/* GNU/Linux native-dependent code for debugging multiple forks. Copyright (C) 2005-2024 Free Software Foundation, Inc. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #include "arch-utils.h" #include "event-top.h" #include "inferior.h" #include "infrun.h" #include "regcache.h" #include "cli/cli-cmds.h" #include "infcall.h" #include "objfiles.h" #include "linux-fork.h" #include "linux-nat.h" #include "gdbthread.h" #include "source.h" #include "progspace-and-thread.h" #include "cli/cli-style.h" #include "nat/gdb_ptrace.h" #include "gdbsupport/gdb_wait.h" #include "gdbsupport/eintr.h" #include "target/waitstatus.h" #include #include #include /* Fork list data structure: */ struct fork_info { explicit fork_info (pid_t pid, int fork_num) : ptid (pid, pid), num (fork_num) { } ~fork_info () { /* Notes on step-resume breakpoints: since this is a concern for threads, let's convince ourselves that it's not a concern for forks. There are two ways for a fork_info to be created. First, by the checkpoint command, in which case we're at a gdb prompt and there can't be any step-resume breakpoint. Second, by a fork in the user program, in which case we *may* have stepped into the fork call, but regardless of whether we follow the parent or the child, we will return to the same place and the step-resume breakpoint, if any, will take care of itself as usual. And unlike threads, we do not save a private copy of the step-resume breakpoint -- so we're OK. */ if (savedregs) delete savedregs; xfree (filepos); } ptid_t ptid = null_ptid; ptid_t parent_ptid = null_ptid; /* Convenient handle (GDB fork id). */ int num; /* Convenient for info fork, saves having to actually switch contexts. */ readonly_detached_regcache *savedregs = nullptr; CORE_ADDR pc = 0; /* Set of open file descriptors' offsets. */ off_t *filepos = nullptr; int maxfd = 0; }; /* Per-inferior checkpoint data. */ struct checkpoint_inferior_data { /* List of forks (checkpoints) in particular inferior. Once a checkpoint has been created, fork_list will contain at least two items, the first in the list will be the original (or, if not original, then the oldest) fork. */ std::list fork_list; /* Most recently assigned fork number; when 0, no checkpoints have been created yet. */ int highest_fork_num = 0; }; /* Per-inferior data key. */ static const registry::key checkpoint_inferior_data_key; /* Fetch per-inferior checkpoint data. It always returns a valid pointer to a checkpoint_inferior_info struct. */ static struct checkpoint_inferior_data * get_checkpoint_inferior_data (struct inferior *inf) { struct checkpoint_inferior_data *data; data = checkpoint_inferior_data_key.get (inf); if (data == nullptr) data = checkpoint_inferior_data_key.emplace (inf); return data; } /* Return a reference to the per-inferior fork list. */ static std::list & fork_list (inferior *inf) { return get_checkpoint_inferior_data (inf)->fork_list; } /* Increment the highest fork number for inferior INF, returning the new value. */ static int increment_highest_fork_num (inferior *inf) { return ++get_checkpoint_inferior_data (inf)->highest_fork_num; } /* Reset the highest fork number for inferior INF. */ static void reset_highest_fork_num (inferior *inf) { get_checkpoint_inferior_data (inf)->highest_fork_num = 0; } /* Fork list methods: */ /* Predicate which returns true if checkpoint(s) exist in the inferior INF, false otherwise. */ bool forks_exist_p (inferior *inf) { /* Avoid allocating checkpoint_inferior_data storage by checking to see if such storage exists prior to calling fork_list. If we just call fork_list alone, then that call will create this storage, even for inferiors which don't need it. */ return (checkpoint_inferior_data_key.get (inf) != nullptr && !fork_list (inf).empty ()); } /* Return the last fork in the list for inferior INF. */ static struct fork_info * find_last_fork (inferior *inf) { auto &fork_list = ::fork_list (inf); if (fork_list.empty ()) return NULL; return &fork_list.back (); } /* Return true iff there's one fork in the list for inferior INF. */ static bool one_fork_p (inferior *inf) { return fork_list (inf).size () == 1; } /* Add a new fork to the internal fork list. */ void add_fork (pid_t pid, inferior *inf) { fork_list (inf).emplace_back (pid, increment_highest_fork_num (inf)); } /* Delete a fork for PTID in inferior INF. When the last fork is deleted, HIGHEST_FORK_NUM for the given inferior is reset to 0. The fork list may also be made to be empty when only one fork remains. */ static void delete_fork (ptid_t ptid, inferior *inf) { linux_target->low_forget_process (ptid.pid ()); auto &fork_list = ::fork_list (inf); for (auto it = fork_list.begin (); it != fork_list.end (); ++it) if (it->ptid == ptid) { fork_list.erase (it); if (fork_list.empty ()) reset_highest_fork_num (inf); /* Special case: if there is now only one process in the list, and if it is (hopefully!) the current inferior_ptid, then remove it, leaving the list empty -- we're now down to the default case of debugging a single process. */ if (one_fork_p (inf) && fork_list.front ().ptid == inferior_ptid) { /* Last fork -- delete from list and handle as solo process (should be a safe recursion). */ delete_fork (inferior_ptid, inf); } return; } } /* Find a fork_info and inferior by matching PTID. */ static std::pair find_fork_ptid (ptid_t ptid) { for (inferior *inf : all_inferiors (linux_target)) { for (fork_info &fi : fork_list (inf)) if (fi.ptid == ptid) return { &fi, inf }; } return { nullptr, nullptr }; } /* Find a fork_info by matching NUM in inferior INF. */ static fork_info * find_fork_id (inferior *inf, int num) { for (fork_info &fi : fork_list (inf)) if (fi.num == num) return &fi; return nullptr; } /* Find a fork_info and inferior by matching pid. */ extern std::pair find_fork_pid (pid_t pid) { for (inferior *inf : all_inferiors (linux_target)) { for (fork_info &fi : fork_list (inf)) if (pid == fi.ptid.pid ()) return { &fi, inf }; } return { nullptr, nullptr }; } /* Parse a command argument representing a checkpoint id. This can take one of two forms: Num -or- Inf.Num where Num is a non-negative decimal integer and Inf, if present, is a positive decimal integer. Return a pair with a pointer to the fork_info struct and pointer to the inferior. This function will throw an error if there's a problem with the parsing or if either the inferior or checkpoint id does not exist. */ static std::pair parse_checkpoint_id (const char *ckptstr) { const char *number = ckptstr; const char *p1; struct inferior *inf; const char *dot = strchr (number, '.'); if (dot != nullptr) { /* Parse number to the left of the dot. */ int inf_num; p1 = number; inf_num = get_number_trailer (&p1, '.'); if (inf_num <= 0) error (_("Inferior number must be a positive integer")); inf = find_inferior_id (inf_num); if (inf == NULL) error (_("No inferior number '%d'"), inf_num); p1 = dot + 1; } else { inf = current_inferior (); p1 = number; } int fork_num = get_number_trailer (&p1, 0); if (fork_num < 0) error (_("Checkpoint number must be a non-negative integer")); if (!forks_exist_p (inf)) error (_("Inferior %d has no checkpoints"), inf->num); fork_info *fork_ptr = find_fork_id (inf, fork_num); if (fork_ptr == nullptr) error (_("Invalid checkpoint number %d for inferior %d"), fork_num, inf->num); return { fork_ptr, inf }; } /* Fork list <-> gdb interface. */ /* Utility function for fork_load/fork_save. Calls lseek in the (current) inferior process. */ static off_t call_lseek (int fd, off_t offset, int whence) { char exp[80]; snprintf (&exp[0], sizeof (exp), "(long) lseek (%d, %ld, %d)", fd, (long) offset, whence); return (off_t) parse_and_eval_long (&exp[0]); } /* Load infrun state for the fork PTID. */ static void fork_load_infrun_state (struct fork_info *fp) { int i; linux_nat_switch_fork (fp->ptid); if (fp->savedregs) get_thread_regcache (inferior_thread ())->restore (fp->savedregs); registers_changed (); reinit_frame_cache (); inferior_thread ()->set_stop_pc (regcache_read_pc (get_thread_regcache (inferior_thread ()))); inferior_thread ()->set_executing (false); inferior_thread ()->set_resumed (false); nullify_last_target_wait_ptid (); /* Now restore the file positions of open file descriptors. */ if (fp->filepos) { for (i = 0; i <= fp->maxfd; i++) if (fp->filepos[i] != (off_t) -1) call_lseek (i, fp->filepos[i], SEEK_SET); /* NOTE: I can get away with using SEEK_SET and SEEK_CUR because this is native-only. If it ever has to be cross, we'll have to rethink this. */ } } /* Save infrun state for the fork FP. */ static void fork_save_infrun_state (struct fork_info *fp) { char path[PATH_MAX]; struct dirent *de; DIR *d; if (fp->savedregs) delete fp->savedregs; fp->savedregs = new readonly_detached_regcache (*get_thread_regcache (inferior_thread ())); fp->pc = regcache_read_pc (get_thread_regcache (inferior_thread ())); /* Now save the 'state' (file position) of all open file descriptors. Unfortunately fork does not take care of that for us... */ snprintf (path, PATH_MAX, "/proc/%ld/fd", (long) fp->ptid.pid ()); if ((d = opendir (path)) != NULL) { long tmp; fp->maxfd = 0; while ((de = readdir (d)) != NULL) { /* Count open file descriptors (actually find highest numbered). */ tmp = strtol (&de->d_name[0], NULL, 10); if (fp->maxfd < tmp) fp->maxfd = tmp; } /* Allocate array of file positions. */ fp->filepos = XRESIZEVEC (off_t, fp->filepos, fp->maxfd + 1); /* Initialize to -1 (invalid). */ for (tmp = 0; tmp <= fp->maxfd; tmp++) fp->filepos[tmp] = -1; /* Now find actual file positions. */ rewinddir (d); while ((de = readdir (d)) != NULL) if (isdigit (de->d_name[0])) { tmp = strtol (&de->d_name[0], NULL, 10); fp->filepos[tmp] = call_lseek (tmp, 0, SEEK_CUR); } closedir (d); } } /* Given a ptid, return a "process ptid" in which only the pid member is present. This is used in calls to target_pid_to_str() to ensure that only process ptids are printed by this file. */ static inline ptid_t proc_ptid (ptid_t ptid) { ptid_t process_ptid (ptid.pid ()); return process_ptid; } /* Kill 'em all, let God sort 'em out... */ void linux_fork_killall (inferior *inf) { /* Walk list and kill every pid. No need to treat the current inferior_ptid as special (we do not return a status for it) -- however any process may be a child or a parent, so may get a SIGCHLD from a previously killed child. Wait them all out. */ auto &fork_list = ::fork_list (inf); for (fork_info &fi : fork_list) { pid_t pid = fi.ptid.pid (); int status; pid_t ret; do { /* Use SIGKILL instead of PTRACE_KILL because the former works even if the thread is running, while the later doesn't. */ kill (pid, SIGKILL); ret = gdb::waitpid (pid, &status, 0); /* We might get a SIGCHLD instead of an exit status. This is aggravated by the first kill above - a child has just died. MVS comment cut-and-pasted from linux-nat. */ } while (ret == pid && WIFSTOPPED (status)); } /* Clear list, prepare to start fresh. */ fork_list.clear (); reset_highest_fork_num (inf); } /* The current inferior_ptid has exited, but there are other viable forks to debug. Delete the exiting one and context-switch to the first available. */ void linux_fork_mourn_inferior () { struct fork_info *last; int status; inferior *inf = current_inferior (); /* Wait just one more time to collect the inferior's exit status. Do not check whether this succeeds though, since we may be dealing with a process that we attached to. Such a process will only report its exit status to its original parent. */ gdb::waitpid (inferior_ptid.pid (), &status, 0); /* OK, presumably inferior_ptid is the one who has exited. We need to delete that one from the fork list, and switch to the next available fork. */ delete_fork (inferior_ptid, inf); /* There should still be a fork - if there's only one left, delete_fork won't remove it, because we haven't updated inferior_ptid yet. */ gdb_assert (!fork_list (inf).empty ()); last = find_last_fork (inf); fork_load_infrun_state (last); gdb_printf (_("[Switching to %s]\n"), target_pid_to_str (proc_ptid (inferior_ptid)).c_str ()); /* If there's only one fork, switch back to non-fork mode. */ if (one_fork_p (inf)) delete_fork (inferior_ptid, inf); } /* The current inferior_ptid is being detached, but there are other viable forks to debug. Detach and delete it and context-switch to the first available. */ void linux_fork_detach (int from_tty, lwp_info *lp, inferior *inf) { gdb_assert (lp != nullptr); gdb_assert (lp->ptid == inferior_ptid); /* OK, inferior_ptid is the one we are detaching from. We need to delete it from the fork list, and switch to the next available fork. But before doing the detach, do make sure that the lwp hasn't exited or been terminated first. */ if (lp->waitstatus.kind () != TARGET_WAITKIND_EXITED && lp->waitstatus.kind () != TARGET_WAITKIND_THREAD_EXITED && lp->waitstatus.kind () != TARGET_WAITKIND_SIGNALLED) { if (ptrace (PTRACE_DETACH, inferior_ptid.pid (), 0, 0)) error (_("Unable to detach %s"), target_pid_to_str (proc_ptid (inferior_ptid)).c_str ()); } delete_fork (inferior_ptid, inf); /* There should still be a fork - if there's only one left, delete_fork won't remove it, because we haven't updated inferior_ptid yet. */ auto &fork_list = ::fork_list (inf); gdb_assert (!fork_list.empty ()); fork_load_infrun_state (&fork_list.front ()); if (from_tty) gdb_printf (_("[Switching to %s]\n"), target_pid_to_str (proc_ptid (inferior_ptid)).c_str ()); /* If there's only one fork, switch back to non-fork mode. */ if (one_fork_p (inf)) delete_fork (inferior_ptid, inf); } /* Temporarily switch to the infrun state stored on the fork_info identified by a given ptid_t. When this object goes out of scope, restore the currently selected infrun state. */ class scoped_switch_fork_info { public: /* Switch to the infrun state held on the fork_info identified by PPTID. If PPTID is the current inferior then no switch is done. */ explicit scoped_switch_fork_info (ptid_t pptid) : m_oldfp (nullptr), m_oldinf (nullptr) { if (pptid != inferior_ptid) { /* Switch to pptid. */ auto [oldfp, oldinf] = find_fork_ptid (inferior_ptid); m_oldfp = oldfp; gdb_assert (m_oldfp != nullptr); auto [newfp, newinf] = find_fork_ptid (pptid); gdb_assert (newfp != nullptr); fork_save_infrun_state (m_oldfp); remove_breakpoints (); if (oldinf != newinf) { thread_info *tp = any_thread_of_inferior (newinf); switch_to_thread (tp); m_oldinf = oldinf; } fork_load_infrun_state (newfp); insert_breakpoints (); } } /* Restore the previously selected infrun state. If the constructor didn't need to switch states, then nothing is done here either. */ ~scoped_switch_fork_info () { if (m_oldinf != nullptr || m_oldfp != nullptr) { /* Switch back to inferior_ptid. */ try { remove_breakpoints (); if (m_oldinf != nullptr) { thread_info *tp = any_thread_of_inferior (m_oldinf); switch_to_thread (tp); } fork_load_infrun_state (m_oldfp); insert_breakpoints (); } catch (const gdb_exception_quit &ex) { /* We can't throw from a destructor, so re-set the quit flag for later QUIT checking. */ set_quit_flag (); } catch (const gdb_exception_forced_quit &ex) { /* Like above, but (eventually) cause GDB to terminate by setting sync_quit_force_run. */ set_force_quit_flag (); } catch (const gdb_exception &ex) { warning (_("Couldn't restore checkpoint state in %s: %s"), target_pid_to_str (proc_ptid (m_oldfp->ptid)).c_str (), ex.what ()); } } } DISABLE_COPY_AND_ASSIGN (scoped_switch_fork_info); private: /* The fork_info for the previously selected infrun state, or nullptr if we were already in the desired state, and nothing needs to be restored. */ struct fork_info *m_oldfp; /* When switching to a different fork, this is the inferior for the fork that we're switching from, and to which we'll switch back once end-of-scope is reached. It may also be nullptr if no switching is required. */ inferior *m_oldinf; }; /* Call waitpid() by making an inferior function call. */ static int inferior_call_waitpid (ptid_t pptid, int pid) { struct objfile *waitpid_objf; struct value *waitpid_fn = NULL; int ret = -1; scoped_switch_fork_info switch_fork_info (pptid); /* Get the waitpid_fn. */ if (lookup_minimal_symbol (current_program_space, "waitpid").minsym != nullptr) waitpid_fn = find_function_in_inferior ("waitpid", &waitpid_objf); if (!waitpid_fn && (lookup_minimal_symbol (current_program_space, "_waitpid").minsym != nullptr)) waitpid_fn = find_function_in_inferior ("_waitpid", &waitpid_objf); if (waitpid_fn != nullptr) { struct gdbarch *gdbarch = get_current_arch (); struct value *argv[3], *retv; /* Get the argv. */ argv[0] = value_from_longest (builtin_type (gdbarch)->builtin_int, pid); argv[1] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr, 0); argv[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); retv = call_function_by_hand (waitpid_fn, NULL, argv); if (value_as_long (retv) >= 0) ret = 0; } return ret; } /* Fork list <-> user interface. */ static void delete_checkpoint_command (const char *args, int from_tty) { ptid_t ptid, pptid; if (!args || !*args) error (_("Requires argument (checkpoint id to delete)")); auto [fi, inf] = parse_checkpoint_id (args); ptid = fi->ptid; gdb_assert (fi != nullptr); pptid = fi->parent_ptid; if (ptid.pid () == inf->pid) error (_("Cannot delete active checkpoint")); if (ptrace (PTRACE_KILL, ptid.pid (), 0, 0)) error (_("Unable to kill pid %s"), target_pid_to_str (proc_ptid (ptid)).c_str ()); if (from_tty) gdb_printf (_("Killed %s\n"), target_pid_to_str (proc_ptid (ptid)).c_str ()); delete_fork (ptid, inf); if (pptid == null_ptid) { int status; /* Wait to collect the inferior's exit status. Do not check whether this succeeds though, since we may be dealing with a process that we attached to. Such a process will only report its exit status to its original parent. */ gdb::waitpid (ptid.pid (), &status, 0); return; } /* If fi->parent_ptid is not a part of lwp but it's a part of checkpoint list, waitpid the ptid. If fi->parent_ptid is a part of lwp and it is stopped, waitpid the ptid. */ thread_info *parent = linux_target->find_thread (pptid); if ((parent == NULL && find_fork_ptid (pptid).first != nullptr) || (parent != NULL && parent->state == THREAD_STOPPED)) { if (inferior_call_waitpid (pptid, ptid.pid ())) warning (_("Unable to wait pid %s"), target_pid_to_str (proc_ptid (ptid)).c_str ()); } } static void detach_checkpoint_command (const char *args, int from_tty) { ptid_t ptid; if (!args || !*args) error (_("Requires argument (checkpoint id to detach)")); auto fi = parse_checkpoint_id (args).first; ptid = fi->ptid; if (ptid == inferior_ptid) error (_("\ Please switch to another checkpoint before detaching the current one")); if (ptrace (PTRACE_DETACH, ptid.pid (), 0, 0)) error (_("Unable to detach %s"), target_pid_to_str (proc_ptid (ptid)).c_str ()); if (from_tty) gdb_printf (_("Detached %s\n"), target_pid_to_str (proc_ptid (ptid)).c_str ()); delete_fork (ptid, current_inferior ()); } /* Helper for info_checkpoints_command. */ static void print_checkpoints (struct ui_out *uiout, inferior *req_inf, fork_info *req_fi) { struct inferior *cur_inf = current_inferior (); bool will_print_something = false; /* Figure out whether to print the inferior number in the checkpoint list. */ bool print_inf = (number_of_inferiors () > 1); /* Compute widths of some of the table components. */ size_t inf_width = 0; size_t num_width = 0; size_t targid_width = 0; for (inferior *inf : all_inferiors (linux_target)) { if (req_inf != nullptr && req_inf != inf) continue; scoped_restore_current_pspace_and_thread restore_pspace_thread; switch_to_program_space_and_thread (inf->pspace); for (const fork_info &fi : fork_list (inf)) { if (req_fi != nullptr && req_fi != &fi) continue; will_print_something = true; inf_width = std::max (inf_width, string_printf ("%d", inf->num).size ()); num_width = std::max (num_width, string_printf ("%d", fi.num).size () + (print_inf ? 1 : 0)); targid_width = std::max (targid_width, target_pid_to_str (proc_ptid (fi.ptid)).size ()); } } /* Return early if there are no checkpoints to print. */ if (!will_print_something) { gdb_printf (_("No checkpoints.\n")); return; } /* Ensure that column header width doesn't exceed that of the column data for the Id field. */ if (!print_inf && num_width < 2) num_width = 2; ui_out_emit_table table_emitter (uiout, 5, -1, "checkpoints"); /* Define the columns / headers... */ uiout->table_header (1, ui_left, "current", ""); uiout->table_header ((print_inf ? (int) inf_width : 0) + (int) num_width, ui_right, "id", "Id"); uiout->table_header (6, ui_left, "active", "Active"); uiout->table_header (targid_width, ui_left, "target-id", "Target Id"); uiout->table_header (1, ui_left, "frame", "Frame"); uiout->table_body (); for (inferior *inf : all_inferiors (linux_target)) { /* If asked to print a partciular inferior, skip all of those which don't match. */ if (req_inf != nullptr && req_inf != inf) continue; scoped_restore_current_pspace_and_thread restore_pspace_thread; switch_to_program_space_and_thread (inf->pspace); for (const fork_info &fi : fork_list (inf)) { /* If asked to print a particular checkpoint, skip all which don't match. */ if (req_fi != nullptr && req_fi != &fi) continue; thread_info *t = any_thread_of_inferior (inf); bool is_current = fi.ptid.pid () == inf->pid; ui_out_emit_tuple tuple_emitter (uiout, nullptr); if (is_current && cur_inf == inf) uiout->field_string ("current", "*"); else uiout->field_skip ("current"); if (print_inf) uiout->field_fmt ("id", "%d.%d", inf->num, fi.num); else uiout->field_fmt ("id", "%d", fi.num); /* Print out 'y' or 'n' for whether the checkpoint is current. */ uiout->field_string ("active", is_current ? "y" : "n"); /* Print target id. */ uiout->field_string ("target-id", target_pid_to_str (proc_ptid (fi.ptid)).c_str ()); if (t->state == THREAD_RUNNING && is_current) uiout->text ("(running)"); else { /* Print frame info for the checkpoint under consideration. Ideally, we'd call print_stack_frame() here in order to have consistency (with regard to how frames are printed) with other parts of GDB as well as to reduce the amount of code required here. However, we can't simply print the frame without switching checkpoint contexts. To do that, we could first call scoped_switch_fork_info() - that mostly works - except when the active fork/checkpoint is running, i.e. when t->state == THREAD_RUNNING. Switching context away from a running fork has certain problems associated with it. Certainly, the fork_info struct would need some new fields, but work would also need to be done to do something reasonable should the state of the running fork have changed when switching back to it. Note: If scoped_switch_fork_info() is someday changed to allow switching from a running fork/checkpoint, then it might also be possible to allow a restart from a running checkpoint to some other checkpoint. */ ui_out_emit_tuple frame_tuple_emitter (uiout, "frame"); uiout->text ("at "); ULONGEST pc = (is_current ? regcache_read_pc (get_thread_regcache (t)) : fi.pc); uiout->field_core_addr ("addr", get_current_arch (), pc); symtab_and_line sal = find_pc_line (pc, 0); if (sal.symtab) { uiout->text (", file "); uiout->field_string ("file", symtab_to_filename_for_display (sal.symtab), file_name_style.style ()); } if (sal.line) { uiout->text (", line "); uiout->field_signed ("line", sal.line, line_number_style.style ()); } if (!sal.symtab && !sal.line) { bound_minimal_symbol msym = lookup_minimal_symbol_by_pc (pc); if (msym.minsym) { uiout->text (", <"); uiout->field_string ("linkage-name", msym.minsym->linkage_name (), function_name_style.style ()); uiout->text (">"); } } } uiout->text ("\n"); } } } /* Print information about currently known checkpoints. */ static void info_checkpoints_command (const char *arg, int from_tty) { inferior *req_inf = nullptr; fork_info *req_fi = nullptr; if (arg && *arg) std::tie (req_fi, req_inf) = parse_checkpoint_id (arg); print_checkpoints (current_uiout, req_inf, req_fi); } /* The PID of the process we're checkpointing. */ static int checkpointing_pid = 0; bool linux_fork_checkpointing_p (int pid) { return (checkpointing_pid == pid); } /* Return true if the current inferior is multi-threaded. */ static bool inf_has_multiple_threads () { int count = 0; /* Return true as soon as we see the second thread of the current inferior. */ for (thread_info *tp ATTRIBUTE_UNUSED : current_inferior ()->threads ()) if (++count > 1) return true; return false; } static void checkpoint_command (const char *args, int from_tty) { struct objfile *fork_objf; struct gdbarch *gdbarch; struct target_waitstatus last_target_waitstatus; ptid_t last_target_ptid; struct value *fork_fn = NULL, *ret; pid_t retpid; if (!target_has_execution ()) error (_("The program is not being run.")); /* Ensure that the inferior is not multithreaded. */ update_thread_list (); if (inf_has_multiple_threads ()) error (_("checkpoint: can't checkpoint multiple threads.")); /* Make the inferior fork, record its (and gdb's) state. */ if (lookup_minimal_symbol (current_program_space, "fork").minsym != nullptr) fork_fn = find_function_in_inferior ("fork", &fork_objf); if (!fork_fn) if (lookup_minimal_symbol (current_program_space, "_fork").minsym != nullptr) fork_fn = find_function_in_inferior ("fork", &fork_objf); if (!fork_fn) error (_("checkpoint: can't find fork function in inferior.")); gdbarch = fork_objf->arch (); ret = value_from_longest (builtin_type (gdbarch)->builtin_int, 0); /* Tell linux-nat.c that we're checkpointing this inferior. */ { scoped_restore save_pid = make_scoped_restore (&checkpointing_pid, inferior_ptid.pid ()); ret = call_function_by_hand (fork_fn, NULL, {}); } if (!ret) /* Probably can't happen. */ error (_("checkpoint: call_function_by_hand returned null.")); retpid = value_as_long (ret); get_last_target_status (nullptr, &last_target_ptid, &last_target_waitstatus); auto [fp, inf] = find_fork_pid (retpid); if (!fp) error (_("Failed to find new fork")); if (from_tty) { int parent_pid; gdb_printf (_("Checkpoint %s: fork returned pid %ld.\n"), ((number_of_inferiors () > 1) ? string_printf ("%d.%d", inf->num, fp->num).c_str () : string_printf ("%d", fp->num).c_str ()), (long) retpid); if (info_verbose) { parent_pid = last_target_ptid.lwp (); if (parent_pid == 0) parent_pid = last_target_ptid.pid (); gdb_printf (_(" gdb says parent = %ld.\n"), (long) parent_pid); } } if (one_fork_p (inf)) { /* Special case -- if this is the first fork in the list (the list was hitherto empty), then add inferior_ptid as a special zeroeth fork id. */ fork_list (inf).emplace_front (inferior_ptid.pid (), 0); } fork_save_infrun_state (fp); fp->parent_ptid = last_target_ptid; } static void linux_fork_context (struct fork_info *newfp, int from_tty, inferior *newinf) { bool inferior_changed = false; /* Now we attempt to switch processes. */ gdb_assert (newfp != NULL); if (newinf != current_inferior ()) { thread_info *tp = any_thread_of_inferior (newinf); switch_to_thread (tp); inferior_changed = true; } auto oldfp = find_fork_ptid (inferior_ptid).first; gdb_assert (oldfp != NULL); if (oldfp != newfp) { fork_save_infrun_state (oldfp); remove_breakpoints (); fork_load_infrun_state (newfp); insert_breakpoints (); if (!inferior_changed) gdb_printf (_("Switching to %s\n"), target_pid_to_str (proc_ptid (inferior_ptid)).c_str ()); } notify_user_selected_context_changed (inferior_changed ? (USER_SELECTED_INFERIOR | USER_SELECTED_FRAME) : USER_SELECTED_FRAME); } /* Switch inferior process (checkpoint) context, by checkpoint id. */ static void restart_command (const char *args, int from_tty) { if (!args || !*args) error (_("Requires argument (checkpoint id to restart)")); auto [fp, inf] = parse_checkpoint_id (args); /* Don't allow switching from a thread/fork that's running. */ inferior *curinf = current_inferior (); if (curinf->pid != 0 && any_thread_of_inferior (curinf)->state == THREAD_RUNNING) error (_("Cannot execute this command while " "the selected thread is running.")); linux_fork_context (fp, from_tty, inf); } void _initialize_linux_fork (); void _initialize_linux_fork () { /* Checkpoint command: create a fork of the inferior process and set it aside for later debugging. */ add_com ("checkpoint", class_obscure, checkpoint_command, _("\ Fork a duplicate process (experimental).")); /* Restart command: restore the context of a specified checkpoint process. */ add_com ("restart", class_obscure, restart_command, _("\ Restore program context from a checkpoint.\n\ Usage: restart N\n\ Argument N is checkpoint ID, as displayed by 'info checkpoints'.")); /* Delete checkpoint command: kill the process and remove it from the fork list. */ add_cmd ("checkpoint", class_obscure, delete_checkpoint_command, _("\ Delete a checkpoint (experimental)."), &deletelist); /* Detach checkpoint command: release the process to run independently, and remove it from the fork list. */ add_cmd ("checkpoint", class_obscure, detach_checkpoint_command, _("\ Detach from a checkpoint (experimental)."), &detachlist); /* Info checkpoints command: list all forks/checkpoints currently under gdb's control. */ add_info ("checkpoints", info_checkpoints_command, _("IDs of currently known checkpoints.")); }