/* Native-dependent code for GNU/Linux x86 (i386 and x86-64). Copyright (C) 1999-2018 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. */ #include "defs.h" #include "inferior.h" #include "elf/common.h" #include "gdb_proc_service.h" #include "nat/gdb_ptrace.h" #include <sys/user.h> #include <sys/procfs.h> #include <sys/uio.h> #include "x86-nat.h" #include "linux-nat.h" #ifndef __x86_64__ #include "i386-linux-nat.h" #endif #include "x86-linux-nat.h" #include "i386-linux-tdep.h" #ifdef __x86_64__ #include "amd64-linux-tdep.h" #endif #include "x86-xstate.h" #include "nat/linux-btrace.h" #include "nat/linux-nat.h" #include "nat/x86-linux.h" #include "nat/x86-linux-dregs.h" #include "nat/linux-ptrace.h" /* linux_nat_new_fork hook. */ static void x86_linux_new_fork (struct lwp_info *parent, pid_t child_pid) { pid_t parent_pid; struct x86_debug_reg_state *parent_state; struct x86_debug_reg_state *child_state; /* NULL means no watchpoint has ever been set in the parent. In that case, there's nothing to do. */ if (parent->arch_private == NULL) return; /* Linux kernel before 2.6.33 commit 72f674d203cd230426437cdcf7dd6f681dad8b0d will inherit hardware debug registers from parent on fork/vfork/clone. Newer Linux kernels create such tasks with zeroed debug registers. GDB core assumes the child inherits the watchpoints/hw breakpoints of the parent, and will remove them all from the forked off process. Copy the debug registers mirrors into the new process so that all breakpoints and watchpoints can be removed together. The debug registers mirror will become zeroed in the end before detaching the forked off process, thus making this compatible with older Linux kernels too. */ parent_pid = ptid_get_pid (parent->ptid); parent_state = x86_debug_reg_state (parent_pid); child_state = x86_debug_reg_state (child_pid); *child_state = *parent_state; } static void (*super_post_startup_inferior) (struct target_ops *self, ptid_t ptid); static void x86_linux_child_post_startup_inferior (struct target_ops *self, ptid_t ptid) { x86_cleanup_dregs (); super_post_startup_inferior (self, ptid); } #ifdef __x86_64__ /* Value of CS segment register: 64bit process: 0x33 32bit process: 0x23 */ #define AMD64_LINUX_USER64_CS 0x33 /* Value of DS segment register: LP64 process: 0x0 X32 process: 0x2b */ #define AMD64_LINUX_X32_DS 0x2b #endif /* Get Linux/x86 target description from running target. */ static const struct target_desc * x86_linux_read_description (struct target_ops *ops) { int tid; int is_64bit = 0; #ifdef __x86_64__ int is_x32; #endif static uint64_t xcr0; uint64_t xcr0_features_bits; /* GNU/Linux LWP ID's are process ID's. */ tid = ptid_get_lwp (inferior_ptid); if (tid == 0) tid = ptid_get_pid (inferior_ptid); /* Not a threaded program. */ #ifdef __x86_64__ { unsigned long cs; unsigned long ds; /* Get CS register. */ errno = 0; cs = ptrace (PTRACE_PEEKUSER, tid, offsetof (struct user_regs_struct, cs), 0); if (errno != 0) perror_with_name (_("Couldn't get CS register")); is_64bit = cs == AMD64_LINUX_USER64_CS; /* Get DS register. */ errno = 0; ds = ptrace (PTRACE_PEEKUSER, tid, offsetof (struct user_regs_struct, ds), 0); if (errno != 0) perror_with_name (_("Couldn't get DS register")); is_x32 = ds == AMD64_LINUX_X32_DS; if (sizeof (void *) == 4 && is_64bit && !is_x32) error (_("Can't debug 64-bit process with 32-bit GDB")); } #elif HAVE_PTRACE_GETFPXREGS if (have_ptrace_getfpxregs == -1) { elf_fpxregset_t fpxregs; if (ptrace (PTRACE_GETFPXREGS, tid, 0, (int) &fpxregs) < 0) { have_ptrace_getfpxregs = 0; have_ptrace_getregset = TRIBOOL_FALSE; return i386_linux_read_description (X86_XSTATE_X87_MASK); } } #endif if (have_ptrace_getregset == TRIBOOL_UNKNOWN) { uint64_t xstateregs[(X86_XSTATE_SSE_SIZE / sizeof (uint64_t))]; struct iovec iov; iov.iov_base = xstateregs; iov.iov_len = sizeof (xstateregs); /* Check if PTRACE_GETREGSET works. */ if (ptrace (PTRACE_GETREGSET, tid, (unsigned int) NT_X86_XSTATE, &iov) < 0) have_ptrace_getregset = TRIBOOL_FALSE; else { have_ptrace_getregset = TRIBOOL_TRUE; /* Get XCR0 from XSAVE extended state. */ xcr0 = xstateregs[(I386_LINUX_XSAVE_XCR0_OFFSET / sizeof (uint64_t))]; } } /* Check the native XCR0 only if PTRACE_GETREGSET is available. If PTRACE_GETREGSET is not available then set xcr0_features_bits to zero so that the "no-features" descriptions are returned by the switches below. */ if (have_ptrace_getregset == TRIBOOL_TRUE) xcr0_features_bits = xcr0 & X86_XSTATE_ALL_MASK; else xcr0_features_bits = 0; if (is_64bit) { #ifdef __x86_64__ return amd64_linux_read_description (xcr0_features_bits, is_x32); #endif } else { const struct target_desc * tdesc = i386_linux_read_description (xcr0_features_bits); if (tdesc == NULL) tdesc = i386_linux_read_description (X86_XSTATE_SSE_MASK); return tdesc; } gdb_assert_not_reached ("failed to return tdesc"); } /* Enable branch tracing. */ static struct btrace_target_info * x86_linux_enable_btrace (struct target_ops *self, ptid_t ptid, const struct btrace_config *conf) { struct btrace_target_info *tinfo; errno = 0; tinfo = linux_enable_btrace (ptid, conf); if (tinfo == NULL) error (_("Could not enable branch tracing for %s: %s."), target_pid_to_str (ptid), safe_strerror (errno)); return tinfo; } /* Disable branch tracing. */ static void x86_linux_disable_btrace (struct target_ops *self, struct btrace_target_info *tinfo) { enum btrace_error errcode = linux_disable_btrace (tinfo); if (errcode != BTRACE_ERR_NONE) error (_("Could not disable branch tracing.")); } /* Teardown branch tracing. */ static void x86_linux_teardown_btrace (struct target_ops *self, struct btrace_target_info *tinfo) { /* Ignore errors. */ linux_disable_btrace (tinfo); } static enum btrace_error x86_linux_read_btrace (struct target_ops *self, struct btrace_data *data, struct btrace_target_info *btinfo, enum btrace_read_type type) { return linux_read_btrace (data, btinfo, type); } /* See to_btrace_conf in target.h. */ static const struct btrace_config * x86_linux_btrace_conf (struct target_ops *self, const struct btrace_target_info *btinfo) { return linux_btrace_conf (btinfo); } /* Helper for ps_get_thread_area. Sets BASE_ADDR to a pointer to the thread local storage (or its descriptor) and returns PS_OK on success. Returns PS_ERR on failure. */ ps_err_e x86_linux_get_thread_area (pid_t pid, void *addr, unsigned int *base_addr) { /* NOTE: cagney/2003-08-26: The definition of this buffer is found in the kernel header <asm-i386/ldt.h>. It, after padding, is 4 x 4 byte integers in size: `entry_number', `base_addr', `limit', and a bunch of status bits. The values returned by this ptrace call should be part of the regcache buffer, and ps_get_thread_area should channel its request through the regcache. That way remote targets could provide the value using the remote protocol and not this direct call. Is this function needed? I'm guessing that the `base' is the address of a descriptor that libthread_db uses to find the thread local address base that GDB needs. Perhaps that descriptor is defined by the ABI. Anyway, given that libthread_db calls this function without prompting (gdb requesting tls base) I guess it needs info in there anyway. */ unsigned int desc[4]; /* This code assumes that "int" is 32 bits and that GET_THREAD_AREA returns no more than 4 int values. */ gdb_assert (sizeof (int) == 4); #ifndef PTRACE_GET_THREAD_AREA #define PTRACE_GET_THREAD_AREA 25 #endif if (ptrace (PTRACE_GET_THREAD_AREA, pid, addr, &desc) < 0) return PS_ERR; *base_addr = desc[1]; return PS_OK; } /* Create an x86 GNU/Linux target. */ struct target_ops * x86_linux_create_target (void) { /* Fill in the generic GNU/Linux methods. */ struct target_ops *t = linux_target (); /* Initialize the debug register function vectors. */ x86_use_watchpoints (t); x86_dr_low.set_control = x86_linux_dr_set_control; x86_dr_low.set_addr = x86_linux_dr_set_addr; x86_dr_low.get_addr = x86_linux_dr_get_addr; x86_dr_low.get_status = x86_linux_dr_get_status; x86_dr_low.get_control = x86_linux_dr_get_control; x86_set_debug_register_length (sizeof (void *)); /* Override the GNU/Linux inferior startup hook. */ super_post_startup_inferior = t->to_post_startup_inferior; t->to_post_startup_inferior = x86_linux_child_post_startup_inferior; /* Add the description reader. */ t->to_read_description = x86_linux_read_description; /* Add btrace methods. */ t->to_supports_btrace = linux_supports_btrace; t->to_enable_btrace = x86_linux_enable_btrace; t->to_disable_btrace = x86_linux_disable_btrace; t->to_teardown_btrace = x86_linux_teardown_btrace; t->to_read_btrace = x86_linux_read_btrace; t->to_btrace_conf = x86_linux_btrace_conf; return t; } /* Add an x86 GNU/Linux target. */ void x86_linux_add_target (struct target_ops *t) { linux_nat_add_target (t); linux_nat_set_new_thread (t, x86_linux_new_thread); linux_nat_set_delete_thread (t, x86_linux_delete_thread); linux_nat_set_new_fork (t, x86_linux_new_fork); linux_nat_set_forget_process (t, x86_forget_process); linux_nat_set_prepare_to_resume (t, x86_linux_prepare_to_resume); }