aboutsummaryrefslogtreecommitdiff
path: root/gdb/xtensa-tdep.c
blob: 840768b65c79dbb5e4245b2aee7017a298268d2a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
/* Target-dependent code for the Xtensa port of GDB, the GNU debugger.

   Copyright (C) 2003-2024 Free Software Foundation, Inc.

   This file is part of GDB.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <http://www.gnu.org/licenses/>.  */

#include "extract-store-integer.h"
#include "frame.h"
#include "solib-svr4.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "gdbcore.h"
#include "value.h"
#include "osabi.h"
#include "regcache.h"
#include "reggroups.h"
#include "regset.h"

#include "dwarf2/frame.h"
#include "frame-base.h"
#include "frame-unwind.h"

#include "arch-utils.h"
#include "gdbarch.h"

#include "command.h"
#include "cli/cli-cmds.h"

#include "xtensa-isa.h"
#include "xtensa-tdep.h"
#include "xtensa-config.h"
#include <algorithm>


static unsigned int xtensa_debug_level = 0;

#define DEBUGWARN(args...) \
  if (xtensa_debug_level > 0) \
    gdb_printf (gdb_stdlog, "(warn ) " args)

#define DEBUGINFO(args...) \
  if (xtensa_debug_level > 1) \
    gdb_printf (gdb_stdlog, "(info ) " args)

#define DEBUGTRACE(args...) \
  if (xtensa_debug_level > 2) \
    gdb_printf (gdb_stdlog, "(trace) " args)

#define DEBUGVERB(args...) \
  if (xtensa_debug_level > 3) \
    gdb_printf (gdb_stdlog, "(verb ) " args)


/* According to the ABI, the SP must be aligned to 16-byte boundaries.  */
#define SP_ALIGNMENT 16


/* On Windowed ABI, we use a6 through a11 for passing arguments
   to a function called by GDB because CALL4 is used.  */
#define ARGS_NUM_REGS		6
#define REGISTER_SIZE		4


/* Extract the call size from the return address or PS register.  */
#define PS_CALLINC_SHIFT	16
#define PS_CALLINC_MASK		0x00030000
#define CALLINC(ps)		(((ps) & PS_CALLINC_MASK) >> PS_CALLINC_SHIFT)
#define WINSIZE(ra)		(4 * (( (ra) >> 30) & 0x3))

/* On TX,  hardware can be configured without Exception Option.
   There is no PS register in this case.  Inside XT-GDB,  let us treat
   it as a virtual read-only register always holding the same value.  */
#define TX_PS			0x20

/* ABI-independent macros.  */
#define ARG_NOF(tdep) \
  (tdep->call_abi \
   == CallAbiCall0Only ? C0_NARGS : (ARGS_NUM_REGS))
#define ARG_1ST(tdep) \
  (tdep->call_abi  == CallAbiCall0Only \
   ? (tdep->a0_base + C0_ARGS) \
   : (tdep->a0_base + 6))

/* XTENSA_IS_ENTRY tests whether the first byte of an instruction
   indicates that the instruction is an ENTRY instruction.  */

#define XTENSA_IS_ENTRY(gdbarch, op1) \
  ((gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG) \
   ? ((op1) == 0x6c) : ((op1) == 0x36))

#define XTENSA_ENTRY_LENGTH	3

/* windowing_enabled() returns true, if windowing is enabled.
   WOE must be set to 1; EXCM to 0.
   Note: We assume that EXCM is always 0 for XEA1.  */

#define PS_WOE			(1<<18)
#define PS_EXC			(1<<4)

/* Big enough to hold the size of the largest register in bytes.  */
#define XTENSA_MAX_REGISTER_SIZE	64

static int
windowing_enabled (struct gdbarch *gdbarch, unsigned int ps)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* If we know CALL0 ABI is set explicitly,  say it is Call0.  */
  if (tdep->call_abi == CallAbiCall0Only)
    return 0;

  return ((ps & PS_EXC) == 0 && (ps & PS_WOE) != 0);
}

/* Convert a live A-register number to the corresponding AR-register
   number.  */
static int
arreg_number (struct gdbarch *gdbarch, int a_regnum, ULONGEST wb)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int arreg;

  arreg = a_regnum - tdep->a0_base;
  arreg += (wb & ((tdep->num_aregs - 1) >> 2)) << WB_SHIFT;
  arreg &= tdep->num_aregs - 1;

  return arreg + tdep->ar_base;
}

/* Convert a live AR-register number to the corresponding A-register order
   number in a range [0..15].  Return -1, if AR_REGNUM is out of WB window.  */
static int
areg_number (struct gdbarch *gdbarch, int ar_regnum, unsigned int wb)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int areg;

  areg = ar_regnum - tdep->ar_base;
  if (areg < 0 || areg >= tdep->num_aregs)
    return -1;
  areg = (areg - wb * 4) & (tdep->num_aregs - 1);
  return (areg > 15) ? -1 : areg;
}

/* Read Xtensa register directly from the hardware.  */ 
static unsigned long
xtensa_read_register (int regnum)
{
  ULONGEST value;

  regcache_raw_read_unsigned (get_thread_regcache (inferior_thread ()), regnum,
			      &value);
  return (unsigned long) value;
}

/* Write Xtensa register directly to the hardware.  */ 
static void
xtensa_write_register (int regnum, ULONGEST value)
{
  regcache_raw_write_unsigned (get_thread_regcache (inferior_thread ()), regnum,
			       value);
}

/* Return the window size of the previous call to the function from which we
   have just returned.

   This function is used to extract the return value after a called function
   has returned to the caller.  On Xtensa, the register that holds the return
   value (from the perspective of the caller) depends on what call
   instruction was used.  For now, we are assuming that the call instruction
   precedes the current address, so we simply analyze the call instruction.
   If we are in a dummy frame, we simply return 4 as we used a 'pseudo-call4'
   method to call the inferior function.  */

static int
extract_call_winsize (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  int winsize = 4;
  int insn;
  gdb_byte buf[4];

  DEBUGTRACE ("extract_call_winsize (pc = 0x%08x)\n", (int) pc);

  /* Read the previous instruction (should be a call[x]{4|8|12}.  */
  read_memory (pc-3, buf, 3);
  insn = extract_unsigned_integer (buf, 3, byte_order);

  /* Decode call instruction:
     Little Endian
       call{0,4,8,12}   OFFSET || {00,01,10,11} || 0101
       callx{0,4,8,12}  OFFSET || 11 || {00,01,10,11} || 0000
     Big Endian
       call{0,4,8,12}   0101 || {00,01,10,11} || OFFSET
       callx{0,4,8,12}  0000 || {00,01,10,11} || 11 || OFFSET.  */

  if (byte_order == BFD_ENDIAN_LITTLE)
    {
      if (((insn & 0xf) == 0x5) || ((insn & 0xcf) == 0xc0))
	winsize = (insn & 0x30) >> 2;   /* 0, 4, 8, 12.  */
    }
  else
    {
      if (((insn >> 20) == 0x5) || (((insn >> 16) & 0xf3) == 0x03))
	winsize = (insn >> 16) & 0xc;   /* 0, 4, 8, 12.  */
    }
  return winsize;
}


/* REGISTER INFORMATION */

/* Find register by name.  */
static int
xtensa_find_register_by_name (struct gdbarch *gdbarch, const char *name)
{
  int i;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
    if (strcasecmp (tdep->regmap[i].name, name) == 0)
      return i;

  return -1;
}

/* Returns the name of a register.  */
static const char *
xtensa_register_name (struct gdbarch *gdbarch, int regnum)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* Return the name stored in the register map.  */
  return tdep->regmap[regnum].name;
}

/* Return the type of a register.  Create a new type, if necessary.  */

static struct type *
xtensa_register_type (struct gdbarch *gdbarch, int regnum)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* Return signed integer for ARx and Ax registers.  */
  if ((regnum >= tdep->ar_base
       && regnum < tdep->ar_base + tdep->num_aregs)
      || (regnum >= tdep->a0_base
	  && regnum < tdep->a0_base + 16))
    return builtin_type (gdbarch)->builtin_int;

  if (regnum == gdbarch_pc_regnum (gdbarch)
      || regnum == tdep->a0_base + 1)
    return builtin_type (gdbarch)->builtin_data_ptr;

  /* Return the stored type for all other registers.  */
  else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
    {
      xtensa_register_t* reg = &tdep->regmap[regnum];

      /* Set ctype for this register (only the first time).  */

      if (reg->ctype == 0)
	{
	  struct ctype_cache *tp;
	  int size = reg->byte_size;

	  /* We always use the memory representation,
	     even if the register width is smaller.  */
	  switch (size)
	    {
	    case 1:
	      reg->ctype = builtin_type (gdbarch)->builtin_uint8;
	      break;

	    case 2:
	      reg->ctype = builtin_type (gdbarch)->builtin_uint16;
	      break;

	    case 4:
	      reg->ctype = builtin_type (gdbarch)->builtin_uint32;
	      break;

	    case 8:
	      reg->ctype = builtin_type (gdbarch)->builtin_uint64;
	      break;

	    case 16:
	      reg->ctype = builtin_type (gdbarch)->builtin_uint128;
	      break;

	    default:
	      for (tp = tdep->type_entries; tp != NULL; tp = tp->next)
		if (tp->size == size)
		  break;

	      if (tp == NULL)
		{
		  std::string name = string_printf ("int%d", size * 8);

		  tp = XNEW (struct ctype_cache);
		  tp->next = tdep->type_entries;
		  tdep->type_entries = tp;
		  tp->size = size;
		  type_allocator alloc (gdbarch);
		  tp->virtual_type
		    = init_integer_type (alloc, size * 8, 1, name.c_str ());
		}

	      reg->ctype = tp->virtual_type;
	    }
	}
      return reg->ctype;
    }

  internal_error (_("invalid register number %d"), regnum);
  return 0;
}


/* Return the 'local' register number for stubs, dwarf2, etc.
   The debugging information enumerates registers starting from 0 for A0
   to n for An.  So, we only have to add the base number for A0.  */

static int
xtensa_reg_to_regnum (struct gdbarch *gdbarch, int regnum)
{
  int i;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  if (regnum >= 0 && regnum < 16)
    return tdep->a0_base + regnum;

  for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
    if (regnum == tdep->regmap[i].target_number)
      return i;

  return -1;
}


/* Write the bits of a masked register to the various registers.
   Only the masked areas of these registers are modified; the other
   fields are untouched.  The size of masked registers is always less
   than or equal to 32 bits.  */

static void
xtensa_register_write_masked (struct regcache *regcache,
			      xtensa_register_t *reg, const gdb_byte *buffer)
{
  unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
  const xtensa_mask_t *mask = reg->mask;

  int shift = 0;		/* Shift for next mask (mod 32).  */
  int start, size;		/* Start bit and size of current mask.  */

  unsigned int *ptr = value;
  unsigned int regval, m, mem = 0;

  int bytesize = reg->byte_size;
  int bitsize = bytesize * 8;
  int i, r;

  DEBUGTRACE ("xtensa_register_write_masked ()\n");

  /* Copy the masked register to host byte-order.  */
  if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
    for (i = 0; i < bytesize; i++)
      {
	mem >>= 8;
	mem |= (buffer[bytesize - i - 1] << 24);
	if ((i & 3) == 3)
	  *ptr++ = mem;
      }
  else
    for (i = 0; i < bytesize; i++)
      {
	mem >>= 8;
	mem |= (buffer[i] << 24);
	if ((i & 3) == 3)
	  *ptr++ = mem;
      }

  /* We might have to shift the final value:
     bytesize & 3 == 0 -> nothing to do, we use the full 32 bits,
     bytesize & 3 == x -> shift (4-x) * 8.  */

  *ptr = mem >> (((0 - bytesize) & 3) * 8);
  ptr = value;
  mem = *ptr;

  /* Write the bits to the masked areas of the other registers.  */
  for (i = 0; i < mask->count; i++)
    {
      start = mask->mask[i].bit_start;
      size = mask->mask[i].bit_size;
      regval = mem >> shift;

      if ((shift += size) > bitsize)
	error (_("size of all masks is larger than the register"));

      if (shift >= 32)
	{
	  mem = *(++ptr);
	  shift -= 32;
	  bitsize -= 32;

	  if (shift > 0)
	    regval |= mem << (size - shift);
	}

      /* Make sure we have a valid register.  */
      r = mask->mask[i].reg_num;
      if (r >= 0 && size > 0)
	{
	  /* Don't overwrite the unmasked areas.  */
	  ULONGEST old_val;
	  regcache_cooked_read_unsigned (regcache, r, &old_val);
	  m = 0xffffffff >> (32 - size) << start;
	  regval <<= start;
	  regval = (regval & m) | (old_val & ~m);
	  regcache_cooked_write_unsigned (regcache, r, regval);
	}
    }
}


/* Read a tie state or mapped registers.  Read the masked areas
   of the registers and assemble them into a single value.  */

static enum register_status
xtensa_register_read_masked (readable_regcache *regcache,
			     xtensa_register_t *reg, gdb_byte *buffer)
{
  unsigned int value[(XTENSA_MAX_REGISTER_SIZE + 3) / 4];
  const xtensa_mask_t *mask = reg->mask;

  int shift = 0;
  int start, size;

  unsigned int *ptr = value;
  unsigned int regval, mem = 0;

  int bytesize = reg->byte_size;
  int bitsize = bytesize * 8;
  int i;

  DEBUGTRACE ("xtensa_register_read_masked (reg \"%s\", ...)\n",
	      reg->name == 0 ? "" : reg->name);

  /* Assemble the register from the masked areas of other registers.  */
  for (i = 0; i < mask->count; i++)
    {
      int r = mask->mask[i].reg_num;
      if (r >= 0)
	{
	  enum register_status status;
	  ULONGEST val;

	  status = regcache->cooked_read (r, &val);
	  if (status != REG_VALID)
	    return status;
	  regval = (unsigned int) val;
	}
      else
	regval = 0;

      start = mask->mask[i].bit_start;
      size = mask->mask[i].bit_size;

      regval >>= start;

      if (size < 32)
	regval &= (0xffffffff >> (32 - size));

      mem |= regval << shift;

      if ((shift += size) > bitsize)
	error (_("size of all masks is larger than the register"));

      if (shift >= 32)
	{
	  *ptr++ = mem;
	  bitsize -= 32;
	  shift -= 32;

	  if (shift == 0)
	    mem = 0;
	  else
	    mem = regval >> (size - shift);
	}
    }

  if (shift > 0)
    *ptr = mem;

  /* Copy value to target byte order.  */
  ptr = value;
  mem = *ptr;

  if (gdbarch_byte_order (regcache->arch ()) == BFD_ENDIAN_BIG)
    for (i = 0; i < bytesize; i++)
      {
	if ((i & 3) == 0)
	  mem = *ptr++;
	buffer[bytesize - i - 1] = mem & 0xff;
	mem >>= 8;
      }
  else
    for (i = 0; i < bytesize; i++)
      {
	if ((i & 3) == 0)
	  mem = *ptr++;
	buffer[i] = mem & 0xff;
	mem >>= 8;
      }

  return REG_VALID;
}


/* Read pseudo registers.  */

static enum register_status
xtensa_pseudo_register_read (struct gdbarch *gdbarch,
			     readable_regcache *regcache,
			     int regnum,
			     gdb_byte *buffer)
{
  DEBUGTRACE ("xtensa_pseudo_register_read (... regnum = %d (%s) ...)\n",
	      regnum, xtensa_register_name (gdbarch, regnum));
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* Read aliases a0..a15, if this is a Windowed ABI.  */
  if (tdep->isa_use_windowed_registers
      && (regnum >= tdep->a0_base)
      && (regnum <= tdep->a0_base + 15))
    {
      ULONGEST value;
      enum register_status status;

      status = regcache->raw_read (tdep->wb_regnum,
				   &value);
      if (status != REG_VALID)
	return status;
      regnum = arreg_number (gdbarch, regnum, value);
    }

  /* We can always read non-pseudo registers.  */
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    return regcache->raw_read (regnum, buffer);

  /* We have to find out how to deal with privileged registers.
     Let's treat them as pseudo-registers, but we cannot read/write them.  */
     
  else if (tdep->call_abi == CallAbiCall0Only
	   || regnum < tdep->a0_base)
    {
      buffer[0] = (gdb_byte)0;
      buffer[1] = (gdb_byte)0;
      buffer[2] = (gdb_byte)0;
      buffer[3] = (gdb_byte)0;
      return REG_VALID;
    }
  /* Pseudo registers.  */
  else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
    {
      xtensa_register_t *reg = &tdep->regmap[regnum];
      xtensa_register_type_t type = reg->type;
      int flags = tdep->target_flags;

      /* We cannot read Unknown or Unmapped registers.  */
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
	{
	  if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
	    {
	      warning (_("cannot read register %s"),
		       xtensa_register_name (gdbarch, regnum));
	      return REG_VALID;
	    }
	}

      /* Some targets cannot read TIE register files.  */
      else if (type == xtRegisterTypeTieRegfile)
	{
	  /* Use 'fetch' to get register?  */
	  if (flags & xtTargetFlagsUseFetchStore)
	    {
	      warning (_("cannot read register"));
	      return REG_VALID;
	    }

	  /* On some targets (esp. simulators), we can always read the reg.  */
	  else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
	    {
	      warning (_("cannot read register"));
	      return REG_VALID;
	    }
	}

      /* We can always read mapped registers.  */
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
	return xtensa_register_read_masked (regcache, reg, buffer);

      /* Assume that we can read the register.  */
      return regcache->raw_read (regnum, buffer);
    }
  else
    internal_error (_("invalid register number %d"), regnum);
}


/* Write pseudo registers.  */

static void
xtensa_pseudo_register_write (struct gdbarch *gdbarch,
			      struct regcache *regcache,
			      int regnum,
			      const gdb_byte *buffer)
{
  DEBUGTRACE ("xtensa_pseudo_register_write (... regnum = %d (%s) ...)\n",
	      regnum, xtensa_register_name (gdbarch, regnum));
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* Renumber register, if aliases a0..a15 on Windowed ABI.  */
  if (tdep->isa_use_windowed_registers
      && (regnum >= tdep->a0_base)
      && (regnum <= tdep->a0_base + 15))
    {
      ULONGEST value;
      regcache_raw_read_unsigned (regcache,
				  tdep->wb_regnum, &value);
      regnum = arreg_number (gdbarch, regnum, value);
    }

  /* We can always write 'core' registers.
     Note: We might have converted Ax->ARy.  */
  if (regnum >= 0 && regnum < gdbarch_num_regs (gdbarch))
    regcache->raw_write (regnum, buffer);

  /* We have to find out how to deal with privileged registers.
     Let's treat them as pseudo-registers, but we cannot read/write them.  */

  else if (regnum < tdep->a0_base)
    {
      return;
    }
  /* Pseudo registers.  */
  else if (regnum >= 0 && regnum < gdbarch_num_cooked_regs (gdbarch))
    {
      xtensa_register_t *reg = &tdep->regmap[regnum];
      xtensa_register_type_t type = reg->type;
      int flags = tdep->target_flags;

      /* On most targets, we cannot write registers
	 of type "Unknown" or "Unmapped".  */
      if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
	{
	  if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
	    {
	      warning (_("cannot write register %s"),
		       xtensa_register_name (gdbarch, regnum));
	      return;
	    }
	}

      /* Some targets cannot read TIE register files.  */
      else if (type == xtRegisterTypeTieRegfile)
	{
	  /* Use 'store' to get register?  */
	  if (flags & xtTargetFlagsUseFetchStore)
	    {
	      warning (_("cannot write register"));
	      return;
	    }

	  /* On some targets (esp. simulators), we can always write
	     the register.  */
	  else if ((flags & xtTargetFlagsNonVisibleRegs) == 0)
	    {
	      warning (_("cannot write register"));
	      return;
	    }
	}

      /* We can always write mapped registers.  */
      else if (type == xtRegisterTypeMapped || type == xtRegisterTypeTieState)
	{
	  xtensa_register_write_masked (regcache, reg, buffer);
	  return;
	}

      /* Assume that we can write the register.  */
      regcache->raw_write (regnum, buffer);
    }
  else
    internal_error (_("invalid register number %d"), regnum);
}

static const reggroup *xtensa_ar_reggroup;
static const reggroup *xtensa_user_reggroup;
static const reggroup *xtensa_vectra_reggroup;
static const reggroup *xtensa_cp[XTENSA_MAX_COPROCESSOR];

static void
xtensa_init_reggroups (void)
{
  int i;

  xtensa_ar_reggroup = reggroup_new ("ar", USER_REGGROUP);
  xtensa_user_reggroup = reggroup_new ("user", USER_REGGROUP);
  xtensa_vectra_reggroup = reggroup_new ("vectra", USER_REGGROUP);

  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
    xtensa_cp[i] = reggroup_new (xstrprintf ("cp%d", i).release (),
				 USER_REGGROUP);
}

static void
xtensa_add_reggroups (struct gdbarch *gdbarch)
{
  /* Xtensa-specific groups.  */
  reggroup_add (gdbarch, xtensa_ar_reggroup);
  reggroup_add (gdbarch, xtensa_user_reggroup);
  reggroup_add (gdbarch, xtensa_vectra_reggroup);

  for (int i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
    reggroup_add (gdbarch, xtensa_cp[i]);
}

static int 
xtensa_coprocessor_register_group (const struct reggroup *group)
{
  int i;

  for (i = 0; i < XTENSA_MAX_COPROCESSOR; i++)
    if (group == xtensa_cp[i])
      return i;

  return -1;
}

#define SAVE_REST_FLAGS	(XTENSA_REGISTER_FLAGS_READABLE \
			| XTENSA_REGISTER_FLAGS_WRITABLE \
			| XTENSA_REGISTER_FLAGS_VOLATILE)

#define SAVE_REST_VALID	(XTENSA_REGISTER_FLAGS_READABLE \
			| XTENSA_REGISTER_FLAGS_WRITABLE)

static int
xtensa_register_reggroup_p (struct gdbarch *gdbarch,
			    int regnum,
			    const struct reggroup *group)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  xtensa_register_t* reg = &tdep->regmap[regnum];
  xtensa_register_type_t type = reg->type;
  xtensa_register_group_t rg = reg->group;
  int cp_number;

  if (group == save_reggroup)
    /* Every single register should be included into the list of registers
       to be watched for changes while using -data-list-changed-registers.  */
    return 1;

  /* First, skip registers that are not visible to this target
     (unknown and unmapped registers when not using ISS).  */

  if (type == xtRegisterTypeUnmapped || type == xtRegisterTypeUnknown)
    return 0;
  if (group == all_reggroup)
    return 1;
  if (group == xtensa_ar_reggroup)
    return rg & xtRegisterGroupAddrReg;
  if (group == xtensa_user_reggroup)
    return rg & xtRegisterGroupUser;
  if (group == float_reggroup)
    return rg & xtRegisterGroupFloat;
  if (group == general_reggroup)
    return rg & xtRegisterGroupGeneral;
  if (group == system_reggroup)
    return rg & xtRegisterGroupState;
  if (group == vector_reggroup || group == xtensa_vectra_reggroup)
    return rg & xtRegisterGroupVectra;
  if (group == restore_reggroup)
    return (regnum < gdbarch_num_regs (gdbarch)
	    && (reg->flags & SAVE_REST_FLAGS) == SAVE_REST_VALID);
  cp_number = xtensa_coprocessor_register_group (group);
  if (cp_number >= 0)
    return rg & (xtRegisterGroupCP0 << cp_number);
  else
    return 1;
}


/* Supply register REGNUM from the buffer specified by GREGS and LEN
   in the general-purpose register set REGSET to register cache
   REGCACHE.  If REGNUM is -1 do this for all registers in REGSET.  */

static void
xtensa_supply_gregset (const struct regset *regset,
		       struct regcache *rc,
		       int regnum,
		       const void *gregs,
		       size_t len)
{
  const xtensa_elf_gregset_t *regs = (const xtensa_elf_gregset_t *) gregs;
  struct gdbarch *gdbarch = rc->arch ();
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int i;

  DEBUGTRACE ("xtensa_supply_gregset (..., regnum==%d, ...)\n", regnum);

  if (regnum == gdbarch_pc_regnum (gdbarch) || regnum == -1)
    rc->raw_supply (gdbarch_pc_regnum (gdbarch), (char *) &regs->pc);
  if (regnum == gdbarch_ps_regnum (gdbarch) || regnum == -1)
    rc->raw_supply (gdbarch_ps_regnum (gdbarch), (char *) &regs->ps);
  if (regnum == tdep->wb_regnum || regnum == -1)
    rc->raw_supply (tdep->wb_regnum,
		    (char *) &regs->windowbase);
  if (regnum == tdep->ws_regnum || regnum == -1)
    rc->raw_supply (tdep->ws_regnum,
		    (char *) &regs->windowstart);
  if (regnum == tdep->lbeg_regnum || regnum == -1)
    rc->raw_supply (tdep->lbeg_regnum,
		    (char *) &regs->lbeg);
  if (regnum == tdep->lend_regnum || regnum == -1)
    rc->raw_supply (tdep->lend_regnum,
		    (char *) &regs->lend);
  if (regnum == tdep->lcount_regnum || regnum == -1)
    rc->raw_supply (tdep->lcount_regnum,
		    (char *) &regs->lcount);
  if (regnum == tdep->sar_regnum || regnum == -1)
    rc->raw_supply (tdep->sar_regnum,
		    (char *) &regs->sar);
  if (regnum >=tdep->ar_base
      && regnum < tdep->ar_base
		    + tdep->num_aregs)
    rc->raw_supply
      (regnum, (char *) &regs->ar[regnum - tdep->ar_base]);
  else if (regnum == -1)
    {
      for (i = 0; i < tdep->num_aregs; ++i)
	rc->raw_supply (tdep->ar_base + i,
			(char *) &regs->ar[i]);
    }
}


/* Xtensa register set.  */

static struct regset
xtensa_gregset =
{
  NULL,
  xtensa_supply_gregset
};


/* Iterate over supported core file register note sections. */

static void
xtensa_iterate_over_regset_sections (struct gdbarch *gdbarch,
				     iterate_over_regset_sections_cb *cb,
				     void *cb_data,
				     const struct regcache *regcache)
{
  DEBUGTRACE ("xtensa_iterate_over_regset_sections\n");

  cb (".reg", sizeof (xtensa_elf_gregset_t), sizeof (xtensa_elf_gregset_t),
      &xtensa_gregset, NULL, cb_data);
}


/* Handling frames.  */

/* Number of registers to save in case of Windowed ABI.  */
#define XTENSA_NUM_SAVED_AREGS		12

/* Frame cache part for Windowed ABI.  */
typedef struct xtensa_windowed_frame_cache
{
  int wb;		/* WINDOWBASE of the previous frame.  */
  int callsize;		/* Call size of this frame.  */
  int ws;		/* WINDOWSTART of the previous frame.  It keeps track of
			   life windows only.  If there is no bit set for the
			   window,  that means it had been already spilled
			   because of window overflow.  */

   /* Addresses of spilled A-registers.
      AREGS[i] == -1, if corresponding AR is alive.  */
  CORE_ADDR aregs[XTENSA_NUM_SAVED_AREGS];
} xtensa_windowed_frame_cache_t;

/* Call0 ABI Definitions.  */

#define C0_MAXOPDS  3	/* Maximum number of operands for prologue
			   analysis.  */
#define C0_CLESV   12	/* Callee-saved registers are here and up.  */
#define C0_SP	    1	/* Register used as SP.  */
#define C0_FP	   15	/* Register used as FP.  */
#define C0_RA	    0	/* Register used as return address.  */
#define C0_ARGS	    2	/* Register used as first arg/retval.  */
#define C0_NARGS    6	/* Number of A-regs for args/retvals.  */

/* Each element of xtensa_call0_frame_cache.c0_rt[] describes for each
   A-register where the current content of the reg came from (in terms
   of an original reg and a constant).  Negative values of c0_rt[n].fp_reg
   mean that the original content of the register was saved to the stack.
   c0_rt[n].fr.ofs is NOT the offset from the frame base because we don't 
   know where SP will end up until the entire prologue has been analyzed.  */

#define C0_CONST   -1	/* fr_reg value if register contains a constant.  */
#define C0_INEXP   -2	/* fr_reg value if inexpressible as reg + offset.  */
#define C0_NOSTK   -1	/* to_stk value if register has not been stored.  */

extern xtensa_isa xtensa_default_isa;

typedef struct xtensa_c0reg
{
  int fr_reg;  /* original register from which register content
		  is derived, or C0_CONST, or C0_INEXP.  */
  int fr_ofs;  /* constant offset from reg, or immediate value.  */
  int to_stk;  /* offset from original SP to register (4-byte aligned),
		  or C0_NOSTK if register has not been saved.  */
} xtensa_c0reg_t;

/* Frame cache part for Call0 ABI.  */
typedef struct xtensa_call0_frame_cache
{
  int c0_frmsz;			   /* Stack frame size.  */
  int c0_hasfp;			   /* Current frame uses frame pointer.  */
  int fp_regnum;		   /* A-register used as FP.  */
  int c0_fp;			   /* Actual value of frame pointer.  */
  int c0_fpalign;		   /* Dynamic adjustment for the stack
				      pointer. It's an AND mask. Zero,
				      if alignment was not adjusted.  */
  int c0_old_sp;		   /* In case of dynamic adjustment, it is
				      a register holding unaligned sp. 
				      C0_INEXP, when undefined.  */
  int c0_sp_ofs;		   /* If "c0_old_sp" was spilled it's a
				      stack offset. C0_NOSTK otherwise.  */
					   
  xtensa_c0reg_t c0_rt[C0_NREGS];  /* Register tracking information.  */
} xtensa_call0_frame_cache_t;

typedef struct xtensa_frame_cache
{
  CORE_ADDR base;	/* Stack pointer of this frame.  */
  CORE_ADDR pc;		/* PC of this frame at the function entry point.  */
  CORE_ADDR ra;		/* The raw return address of this frame.  */
  CORE_ADDR ps;		/* The PS register of the previous (older) frame.  */
  CORE_ADDR prev_sp;	/* Stack Pointer of the previous (older) frame.  */
  int call0;		/* It's a call0 framework (else windowed).  */
  union
    {
      xtensa_windowed_frame_cache_t	wd;	/* call0 == false.  */
      xtensa_call0_frame_cache_t       	c0;	/* call0 == true.  */
    };
} xtensa_frame_cache_t;


static struct xtensa_frame_cache *
xtensa_alloc_frame_cache (int windowed)
{
  xtensa_frame_cache_t *cache;
  int i;

  DEBUGTRACE ("xtensa_alloc_frame_cache ()\n");

  cache = FRAME_OBSTACK_ZALLOC (xtensa_frame_cache_t);

  cache->base = 0;
  cache->pc = 0;
  cache->ra = 0;
  cache->ps = 0;
  cache->prev_sp = 0;
  cache->call0 = !windowed;
  if (cache->call0)
    {
      cache->c0.c0_frmsz  = -1;
      cache->c0.c0_hasfp  =  0;
      cache->c0.fp_regnum = -1;
      cache->c0.c0_fp     = -1;
      cache->c0.c0_fpalign =  0;
      cache->c0.c0_old_sp  =  C0_INEXP;
      cache->c0.c0_sp_ofs  =  C0_NOSTK;

      for (i = 0; i < C0_NREGS; i++)
	{
	  cache->c0.c0_rt[i].fr_reg = i;
	  cache->c0.c0_rt[i].fr_ofs = 0;
	  cache->c0.c0_rt[i].to_stk = C0_NOSTK;
	}
    }
  else
    {
      cache->wd.wb = 0;
      cache->wd.ws = 0;
      cache->wd.callsize = -1;

      for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
	cache->wd.aregs[i] = -1;
    }
  return cache;
}


static CORE_ADDR
xtensa_frame_align (struct gdbarch *gdbarch, CORE_ADDR address)
{
  return address & ~15;
}


static CORE_ADDR
xtensa_unwind_pc (struct gdbarch *gdbarch, const frame_info_ptr &next_frame)
{
  gdb_byte buf[8];
  CORE_ADDR pc;

  DEBUGTRACE ("xtensa_unwind_pc (next_frame = %s)\n", 
		host_address_to_string (next_frame.get ()));

  frame_unwind_register (next_frame, gdbarch_pc_regnum (gdbarch), buf);
  pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);

  DEBUGINFO ("[xtensa_unwind_pc] pc = 0x%08x\n", (unsigned int) pc);

  return pc;
}


static struct frame_id
xtensa_dummy_id (struct gdbarch *gdbarch, const frame_info_ptr &this_frame)
{
  CORE_ADDR pc, fp;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* THIS-FRAME is a dummy frame.  Return a frame ID of that frame.  */

  pc = get_frame_pc (this_frame);
  fp = get_frame_register_unsigned
	 (this_frame, tdep->a0_base + 1);

  /* Make dummy frame ID unique by adding a constant.  */
  return frame_id_build (fp + SP_ALIGNMENT, pc);
}

/* Returns true,  if instruction to execute next is unique to Xtensa Window
   Interrupt Handlers.  It can only be one of L32E,  S32E,  RFWO,  or RFWU.  */

static int
xtensa_window_interrupt_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int insn = read_memory_integer (pc, 4, byte_order);
  unsigned int code;

  if (byte_order == BFD_ENDIAN_BIG)
    {
      /* Check, if this is L32E or S32E.  */
      code = insn & 0xf000ff00;
      if ((code == 0x00009000) || (code == 0x00009400))
	return 1;
      /* Check, if this is RFWU or RFWO.  */
      code = insn & 0xffffff00;
      return ((code == 0x00430000) || (code == 0x00530000));
    }
  else
    {
      /* Check, if this is L32E or S32E.  */
      code = insn & 0x00ff000f;
      if ((code == 0x090000) || (code == 0x490000))
	return 1;
      /* Check, if this is RFWU or RFWO.  */
      code = insn & 0x00ffffff;
      return ((code == 0x00003400) || (code == 0x00003500));
    }
}

/* Returns the best guess about which register is a frame pointer
   for the function containing CURRENT_PC.  */

#define XTENSA_ISA_BSZ		32		/* Instruction buffer size.  */
#define XTENSA_ISA_BADPC	((CORE_ADDR)0)	/* Bad PC value.  */

static unsigned int
xtensa_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR current_pc)
{
#define RETURN_FP goto done

  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  unsigned int fp_regnum = tdep->a0_base + 1;
  CORE_ADDR start_addr;
  xtensa_isa isa;
  xtensa_insnbuf ins, slot;
  gdb_byte ibuf[XTENSA_ISA_BSZ];
  CORE_ADDR ia, bt, ba;
  xtensa_format ifmt;
  int ilen, islots, is;
  xtensa_opcode opc;
  const char *opcname;

  find_pc_partial_function (current_pc, NULL, &start_addr, NULL);
  if (start_addr == 0)
    return fp_regnum;

  isa = xtensa_default_isa;
  gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
  ins = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);
  ba = 0;

  for (ia = start_addr, bt = ia; ia < current_pc ; ia += ilen)
    {
      if (ia + xtensa_isa_maxlength (isa) > bt)
	{
	  ba = ia;
	  bt = (ba + XTENSA_ISA_BSZ) < current_pc
	    ? ba + XTENSA_ISA_BSZ : current_pc;
	  if (target_read_memory (ba, ibuf, bt - ba) != 0)
	    RETURN_FP;
	}

      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      ifmt = xtensa_format_decode (isa, ins);
      if (ifmt == XTENSA_UNDEFINED)
	RETURN_FP;
      ilen = xtensa_format_length (isa, ifmt);
      if (ilen == XTENSA_UNDEFINED)
	RETURN_FP;
      islots = xtensa_format_num_slots (isa, ifmt);
      if (islots == XTENSA_UNDEFINED)
	RETURN_FP;
      
      for (is = 0; is < islots; ++is)
	{
	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
	    RETURN_FP;
	  
	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
	  if (opc == XTENSA_UNDEFINED) 
	    RETURN_FP;
	  
	  opcname = xtensa_opcode_name (isa, opc);

	  if (strcasecmp (opcname, "mov.n") == 0
	      || strcasecmp (opcname, "or") == 0)
	    {
	      unsigned int register_operand;

	      /* Possible candidate for setting frame pointer
		 from A1.  This is what we are looking for.  */

	      if (xtensa_operand_get_field (isa, opc, 1, ifmt, 
					    is, slot, &register_operand) != 0)
		RETURN_FP;
	      if (xtensa_operand_decode (isa, opc, 1, &register_operand) != 0)
		RETURN_FP;
	      if (register_operand == 1)  /* Mov{.n} FP A1.  */
		{
		  if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, 
						&register_operand) != 0)
		    RETURN_FP;
		  if (xtensa_operand_decode (isa, opc, 0,
					     &register_operand) != 0)
		    RETURN_FP;

		  fp_regnum
		    = tdep->a0_base + register_operand;
		  RETURN_FP;
		}
	    }

	  if (
	      /* We have problems decoding the memory.  */
	      opcname == NULL 
	      || strcasecmp (opcname, "ill") == 0
	      || strcasecmp (opcname, "ill.n") == 0
	      /* Hit planted breakpoint.  */
	      || strcasecmp (opcname, "break") == 0
	      || strcasecmp (opcname, "break.n") == 0
	      /* Flow control instructions finish prologue.  */
	      || xtensa_opcode_is_branch (isa, opc) > 0
	      || xtensa_opcode_is_jump   (isa, opc) > 0
	      || xtensa_opcode_is_loop   (isa, opc) > 0
	      || xtensa_opcode_is_call   (isa, opc) > 0
	      || strcasecmp (opcname, "simcall") == 0
	      || strcasecmp (opcname, "syscall") == 0)
	    /* Can not continue analysis.  */
	    RETURN_FP;
	}
    }
done:
  xtensa_insnbuf_free(isa, slot);
  xtensa_insnbuf_free(isa, ins);
  return fp_regnum;
}

/* The key values to identify the frame using "cache" are 

	cache->base    = SP (or best guess about FP) of this frame;
	cache->pc      = entry-PC (entry point of the frame function);
	cache->prev_sp = SP of the previous frame.  */

static void
call0_frame_cache (const frame_info_ptr &this_frame,
		   xtensa_frame_cache_t *cache, CORE_ADDR pc);

static void
xtensa_window_interrupt_frame_cache (const frame_info_ptr &this_frame,
				     xtensa_frame_cache_t *cache,
				     CORE_ADDR pc);

static struct xtensa_frame_cache *
xtensa_frame_cache (const frame_info_ptr &this_frame, void **this_cache)
{
  xtensa_frame_cache_t *cache;
  CORE_ADDR ra, wb, ws, pc, sp, ps;
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned int fp_regnum;
  int  windowed, ps_regnum;

  if (*this_cache)
    return (struct xtensa_frame_cache *) *this_cache;

  pc = get_frame_register_unsigned (this_frame, gdbarch_pc_regnum (gdbarch));
  ps_regnum = gdbarch_ps_regnum (gdbarch);
  ps = (ps_regnum >= 0
	? get_frame_register_unsigned (this_frame, ps_regnum) : TX_PS);

  windowed = windowing_enabled (gdbarch, ps);

  /* Get pristine xtensa-frame.  */
  cache = xtensa_alloc_frame_cache (windowed);
  *this_cache = cache;

  if (windowed)
    {
      LONGEST op1;
      xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

      /* Get WINDOWBASE, WINDOWSTART, and PS registers.  */
      wb = get_frame_register_unsigned (this_frame, 
					tdep->wb_regnum);
      ws = get_frame_register_unsigned (this_frame,
					tdep->ws_regnum);

      if (safe_read_memory_integer (pc, 1, byte_order, &op1)
	  && XTENSA_IS_ENTRY (gdbarch, op1))
	{
	  int callinc = CALLINC (ps);
	  ra = get_frame_register_unsigned
	    (this_frame, tdep->a0_base + callinc * 4);
	  
	  /* ENTRY hasn't been executed yet, therefore callsize is still 0.  */
	  cache->wd.callsize = 0;
	  cache->wd.wb = wb;
	  cache->wd.ws = ws;
	  cache->prev_sp = get_frame_register_unsigned
			     (this_frame, tdep->a0_base + 1);

	  /* This only can be the outermost frame since we are
	     just about to execute ENTRY.  SP hasn't been set yet.
	     We can assume any frame size, because it does not
	     matter, and, let's fake frame base in cache.  */
	  cache->base = cache->prev_sp - 16;

	  cache->pc = pc;
	  cache->ra = (cache->pc & 0xc0000000) | (ra & 0x3fffffff);
	  cache->ps = (ps & ~PS_CALLINC_MASK)
	    | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);

	  return cache;
	}
      else
	{
	  fp_regnum = xtensa_scan_prologue (gdbarch, pc);
	  ra = get_frame_register_unsigned (this_frame,
					    tdep->a0_base);
	  cache->wd.callsize = WINSIZE (ra);
	  cache->wd.wb = (wb - cache->wd.callsize / 4)
			  & (tdep->num_aregs / 4 - 1);
	  cache->wd.ws = ws & ~(1 << wb);

	  cache->pc = get_frame_func (this_frame);
	  cache->ra = (pc & 0xc0000000) | (ra & 0x3fffffff);
	  cache->ps = (ps & ~PS_CALLINC_MASK)
	    | ((WINSIZE(ra)/4) << PS_CALLINC_SHIFT);
	}

      if (cache->wd.ws == 0)
	{
	  int i;

	  /* Set A0...A3.  */
	  sp = get_frame_register_unsigned
	    (this_frame, tdep->a0_base + 1) - 16;
	  
	  for (i = 0; i < 4; i++, sp += 4)
	    {
	      cache->wd.aregs[i] = sp;
	    }

	  if (cache->wd.callsize > 4)
	    {
	      /* Set A4...A7/A11.  */
	      /* Get the SP of the frame previous to the previous one.
		 To achieve this, we have to dereference SP twice.  */
	      sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
	      sp = (CORE_ADDR) read_memory_integer (sp - 12, 4, byte_order);
	      sp -= cache->wd.callsize * 4;

	      for ( i = 4; i < cache->wd.callsize; i++, sp += 4)
		{
		  cache->wd.aregs[i] = sp;
		}
	    }
	}

      if ((cache->prev_sp == 0) && ( ra != 0 ))
	/* If RA is equal to 0 this frame is an outermost frame.  Leave
	   cache->prev_sp unchanged marking the boundary of the frame stack.  */
	{
	  if ((cache->wd.ws & (1 << cache->wd.wb)) == 0)
	    {
	      /* Register window overflow already happened.
		 We can read caller's SP from the proper spill location.  */
	      sp = get_frame_register_unsigned
		(this_frame, tdep->a0_base + 1);
	      cache->prev_sp = read_memory_integer (sp - 12, 4, byte_order);
	    }
	  else
	    {
	      /* Read caller's frame SP directly from the previous window.  */
	      int regnum = arreg_number
			     (gdbarch, tdep->a0_base + 1,
			      cache->wd.wb);

	      cache->prev_sp = xtensa_read_register (regnum);
	    }
	}
    }
  else if (xtensa_window_interrupt_insn (gdbarch, pc))
    {
      /* Execution stopped inside Xtensa Window Interrupt Handler.  */

      xtensa_window_interrupt_frame_cache (this_frame, cache, pc);
      /* Everything was set already,  including cache->base.  */
      return cache;
    }
  else	/* Call0 framework.  */
    {
      call0_frame_cache (this_frame, cache, pc);  
      fp_regnum = cache->c0.fp_regnum;
    }

  cache->base = get_frame_register_unsigned (this_frame, fp_regnum);

  return cache;
}

static int xtensa_session_once_reported = 1;

/* Report a problem with prologue analysis while doing backtracing.
   But, do it only once to avoid annoying repeated messages.  */

static void
warning_once (void)
{
  if (xtensa_session_once_reported == 0)
    warning (_("\
\nUnrecognised function prologue. Stack trace cannot be resolved. \
This message will not be repeated in this session.\n"));

  xtensa_session_once_reported = 1;
}


static void
xtensa_frame_this_id (const frame_info_ptr &this_frame,
		      void **this_cache,
		      struct frame_id *this_id)
{
  struct xtensa_frame_cache *cache =
    xtensa_frame_cache (this_frame, this_cache);

  if (cache->prev_sp == 0)
    return;

  (*this_id) = frame_id_build (cache->prev_sp, cache->pc);
}

static struct value *
xtensa_frame_prev_register (const frame_info_ptr &this_frame,
			    void **this_cache,
			    int regnum)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  struct xtensa_frame_cache *cache;
  ULONGEST saved_reg = 0;
  int done = 1;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  if (*this_cache == NULL)
    *this_cache = xtensa_frame_cache (this_frame, this_cache);
  cache = (struct xtensa_frame_cache *) *this_cache;

  if (regnum ==gdbarch_pc_regnum (gdbarch))
    saved_reg = cache->ra;
  else if (regnum == tdep->a0_base + 1)
    saved_reg = cache->prev_sp;
  else if (!cache->call0)
    {
      if (regnum == tdep->ws_regnum)
	saved_reg = cache->wd.ws;
      else if (regnum == tdep->wb_regnum)
	saved_reg = cache->wd.wb;
      else if (regnum == gdbarch_ps_regnum (gdbarch))
	saved_reg = cache->ps;
      else
	done = 0;
    }
  else
    done = 0;

  if (done)
    return frame_unwind_got_constant (this_frame, regnum, saved_reg);

  if (!cache->call0) /* Windowed ABI.  */
    {
      /* Convert A-register numbers to AR-register numbers,
	 if we deal with A-register.  */
      if (regnum >= tdep->a0_base
	  && regnum <= tdep->a0_base + 15)
	regnum = arreg_number (gdbarch, regnum, cache->wd.wb);

      /* Check, if we deal with AR-register saved on stack.  */
      if (regnum >= tdep->ar_base
	  && regnum <= (tdep->ar_base
			 + tdep->num_aregs))
	{
	  int areg = areg_number (gdbarch, regnum, cache->wd.wb);

	  if (areg >= 0
	      && areg < XTENSA_NUM_SAVED_AREGS
	      && cache->wd.aregs[areg] != -1)
	    return frame_unwind_got_memory (this_frame, regnum,
					    cache->wd.aregs[areg]);
	}
    }
  else /* Call0 ABI.  */
    {
      int reg = (regnum >= tdep->ar_base
		&& regnum <= (tdep->ar_base
			       + C0_NREGS))
		  ? regnum - tdep->ar_base : regnum;

      if (reg < C0_NREGS)
	{
	  CORE_ADDR spe;
	  int stkofs;

	  /* If register was saved in the prologue, retrieve it.  */
	  stkofs = cache->c0.c0_rt[reg].to_stk;
	  if (stkofs != C0_NOSTK)
	    {
	      /* Determine SP on entry based on FP.  */
	      spe = cache->c0.c0_fp
		- cache->c0.c0_rt[cache->c0.fp_regnum].fr_ofs;

	      return frame_unwind_got_memory (this_frame, regnum,
					      spe + stkofs);
	    }
	}
    }

  /* All other registers have been either saved to
     the stack or are still alive in the processor.  */

  return frame_unwind_got_register (this_frame, regnum, regnum);
}


static const struct frame_unwind
xtensa_unwind =
{
  "xtensa prologue",
  NORMAL_FRAME,
  default_frame_unwind_stop_reason,
  xtensa_frame_this_id,
  xtensa_frame_prev_register,
  NULL,
  default_frame_sniffer
};

static CORE_ADDR
xtensa_frame_base_address (const frame_info_ptr &this_frame, void **this_cache)
{
  struct xtensa_frame_cache *cache =
    xtensa_frame_cache (this_frame, this_cache);

  return cache->base;
}

static const struct frame_base
xtensa_frame_base =
{
  &xtensa_unwind,
  xtensa_frame_base_address,
  xtensa_frame_base_address,
  xtensa_frame_base_address
};


static void
xtensa_extract_return_value (struct type *type,
			     struct regcache *regcache,
			     void *dst)
{
  struct gdbarch *gdbarch = regcache->arch ();
  bfd_byte *valbuf = (bfd_byte *) dst;
  int len = type->length ();
  ULONGEST pc, wb;
  int callsize, areg;
  int offset = 0;

  DEBUGTRACE ("xtensa_extract_return_value (...)\n");

  gdb_assert(len > 0);

  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  if (tdep->call_abi != CallAbiCall0Only)
    {
      /* First, we have to find the caller window in the register file.  */
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      callsize = extract_call_winsize (gdbarch, pc);

      /* On Xtensa, we can return up to 4 words (or 2 for call12).  */
      if (len > (callsize > 8 ? 8 : 16))
	internal_error (_("cannot extract return value of %d bytes long"),
			len);

      /* Get the register offset of the return
	 register (A2) in the caller window.  */
      regcache_raw_read_unsigned
	(regcache, tdep->wb_regnum, &wb);
      areg = arreg_number (gdbarch,
			  tdep->a0_base + 2 + callsize, wb);
    }
  else
    {
      /* No windowing hardware - Call0 ABI.  */
      areg = tdep->a0_base + C0_ARGS;
    }

  DEBUGINFO ("[xtensa_extract_return_value] areg %d len %d\n", areg, len);

  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset = 4 - len;

  for (; len > 0; len -= 4, areg++, valbuf += 4)
    {
      if (len < 4)
	regcache->raw_read_part (areg, offset, len, valbuf);
      else
	regcache->raw_read (areg, valbuf);
    }
}


static void
xtensa_store_return_value (struct type *type,
			   struct regcache *regcache,
			   const void *dst)
{
  struct gdbarch *gdbarch = regcache->arch ();
  const bfd_byte *valbuf = (const bfd_byte *) dst;
  unsigned int areg;
  ULONGEST pc, wb;
  int callsize;
  int len = type->length ();
  int offset = 0;

  DEBUGTRACE ("xtensa_store_return_value (...)\n");

  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  if (tdep->call_abi != CallAbiCall0Only)
    {
      regcache_raw_read_unsigned 
	(regcache, tdep->wb_regnum, &wb);
      regcache_raw_read_unsigned (regcache, gdbarch_pc_regnum (gdbarch), &pc);
      callsize = extract_call_winsize (gdbarch, pc);

      if (len > (callsize > 8 ? 8 : 16))
	internal_error (_("unimplemented for this length: %s"),
			pulongest (type->length ()));
      areg = arreg_number (gdbarch,
			   tdep->a0_base + 2 + callsize, wb);

      DEBUGTRACE ("[xtensa_store_return_value] callsize %d wb %d\n",
	      callsize, (int) wb);
    }
  else
    {
      areg = tdep->a0_base + C0_ARGS;
    }

  if (len < 4 && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
    offset = 4 - len;

  for (; len > 0; len -= 4, areg++, valbuf += 4)
    {
      if (len < 4)
	regcache->raw_write_part (areg, offset, len, valbuf);
      else
	regcache->raw_write (areg, valbuf);
    }
}


static enum return_value_convention
xtensa_return_value (struct gdbarch *gdbarch,
		     struct value *function,
		     struct type *valtype,
		     struct regcache *regcache,
		     gdb_byte *readbuf,
		     const gdb_byte *writebuf)
{
  /* Structures up to 16 bytes are returned in registers.  */

  int struct_return = ((valtype->code () == TYPE_CODE_STRUCT
			|| valtype->code () == TYPE_CODE_UNION
			|| valtype->code () == TYPE_CODE_ARRAY)
		       && valtype->length () > 16);

  if (struct_return)
    return RETURN_VALUE_STRUCT_CONVENTION;

  DEBUGTRACE ("xtensa_return_value(...)\n");

  if (writebuf != NULL)
    {
      xtensa_store_return_value (valtype, regcache, writebuf);
    }

  if (readbuf != NULL)
    {
      gdb_assert (!struct_return);
      xtensa_extract_return_value (valtype, regcache, readbuf);
    }
  return RETURN_VALUE_REGISTER_CONVENTION;
}


/* DUMMY FRAME */

static CORE_ADDR
xtensa_push_dummy_call (struct gdbarch *gdbarch,
			struct value *function,
			struct regcache *regcache,
			CORE_ADDR bp_addr,
			int nargs,
			struct value **args,
			CORE_ADDR sp,
			function_call_return_method return_method,
			CORE_ADDR struct_addr)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int size, onstack_size;
  gdb_byte *buf = (gdb_byte *) alloca (16);
  CORE_ADDR ra, ps;
  struct argument_info
  {
    const bfd_byte *contents;
    int length;
    int onstack;		/* onstack == 0 => in reg */
    int align;			/* alignment */
    union
    {
      int offset;		/* stack offset if on stack.  */
      int regno;		/* regno if in register.  */
    } u;
  };

  struct argument_info *arg_info =
    (struct argument_info *) alloca (nargs * sizeof (struct argument_info));

  CORE_ADDR osp = sp;

  DEBUGTRACE ("xtensa_push_dummy_call (...)\n");

  if (xtensa_debug_level > 3)
    {
      DEBUGINFO ("[xtensa_push_dummy_call] nargs = %d\n", nargs);
      DEBUGINFO ("[xtensa_push_dummy_call] sp=0x%x, return_method=%d, "
		 "struct_addr=0x%x\n",
		 (int) sp, (int) return_method, (int) struct_addr);

      for (int i = 0; i < nargs; i++)
	{
	  struct value *arg = args[i];
	  struct type *arg_type = check_typedef (arg->type ());
	  gdb_printf (gdb_stdlog, "%2d: %s %3s ", i,
		      host_address_to_string (arg),
		      pulongest (arg_type->length ()));
	  switch (arg_type->code ())
	    {
	    case TYPE_CODE_INT:
	      gdb_printf (gdb_stdlog, "int");
	      break;
	    case TYPE_CODE_STRUCT:
	      gdb_printf (gdb_stdlog, "struct");
	      break;
	    default:
	      gdb_printf (gdb_stdlog, "%3d", arg_type->code ());
	      break;
	    }
	  gdb_printf (gdb_stdlog, " %s\n",
		      host_address_to_string (arg->contents ().data ()));
	}
    }

  /* First loop: collect information.
     Cast into type_long.  (This shouldn't happen often for C because
     GDB already does this earlier.)  It's possible that GDB could
     do it all the time but it's harmless to leave this code here.  */

  size = 0;
  onstack_size = 0;

  if (return_method == return_method_struct)
    size = REGISTER_SIZE;

  for (int i = 0; i < nargs; i++)
    {
      struct argument_info *info = &arg_info[i];
      struct value *arg = args[i];
      struct type *arg_type = check_typedef (arg->type ());

      switch (arg_type->code ())
	{
	case TYPE_CODE_INT:
	case TYPE_CODE_BOOL:
	case TYPE_CODE_CHAR:
	case TYPE_CODE_RANGE:
	case TYPE_CODE_ENUM:

	  /* Cast argument to long if necessary as the mask does it too.  */
	  if (arg_type->length ()
	      < builtin_type (gdbarch)->builtin_long->length ())
	    {
	      arg_type = builtin_type (gdbarch)->builtin_long;
	      arg = value_cast (arg_type, arg);
	    }
	  /* Aligment is equal to the type length for the basic types.  */
	  info->align = arg_type->length ();
	  break;

	case TYPE_CODE_FLT:

	  /* Align doubles correctly.  */
	  if (arg_type->length ()
	      == builtin_type (gdbarch)->builtin_double->length ())
	    info->align = builtin_type (gdbarch)->builtin_double->length ();
	  else
	    info->align = builtin_type (gdbarch)->builtin_long->length ();
	  break;

	case TYPE_CODE_STRUCT:
	default:
	  info->align = builtin_type (gdbarch)->builtin_long->length ();
	  break;
	}
      info->length = arg_type->length ();
      info->contents = arg->contents ().data ();

      /* Align size and onstack_size.  */
      size = (size + info->align - 1) & ~(info->align - 1);
      onstack_size = (onstack_size + info->align - 1) & ~(info->align - 1);

      if (size + info->length > REGISTER_SIZE * ARG_NOF (tdep))
	{
	  info->onstack = 1;
	  info->u.offset = onstack_size;
	  onstack_size += info->length;
	}
      else
	{
	  info->onstack = 0;
	  info->u.regno = ARG_1ST (tdep) + size / REGISTER_SIZE;
	}
      size += info->length;
    }

  /* Adjust the stack pointer and align it.  */
  sp = align_down (sp - onstack_size, SP_ALIGNMENT);

  /* Simulate MOVSP, if Windowed ABI.  */
  if ((tdep->call_abi != CallAbiCall0Only)
      && (sp != osp))
    {
      read_memory (osp - 16, buf, 16);
      write_memory (sp - 16, buf, 16);
    }

  /* Second Loop: Load arguments.  */

  if (return_method == return_method_struct)
    {
      store_unsigned_integer (buf, REGISTER_SIZE, byte_order, struct_addr);
      regcache->cooked_write (ARG_1ST (tdep), buf);
    }

  for (int i = 0; i < nargs; i++)
    {
      struct argument_info *info = &arg_info[i];

      if (info->onstack)
	{
	  int n = info->length;
	  CORE_ADDR offset = sp + info->u.offset;

	  /* Odd-sized structs are aligned to the lower side of a memory
	     word in big-endian mode and require a shift.  This only
	     applies for structures smaller than one word.  */

	  if (n < REGISTER_SIZE
	      && gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	    offset += (REGISTER_SIZE - n);

	  write_memory (offset, info->contents, info->length);

	}
      else
	{
	  int n = info->length;
	  const bfd_byte *cp = info->contents;
	  int r = info->u.regno;

	  /* Odd-sized structs are aligned to the lower side of registers in
	     big-endian mode and require a shift.  The odd-sized leftover will
	     be at the end.  Note that this is only true for structures smaller
	     than REGISTER_SIZE; for larger odd-sized structures the excess
	     will be left-aligned in the register on both endiannesses.  */

	  if (n < REGISTER_SIZE && byte_order == BFD_ENDIAN_BIG)
	    {
	      ULONGEST v;
	      v = extract_unsigned_integer (cp, REGISTER_SIZE, byte_order);
	      v = v >> ((REGISTER_SIZE - n) * TARGET_CHAR_BIT);

	      store_unsigned_integer (buf, REGISTER_SIZE, byte_order, v);
	      regcache->cooked_write (r, buf);

	      cp += REGISTER_SIZE;
	      n -= REGISTER_SIZE;
	      r++;
	    }
	  else
	    while (n > 0)
	      {
		regcache->cooked_write (r, cp);

		cp += REGISTER_SIZE;
		n -= REGISTER_SIZE;
		r++;
	      }
	}
    }

  /* Set the return address of dummy frame to the dummy address.
     The return address for the current function (in A0) is
     saved in the dummy frame, so we can safely overwrite A0 here.  */

  if (tdep->call_abi != CallAbiCall0Only)
    {
      ULONGEST val;

      ra = (bp_addr & 0x3fffffff) | 0x40000000;
      regcache_raw_read_unsigned (regcache, gdbarch_ps_regnum (gdbarch), &val);
      ps = (unsigned long) val & ~0x00030000;
      regcache_cooked_write_unsigned
	(regcache, tdep->a0_base + 4, ra);
      regcache_cooked_write_unsigned (regcache,
				      gdbarch_ps_regnum (gdbarch),
				      ps | 0x00010000);

      /* All the registers have been saved.  After executing
	 dummy call, they all will be restored.  So it's safe
	 to modify WINDOWSTART register to make it look like there
	 is only one register window corresponding to WINDOWEBASE.  */

      regcache->raw_read (tdep->wb_regnum, buf);
      regcache_cooked_write_unsigned
	(regcache, tdep->ws_regnum,
	 1 << extract_unsigned_integer (buf, 4, byte_order));
    }
  else
    {
      /* Simulate CALL0: write RA into A0 register.  */
      regcache_cooked_write_unsigned
	(regcache, tdep->a0_base, bp_addr);
    }

  /* Set new stack pointer and return it.  */
  regcache_cooked_write_unsigned (regcache,
				  tdep->a0_base + 1, sp);
  /* Make dummy frame ID unique by adding a constant.  */
  return sp + SP_ALIGNMENT;
}

/* Implement the breakpoint_kind_from_pc gdbarch method.  */

static int
xtensa_breakpoint_kind_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  if (tdep->isa_use_density_instructions)
    return 2;
  else
    return 4;
}

/* Return a breakpoint for the current location of PC.  We always use
   the density version if we have density instructions (regardless of the
   current instruction at PC), and use regular instructions otherwise.  */

#define BIG_BREAKPOINT { 0x00, 0x04, 0x00 }
#define LITTLE_BREAKPOINT { 0x00, 0x40, 0x00 }
#define DENSITY_BIG_BREAKPOINT { 0xd2, 0x0f }
#define DENSITY_LITTLE_BREAKPOINT { 0x2d, 0xf0 }

/* Implement the sw_breakpoint_from_kind gdbarch method.  */

static const gdb_byte *
xtensa_sw_breakpoint_from_kind (struct gdbarch *gdbarch, int kind, int *size)
{
  *size = kind;

  if (kind == 4)
    {
      static unsigned char big_breakpoint[] = BIG_BREAKPOINT;
      static unsigned char little_breakpoint[] = LITTLE_BREAKPOINT;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	return big_breakpoint;
      else
	return little_breakpoint;
    }
  else
    {
      static unsigned char density_big_breakpoint[] = DENSITY_BIG_BREAKPOINT;
      static unsigned char density_little_breakpoint[]
	= DENSITY_LITTLE_BREAKPOINT;

      if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
	return density_big_breakpoint;
      else
	return density_little_breakpoint;
    }
}

/* Call0 ABI support routines.  */

/* Return true, if PC points to "ret" or "ret.n".  */ 

static int
call0_ret (CORE_ADDR start_pc, CORE_ADDR finish_pc)
{
#define RETURN_RET goto done
  xtensa_isa isa;
  xtensa_insnbuf ins, slot;
  gdb_byte ibuf[XTENSA_ISA_BSZ];
  CORE_ADDR ia, bt, ba;
  xtensa_format ifmt;
  int ilen, islots, is;
  xtensa_opcode opc;
  const char *opcname;
  int found_ret = 0;

  isa = xtensa_default_isa;
  gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
  ins = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);
  ba = 0;

  for (ia = start_pc, bt = ia; ia < finish_pc ; ia += ilen)
    {
      if (ia + xtensa_isa_maxlength (isa) > bt)
	{
	  ba = ia;
	  bt = (ba + XTENSA_ISA_BSZ) < finish_pc
	    ? ba + XTENSA_ISA_BSZ : finish_pc;
	  if (target_read_memory (ba, ibuf, bt - ba) != 0 )
	    RETURN_RET;
	}

      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      ifmt = xtensa_format_decode (isa, ins);
      if (ifmt == XTENSA_UNDEFINED)
	RETURN_RET;
      ilen = xtensa_format_length (isa, ifmt);
      if (ilen == XTENSA_UNDEFINED)
	RETURN_RET;
      islots = xtensa_format_num_slots (isa, ifmt);
      if (islots == XTENSA_UNDEFINED)
	RETURN_RET;
      
      for (is = 0; is < islots; ++is)
	{
	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
	    RETURN_RET;
	  
	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
	  if (opc == XTENSA_UNDEFINED) 
	    RETURN_RET;
	  
	  opcname = xtensa_opcode_name (isa, opc);
	  
	  if ((strcasecmp (opcname, "ret.n") == 0)
	      || (strcasecmp (opcname, "ret") == 0))
	    {
	      found_ret = 1;
	      RETURN_RET;
	    }
	}
    }
 done:
  xtensa_insnbuf_free(isa, slot);
  xtensa_insnbuf_free(isa, ins);
  return found_ret;
}

/* Call0 opcode class.  Opcodes are preclassified according to what they
   mean for Call0 prologue analysis, and their number of significant operands.
   The purpose of this is to simplify prologue analysis by separating 
   instruction decoding (libisa) from the semantics of prologue analysis.  */

enum xtensa_insn_kind
{
  c0opc_illegal,       /* Unknown to libisa (invalid) or 'ill' opcode.  */
  c0opc_uninteresting, /* Not interesting for Call0 prologue analysis.  */
  c0opc_flow,	       /* Flow control insn.  */
  c0opc_entry,	       /* ENTRY indicates non-Call0 prologue.  */
  c0opc_break,	       /* Debugger software breakpoints.  */
  c0opc_add,	       /* Adding two registers.  */
  c0opc_addi,	       /* Adding a register and an immediate.  */
  c0opc_and,	       /* Bitwise "and"-ing two registers.  */
  c0opc_sub,	       /* Subtracting a register from a register.  */
  c0opc_mov,	       /* Moving a register to a register.  */
  c0opc_movi,	       /* Moving an immediate to a register.  */
  c0opc_l32r,	       /* Loading a literal.  */
  c0opc_s32i,	       /* Storing word at fixed offset from a base register.  */
  c0opc_rwxsr,	       /* RSR, WRS, or XSR instructions.  */
  c0opc_l32e,          /* L32E instruction.  */
  c0opc_s32e,          /* S32E instruction.  */
  c0opc_rfwo,          /* RFWO instruction.  */
  c0opc_rfwu,          /* RFWU instruction.  */
  c0opc_NrOf	       /* Number of opcode classifications.  */
};

/* Return true,  if OPCNAME is RSR,  WRS,  or XSR instruction.  */

static int
rwx_special_register (const char *opcname)
{
  char ch = *opcname++;
  
  if ((ch != 'r') && (ch != 'w') && (ch != 'x'))
    return 0;
  if (*opcname++ != 's')
    return 0;
  if (*opcname++ != 'r')
    return 0;
  if (*opcname++ != '.')
    return 0;

  return 1;
}

/* Classify an opcode based on what it means for Call0 prologue analysis.  */

static xtensa_insn_kind
call0_classify_opcode (xtensa_isa isa, xtensa_opcode opc)
{
  const char *opcname;
  xtensa_insn_kind opclass = c0opc_uninteresting;

  DEBUGTRACE ("call0_classify_opcode (..., opc = %d)\n", opc);

  /* Get opcode name and handle special classifications.  */

  opcname = xtensa_opcode_name (isa, opc);

  if (opcname == NULL 
      || strcasecmp (opcname, "ill") == 0
      || strcasecmp (opcname, "ill.n") == 0)
    opclass = c0opc_illegal;
  else if (strcasecmp (opcname, "break") == 0
	   || strcasecmp (opcname, "break.n") == 0)
     opclass = c0opc_break;
  else if (strcasecmp (opcname, "entry") == 0)
    opclass = c0opc_entry;
  else if (strcasecmp (opcname, "rfwo") == 0)
    opclass = c0opc_rfwo;
  else if (strcasecmp (opcname, "rfwu") == 0)
    opclass = c0opc_rfwu;
  else if (xtensa_opcode_is_branch (isa, opc) > 0
	   || xtensa_opcode_is_jump   (isa, opc) > 0
	   || xtensa_opcode_is_loop   (isa, opc) > 0
	   || xtensa_opcode_is_call   (isa, opc) > 0
	   || strcasecmp (opcname, "simcall") == 0
	   || strcasecmp (opcname, "syscall") == 0)
    opclass = c0opc_flow;

  /* Also, classify specific opcodes that need to be tracked.  */
  else if (strcasecmp (opcname, "add") == 0 
	   || strcasecmp (opcname, "add.n") == 0)
    opclass = c0opc_add;
  else if (strcasecmp (opcname, "and") == 0)
    opclass = c0opc_and;
  else if (strcasecmp (opcname, "addi") == 0 
	   || strcasecmp (opcname, "addi.n") == 0
	   || strcasecmp (opcname, "addmi") == 0)
    opclass = c0opc_addi;
  else if (strcasecmp (opcname, "sub") == 0)
    opclass = c0opc_sub;
  else if (strcasecmp (opcname, "mov.n") == 0
	   || strcasecmp (opcname, "or") == 0) /* Could be 'mov' asm macro.  */
    opclass = c0opc_mov;
  else if (strcasecmp (opcname, "movi") == 0 
	   || strcasecmp (opcname, "movi.n") == 0)
    opclass = c0opc_movi;
  else if (strcasecmp (opcname, "l32r") == 0)
    opclass = c0opc_l32r;
  else if (strcasecmp (opcname, "s32i") == 0 
	   || strcasecmp (opcname, "s32i.n") == 0)
    opclass = c0opc_s32i;
  else if (strcasecmp (opcname, "l32e") == 0)
    opclass = c0opc_l32e;
  else if (strcasecmp (opcname, "s32e") == 0)
    opclass = c0opc_s32e;
  else if (rwx_special_register (opcname))
    opclass = c0opc_rwxsr;

  return opclass;
}

/* Tracks register movement/mutation for a given operation, which may
   be within a bundle.  Updates the destination register tracking info
   accordingly.  The pc is needed only for pc-relative load instructions
   (eg. l32r).  The SP register number is needed to identify stores to
   the stack frame.  Returns 0, if analysis was successful, non-zero
   otherwise.  */

static int
call0_track_op (struct gdbarch *gdbarch, xtensa_c0reg_t dst[], xtensa_c0reg_t src[],
		xtensa_insn_kind opclass, int nods, unsigned odv[],
		CORE_ADDR pc, int spreg, xtensa_frame_cache_t *cache)
{
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  unsigned litbase, litaddr, litval;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  switch (opclass)
    {
    case c0opc_addi:
      /* 3 operands: dst, src, imm.  */
      gdb_assert (nods == 3);
      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + odv[2];
      break;
    case c0opc_add:
      /* 3 operands: dst, src1, src2.  */
      gdb_assert (nods == 3); 
      if      (src[odv[1]].fr_reg == C0_CONST)
	{
	  dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
	  dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs + src[odv[1]].fr_ofs;
	}
      else if (src[odv[2]].fr_reg == C0_CONST)
	{
	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs + src[odv[2]].fr_ofs;
	}
      else dst[odv[0]].fr_reg = C0_INEXP;
      break;
    case c0opc_and:
      /* 3 operands:  dst, src1, src2.  */
      gdb_assert (nods == 3);
      if (cache->c0.c0_fpalign == 0)
	{
	  /* Handle dynamic stack alignment.  */
	  if ((src[odv[0]].fr_reg == spreg) && (src[odv[1]].fr_reg == spreg))
	    {
	      if (src[odv[2]].fr_reg == C0_CONST)
		cache->c0.c0_fpalign = src[odv[2]].fr_ofs;
	      break;
	    }
	  else if ((src[odv[0]].fr_reg == spreg)
		   && (src[odv[2]].fr_reg == spreg))
	    {
	      if (src[odv[1]].fr_reg == C0_CONST)
		cache->c0.c0_fpalign = src[odv[1]].fr_ofs;
	      break;
	    }
	  /* else fall through.  */
	}
      if      (src[odv[1]].fr_reg == C0_CONST)
	{
	  dst[odv[0]].fr_reg = src[odv[2]].fr_reg;
	  dst[odv[0]].fr_ofs = src[odv[2]].fr_ofs & src[odv[1]].fr_ofs;
	}
      else if (src[odv[2]].fr_reg == C0_CONST)
	{
	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs & src[odv[2]].fr_ofs;
	}
      else dst[odv[0]].fr_reg = C0_INEXP;
      break;
    case c0opc_sub:
      /* 3 operands: dst, src1, src2.  */
      gdb_assert (nods == 3);
      if      (src[odv[2]].fr_reg == C0_CONST)
	{
	  dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
	  dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs - src[odv[2]].fr_ofs;
	}
      else dst[odv[0]].fr_reg = C0_INEXP;
      break;
    case c0opc_mov:
      /* 2 operands: dst, src [, src].  */
      gdb_assert (nods == 2);
      /* First, check if it's a special case of saving unaligned SP
	 to a spare register in case of dynamic stack adjustment.
	 But, only do it one time.  The second time could be initializing
	 frame pointer.  We don't want to overwrite the first one.  */
      if ((odv[1] == spreg) && (cache->c0.c0_old_sp == C0_INEXP))
	cache->c0.c0_old_sp = odv[0];

      dst[odv[0]].fr_reg = src[odv[1]].fr_reg;
      dst[odv[0]].fr_ofs = src[odv[1]].fr_ofs;
      break;
    case c0opc_movi:
      /* 2 operands: dst, imm.  */
      gdb_assert (nods == 2);
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_ofs = odv[1];
      break;
    case c0opc_l32r:
      /* 2 operands: dst, literal offset.  */
      gdb_assert (nods == 2);
      /* litbase = xtensa_get_litbase (pc);  can be also used.  */
      litbase = (tdep->litbase_regnum == -1)
	? 0 : xtensa_read_register
		(tdep->litbase_regnum);
      litaddr = litbase & 1
		  ? (litbase & ~1) + (signed)odv[1]
		  : (pc + 3  + (signed)odv[1]) & ~3;
      litval = read_memory_integer (litaddr, 4, byte_order);
      dst[odv[0]].fr_reg = C0_CONST;
      dst[odv[0]].fr_ofs = litval;
      break;
    case c0opc_s32i:
      /* 3 operands: value, base, offset.  */
      gdb_assert (nods == 3 && spreg >= 0 && spreg < C0_NREGS);
      /* First, check if it's a spill for saved unaligned SP,
	 when dynamic stack adjustment was applied to this frame.  */
      if ((cache->c0.c0_fpalign != 0)		/* Dynamic stack adjustment.  */
	  && (odv[1] == spreg)			/* SP usage indicates spill.  */
	  && (odv[0] == cache->c0.c0_old_sp))	/* Old SP register spilled.  */
	cache->c0.c0_sp_ofs = odv[2];

      if (src[odv[1]].fr_reg == spreg	     /* Store to stack frame.  */
	  && (src[odv[1]].fr_ofs & 3) == 0   /* Alignment preserved.  */
	  &&  src[odv[0]].fr_reg >= 0	     /* Value is from a register.  */
	  &&  src[odv[0]].fr_ofs == 0	     /* Value hasn't been modified.  */
	  &&  src[src[odv[0]].fr_reg].to_stk == C0_NOSTK) /* First time.  */
	{
	  /* ISA encoding guarantees alignment.  But, check it anyway.  */
	  gdb_assert ((odv[2] & 3) == 0);
	  dst[src[odv[0]].fr_reg].to_stk = src[odv[1]].fr_ofs + odv[2];
	}
      break;
      /* If we end up inside Window Overflow / Underflow interrupt handler
	 report an error because these handlers should have been handled
	 already in a different way.  */
    case c0opc_l32e:
    case c0opc_s32e:
    case c0opc_rfwo:
    case c0opc_rfwu:
      return 1;
    default:
      return 1;
    }
  return 0;
}

/* Analyze prologue of the function at start address to determine if it uses
   the Call0 ABI, and if so track register moves and linear modifications
   in the prologue up to the PC or just beyond the prologue, whichever is
   first. An 'entry' instruction indicates non-Call0 ABI and the end of the
   prologue. The prologue may overlap non-prologue instructions but is
   guaranteed to end by the first flow-control instruction (jump, branch,
   call or return).  Since an optimized function may move information around
   and change the stack frame arbitrarily during the prologue, the information
   is guaranteed valid only at the point in the function indicated by the PC.
   May be used to skip the prologue or identify the ABI, w/o tracking.

   Returns:   Address of first instruction after prologue, or PC (whichever 
	      is first), or 0, if decoding failed (in libisa).
   Input args:
      start   Start address of function/prologue.
      pc      Program counter to stop at.  Use 0 to continue to end of prologue.
	      If 0, avoids infinite run-on in corrupt code memory by bounding
	      the scan to the end of the function if that can be determined.
      nregs   Number of general registers to track.
   InOut args:
      cache   Xtensa frame cache.

      Note that these may produce useful results even if decoding fails
      because they begin with default assumptions that analysis may change.  */

static CORE_ADDR
call0_analyze_prologue (struct gdbarch *gdbarch,
			CORE_ADDR start, CORE_ADDR pc,
			int nregs, xtensa_frame_cache_t *cache)
{
  CORE_ADDR ia;		    /* Current insn address in prologue.  */
  CORE_ADDR ba = 0;	    /* Current address at base of insn buffer.  */
  CORE_ADDR bt;		    /* Current address at top+1 of insn buffer.  */
  gdb_byte ibuf[XTENSA_ISA_BSZ];/* Instruction buffer for decoding prologue.  */
  xtensa_isa isa;	    /* libisa ISA handle.  */
  xtensa_insnbuf ins, slot; /* libisa handle to decoded insn, slot.  */
  xtensa_format ifmt;	    /* libisa instruction format.  */
  int ilen, islots, is;	    /* Instruction length, nbr slots, current slot.  */
  xtensa_opcode opc;	    /* Opcode in current slot.  */
  xtensa_insn_kind opclass; /* Opcode class for Call0 prologue analysis.  */
  int nods;		    /* Opcode number of operands.  */
  unsigned odv[C0_MAXOPDS]; /* Operand values in order provided by libisa.  */
  xtensa_c0reg_t *rtmp;	    /* Register tracking info snapshot.  */
  int j;		    /* General loop counter.  */
  int fail = 0;		    /* Set non-zero and exit, if decoding fails.  */
  CORE_ADDR body_pc;	    /* The PC for the first non-prologue insn.  */
  CORE_ADDR end_pc;	    /* The PC for the lust function insn.  */

  struct symtab_and_line prologue_sal;

  DEBUGTRACE ("call0_analyze_prologue (start = 0x%08x, pc = 0x%08x, ...)\n", 
	      (int)start, (int)pc);

  /* Try to limit the scan to the end of the function if a non-zero pc
     arg was not supplied to avoid probing beyond the end of valid memory.
     If memory is full of garbage that classifies as c0opc_uninteresting.
     If this fails (eg. if no symbols) pc ends up 0 as it was.
     Initialize the Call0 frame and register tracking info.
     Assume it's Call0 until an 'entry' instruction is encountered.
     Assume we may be in the prologue until we hit a flow control instr.  */

  rtmp = NULL;
  body_pc = UINT_MAX;
  end_pc = 0;

  /* Find out, if we have an information about the prologue from DWARF.  */
  prologue_sal = find_pc_line (start, 0);
  if (prologue_sal.line != 0) /* Found debug info.  */
    body_pc = prologue_sal.end;

  /* If we are going to analyze the prologue in general without knowing about
     the current PC, make the best assumption for the end of the prologue.  */
  if (pc == 0)
    {
      find_pc_partial_function (start, 0, NULL, &end_pc);
      body_pc = std::min (end_pc, body_pc);
    }
  else
    body_pc = std::min (pc, body_pc);

  cache->call0 = 1;
  rtmp = (xtensa_c0reg_t*) alloca(nregs * sizeof(xtensa_c0reg_t));

  isa = xtensa_default_isa;
  gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
  ins = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);

  for (ia = start, bt = ia; ia < body_pc ; ia += ilen)
    {
      /* (Re)fill instruction buffer from memory if necessary, but do not
	 read memory beyond PC to be sure we stay within text section
	 (this protection only works if a non-zero pc is supplied).  */

      if (ia + xtensa_isa_maxlength (isa) > bt)
	{
	  ba = ia;
	  bt = (ba + XTENSA_ISA_BSZ) < body_pc ? ba + XTENSA_ISA_BSZ : body_pc;
	  if (target_read_memory (ba, ibuf, bt - ba) != 0 )
	    error (_("Unable to read target memory ..."));
	}

      /* Decode format information.  */

      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      ifmt = xtensa_format_decode (isa, ins);
      if (ifmt == XTENSA_UNDEFINED)
	{
	  fail = 1;
	  goto done;
	}
      ilen = xtensa_format_length (isa, ifmt);
      if (ilen == XTENSA_UNDEFINED)
	{
	  fail = 1;
	  goto done;
	}
      islots = xtensa_format_num_slots (isa, ifmt);
      if (islots == XTENSA_UNDEFINED)
	{
	  fail = 1;
	  goto done;
	}

      /* Analyze a bundle or a single instruction, using a snapshot of 
	 the register tracking info as input for the entire bundle so that
	 register changes do not take effect within this bundle.  */

      for (j = 0; j < nregs; ++j)
	rtmp[j] = cache->c0.c0_rt[j];

      for (is = 0; is < islots; ++is)
	{
	  /* Decode a slot and classify the opcode.  */

	  fail = xtensa_format_get_slot (isa, ifmt, is, ins, slot);
	  if (fail)
	    goto done;

	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
	  DEBUGVERB ("[call0_analyze_prologue] instr addr = 0x%08x, opc = %d\n", 
		     (unsigned)ia, opc);
	  if (opc == XTENSA_UNDEFINED) 
	    opclass = c0opc_illegal;
	  else
	    opclass = call0_classify_opcode (isa, opc);

	  /* Decide whether to track this opcode, ignore it, or bail out.  */

	  switch (opclass)
	    {
	    case c0opc_illegal:
	    case c0opc_break:
	      fail = 1;
	      goto done;

	    case c0opc_uninteresting:
	      continue;

	    case c0opc_flow:  /* Flow control instructions stop analysis.  */
	    case c0opc_rwxsr: /* RSR, WSR, XSR instructions stop analysis.  */
	      goto done;

	    case c0opc_entry:
	      cache->call0 = 0;
	      ia += ilen;	       	/* Skip over 'entry' insn.  */
	      goto done;

	    default:
	      cache->call0 = 1;
	    }

	  /* Only expected opcodes should get this far.  */

	  /* Extract and decode the operands.  */
	  nods = xtensa_opcode_num_operands (isa, opc);
	  if (nods == XTENSA_UNDEFINED)
	    {
	      fail = 1;
	      goto done;
	    }

	  for (j = 0; j < nods && j < C0_MAXOPDS; ++j)
	    {
	      fail = xtensa_operand_get_field (isa, opc, j, ifmt, 
					       is, slot, &odv[j]);
	      if (fail)
		goto done;

	      fail = xtensa_operand_decode (isa, opc, j, &odv[j]);
	      if (fail)
		goto done;
	    }

	  /* Check operands to verify use of 'mov' assembler macro.  */
	  if (opclass == c0opc_mov && nods == 3)
	    {
	      if (odv[2] == odv[1])
		{
		  nods = 2;
		  if ((odv[0] == 1) && (odv[1] != 1))
		    /* OR  A1, An, An  , where n != 1.
		       This means we are inside epilogue already.  */
		    goto done;
		}
	      else
		{
		  opclass = c0opc_uninteresting;
		  continue;
		}
	    }

	  /* Track register movement and modification for this operation.  */
	  fail = call0_track_op (gdbarch, cache->c0.c0_rt, rtmp,
				 opclass, nods, odv, ia, 1, cache);
	  if (fail)
	    goto done;
	}
    }
done:
  DEBUGVERB ("[call0_analyze_prologue] stopped at instr addr 0x%08x, %s\n",
	     (unsigned)ia, fail ? "failed" : "succeeded");
  xtensa_insnbuf_free(isa, slot);
  xtensa_insnbuf_free(isa, ins);
  return fail ? XTENSA_ISA_BADPC : ia;
}

/* Initialize frame cache for the current frame in CALL0 ABI.  */

static void
call0_frame_cache (const frame_info_ptr &this_frame,
		   xtensa_frame_cache_t *cache, CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
  CORE_ADDR start_pc;		/* The beginning of the function.  */
  CORE_ADDR body_pc=UINT_MAX;	/* PC, where prologue analysis stopped.  */
  CORE_ADDR sp, fp, ra;
  int fp_regnum = C0_SP, c0_hasfp = 0, c0_frmsz = 0, prev_sp = 0, to_stk;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
 
  sp = get_frame_register_unsigned
    (this_frame, tdep->a0_base + 1);
  fp = sp; /* Assume FP == SP until proven otherwise.  */

  /* Find the beginning of the prologue of the function containing the PC
     and analyze it up to the PC or the end of the prologue.  */

  if (find_pc_partial_function (pc, NULL, &start_pc, NULL))
    {
      body_pc = call0_analyze_prologue (gdbarch, start_pc, pc, C0_NREGS, cache);

      if (body_pc == XTENSA_ISA_BADPC)
	{
	  warning_once ();
	  ra = 0;
	  goto finish_frame_analysis;
	}
    }
  
  /* Get the frame information and FP (if used) at the current PC.
     If PC is in the prologue, the prologue analysis is more reliable
     than DWARF info.  We don't not know for sure, if PC is in the prologue,
     but we do know no calls have yet taken place, so we can almost
     certainly rely on the prologue analysis.  */

  if (body_pc <= pc)
    {
      /* Prologue analysis was successful up to the PC.
	 It includes the cases when PC == START_PC.  */
      c0_hasfp = cache->c0.c0_rt[C0_FP].fr_reg == C0_SP;
      /* c0_hasfp == true means there is a frame pointer because
	 we analyzed the prologue and found that cache->c0.c0_rt[C0_FP]
	 was derived from SP.  Otherwise, it would be C0_FP.  */
      fp_regnum = c0_hasfp ? C0_FP : C0_SP;
      c0_frmsz = - cache->c0.c0_rt[fp_regnum].fr_ofs;
      fp_regnum += tdep->a0_base;
    }
  else  /* No data from the prologue analysis.  */
    {
      c0_hasfp = 0;
      fp_regnum = tdep->a0_base + C0_SP;
      c0_frmsz = 0;
      start_pc = pc;
   }

  if (cache->c0.c0_fpalign)
    {
      /* This frame has a special prologue with a dynamic stack adjustment
	 to force an alignment, which is bigger than standard 16 bytes.  */

      CORE_ADDR unaligned_sp;

      if (cache->c0.c0_old_sp == C0_INEXP)
	/* This can't be.  Prologue code should be consistent.
	   Unaligned stack pointer should be saved in a spare register.  */
	{
	  warning_once ();
	  ra = 0;
	  goto finish_frame_analysis;
	}

      if (cache->c0.c0_sp_ofs == C0_NOSTK)
	/* Saved unaligned value of SP is kept in a register.  */
	unaligned_sp = get_frame_register_unsigned
	  (this_frame, tdep->a0_base + cache->c0.c0_old_sp);
      else
	/* Get the value from stack.  */
	unaligned_sp = (CORE_ADDR)
	  read_memory_integer (fp + cache->c0.c0_sp_ofs, 4, byte_order);

      prev_sp = unaligned_sp + c0_frmsz;
    }
  else
    prev_sp = fp + c0_frmsz;

  /* Frame size from debug info or prologue tracking does not account for 
     alloca() and other dynamic allocations.  Adjust frame size by FP - SP.  */
  if (c0_hasfp)
    {
      fp = get_frame_register_unsigned (this_frame, fp_regnum);

      /* Update the stack frame size.  */
      c0_frmsz += fp - sp;
    }

  /* Get the return address (RA) from the stack if saved,
     or try to get it from a register.  */

  to_stk = cache->c0.c0_rt[C0_RA].to_stk;
  if (to_stk != C0_NOSTK)
    ra = (CORE_ADDR) 
      read_memory_integer (sp + c0_frmsz + cache->c0.c0_rt[C0_RA].to_stk,
			   4, byte_order);

  else if (cache->c0.c0_rt[C0_RA].fr_reg == C0_CONST
	   && cache->c0.c0_rt[C0_RA].fr_ofs == 0)
    {
      /* Special case for terminating backtrace at a function that wants to
	 be seen as the outermost one.  Such a function will clear it's RA (A0)
	 register to 0 in the prologue instead of saving its original value.  */
      ra = 0;
    }
  else
    {
      /* RA was copied to another register or (before any function call) may
	 still be in the original RA register.  This is not always reliable:
	 even in a leaf function, register tracking stops after prologue, and
	 even in prologue, non-prologue instructions (not tracked) may overwrite
	 RA or any register it was copied to.  If likely in prologue or before
	 any call, use retracking info and hope for the best (compiler should
	 have saved RA in stack if not in a leaf function).  If not in prologue,
	 too bad.  */

      int i;
      for (i = 0;
	   (i < C0_NREGS)
	   && (i == C0_RA || cache->c0.c0_rt[i].fr_reg != C0_RA);
	   ++i);
      if (i >= C0_NREGS && cache->c0.c0_rt[C0_RA].fr_reg == C0_RA)
	i = C0_RA;
      if (i < C0_NREGS)
	{
	  ra = get_frame_register_unsigned
	    (this_frame,
	     tdep->a0_base + cache->c0.c0_rt[i].fr_reg);
	}
      else ra = 0;
    }
  
 finish_frame_analysis:
  cache->pc = start_pc;
  cache->ra = ra;
  /* RA == 0 marks the outermost frame.  Do not go past it.  */
  cache->prev_sp = (ra != 0) ?  prev_sp : 0;
  cache->c0.fp_regnum = fp_regnum;
  cache->c0.c0_frmsz = c0_frmsz;
  cache->c0.c0_hasfp = c0_hasfp;
  cache->c0.c0_fp = fp;
}

static CORE_ADDR a0_saved;
static CORE_ADDR a7_saved;
static CORE_ADDR a11_saved;
static int a0_was_saved;
static int a7_was_saved;
static int a11_was_saved;

/* Simulate L32E instruction:  AT <-- ref (AS + offset).  */
static void
execute_l32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int atreg = arreg_number (gdbarch, tdep->a0_base + at, wb);
  int asreg = arreg_number (gdbarch, tdep->a0_base + as, wb);
  CORE_ADDR addr = xtensa_read_register (asreg) + offset;
  unsigned int spilled_value
    = read_memory_unsigned_integer (addr, 4, gdbarch_byte_order (gdbarch));

  if ((at == 0) && !a0_was_saved)
    {
      a0_saved = xtensa_read_register (atreg);
      a0_was_saved = 1;
    }
  else if ((at == 7) && !a7_was_saved)
    {
      a7_saved = xtensa_read_register (atreg);
      a7_was_saved = 1;
    }
  else if ((at == 11) && !a11_was_saved)
    {
      a11_saved = xtensa_read_register (atreg);
      a11_was_saved = 1;
    }

  xtensa_write_register (atreg, spilled_value);
}

/* Simulate S32E instruction:  AT --> ref (AS + offset).  */
static void
execute_s32e (struct gdbarch *gdbarch, int at, int as, int offset, CORE_ADDR wb)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  int atreg = arreg_number (gdbarch, tdep->a0_base + at, wb);
  int asreg = arreg_number (gdbarch, tdep->a0_base + as, wb);
  CORE_ADDR addr = xtensa_read_register (asreg) + offset;
  ULONGEST spilled_value = xtensa_read_register (atreg);

  write_memory_unsigned_integer (addr, 4,
				 gdbarch_byte_order (gdbarch),
				 spilled_value);
}

#define XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN  200

enum xtensa_exception_handler_t
{
  xtWindowOverflow,
  xtWindowUnderflow,
  xtNoExceptionHandler
};

/* Execute instruction stream from current PC until hitting RFWU or RFWO.
   Return type of Xtensa Window Interrupt Handler on success.  */
static xtensa_exception_handler_t
execute_code (struct gdbarch *gdbarch, CORE_ADDR current_pc, CORE_ADDR wb)
{
  xtensa_isa isa;
  xtensa_insnbuf ins, slot;
  gdb_byte ibuf[XTENSA_ISA_BSZ];
  CORE_ADDR ia, bt, ba;
  xtensa_format ifmt;
  int ilen, islots, is;
  xtensa_opcode opc;
  int insn_num = 0;
  void (*func) (struct gdbarch *, int, int, int, CORE_ADDR);
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  uint32_t at, as, offset;

  /* WindowUnderflow12 = true, when inside _WindowUnderflow12.  */ 
  int WindowUnderflow12 = (current_pc & 0x1ff) >= 0x140; 

  isa = xtensa_default_isa;
  gdb_assert (XTENSA_ISA_BSZ >= xtensa_isa_maxlength (isa));
  ins = xtensa_insnbuf_alloc (isa);
  slot = xtensa_insnbuf_alloc (isa);
  ba = 0;
  ia = current_pc;
  bt = ia;

  a0_was_saved = 0;
  a7_was_saved = 0;
  a11_was_saved = 0;

  while (insn_num++ < XTENSA_MAX_WINDOW_INTERRUPT_HANDLER_LEN)
    {
      if (ia + xtensa_isa_maxlength (isa) > bt)
	{
	  ba = ia;
	  bt = (ba + XTENSA_ISA_BSZ);
	  if (target_read_memory (ba, ibuf, bt - ba) != 0)
	    return xtNoExceptionHandler;
	}
      xtensa_insnbuf_from_chars (isa, ins, &ibuf[ia-ba], 0);
      ifmt = xtensa_format_decode (isa, ins);
      if (ifmt == XTENSA_UNDEFINED)
	return xtNoExceptionHandler;
      ilen = xtensa_format_length (isa, ifmt);
      if (ilen == XTENSA_UNDEFINED)
	return xtNoExceptionHandler;
      islots = xtensa_format_num_slots (isa, ifmt);
      if (islots == XTENSA_UNDEFINED)
	return xtNoExceptionHandler;
      for (is = 0; is < islots; ++is)
	{
	  if (xtensa_format_get_slot (isa, ifmt, is, ins, slot))
	    return xtNoExceptionHandler;
	  opc = xtensa_opcode_decode (isa, ifmt, is, slot);
	  if (opc == XTENSA_UNDEFINED) 
	    return xtNoExceptionHandler;
	  switch (call0_classify_opcode (isa, opc))
	    {
	    case c0opc_illegal:
	    case c0opc_flow:
	    case c0opc_entry:
	    case c0opc_break:
	      /* We expect none of them here.  */
	      return xtNoExceptionHandler;
	    case c0opc_l32e:
	      func = execute_l32e;
	      break;
	    case c0opc_s32e:
	      func = execute_s32e;
	      break;
	    case c0opc_rfwo: /* RFWO.  */
	      /* Here, we return from WindowOverflow handler and,
		 if we stopped at the very beginning, which means
		 A0 was saved, we have to restore it now.  */
	      if (a0_was_saved)
		{
		  int arreg = arreg_number (gdbarch,
					    tdep->a0_base,
					    wb);
		  xtensa_write_register (arreg, a0_saved);
		}
	      return xtWindowOverflow;
	    case c0opc_rfwu: /* RFWU.  */
	      /* Here, we return from WindowUnderflow handler.
		 Let's see if either A7 or A11 has to be restored.  */
	      if (WindowUnderflow12)
		{
		  if (a11_was_saved)
		    {
		      int arreg = arreg_number (gdbarch,
						tdep->a0_base + 11,
						wb);
		      xtensa_write_register (arreg, a11_saved);
		    }
		}
	      else if (a7_was_saved)
		{
		  int arreg = arreg_number (gdbarch,
					    tdep->a0_base + 7,
					    wb);
		  xtensa_write_register (arreg, a7_saved);
		}
	      return xtWindowUnderflow;
	    default: /* Simply skip this insns.  */
	      continue;
	    }

	  /* Decode arguments for L32E / S32E and simulate their execution.  */
	  if ( xtensa_opcode_num_operands (isa, opc) != 3 )
	    return xtNoExceptionHandler;
	  if (xtensa_operand_get_field (isa, opc, 0, ifmt, is, slot, &at))
	    return xtNoExceptionHandler;
	  if (xtensa_operand_decode (isa, opc, 0, &at))
	    return xtNoExceptionHandler;
	  if (xtensa_operand_get_field (isa, opc, 1, ifmt, is, slot, &as))
	    return xtNoExceptionHandler;
	  if (xtensa_operand_decode (isa, opc, 1, &as))
	    return xtNoExceptionHandler;
	  if (xtensa_operand_get_field (isa, opc, 2, ifmt, is, slot, &offset))
	    return xtNoExceptionHandler;
	  if (xtensa_operand_decode (isa, opc, 2, &offset))
	    return xtNoExceptionHandler;

	  (*func) (gdbarch, at, as, offset, wb);
	}

      ia += ilen;
    }
  return xtNoExceptionHandler;
}

/* Handle Window Overflow / Underflow exception frames.  */

static void
xtensa_window_interrupt_frame_cache (const frame_info_ptr &this_frame,
				     xtensa_frame_cache_t *cache,
				     CORE_ADDR pc)
{
  struct gdbarch *gdbarch = get_frame_arch (this_frame);
  CORE_ADDR ps, wb, ws, ra;
  int epc1_regnum, i, regnum;
  xtensa_exception_handler_t eh_type;
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);

  /* Read PS, WB, and WS from the hardware. Note that PS register
     must be present, if Windowed ABI is supported.  */
  ps = xtensa_read_register (gdbarch_ps_regnum (gdbarch));
  wb = xtensa_read_register (tdep->wb_regnum);
  ws = xtensa_read_register (tdep->ws_regnum);

  /* Execute all the remaining instructions from Window Interrupt Handler
     by simulating them on the remote protocol level.  On return, set the
     type of Xtensa Window Interrupt Handler, or report an error.  */
  eh_type = execute_code (gdbarch, pc, wb);
  if (eh_type == xtNoExceptionHandler)
    error (_("\
Unable to decode Xtensa Window Interrupt Handler's code."));

  cache->ps = ps ^ PS_EXC;	/* Clear the exception bit in PS.  */
  cache->call0 = 0;		/* It's Windowed ABI.  */

  /* All registers for the cached frame will be alive.  */
  for (i = 0; i < XTENSA_NUM_SAVED_AREGS; i++)
    cache->wd.aregs[i] = -1;

  if (eh_type == xtWindowOverflow)
    cache->wd.ws = ws ^ (1 << wb);
  else /* eh_type == xtWindowUnderflow.  */
    cache->wd.ws = ws | (1 << wb);

  cache->wd.wb = (ps & 0xf00) >> 8; /* Set WB to OWB.  */
  regnum = arreg_number (gdbarch, tdep->a0_base,
			 cache->wd.wb);
  ra = xtensa_read_register (regnum);
  cache->wd.callsize = WINSIZE (ra);
  cache->prev_sp = xtensa_read_register (regnum + 1);
  /* Set regnum to a frame pointer of the frame being cached.  */
  regnum = xtensa_scan_prologue (gdbarch, pc);
  regnum = arreg_number (gdbarch,
			 tdep->a0_base + regnum,
			 cache->wd.wb);
  cache->base = get_frame_register_unsigned (this_frame, regnum);

  /* Read PC of interrupted function from EPC1 register.  */
  epc1_regnum = xtensa_find_register_by_name (gdbarch,"epc1");
  if (epc1_regnum < 0)
    error(_("Unable to read Xtensa register EPC1"));
  cache->ra = xtensa_read_register (epc1_regnum);
  cache->pc = get_frame_func (this_frame);
}


/* Skip function prologue.

   Return the pc of the first instruction after prologue.  GDB calls this to
   find the address of the first line of the function or (if there is no line
   number information) to skip the prologue for planting breakpoints on 
   function entries.  Use debug info (if present) or prologue analysis to skip 
   the prologue to achieve reliable debugging behavior.  For windowed ABI, 
   only the 'entry' instruction is skipped.  It is not strictly necessary to 
   skip the prologue (Call0) or 'entry' (Windowed) because xt-gdb knows how to
   backtrace at any point in the prologue, however certain potential hazards 
   are avoided and a more "normal" debugging experience is ensured by 
   skipping the prologue (can be disabled by defining DONT_SKIP_PROLOG).
   For example, if we don't skip the prologue:
   - Some args may not yet have been saved to the stack where the debug
     info expects to find them (true anyway when only 'entry' is skipped);
   - Software breakpoints ('break' instrs) may not have been unplanted 
     when the prologue analysis is done on initializing the frame cache, 
     and breaks in the prologue will throw off the analysis.

   If we have debug info ( line-number info, in particular ) we simply skip
   the code associated with the first function line effectively skipping
   the prologue code.  It works even in cases like

   int main()
   {	int local_var = 1;
	....
   }

   because, for this source code, both Xtensa compilers will generate two
   separate entries ( with the same line number ) in dwarf line-number
   section to make sure there is a boundary between the prologue code and
   the rest of the function.

   If there is no debug info, we need to analyze the code.  */

/* #define DONT_SKIP_PROLOGUE  */

static CORE_ADDR
xtensa_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
{
  struct symtab_and_line prologue_sal;
  CORE_ADDR body_pc;

  DEBUGTRACE ("xtensa_skip_prologue (start_pc = 0x%08x)\n", (int) start_pc);

#if DONT_SKIP_PROLOGUE
  return start_pc;
#endif

 /* Try to find first body line from debug info.  */

  prologue_sal = find_pc_line (start_pc, 0);
  if (prologue_sal.line != 0) /* Found debug info.  */
    {
      /* In Call0,  it is possible to have a function with only one instruction
	 ('ret') resulting from a one-line optimized function that does nothing.
	 In that case,  prologue_sal.end may actually point to the start of the
	 next function in the text section,  causing a breakpoint to be set at
	 the wrong place.  Check,  if the end address is within a different
	 function,  and if so return the start PC.  We know we have symbol
	 information.  */

      CORE_ADDR end_func;

      xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
      if ((tdep->call_abi == CallAbiCall0Only)
	  && call0_ret (start_pc, prologue_sal.end))
	return start_pc;

      find_pc_partial_function (prologue_sal.end, NULL, &end_func, NULL);
      if (end_func != start_pc)
	return start_pc;

      return prologue_sal.end;
    }

  /* No debug line info.  Analyze prologue for Call0 or simply skip ENTRY.  */
  body_pc = call0_analyze_prologue (gdbarch, start_pc, 0, 0,
				    xtensa_alloc_frame_cache (0));
  return body_pc != 0 ? body_pc : start_pc;
}

/* Verify the current configuration.  */
static void
xtensa_verify_config (struct gdbarch *gdbarch)
{
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  string_file log;

  /* Verify that we got a reasonable number of AREGS.  */
  if ((tdep->num_aregs & -tdep->num_aregs) != tdep->num_aregs)
    log.printf (_("\
\n\tnum_aregs: Number of AR registers (%d) is not a power of two!"),
		tdep->num_aregs);

  /* Verify that certain registers exist.  */

  if (tdep->pc_regnum == -1)
    log.printf (_("\n\tpc_regnum: No PC register"));
  if (tdep->isa_use_exceptions && tdep->ps_regnum == -1)
    log.printf (_("\n\tps_regnum: No PS register"));

  if (tdep->isa_use_windowed_registers)
    {
      if (tdep->wb_regnum == -1)
	log.printf (_("\n\twb_regnum: No WB register"));
      if (tdep->ws_regnum == -1)
	log.printf (_("\n\tws_regnum: No WS register"));
      if (tdep->ar_base == -1)
	log.printf (_("\n\tar_base: No AR registers"));
    }

  if (tdep->a0_base == -1)
    log.printf (_("\n\ta0_base: No Ax registers"));

  if (!log.empty ())
    internal_error (_("the following are invalid: %s"), log.c_str ());
}


/* Derive specific register numbers from the array of registers.  */

static void
xtensa_derive_tdep (xtensa_gdbarch_tdep *tdep)
{
  xtensa_register_t* rmap;
  int n, max_size = 4;

  tdep->num_regs = 0;
  tdep->num_nopriv_regs = 0;

/* Special registers 0..255 (core).  */
#define XTENSA_DBREGN_SREG(n)  (0x0200+(n))
/* User registers 0..255.  */
#define XTENSA_DBREGN_UREG(n)  (0x0300+(n))

  for (rmap = tdep->regmap, n = 0; rmap->target_number != -1; n++, rmap++)
    {
      if (rmap->target_number == 0x0020)
	tdep->pc_regnum = n;
      else if (rmap->target_number == 0x0100)
	tdep->ar_base = n;
      else if (rmap->target_number == 0x0000)
	tdep->a0_base = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(72))
	tdep->wb_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(73))
	tdep->ws_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(233))
	tdep->debugcause_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(232))
	tdep->exccause_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(238))
	tdep->excvaddr_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(0))
	tdep->lbeg_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(1))
	tdep->lend_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(2))
	tdep->lcount_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(3))
	tdep->sar_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(5))
	tdep->litbase_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(230))
	tdep->ps_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_UREG(231))
	tdep->threadptr_regnum = n;
#if 0
      else if (rmap->target_number == XTENSA_DBREGN_SREG(226))
	tdep->interrupt_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(227))
	tdep->interrupt2_regnum = n;
      else if (rmap->target_number == XTENSA_DBREGN_SREG(224))
	tdep->cpenable_regnum = n;
#endif

      if (rmap->byte_size > max_size)
	max_size = rmap->byte_size;
      if (rmap->mask != 0 && tdep->num_regs == 0)
	tdep->num_regs = n;
      if ((rmap->flags & XTENSA_REGISTER_FLAGS_PRIVILEGED) != 0
	  && tdep->num_nopriv_regs == 0)
	tdep->num_nopriv_regs = n;
    }
  if (tdep->num_regs == 0)
    tdep->num_regs = tdep->num_nopriv_regs;

  /* Number of pseudo registers.  */
  tdep->num_pseudo_regs = n - tdep->num_regs;

  /* Empirically determined maximum sizes.  */
  tdep->max_register_raw_size = max_size;
  tdep->max_register_virtual_size = max_size;
}

/* Module "constructor" function.  */

extern xtensa_register_t xtensa_rmap[];

static struct gdbarch *
xtensa_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
{
  DEBUGTRACE ("gdbarch_init()\n");

  if (!xtensa_default_isa)
    xtensa_default_isa = xtensa_isa_init (0, 0);

  /* We have to set the byte order before we call gdbarch_alloc.  */
  info.byte_order = XCHAL_HAVE_BE ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;

  gdbarch *gdbarch
    = gdbarch_alloc (&info,
		     gdbarch_tdep_up (new xtensa_gdbarch_tdep (xtensa_rmap)));
  xtensa_gdbarch_tdep *tdep = gdbarch_tdep<xtensa_gdbarch_tdep> (gdbarch);
  xtensa_derive_tdep (tdep);

  /* Verify our configuration.  */
  xtensa_verify_config (gdbarch);
  xtensa_session_once_reported = 0;

  set_gdbarch_wchar_bit (gdbarch, 2 * TARGET_CHAR_BIT);
  set_gdbarch_wchar_signed (gdbarch, 0);

  /* Pseudo-Register read/write.  */
  set_gdbarch_pseudo_register_read (gdbarch, xtensa_pseudo_register_read);
  set_gdbarch_deprecated_pseudo_register_write (gdbarch,
						xtensa_pseudo_register_write);

  /* Set target information.  */
  set_gdbarch_num_regs (gdbarch, tdep->num_regs);
  set_gdbarch_num_pseudo_regs (gdbarch, tdep->num_pseudo_regs);
  set_gdbarch_sp_regnum (gdbarch, tdep->a0_base + 1);
  set_gdbarch_pc_regnum (gdbarch, tdep->pc_regnum);
  set_gdbarch_ps_regnum (gdbarch, tdep->ps_regnum);

  /* Renumber registers for known formats (stabs and dwarf2).  */
  set_gdbarch_stab_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);
  set_gdbarch_dwarf2_reg_to_regnum (gdbarch, xtensa_reg_to_regnum);

  /* We provide our own function to get register information.  */
  set_gdbarch_register_name (gdbarch, xtensa_register_name);
  set_gdbarch_register_type (gdbarch, xtensa_register_type);

  /* To call functions from GDB using dummy frame.  */
  set_gdbarch_push_dummy_call (gdbarch, xtensa_push_dummy_call);

  set_gdbarch_believe_pcc_promotion (gdbarch, 1);

  set_gdbarch_return_value (gdbarch, xtensa_return_value);

  /* Advance PC across any prologue instructions to reach "real" code.  */
  set_gdbarch_skip_prologue (gdbarch, xtensa_skip_prologue);

  /* Stack grows downward.  */
  set_gdbarch_inner_than (gdbarch, core_addr_lessthan);

  /* Set breakpoints.  */
  set_gdbarch_breakpoint_kind_from_pc (gdbarch,
				       xtensa_breakpoint_kind_from_pc);
  set_gdbarch_sw_breakpoint_from_kind (gdbarch,
				       xtensa_sw_breakpoint_from_kind);

  /* After breakpoint instruction or illegal instruction, pc still
     points at break instruction, so don't decrement.  */
  set_gdbarch_decr_pc_after_break (gdbarch, 0);

  /* We don't skip args.  */
  set_gdbarch_frame_args_skip (gdbarch, 0);

  set_gdbarch_unwind_pc (gdbarch, xtensa_unwind_pc);

  set_gdbarch_frame_align (gdbarch, xtensa_frame_align);

  set_gdbarch_dummy_id (gdbarch, xtensa_dummy_id);

  /* Frame handling.  */
  frame_base_set_default (gdbarch, &xtensa_frame_base);
  frame_unwind_append_unwinder (gdbarch, &xtensa_unwind);
  dwarf2_append_unwinders (gdbarch);

  set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);

  xtensa_add_reggroups (gdbarch);
  set_gdbarch_register_reggroup_p (gdbarch, xtensa_register_reggroup_p);

  set_gdbarch_iterate_over_regset_sections
    (gdbarch, xtensa_iterate_over_regset_sections);

  set_solib_svr4_fetch_link_map_offsets
    (gdbarch, svr4_ilp32_fetch_link_map_offsets);

  /* Hook in the ABI-specific overrides, if they have been registered.  */
  gdbarch_init_osabi (info, gdbarch);

  return gdbarch;
}

static void
xtensa_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
{
  error (_("xtensa_dump_tdep(): not implemented"));
}

void _initialize_xtensa_tdep ();
void
_initialize_xtensa_tdep ()
{
  gdbarch_register (bfd_arch_xtensa, xtensa_gdbarch_init, xtensa_dump_tdep);
  xtensa_init_reggroups ();

  add_setshow_zuinteger_cmd ("xtensa",
			     class_maintenance,
			     &xtensa_debug_level,
			    _("Set Xtensa debugging."),
			    _("Show Xtensa debugging."), _("\
When non-zero, Xtensa-specific debugging is enabled. \
Can be 1, 2, 3, or 4 indicating the level of debugging."),
			     NULL,
			     NULL,
			     &setdebuglist, &showdebuglist);
}