/* This testcase is part of GDB, the GNU debugger. Copyright 2015-2021 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include #include typedef void (*testcase_ftype)(void); /* Each function checks the correctness of the instruction being relocated due to a fast tracepoint. Call function pass if it is correct, otherwise call function fail. GDB sets a breakpoints on pass and fail in order to check the correctness. */ static void pass (void) { } static void fail (void) { } #if (defined __x86_64__ || defined __i386__) #ifdef SYMBOL_PREFIX #define SYMBOL(str) SYMBOL_PREFIX #str #else #define SYMBOL(str) #str #endif /* Make sure we can relocate a CALL instruction. CALL instructions are 5 bytes long so we can always set a fast tracepoints on them. JMP set_point0 f: MOV $1, %[ok] JMP end set_point0: CALL f ; tracepoint here. end: */ static void can_relocate_call (void) { int ok = 0; asm (" .global " SYMBOL (set_point0) "\n" " jmp " SYMBOL (set_point0) "\n" "0:\n" " mov $1, %[ok]\n" " jmp 1f\n" SYMBOL (set_point0) ":\n" " call 0b\n" "1:\n" : [ok] "=r" (ok)); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a JMP instruction. We need the JMP instruction to be 5 bytes long in order to set a fast tracepoint on it. To do this, we emit the opcode directly. JMP next ; tracepoint here. next: MOV $1, %[ok] */ static void can_relocate_jump (void) { int ok = 0; asm (" .global " SYMBOL (set_point1) "\n" SYMBOL (set_point1) ":\n" ".byte 0xe9\n" /* jmp */ ".byte 0x00\n" ".byte 0x00\n" ".byte 0x00\n" ".byte 0x00\n" " mov $1, %[ok]\n" : [ok] "=r" (ok)); if (ok == 1) pass (); else fail (); } #elif (defined __aarch64__) /* Make sure we can relocate a B instruction. B set_point0 set_ok: MOV %[ok], #1 B end set_point0: B set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_b (void) { int ok = 0; asm (" b set_point0\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point0:\n" " b 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok)); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a B.cond instruction. MOV x0, #8 TST x0, #8 ; Clear the Z flag. B set_point1 set_ok: MOV %[ok], #1 B end set_point1: B.NE set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_bcond_true (void) { int ok = 0; asm (" mov x0, #8\n" " tst x0, #8\n" " b set_point1\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point1:\n" " b.ne 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0", "cc"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a CBZ instruction. MOV x0, #0 B set_point2 set_ok: MOV %[ok], #1 B end set_point2: CBZ x0, set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_cbz (void) { int ok = 0; asm (" mov x0, #0\n" " b set_point2\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point2:\n" " cbz x0, 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a CBNZ instruction. MOV x0, #8 B set_point3 set_ok: MOV %[ok], #1 B end set_point3: CBNZ x0, set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_cbnz (void) { int ok = 0; asm (" mov x0, #8\n" " b set_point3\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point3:\n" " cbnz x0, 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a TBZ instruction. MOV x0, #8 MVN x0, x0 ; Clear bit 3. B set_point4 set_ok: MOV %[ok], #1 B end set_point4: TBZ x0, #3, set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_tbz (void) { int ok = 0; asm (" mov x0, #8\n" " mvn x0, x0\n" " b set_point4\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point4:\n" " tbz x0, #3, 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate a TBNZ instruction. MOV x0, #8 ; Set bit 3. B set_point5 set_ok: MOV %[ok], #1 B end set_point5: TBNZ x0, #3, set_ok ; tracepoint here. MOV %[ok], #0 end */ static void can_relocate_tbnz (void) { int ok = 0; asm (" mov x0, #8\n" " b set_point5\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point5:\n" " tbnz x0, #3, 0b\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate an ADR instruction with a positive offset. set_point6: ADR x0, target ; tracepoint here. BR x0 ; jump to target MOV %[ok], #0 B end target: MOV %[ok], #1 end */ static void can_relocate_adr_forward (void) { int ok = 0; asm ("set_point6:\n" " adr x0, 0f\n" " br x0\n" " mov %[ok], #0\n" " b 1f\n" "0:\n" " mov %[ok], #1\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate an ADR instruction with a negative offset. B set_point7 target: MOV %[ok], #1 B end set_point7: ADR x0, target ; tracepoint here. BR x0 ; jump to target MOV %[ok], #0 end */ static void can_relocate_adr_backward (void) { int ok = 0; asm ("b set_point7\n" "0:\n" " mov %[ok], #1\n" " b 1f\n" "set_point7:\n" " adr x0, 0b\n" " br x0\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0"); if (ok == 1) pass (); else fail (); } /* Make sure we can relocate an ADRP instruction. set_point8: ADRP %[addr], set_point8 ; tracepoint here. ADR %[pc], set_point8 ADR computes the address of the given label. While ADRP gives us its page, on a 4K boundary. We can check ADRP executed normally by making sure the result of ADR and ADRP are equivalent, except for the 12 lowest bits which should be cleared. */ static void can_relocate_adrp (void) { uintptr_t page; uintptr_t pc; asm ("set_point8:\n" " adrp %[page], set_point8\n" " adr %[pc], set_point8\n" : [page] "=r" (page), [pc] "=r" (pc)); if (page == (pc & ~0xfff)) pass (); else fail (); } /* Make sure we can relocate an LDR instruction, where the memory to read is an offset from the current PC. B set_point9 data: .word 0x0cabba9e set_point9: LDR %[result], data ; tracepoint here. */ static void can_relocate_ldr (void) { uint32_t result = 0; asm ("b set_point9\n" "0:\n" " .word 0x0cabba9e\n" "set_point9:\n" " ldr %w[result], 0b\n" : [result] "=r" (result)); if (result == 0x0cabba9e) pass (); else fail (); } /* Make sure we can relocate a B.cond instruction and condition is false. */ static void can_relocate_bcond_false (void) { int ok = 0; asm (" mov x0, #8\n" " tst x0, #8\n" /* Clear the Z flag. */ "set_point10:\n" /* Set tracepoint here. */ " b.eq 0b\n" /* Condition is false. */ " mov %[ok], #1\n" " b 1f\n" "0:\n" " mov %[ok], #0\n" "1:\n" : [ok] "=r" (ok) : : "0", "cc"); if (ok == 1) pass (); else fail (); } static void foo (void) { } /* Make sure we can relocate a BL instruction. */ static void can_relocate_bl (void) { asm ("set_point11:\n" " bl foo\n" " bl pass\n" : : : "x30"); /* Test that LR is updated correctly. */ } /* Make sure we can relocate a BR instruction. ... Set x0 to target set_point12: BR x0 ; jump to target (tracepoint here). fail() return target: pass() end */ static void can_relocate_br (void) { int ok = 0; asm goto (" adr x0, %l0\n" "set_point12:\n" " br x0\n" : : : "x0" : madejump); fail (); return; madejump: pass (); } /* Make sure we can relocate a BLR instruction. We use two different functions since the test runner expects one breakpoint per function and we want to test two different things. For BLR we want to test that the BLR actually jumps to the relevant function, *and* that it sets the LR register correctly. Hence we create one testcase that jumps to `pass` using BLR, and one testcase that jumps to `pass` if BLR has set the LR correctly. -- can_relocate_blr_jumps ... Set x0 to pass set_point13: BLR x0 ; jump to pass (tracepoint here). -- can_relocate_blr_sets_lr ... Set x0 to foo set_point14: BLR x0 ; jumps somewhere else (tracepoint here). BL pass ; ensures the LR was set correctly by the BLR. */ static void can_relocate_blr_jumps (void) { int ok = 0; /* Test BLR indeed jumps to the target. */ asm ("set_point13:\n" " blr %[address]\n" : : [address] "r" (&pass) : "x30"); } static void can_relocate_blr_sets_lr (void) { int ok = 0; /* Test BLR sets the LR correctly. */ asm ("set_point14:\n" " blr %[address]\n" " bl pass\n" : : [address] "r" (&foo) : "x30"); } #endif /* Functions testing relocations need to be placed here. GDB will read n_testcases to know how many fast tracepoints to place. It will look for symbols in the form of 'set_point\[0-9\]+' so each functions needs one, starting at 0. */ static testcase_ftype testcases[] = { #if (defined __x86_64__ || defined __i386__) can_relocate_call, can_relocate_jump #elif (defined __aarch64__) can_relocate_b, can_relocate_bcond_true, can_relocate_cbz, can_relocate_cbnz, can_relocate_tbz, can_relocate_tbnz, can_relocate_adr_forward, can_relocate_adr_backward, can_relocate_adrp, can_relocate_ldr, can_relocate_bcond_false, can_relocate_bl, can_relocate_br, can_relocate_blr_jumps, can_relocate_blr_sets_lr, #endif }; static size_t n_testcases = (sizeof (testcases) / sizeof (testcase_ftype)); int main () { int i = 0; for (i = 0; i < n_testcases; i++) testcases[i] (); return 0; }