/* Support routines for decoding "stabs" debugging information format.
Copyright (C) 1986-2018 Free Software Foundation, Inc.
This file is part of GDB.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see . */
/* Support routines for reading and decoding debugging information in
the "stabs" format. This format is used by some systems that use
COFF or ELF where the stabs data is placed in a special section (as
well as with many old systems that used the a.out object file
format). Avoid placing any object file format specific code in
this file. */
#include "defs.h"
#include "bfd.h"
#include "gdb_obstack.h"
#include "symtab.h"
#include "gdbtypes.h"
#include "expression.h"
#include "symfile.h"
#include "objfiles.h"
#include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
#include "libaout.h"
#include "aout/aout64.h"
#include "gdb-stabs.h"
#include "buildsym.h"
#include "complaints.h"
#include "demangle.h"
#include "gdb-demangle.h"
#include "language.h"
#include "target-float.h"
#include "cp-abi.h"
#include "cp-support.h"
#include
/* Ask stabsread.h to define the vars it normally declares `extern'. */
#define EXTERN
/**/
#include "stabsread.h" /* Our own declarations */
#undef EXTERN
struct nextfield
{
struct nextfield *next;
/* This is the raw visibility from the stab. It is not checked
for being one of the visibilities we recognize, so code which
examines this field better be able to deal. */
int visibility;
struct field field;
};
struct next_fnfieldlist
{
struct next_fnfieldlist *next;
struct fn_fieldlist fn_fieldlist;
};
/* The routines that read and process a complete stabs for a C struct or
C++ class pass lists of data member fields and lists of member function
fields in an instance of a field_info structure, as defined below.
This is part of some reorganization of low level C++ support and is
expected to eventually go away... (FIXME) */
struct field_info
{
struct nextfield *list;
struct next_fnfieldlist *fnlist;
};
static void
read_one_struct_field (struct field_info *, const char **, const char *,
struct type *, struct objfile *);
static struct type *dbx_alloc_type (int[2], struct objfile *);
static long read_huge_number (const char **, int, int *, int);
static struct type *error_type (const char **, struct objfile *);
static void
patch_block_stabs (struct pending *, struct pending_stabs *,
struct objfile *);
static void fix_common_block (struct symbol *, CORE_ADDR);
static int read_type_number (const char **, int *);
static struct type *read_type (const char **, struct objfile *);
static struct type *read_range_type (const char **, int[2],
int, struct objfile *);
static struct type *read_sun_builtin_type (const char **,
int[2], struct objfile *);
static struct type *read_sun_floating_type (const char **, int[2],
struct objfile *);
static struct type *read_enum_type (const char **, struct type *, struct objfile *);
static struct type *rs6000_builtin_type (int, struct objfile *);
static int
read_member_functions (struct field_info *, const char **, struct type *,
struct objfile *);
static int
read_struct_fields (struct field_info *, const char **, struct type *,
struct objfile *);
static int
read_baseclasses (struct field_info *, const char **, struct type *,
struct objfile *);
static int
read_tilde_fields (struct field_info *, const char **, struct type *,
struct objfile *);
static int attach_fn_fields_to_type (struct field_info *, struct type *);
static int attach_fields_to_type (struct field_info *, struct type *,
struct objfile *);
static struct type *read_struct_type (const char **, struct type *,
enum type_code,
struct objfile *);
static struct type *read_array_type (const char **, struct type *,
struct objfile *);
static struct field *read_args (const char **, int, struct objfile *,
int *, int *);
static void add_undefined_type (struct type *, int[2]);
static int
read_cpp_abbrev (struct field_info *, const char **, struct type *,
struct objfile *);
static const char *find_name_end (const char *name);
static int process_reference (const char **string);
void stabsread_clear_cache (void);
static const char vptr_name[] = "_vptr$";
static const char vb_name[] = "_vb$";
static void
invalid_cpp_abbrev_complaint (const char *arg1)
{
complaint (_("invalid C++ abbreviation `%s'"), arg1);
}
static void
reg_value_complaint (int regnum, int num_regs, const char *sym)
{
complaint (_("bad register number %d (max %d) in symbol %s"),
regnum, num_regs - 1, sym);
}
static void
stabs_general_complaint (const char *arg1)
{
complaint ("%s", arg1);
}
/* Make a list of forward references which haven't been defined. */
static struct type **undef_types;
static int undef_types_allocated;
static int undef_types_length;
static struct symbol *current_symbol = NULL;
/* Make a list of nameless types that are undefined.
This happens when another type is referenced by its number
before this type is actually defined. For instance "t(0,1)=k(0,2)"
and type (0,2) is defined only later. */
struct nat
{
int typenums[2];
struct type *type;
};
static struct nat *noname_undefs;
static int noname_undefs_allocated;
static int noname_undefs_length;
/* Check for and handle cretinous stabs symbol name continuation! */
#define STABS_CONTINUE(pp,objfile) \
do { \
if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
*(pp) = next_symbol_text (objfile); \
} while (0)
/* Vector of types defined so far, indexed by their type numbers.
(In newer sun systems, dbx uses a pair of numbers in parens,
as in "(SUBFILENUM,NUMWITHINSUBFILE)".
Then these numbers must be translated through the type_translations
hash table to get the index into the type vector.) */
static struct type **type_vector;
/* Number of elements allocated for type_vector currently. */
static int type_vector_length;
/* Initial size of type vector. Is realloc'd larger if needed, and
realloc'd down to the size actually used, when completed. */
#define INITIAL_TYPE_VECTOR_LENGTH 160
/* Look up a dbx type-number pair. Return the address of the slot
where the type for that number-pair is stored.
The number-pair is in TYPENUMS.
This can be used for finding the type associated with that pair
or for associating a new type with the pair. */
static struct type **
dbx_lookup_type (int typenums[2], struct objfile *objfile)
{
int filenum = typenums[0];
int index = typenums[1];
unsigned old_len;
int real_filenum;
struct header_file *f;
int f_orig_length;
if (filenum == -1) /* -1,-1 is for temporary types. */
return 0;
if (filenum < 0 || filenum >= n_this_object_header_files)
{
complaint (_("Invalid symbol data: type number "
"(%d,%d) out of range at symtab pos %d."),
filenum, index, symnum);
goto error_return;
}
if (filenum == 0)
{
if (index < 0)
{
/* Caller wants address of address of type. We think
that negative (rs6k builtin) types will never appear as
"lvalues", (nor should they), so we stuff the real type
pointer into a temp, and return its address. If referenced,
this will do the right thing. */
static struct type *temp_type;
temp_type = rs6000_builtin_type (index, objfile);
return &temp_type;
}
/* Type is defined outside of header files.
Find it in this object file's type vector. */
if (index >= type_vector_length)
{
old_len = type_vector_length;
if (old_len == 0)
{
type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
type_vector = XNEWVEC (struct type *, type_vector_length);
}
while (index >= type_vector_length)
{
type_vector_length *= 2;
}
type_vector = (struct type **)
xrealloc ((char *) type_vector,
(type_vector_length * sizeof (struct type *)));
memset (&type_vector[old_len], 0,
(type_vector_length - old_len) * sizeof (struct type *));
}
return (&type_vector[index]);
}
else
{
real_filenum = this_object_header_files[filenum];
if (real_filenum >= N_HEADER_FILES (objfile))
{
static struct type *temp_type;
warning (_("GDB internal error: bad real_filenum"));
error_return:
temp_type = objfile_type (objfile)->builtin_error;
return &temp_type;
}
f = HEADER_FILES (objfile) + real_filenum;
f_orig_length = f->length;
if (index >= f_orig_length)
{
while (index >= f->length)
{
f->length *= 2;
}
f->vector = (struct type **)
xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
memset (&f->vector[f_orig_length], 0,
(f->length - f_orig_length) * sizeof (struct type *));
}
return (&f->vector[index]);
}
}
/* Make sure there is a type allocated for type numbers TYPENUMS
and return the type object.
This can create an empty (zeroed) type object.
TYPENUMS may be (-1, -1) to return a new type object that is not
put into the type vector, and so may not be referred to by number. */
static struct type *
dbx_alloc_type (int typenums[2], struct objfile *objfile)
{
struct type **type_addr;
if (typenums[0] == -1)
{
return (alloc_type (objfile));
}
type_addr = dbx_lookup_type (typenums, objfile);
/* If we are referring to a type not known at all yet,
allocate an empty type for it.
We will fill it in later if we find out how. */
if (*type_addr == 0)
{
*type_addr = alloc_type (objfile);
}
return (*type_addr);
}
/* Allocate a floating-point type of size BITS. */
static struct type *
dbx_init_float_type (struct objfile *objfile, int bits)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
const struct floatformat **format;
struct type *type;
format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
if (format)
type = init_float_type (objfile, bits, NULL, format);
else
type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
return type;
}
/* for all the stabs in a given stab vector, build appropriate types
and fix their symbols in given symbol vector. */
static void
patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
struct objfile *objfile)
{
int ii;
char *name;
const char *pp;
struct symbol *sym;
if (stabs)
{
/* for all the stab entries, find their corresponding symbols and
patch their types! */
for (ii = 0; ii < stabs->count; ++ii)
{
name = stabs->stab[ii];
pp = (char *) strchr (name, ':');
gdb_assert (pp); /* Must find a ':' or game's over. */
while (pp[1] == ':')
{
pp += 2;
pp = (char *) strchr (pp, ':');
}
sym = find_symbol_in_list (symbols, name, pp - name);
if (!sym)
{
/* FIXME-maybe: it would be nice if we noticed whether
the variable was defined *anywhere*, not just whether
it is defined in this compilation unit. But neither
xlc or GCC seem to need such a definition, and until
we do psymtabs (so that the minimal symbols from all
compilation units are available now), I'm not sure
how to get the information. */
/* On xcoff, if a global is defined and never referenced,
ld will remove it from the executable. There is then
a N_GSYM stab for it, but no regular (C_EXT) symbol. */
sym = allocate_symbol (objfile);
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
SYMBOL_SET_LINKAGE_NAME
(sym, (char *) obstack_copy0 (&objfile->objfile_obstack,
name, pp - name));
pp += 2;
if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
{
/* I don't think the linker does this with functions,
so as far as I know this is never executed.
But it doesn't hurt to check. */
SYMBOL_TYPE (sym) =
lookup_function_type (read_type (&pp, objfile));
}
else
{
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
}
add_symbol_to_list (sym, &global_symbols);
}
else
{
pp += 2;
if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
{
SYMBOL_TYPE (sym) =
lookup_function_type (read_type (&pp, objfile));
}
else
{
SYMBOL_TYPE (sym) = read_type (&pp, objfile);
}
}
}
}
}
/* Read a number by which a type is referred to in dbx data,
or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
Just a single number N is equivalent to (0,N).
Return the two numbers by storing them in the vector TYPENUMS.
TYPENUMS will then be used as an argument to dbx_lookup_type.
Returns 0 for success, -1 for error. */
static int
read_type_number (const char **pp, int *typenums)
{
int nbits;
if (**pp == '(')
{
(*pp)++;
typenums[0] = read_huge_number (pp, ',', &nbits, 0);
if (nbits != 0)
return -1;
typenums[1] = read_huge_number (pp, ')', &nbits, 0);
if (nbits != 0)
return -1;
}
else
{
typenums[0] = 0;
typenums[1] = read_huge_number (pp, 0, &nbits, 0);
if (nbits != 0)
return -1;
}
return 0;
}
#define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
#define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
#define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
#define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
/* Structure for storing pointers to reference definitions for fast lookup
during "process_later". */
struct ref_map
{
const char *stabs;
CORE_ADDR value;
struct symbol *sym;
};
#define MAX_CHUNK_REFS 100
#define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
#define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
static struct ref_map *ref_map;
/* Ptr to free cell in chunk's linked list. */
static int ref_count = 0;
/* Number of chunks malloced. */
static int ref_chunk = 0;
/* This file maintains a cache of stabs aliases found in the symbol
table. If the symbol table changes, this cache must be cleared
or we are left holding onto data in invalid obstacks. */
void
stabsread_clear_cache (void)
{
ref_count = 0;
ref_chunk = 0;
}
/* Create array of pointers mapping refids to symbols and stab strings.
Add pointers to reference definition symbols and/or their values as we
find them, using their reference numbers as our index.
These will be used later when we resolve references. */
void
ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
{
if (ref_count == 0)
ref_chunk = 0;
if (refnum >= ref_count)
ref_count = refnum + 1;
if (ref_count > ref_chunk * MAX_CHUNK_REFS)
{
int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
ref_map = (struct ref_map *)
xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
new_chunks * REF_CHUNK_SIZE);
ref_chunk += new_chunks;
}
ref_map[refnum].stabs = stabs;
ref_map[refnum].sym = sym;
ref_map[refnum].value = value;
}
/* Return defined sym for the reference REFNUM. */
struct symbol *
ref_search (int refnum)
{
if (refnum < 0 || refnum > ref_count)
return 0;
return ref_map[refnum].sym;
}
/* Parse a reference id in STRING and return the resulting
reference number. Move STRING beyond the reference id. */
static int
process_reference (const char **string)
{
const char *p;
int refnum = 0;
if (**string != '#')
return 0;
/* Advance beyond the initial '#'. */
p = *string + 1;
/* Read number as reference id. */
while (*p && isdigit (*p))
{
refnum = refnum * 10 + *p - '0';
p++;
}
*string = p;
return refnum;
}
/* If STRING defines a reference, store away a pointer to the reference
definition for later use. Return the reference number. */
int
symbol_reference_defined (const char **string)
{
const char *p = *string;
int refnum = 0;
refnum = process_reference (&p);
/* Defining symbols end in '='. */
if (*p == '=')
{
/* Symbol is being defined here. */
*string = p + 1;
return refnum;
}
else
{
/* Must be a reference. Either the symbol has already been defined,
or this is a forward reference to it. */
*string = p;
return -1;
}
}
static int
stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
{
int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
if (regno < 0
|| regno >= (gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch)))
{
reg_value_complaint (regno,
gdbarch_num_regs (gdbarch)
+ gdbarch_num_pseudo_regs (gdbarch),
SYMBOL_PRINT_NAME (sym));
regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
}
return regno;
}
static const struct symbol_register_ops stab_register_funcs = {
stab_reg_to_regnum
};
/* The "aclass" indices for computed symbols. */
static int stab_register_index;
static int stab_regparm_index;
struct symbol *
define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
struct objfile *objfile)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
struct symbol *sym;
const char *p = find_name_end (string);
int deftype;
int synonym = 0;
int i;
/* We would like to eliminate nameless symbols, but keep their types.
E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
to type 2, but, should not create a symbol to address that type. Since
the symbol will be nameless, there is no way any user can refer to it. */
int nameless;
/* Ignore syms with empty names. */
if (string[0] == 0)
return 0;
/* Ignore old-style symbols from cc -go. */
if (p == 0)
return 0;
while (p[1] == ':')
{
p += 2;
p = strchr (p, ':');
if (p == NULL)
{
complaint (
_("Bad stabs string '%s'"), string);
return NULL;
}
}
/* If a nameless stab entry, all we need is the type, not the symbol.
e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
current_symbol = sym = allocate_symbol (objfile);
if (processing_gcc_compilation)
{
/* GCC 2.x puts the line number in desc. SunOS apparently puts in the
number of bytes occupied by a type or object, which we ignore. */
SYMBOL_LINE (sym) = desc;
}
else
{
SYMBOL_LINE (sym) = 0; /* unknown */
}
SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
&objfile->objfile_obstack);
if (is_cplus_marker (string[0]))
{
/* Special GNU C++ names. */
switch (string[1])
{
case 't':
SYMBOL_SET_LINKAGE_NAME (sym, "this");
break;
case 'v': /* $vtbl_ptr_type */
goto normal;
case 'e':
SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
break;
case '_':
/* This was an anonymous type that was never fixed up. */
goto normal;
case 'X':
/* SunPRO (3.0 at least) static variable encoding. */
if (gdbarch_static_transform_name_p (gdbarch))
goto normal;
/* fall through */
default:
complaint (_("Unknown C++ symbol name `%s'"),
string);
goto normal; /* Do *something* with it. */
}
}
else
{
normal:
std::string new_name;
if (SYMBOL_LANGUAGE (sym) == language_cplus)
{
char *name = (char *) alloca (p - string + 1);
memcpy (name, string, p - string);
name[p - string] = '\0';
new_name = cp_canonicalize_string (name);
}
if (!new_name.empty ())
{
SYMBOL_SET_NAMES (sym,
new_name.c_str (), new_name.length (),
1, objfile);
}
else
SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
if (SYMBOL_LANGUAGE (sym) == language_cplus)
cp_scan_for_anonymous_namespaces (sym, objfile);
}
p++;
/* Determine the type of name being defined. */
#if 0
/* Getting GDB to correctly skip the symbol on an undefined symbol
descriptor and not ever dump core is a very dodgy proposition if
we do things this way. I say the acorn RISC machine can just
fix their compiler. */
/* The Acorn RISC machine's compiler can put out locals that don't
start with "234=" or "(3,4)=", so assume anything other than the
deftypes we know how to handle is a local. */
if (!strchr ("cfFGpPrStTvVXCR", *p))
#else
if (isdigit (*p) || *p == '(' || *p == '-')
#endif
deftype = 'l';
else
deftype = *p++;
switch (deftype)
{
case 'c':
/* c is a special case, not followed by a type-number.
SYMBOL:c=iVALUE for an integer constant symbol.
SYMBOL:c=rVALUE for a floating constant symbol.
SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
e.g. "b:c=e6,0" for "const b = blob1"
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
if (*p != '=')
{
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_TYPE (sym) = error_type (&p, objfile);
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
return sym;
}
++p;
switch (*p++)
{
case 'r':
{
gdb_byte *dbl_valu;
struct type *dbl_type;
dbl_type = objfile_type (objfile)->builtin_double;
dbl_valu
= (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
TYPE_LENGTH (dbl_type));
target_float_from_string (dbl_valu, dbl_type, std::string (p));
SYMBOL_TYPE (sym) = dbl_type;
SYMBOL_VALUE_BYTES (sym) = dbl_valu;
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
}
break;
case 'i':
{
/* Defining integer constants this way is kind of silly,
since 'e' constants allows the compiler to give not
only the value, but the type as well. C has at least
int, long, unsigned int, and long long as constant
types; other languages probably should have at least
unsigned as well as signed constants. */
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
SYMBOL_VALUE (sym) = atoi (p);
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
}
break;
case 'c':
{
SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
SYMBOL_VALUE (sym) = atoi (p);
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
}
break;
case 's':
{
struct type *range_type;
int ind = 0;
char quote = *p++;
gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
gdb_byte *string_value;
if (quote != '\'' && quote != '"')
{
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_TYPE (sym) = error_type (&p, objfile);
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
return sym;
}
/* Find matching quote, rejecting escaped quotes. */
while (*p && *p != quote)
{
if (*p == '\\' && p[1] == quote)
{
string_local[ind] = (gdb_byte) quote;
ind++;
p += 2;
}
else if (*p)
{
string_local[ind] = (gdb_byte) (*p);
ind++;
p++;
}
}
if (*p != quote)
{
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_TYPE (sym) = error_type (&p, objfile);
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
return sym;
}
/* NULL terminate the string. */
string_local[ind] = 0;
range_type
= create_static_range_type (NULL,
objfile_type (objfile)->builtin_int,
0, ind);
SYMBOL_TYPE (sym) = create_array_type (NULL,
objfile_type (objfile)->builtin_char,
range_type);
string_value
= (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
memcpy (string_value, string_local, ind + 1);
p++;
SYMBOL_VALUE_BYTES (sym) = string_value;
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
}
break;
case 'e':
/* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
can be represented as integral.
e.g. "b:c=e6,0" for "const b = blob1"
(where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
{
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_TYPE (sym) = read_type (&p, objfile);
if (*p != ',')
{
SYMBOL_TYPE (sym) = error_type (&p, objfile);
break;
}
++p;
/* If the value is too big to fit in an int (perhaps because
it is unsigned), or something like that, we silently get
a bogus value. The type and everything else about it is
correct. Ideally, we should be using whatever we have
available for parsing unsigned and long long values,
however. */
SYMBOL_VALUE (sym) = atoi (p);
}
break;
default:
{
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_TYPE (sym) = error_type (&p, objfile);
}
}
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
return sym;
case 'C':
/* The name of a caught exception. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
SYMBOL_VALUE_ADDRESS (sym) = valu;
add_symbol_to_list (sym, &local_symbols);
break;
case 'f':
/* A static function definition. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
/* fall into process_function_types. */
process_function_types:
/* Function result types are described as the result type in stabs.
We need to convert this to the function-returning-type-X type
in GDB. E.g. "int" is converted to "function returning int". */
if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
/* All functions in C++ have prototypes. Stabs does not offer an
explicit way to identify prototyped or unprototyped functions,
but both GCC and Sun CC emit stabs for the "call-as" type rather
than the "declared-as" type for unprototyped functions, so
we treat all functions as if they were prototyped. This is used
primarily for promotion when calling the function from GDB. */
TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
/* fall into process_prototype_types. */
process_prototype_types:
/* Sun acc puts declared types of arguments here. */
if (*p == ';')
{
struct type *ftype = SYMBOL_TYPE (sym);
int nsemi = 0;
int nparams = 0;
const char *p1 = p;
/* Obtain a worst case guess for the number of arguments
by counting the semicolons. */
while (*p1)
{
if (*p1++ == ';')
nsemi++;
}
/* Allocate parameter information fields and fill them in. */
TYPE_FIELDS (ftype) = (struct field *)
TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
while (*p++ == ';')
{
struct type *ptype;
/* A type number of zero indicates the start of varargs.
FIXME: GDB currently ignores vararg functions. */
if (p[0] == '0' && p[1] == '\0')
break;
ptype = read_type (&p, objfile);
/* The Sun compilers mark integer arguments, which should
be promoted to the width of the calling conventions, with
a type which references itself. This type is turned into
a TYPE_CODE_VOID type by read_type, and we have to turn
it back into builtin_int here.
FIXME: Do we need a new builtin_promoted_int_arg ? */
if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
ptype = objfile_type (objfile)->builtin_int;
TYPE_FIELD_TYPE (ftype, nparams) = ptype;
TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
}
TYPE_NFIELDS (ftype) = nparams;
TYPE_PROTOTYPED (ftype) = 1;
}
break;
case 'F':
/* A global function definition. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &global_symbols);
goto process_function_types;
case 'G':
/* For a class G (global) symbol, it appears that the
value is not correct. It is necessary to search for the
corresponding linker definition to find the value.
These definitions appear at the end of the namelist. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
/* Don't add symbol references to global_sym_chain.
Symbol references don't have valid names and wont't match up with
minimal symbols when the global_sym_chain is relocated.
We'll fixup symbol references when we fixup the defining symbol. */
if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
{
i = hashname (SYMBOL_LINKAGE_NAME (sym));
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
global_sym_chain[i] = sym;
}
add_symbol_to_list (sym, &global_symbols);
break;
/* This case is faked by a conditional above,
when there is no code letter in the dbx data.
Dbx data never actually contains 'l'. */
case 's':
case 'l':
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
case 'p':
if (*p == 'F')
/* pF is a two-letter code that means a function parameter in Fortran.
The type-number specifies the type of the return value.
Translate it into a pointer-to-function type. */
{
p++;
SYMBOL_TYPE (sym)
= lookup_pointer_type
(lookup_function_type (read_type (&p, objfile)));
}
else
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
SYMBOL_IS_ARGUMENT (sym) = 1;
add_symbol_to_list (sym, &local_symbols);
if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
{
/* On little-endian machines, this crud is never necessary,
and, if the extra bytes contain garbage, is harmful. */
break;
}
/* If it's gcc-compiled, if it says `short', believe it. */
if (processing_gcc_compilation
|| gdbarch_believe_pcc_promotion (gdbarch))
break;
if (!gdbarch_believe_pcc_promotion (gdbarch))
{
/* If PCC says a parameter is a short or a char, it is
really an int. */
if (TYPE_LENGTH (SYMBOL_TYPE (sym))
< gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
&& TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
{
SYMBOL_TYPE (sym) =
TYPE_UNSIGNED (SYMBOL_TYPE (sym))
? objfile_type (objfile)->builtin_unsigned_int
: objfile_type (objfile)->builtin_int;
}
break;
}
/* Fall through. */
case 'P':
/* acc seems to use P to declare the prototypes of functions that
are referenced by this file. gdb is not prepared to deal
with this extra information. FIXME, it ought to. */
if (type == N_FUN)
{
SYMBOL_TYPE (sym) = read_type (&p, objfile);
goto process_prototype_types;
}
/*FALLTHROUGH */
case 'R':
/* Parameter which is in a register. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
SYMBOL_IS_ARGUMENT (sym) = 1;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
case 'r':
/* Register variable (either global or local). */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
if (within_function)
{
/* Sun cc uses a pair of symbols, one 'p' and one 'r', with
the same name to represent an argument passed in a
register. GCC uses 'P' for the same case. So if we find
such a symbol pair we combine it into one 'P' symbol.
For Sun cc we need to do this regardless of
stabs_argument_has_addr, because the compiler puts out
the 'p' symbol even if it never saves the argument onto
the stack.
On most machines, we want to preserve both symbols, so
that we can still get information about what is going on
with the stack (VAX for computing args_printed, using
stack slots instead of saved registers in backtraces,
etc.).
Note that this code illegally combines
main(argc) struct foo argc; { register struct foo argc; }
but this case is considered pathological and causes a warning
from a decent compiler. */
if (local_symbols
&& local_symbols->nsyms > 0
&& gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
{
struct symbol *prev_sym;
prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
|| SYMBOL_CLASS (prev_sym) == LOC_ARG)
&& strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
SYMBOL_LINKAGE_NAME (sym)) == 0)
{
SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
/* Use the type from the LOC_REGISTER; that is the type
that is actually in that register. */
SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
sym = prev_sym;
break;
}
}
add_symbol_to_list (sym, &local_symbols);
}
else
add_symbol_to_list (sym, &file_symbols);
break;
case 'S':
/* Static symbol at top level of file. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
SYMBOL_VALUE_ADDRESS (sym) = valu;
if (gdbarch_static_transform_name_p (gdbarch)
&& gdbarch_static_transform_name (gdbarch,
SYMBOL_LINKAGE_NAME (sym))
!= SYMBOL_LINKAGE_NAME (sym))
{
struct bound_minimal_symbol msym;
msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
NULL, objfile);
if (msym.minsym != NULL)
{
const char *new_name = gdbarch_static_transform_name
(gdbarch, SYMBOL_LINKAGE_NAME (sym));
SYMBOL_SET_LINKAGE_NAME (sym, new_name);
SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
}
}
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
break;
case 't':
/* In Ada, there is no distinction between typedef and non-typedef;
any type declaration implicitly has the equivalent of a typedef,
and thus 't' is in fact equivalent to 'Tt'.
Therefore, for Ada units, we check the character immediately
before the 't', and if we do not find a 'T', then make sure to
create the associated symbol in the STRUCT_DOMAIN ('t' definitions
will be stored in the VAR_DOMAIN). If the symbol was indeed
defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
elsewhere, so we don't need to take care of that.
This is important to do, because of forward references:
The cleanup of undefined types stored in undef_types only uses
STRUCT_DOMAIN symbols to perform the replacement. */
synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
/* Typedef */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
/* For a nameless type, we don't want a create a symbol, thus we
did not use `sym'. Return without further processing. */
if (nameless)
return NULL;
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
/* C++ vagaries: we may have a type which is derived from
a base type which did not have its name defined when the
derived class was output. We fill in the derived class's
base part member's name here in that case. */
if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
&& TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
{
int j;
for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
}
if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
{
/* gcc-2.6 or later (when using -fvtable-thunks)
emits a unique named type for a vtable entry.
Some gdb code depends on that specific name. */
extern const char vtbl_ptr_name[];
if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
&& strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
|| TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
{
/* If we are giving a name to a type such as "pointer to
foo" or "function returning foo", we better not set
the TYPE_NAME. If the program contains "typedef char
*caddr_t;", we don't want all variables of type char
* to print as caddr_t. This is not just a
consequence of GDB's type management; PCC and GCC (at
least through version 2.4) both output variables of
either type char * or caddr_t with the type number
defined in the 't' symbol for caddr_t. If a future
compiler cleans this up it GDB is not ready for it
yet, but if it becomes ready we somehow need to
disable this check (without breaking the PCC/GCC2.4
case).
Sigh.
Fortunately, this check seems not to be necessary
for anything except pointers or functions. */
/* ezannoni: 2000-10-26. This seems to apply for
versions of gcc older than 2.8. This was the original
problem: with the following code gdb would tell that
the type for name1 is caddr_t, and func is char().
typedef char *caddr_t;
char *name2;
struct x
{
char *name1;
} xx;
char *func()
{
}
main () {}
*/
/* Pascal accepts names for pointer types. */
if (current_subfile->language == language_pascal)
{
TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
}
}
else
TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
}
add_symbol_to_list (sym, &file_symbols);
if (synonym)
{
/* Create the STRUCT_DOMAIN clone. */
struct symbol *struct_sym = allocate_symbol (objfile);
*struct_sym = *sym;
SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
SYMBOL_VALUE (struct_sym) = valu;
SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
TYPE_NAME (SYMBOL_TYPE (sym))
= obconcat (&objfile->objfile_obstack,
SYMBOL_LINKAGE_NAME (sym),
(char *) NULL);
add_symbol_to_list (struct_sym, &file_symbols);
}
break;
case 'T':
/* Struct, union, or enum tag. For GNU C++, this can be be followed
by 't' which means we are typedef'ing it as well. */
synonym = *p == 't';
if (synonym)
p++;
SYMBOL_TYPE (sym) = read_type (&p, objfile);
/* For a nameless type, we don't want a create a symbol, thus we
did not use `sym'. Return without further processing. */
if (nameless)
return NULL;
SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
TYPE_NAME (SYMBOL_TYPE (sym))
= obconcat (&objfile->objfile_obstack,
SYMBOL_LINKAGE_NAME (sym),
(char *) NULL);
add_symbol_to_list (sym, &file_symbols);
if (synonym)
{
/* Clone the sym and then modify it. */
struct symbol *typedef_sym = allocate_symbol (objfile);
*typedef_sym = *sym;
SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
SYMBOL_VALUE (typedef_sym) = valu;
SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
TYPE_NAME (SYMBOL_TYPE (sym))
= obconcat (&objfile->objfile_obstack,
SYMBOL_LINKAGE_NAME (sym),
(char *) NULL);
add_symbol_to_list (typedef_sym, &file_symbols);
}
break;
case 'V':
/* Static symbol of local scope. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
SYMBOL_VALUE_ADDRESS (sym) = valu;
if (gdbarch_static_transform_name_p (gdbarch)
&& gdbarch_static_transform_name (gdbarch,
SYMBOL_LINKAGE_NAME (sym))
!= SYMBOL_LINKAGE_NAME (sym))
{
struct bound_minimal_symbol msym;
msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
NULL, objfile);
if (msym.minsym != NULL)
{
const char *new_name = gdbarch_static_transform_name
(gdbarch, SYMBOL_LINKAGE_NAME (sym));
SYMBOL_SET_LINKAGE_NAME (sym, new_name);
SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
}
}
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
case 'v':
/* Reference parameter */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
SYMBOL_IS_ARGUMENT (sym) = 1;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
case 'a':
/* Reference parameter which is in a register. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
SYMBOL_IS_ARGUMENT (sym) = 1;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
case 'X':
/* This is used by Sun FORTRAN for "function result value".
Sun claims ("dbx and dbxtool interfaces", 2nd ed)
that Pascal uses it too, but when I tried it Pascal used
"x:3" (local symbol) instead. */
SYMBOL_TYPE (sym) = read_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
SYMBOL_VALUE (sym) = valu;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &local_symbols);
break;
default:
SYMBOL_TYPE (sym) = error_type (&p, objfile);
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_VALUE (sym) = 0;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
add_symbol_to_list (sym, &file_symbols);
break;
}
/* Some systems pass variables of certain types by reference instead
of by value, i.e. they will pass the address of a structure (in a
register or on the stack) instead of the structure itself. */
if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
&& SYMBOL_IS_ARGUMENT (sym))
{
/* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
variables passed in a register). */
if (SYMBOL_CLASS (sym) == LOC_REGISTER)
SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
/* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
and subsequent arguments on SPARC, for example). */
else if (SYMBOL_CLASS (sym) == LOC_ARG)
SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
}
return sym;
}
/* Skip rest of this symbol and return an error type.
General notes on error recovery: error_type always skips to the
end of the symbol (modulo cretinous dbx symbol name continuation).
Thus code like this:
if (*(*pp)++ != ';')
return error_type (pp, objfile);
is wrong because if *pp starts out pointing at '\0' (typically as the
result of an earlier error), it will be incremented to point to the
start of the next symbol, which might produce strange results, at least
if you run off the end of the string table. Instead use
if (**pp != ';')
return error_type (pp, objfile);
++*pp;
or
if (**pp != ';')
foo = error_type (pp, objfile);
else
++*pp;
And in case it isn't obvious, the point of all this hair is so the compiler
can define new types and new syntaxes, and old versions of the
debugger will be able to read the new symbol tables. */
static struct type *
error_type (const char **pp, struct objfile *objfile)
{
complaint (_("couldn't parse type; debugger out of date?"));
while (1)
{
/* Skip to end of symbol. */
while (**pp != '\0')
{
(*pp)++;
}
/* Check for and handle cretinous dbx symbol name continuation! */
if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
{
*pp = next_symbol_text (objfile);
}
else
{
break;
}
}
return objfile_type (objfile)->builtin_error;
}
/* Read type information or a type definition; return the type. Even
though this routine accepts either type information or a type
definition, the distinction is relevant--some parts of stabsread.c
assume that type information starts with a digit, '-', or '(' in
deciding whether to call read_type. */
static struct type *
read_type (const char **pp, struct objfile *objfile)
{
struct type *type = 0;
struct type *type1;
int typenums[2];
char type_descriptor;
/* Size in bits of type if specified by a type attribute, or -1 if
there is no size attribute. */
int type_size = -1;
/* Used to distinguish string and bitstring from char-array and set. */
int is_string = 0;
/* Used to distinguish vector from array. */
int is_vector = 0;
/* Read type number if present. The type number may be omitted.
for instance in a two-dimensional array declared with type
"ar1;1;10;ar1;1;10;4". */
if ((**pp >= '0' && **pp <= '9')
|| **pp == '('
|| **pp == '-')
{
if (read_type_number (pp, typenums) != 0)
return error_type (pp, objfile);
if (**pp != '=')
{
/* Type is not being defined here. Either it already
exists, or this is a forward reference to it.
dbx_alloc_type handles both cases. */
type = dbx_alloc_type (typenums, objfile);
/* If this is a forward reference, arrange to complain if it
doesn't get patched up by the time we're done
reading. */
if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
add_undefined_type (type, typenums);
return type;
}
/* Type is being defined here. */
/* Skip the '='.
Also skip the type descriptor - we get it below with (*pp)[-1]. */
(*pp) += 2;
}
else
{
/* 'typenums=' not present, type is anonymous. Read and return
the definition, but don't put it in the type vector. */
typenums[0] = typenums[1] = -1;
(*pp)++;
}
again:
type_descriptor = (*pp)[-1];
switch (type_descriptor)
{
case 'x':
{
enum type_code code;
/* Used to index through file_symbols. */
struct pending *ppt;
int i;
/* Name including "struct", etc. */
char *type_name;
{
const char *from, *p, *q1, *q2;
/* Set the type code according to the following letter. */
switch ((*pp)[0])
{
case 's':
code = TYPE_CODE_STRUCT;
break;
case 'u':
code = TYPE_CODE_UNION;
break;
case 'e':
code = TYPE_CODE_ENUM;
break;
default:
{
/* Complain and keep going, so compilers can invent new
cross-reference types. */
complaint (_("Unrecognized cross-reference type `%c'"),
(*pp)[0]);
code = TYPE_CODE_STRUCT;
break;
}
}
q1 = strchr (*pp, '<');
p = strchr (*pp, ':');
if (p == NULL)
return error_type (pp, objfile);
if (q1 && p > q1 && p[1] == ':')
{
int nesting_level = 0;
for (q2 = q1; *q2; q2++)
{
if (*q2 == '<')
nesting_level++;
else if (*q2 == '>')
nesting_level--;
else if (*q2 == ':' && nesting_level == 0)
break;
}
p = q2;
if (*p != ':')
return error_type (pp, objfile);
}
type_name = NULL;
if (current_subfile->language == language_cplus)
{
char *name = (char *) alloca (p - *pp + 1);
memcpy (name, *pp, p - *pp);
name[p - *pp] = '\0';
std::string new_name = cp_canonicalize_string (name);
if (!new_name.empty ())
{
type_name
= (char *) obstack_copy0 (&objfile->objfile_obstack,
new_name.c_str (),
new_name.length ());
}
}
if (type_name == NULL)
{
char *to = type_name = (char *)
obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
/* Copy the name. */
from = *pp + 1;
while (from < p)
*to++ = *from++;
*to = '\0';
}
/* Set the pointer ahead of the name which we just read, and
the colon. */
*pp = p + 1;
}
/* If this type has already been declared, then reuse the same
type, rather than allocating a new one. This saves some
memory. */
for (ppt = file_symbols; ppt; ppt = ppt->next)
for (i = 0; i < ppt->nsyms; i++)
{
struct symbol *sym = ppt->symbol[i];
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
&& SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
&& (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
&& strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
{
obstack_free (&objfile->objfile_obstack, type_name);
type = SYMBOL_TYPE (sym);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
return type;
}
}
/* Didn't find the type to which this refers, so we must
be dealing with a forward reference. Allocate a type
structure for it, and keep track of it so we can
fill in the rest of the fields when we get the full
type. */
type = dbx_alloc_type (typenums, objfile);
TYPE_CODE (type) = code;
TYPE_NAME (type) = type_name;
INIT_CPLUS_SPECIFIC (type);
TYPE_STUB (type) = 1;
add_undefined_type (type, typenums);
return type;
}
case '-': /* RS/6000 built-in type */
case '0':
case '1':
case '2':
case '3':
case '4':
case '5':
case '6':
case '7':
case '8':
case '9':
case '(':
(*pp)--;
/* We deal with something like t(1,2)=(3,4)=... which
the Lucid compiler and recent gcc versions (post 2.7.3) use. */
/* Allocate and enter the typedef type first.
This handles recursive types. */
type = dbx_alloc_type (typenums, objfile);
TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
{
struct type *xtype = read_type (pp, objfile);
if (type == xtype)
{
/* It's being defined as itself. That means it is "void". */
TYPE_CODE (type) = TYPE_CODE_VOID;
TYPE_LENGTH (type) = 1;
}
else if (type_size >= 0 || is_string)
{
/* This is the absolute wrong way to construct types. Every
other debug format has found a way around this problem and
the related problems with unnecessarily stubbed types;
someone motivated should attempt to clean up the issue
here as well. Once a type pointed to has been created it
should not be modified.
Well, it's not *absolutely* wrong. Constructing recursive
types (trees, linked lists) necessarily entails modifying
types after creating them. Constructing any loop structure
entails side effects. The Dwarf 2 reader does handle this
more gracefully (it never constructs more than once
instance of a type object, so it doesn't have to copy type
objects wholesale), but it still mutates type objects after
other folks have references to them.
Keep in mind that this circularity/mutation issue shows up
at the source language level, too: C's "incomplete types",
for example. So the proper cleanup, I think, would be to
limit GDB's type smashing to match exactly those required
by the source language. So GDB could have a
"complete_this_type" function, but never create unnecessary
copies of a type otherwise. */
replace_type (type, xtype);
TYPE_NAME (type) = NULL;
}
else
{
TYPE_TARGET_STUB (type) = 1;
TYPE_TARGET_TYPE (type) = xtype;
}
}
break;
/* In the following types, we must be sure to overwrite any existing
type that the typenums refer to, rather than allocating a new one
and making the typenums point to the new one. This is because there
may already be pointers to the existing type (if it had been
forward-referenced), and we must change it to a pointer, function,
reference, or whatever, *in-place*. */
case '*': /* Pointer to another type */
type1 = read_type (pp, objfile);
type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
break;
case '&': /* Reference to another type */
type1 = read_type (pp, objfile);
type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
TYPE_CODE_REF);
break;
case 'f': /* Function returning another type */
type1 = read_type (pp, objfile);
type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
break;
case 'g': /* Prototyped function. (Sun) */
{
/* Unresolved questions:
- According to Sun's ``STABS Interface Manual'', for 'f'
and 'F' symbol descriptors, a `0' in the argument type list
indicates a varargs function. But it doesn't say how 'g'
type descriptors represent that info. Someone with access
to Sun's toolchain should try it out.
- According to the comment in define_symbol (search for
`process_prototype_types:'), Sun emits integer arguments as
types which ref themselves --- like `void' types. Do we
have to deal with that here, too? Again, someone with
access to Sun's toolchain should try it out and let us
know. */
const char *type_start = (*pp) - 1;
struct type *return_type = read_type (pp, objfile);
struct type *func_type
= make_function_type (return_type,
dbx_lookup_type (typenums, objfile));
struct type_list {
struct type *type;
struct type_list *next;
} *arg_types = 0;
int num_args = 0;
while (**pp && **pp != '#')
{
struct type *arg_type = read_type (pp, objfile);
struct type_list *newobj = XALLOCA (struct type_list);
newobj->type = arg_type;
newobj->next = arg_types;
arg_types = newobj;
num_args++;
}
if (**pp == '#')
++*pp;
else
{
complaint (_("Prototyped function type didn't "
"end arguments with `#':\n%s"),
type_start);
}
/* If there is just one argument whose type is `void', then
that's just an empty argument list. */
if (arg_types
&& ! arg_types->next
&& TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
num_args = 0;
TYPE_FIELDS (func_type)
= (struct field *) TYPE_ALLOC (func_type,
num_args * sizeof (struct field));
memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
{
int i;
struct type_list *t;
/* We stuck each argument type onto the front of the list
when we read it, so the list is reversed. Build the
fields array right-to-left. */
for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
TYPE_FIELD_TYPE (func_type, i) = t->type;
}
TYPE_NFIELDS (func_type) = num_args;
TYPE_PROTOTYPED (func_type) = 1;
type = func_type;
break;
}
case 'k': /* Const qualifier on some type (Sun) */
type = read_type (pp, objfile);
type = make_cv_type (1, TYPE_VOLATILE (type), type,
dbx_lookup_type (typenums, objfile));
break;
case 'B': /* Volatile qual on some type (Sun) */
type = read_type (pp, objfile);
type = make_cv_type (TYPE_CONST (type), 1, type,
dbx_lookup_type (typenums, objfile));
break;
case '@':
if (isdigit (**pp) || **pp == '(' || **pp == '-')
{ /* Member (class & variable) type */
/* FIXME -- we should be doing smash_to_XXX types here. */
struct type *domain = read_type (pp, objfile);
struct type *memtype;
if (**pp != ',')
/* Invalid member type data format. */
return error_type (pp, objfile);
++*pp;
memtype = read_type (pp, objfile);
type = dbx_alloc_type (typenums, objfile);
smash_to_memberptr_type (type, domain, memtype);
}
else
/* type attribute */
{
const char *attr = *pp;
/* Skip to the semicolon. */
while (**pp != ';' && **pp != '\0')
++(*pp);
if (**pp == '\0')
return error_type (pp, objfile);
else
++ * pp; /* Skip the semicolon. */
switch (*attr)
{
case 's': /* Size attribute */
type_size = atoi (attr + 1);
if (type_size <= 0)
type_size = -1;
break;
case 'S': /* String attribute */
/* FIXME: check to see if following type is array? */
is_string = 1;
break;
case 'V': /* Vector attribute */
/* FIXME: check to see if following type is array? */
is_vector = 1;
break;
default:
/* Ignore unrecognized type attributes, so future compilers
can invent new ones. */
break;
}
++*pp;
goto again;
}
break;
case '#': /* Method (class & fn) type */
if ((*pp)[0] == '#')
{
/* We'll get the parameter types from the name. */
struct type *return_type;
(*pp)++;
return_type = read_type (pp, objfile);
if (*(*pp)++ != ';')
complaint (_("invalid (minimal) member type "
"data format at symtab pos %d."),
symnum);
type = allocate_stub_method (return_type);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
}
else
{
struct type *domain = read_type (pp, objfile);
struct type *return_type;
struct field *args;
int nargs, varargs;
if (**pp != ',')
/* Invalid member type data format. */
return error_type (pp, objfile);
else
++(*pp);
return_type = read_type (pp, objfile);
args = read_args (pp, ';', objfile, &nargs, &varargs);
if (args == NULL)
return error_type (pp, objfile);
type = dbx_alloc_type (typenums, objfile);
smash_to_method_type (type, domain, return_type, args,
nargs, varargs);
}
break;
case 'r': /* Range type */
type = read_range_type (pp, typenums, type_size, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
break;
case 'b':
{
/* Sun ACC builtin int type */
type = read_sun_builtin_type (pp, typenums, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
}
break;
case 'R': /* Sun ACC builtin float type */
type = read_sun_floating_type (pp, typenums, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
break;
case 'e': /* Enumeration type */
type = dbx_alloc_type (typenums, objfile);
type = read_enum_type (pp, type, objfile);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
break;
case 's': /* Struct type */
case 'u': /* Union type */
{
enum type_code type_code = TYPE_CODE_UNDEF;
type = dbx_alloc_type (typenums, objfile);
switch (type_descriptor)
{
case 's':
type_code = TYPE_CODE_STRUCT;
break;
case 'u':
type_code = TYPE_CODE_UNION;
break;
}
type = read_struct_type (pp, type, type_code, objfile);
break;
}
case 'a': /* Array type */
if (**pp != 'r')
return error_type (pp, objfile);
++*pp;
type = dbx_alloc_type (typenums, objfile);
type = read_array_type (pp, type, objfile);
if (is_string)
TYPE_CODE (type) = TYPE_CODE_STRING;
if (is_vector)
make_vector_type (type);
break;
case 'S': /* Set type */
type1 = read_type (pp, objfile);
type = create_set_type ((struct type *) NULL, type1);
if (typenums[0] != -1)
*dbx_lookup_type (typenums, objfile) = type;
break;
default:
--*pp; /* Go back to the symbol in error. */
/* Particularly important if it was \0! */
return error_type (pp, objfile);
}
if (type == 0)
{
warning (_("GDB internal error, type is NULL in stabsread.c."));
return error_type (pp, objfile);
}
/* Size specified in a type attribute overrides any other size. */
if (type_size != -1)
TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
return type;
}
/* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
Return the proper type node for a given builtin type number. */
static const struct objfile_data *rs6000_builtin_type_data;
static struct type *
rs6000_builtin_type (int typenum, struct objfile *objfile)
{
struct type **negative_types
= (struct type **) objfile_data (objfile, rs6000_builtin_type_data);
/* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
#define NUMBER_RECOGNIZED 34
struct type *rettype = NULL;
if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
{
complaint (_("Unknown builtin type %d"), typenum);
return objfile_type (objfile)->builtin_error;
}
if (!negative_types)
{
/* This includes an empty slot for type number -0. */
negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
NUMBER_RECOGNIZED + 1, struct type *);
set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
}
if (negative_types[-typenum] != NULL)
return negative_types[-typenum];
#if TARGET_CHAR_BIT != 8
#error This code wrong for TARGET_CHAR_BIT not 8
/* These definitions all assume that TARGET_CHAR_BIT is 8. I think
that if that ever becomes not true, the correct fix will be to
make the size in the struct type to be in bits, not in units of
TARGET_CHAR_BIT. */
#endif
switch (-typenum)
{
case 1:
/* The size of this and all the other types are fixed, defined
by the debugging format. If there is a type called "int" which
is other than 32 bits, then it should use a new negative type
number (or avoid negative type numbers for that case).
See stabs.texinfo. */
rettype = init_integer_type (objfile, 32, 0, "int");
break;
case 2:
rettype = init_integer_type (objfile, 8, 0, "char");
TYPE_NOSIGN (rettype) = 1;
break;
case 3:
rettype = init_integer_type (objfile, 16, 0, "short");
break;
case 4:
rettype = init_integer_type (objfile, 32, 0, "long");
break;
case 5:
rettype = init_integer_type (objfile, 8, 1, "unsigned char");
break;
case 6:
rettype = init_integer_type (objfile, 8, 0, "signed char");
break;
case 7:
rettype = init_integer_type (objfile, 16, 1, "unsigned short");
break;
case 8:
rettype = init_integer_type (objfile, 32, 1, "unsigned int");
break;
case 9:
rettype = init_integer_type (objfile, 32, 1, "unsigned");
break;
case 10:
rettype = init_integer_type (objfile, 32, 1, "unsigned long");
break;
case 11:
rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
break;
case 12:
/* IEEE single precision (32 bit). */
rettype = init_float_type (objfile, 32, "float",
floatformats_ieee_single);
break;
case 13:
/* IEEE double precision (64 bit). */
rettype = init_float_type (objfile, 64, "double",
floatformats_ieee_double);
break;
case 14:
/* This is an IEEE double on the RS/6000, and different machines with
different sizes for "long double" should use different negative
type numbers. See stabs.texinfo. */
rettype = init_float_type (objfile, 64, "long double",
floatformats_ieee_double);
break;
case 15:
rettype = init_integer_type (objfile, 32, 0, "integer");
break;
case 16:
rettype = init_boolean_type (objfile, 32, 1, "boolean");
break;
case 17:
rettype = init_float_type (objfile, 32, "short real",
floatformats_ieee_single);
break;
case 18:
rettype = init_float_type (objfile, 64, "real",
floatformats_ieee_double);
break;
case 19:
rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
break;
case 20:
rettype = init_character_type (objfile, 8, 1, "character");
break;
case 21:
rettype = init_boolean_type (objfile, 8, 1, "logical*1");
break;
case 22:
rettype = init_boolean_type (objfile, 16, 1, "logical*2");
break;
case 23:
rettype = init_boolean_type (objfile, 32, 1, "logical*4");
break;
case 24:
rettype = init_boolean_type (objfile, 32, 1, "logical");
break;
case 25:
/* Complex type consisting of two IEEE single precision values. */
rettype = init_complex_type (objfile, "complex",
rs6000_builtin_type (12, objfile));
break;
case 26:
/* Complex type consisting of two IEEE double precision values. */
rettype = init_complex_type (objfile, "double complex",
rs6000_builtin_type (13, objfile));
break;
case 27:
rettype = init_integer_type (objfile, 8, 0, "integer*1");
break;
case 28:
rettype = init_integer_type (objfile, 16, 0, "integer*2");
break;
case 29:
rettype = init_integer_type (objfile, 32, 0, "integer*4");
break;
case 30:
rettype = init_character_type (objfile, 16, 0, "wchar");
break;
case 31:
rettype = init_integer_type (objfile, 64, 0, "long long");
break;
case 32:
rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
break;
case 33:
rettype = init_integer_type (objfile, 64, 1, "logical*8");
break;
case 34:
rettype = init_integer_type (objfile, 64, 0, "integer*8");
break;
}
negative_types[-typenum] = rettype;
return rettype;
}
/* This page contains subroutines of read_type. */
/* Wrapper around method_name_from_physname to flag a complaint
if there is an error. */
static char *
stabs_method_name_from_physname (const char *physname)
{
char *method_name;
method_name = method_name_from_physname (physname);
if (method_name == NULL)
{
complaint (_("Method has bad physname %s\n"), physname);
return NULL;
}
return method_name;
}
/* Read member function stabs info for C++ classes. The form of each member
function data is:
NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
An example with two member functions is:
afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
For the case of overloaded operators, the format is op$::*.funcs, where
$ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
name (such as `+=') and `.' marks the end of the operator name.
Returns 1 for success, 0 for failure. */
static int
read_member_functions (struct field_info *fip, const char **pp,
struct type *type, struct objfile *objfile)
{
int nfn_fields = 0;
int length = 0;
int i;
struct next_fnfield
{
struct next_fnfield *next;
struct fn_field fn_field;
}
*sublist;
struct type *look_ahead_type;
struct next_fnfieldlist *new_fnlist;
struct next_fnfield *new_sublist;
char *main_fn_name;
const char *p;
/* Process each list until we find something that is not a member function
or find the end of the functions. */
while (**pp != ';')
{
/* We should be positioned at the start of the function name.
Scan forward to find the first ':' and if it is not the
first of a "::" delimiter, then this is not a member function. */
p = *pp;
while (*p != ':')
{
p++;
}
if (p[1] != ':')
{
break;
}
sublist = NULL;
look_ahead_type = NULL;
length = 0;
new_fnlist = XCNEW (struct next_fnfieldlist);
make_cleanup (xfree, new_fnlist);
if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
{
/* This is a completely wierd case. In order to stuff in the
names that might contain colons (the usual name delimiter),
Mike Tiemann defined a different name format which is
signalled if the identifier is "op$". In that case, the
format is "op$::XXXX." where XXXX is the name. This is
used for names like "+" or "=". YUUUUUUUK! FIXME! */
/* This lets the user type "break operator+".
We could just put in "+" as the name, but that wouldn't
work for "*". */
static char opname[32] = "op$";
char *o = opname + 3;
/* Skip past '::'. */
*pp = p + 2;
STABS_CONTINUE (pp, objfile);
p = *pp;
while (*p != '.')
{
*o++ = *p++;
}
main_fn_name = savestring (opname, o - opname);
/* Skip past '.' */
*pp = p + 1;
}
else
{
main_fn_name = savestring (*pp, p - *pp);
/* Skip past '::'. */
*pp = p + 2;
}
new_fnlist->fn_fieldlist.name = main_fn_name;
do
{
new_sublist = XCNEW (struct next_fnfield);
make_cleanup (xfree, new_sublist);
/* Check for and handle cretinous dbx symbol name continuation! */
if (look_ahead_type == NULL)
{
/* Normal case. */
STABS_CONTINUE (pp, objfile);
new_sublist->fn_field.type = read_type (pp, objfile);
if (**pp != ':')
{
/* Invalid symtab info for member function. */
return 0;
}
}
else
{
/* g++ version 1 kludge */
new_sublist->fn_field.type = look_ahead_type;
look_ahead_type = NULL;
}
(*pp)++;
p = *pp;
while (*p != ';')
{
p++;
}
/* These are methods, not functions. */
if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
else
gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
== TYPE_CODE_METHOD);
/* If this is just a stub, then we don't have the real name here. */
if (TYPE_STUB (new_sublist->fn_field.type))
{
if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
set_type_self_type (new_sublist->fn_field.type, type);
new_sublist->fn_field.is_stub = 1;
}
new_sublist->fn_field.physname = savestring (*pp, p - *pp);
*pp = p + 1;
/* Set this member function's visibility fields. */
switch (*(*pp)++)
{
case VISIBILITY_PRIVATE:
new_sublist->fn_field.is_private = 1;
break;
case VISIBILITY_PROTECTED:
new_sublist->fn_field.is_protected = 1;
break;
}
STABS_CONTINUE (pp, objfile);
switch (**pp)
{
case 'A': /* Normal functions. */
new_sublist->fn_field.is_const = 0;
new_sublist->fn_field.is_volatile = 0;
(*pp)++;
break;
case 'B': /* `const' member functions. */
new_sublist->fn_field.is_const = 1;
new_sublist->fn_field.is_volatile = 0;
(*pp)++;
break;
case 'C': /* `volatile' member function. */
new_sublist->fn_field.is_const = 0;
new_sublist->fn_field.is_volatile = 1;
(*pp)++;
break;
case 'D': /* `const volatile' member function. */
new_sublist->fn_field.is_const = 1;
new_sublist->fn_field.is_volatile = 1;
(*pp)++;
break;
case '*': /* File compiled with g++ version 1 --
no info. */
case '?':
case '.':
break;
default:
complaint (_("const/volatile indicator missing, got '%c'"),
**pp);
break;
}
switch (*(*pp)++)
{
case '*':
{
int nbits;
/* virtual member function, followed by index.
The sign bit is set to distinguish pointers-to-methods
from virtual function indicies. Since the array is
in words, the quantity must be shifted left by 1
on 16 bit machine, and by 2 on 32 bit machine, forcing
the sign bit out, and usable as a valid index into
the array. Remove the sign bit here. */
new_sublist->fn_field.voffset =
(0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
if (nbits != 0)
return 0;
STABS_CONTINUE (pp, objfile);
if (**pp == ';' || **pp == '\0')
{
/* Must be g++ version 1. */
new_sublist->fn_field.fcontext = 0;
}
else
{
/* Figure out from whence this virtual function came.
It may belong to virtual function table of
one of its baseclasses. */
look_ahead_type = read_type (pp, objfile);
if (**pp == ':')
{
/* g++ version 1 overloaded methods. */
}
else
{
new_sublist->fn_field.fcontext = look_ahead_type;
if (**pp != ';')
{
return 0;
}
else
{
++*pp;
}
look_ahead_type = NULL;
}
}
break;
}
case '?':
/* static member function. */
{
int slen = strlen (main_fn_name);
new_sublist->fn_field.voffset = VOFFSET_STATIC;
/* For static member functions, we can't tell if they
are stubbed, as they are put out as functions, and not as
methods.
GCC v2 emits the fully mangled name if
dbxout.c:flag_minimal_debug is not set, so we have to
detect a fully mangled physname here and set is_stub
accordingly. Fully mangled physnames in v2 start with
the member function name, followed by two underscores.
GCC v3 currently always emits stubbed member functions,
but with fully mangled physnames, which start with _Z. */
if (!(strncmp (new_sublist->fn_field.physname,
main_fn_name, slen) == 0
&& new_sublist->fn_field.physname[slen] == '_'
&& new_sublist->fn_field.physname[slen + 1] == '_'))
{
new_sublist->fn_field.is_stub = 1;
}
break;
}
default:
/* error */
complaint (_("member function type missing, got '%c'"),
(*pp)[-1]);
/* Normal member function. */
/* Fall through. */
case '.':
/* normal member function. */
new_sublist->fn_field.voffset = 0;
new_sublist->fn_field.fcontext = 0;
break;
}
new_sublist->next = sublist;
sublist = new_sublist;
length++;
STABS_CONTINUE (pp, objfile);
}
while (**pp != ';' && **pp != '\0');
(*pp)++;
STABS_CONTINUE (pp, objfile);
/* Skip GCC 3.X member functions which are duplicates of the callable
constructor/destructor. */
if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
|| strcmp_iw (main_fn_name, "__base_dtor ") == 0
|| strcmp (main_fn_name, "__deleting_dtor") == 0)
{
xfree (main_fn_name);
}
else
{
int has_stub = 0;
int has_destructor = 0, has_other = 0;
int is_v3 = 0;
struct next_fnfield *tmp_sublist;
/* Various versions of GCC emit various mostly-useless
strings in the name field for special member functions.
For stub methods, we need to defer correcting the name
until we are ready to unstub the method, because the current
name string is used by gdb_mangle_name. The only stub methods
of concern here are GNU v2 operators; other methods have their
names correct (see caveat below).
For non-stub methods, in GNU v3, we have a complete physname.
Therefore we can safely correct the name now. This primarily
affects constructors and destructors, whose name will be
__comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
operators will also have incorrect names; for instance,
"operator int" will be named "operator i" (i.e. the type is
mangled).
For non-stub methods in GNU v2, we have no easy way to
know if we have a complete physname or not. For most
methods the result depends on the platform (if CPLUS_MARKER
can be `$' or `.', it will use minimal debug information, or
otherwise the full physname will be included).
Rather than dealing with this, we take a different approach.
For v3 mangled names, we can use the full physname; for v2,
we use cplus_demangle_opname (which is actually v2 specific),
because the only interesting names are all operators - once again
barring the caveat below. Skip this process if any method in the
group is a stub, to prevent our fouling up the workings of
gdb_mangle_name.
The caveat: GCC 2.95.x (and earlier?) put constructors and
destructors in the same method group. We need to split this
into two groups, because they should have different names.
So for each method group we check whether it contains both
routines whose physname appears to be a destructor (the physnames
for and destructors are always provided, due to quirks in v2
mangling) and routines whose physname does not appear to be a
destructor. If so then we break up the list into two halves.
Even if the constructors and destructors aren't in the same group
the destructor will still lack the leading tilde, so that also
needs to be fixed.
So, to summarize what we expect and handle here:
Given Given Real Real Action
method name physname physname method name
__opi [none] __opi__3Foo operator int opname
[now or later]
Foo _._3Foo _._3Foo ~Foo separate and
rename
operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
__comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
*/
tmp_sublist = sublist;
while (tmp_sublist != NULL)
{
if (tmp_sublist->fn_field.is_stub)
has_stub = 1;
if (tmp_sublist->fn_field.physname[0] == '_'
&& tmp_sublist->fn_field.physname[1] == 'Z')
is_v3 = 1;
if (is_destructor_name (tmp_sublist->fn_field.physname))
has_destructor++;
else
has_other++;
tmp_sublist = tmp_sublist->next;
}
if (has_destructor && has_other)
{
struct next_fnfieldlist *destr_fnlist;
struct next_fnfield *last_sublist;
/* Create a new fn_fieldlist for the destructors. */
destr_fnlist = XCNEW (struct next_fnfieldlist);
make_cleanup (xfree, destr_fnlist);
destr_fnlist->fn_fieldlist.name
= obconcat (&objfile->objfile_obstack, "~",
new_fnlist->fn_fieldlist.name, (char *) NULL);
destr_fnlist->fn_fieldlist.fn_fields =
XOBNEWVEC (&objfile->objfile_obstack,
struct fn_field, has_destructor);
memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
sizeof (struct fn_field) * has_destructor);
tmp_sublist = sublist;
last_sublist = NULL;
i = 0;
while (tmp_sublist != NULL)
{
if (!is_destructor_name (tmp_sublist->fn_field.physname))
{
tmp_sublist = tmp_sublist->next;
continue;
}
destr_fnlist->fn_fieldlist.fn_fields[i++]
= tmp_sublist->fn_field;
if (last_sublist)
last_sublist->next = tmp_sublist->next;
else
sublist = tmp_sublist->next;
last_sublist = tmp_sublist;
tmp_sublist = tmp_sublist->next;
}
destr_fnlist->fn_fieldlist.length = has_destructor;
destr_fnlist->next = fip->fnlist;
fip->fnlist = destr_fnlist;
nfn_fields++;
length -= has_destructor;
}
else if (is_v3)
{
/* v3 mangling prevents the use of abbreviated physnames,
so we can do this here. There are stubbed methods in v3
only:
- in -gstabs instead of -gstabs+
- or for static methods, which are output as a function type
instead of a method type. */
char *new_method_name =
stabs_method_name_from_physname (sublist->fn_field.physname);
if (new_method_name != NULL
&& strcmp (new_method_name,
new_fnlist->fn_fieldlist.name) != 0)
{
new_fnlist->fn_fieldlist.name = new_method_name;
xfree (main_fn_name);
}
else
xfree (new_method_name);
}
else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
{
new_fnlist->fn_fieldlist.name =
obconcat (&objfile->objfile_obstack,
"~", main_fn_name, (char *)NULL);
xfree (main_fn_name);
}
else if (!has_stub)
{
char dem_opname[256];
int ret;
ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
dem_opname, DMGL_ANSI);
if (!ret)
ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
dem_opname, 0);
if (ret)
new_fnlist->fn_fieldlist.name
= ((const char *)
obstack_copy0 (&objfile->objfile_obstack, dem_opname,
strlen (dem_opname)));
xfree (main_fn_name);
}
new_fnlist->fn_fieldlist.fn_fields
= OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
for (i = length; (i--, sublist); sublist = sublist->next)
{
new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
}
new_fnlist->fn_fieldlist.length = length;
new_fnlist->next = fip->fnlist;
fip->fnlist = new_fnlist;
nfn_fields++;
}
}
if (nfn_fields)
{
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
memset (TYPE_FN_FIELDLISTS (type), 0,
sizeof (struct fn_fieldlist) * nfn_fields);
TYPE_NFN_FIELDS (type) = nfn_fields;
}
return 1;
}
/* Special GNU C++ name.
Returns 1 for success, 0 for failure. "failure" means that we can't
keep parsing and it's time for error_type(). */
static int
read_cpp_abbrev (struct field_info *fip, const char **pp, struct type *type,
struct objfile *objfile)
{
const char *p;
const char *name;
char cpp_abbrev;
struct type *context;
p = *pp;
if (*++p == 'v')
{
name = NULL;
cpp_abbrev = *++p;
*pp = p + 1;
/* At this point, *pp points to something like "22:23=*22...",
where the type number before the ':' is the "context" and
everything after is a regular type definition. Lookup the
type, find it's name, and construct the field name. */
context = read_type (pp, objfile);
switch (cpp_abbrev)
{
case 'f': /* $vf -- a virtual function table pointer */
name = TYPE_NAME (context);
if (name == NULL)
{
name = "";
}
fip->list->field.name = obconcat (&objfile->objfile_obstack,
vptr_name, name, (char *) NULL);
break;
case 'b': /* $vb -- a virtual bsomethingorother */
name = TYPE_NAME (context);
if (name == NULL)
{
complaint (_("C++ abbreviated type name "
"unknown at symtab pos %d"),
symnum);
name = "FOO";
}
fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
name, (char *) NULL);
break;
default:
invalid_cpp_abbrev_complaint (*pp);
fip->list->field.name = obconcat (&objfile->objfile_obstack,
"INVALID_CPLUSPLUS_ABBREV",
(char *) NULL);
break;
}
/* At this point, *pp points to the ':'. Skip it and read the
field type. */
p = ++(*pp);
if (p[-1] != ':')
{
invalid_cpp_abbrev_complaint (*pp);
return 0;
}
fip->list->field.type = read_type (pp, objfile);
if (**pp == ',')
(*pp)++; /* Skip the comma. */
else
return 0;
{
int nbits;
SET_FIELD_BITPOS (fip->list->field,
read_huge_number (pp, ';', &nbits, 0));
if (nbits != 0)
return 0;
}
/* This field is unpacked. */
FIELD_BITSIZE (fip->list->field) = 0;
fip->list->visibility = VISIBILITY_PRIVATE;
}
else
{
invalid_cpp_abbrev_complaint (*pp);
/* We have no idea what syntax an unrecognized abbrev would have, so
better return 0. If we returned 1, we would need to at least advance
*pp to avoid an infinite loop. */
return 0;
}
return 1;
}
static void
read_one_struct_field (struct field_info *fip, const char **pp, const char *p,
struct type *type, struct objfile *objfile)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
fip->list->field.name
= (const char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
*pp = p + 1;
/* This means we have a visibility for a field coming. */
if (**pp == '/')
{
(*pp)++;
fip->list->visibility = *(*pp)++;
}
else
{
/* normal dbx-style format, no explicit visibility */
fip->list->visibility = VISIBILITY_PUBLIC;
}
fip->list->field.type = read_type (pp, objfile);
if (**pp == ':')
{
p = ++(*pp);
#if 0
/* Possible future hook for nested types. */
if (**pp == '!')
{
fip->list->field.bitpos = (long) -2; /* nested type */
p = ++(*pp);
}
else
...;
#endif
while (*p != ';')
{
p++;
}
/* Static class member. */
SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
*pp = p + 1;
return;
}
else if (**pp != ',')
{
/* Bad structure-type format. */
stabs_general_complaint ("bad structure-type format");
return;
}
(*pp)++; /* Skip the comma. */
{
int nbits;
SET_FIELD_BITPOS (fip->list->field,
read_huge_number (pp, ',', &nbits, 0));
if (nbits != 0)
{
stabs_general_complaint ("bad structure-type format");
return;
}
FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
{
stabs_general_complaint ("bad structure-type format");
return;
}
}
if (FIELD_BITPOS (fip->list->field) == 0
&& FIELD_BITSIZE (fip->list->field) == 0)
{
/* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
it is a field which has been optimized out. The correct stab for
this case is to use VISIBILITY_IGNORE, but that is a recent
invention. (2) It is a 0-size array. For example
union { int num; char str[0]; } foo. Printing _("" for
str in "p foo" is OK, since foo.str (and thus foo.str[3])
will continue to work, and a 0-size array as a whole doesn't
have any contents to print.
I suspect this probably could also happen with gcc -gstabs (not
-gstabs+) for static fields, and perhaps other C++ extensions.
Hopefully few people use -gstabs with gdb, since it is intended
for dbx compatibility. */
/* Ignore this field. */
fip->list->visibility = VISIBILITY_IGNORE;
}
else
{
/* Detect an unpacked field and mark it as such.
dbx gives a bit size for all fields.
Note that forward refs cannot be packed,
and treat enums as if they had the width of ints. */
struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
if (TYPE_CODE (field_type) != TYPE_CODE_INT
&& TYPE_CODE (field_type) != TYPE_CODE_RANGE
&& TYPE_CODE (field_type) != TYPE_CODE_BOOL
&& TYPE_CODE (field_type) != TYPE_CODE_ENUM)
{
FIELD_BITSIZE (fip->list->field) = 0;
}
if ((FIELD_BITSIZE (fip->list->field)
== TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
|| (TYPE_CODE (field_type) == TYPE_CODE_ENUM
&& FIELD_BITSIZE (fip->list->field)
== gdbarch_int_bit (gdbarch))
)
&&
FIELD_BITPOS (fip->list->field) % 8 == 0)
{
FIELD_BITSIZE (fip->list->field) = 0;
}
}
}
/* Read struct or class data fields. They have the form:
NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
At the end, we see a semicolon instead of a field.
In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
a static field.
The optional VISIBILITY is one of:
'/0' (VISIBILITY_PRIVATE)
'/1' (VISIBILITY_PROTECTED)
'/2' (VISIBILITY_PUBLIC)
'/9' (VISIBILITY_IGNORE)
or nothing, for C style fields with public visibility.
Returns 1 for success, 0 for failure. */
static int
read_struct_fields (struct field_info *fip, const char **pp, struct type *type,
struct objfile *objfile)
{
const char *p;
struct nextfield *newobj;
/* We better set p right now, in case there are no fields at all... */
p = *pp;
/* Read each data member type until we find the terminating ';' at the end of
the data member list, or break for some other reason such as finding the
start of the member function list. */
/* Stab string for structure/union does not end with two ';' in
SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
while (**pp != ';' && **pp != '\0')
{
STABS_CONTINUE (pp, objfile);
/* Get space to record the next field's data. */
newobj = XCNEW (struct nextfield);
make_cleanup (xfree, newobj);
newobj->next = fip->list;
fip->list = newobj;
/* Get the field name. */
p = *pp;
/* If is starts with CPLUS_MARKER it is a special abbreviation,
unless the CPLUS_MARKER is followed by an underscore, in
which case it is just the name of an anonymous type, which we
should handle like any other type name. */
if (is_cplus_marker (p[0]) && p[1] != '_')
{
if (!read_cpp_abbrev (fip, pp, type, objfile))
return 0;
continue;
}
/* Look for the ':' that separates the field name from the field
values. Data members are delimited by a single ':', while member
functions are delimited by a pair of ':'s. When we hit the member
functions (if any), terminate scan loop and return. */
while (*p != ':' && *p != '\0')
{
p++;
}
if (*p == '\0')
return 0;
/* Check to see if we have hit the member functions yet. */
if (p[1] == ':')
{
break;
}
read_one_struct_field (fip, pp, p, type, objfile);
}
if (p[0] == ':' && p[1] == ':')
{
/* (the deleted) chill the list of fields: the last entry (at
the head) is a partially constructed entry which we now
scrub. */
fip->list = fip->list->next;
}
return 1;
}
/* *INDENT-OFF* */
/* The stabs for C++ derived classes contain baseclass information which
is marked by a '!' character after the total size. This function is
called when we encounter the baseclass marker, and slurps up all the
baseclass information.
Immediately following the '!' marker is the number of base classes that
the class is derived from, followed by information for each base class.
For each base class, there are two visibility specifiers, a bit offset
to the base class information within the derived class, a reference to
the type for the base class, and a terminating semicolon.
A typical example, with two base classes, would be "!2,020,19;0264,21;".
^^ ^ ^ ^ ^ ^ ^
Baseclass information marker __________________|| | | | | | |
Number of baseclasses __________________________| | | | | | |
Visibility specifiers (2) ________________________| | | | | |
Offset in bits from start of class _________________| | | | |
Type number for base class ___________________________| | | |
Visibility specifiers (2) _______________________________| | |
Offset in bits from start of class ________________________| |
Type number of base class ____________________________________|
Return 1 for success, 0 for (error-type-inducing) failure. */
/* *INDENT-ON* */
static int
read_baseclasses (struct field_info *fip, const char **pp, struct type *type,
struct objfile *objfile)
{
int i;
struct nextfield *newobj;
if (**pp != '!')
{
return 1;
}
else
{
/* Skip the '!' baseclass information marker. */
(*pp)++;
}
ALLOCATE_CPLUS_STRUCT_TYPE (type);
{
int nbits;
TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
if (nbits != 0)
return 0;
}
#if 0
/* Some stupid compilers have trouble with the following, so break
it up into simpler expressions. */
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
#else
{
int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
char *pointer;
pointer = (char *) TYPE_ALLOC (type, num_bytes);
TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
}
#endif /* 0 */
B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
{
newobj = XCNEW (struct nextfield);
make_cleanup (xfree, newobj);
newobj->next = fip->list;
fip->list = newobj;
FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
field! */
STABS_CONTINUE (pp, objfile);
switch (**pp)
{
case '0':
/* Nothing to do. */
break;
case '1':
SET_TYPE_FIELD_VIRTUAL (type, i);
break;
default:
/* Unknown character. Complain and treat it as non-virtual. */
{
complaint (_("Unknown virtual character `%c' for baseclass"),
**pp);
}
}
++(*pp);
newobj->visibility = *(*pp)++;
switch (newobj->visibility)
{
case VISIBILITY_PRIVATE:
case VISIBILITY_PROTECTED:
case VISIBILITY_PUBLIC:
break;
default:
/* Bad visibility format. Complain and treat it as
public. */
{
complaint (_("Unknown visibility `%c' for baseclass"),
newobj->visibility);
newobj->visibility = VISIBILITY_PUBLIC;
}
}
{
int nbits;
/* The remaining value is the bit offset of the portion of the object
corresponding to this baseclass. Always zero in the absence of
multiple inheritance. */
SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
if (nbits != 0)
return 0;
}
/* The last piece of baseclass information is the type of the
base class. Read it, and remember it's type name as this
field's name. */
newobj->field.type = read_type (pp, objfile);
newobj->field.name = TYPE_NAME (newobj->field.type);
/* Skip trailing ';' and bump count of number of fields seen. */
if (**pp == ';')
(*pp)++;
else
return 0;
}
return 1;
}
/* The tail end of stabs for C++ classes that contain a virtual function
pointer contains a tilde, a %, and a type number.
The type number refers to the base class (possibly this class itself) which
contains the vtable pointer for the current class.
This function is called when we have parsed all the method declarations,
so we can look for the vptr base class info. */
static int
read_tilde_fields (struct field_info *fip, const char **pp, struct type *type,
struct objfile *objfile)
{
const char *p;
STABS_CONTINUE (pp, objfile);
/* If we are positioned at a ';', then skip it. */
if (**pp == ';')
{
(*pp)++;
}
if (**pp == '~')
{
(*pp)++;
if (**pp == '=' || **pp == '+' || **pp == '-')
{
/* Obsolete flags that used to indicate the presence
of constructors and/or destructors. */
(*pp)++;
}
/* Read either a '%' or the final ';'. */
if (*(*pp)++ == '%')
{
/* The next number is the type number of the base class
(possibly our own class) which supplies the vtable for
this class. Parse it out, and search that class to find
its vtable pointer, and install those into TYPE_VPTR_BASETYPE
and TYPE_VPTR_FIELDNO. */
struct type *t;
int i;
t = read_type (pp, objfile);
p = (*pp)++;
while (*p != '\0' && *p != ';')
{
p++;
}
if (*p == '\0')
{
/* Premature end of symbol. */
return 0;
}
set_type_vptr_basetype (type, t);
if (type == t) /* Our own class provides vtbl ptr. */
{
for (i = TYPE_NFIELDS (t) - 1;
i >= TYPE_N_BASECLASSES (t);
--i)
{
const char *name = TYPE_FIELD_NAME (t, i);
if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
&& is_cplus_marker (name[sizeof (vptr_name) - 2]))
{
set_type_vptr_fieldno (type, i);
goto gotit;
}
}
/* Virtual function table field not found. */
complaint (_("virtual function table pointer "
"not found when defining class `%s'"),
TYPE_NAME (type));
return 0;
}
else
{
set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
}
gotit:
*pp = p + 1;
}
}
return 1;
}
static int
attach_fn_fields_to_type (struct field_info *fip, struct type *type)
{
int n;
for (n = TYPE_NFN_FIELDS (type);
fip->fnlist != NULL;
fip->fnlist = fip->fnlist->next)
{
--n; /* Circumvent Sun3 compiler bug. */
TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
}
return 1;
}
/* Create the vector of fields, and record how big it is.
We need this info to record proper virtual function table information
for this class's virtual functions. */
static int
attach_fields_to_type (struct field_info *fip, struct type *type,
struct objfile *objfile)
{
int nfields = 0;
int non_public_fields = 0;
struct nextfield *scan;
/* Count up the number of fields that we have, as well as taking note of
whether or not there are any non-public fields, which requires us to
allocate and build the private_field_bits and protected_field_bits
bitfields. */
for (scan = fip->list; scan != NULL; scan = scan->next)
{
nfields++;
if (scan->visibility != VISIBILITY_PUBLIC)
{
non_public_fields++;
}
}
/* Now we know how many fields there are, and whether or not there are any
non-public fields. Record the field count, allocate space for the
array of fields, and create blank visibility bitfields if necessary. */
TYPE_NFIELDS (type) = nfields;
TYPE_FIELDS (type) = (struct field *)
TYPE_ALLOC (type, sizeof (struct field) * nfields);
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
if (non_public_fields)
{
ALLOCATE_CPLUS_STRUCT_TYPE (type);
TYPE_FIELD_PRIVATE_BITS (type) =
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
TYPE_FIELD_PROTECTED_BITS (type) =
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
TYPE_FIELD_IGNORE_BITS (type) =
(B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
}
/* Copy the saved-up fields into the field vector. Start from the
head of the list, adding to the tail of the field array, so that
they end up in the same order in the array in which they were
added to the list. */
while (nfields-- > 0)
{
TYPE_FIELD (type, nfields) = fip->list->field;
switch (fip->list->visibility)
{
case VISIBILITY_PRIVATE:
SET_TYPE_FIELD_PRIVATE (type, nfields);
break;
case VISIBILITY_PROTECTED:
SET_TYPE_FIELD_PROTECTED (type, nfields);
break;
case VISIBILITY_IGNORE:
SET_TYPE_FIELD_IGNORE (type, nfields);
break;
case VISIBILITY_PUBLIC:
break;
default:
/* Unknown visibility. Complain and treat it as public. */
{
complaint (_("Unknown visibility `%c' for field"),
fip->list->visibility);
}
break;
}
fip->list = fip->list->next;
}
return 1;
}
/* Complain that the compiler has emitted more than one definition for the
structure type TYPE. */
static void
complain_about_struct_wipeout (struct type *type)
{
const char *name = "";
const char *kind = "";
if (TYPE_NAME (type))
{
name = TYPE_NAME (type);
switch (TYPE_CODE (type))
{
case TYPE_CODE_STRUCT: kind = "struct "; break;
case TYPE_CODE_UNION: kind = "union "; break;
case TYPE_CODE_ENUM: kind = "enum "; break;
default: kind = "";
}
}
else
{
name = "";
kind = "";
}
complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
}
/* Set the length for all variants of a same main_type, which are
connected in the closed chain.
This is something that needs to be done when a type is defined *after*
some cross references to this type have already been read. Consider
for instance the following scenario where we have the following two
stabs entries:
.stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
.stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
A stubbed version of type dummy is created while processing the first
stabs entry. The length of that type is initially set to zero, since
it is unknown at this point. Also, a "constant" variation of type
"dummy" is created as well (this is the "(0,22)=k(0,23)" section of
the stabs line).
The second stabs entry allows us to replace the stubbed definition
with the real definition. However, we still need to adjust the length
of the "constant" variation of that type, as its length was left
untouched during the main type replacement... */
static void
set_length_in_type_chain (struct type *type)
{
struct type *ntype = TYPE_CHAIN (type);
while (ntype != type)
{
if (TYPE_LENGTH(ntype) == 0)
TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
else
complain_about_struct_wipeout (ntype);
ntype = TYPE_CHAIN (ntype);
}
}
/* Read the description of a structure (or union type) and return an object
describing the type.
PP points to a character pointer that points to the next unconsumed token
in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
*PP will point to "4a:1,0,32;;".
TYPE points to an incomplete type that needs to be filled in.
OBJFILE points to the current objfile from which the stabs information is
being read. (Note that it is redundant in that TYPE also contains a pointer
to this same objfile, so it might be a good idea to eliminate it. FIXME).
*/
static struct type *
read_struct_type (const char **pp, struct type *type, enum type_code type_code,
struct objfile *objfile)
{
struct cleanup *back_to;
struct field_info fi;
fi.list = NULL;
fi.fnlist = NULL;
/* When describing struct/union/class types in stabs, G++ always drops
all qualifications from the name. So if you've got:
struct A { ... struct B { ... }; ... };
then G++ will emit stabs for `struct A::B' that call it simply
`struct B'. Obviously, if you've got a real top-level definition for
`struct B', or other nested definitions, this is going to cause
problems.
Obviously, GDB can't fix this by itself, but it can at least avoid
scribbling on existing structure type objects when new definitions
appear. */
if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
|| TYPE_STUB (type)))
{
complain_about_struct_wipeout (type);
/* It's probably best to return the type unchanged. */
return type;
}
back_to = make_cleanup (null_cleanup, 0);
INIT_CPLUS_SPECIFIC (type);
TYPE_CODE (type) = type_code;
TYPE_STUB (type) = 0;
/* First comes the total size in bytes. */
{
int nbits;
TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
if (nbits != 0)
{
do_cleanups (back_to);
return error_type (pp, objfile);
}
set_length_in_type_chain (type);
}
/* Now read the baseclasses, if any, read the regular C struct or C++
class member fields, attach the fields to the type, read the C++
member functions, attach them to the type, and then read any tilde
field (baseclass specifier for the class holding the main vtable). */
if (!read_baseclasses (&fi, pp, type, objfile)
|| !read_struct_fields (&fi, pp, type, objfile)
|| !attach_fields_to_type (&fi, type, objfile)
|| !read_member_functions (&fi, pp, type, objfile)
|| !attach_fn_fields_to_type (&fi, type)
|| !read_tilde_fields (&fi, pp, type, objfile))
{
type = error_type (pp, objfile);
}
do_cleanups (back_to);
return (type);
}
/* Read a definition of an array type,
and create and return a suitable type object.
Also creates a range type which represents the bounds of that
array. */
static struct type *
read_array_type (const char **pp, struct type *type,
struct objfile *objfile)
{
struct type *index_type, *element_type, *range_type;
int lower, upper;
int adjustable = 0;
int nbits;
/* Format of an array type:
"ar;lower;upper;".
OS9000: "arlower,upper;".
Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
for these, produce a type like float[][]. */
{
index_type = read_type (pp, objfile);
if (**pp != ';')
/* Improper format of array type decl. */
return error_type (pp, objfile);
++*pp;
}
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
{
(*pp)++;
adjustable = 1;
}
lower = read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
{
(*pp)++;
adjustable = 1;
}
upper = read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
element_type = read_type (pp, objfile);
if (adjustable)
{
lower = 0;
upper = -1;
}
range_type =
create_static_range_type ((struct type *) NULL, index_type, lower, upper);
type = create_array_type (type, element_type, range_type);
return type;
}
/* Read a definition of an enumeration type,
and create and return a suitable type object.
Also defines the symbols that represent the values of the type. */
static struct type *
read_enum_type (const char **pp, struct type *type,
struct objfile *objfile)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
const char *p;
char *name;
long n;
struct symbol *sym;
int nsyms = 0;
struct pending **symlist;
struct pending *osyms, *syms;
int o_nsyms;
int nbits;
int unsigned_enum = 1;
#if 0
/* FIXME! The stabs produced by Sun CC merrily define things that ought
to be file-scope, between N_FN entries, using N_LSYM. What's a mother
to do? For now, force all enum values to file scope. */
if (within_function)
symlist = &local_symbols;
else
#endif
symlist = &file_symbols;
osyms = *symlist;
o_nsyms = osyms ? osyms->nsyms : 0;
/* The aix4 compiler emits an extra field before the enum members;
my guess is it's a type of some sort. Just ignore it. */
if (**pp == '-')
{
/* Skip over the type. */
while (**pp != ':')
(*pp)++;
/* Skip over the colon. */
(*pp)++;
}
/* Read the value-names and their values.
The input syntax is NAME:VALUE,NAME:VALUE, and so on.
A semicolon or comma instead of a NAME means the end. */
while (**pp && **pp != ';' && **pp != ',')
{
STABS_CONTINUE (pp, objfile);
p = *pp;
while (*p != ':')
p++;
name = (char *) obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
*pp = p + 1;
n = read_huge_number (pp, ',', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
sym = allocate_symbol (objfile);
SYMBOL_SET_LINKAGE_NAME (sym, name);
SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
&objfile->objfile_obstack);
SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
SYMBOL_VALUE (sym) = n;
if (n < 0)
unsigned_enum = 0;
add_symbol_to_list (sym, symlist);
nsyms++;
}
if (**pp == ';')
(*pp)++; /* Skip the semicolon. */
/* Now fill in the fields of the type-structure. */
TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
set_length_in_type_chain (type);
TYPE_CODE (type) = TYPE_CODE_ENUM;
TYPE_STUB (type) = 0;
if (unsigned_enum)
TYPE_UNSIGNED (type) = 1;
TYPE_NFIELDS (type) = nsyms;
TYPE_FIELDS (type) = (struct field *)
TYPE_ALLOC (type, sizeof (struct field) * nsyms);
memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
/* Find the symbols for the values and put them into the type.
The symbols can be found in the symlist that we put them on
to cause them to be defined. osyms contains the old value
of that symlist; everything up to there was defined by us. */
/* Note that we preserve the order of the enum constants, so
that in something like "enum {FOO, LAST_THING=FOO}" we print
FOO, not LAST_THING. */
for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
{
int last = syms == osyms ? o_nsyms : 0;
int j = syms->nsyms;
for (; --j >= last; --n)
{
struct symbol *xsym = syms->symbol[j];
SYMBOL_TYPE (xsym) = type;
TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
TYPE_FIELD_BITSIZE (type, n) = 0;
}
if (syms == osyms)
break;
}
return type;
}
/* Sun's ACC uses a somewhat saner method for specifying the builtin
typedefs in every file (for int, long, etc):
type = b ; ;
signed = u or s.
optional format type = c or b for char or boolean.
offset = offset from high order bit to start bit of type.
width is # bytes in object of this type, nbits is # bits in type.
The width/offset stuff appears to be for small objects stored in
larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
FIXME. */
static struct type *
read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
{
int type_bits;
int nbits;
int unsigned_type;
int boolean_type = 0;
switch (**pp)
{
case 's':
unsigned_type = 0;
break;
case 'u':
unsigned_type = 1;
break;
default:
return error_type (pp, objfile);
}
(*pp)++;
/* For some odd reason, all forms of char put a c here. This is strange
because no other type has this honor. We can safely ignore this because
we actually determine 'char'acterness by the number of bits specified in
the descriptor.
Boolean forms, e.g Fortran logical*X, put a b here. */
if (**pp == 'c')
(*pp)++;
else if (**pp == 'b')
{
boolean_type = 1;
(*pp)++;
}
/* The first number appears to be the number of bytes occupied
by this type, except that unsigned short is 4 instead of 2.
Since this information is redundant with the third number,
we will ignore it. */
read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
/* The second number is always 0, so ignore it too. */
read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
/* The third number is the number of bits for this type. */
type_bits = read_huge_number (pp, 0, &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
/* The type *should* end with a semicolon. If it are embedded
in a larger type the semicolon may be the only way to know where
the type ends. If this type is at the end of the stabstring we
can deal with the omitted semicolon (but we don't have to like
it). Don't bother to complain(), Sun's compiler omits the semicolon
for "void". */
if (**pp == ';')
++(*pp);
if (type_bits == 0)
{
struct type *type = init_type (objfile, TYPE_CODE_VOID,
TARGET_CHAR_BIT, NULL);
if (unsigned_type)
TYPE_UNSIGNED (type) = 1;
return type;
}
if (boolean_type)
return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
else
return init_integer_type (objfile, type_bits, unsigned_type, NULL);
}
static struct type *
read_sun_floating_type (const char **pp, int typenums[2],
struct objfile *objfile)
{
int nbits;
int details;
int nbytes;
struct type *rettype;
/* The first number has more details about the type, for example
FN_COMPLEX. */
details = read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
/* The second number is the number of bytes occupied by this type. */
nbytes = read_huge_number (pp, ';', &nbits, 0);
if (nbits != 0)
return error_type (pp, objfile);
nbits = nbytes * TARGET_CHAR_BIT;
if (details == NF_COMPLEX || details == NF_COMPLEX16
|| details == NF_COMPLEX32)
{
rettype = dbx_init_float_type (objfile, nbits / 2);
return init_complex_type (objfile, NULL, rettype);
}
return dbx_init_float_type (objfile, nbits);
}
/* Read a number from the string pointed to by *PP.
The value of *PP is advanced over the number.
If END is nonzero, the character that ends the
number must match END, or an error happens;
and that character is skipped if it does match.
If END is zero, *PP is left pointing to that character.
If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
the number is represented in an octal representation, assume that
it is represented in a 2's complement representation with a size of
TWOS_COMPLEMENT_BITS.
If the number fits in a long, set *BITS to 0 and return the value.
If not, set *BITS to be the number of bits in the number and return 0.
If encounter garbage, set *BITS to -1 and return 0. */
static long
read_huge_number (const char **pp, int end, int *bits,
int twos_complement_bits)
{
const char *p = *pp;
int sign = 1;
int sign_bit = 0;
long n = 0;
int radix = 10;
char overflow = 0;
int nbits = 0;
int c;
long upper_limit;
int twos_complement_representation = 0;
if (*p == '-')
{
sign = -1;
p++;
}
/* Leading zero means octal. GCC uses this to output values larger
than an int (because that would be hard in decimal). */
if (*p == '0')
{
radix = 8;
p++;
}
/* Skip extra zeros. */
while (*p == '0')
p++;
if (sign > 0 && radix == 8 && twos_complement_bits > 0)
{
/* Octal, possibly signed. Check if we have enough chars for a
negative number. */
size_t len;
const char *p1 = p;
while ((c = *p1) >= '0' && c < '8')
p1++;
len = p1 - p;
if (len > twos_complement_bits / 3
|| (twos_complement_bits % 3 == 0
&& len == twos_complement_bits / 3))
{
/* Ok, we have enough characters for a signed value, check
for signness by testing if the sign bit is set. */
sign_bit = (twos_complement_bits % 3 + 2) % 3;
c = *p - '0';
if (c & (1 << sign_bit))
{
/* Definitely signed. */
twos_complement_representation = 1;
sign = -1;
}
}
}
upper_limit = LONG_MAX / radix;
while ((c = *p++) >= '0' && c < ('0' + radix))
{
if (n <= upper_limit)
{
if (twos_complement_representation)
{
/* Octal, signed, twos complement representation. In
this case, n is the corresponding absolute value. */
if (n == 0)
{
long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
n = -sn;
}
else
{
n *= radix;
n -= c - '0';
}
}
else
{
/* unsigned representation */
n *= radix;
n += c - '0'; /* FIXME this overflows anyway. */
}
}
else
overflow = 1;
/* This depends on large values being output in octal, which is
what GCC does. */
if (radix == 8)
{
if (nbits == 0)
{
if (c == '0')
/* Ignore leading zeroes. */
;
else if (c == '1')
nbits = 1;
else if (c == '2' || c == '3')
nbits = 2;
else
nbits = 3;
}
else
nbits += 3;
}
}
if (end)
{
if (c && c != end)
{
if (bits != NULL)
*bits = -1;
return 0;
}
}
else
--p;
if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
{
/* We were supposed to parse a number with maximum
TWOS_COMPLEMENT_BITS bits, but something went wrong. */
if (bits != NULL)
*bits = -1;
return 0;
}
*pp = p;
if (overflow)
{
if (nbits == 0)
{
/* Large decimal constants are an error (because it is hard to
count how many bits are in them). */
if (bits != NULL)
*bits = -1;
return 0;
}
/* -0x7f is the same as 0x80. So deal with it by adding one to
the number of bits. Two's complement represention octals
can't have a '-' in front. */
if (sign == -1 && !twos_complement_representation)
++nbits;
if (bits)
*bits = nbits;
}
else
{
if (bits)
*bits = 0;
return n * sign;
}
/* It's *BITS which has the interesting information. */
return 0;
}
static struct type *
read_range_type (const char **pp, int typenums[2], int type_size,
struct objfile *objfile)
{
struct gdbarch *gdbarch = get_objfile_arch (objfile);
const char *orig_pp = *pp;
int rangenums[2];
long n2, n3;
int n2bits, n3bits;
int self_subrange;
struct type *result_type;
struct type *index_type = NULL;
/* First comes a type we are a subrange of.
In C it is usually 0, 1 or the type being defined. */
if (read_type_number (pp, rangenums) != 0)
return error_type (pp, objfile);
self_subrange = (rangenums[0] == typenums[0] &&
rangenums[1] == typenums[1]);
if (**pp == '=')
{
*pp = orig_pp;
index_type = read_type (pp, objfile);
}
/* A semicolon should now follow; skip it. */
if (**pp == ';')
(*pp)++;
/* The remaining two operands are usually lower and upper bounds
of the range. But in some special cases they mean something else. */
n2 = read_huge_number (pp, ';', &n2bits, type_size);
n3 = read_huge_number (pp, ';', &n3bits, type_size);
if (n2bits == -1 || n3bits == -1)
return error_type (pp, objfile);
if (index_type)
goto handle_true_range;
/* If limits are huge, must be large integral type. */
if (n2bits != 0 || n3bits != 0)
{
char got_signed = 0;
char got_unsigned = 0;
/* Number of bits in the type. */
int nbits = 0;
/* If a type size attribute has been specified, the bounds of
the range should fit in this size. If the lower bounds needs
more bits than the upper bound, then the type is signed. */
if (n2bits <= type_size && n3bits <= type_size)
{
if (n2bits == type_size && n2bits > n3bits)
got_signed = 1;
else
got_unsigned = 1;
nbits = type_size;
}
/* Range from 0 to is an unsigned large integral type. */
else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
{
got_unsigned = 1;
nbits = n3bits;
}
/* Range from to -1 is a large signed
integral type. Take care of the case where doesn't
fit in a long but -1 does. */
else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
|| (n2bits != 0 && n3bits == 0
&& (n2bits == sizeof (long) * HOST_CHAR_BIT)
&& n3 == LONG_MAX))
{
got_signed = 1;
nbits = n2bits;
}
if (got_signed || got_unsigned)
return init_integer_type (objfile, nbits, got_unsigned, NULL);
else
return error_type (pp, objfile);
}
/* A type defined as a subrange of itself, with bounds both 0, is void. */
if (self_subrange && n2 == 0 && n3 == 0)
return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
/* If n3 is zero and n2 is positive, we want a floating type, and n2
is the width in bytes.
Fortran programs appear to use this for complex types also. To
distinguish between floats and complex, g77 (and others?) seem
to use self-subranges for the complexes, and subranges of int for
the floats.
Also note that for complexes, g77 sets n2 to the size of one of
the member floats, not the whole complex beast. My guess is that
this was to work well with pre-COMPLEX versions of gdb. */
if (n3 == 0 && n2 > 0)
{
struct type *float_type
= dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
if (self_subrange)
return init_complex_type (objfile, NULL, float_type);
else
return float_type;
}
/* If the upper bound is -1, it must really be an unsigned integral. */
else if (n2 == 0 && n3 == -1)
{
int bits = type_size;
if (bits <= 0)
{
/* We don't know its size. It is unsigned int or unsigned
long. GCC 2.3.3 uses this for long long too, but that is
just a GDB 3.5 compatibility hack. */
bits = gdbarch_int_bit (gdbarch);
}
return init_integer_type (objfile, bits, 1, NULL);
}
/* Special case: char is defined (Who knows why) as a subrange of
itself with range 0-127. */
else if (self_subrange && n2 == 0 && n3 == 127)
{
struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
0, NULL);
TYPE_NOSIGN (type) = 1;
return type;
}
/* We used to do this only for subrange of self or subrange of int. */
else if (n2 == 0)
{
/* -1 is used for the upper bound of (4 byte) "unsigned int" and
"unsigned long", and we already checked for that,
so don't need to test for it here. */
if (n3 < 0)
/* n3 actually gives the size. */
return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
/* Is n3 == 2**(8n)-1 for some integer n? Then it's an
unsigned n-byte integer. But do require n to be a power of
two; we don't want 3- and 5-byte integers flying around. */
{
int bytes;
unsigned long bits;
bits = n3;
for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
bits >>= 8;
if (bits == 0
&& ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
}
}
/* I think this is for Convex "long long". Since I don't know whether
Convex sets self_subrange, I also accept that particular size regardless
of self_subrange. */
else if (n3 == 0 && n2 < 0
&& (self_subrange
|| n2 == -gdbarch_long_long_bit
(gdbarch) / TARGET_CHAR_BIT))
return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
else if (n2 == -n3 - 1)
{
if (n3 == 0x7f)
return init_integer_type (objfile, 8, 0, NULL);
if (n3 == 0x7fff)
return init_integer_type (objfile, 16, 0, NULL);
if (n3 == 0x7fffffff)
return init_integer_type (objfile, 32, 0, NULL);
}
/* We have a real range type on our hands. Allocate space and
return a real pointer. */
handle_true_range:
if (self_subrange)
index_type = objfile_type (objfile)->builtin_int;
else
index_type = *dbx_lookup_type (rangenums, objfile);
if (index_type == NULL)
{
/* Does this actually ever happen? Is that why we are worrying
about dealing with it rather than just calling error_type? */
complaint (_("base type %d of range type is not defined"), rangenums[1]);
index_type = objfile_type (objfile)->builtin_int;
}
result_type
= create_static_range_type ((struct type *) NULL, index_type, n2, n3);
return (result_type);
}
/* Read in an argument list. This is a list of types, separated by commas
and terminated with END. Return the list of types read in, or NULL
if there is an error. */
static struct field *
read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
int *varargsp)
{
/* FIXME! Remove this arbitrary limit! */
struct type *types[1024]; /* Allow for fns of 1023 parameters. */
int n = 0, i;
struct field *rval;
while (**pp != end)
{
if (**pp != ',')
/* Invalid argument list: no ','. */
return NULL;
(*pp)++;
STABS_CONTINUE (pp, objfile);
types[n++] = read_type (pp, objfile);
}
(*pp)++; /* get past `end' (the ':' character). */
if (n == 0)
{
/* We should read at least the THIS parameter here. Some broken stabs
output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
have been present ";-16,(0,43)" reference instead. This way the
excessive ";" marker prematurely stops the parameters parsing. */
complaint (_("Invalid (empty) method arguments"));
*varargsp = 0;
}
else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
*varargsp = 1;
else
{
n--;
*varargsp = 0;
}
rval = XCNEWVEC (struct field, n);
for (i = 0; i < n; i++)
rval[i].type = types[i];
*nargsp = n;
return rval;
}
/* Common block handling. */
/* List of symbols declared since the last BCOMM. This list is a tail
of local_symbols. When ECOMM is seen, the symbols on the list
are noted so their proper addresses can be filled in later,
using the common block base address gotten from the assembler
stabs. */
static struct pending *common_block;
static int common_block_i;
/* Name of the current common block. We get it from the BCOMM instead of the
ECOMM to match IBM documentation (even though IBM puts the name both places
like everyone else). */
static char *common_block_name;
/* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
to remain after this function returns. */
void
common_block_start (const char *name, struct objfile *objfile)
{
if (common_block_name != NULL)
{
complaint (_("Invalid symbol data: common block within common block"));
}
common_block = local_symbols;
common_block_i = local_symbols ? local_symbols->nsyms : 0;
common_block_name = (char *) obstack_copy0 (&objfile->objfile_obstack, name,
strlen (name));
}
/* Process a N_ECOMM symbol. */
void
common_block_end (struct objfile *objfile)
{
/* Symbols declared since the BCOMM are to have the common block
start address added in when we know it. common_block and
common_block_i point to the first symbol after the BCOMM in
the local_symbols list; copy the list and hang it off the
symbol for the common block name for later fixup. */
int i;
struct symbol *sym;
struct pending *newobj = 0;
struct pending *next;
int j;
if (common_block_name == NULL)
{
complaint (_("ECOMM symbol unmatched by BCOMM"));
return;
}
sym = allocate_symbol (objfile);
/* Note: common_block_name already saved on objfile_obstack. */
SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
/* Now we copy all the symbols which have been defined since the BCOMM. */
/* Copy all the struct pendings before common_block. */
for (next = local_symbols;
next != NULL && next != common_block;
next = next->next)
{
for (j = 0; j < next->nsyms; j++)
add_symbol_to_list (next->symbol[j], &newobj);
}
/* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
NULL, it means copy all the local symbols (which we already did
above). */
if (common_block != NULL)
for (j = common_block_i; j < common_block->nsyms; j++)
add_symbol_to_list (common_block->symbol[j], &newobj);
SYMBOL_TYPE (sym) = (struct type *) newobj;
/* Should we be putting local_symbols back to what it was?
Does it matter? */
i = hashname (SYMBOL_LINKAGE_NAME (sym));
SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
global_sym_chain[i] = sym;
common_block_name = NULL;
}
/* Add a common block's start address to the offset of each symbol
declared to be in it (by being between a BCOMM/ECOMM pair that uses
the common block name). */
static void
fix_common_block (struct symbol *sym, CORE_ADDR valu)
{
struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
for (; next; next = next->next)
{
int j;
for (j = next->nsyms - 1; j >= 0; j--)
SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
}
}
/* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
See add_undefined_type for more details. */
static void
add_undefined_type_noname (struct type *type, int typenums[2])
{
struct nat nat;
nat.typenums[0] = typenums [0];
nat.typenums[1] = typenums [1];
nat.type = type;
if (noname_undefs_length == noname_undefs_allocated)
{
noname_undefs_allocated *= 2;
noname_undefs = (struct nat *)
xrealloc ((char *) noname_undefs,
noname_undefs_allocated * sizeof (struct nat));
}
noname_undefs[noname_undefs_length++] = nat;
}
/* Add TYPE to the UNDEF_TYPES vector.
See add_undefined_type for more details. */
static void
add_undefined_type_1 (struct type *type)
{
if (undef_types_length == undef_types_allocated)
{
undef_types_allocated *= 2;
undef_types = (struct type **)
xrealloc ((char *) undef_types,
undef_types_allocated * sizeof (struct type *));
}
undef_types[undef_types_length++] = type;
}
/* What about types defined as forward references inside of a small lexical
scope? */
/* Add a type to the list of undefined types to be checked through
once this file has been read in.
In practice, we actually maintain two such lists: The first list
(UNDEF_TYPES) is used for types whose name has been provided, and
concerns forward references (eg 'xs' or 'xu' forward references);
the second list (NONAME_UNDEFS) is used for types whose name is
unknown at creation time, because they were referenced through
their type number before the actual type was declared.
This function actually adds the given type to the proper list. */
static void
add_undefined_type (struct type *type, int typenums[2])
{
if (TYPE_NAME (type) == NULL)
add_undefined_type_noname (type, typenums);
else
add_undefined_type_1 (type);
}
/* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
static void
cleanup_undefined_types_noname (struct objfile *objfile)
{
int i;
for (i = 0; i < noname_undefs_length; i++)
{
struct nat nat = noname_undefs[i];
struct type **type;
type = dbx_lookup_type (nat.typenums, objfile);
if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
{
/* The instance flags of the undefined type are still unset,
and needs to be copied over from the reference type.
Since replace_type expects them to be identical, we need
to set these flags manually before hand. */
TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
replace_type (nat.type, *type);
}
}
noname_undefs_length = 0;
}
/* Go through each undefined type, see if it's still undefined, and fix it
up if possible. We have two kinds of undefined types:
TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
Fix: update array length using the element bounds
and the target type's length.
TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
yet defined at the time a pointer to it was made.
Fix: Do a full lookup on the struct/union tag. */
static void
cleanup_undefined_types_1 (void)
{
struct type **type;
/* Iterate over every undefined type, and look for a symbol whose type
matches our undefined type. The symbol matches if:
1. It is a typedef in the STRUCT domain;
2. It has the same name, and same type code;
3. The instance flags are identical.
It is important to check the instance flags, because we have seen
examples where the debug info contained definitions such as:
"foo_t:t30=B31=xefoo_t:"
In this case, we have created an undefined type named "foo_t" whose
instance flags is null (when processing "xefoo_t"), and then created
another type with the same name, but with different instance flags
('B' means volatile). I think that the definition above is wrong,
since the same type cannot be volatile and non-volatile at the same
time, but we need to be able to cope with it when it happens. The
approach taken here is to treat these two types as different. */
for (type = undef_types; type < undef_types + undef_types_length; type++)
{
switch (TYPE_CODE (*type))
{
case TYPE_CODE_STRUCT:
case TYPE_CODE_UNION:
case TYPE_CODE_ENUM:
{
/* Check if it has been defined since. Need to do this here
as well as in check_typedef to deal with the (legitimate in
C though not C++) case of several types with the same name
in different source files. */
if (TYPE_STUB (*type))
{
struct pending *ppt;
int i;
/* Name of the type, without "struct" or "union". */
const char *type_name = TYPE_NAME (*type);
if (type_name == NULL)
{
complaint (_("need a type name"));
break;
}
for (ppt = file_symbols; ppt; ppt = ppt->next)
{
for (i = 0; i < ppt->nsyms; i++)
{
struct symbol *sym = ppt->symbol[i];
if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
&& SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
&& (TYPE_CODE (SYMBOL_TYPE (sym)) ==
TYPE_CODE (*type))
&& (TYPE_INSTANCE_FLAGS (*type) ==
TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
&& strcmp (SYMBOL_LINKAGE_NAME (sym),
type_name) == 0)
replace_type (*type, SYMBOL_TYPE (sym));
}
}
}
}
break;
default:
{
complaint (_("forward-referenced types left unresolved, "
"type code %d."),
TYPE_CODE (*type));
}
break;
}
}
undef_types_length = 0;
}
/* Try to fix all the undefined types we ecountered while processing
this unit. */
void
cleanup_undefined_stabs_types (struct objfile *objfile)
{
cleanup_undefined_types_1 ();
cleanup_undefined_types_noname (objfile);
}
/* Scan through all of the global symbols defined in the object file,
assigning values to the debugging symbols that need to be assigned
to. Get these symbols from the minimal symbol table. */
void
scan_file_globals (struct objfile *objfile)
{
int hash;
struct minimal_symbol *msymbol;
struct symbol *sym, *prev;
struct objfile *resolve_objfile;
/* SVR4 based linkers copy referenced global symbols from shared
libraries to the main executable.
If we are scanning the symbols for a shared library, try to resolve
them from the minimal symbols of the main executable first. */
if (symfile_objfile && objfile != symfile_objfile)
resolve_objfile = symfile_objfile;
else
resolve_objfile = objfile;
while (1)
{
/* Avoid expensive loop through all minimal symbols if there are
no unresolved symbols. */
for (hash = 0; hash < HASHSIZE; hash++)
{
if (global_sym_chain[hash])
break;
}
if (hash >= HASHSIZE)
return;
ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
{
QUIT;
/* Skip static symbols. */
switch (MSYMBOL_TYPE (msymbol))
{
case mst_file_text:
case mst_file_data:
case mst_file_bss:
continue;
default:
break;
}
prev = NULL;
/* Get the hash index and check all the symbols
under that hash index. */
hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
for (sym = global_sym_chain[hash]; sym;)
{
if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
SYMBOL_LINKAGE_NAME (sym)) == 0)
{
/* Splice this symbol out of the hash chain and
assign the value we have to it. */
if (prev)
{
SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
}
else
{
global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
}
/* Check to see whether we need to fix up a common block. */
/* Note: this code might be executed several times for
the same symbol if there are multiple references. */
if (sym)
{
if (SYMBOL_CLASS (sym) == LOC_BLOCK)
{
fix_common_block (sym,
MSYMBOL_VALUE_ADDRESS (resolve_objfile,
msymbol));
}
else
{
SYMBOL_VALUE_ADDRESS (sym)
= MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
}
SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
}
if (prev)
{
sym = SYMBOL_VALUE_CHAIN (prev);
}
else
{
sym = global_sym_chain[hash];
}
}
else
{
prev = sym;
sym = SYMBOL_VALUE_CHAIN (sym);
}
}
}
if (resolve_objfile == objfile)
break;
resolve_objfile = objfile;
}
/* Change the storage class of any remaining unresolved globals to
LOC_UNRESOLVED and remove them from the chain. */
for (hash = 0; hash < HASHSIZE; hash++)
{
sym = global_sym_chain[hash];
while (sym)
{
prev = sym;
sym = SYMBOL_VALUE_CHAIN (sym);
/* Change the symbol address from the misleading chain value
to address zero. */
SYMBOL_VALUE_ADDRESS (prev) = 0;
/* Complain about unresolved common block symbols. */
if (SYMBOL_CLASS (prev) == LOC_STATIC)
SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
else
complaint (_("%s: common block `%s' from "
"global_sym_chain unresolved"),
objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
}
}
memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
/* Initialize anything that needs initializing when starting to read
a fresh piece of a symbol file, e.g. reading in the stuff corresponding
to a psymtab. */
void
stabsread_init (void)
{
}
/* Initialize anything that needs initializing when a completely new
symbol file is specified (not just adding some symbols from another
file, e.g. a shared library). */
void
stabsread_new_init (void)
{
/* Empty the hash table of global syms looking for values. */
memset (global_sym_chain, 0, sizeof (global_sym_chain));
}
/* Initialize anything that needs initializing at the same time as
start_symtab() is called. */
void
start_stabs (void)
{
global_stabs = NULL; /* AIX COFF */
/* Leave FILENUM of 0 free for builtin types and this file's types. */
n_this_object_header_files = 1;
type_vector_length = 0;
type_vector = (struct type **) 0;
/* FIXME: If common_block_name is not already NULL, we should complain(). */
common_block_name = NULL;
}
/* Call after end_symtab(). */
void
end_stabs (void)
{
if (type_vector)
{
xfree (type_vector);
}
type_vector = 0;
type_vector_length = 0;
previous_stab_code = 0;
}
void
finish_global_stabs (struct objfile *objfile)
{
if (global_stabs)
{
patch_block_stabs (global_symbols, global_stabs, objfile);
xfree (global_stabs);
global_stabs = NULL;
}
}
/* Find the end of the name, delimited by a ':', but don't match
ObjC symbols which look like -[Foo bar::]:bla. */
static const char *
find_name_end (const char *name)
{
const char *s = name;
if (s[0] == '-' || *s == '+')
{
/* Must be an ObjC method symbol. */
if (s[1] != '[')
{
error (_("invalid symbol name \"%s\""), name);
}
s = strchr (s, ']');
if (s == NULL)
{
error (_("invalid symbol name \"%s\""), name);
}
return strchr (s, ':');
}
else
{
return strchr (s, ':');
}
}
/* Initializer for this module. */
void
_initialize_stabsread (void)
{
rs6000_builtin_type_data = register_objfile_data ();
undef_types_allocated = 20;
undef_types_length = 0;
undef_types = XNEWVEC (struct type *, undef_types_allocated);
noname_undefs_allocated = 20;
noname_undefs_length = 0;
noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
stab_register_index = register_symbol_register_impl (LOC_REGISTER,
&stab_register_funcs);
stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
&stab_register_funcs);
}