dict whose initialization depends on name or
   type lookup.  This happens at open time except for child dicts, when (for
   CTFv4+ dicts) it happens at ctf_import time instead, because before then the
   strtab and type tables are truncated at the start.

   As a function largely called at open time, this function does not reliably
   set the ctf_errno, but instead returns a positive error code.  */

static int
init_static_types_names_internal (ctf_dict_t *fp, ctf_header_t *cth, int is_btf,
				  ctf_dynset_t *all_enums)
{
  const ctf_type_t *tbuf;
  const ctf_type_t *tend;

  const ctf_type_t *tp;
  uint32_t id;
  uint32_t *xp;
  ssize_t biggest_datasec = -1;

  unsigned long typemax = fp->ctf_typemax;

  ctf_next_t *i = NULL;
  void *k;
  int err;

  int child = cth->cth_parent_name != 0;

  tbuf = (ctf_type_t *) (fp->ctf_buf + cth->btf.bth_type_off);
  tend = (ctf_type_t *) (tbuf + cth->btf.bth_type_len);

  assert (!(fp->ctf_flags & LCTF_NO_STR));

  xp = fp->ctf_txlate;
  *xp++ = 0;			/* Type id 0 is used as a sentinel value.  */

  /* In this second pass through the types, we fill in each entry of the type
     and pointer tables and add names to the appropriate hashes.

     (Not all names are added in this pass, only type names.  See below.)

     Reset ctf_typemax and bump it as we go, but keep it one higher than normal,
     so that the type being read in is considered a valid type and it is at
     least barely possible to run simple lookups on it: but higher types are
     not, since their names are not yet known.  (It is kept at its standard
     value before this function is called so that at least some type-related
     operations work.  */

  for (id = 1, fp->ctf_typemax = 1, tp = tbuf; tp < tend; xp++, id++, fp->ctf_typemax++)
    {
      unsigned short kind = LCTF_KIND (fp, tp);
      unsigned short isroot = LCTF_INFO_ISROOT (fp, tp->ctt_info);
      size_t vlen = LCTF_VLEN (fp, tp);
      ssize_t size, increment, vbytes;
      ctf_type_t *suffix = tp;
      const char *name;

      /* Prefixed type: pull off the prefixes (for most purposes).  (We already
	 know the prefixes cannot overflow.)  */

      while (LCTF_IS_PREFIXED_KIND (LCTF_INFO_UNPREFIXED_KIND (fp, suffix->ctt_info)))
	{
	  if (is_btf)
	    return ECTF_CORRUPT;

	  suffix++;
	}

      (void) ctf_get_ctt_size (fp, tp, &size, &increment);
      name = ctf_strptr (fp, suffix->ctt_name);
      /* Cannot fail: shielded by call in init_static_types.  */
      vbytes = LCTF_VBYTES (fp, suffix, size);

      *xp = (uint32_t) ((uintptr_t) tp - (uintptr_t) fp->ctf_buf);

      switch (kind)
	{
	case CTF_K_UNKNOWN:
	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  {
	    ctf_id_t existing;
	    ctf_encoding_t existing_en;
	    ctf_encoding_t this_en;

	    if (!isroot)
	      break;

	    /* Names are reused by bitfields, which are differentiated by
	       their encodings.  So check for the type already existing, and
	       iff the new type is a root-visible non-bitfield, replace the
	       old one.  It's a little hard to figure out whether a type is
	       a non-bitfield without already knowing that type's native
	       width, but we can converge on it by replacing an existing
	       type as long as the new type is zero-offset and has a
	       bit-width wider than the existing one, since the native type
	       must necessarily have a bit-width at least as wide as any
	       bitfield based on it.

	       BTF floats are more or less useless, having no encoding:
	       the ctf_type_encoding check here suffices to replace them.  */

	    if (((existing = ctf_dynhash_lookup_type (fp->ctf_names, name)) == 0)
		|| ctf_type_encoding (fp, existing, &existing_en) != 0
		|| (ctf_type_encoding (fp, ctf_index_to_type (fp, id), &this_en) == 0
		    && this_en.cte_offset == 0
		    && (existing_en.cte_offset != 0
			|| existing_en.cte_bits < this_en.cte_bits)))
	      {
		err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					       ctf_index_to_type (fp, id),
					       suffix->ctt_name);
		if (err != 0)
		  return err * -1;
	      }
	    break;
	  }

	case CTF_K_BTF_FLOAT:
	  if (!isroot)
	    break;

	  /* Don't allow a float to be overwritten by a BTF float.  */

	  if (((existing = ctf_dynhash_lookup_type (fp->ctf_names, name)) == 0)
	      && ctf_type_kind (fp, existing) == CTF_K_FLOAT)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);
	  if (err != 0)
	    return err * -1;
	  break;

	  /* These kinds have no name, so do not need interning into any
	     hashtables.  */
	case CTF_K_ARRAY:
	case CTF_K_SLICE:
	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
	case CTF_K_FUNCTION:
	  break;

	case CTF_K_FUNC_LINKAGE:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);
	  if (err != 0)
	    return err * -1;
	  break;

	case CTF_K_STRUCT:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_structs,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);

	  if (err != 0)
	    return err * -1;

	  break;

	case CTF_K_UNION:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_unions,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);

	  if (err != 0)
	    return err * -1;
	  break;

	case CTF_K_ENUM:
	case CTF_K_ENUM64:
	  {
	    if (!isroot)
	      break;

	    /* Only insert forward types if the type is not already present.  */
	    if (vlen == 0
		&& ctf_dynhash_lookup_type (ctf_name_table (fp, kind),
					    suffix->ctt_name) != 0)
	      break;

	    err = ctf_dynhash_insert_type (fp, fp->ctf_enums,
					   ctf_index_to_type (fp, id),
					   suffix->ctt_name);

	    if (err != 0)
	      return err * -1;

	    /* Remember all enums for later rescanning.  */

	    err = ctf_dynset_insert (all_enums, (void *) (ptrdiff_t)
				     ctf_index_to_type (fp, id));
	    if (err != 0)
	      return err * -1;
	    break;
	  }

	case CTF_K_TYPEDEF:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);
	  if (err != 0)
	    return err * -1;
	  break;

	case CTF_K_VAR:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_names,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);
	  if (err != 0)
	    return err * -1;
	  break;

	case CTF_K_DATASEC:
	  if (!isroot)
	    break;

	  err = ctf_dynhash_insert_type (fp, fp->ctf_datasecs,
					 ctf_index_to_type (fp, id),
					 suffix->ctt_name);
	  if (err != 0)
	    return err * -1;

	  /* Remember the biggest datasec we've seen.  */
	  
	  if (vlen > biggest_datasec)
	    {
	      biggest_datasec = vlen;
	      fp->ctf_default_var_datasec = id;
	    }
	  break;

	case CTF_K_DECL_TAG:
	case CTF_K_TYPE_TAG:
	  {
	    const char *str;

	    if ((str = ctf_strptr_validate (fp, suffix->ctt_name)) == NULL)
	      return ctf_errno (fp);

	    if (!isroot)
	      break;

	    if (ctf_insert_type_decl_tag (fp, id, name, kind) < 0)
	      return ctf_errno (fp);

	    break;
	  }

	case CTF_K_FORWARD:
	  {
	    int kflag = CTF_INFO_KFLAG (tp->ctt_info);
	    ctf_dynhash_t *h = ctf_name_table (fp, kflag == 1
					       ? CTF_K_UNION : CTF_K_STRUCT);

	    if (!isroot)
	      break;

	    /* Only insert forward tags into the given hash if the type or tag
	       name is not already present.  */
	    if (ctf_dynhash_lookup_type (h, name) == 0)
	      {
		err = ctf_dynhash_insert_type (fp, h, ctf_index_to_type (fp, id),
					       suffix->ctt_name);
		if (err != 0)
		  return err * -1;
	      }
	    break;
	  }

	case CTF_K_POINTER:
	  /* If the type referenced by the pointer is in this CTF dict, then
	     store the index of the pointer type in fp->ctf_ptrtab[ index of
	     referenced type ].  */

	  if (ctf_type_ischild (fp, suffix->ctt_type) == child
	      && ctf_type_to_index (fp, suffix->ctt_type) <= fp->ctf_typemax)
	    fp->ctf_ptrtab[ctf_type_to_index (fp, suffix->ctt_type)] = id;

	  break;
	
	default:
	  ctf_err_warn (fp, 0, ECTF_CORRUPT,
			_("init_static_types(): unhandled CTF kind: %x"), kind);
	  return ECTF_CORRUPT;
	}
      tp = (ctf_type_t *) ((uintptr_t) tp + increment + vbytes);
    }
  fp->ctf_typemax--;
  assert (fp->ctf_typemax == typemax);

  ctf_dprintf ("%u total types processed\n", fp->ctf_typemax);

  /* In the third pass, we traverse the enums we spotted earlier and track all
     the enumeration constants to aid in future detection of duplicates.

     Doing this in a third pass is necessary to avoid the case where an
     enum appears with a constant FOO, then later a type named FOO appears,
     too late to spot the conflict by checking the enum's constants.  */

  while ((err = ctf_dynset_next (all_enums, &i, &k)) == 0)
    {
      ctf_id_t enum_id = (uintptr_t) k;
      ctf_next_t *i_constants = NULL;
      const char *cte_name;

      while ((cte_name = ctf_enum_next (fp, enum_id, &i_constants, NULL)) != NULL)
	{
	  if (ctf_track_enumerator (fp, enum_id, cte_name) < 0)
	    {
	      ctf_next_destroy (i_constants);
	      ctf_next_destroy (i);
	      return ctf_errno (fp);
	    }
	}
      if (ctf_errno (fp) != ECTF_NEXT_END)
	{
	  ctf_next_destroy (i);
	  return ctf_errno (fp);
	}
    }
  if (err != ECTF_NEXT_END)
    return err;

  /* In the final pass, we traverse all datasecs and remember the variables in
     each but the largest, so we can rapidly map from variable back to datasec.

     For simplicity, the "any but the largest" optimization is only applied at
     open time: if another datasec grows to be larger due to dynamic additions,
     its membership is still recorded. */

  while ((id = ctf_type_kind_next (fp, &i, CTF_K_DATASEC)) != CTF_ERR)
    {
      ctf_next_t *i_sec = NULL;
      ctf_id_t var_id;

      if (id == fp->ctf_default_var_datasec)
	continue;

      while ((var_id = ctf_datasec_var_next (fp, id, &i_sec, NULL, NULL))
	     != CTF_ERR)
	{
	  err = ctf_dynhash_insert (fp->ctf_var_datasecs,
				    (void *) (ptrdiff_t) var_id,
				    (void *) (ptrdiff_t) id);
	  if (err != 0)
	    return err * -1;
	}
      if (err != ECTF_NEXT_END)
	{
	  ctf_next_destroy (i);
	  return ctf_errno (fp);
	}
    }
  if (ctf_errno (fp) != ECTF_NEXT_END)
    return ctf_errno (fp);

  ctf_dprintf ("%zu enum names hashed\n",
	       ctf_dynhash_elements (fp->ctf_enums));
  ctf_dprintf ("%zu conflicting enumerators identified\n",
	       ctf_dynset_elements (fp->ctf_conflicting_enums));
  ctf_dprintf ("%zu struct names hashed\n",
	       ctf_dynhash_elements (fp->ctf_structs));
  ctf_dprintf ("%zu union names hashed\n",
	       ctf_dynhash_elements (fp->ctf_unions));
  ctf_dprintf ("%zu base type names and identifiers hashed\n",
	       ctf_dynhash_elements (fp->ctf_names));

  return 0;
}

/* Endianness-flipping routines.

   We flip everything, mindlessly, even 1-byte entities, so that future
   expansions do not require changes to this code.  */

/* Flip the endianness of the CTF header.  */

int
ctf_flip_header (void *cthp, int is_btf, int ctf_version)
{
  ctf_header_t *cth = (ctf_header_t *) cthp;

  if (is_btf)
    {
      ctf_btf_header_t *bth = (ctf_btf_header_t *) cthp;

      swap_thing (cth->btf.bth_preamble.btf_magic);
      swap_thing (cth->btf.bth_preamble.btf_version);
      swap_thing (cth->btf.bth_preamble.btf_flags);
      swap_thing (cth->btf.bth_hdr_len);
      swap_thing (cth->btf.btf_type_off);
      swap_thing (cth->btf.btf_type_len);
      swap_thing (cth->btf.str_off);
      swap_thing (cth->btf.str_len);

      /* Raw BTF?  */
      if (ctf_version == 1)
	return;
    }
  else
    {
      ctf_header_v2_t *h2p = (ctf_header_v2_t *) cthp;
      ctf_header_v3_t *h3p = (ctf_header_v3_t *) cthp;

      /* Non-BTF-compatible: old CTF release.  */
      switch (ctf_version) {
      case CTF_VERSION_1:
      case CTF_VERSION_1_UPGRADED_3:
      case CTF_VERSION_2:
	ctf_err_warn (ECTF_INTERNAL, "Implementation of backward-compatible CTF reading still underway\n");
	return (ctf_set_open_errno (errp, ECTF_INTERNAL));
/*	ctf_flip_header_v2 (cth); */
      break;
      case CTF_VERSION_3:
      ctf_err_warn (ECTF_INTERNAL, "Implementation of backward-compatible CTF reading still underway\n");
      return (ctf_set_open_errno (errp, ECTF_INTERNAL));
	
/*	ctf_flip_header_v3 (cth); */
      }
      return;
    }

  /* CTFv4.  */
      
  swap_thing (cth->cth_preamble.ctp_magic_version);
  swap_thing (cth->cth_preamble.ctp_flags);
  swap_thing (cth->cth_cu_name);
  swap_thing (cth->cth_parent_name);
  swap_thing (cth->cth_parent_strlen);
  swap_thing (cth->cth_parent_ntypes);
  swap_thing (cth->cth_objt_off);
  swap_thing (cth->cth_objt_len);
  swap_thing (cth->cth_func_off);
  swap_thing (cth->cth_func_len);
  swap_thing (cth->cth_objtidx_off);
  swap_thing (cth->cth_objtidx_len);
  swap_thing (cth->cth_funcidx_off);
  swap_thing (cth->cth_funcidx_len);
}

/* Flip the endianness of the data-object or function sections or their indexes,
   all arrays of uint32_t.  */

static void
flip_objts (void *start, size_t len)
{
  uint32_t *obj = start;
  ssize_t i;

  for (i = len / sizeof (uint32_t); i > 0; obj++, i--)
      swap_thing (*obj);
}

/* Flip the endianness of the type section, a tagged array of ctf_type followed
   by variable data (which may itself be a ctf_type for prefixed kinds).  */

static int
flip_types (ctf_dict_t *fp, void *start, size_t len, int to_foreign)
{
  ctf_type_t *t = start;

  while ((uintptr_t) t < ((uintptr_t) start) + len)
    {
      uint32_t kind;
      uint32_t raw_kind;
      size_t size;
      uint32_t vlen;
      size_t vbytes;
      const ctf_type_t *tprefixed;

      if (to_foreign)
	{
	  kind = LCTF_KIND (fp, t);
	  raw_kind = CTF_INFO_UNPREFIXED_KIND (t->ctt_info);
	  size = t->ctt_size;
	  vlen = CTF_VLEN (fp, t);
	  vbytes = get_vbytes_v4 (fp, t, 0);
	}

      swap_thing (t->ctt_name);
      swap_thing (t->ctt_info);
      swap_thing (t->ctt_size);

      /* Prefixed kind: flip the kind being prefixed too (for as many prefixes
	 as there are).  */
      tprefixed = t;
      while (LCTF_IS_PREFIXED_KIND (raw_kind))
	{
	  tprefixed++;

	  if (tprefixed > ((uintptr_t) start) + len)
	    goto overflow;

	  swap_thing (tprefixed->ctt_name);
	  swap_thing (tprefixed->ctt_info);
	  swap_thing (tprefixed->ctt_size);
	  raw_kind = CTF_INFO_UNPREFIXED_KIND (tprefixed->ctt_info);
	}

      if (!to_foreign)
	{
	  kind = LCTF_KIND (fp, t);
	  raw_kind = LCTF_INFO_UNPREFIXED_KIND (t->ctt_info);
	  size = t->ctt_size;
	  vlen = CTF_VLEN (fp, t);
	  vbytes = get_vbytes_v4 (fp, t, 0);
	}

      /* Move on to the vlen region.  */
      raw_kind = CTF_INFO_UNPREFIXED_KIND (t->ctt_info);
      while (LCTF_IS_PREFIXED_KIND (raw_kind))
	{
	  t++;
	  raw_kind = CTF_INFO_UNPREFIXED_KIND (t->ctt_info);
	}

      if (((uintptr_t) t) + sizeof (ctf_type_t) + vbytes
	  > ((uintptr_t) start) + len)
	goto overflow;

      t++;

      switch (kind)
	{
	case CTF_K_FORWARD:
	case CTF_K_UNKNOWN:
	case CTF_K_POINTER:
	case CTF_K_TYPEDEF:
	case CTF_K_VOLATILE:
	case CTF_K_CONST:
	case CTF_K_RESTRICT:
	case CTF_K_TYPE_TAG:
	case CTF_K_BTF_FLOAT:
	  /* These kinds have no vlen data to swap.  */
	  assert (vbytes == 0);
	  break;

	case CTF_K_INTEGER:
	case CTF_K_FLOAT:
	  {
	    /* These kinds have a single uint32_t.  */

	    uint32_t *item = (uint32_t *) t;

	    swap_thing (*item);
	    break;
	  }

	case CTF_K_FUNC_LINKAGE:
	case CTF_K_VAR:
	  {
	    /* This has a single ctf_linkage_t.  */
	    ctf_linkage_t *l = (ctf_linkage_t *) t;

	    swap_thing (l->ctl_linkage);
	    break;
	  }

	case CTF_K_DECL_TAG:
	  {
	    /* This has a single ctf_decl_tag_t.  */
	    ctf_decl_tag_t *d = (ctf_decl_tag_t *) t;

	    swap_thing (d->cdt_component_idx);
	    break;
	  }

	case CTF_K_FUNCTION:
	  {
	    /* This kind has a bunch of ctf_param_t's.  */

	    ctf_param_t *p = (ctf_param_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; p++, i--)
	      {
		swap_thing (p->cfp_name);
		swap_thing (p->cfp_type);
	      }
	    break;
	  }
	case CTF_K_ARRAY:
	  {
	    /* This has a single ctf_array_t.  */

	    ctf_array_t *a = (ctf_array_t *) t;

	    assert (vbytes == sizeof (ctf_array_t));
	    swap_thing (a->cta_contents);
	    swap_thing (a->cta_index);
	    swap_thing (a->cta_nelems);

	    break;
	  }

	case CTF_K_SLICE:
	  {
	    /* This has a single ctf_slice_t.  */

	    ctf_slice_t *s = (ctf_slice_t *) t;

	    assert (vbytes == sizeof (ctf_slice_t));
	    swap_thing (s->cts_type);
	    swap_thing (s->cts_offset);
	    swap_thing (s->cts_bits);

	    break;
	  }

	case CTF_K_STRUCT:
	case CTF_K_UNION:
	  {
	    /* This has an array of ctf_member_t: the interpretation differs in
	       prefixed types, but for the purposes of byteswapping we don't
	       care.  We could consider it to be a simple array of uint32_t, but
	       for safety's sake in case these structures ever acquire
	       non-uint32_t members, do it member by member.  */

	    ctf_member_t *m = (ctf_member_t *) t;
	    ssize_t i;
	    for (i = vlen; i > 0; i--, m++)
	      {
		swap_thing (m->ctm_name);
		swap_thing (m->ctm_type);
		swap_thing (m->ctm_offset);
	      }
	    break;
	  }

	case CTF_K_ENUM:
	  {
	    /* This has an array of ctf_enum_t.  */

	    ctf_enum_t *item = (ctf_enum_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; item++, i--)
	      {
		swap_thing (item->cte_name);
		swap_thing (item->cte_value);
	      }
	    break;
	  }

	case CTF_K_ENUM64:
	  {
	    /* This has an array of ctf_enum64_t.  */

	    ctf_enum64_t *item = (ctf_enum64_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; item++, i--)
	      {
		swap_thing (item->cte_name);
		swap_thing (item->cte_value);
	      }
	    break;
	  }

	case CTF_K_DATASEC:
	  {
	    /* This has an array of ctf_var_secinfo_t.  */
	    
	    ctf_var_secinfo_t *item = (ctf_var_secinfo_t *) t;
	    ssize_t i;

	    for (i = vlen; i > 0; item++, i--)
	      {
		swap_thing (item->cvs_type);
		swap_thing (item->cvs_offset);
		swap_thing (item->cvs_size);
	      }
	    break;
	  }

	default:
	  ctf_err_warn (fp, 0, ECTF_CORRUPT,
			_("unhandled CTF kind in endianness conversion: %x"),
			kind);
	  return ECTF_CORRUPT;
	}

      t = (ctf_type_t *) ((uintptr_t) t + vbytes);
    }

  return 0;

 overflow:
  ctf_err_warn (fp, 0, ECTF_CORRUPT, _("overflow byteswapping CTF"));
  return ECTF_CORRUPT;
}

/* Flip the endianness of BUF, given the offsets in the (native-endianness) CTH.
   If TO_FOREIGN is set, flip to foreign-endianness; if not, flip away.  */

int
ctf_flip (ctf_dict_t *fp, ctf_header_t *cth, unsigned char *buf,
	  int is_btf, int to_foreign)
{
  ctf_dprintf ("Flipping endianness\n");

  if (!is_btf)
    {
      flip_objts (buf + cth->cth_objt_off, cth->cth_objt_len);
      flip_objts (buf + cth->cth_func_off, cth->cth_func_len);
      flip_objts (buf + cth->cth_objtidx_off, cth->cth_objtidx_len);
      flip_objts (buf + cth->cth_funcidx_off, cth->cth_funcidx_len);
    }
  return flip_types (fp, buf + cth->btf.bth_type_off, cth->btf.bth_type_len,
		     to_foreign);
}

/* Set up the ctl hashes in a ctf_dict_t.  Called by both writable and
   non-writable dictionary initialization.  */
void ctf_set_ctl_hashes (ctf_dict_t *fp)
{
  /* Initialize the ctf_lookup_by_name top-level dictionary.  We keep an
     array of type name prefixes and the corresponding ctf_hash to use.  */
  fp->ctf_lookups[0].ctl_prefix = "struct";
  fp->ctf_lookups[0].ctl_len = strlen (fp->ctf_lookups[0].ctl_prefix);
  fp->ctf_lookups[0].ctl_hash = fp->ctf_structs;
  fp->ctf_lookups[1].ctl_prefix = "union";
  fp->ctf_lookups[1].ctl_len = strlen (fp->ctf_lookups[1].ctl_prefix);
  fp->ctf_lookups[1].ctl_hash = fp->ctf_unions;
  fp->ctf_lookups[2].ctl_prefix = "enum";
  fp->ctf_lookups[2].ctl_len = strlen (fp->ctf_lookups[2].ctl_prefix);
  fp->ctf_lookups[2].ctl_hash = fp->ctf_enums;
  fp->ctf_lookups[3].ctl_prefix = "datasec";
  fp->ctf_lookups[3].ctl_len = strlen (fp->ctf_lookups[3].ctl_prefix);
  fp->ctf_lookups[3].ctl_hash = fp->ctf_datasecs;
  fp->ctf_lookups[4].ctl_prefix = _CTF_NULLSTR;
  fp->ctf_lookups[4].ctl_len = strlen (fp->ctf_lookups[5].ctl_prefix);
  fp->ctf_lookups[4].ctl_hash = fp->ctf_names;
  fp->ctf_lookups[5].ctl_prefix = NULL;
  fp->ctf_lookups[5].ctl_len = 0;
  fp->ctf_lookups[5].ctl_hash = NULL;
}

/* Open a CTF file, mocking up a suitable ctf_sect.  */

ctf_dict_t *ctf_simple_open (const char *ctfsect, size_t ctfsect_size,
			     const char *symsect, size_t symsect_size,
			     size_t symsect_entsize,
			     const char *strsect, size_t strsect_size,
			     int *errp)
{
  ctf_sect_t skeleton;

  ctf_sect_t ctf_sect, sym_sect, str_sect;
  ctf_sect_t *ctfsectp = NULL;
  ctf_sect_t *symsectp = NULL;
  ctf_sect_t *strsectp = NULL;

  skeleton.cts_name = _CTF_SECTION;
  skeleton.cts_entsize = 1;

  if (ctfsect)
    {
      memcpy (&ctf_sect, &skeleton, sizeof (struct ctf_sect));
      ctf_sect.cts_data = ctfsect;
      ctf_sect.cts_size = ctfsect_size;
      ctfsectp = &ctf_sect;
    }

  if (symsect)
    {
      memcpy (&sym_sect, &skeleton, sizeof (struct ctf_sect));
      sym_sect.cts_data = symsect;
      sym_sect.cts_size = symsect_size;
      sym_sect.cts_entsize = symsect_entsize;
      symsectp = &sym_sect;
    }

  if (strsect)
    {
      memcpy (&str_sect, &skeleton, sizeof (struct ctf_sect));
      str_sect.cts_data = strsect;
      str_sect.cts_size = strsect_size;
      strsectp = &str_sect;
    }

  return ctf_bufopen (ctfsectp, symsectp, strsectp, errp);
}

/* Decode the specified CTF or BTF buffer and optional symbol table, and create
   a new CTF dict representing the type information.  This code can be used
   directly by users, or it can be used as the engine for ctf_fdopen() or
   ctf_open(), below.  */

ctf_dict_t *
ctf_bufopen (const ctf_sect_t *ctfsect, const ctf_sect_t *symsect,
	     const ctf_sect_t *strsect, int *errp)
{
  const ctf_preamble_v3_t *pp;
  const ctf_btf_preamble_t *bp;
  size_t hdrsz = 0;
  ctf_header_t *hp;
  ctf_header_v3_t *header_v3 = NULL;
  ctf_dict_t *fp;
  void *fliphp;
  const size_t ctf_adjustment = 0;

  /* These match the CTF_VERSION definitions up to IS_BTF.  */
  enum
    {
      IS_UNKNOWN = 0,
      IS_CTFv1,
      IS_CTFv1_UPGRADED_3,
      IS_CTFv2,
      IS_CTFv3,
      IS_BTF,
      IS_CTF
    } format = IS_UNKNOWN;
  int version = 0;

  const char *desc;
  int foreign_endian = 0;
  int err;

  libctf_init_debug();

  ctf_dprintf ("ctf_bufopen %zi+%zi+%zi bytes: validating\n",
	       ctfsect ? ctfsect->cts_size : 0,
	       symsect ? symsect->cts_size : 0
	       strsect ? strsect->cts_size : 0);

  if ((ctfsect == NULL) || ((symsect != NULL) && (strsect == NULL)))
    return (ctf_set_open_errno (errp, EINVAL));

  if (symsect != NULL && symsect->cts_entsize != sizeof (Elf32_Sym) &&
      symsect->cts_entsize != sizeof (Elf64_Sym))
    return (ctf_set_open_errno (errp, ECTF_SYMTAB));

  if (symsect != NULL && symsect->cts_data == NULL)
    return (ctf_set_open_errno (errp, ECTF_SYMBAD));

  if (strsect != NULL && strsect->cts_data == NULL)
    return (ctf_set_open_errno (errp, ECTF_STRBAD));

  if (ctfsect->cts_data == NULL
      || ctfsect->cts_size < sizeof (ctf_btf_preamble_t))
    return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));

  /* Validate each part of the CTF header.

     This is more complex than it used to be, because CTFv3 and below, BTF,
     and CTFv4 have distinct preambles with distinct layouts.

     First, we validate the preamble.  At that point, we know the endianness and
     specific header version, and can possibly swap and validate the
     version-specific parts including section offsets and alignments.  None of
     these portions are compressed, thankfully: compression starts after the
     headers.  */

  /* First, deal with the unprefixed cases: BTF, and CTFv1--v3: swap them into
     native endianness if need be.  Verify the prefixed endiannesses first.  */

  bp = (const ctf_preamble_t *) ctfsect->cts_data;
  pp = (const ctf_preamble_t *) ctfsect->cts_data; /* CTFv3 or below.  */

  if (_libctf_unlikely_ (bp->btf_magic != CTF_BTF_MAGIC))
    {
      if (bp->btf_magic == bswap_16 (CTF_BTF_MAGIC))
	{
	  format = IS_BTF;
	  foreign_endian = 1;
	  hdrsz = sizeof (struct ctf_btf_header);
	  version = bp->btf_version;
	}
    }
    else
      {
	format = IS_BTF;
	hdrsz = sizeof (struct ctf_btf_header);
	version = bp->btf_version;
      }

  if (format == IS_UNKNOWN && pp->ctf_magic == CTF_MAGIC)
    format = pp->ctp_version;
  else if (format == IS_UNKNOWN && pp->ctf_magic == bswap_16 (CTF_MAGIC))
    {
      format = pp->ctp_version;
      foreign_endian = 1;
    }
  else
    return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));

  if (format != IS_UNKNOWN && format < IS_BTF)
    {
      switch (format)
	{
	case CTF_VERSION_1:
	case CTF_VERSION_2:
	  hdrsz = sizeof (ctf_header_v2_t);
	  break;
	case CTF_VERSION_1_UPGRADED_3:
	case CTF_VERSION_3:
	  hdrsz = sizeof (ctf_header_v3_t);
	  break;
	}
      version = pp->ctp_version;
    }

  /* Check for modern CTF.  If found, set the adjustment value that lets us
     compensate for BTF offsets being relative to the end of the BTF header,
     while everything else is relative to the end of the CTF header.  */

  if (format == IS_BTF && ctfsect->cts_size >= sizeof (ctf_header))
    {
      hp = (ctf_header_t *) ctfsect->cts_data;

      if (CTH_MAGIC (hp) == CTFv4_MAGIC)
	{
	  format = IS_CTF;
	  version = CTH_VERSION (hp);
	  hdrsz = sizeof (ctf_header_t);
	  ctf_adjustment = sizeof (ctf_header_t) - sizeof (ctf_btf_header_t);
	}
      else if (bswap_64 (hp->cth_preamble.ctp_magic_version) >> 16 == CTFv4_MAGIC)
	{
	  format = IS_CTF;
	  foreign_endian = 1;
	  version = bswap_64 (CTH_VERSION (hp));
	  hdrsz = sizeof (ctf_header_t);
	  ctf_adjustment = sizeof (ctf_header_t) - sizeof (ctf_btf_header_t);
	}
      /* Neither hit: confirmed BTF, not CTFv4.  */
    }

  if (ctfsect->cts_size < hdrsz)
    {
      ctf_err_warn (NULL, 0, ECTF_NOTC, _("ctf_bufopen: size %zi too small for expected header size %zi"),
		    ctfsect->cts_size, hdrsz);
      return (ctf_set_open_errno (errp, ECTF_NOCTFBUF));
    }

  switch (format)
    {
    case IS_CTFv1: desc = "CTFv1"; break;
    case IS_CTFv1_UPGRADED_3: desc = "CTFv1 upgraded to v3"; break;
    case IS_CTFv2: desc = "CTFv2"; break;
    case IS_CTFv3: desc = "CTFv3"; break;
    case IS_BTF: desc = "BTF"; break;
    case IS_CTFv4: desc = "CTFv4"; break;
    default: desc = "unknown";
    }

  ctf_dprintf ("ctf_bufopen: %s, swap=%i\n", desc, foreign_endian);

  /* Endian-flip and upgrade the header, if necessary.  Preserve it after
     flipping (for possible later dumping, etc).  */

  if ((fliphp = malloc (hdrsz)) == NULL)
    return (ctf_set_open_errno (errp, ENOMEM));

  memcpy (fliphp, ctfsect->cts_data, hdrsz);

  if (foreign_endian)
    {
      if (ctf_flip_header (fliphp, format >= IS_BTF, version) < 0)
	{
	  free (fliphp);
	  return NULL;				/* errno is set for us.  */
	}
    }

  if ((hp = malloc (sizeof (struct ctf_header_t))) == NULL)
    {
      free (fliphp);
      return (ctf_set_open_errno (errp, ENOMEM));
    }

  memset (hp, 0, sizeof (struct ctf_header_t));
  memcpy (hp, fliphp, hdrsz);
  free (fliphp);

  if (format < CTF_VERSION_3)
    {
      ctf_err_warn (ECTF_INTERNAL, "Implementation of backward-compatible CTF reading still underway\n");
      return (ctf_set_open_errno (errp, ECTF_INTERNAL));
/*    upgrade_header_v2 (hp); /* Upgrades to v3 */
    }

  if (format < CTF_VERSION_4)
    {
      header_v3 = hp;

      if ((hp = malloc (sizeof (struct ctf_header_t))) == NULL)
	{
	  free (header_v3);
	  return (ctf_set_open_errno (errp, ENOMEM));
	}
      memcpy (hp, header_v3, sizeof (struct ctf_header_t));

      ctf_err_warn (ECTF_INTERNAL, "Implementation of backward-compatible CTF reading still underway\n");
      return (ctf_set_open_errno (errp, ECTF_INTERNAL));
/*    upgrade_header_v3 (hp); */
    }

  /* Validation.  */

  if (_libctf_unlikely_ (format == IS_UNKNOWN))
    {
      ctf_set_open_errno (errp, ECTF_CTFVERS);
      goto validation_fail;
    }

  if (_libctf_unlikely_ (format != IS_BTF
			 && ((version < CTF_VERSION_1)
			     || (version > CTF_VERSION_4))))
    {
      ctf_set_open_errno (errp, ECTF_CTFVERS);
      goto validation_fail;
    }

  if (_libctf_unlikely (format == IS_BTF && version != 1
			|| hp->btf.bth_hdr_len != sizeof (struct ctf_btf_header)))
    {
      ctf_err_warn (NULL, 0, ECTF_CTFVERS,
		    _("BTF version %zi or header length %zi unknown: expecting 1, %zi\n"),
		   version, hp->btf.bth_hdr_len,
		   sizeof (struct ctf_btf_header));
      ctf_set_open_errno (errp, ECTF_CTFVERS);
      goto validation_fail;
    }

  if (format != IS_BTF && (symsect != NULL) && (version < CTF_VERSION_2))
    {
      /* The symtab can contain function entries which contain embedded CTF
	 info.  We do not support dynamically upgrading such entries (none
	 should exist in any case, since dwarf2ctf does not create them).  */

      ctf_err_warn (NULL, 0, ECTF_NOTSUP, _("ctf_bufopen: CTF version %d "
					    "symsect not supported"),
		    version);
      ctf_set_open_errno (errp, ECTF_NOTSUP);
      goto validation_fail;
    }

  if (format < IS_BTF && _libctf_unlikely_ (pp->ctp_flags > CTF_F_MAX_3))
    {
      ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
					   "flags: %x"),
		    (unsigned int) pp->ctp_flags);
      ctf_set_open_errno (errp, ECTF_FLAGS);
      goto validation_fail;
    }

  if (format >= IS_BTF && _libctf_unlikely_ (bp->btf_flags) != 0)
    {
      ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: nonzero BTF header "
					   "flags: %x"),
		    (unsigned int) bp->btf_flags);
      ctf_set_open_errno (errp, ECTF_FLAGS);
      goto validation_fail;
    }

  if (format == IS_CTF && _libctf_unlikely_ (hp->cth_flags & ~(CTF_F_MAX)) != 0)
    {
      ctf_err_warn (NULL, 0, ECTF_FLAGS, _("ctf_bufopen: invalid header "
					   "flags: %llx"),
		    (unsigned long long) hp->cth_flags);
      ctf_set_open_errno (errp, ECTF_FLAGS);
      goto validation_fail;
    }

  /* Check for overlaps. BTF and v4 have a lot more freedom to reorder sections
     than earlier versions do, but we assume for simplicity that they are
     always emitted in the same order.  Because all the offsets are relative to
     the end of the BTF header, we must also check that they don't overlap the
     CTF header that can follow it.  */
  if (_libctf_unlikely_
      (hp->cth_objt_off + hp->cth_objt_len > hp->cth_func_off
       || hp->cth_func_off + hp->cth_func_len > hp->cth_objtidx_off
       || hp->cth_objtidx_off + hp->cth_objtidx_len > hp->cth_funcidx_off
       || hp->cth_funcidx_off + hp->cth_funcidx_len > hp->btf.bth_type_off
       || hp->btf.bth_type_off + hp->btf.bth_type_len > hp->btf.cth_str_off
       || hp->cth_objt_off < ctf_adjustment
       || hp->cth_func_off < ctf_adjustment
       || hp->cth_objtidx_off < ctf_adjustment
       || hp->cth_funcidx_off < ctf_adjustment
       || hp->btf.bth_type_off < ctf_adjustment
       || hp->btf.bth_str_off < ctf_adjustment))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("overlapping or misordered BTF/CTF sections"));
      ctf_set_open_errno (errp, ECTF_CORRUPT);
      goto validation_fail;
    }

  if (_libctf_unlikely_
      ((hp->cth_objt_off & 2)
       || (hp->cth_func_off & 2) || (hp->cth_objtidx_off & 2)
       || (hp->cth_funcidx_off & 2) || (hp->btf.cth_type_off & 3)))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("CTF sections not properly aligned"));
      ctf_set_open_errno (errp, ECTF_CORRUPT);
      goto validation_fail;
    }

  /* This invariant may be lifted in v5, but for now it is true.  */

  if (_libctf_unlikely_ ((hp->cth_objtidx_len != 0) &&
			 (hp->cth_objtidx_len != hp->cth_objt_len)))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("Object index section is neither empty nor the "
		      "same length as the object section: %u versus %u "
		      "bytes"), hp->cth_objt_len, hp->cth_objtidx_len);
      ctf_set_open_errno (errp, ECTF_CORRUPT);
      goto validation_fail;
    }

  /* v3 only needs this invariant if CTF_F_NEWFUNCINFO is set: if it's not, the
     section is ignored anyway.  */
  if (_libctf_unlikely_ ((hp->cth_functidx_len != 0) &&
			 (hp->cth_funcidx_len != hp->cth_func_len) &&
			 ((header_v3 && hp->cth_flags & CTF_F_NEWFUNCINFO))
       || !header_v3))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("Function index section is neither empty nor the "
		      "same length as the function section: %u versus %u "
		      "bytes"), hp->cth_func_len, hp->cth_funcidx_len);
      ctf_set_open_errno (errp, ECTF_CORRUPT);
      goto validation_fail;
    }

  if (_libctf_unlikely_
      (hp->cth_parent_strlen != 0 &&
       ((hp->cth_parent_name != 0 && && hp->cth_parent_name < hp->cth_parent_strlen)
	|| (hp->cth_cu_name != 0 && hp->cth_cu_name < hp->cth_parent_strlen))))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT,
		    _("Parent dict or CU name string offsets "
		      "(at %x and %x, respectively) are themselves "
		      "within the parent (upper bound: %x), thus "
		      "unreachable.\n"), hp->cth_parent_name, hp->cth_cu_name,
		      hp->cth_parent_strlen);
      ctf_set_open_errno (errp, ECTF_CORRUPT);
      goto validation_fail;
    }

  /* Start to fill out the in-memory dict.  */

  if ((fp = malloc (sizeof (ctf_dict_t))) == NULL)
    return (ctf_set_open_errno (errp, ENOMEM));

  memset (fp, 0, sizeof (ctf_dict_t));

  fp->ctf_header = hp;
  fp->ctf_v3_header = header_v3;

  fp->ctf_openflags = hp->cth_flags;
  fp->ctf_opened_btf = (format == IS_BTF);

  /* The ctf_size includes the entire CTFv4 header excepting only the portion
     shared with BTF (see ctf_adjustment).  */
  fp->ctf_size = hp->btf.cth_str_off + hp->btf.cth_str_len;

  if (_libctf_unlikely (hp->cth_objt_off > fp->ctf_size
			|| hp->cth_func_off > fp->ctf_size
			|| hp->cth_objtidx_off > fp->ctf_size
			|| hp->cth_funcidx_off > fp->ctf_size
			|| hp->btf.cth_type_off > fp->ctf_size))
    {
      ctf_err_warn (NULL, 0, ECTF_CORRUPT, _("header offset or length exceeds CTF size"));
      err = ECTF_CORRUPT;
      goto bad;
    }

  ctf_dprintf ("ctf_bufopen: uncompressed size=%lu\n",
	       (unsigned long) fp->ctf_size);

  /* Once everything is determined to be valid, attempt to decompress the CTF
     data buffer if it is compressed, or copy it into new storage if it is not
     compressed but needs endian-flipping.  Otherwise we just put the data
     section's buffer pointer into ctf_buf, below.  */

  /* Note: if this is a v1 -- v3 buffer, it will be reallocated and expanded by
     upgrade_types(), invoked by init_static_types().  */

  if (hp->cth_flags & CTF_F_COMPRESS)
    {
      size_t srclen;
      uLongf dstlen;
      const void *src;
      int rc = Z_OK;

      if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
	{
	  err = ECTF_ZALLOC;
	  goto bad;
	}
      fp->ctf_dynbase = fp->ctf_base;
      hp->cth_flags &= ~CTF_F_COMPRESS;

      src = (unsigned char *) ctfsect->cts_data + hdrsz;
      srclen = ctfsect->cts_size - hdrsz;
      dstlen = fp->ctf_size - fp->ctf_adjustment;
      fp->ctf_buf = fp->ctf_base;

      /* Stick the CTF-only header portion into the buffer.  Not much use, but
	 it makes sure all the header offsets are right. */
      memcpy (fp->ctf_base, (unsigned char *) ctfsect->cts_data
	      + sizeof (ctf_btf_header_t), ctf_adjustment);

      if ((rc = uncompress (fp->ctf_base + ctf_adjustment, &dstlen,
			    src, srclen)) != Z_OK)
	{
	  ctf_err_warn (NULL, 0, ECTF_DECOMPRESS, _("zlib inflate err: %s"),
			zError (rc));
	  err = ECTF_DECOMPRESS;
	  goto bad;
	}

      if ((size_t) dstlen != (fp->ctf_size - ctf_adjustment))
	{
	  ctf_err_warn (NULL, 0, ECTF_CORRUPT,
			_("zlib inflate short: got %lu of %lu bytes"),
			(unsigned long) dstlen,
			(unsigned long) (fp->ctf_size - ctf_adjustment));
	  err = ECTF_CORRUPT;
	  goto bad;
	}
    }
  else
    {
      if (_libctf_unlikely_ (ctfsect->cts_size < fp->ctf_size + hdrsz - ctf_adjustment))
	{
	  ctf_err_warn (NULL, 0, ECTF_CORRUPT,
			_("%lu byte long CTF dictionary overruns %lu byte long CTF section"),
			(unsigned long) ctfsect->cts_size,
			(unsigned long) (fp->ctf_size + hdrsz - ctf_adjustment));
	  err = ECTF_CORRUPT;
	  goto bad;
	}

      if (foreign_endian)
	{
	  if ((fp->ctf_base = malloc (fp->ctf_size)) == NULL)
	    {
	      err = ECTF_ZALLOC;
	      goto bad;
	    }
	  fp->ctf_dynbase = fp->ctf_base;
	  memcpy (fp->ctf_base, ((unsigned char *) ctfsect->cts_data)
		  + sizeof (ctf_btf_header), fp->ctf_size);
	}
      else
	{
	  fp->ctf_base = (unsigned char *) ctfsect->cts_data;
	  fp->ctf_dynbase = NULL;
	}

      /* Ensure that the buffer we are using has offset 0 at the end of the BTF
	 header, if there is one, to avoid breaking all offset lookups.  */

      fp->ctf_buf = fp->ctf_base + hdrsz - ctf_adjustment;
    }

  /* Once we have uncompressed and validated the (BTF or) CTF data buffer, we
     can proceed with initializing the ctf_dict_t we allocated above.

     Nothing that depends on buf or base should be set directly in this function
     before the init_static_types() call, because it may be reallocated during
     transparent upgrade if this recension of libctf is so configured: see
     ctf_set_base().  */

  /* We declare BTF to be a kind of CTF so that we can use a single incrementing
     integer to describe all CTF field access operations.  This obliges CTF to
     remain BTF-compatible, come what may.  We also note that, as far as we
     know so far, this CTF dict can be written as BTF without losing
     information.  */

  if (version == IS_BTF)
    hp->cth_preamble.ctp_magic_version = (CTFv4_MAGIC << 16) | CTF_VERSION;

  fp->ctf_version = hp->cth_version;
  fp->ctf_dictops = &ctf_dictops[ctf_version];

  /* Temporary assignment, just enough to be able to initialize the atoms table.
     This does not guarantee that we can look up strings: in v4, child dicts
     cannot reliably look up strings until after ctf_import.  */

  fp->ctf_str[CTF_STRTAB_0].cts_strs = (const char *) fp->ctf_buf
    + hp->btf.bth_str_off;
  fp->ctf_str[CTF_STRTAB_0].cts_len = hp->btf.bth_str_len;
  if (ctf_str_create_atoms (fp) < 0)
    {
      err = ENOMEM;
      goto bad;
    }

  memcpy (&fp->ctf_data, ctfsect, sizeof (ctf_sect_t));

  if (symsect != NULL)
    {
      memcpy (&fp->ctf_ext_symtab, symsect, sizeof (ctf_sect_t));
      memcpy (&fp->ctf_ext_strtab, strsect, sizeof (ctf_sect_t));
    }

  if (fp->ctf_data.cts_name != NULL)
    if ((fp->ctf_data.cts_name = strdup (fp->ctf_data.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }
  if (fp->ctf_ext_symtab.cts_name != NULL)
    if ((fp->ctf_ext_symtab.cts_name = strdup (fp->ctf_ext_symtab.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }
  if (fp->ctf_ext_strtab.cts_name != NULL)
    if ((fp->ctf_ext_strtab.cts_name = strdup (fp->ctf_ext_strtab.cts_name)) == NULL)
      {
	err = ENOMEM;
	goto bad;
      }

  if (fp->ctf_data.cts_name == NULL)
    fp->ctf_data.cts_name = _CTF_NULLSTR;
  if (fp->ctf_ext_symtab.cts_name == NULL)
    fp->ctf_ext_symtab.cts_name = _CTF_NULLSTR;
  if (fp->ctf_ext_strtab.cts_name == NULL)
    fp->ctf_ext_strtab.cts_name = _CTF_NULLSTR;

  if (strsect != NULL)
    {
      fp->ctf_str[CTF_STRTAB_1].cts_strs = strsect->cts_data;
      fp->ctf_str[CTF_STRTAB_1].cts_len = strsect->cts_size;
    }

  /* Dynamic state, for dynamic addition to this dict after loading.  */

  fp->ctf_dthash = ctf_dynhash_create (ctf_hash_integer, ctf_hash_eq_integer,
				       NULL, NULL);
  fp->ctf_snapshots = 1;

  fp->ctf_objthash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					   free, NULL);
  fp->ctf_funchash = ctf_dynhash_create (ctf_hash_string, ctf_hash_eq_string,
					 free, NULL);

  if (!fp->ctf_dthash || !fp->ctf_snapshots || !fp->ctf_objthash
      || !fp->ctf_funchash)
    {
      err = ENOMEM;
      goto bad;
    }

  if (foreign_endian &&
      (err = ctf_flip (fp, hp, 0, fp->ctf_buf, 0)) != 0)
    {
      /* We can be certain that ctf_flip() will have endian-flipped everything
	 other than the types table when we return.  In particular the header
	 is fine, so set it, to allow freeing to use the usual code path.  */

      ctf_set_base (fp, hp, fp->ctf_base);
      goto bad;
    }

  ctf_set_base (fp, hp, fp->ctf_base);

  if ((err = init_static_types (fp, hp, format == IS_BTF)) != 0)
    goto bad;

  /* Allocate and initialize the symtab translation table, pointed to by
     ctf_sxlate, and the corresponding index sections.  This table may be too
     large for the actual size of the object and function info sections: if so,
     ctf_nsyms will be adjusted and the excess will never be used.  It's
     possible to do indexed symbol lookups even without a symbol table, so check
     even in that case.  Initially, we assume the symtab is native-endian: if it
     isn't, the caller will inform us later by calling ctf_symsect_endianness.  */
#ifdef WORDS_BIGENDIAN
  fp->ctf_symsect_little_endian = 0;
#else
  fp->ctf_symsect_little_endian = 1;
#endif

  if (symsect != NULL)
    {
      fp->ctf_nsyms = symsect->cts_size / symsect->cts_entsize;
      fp->ctf_sxlate = malloc (fp->ctf_nsyms * sizeof (uint32_t));

      if (fp->ctf_sxlate == NULL)
	{
	  err = ENOMEM;
	  goto bad;
	}
    }

  if ((err = init_symtab (fp, hp, symsect)) != 0)
    goto bad;

  ctf_set_ctl_hashes (fp);

  if (symsect != NULL)
    {
      if (symsect->cts_entsize == sizeof (Elf64_Sym))
	(void) ctf_setmodel (fp, CTF_MODEL_LP64);
      else
	(void) ctf_setmodel (fp, CTF_MODEL_ILP32);
    }
  else
    (void) ctf_setmodel (fp, CTF_MODEL_NATIVE);

  fp->ctf_refcnt = 1;
  return fp;

validation_fail:
  free (header_v3);
  free (hp);
  return NULL;

bad:
  ctf_set_open_errno (errp, err);
  ctf_err_warn_to_open (fp);
  /* Without this, the refcnt is zero on entry and ctf_dict_close() won't
     actually do anything on the grounds that this is a recursive call via
     another dict being closed.  */
  fp->ctf_refcnt = 1;
  ctf_dict_close (fp);
  return NULL;
}

/* Bump the refcount on the specified CTF dict, to allow export of ctf_dict_t's
   from iterators that open and close the ctf_dict_t around the loop.  (This
   does not extend their lifetime beyond that of the ctf_archive_t in which they
   are contained.)  */

void
ctf_ref (ctf_dict_t *fp)
{
  fp->ctf_refcnt++;
}

/* Close the specified CTF dict and free associated data structures.  Note that
   ctf_dict_close() is a reference counted operation: if the specified file is
   the parent of other active dict, its reference count will be greater than one
   and it will be freed later when no active children exist.  */

void
ctf_dict_close (ctf_dict_t *fp)
{
  ctf_dtdef_t *dtd, *ntd;
  ctf_in_flight_dynsym_t *did, *nid;
  ctf_err_warning_t *err, *nerr;

  if (fp == NULL)
    return;		   /* Allow ctf_dict_close(NULL) to simplify caller code.  */

  ctf_dprintf ("ctf_dict_close(%p) refcnt=%u\n", (void *) fp, fp->ctf_refcnt);

  if (fp->ctf_refcnt > 1)
    {
      fp->ctf_refcnt--;
      return;
    }

  /* It is possible to recurse back in here, notably if dicts in the
     ctf_link_inputs or ctf_link_outputs cite this dict as a parent without
     using ctf_import_unref.  Do nothing in that case.  */
  if (fp->ctf_refcnt == 0)
    return;

  fp->ctf_refcnt--;
  free (fp->ctf_dyn_cu_name);
  free (fp->ctf_dyn_parent_name);
  if (fp->ctf_parent && !fp->ctf_parent_unreffed)
    ctf_dict_close (fp->ctf_parent);

  for (dtd = ctf_list_next (&fp->ctf_dtdefs); dtd != NULL; dtd = ntd)
    {
      ntd = ctf_list_next (dtd);
      ctf_dtd_delete (fp, dtd);
    }
  ctf_dynhash_destroy (fp->ctf_dthash);

  ctf_dynset_destroy (fp->ctf_conflicting_enums);
  ctf_dynhash_destroy (fp->ctf_structs);
  ctf_dynhash_destroy (fp->ctf_unions);
  ctf_dynhash_destroy (fp->ctf_enums);
  ctf_dynhash_destroy (fp->ctf_datasecs);
  ctf_dynhash_destroy (fp->ctf_tags);
  ctf_dynhash_destroy (fp->ctf_names);
  ctf_dynhash_destroy (fp->ctf_var_datasecs);

  ctf_dynhash_destroy (fp->ctf_symhash_func);
  ctf_dynhash_destroy (fp->ctf_symhash_objt);
  free (fp->ctf_funcidx_sxlate);
  free (fp->ctf_objtidx_sxlate);
  ctf_dynhash_destroy (fp->ctf_objthash);
  ctf_dynhash_destroy (fp->ctf_funchash);
  free (fp->ctf_dynsymidx);
  ctf_dynhash_destroy (fp->ctf_dynsyms);
  for (did = ctf_list_next (&fp->ctf_in_flight_dynsyms); did != NULL; did = nid)
    {
      nid = ctf_list_next (did);
      ctf_list_delete (&fp->ctf_in_flight_dynsyms, did);
      free (did);
    }

  /* The lifetime rules here are delicate.  We must destroy the outputs before
     the atoms (since in a link the outputs contain references to the parent's
     atoms), but we must destroy the inputs after that (since many type strings
     ultimately come from the inputs).  In addition, if there are
     ctf_link_outputs, the parent dict's atoms table may have refs that refer to
     the outputs: so purge the refs first.  */

  if (fp->ctf_link_outputs && ctf_dynhash_elements (fp->ctf_link_outputs) > 0)
    ctf_str_purge_refs (fp);

  ctf_dynhash_destroy (fp->ctf_link_outputs);
  ctf_dynhash_destroy (fp->ctf_link_out_cu_mapping);

  ctf_str_free_atoms (fp);
  free (fp->ctf_tmp_typeslice);

  if (fp->ctf_data.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_data.cts_name);

  if (fp->ctf_ext_symtab.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_ext_symtab.cts_name);

  if (fp->ctf_ext_strtab.cts_name != _CTF_NULLSTR)
    free ((char *) fp->ctf_ext_strtab.cts_name);
  else if (fp->ctf_data_mmapped)
    ctf_munmap (fp->ctf_data_mmapped, fp->ctf_data_mmapped_len);

  free (fp->ctf_dynbase);

  ctf_dynhash_destroy (fp->ctf_link_inputs);
  ctf_dynhash_destroy (fp->ctf_link_type_mapping);
  ctf_dynhash_destroy (fp->ctf_link_in_cu_mapping);
  ctf_dynhash_destroy (fp->ctf_add_processing);
  ctf_dedup_fini (fp, NULL, 0);
  ctf_dynset_destroy (fp->ctf_dedup_atoms_alloc);

  for (err = ctf_list_next (&fp->ctf_errs_warnings); err != NULL; err = nerr)
    {
      nerr = ctf_list_next (err);
      ctf_list_delete (&fp->ctf_errs_warnings, err);
      free (err->cew_text);
      free (err);
    }

  free (fp->ctf_sxlate);
  free (fp->ctf_txlate);
  free (fp->ctf_ptrtab);
  free (fp->ctf_pptrtab);
  free (fp->ctf_serializing_buf);

  free (fp->ctf_header);
  free (fp);
}

/* Backward compatibility.  */
void
ctf_file_close (ctf_file_t *fp)
{
  ctf_dict_close (fp);
}

/* The converse of ctf_open().  ctf_open() disguises whatever it opens as an
   archive, so closing one is just like closing an archive.  */
void
ctf_close (ctf_archive_t *arc)
{
  ctf_arc_close (arc);
}

/* Get the CTF archive from which this ctf_dict_t is derived.  */
ctf_archive_t *
ctf_get_arc (const ctf_dict_t *fp)
{
  return fp->ctf_archive;
}

/* Return the ctfsect out of the core ctf_impl.  Useful for freeing the
   ctfsect's data * after ctf_dict_close(), which is why we return the actual
   structure, not a pointer to it, since that is likely to become a pointer to
   freed data before the return value is used under the expected use case of
   ctf_getsect()/ ctf_dict_close()/free().  */
ctf_sect_t
ctf_getdatasect (const ctf_dict_t *fp)
{
  return fp->ctf_data;
}

ctf_sect_t
ctf_getsymsect (const ctf_dict_t *fp)
{
  return fp->ctf_ext_symtab;
}

ctf_sect_t
ctf_getstrsect (const ctf_dict_t *fp)
{
  return fp->ctf_ext_strtab;
}

/* Set the endianness of the symbol table attached to FP.  */
void
ctf_symsect_endianness (ctf_dict_t *fp, int little_endian)
{
  int old_endianness = fp->ctf_symsect_little_endian;

  fp->ctf_symsect_little_endian = !!little_endian;

  /* If we already have a symtab translation table, we need to repopulate it if
     our idea of the endianness has changed.  */

  if (old_endianness != fp->ctf_symsect_little_endian
      && fp->ctf_sxlate != NULL && fp->ctf_ext_symtab.cts_data != NULL)
    assert (init_symtab (fp, fp->ctf_header, &fp->ctf_ext_symtab) == 0);
}

/* Return the CTF handle for the parent CTF dict, if one exists.  Otherwise
   return NULL to indicate this dict has no imported parent.  */
ctf_dict_t *
ctf_parent_dict (ctf_dict_t *fp)
{
  return fp->ctf_parent;
}

/* Backward compatibility.  */
ctf_dict_t *
ctf_parent_file (ctf_dict_t *fp)
{
  return ctf_parent_dict (fp);
}

/* Return the name of the parent CTF dict, if one exists, or NULL otherwise.  */
const char *
ctf_parent_name (ctf_dict_t *fp)
{
  return fp->ctf_parent_name;
}

/* Set the parent name.  It is an error to call this routine without calling
   ctf_import() at some point.  */
int
ctf_parent_name_set (ctf_dict_t *fp, const char *name)
{
  if (fp->ctf_dyn_parent_name != NULL)
    free (fp->ctf_dyn_parent_name);

  if ((fp->ctf_dyn_parent_name = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));
  fp->ctf_parent_name = fp->ctf_dyn_parent_name;
  return 0;
}

/* Return the name of the compilation unit this CTF file applies to.  Usually
   non-NULL only for non-parent dicts.  */
const char *
ctf_cuname (ctf_dict_t *fp)
{
  return fp->ctf_cuname;
}

/* Set the compilation unit name.  */
int
ctf_cuname_set (ctf_dict_t *fp, const char *name)
{
  if (fp->ctf_dyn_cu_name != NULL)
    free (fp->ctf_dyn_cu_name);

  if ((fp->ctf_dyn_cu_name = strdup (name)) == NULL)
    return (ctf_set_errno (fp, ENOMEM));
  fp->ctf_cuname = fp->ctf_dyn_cu_name;
  return 0;
}

static int
ctf_import_internal (ctf_dict_t *fp, ctf_dict_t *pfp, int unreffed)
{
  int err;
  int no_strings = fp->ctf_flags & LCTF_NO_STR;
  int old_flags = fp->ctf_flags;
  ctf_dict_t *old_parent = fp->ctf_parent;
  const char *old_parent_name = fp->ctf_parent_name;
  int old_unreffed = fp->ctf_parent_unreffed;

  if (pfp == NULL || pfp == fp->ctf_parent)
    return 0;

  if (fp == NULL || fp == pfp || pfp->ctf_refcnt == 0)
    return (ctf_set_errno (fp, EINVAL));

  if (pfp->ctf_dmodel != fp->ctf_dmodel)
    return (ctf_set_errno (fp, ECTF_DMODEL));

  if (fp->ctf_parent && fp->ctf_header->cth_parent_strlen != 0)
    return (ctf_set_errno (fp, ECTF_HASPARENT));

  if (fp->ctf_header->cth_parent_strlen != 0 &&
      pfp->ctf_header->btf.bth_str_len != fp->ctf_header->cth_parent_strlen)
    {
      ctf_err_warn (fp, 0, ECTF_WRONGPARENT,
		    _("ctf_import: incorrect parent dict: %u bytes of strings expected, %u found"),
		    fp->ctf_header->cth_parent_strlen, pfp->ctf_header->btf.bth_str_len);
      return (ctf_set_errno (fp, ECTF_WRONGPARENT));
    }

  /* If the child dict expects the parent to have types, make sure it has that
     number of types.  (Provisional types excepted: they go at the top of the
     type ID space, and will not overlap any child types.)  */

  if (pfp->ctf_idmax != fp->ctf_header->cth_parent_ntypes)
    {
      if (fp->ctf_header->cth_parent_ntypes != 0)
	{
	  ctf_err_warn (fp, 0, ECTF_WRONGPARENT,
			_("ctf_import: incorrect parent dict: %u types expected, %u found"),
			fp->ctf_header->cth_parent_ntypes, pfp->ctf_idmax);
	  return (ctf_set_errno (fp, ECTF_WRONGPARENT));
	}
      else if (fp->ctf_opened_btf)
	{
	  /* A pure BTF dict does not track the number of types in the parent:
	     just update and hope.  */

	  fp->ctf_header->cth_parent_ntypes = pfp->ctf_idmax;
	}
      else if (fp->ctf_header->cth_parent_ntypes == 0)
	{
	  /* If we are importing into a parent dict, the child dict had better
	     be empty.  Set its starting type ID, which need not be zero: the
	     parent can already have types.  */

	  if (fp->ctf_typemax != 0)
	    {
	      ctf_err_warn (fp, 0, EINVAL,
			    _("ctf_import: dict already has %u types, cannot turn into a new child"),
			    fp->ctf_typemax);
	      return (ctf_set_errno (fp, EINVAL));
	    }
	  fp->ctf_header->cth_parent_ntypes = pfp->ctf_typemax;
	}
    }

  /* We might in time be able to lift this restriction, but it is unlikely to be
     something anyone would want to do, so let's not bother for now.  */

  if (ctf_dynhash_elements (fp->ctf_prov_strtab) != 0)
    {
      ctf_err_warn (fp, 0, EINVAL,
		    _("ctf_import: child dict already has %zi bytes of strings, cannot import"),
		    ctf_dynhash_elements (fp->ctf_prov_strtab));
      return (ctf_set_errno (fp, EINVAL));
    }

  fp->ctf_parent = NULL;
  free (fp->ctf_pptrtab);
  fp->ctf_pptrtab = NULL;
  fp->ctf_pptrtab_len = 0;
  fp->ctf_pptrtab_typemax = 0;

  if (fp->ctf_parent_name == NULL)
    if ((err = ctf_parent_name_set (fp, "PARENT")) < 0)
      return err;				/* errno is set for us.  */

  if (!unreffed)
    pfp->ctf_refcnt++;

  fp->ctf_parent_unreffed = unreffed;
  fp->ctf_parent = pfp;

  /* If this is a dict that hasn't previously allowed string lookups,
     we can allow them now, and finish initialization.  */

  fp->ctf_flags |= LCTF_CHILD;
  fp->ctf_flags &= ~LCTF_NO_STR;

  if (no_strings && (err = init_static_types_names (fp, fp->ctf_header)) < 0)
    {
      /* Undo everything other than cache flushing.  */

      fp->ctf_flags = old_flags;
      fp->ctf_parent_unreffed = old_unreffed;
      fp->ctf_parent = old_parent;
      fp->ctf_parent_name = old_parent_name;

      if (fp->ctf_parent_unreffed)
	old_parent->ctf_refcnt++;

      return (ctf_set_errno (fp, err));		/* errno is set for us.  */
    }

  /* Failure can now no longer happen, so we can close the old parent (which may
     deallocate it and is not easily reversible).  */

  if (old_parent && !old_unreffed)
    ctf_dict_close (old_parent);

  fp->ctf_parent->ctf_max_children++;
  return 0;
}

/* Import the types from the specified parent dict by storing a pointer to it in
   ctf_parent and incrementing its reference count.  You can only call this
   function once on serialized dicts: the parent cannot be replaced once set.
   (You can call it on unserialized dicts as often as you like.)

   The pptrtab is wiped, and will be refreshed by the next ctf_lookup_by_name
   call.

   You can call this with a parent of NULL as many times as you like (but
   it doesn't do much).  */
int
ctf_import (ctf_dict_t *fp, ctf_dict_t *pfp)
{
  return ctf_import_internal (fp, pfp, 0);
}

/* Like ctf_import, but does not increment the refcount on the imported parent
   or close it at any point: as a result it can go away at any time and the
   caller must do all freeing itself.  Used internally to avoid refcount
   loops.  */
int
ctf_import_unref (ctf_dict_t *fp, ctf_dict_t *pfp)
{
  return ctf_import_internal (fp, pfp, 1);
}

/* Set the data model constant for the CTF dict.  */
int
ctf_setmodel (ctf_dict_t *fp, int model)
{
  const ctf_dmodel_t *dp;

  for (dp = _libctf_models; dp->ctd_name != NULL; dp++)
    {
      if (dp->ctd_code == model)
	{
	  fp->ctf_dmodel = dp;
	  return 0;
	}
    }

  return (ctf_set_errno (fp, EINVAL));
}

/* Return the data model constant for the CTF dict.  */
int
ctf_getmodel (ctf_dict_t *fp)
{
  return fp->ctf_dmodel->ctd_code;
}

/* The caller can hang an arbitrary pointer off each ctf_dict_t using this
   function.  */
void
ctf_setspecific (ctf_dict_t *fp, void *data)
{
  fp->ctf_specific = data;
}

/* Retrieve the arbitrary pointer again.  */
void *
ctf_getspecific (ctf_dict_t *fp)
{
  return fp->ctf_specific;
}