/* YACC parser for C++ names, for GDB. Copyright 2003, 2004 Free Software Foundation, Inc. Parts of the lexer are based on c-exp.y from GDB. This file is part of GDB. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Note that malloc's and realloc's in this file are transformed to xmalloc and xrealloc respectively by the same sed command in the makefile that remaps any other malloc/realloc inserted by the parser generator. Doing this with #defines and trying to control the interaction with include files ( and for example) just became too messy, particularly when such includes can be inserted at random times by the parser generator. */ %{ #include #include #include #include #include "safe-ctype.h" #include "libiberty.h" #include "demangle.h" static const char *lexptr, *prev_lexptr, *orig_lexptr; static struct demangle_component *d_qualify (struct demangle_component *, int, int); static struct demangle_component *d_int_type (int); static struct demangle_component *d_op_from_string (const char *opname); static struct demangle_component *d_unary (const char *opname, struct demangle_component *); static struct demangle_component *d_binary (const char *opname, struct demangle_component *, struct demangle_component *); static const char *symbol_end (const char *lexptr); struct demangle_info { int allocated, used; struct demangle_component comps[1]; }; /* Global state, ew. */ struct demangle_info *di; /* Overflow checking? */ #define d_grab() (&di->comps[di->used++]) static struct demangle_component *result; /* Ew ew, ew ew, ew ew ew. */ #define error printf #define HOST_CHAR_BIT 8 #define NORETURN #undef TARGET_INT_BIT #define TARGET_INT_BIT 32 #undef TARGET_LONG_BIT #define TARGET_LONG_BIT 32 #undef TARGET_LONG_LONG_BIT #define TARGET_LONG_LONG_BIT 64 #define QUAL_CONST 1 #define QUAL_RESTRICT 2 #define QUAL_VOLATILE 4 #define INT_CHAR (1 << 0) #define INT_SHORT (1 << 1) #define INT_LONG (1 << 2) #define INT_LLONG (1 << 3) #define INT_SIGNED (1 << 4) #define INT_UNSIGNED (1 << 5) #define BINOP_ADD 1 #define BINOP_RSH 2 #define BINOP_LSH 3 #define BINOP_SUB 4 #define BINOP_MUL 5 #define BINOP_DIV 6 #define BINOP_REM 7 #define BINOP_BITWISE_IOR 8 #define BINOP_BITWISE_AND 9 #define BINOP_BITWISE_XOR 10 #define BINOP_END 11 /* Remap normal yacc parser interface names (yyparse, yylex, yyerror, etc), as well as gratuitiously global symbol names, so we can have multiple yacc generated parsers in gdb. Note that these are only the variables produced by yacc. If other parser generators (bison, byacc, etc) produce additional global names that conflict at link time, then those parser generators need to be fixed instead of adding those names to this list. */ #define yymaxdepth cpname_maxdepth #define yyparse cpname_parse #define yylex cpname_lex #define yyerror cpname_error #define yylval cpname_lval #define yychar cpname_char #define yydebug cpname_debug #define yypact cpname_pact #define yyr1 cpname_r1 #define yyr2 cpname_r2 #define yydef cpname_def #define yychk cpname_chk #define yypgo cpname_pgo #define yyact cpname_act #define yyexca cpname_exca #define yyerrflag cpname_errflag #define yynerrs cpname_nerrs #define yyps cpname_ps #define yypv cpname_pv #define yys cpname_s #define yy_yys cpname_yys #define yystate cpname_state #define yytmp cpname_tmp #define yyv cpname_v #define yy_yyv cpname_yyv #define yyval cpname_val #define yylloc cpname_lloc #define yyreds cpname_reds /* With YYDEBUG defined */ #define yytoks cpname_toks /* With YYDEBUG defined */ #define yyname cpname_name /* With YYDEBUG defined */ #define yyrule cpname_rule /* With YYDEBUG defined */ #define yylhs cpname_yylhs #define yylen cpname_yylen #define yydefred cpname_yydefred #define yydgoto cpname_yydgoto #define yysindex cpname_yysindex #define yyrindex cpname_yyrindex #define yygindex cpname_yygindex #define yytable cpname_yytable #define yycheck cpname_yycheck #ifndef YYDEBUG #define YYDEBUG 1 /* Default to yydebug support */ #endif int yyparse (void); static int yylex (void); void yyerror (char *); /* Helper functions. These wrap the demangler tree interface, handle allocation from our global store, and return the allocated component. */ static struct demangle_component * fill_comp (enum demangle_component_type d_type, struct demangle_component *lhs, struct demangle_component *rhs) { struct demangle_component *ret = d_grab (); cplus_demangle_fill_component (ret, d_type, lhs, rhs); return ret; } static struct demangle_component * make_empty (enum demangle_component_type d_type) { struct demangle_component *ret = d_grab (); ret->type = d_type; return ret; } static struct demangle_component * make_operator (const char *name, int args) { struct demangle_component *ret = d_grab (); cplus_demangle_fill_operator (ret, name, args); return ret; } static struct demangle_component * make_dtor (enum gnu_v3_dtor_kinds kind, struct demangle_component *name) { struct demangle_component *ret = d_grab (); cplus_demangle_fill_dtor (ret, kind, name); return ret; } static struct demangle_component * make_builtin_type (const char *name) { struct demangle_component *ret = d_grab (); cplus_demangle_fill_builtin_type (ret, name); return ret; } static struct demangle_component * make_name (const char *name, int len) { struct demangle_component *ret = d_grab (); cplus_demangle_fill_name (ret, name, len); return ret; } #define d_left(dc) (dc)->u.s_binary.left #define d_right(dc) (dc)->u.s_binary.right %} /* Although the yacc "value" of an expression is not used, since the result is stored in the structure being created, other node types do have values. */ %union { struct demangle_component *comp; struct nested { struct demangle_component *comp; struct demangle_component **last; } nested; struct { struct demangle_component *comp, *last; } nested1; struct { struct demangle_component *comp, **last; struct nested fn; struct demangle_component *start; int fold_flag; } abstract; int lval; struct { int val; struct demangle_component *type; } typed_val_int; const char *opname; } %{ /* YYSTYPE gets defined by %union */ static int parse_number (const char *, int, int, YYSTYPE *); %} %type exp exp1 type start start_opt operator colon_name %type unqualified_name colon_ext_name %type template template_arg %type builtin_type %type typespec_2 array_indicator %type colon_ext_only ext_only_name %type demangler_special function conversion_op %type conversion_op_name %type abstract_declarator direct_abstract_declarator %type abstract_declarator_fn %type declarator direct_declarator function_arglist %type declarator_1 direct_declarator_1 %type template_params function_args %type ptr_operator %type nested_name %type qualifier qualifiers qualifiers_opt %type int_part int_seq %token INT %token FLOAT %token NAME %type name %token STRUCT CLASS UNION ENUM SIZEOF UNSIGNED COLONCOLON %token TEMPLATE %token ERROR %token NEW DELETE OPERATOR %token STATIC_CAST REINTERPRET_CAST DYNAMIC_CAST /* Special type cases, put in to allow the parser to distinguish different legal basetypes. */ %token SIGNED_KEYWORD LONG SHORT INT_KEYWORD CONST_KEYWORD VOLATILE_KEYWORD DOUBLE_KEYWORD BOOL %token ELLIPSIS RESTRICT VOID FLOAT_KEYWORD CHAR WCHAR_T %token ASSIGN_MODIFY /* C++ */ %token TRUEKEYWORD %token FALSEKEYWORD /* Non-C++ things we get from the demangler. */ %token DEMANGLER_SPECIAL %token CONSTRUCTION_VTABLE CONSTRUCTION_IN %token GLOBAL %{ enum { GLOBAL_CONSTRUCTORS = DEMANGLE_COMPONENT_LITERAL + 20, GLOBAL_DESTRUCTORS = DEMANGLE_COMPONENT_LITERAL + 21 }; %} /* Precedence declarations. */ /* Give NAME lower precedence than COLONCOLON, so that nested_name will associate greedily. */ %nonassoc NAME /* Give NEW and DELETE lower precedence than ']', because we can not have an array of type operator new. This causes NEW '[' to be parsed as operator new[]. */ %nonassoc NEW DELETE /* Give VOID higher precedence than NAME. Then we can use %prec NAME to prefer (VOID) to (function_args). */ %nonassoc VOID /* Give VOID lower precedence than ')' for similar reasons. */ %nonassoc ')' %left ',' %right '=' ASSIGN_MODIFY %right '?' %left OROR %left ANDAND %left '|' %left '^' %left '&' %left EQUAL NOTEQUAL %left '<' '>' LEQ GEQ %left LSH RSH %left '@' %left '+' '-' %left '*' '/' '%' %right UNARY INCREMENT DECREMENT /* We don't need a precedence for '(' in this reduced grammar, and it can mask some unpleasant bugs, so disable it for now. */ %right ARROW '.' '[' /* '(' */ %left COLONCOLON %% result : start { result = $1; } ; start : type | demangler_special | function ; start_opt : /* */ { $$ = NULL; } | COLONCOLON start { $$ = $2; } ; function /* Function with a return type. declarator_1 is used to prevent ambiguity with the next rule. */ : typespec_2 declarator_1 { $$ = $2.comp; *$2.last = $1; } /* Function without a return type. We need to use typespec_2 to prevent conflicts from qualifiers_opt - harmless. The start_opt is used to handle "function-local" variables and types. */ | typespec_2 function_arglist start_opt { $$ = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1, $2.comp); if ($3) $$ = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$, $3); } | colon_ext_only function_arglist start_opt { $$ = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1, $2.comp); if ($3) $$ = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$, $3); } | conversion_op_name start_opt { $$ = $1.comp; if ($2) $$ = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$, $2); } | conversion_op_name abstract_declarator_fn { if ($2.last) { /* First complete the abstract_declarator's type using the typespec from the conversion_op_name. */ *$2.last = *$1.last; /* Then complete the conversion_op_name with the type. */ *$1.last = $2.comp; } /* If we have an arglist, build a function type. */ if ($2.fn.comp) $$ = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1.comp, $2.fn.comp); else $$ = $1.comp; if ($2.start) $$ = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$, $2.start); } ; demangler_special : DEMANGLER_SPECIAL start { $$ = make_empty ($1); d_left ($$) = $2; d_right ($$) = NULL; } | CONSTRUCTION_VTABLE start CONSTRUCTION_IN start { $$ = fill_comp (DEMANGLE_COMPONENT_CONSTRUCTION_VTABLE, $2, $4); } | GLOBAL { $$ = make_empty ($1.val); d_left ($$) = $1.type; d_right ($$) = NULL; } ; operator : OPERATOR NEW { $$ = make_operator ("new", 1); } | OPERATOR DELETE { $$ = make_operator ("delete", 1); } | OPERATOR NEW '[' ']' { $$ = make_operator ("new[]", 1); } | OPERATOR DELETE '[' ']' { $$ = make_operator ("delete[]", 1); } | OPERATOR '+' { $$ = make_operator ("+", 2); } | OPERATOR '-' { $$ = make_operator ("-", 2); } | OPERATOR '*' { $$ = make_operator ("*", 2); } | OPERATOR '/' { $$ = make_operator ("/", 2); } | OPERATOR '%' { $$ = make_operator ("%", 2); } | OPERATOR '^' { $$ = make_operator ("^", 2); } | OPERATOR '&' { $$ = make_operator ("&", 2); } | OPERATOR '|' { $$ = make_operator ("|", 2); } | OPERATOR '~' { $$ = make_operator ("~", 1); } | OPERATOR '!' { $$ = make_operator ("!", 1); } | OPERATOR '=' { $$ = make_operator ("=", 2); } | OPERATOR '<' { $$ = make_operator ("<", 2); } | OPERATOR '>' { $$ = make_operator (">", 2); } | OPERATOR ASSIGN_MODIFY { $$ = make_operator ($2, 2); } | OPERATOR LSH { $$ = make_operator ("<<", 2); } | OPERATOR RSH { $$ = make_operator (">>", 2); } | OPERATOR EQUAL { $$ = make_operator ("==", 2); } | OPERATOR NOTEQUAL { $$ = make_operator ("!=", 2); } | OPERATOR LEQ { $$ = make_operator ("<=", 2); } | OPERATOR GEQ { $$ = make_operator (">=", 2); } | OPERATOR ANDAND { $$ = make_operator ("&&", 2); } | OPERATOR OROR { $$ = make_operator ("||", 2); } | OPERATOR INCREMENT { $$ = make_operator ("++", 1); } | OPERATOR DECREMENT { $$ = make_operator ("--", 1); } | OPERATOR ',' { $$ = make_operator (",", 2); } | OPERATOR ARROW '*' { $$ = make_operator ("->*", 2); } | OPERATOR ARROW { $$ = make_operator ("->", 2); } | OPERATOR '(' ')' { $$ = make_operator ("()", 0); } | OPERATOR '[' ']' { $$ = make_operator ("[]", 2); } ; /* Conversion operators. We don't try to handle some of the wackier demangler output for function pointers, since it's not clear that it's parseable. */ conversion_op : OPERATOR typespec_2 { $$ = fill_comp (DEMANGLE_COMPONENT_CAST, $2, NULL); } ; conversion_op_name : nested_name conversion_op { $$.comp = $1.comp; d_right ($1.last) = $2; $$.last = &d_left ($2); } | conversion_op { $$.comp = $1; $$.last = &d_left ($1); } | COLONCOLON nested_name conversion_op { $$.comp = $2.comp; d_right ($2.last) = $3; $$.last = &d_left ($3); } | COLONCOLON conversion_op { $$.comp = $2; $$.last = &d_left ($2); } ; /* DEMANGLE_COMPONENT_NAME */ /* This accepts certain invalid placements of '~'. */ unqualified_name: operator | operator '<' template_params '>' { $$ = fill_comp (DEMANGLE_COMPONENT_TEMPLATE, $1, $3.comp); } | '~' NAME { $$ = make_dtor (gnu_v3_complete_object_dtor, $2); } ; /* This rule is used in name and nested_name, and expanded inline there for efficiency. */ /* scope_id : NAME | template ; */ colon_name : name | COLONCOLON name { $$ = $2; } ; /* DEMANGLE_COMPONENT_QUAL_NAME */ /* DEMANGLE_COMPONENT_CTOR / DEMANGLE_COMPONENT_DTOR ? */ name : nested_name NAME %prec NAME { $$ = $1.comp; d_right ($1.last) = $2; } | NAME %prec NAME | nested_name template %prec NAME { $$ = $1.comp; d_right ($1.last) = $2; } | template %prec NAME ; colon_ext_name : colon_name | colon_ext_only ; colon_ext_only : ext_only_name | COLONCOLON ext_only_name { $$ = $2; } ; ext_only_name : nested_name unqualified_name { $$ = $1.comp; d_right ($1.last) = $2; } | unqualified_name ; nested_name : NAME COLONCOLON { $$.comp = make_empty (DEMANGLE_COMPONENT_QUAL_NAME); d_left ($$.comp) = $1; d_right ($$.comp) = NULL; $$.last = $$.comp; } | nested_name NAME COLONCOLON { $$.comp = $1.comp; d_right ($1.last) = make_empty (DEMANGLE_COMPONENT_QUAL_NAME); $$.last = d_right ($1.last); d_left ($$.last) = $2; d_right ($$.last) = NULL; } | template COLONCOLON { $$.comp = make_empty (DEMANGLE_COMPONENT_QUAL_NAME); d_left ($$.comp) = $1; d_right ($$.comp) = NULL; $$.last = $$.comp; } | nested_name template COLONCOLON { $$.comp = $1.comp; d_right ($1.last) = make_empty (DEMANGLE_COMPONENT_QUAL_NAME); $$.last = d_right ($1.last); d_left ($$.last) = $2; d_right ($$.last) = NULL; } ; /* DEMANGLE_COMPONENT_TEMPLATE */ /* DEMANGLE_COMPONENT_TEMPLATE_ARGLIST */ template : NAME '<' template_params '>' { $$ = fill_comp (DEMANGLE_COMPONENT_TEMPLATE, $1, $3.comp); } ; template_params : template_arg { $$.comp = fill_comp (DEMANGLE_COMPONENT_TEMPLATE_ARGLIST, $1, NULL); $$.last = &d_right ($$.comp); } | template_params ',' template_arg { $$.comp = $1.comp; *$1.last = fill_comp (DEMANGLE_COMPONENT_TEMPLATE_ARGLIST, $3, NULL); $$.last = &d_right (*$1.last); } ; /* "type" is inlined into template_arg and function_args. */ /* Also an integral constant-expression of integral type, and a pointer to member (?) */ template_arg : typespec_2 | typespec_2 abstract_declarator { $$ = $2.comp; *$2.last = $1; } | '&' start { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, make_operator ("&", 1), $2); } | '&' '(' start ')' { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, make_operator ("&", 1), $3); } | exp ; function_args : typespec_2 { $$.comp = fill_comp (DEMANGLE_COMPONENT_ARGLIST, $1, NULL); $$.last = &d_right ($$.comp); } | typespec_2 abstract_declarator { *$2.last = $1; $$.comp = fill_comp (DEMANGLE_COMPONENT_ARGLIST, $2.comp, NULL); $$.last = &d_right ($$.comp); } | function_args ',' typespec_2 { *$1.last = fill_comp (DEMANGLE_COMPONENT_ARGLIST, $3, NULL); $$.comp = $1.comp; $$.last = &d_right (*$1.last); } | function_args ',' typespec_2 abstract_declarator { *$4.last = $3; *$1.last = fill_comp (DEMANGLE_COMPONENT_ARGLIST, $4.comp, NULL); $$.comp = $1.comp; $$.last = &d_right (*$1.last); } | function_args ',' ELLIPSIS { *$1.last = fill_comp (DEMANGLE_COMPONENT_ARGLIST, make_builtin_type ("..."), NULL); $$.comp = $1.comp; $$.last = &d_right (*$1.last); } ; function_arglist: '(' function_args ')' qualifiers_opt %prec NAME { $$.comp = fill_comp (DEMANGLE_COMPONENT_FUNCTION_TYPE, NULL, $2.comp); $$.last = &d_left ($$.comp); $$.comp = d_qualify ($$.comp, $4, 1); } | '(' VOID ')' qualifiers_opt { $$.comp = fill_comp (DEMANGLE_COMPONENT_FUNCTION_TYPE, NULL, NULL); $$.last = &d_left ($$.comp); $$.comp = d_qualify ($$.comp, $4, 1); } | '(' ')' qualifiers_opt { $$.comp = fill_comp (DEMANGLE_COMPONENT_FUNCTION_TYPE, NULL, NULL); $$.last = &d_left ($$.comp); $$.comp = d_qualify ($$.comp, $3, 1); } ; /* Should do something about DEMANGLE_COMPONENT_VENDOR_TYPE_QUAL */ qualifiers_opt : /* epsilon */ { $$ = 0; } | qualifiers ; qualifier : RESTRICT { $$ = QUAL_RESTRICT; } | VOLATILE_KEYWORD { $$ = QUAL_VOLATILE; } | CONST_KEYWORD { $$ = QUAL_CONST; } ; qualifiers : qualifier | qualifier qualifiers { $$ = $1 | $2; } ; /* This accepts all sorts of invalid constructions and produces invalid output for them - an error would be better. */ int_part : INT_KEYWORD { $$ = 0; } | SIGNED_KEYWORD { $$ = INT_SIGNED; } | UNSIGNED { $$ = INT_UNSIGNED; } | CHAR { $$ = INT_CHAR; } | LONG { $$ = INT_LONG; } | SHORT { $$ = INT_SHORT; } ; int_seq : int_part | int_seq int_part { $$ = $1 | $2; if ($1 & $2 & INT_LONG) $$ = $1 | INT_LLONG; } ; builtin_type : int_seq { $$ = d_int_type ($1); } | FLOAT_KEYWORD { $$ = make_builtin_type ("float"); } | DOUBLE_KEYWORD { $$ = make_builtin_type ("double"); } | LONG DOUBLE_KEYWORD { $$ = make_builtin_type ("long double"); } | BOOL { $$ = make_builtin_type ("bool"); } | WCHAR_T { $$ = make_builtin_type ("wchar_t"); } | VOID { $$ = make_builtin_type ("void"); } ; ptr_operator : '*' qualifiers_opt { $$.comp = make_empty (DEMANGLE_COMPONENT_POINTER); $$.comp->u.s_binary.left = $$.comp->u.s_binary.right = NULL; $$.last = &d_left ($$.comp); $$.comp = d_qualify ($$.comp, $2, 0); } /* g++ seems to allow qualifiers after the reference? */ | '&' { $$.comp = make_empty (DEMANGLE_COMPONENT_REFERENCE); $$.comp->u.s_binary.left = $$.comp->u.s_binary.right = NULL; $$.last = &d_left ($$.comp); } | nested_name '*' qualifiers_opt { $$.comp = make_empty (DEMANGLE_COMPONENT_PTRMEM_TYPE); $$.comp->u.s_binary.left = $1.comp; /* Convert the innermost DEMANGLE_COMPONENT_QUAL_NAME to a DEMANGLE_COMPONENT_NAME. */ *$1.last = *d_left ($1.last); $$.comp->u.s_binary.right = NULL; $$.last = &d_right ($$.comp); $$.comp = d_qualify ($$.comp, $3, 0); } | COLONCOLON nested_name '*' qualifiers_opt { $$.comp = make_empty (DEMANGLE_COMPONENT_PTRMEM_TYPE); $$.comp->u.s_binary.left = $2.comp; /* Convert the innermost DEMANGLE_COMPONENT_QUAL_NAME to a DEMANGLE_COMPONENT_NAME. */ *$2.last = *d_left ($2.last); $$.comp->u.s_binary.right = NULL; $$.last = &d_right ($$.comp); $$.comp = d_qualify ($$.comp, $4, 0); } ; array_indicator : '[' ']' { $$ = make_empty (DEMANGLE_COMPONENT_ARRAY_TYPE); d_left ($$) = NULL; } | '[' INT ']' { $$ = make_empty (DEMANGLE_COMPONENT_ARRAY_TYPE); d_left ($$) = $2; } ; /* Details of this approach inspired by the G++ < 3.4 parser. */ /* This rule is only used in typespec_2, and expanded inline there for efficiency. */ /* typespec : builtin_type | colon_name ; */ typespec_2 : builtin_type qualifiers { $$ = d_qualify ($1, $2, 0); } | builtin_type | qualifiers builtin_type qualifiers { $$ = d_qualify ($2, $1 | $3, 0); } | qualifiers builtin_type { $$ = d_qualify ($2, $1, 0); } | name qualifiers { $$ = d_qualify ($1, $2, 0); } | name | qualifiers name qualifiers { $$ = d_qualify ($2, $1 | $3, 0); } | qualifiers name { $$ = d_qualify ($2, $1, 0); } | COLONCOLON name qualifiers { $$ = d_qualify ($2, $3, 0); } | COLONCOLON name { $$ = $2; } | qualifiers COLONCOLON name qualifiers { $$ = d_qualify ($3, $1 | $4, 0); } | qualifiers COLONCOLON name { $$ = d_qualify ($3, $1, 0); } ; abstract_declarator : ptr_operator { $$.comp = $1.comp; $$.last = $1.last; $$.fn.comp = NULL; $$.fn.last = NULL; } | ptr_operator abstract_declarator { $$ = $2; $$.fn.comp = NULL; $$.fn.last = NULL; if ($2.fn.comp) { $$.last = $2.fn.last; *$2.last = $2.fn.comp; } *$$.last = $1.comp; $$.last = $1.last; } | direct_abstract_declarator { $$.fn.comp = NULL; $$.fn.last = NULL; if ($1.fn.comp) { $$.last = $1.fn.last; *$1.last = $1.fn.comp; } } ; direct_abstract_declarator : '(' abstract_declarator ')' { $$ = $2; $$.fn.comp = NULL; $$.fn.last = NULL; $$.fold_flag = 1; if ($2.fn.comp) { $$.last = $2.fn.last; *$2.last = $2.fn.comp; } } | direct_abstract_declarator function_arglist { $$.fold_flag = 0; if ($1.fn.comp) { $$.last = $1.fn.last; *$1.last = $1.fn.comp; } if ($1.fold_flag) { *$$.last = $2.comp; $$.last = $2.last; } else $$.fn = $2; } | direct_abstract_declarator array_indicator { $$.fn.comp = NULL; $$.fn.last = NULL; $$.fold_flag = 0; if ($1.fn.comp) { $$.last = $1.fn.last; *$1.last = $1.fn.comp; } *$1.last = $2; $$.last = &d_right ($2); } | array_indicator { $$.fn.comp = NULL; $$.fn.last = NULL; $$.fold_flag = 0; $$.comp = $1; $$.last = &d_right ($1); } /* G++ has the following except for () and (type). Then (type) is handled in regcast_or_absdcl and () is handled in fcast_or_absdcl. */ /* However, this is only useful for function types, and generates reduce/reduce conflicts with direct_declarators. We're interested in pointer-to-function types, and in functions, but not in function types - so leave this out. */ /* | function_arglist */ ; abstract_declarator_fn : ptr_operator { $$.comp = $1.comp; $$.last = $1.last; $$.fn.comp = NULL; $$.fn.last = NULL; $$.start = NULL; } | ptr_operator abstract_declarator_fn { $$ = $2; if ($2.last) *$$.last = $1.comp; else $$.comp = $1.comp; $$.last = $1.last; } | direct_abstract_declarator { $$.comp = $1.comp; $$.last = $1.last; $$.fn = $1.fn; $$.start = NULL; } | direct_abstract_declarator function_arglist COLONCOLON start { $$.start = $4; if ($1.fn.comp) { $$.last = $1.fn.last; *$1.last = $1.fn.comp; } if ($1.fold_flag) { *$$.last = $2.comp; $$.last = $2.last; } else $$.fn = $2; } | function_arglist start_opt { $$.fn = $1; $$.start = $2; $$.comp = NULL; $$.last = NULL; } ; type : typespec_2 | typespec_2 abstract_declarator { $$ = $2.comp; *$2.last = $1; } ; declarator : ptr_operator declarator { $$.comp = $2.comp; $$.last = $1.last; *$2.last = $1.comp; } | direct_declarator ; direct_declarator : '(' declarator ')' { $$ = $2; } | direct_declarator function_arglist { $$.comp = $1.comp; *$1.last = $2.comp; $$.last = $2.last; } | direct_declarator array_indicator { $$.comp = $1.comp; *$1.last = $2; $$.last = &d_right ($2); } | colon_ext_name { $$.comp = make_empty (DEMANGLE_COMPONENT_TYPED_NAME); d_left ($$.comp) = $1; $$.last = &d_right ($$.comp); } ; /* These are similar to declarator and direct_declarator except that they do not permit ( colon_ext_name ), which is ambiguous with a function argument list. They also don't permit a few other forms with redundant parentheses around the colon_ext_name; any colon_ext_name in parentheses must be followed by an argument list or an array indicator, or preceded by a pointer. */ declarator_1 : ptr_operator declarator_1 { $$.comp = $2.comp; $$.last = $1.last; *$2.last = $1.comp; } | colon_ext_name { $$.comp = make_empty (DEMANGLE_COMPONENT_TYPED_NAME); d_left ($$.comp) = $1; $$.last = &d_right ($$.comp); } | direct_declarator_1 /* Function local variable or type. The typespec to our left is the type of the containing function. This should be OK, because function local types can not be templates, so the return types of their members will not be mangled. If they are hopefully they'll end up to the right of the ::. */ | colon_ext_name function_arglist COLONCOLON start { $$.comp = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1, $2.comp); $$.last = $2.last; $$.comp = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$.comp, $4); } | direct_declarator_1 function_arglist COLONCOLON start { $$.comp = $1.comp; *$1.last = $2.comp; $$.last = $2.last; $$.comp = fill_comp (DEMANGLE_COMPONENT_LOCAL_NAME, $$.comp, $4); } ; direct_declarator_1 : '(' ptr_operator declarator ')' { $$.comp = $3.comp; $$.last = $2.last; *$3.last = $2.comp; } | direct_declarator_1 function_arglist { $$.comp = $1.comp; *$1.last = $2.comp; $$.last = $2.last; } | direct_declarator_1 array_indicator { $$.comp = $1.comp; *$1.last = $2; $$.last = &d_right ($2); } | colon_ext_name function_arglist { $$.comp = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1, $2.comp); $$.last = $2.last; } | colon_ext_name array_indicator { $$.comp = fill_comp (DEMANGLE_COMPONENT_TYPED_NAME, $1, $2); $$.last = &d_right ($2); } ; exp : '(' exp1 ')' { $$ = $2; } ; /* Silly trick. Only allow '>' when parenthesized, in order to handle conflict with templates. */ exp1 : exp ; exp1 : exp '>' exp { $$ = d_binary (">", $1, $3); } ; /* References. Not allowed everywhere in template parameters, only at the top level, but treat them as expressions in case they are wrapped in parentheses. */ exp1 : '&' start { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, make_operator ("&", 1), $2); } ; /* Expressions, not including the comma operator. */ exp : '-' exp %prec UNARY { $$ = d_unary ("-", $2); } ; exp : '!' exp %prec UNARY { $$ = d_unary ("!", $2); } ; exp : '~' exp %prec UNARY { $$ = d_unary ("~", $2); } ; /* Casts. First your normal C-style cast. If exp is a LITERAL, just change its type. */ exp : '(' type ')' exp %prec UNARY { if ($4->type == DEMANGLE_COMPONENT_LITERAL || $4->type == DEMANGLE_COMPONENT_LITERAL_NEG) { $$ = $4; d_left ($4) = $2; } else $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, fill_comp (DEMANGLE_COMPONENT_CAST, $2, NULL), $4); } ; /* Mangling does not differentiate between these, so we don't need to either. */ exp : STATIC_CAST '<' type '>' '(' exp1 ')' %prec UNARY { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, fill_comp (DEMANGLE_COMPONENT_CAST, $3, NULL), $6); } ; exp : DYNAMIC_CAST '<' type '>' '(' exp1 ')' %prec UNARY { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, fill_comp (DEMANGLE_COMPONENT_CAST, $3, NULL), $6); } ; exp : REINTERPRET_CAST '<' type '>' '(' exp1 ')' %prec UNARY { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, fill_comp (DEMANGLE_COMPONENT_CAST, $3, NULL), $6); } ; /* Another form of C++-style cast. "type ( exp1 )" is not allowed (it's too ambiguous), but "name ( exp1 )" is. Because we don't need to support function types, we can handle this unambiguously (the use of typespec_2 prevents a silly, harmless conflict with qualifiers_opt). This does not appear in demangler output so it's not a great loss if we need to disable it. */ exp : typespec_2 '(' exp1 ')' %prec UNARY { $$ = fill_comp (DEMANGLE_COMPONENT_UNARY, fill_comp (DEMANGLE_COMPONENT_CAST, $1, NULL), $3); } ; /* FIXME ._0 style anonymous names; anonymous namespaces */ /* Binary operators in order of decreasing precedence. */ exp : exp '*' exp { $$ = d_binary ("*", $1, $3); } ; exp : exp '/' exp { $$ = d_binary ("/", $1, $3); } ; exp : exp '%' exp { $$ = d_binary ("%", $1, $3); } ; exp : exp '+' exp { $$ = d_binary ("+", $1, $3); } ; exp : exp '-' exp { $$ = d_binary ("-", $1, $3); } ; exp : exp LSH exp { $$ = d_binary ("<<", $1, $3); } ; exp : exp RSH exp { $$ = d_binary (">>", $1, $3); } ; exp : exp EQUAL exp { $$ = d_binary ("==", $1, $3); } ; exp : exp NOTEQUAL exp { $$ = d_binary ("!=", $1, $3); } ; exp : exp LEQ exp { $$ = d_binary ("<=", $1, $3); } ; exp : exp GEQ exp { $$ = d_binary (">=", $1, $3); } ; exp : exp '<' exp { $$ = d_binary ("<", $1, $3); } ; exp : exp '&' exp { $$ = d_binary ("&", $1, $3); } ; exp : exp '^' exp { $$ = d_binary ("^", $1, $3); } ; exp : exp '|' exp { $$ = d_binary ("|", $1, $3); } ; exp : exp ANDAND exp { $$ = d_binary ("&&", $1, $3); } ; exp : exp OROR exp { $$ = d_binary ("||", $1, $3); } ; /* Not 100% sure these are necessary, but they're harmless. */ exp : exp ARROW NAME { $$ = d_binary ("->", $1, $3); } ; exp : exp '.' NAME { $$ = d_binary (".", $1, $3); } ; exp : exp '?' exp ':' exp %prec '?' { $$ = fill_comp (DEMANGLE_COMPONENT_TRINARY, make_operator ("?", 3), fill_comp (DEMANGLE_COMPONENT_TRINARY_ARG1, $1, fill_comp (DEMANGLE_COMPONENT_TRINARY_ARG2, $3, $5))); } ; exp : INT ; /* Not generally allowed. */ exp : FLOAT ; exp : SIZEOF '(' type ')' %prec UNARY { $$ = d_unary ("sizeof", $3); } ; /* C++. */ exp : TRUEKEYWORD { struct demangle_component *i; i = make_name ("1", 1); $$ = fill_comp (DEMANGLE_COMPONENT_LITERAL, make_builtin_type ("bool"), i); } ; exp : FALSEKEYWORD { struct demangle_component *i; i = make_name ("0", 1); $$ = fill_comp (DEMANGLE_COMPONENT_LITERAL, make_builtin_type ("bool"), i); } ; /* end of C++. */ %% /* */ struct demangle_component * d_qualify (struct demangle_component *lhs, int qualifiers, int is_method) { struct demangle_component **inner_p; enum demangle_component_type type; /* For now the order is CONST (innermost), VOLATILE, RESTRICT. */ #define HANDLE_QUAL(TYPE, MTYPE, QUAL) \ if ((qualifiers & QUAL) && (type != TYPE) && (type != MTYPE)) \ { \ *inner_p = fill_comp (is_method ? MTYPE : TYPE, \ *inner_p, NULL); \ inner_p = &d_left (*inner_p); \ type = (*inner_p)->type; \ } \ else if (type == TYPE || type == MTYPE) \ { \ inner_p = &d_left (*inner_p); \ type = (*inner_p)->type; \ } inner_p = &lhs; type = (*inner_p)->type; HANDLE_QUAL (DEMANGLE_COMPONENT_RESTRICT, DEMANGLE_COMPONENT_RESTRICT_THIS, QUAL_RESTRICT); HANDLE_QUAL (DEMANGLE_COMPONENT_VOLATILE, DEMANGLE_COMPONENT_VOLATILE_THIS, QUAL_VOLATILE); HANDLE_QUAL (DEMANGLE_COMPONENT_CONST, DEMANGLE_COMPONENT_CONST_THIS, QUAL_CONST); return lhs; } static struct demangle_component * d_int_type (int flags) { const char *name; switch (flags) { case INT_SIGNED | INT_CHAR: name = "signed char"; break; case INT_CHAR: name = "char"; break; case INT_UNSIGNED | INT_CHAR: name = "unsigned char"; break; case 0: case INT_SIGNED: name = "int"; break; case INT_UNSIGNED: name = "unsigned int"; break; case INT_LONG: case INT_SIGNED | INT_LONG: name = "long"; break; case INT_UNSIGNED | INT_LONG: name = "unsigned long"; break; case INT_SHORT: case INT_SIGNED | INT_SHORT: name = "short"; break; case INT_UNSIGNED | INT_SHORT: name = "unsigned short"; break; case INT_LLONG | INT_LONG: case INT_SIGNED | INT_LLONG | INT_LONG: name = "long long"; break; case INT_UNSIGNED | INT_LLONG | INT_LONG: name = "unsigned long long"; break; default: return NULL; } return make_builtin_type (name); } static struct demangle_component * d_unary (const char *name, struct demangle_component *lhs) { return fill_comp (DEMANGLE_COMPONENT_UNARY, make_operator (name, 1), lhs); } static struct demangle_component * d_binary (const char *name, struct demangle_component *lhs, struct demangle_component *rhs) { return fill_comp (DEMANGLE_COMPONENT_BINARY, make_operator (name, 2), fill_comp (DEMANGLE_COMPONENT_BINARY_ARGS, lhs, rhs)); } static const char * target_charset (void) { return "foo"; } static const char * host_charset (void) { return "bar"; } /* Take care of parsing a number (anything that starts with a digit). Set yylval and return the token type; update lexptr. LEN is the number of characters in it. */ /*** Needs some error checking for the float case ***/ static int parse_number (const char *p, int len, int parsed_float, YYSTYPE *putithere) { int unsigned_p = 0; /* Number of "L" suffixes encountered. */ int long_p = 0; struct demangle_component *signed_type; struct demangle_component *unsigned_type; struct demangle_component *type, *name; enum demangle_component_type literal_type; if (p[0] == '-') { literal_type = DEMANGLE_COMPONENT_LITERAL_NEG; p++; len--; } else literal_type = DEMANGLE_COMPONENT_LITERAL; if (parsed_float) { /* It's a float since it contains a point or an exponent. */ char c; /* The GDB lexer checks the result of scanf at this point. Not doing this leaves our error checking slightly weaker but only for invalid data. */ /* See if it has `f' or `l' suffix (float or long double). */ c = TOLOWER (p[len - 1]); if (c == 'f') { len--; type = make_builtin_type ("float"); } else if (c == 'l') { len--; type = make_builtin_type ("long double"); } else if (ISDIGIT (c) || c == '.') type = make_builtin_type ("double"); else return ERROR; name = make_name (p, len); putithere->comp = fill_comp (literal_type, type, name); return FLOAT; } /* This treats 0x1 and 1 as different literals. We also do not automatically generate unsigned types. */ long_p = 0; unsigned_p = 0; while (len > 0) { if (p[len - 1] == 'l' || p[len - 1] == 'L') { len--; long_p++; continue; } if (p[len - 1] == 'u' || p[len - 1] == 'U') { len--; unsigned_p++; continue; } break; } if (long_p == 0) { unsigned_type = make_builtin_type ("unsigned int"); signed_type = make_builtin_type ("int"); } else if (long_p == 1) { unsigned_type = make_builtin_type ("unsigned long"); signed_type = make_builtin_type ("long"); } else { unsigned_type = make_builtin_type ("unsigned long long"); signed_type = make_builtin_type ("long long"); } /* If the high bit of the worked out type is set then this number has to be unsigned. */ if (unsigned_p) type = unsigned_type; else type = signed_type; name = make_name (p, len); putithere->comp = fill_comp (literal_type, type, name); return INT; } /* Print an error message saying that we couldn't make sense of a \^mumble sequence in a string or character constant. START and END indicate a substring of some larger string that contains the erroneous backslash sequence, missing the initial backslash. */ static NORETURN int no_control_char_error (const char *start, const char *end) { int len = end - start; char *copy = alloca (end - start + 1); memcpy (copy, start, len); copy[len] = '\0'; error ("There is no control character `\\%s' in the `%s' character set.", copy, target_charset ()); return 0; } static int target_char_to_control_char (int c, int *ctrl_char) { *ctrl_char = (c & 037); return 1; } static int host_char_to_target (int c, int *ctrl_char) { *ctrl_char = c; return 1; } static char backslashable[] = "abefnrtv"; static char represented[] = "\a\b\e\f\n\r\t\v"; /* Translate the backslash the way we would in the host character set. */ static int c_parse_backslash (int host_char, int *target_char) { const char *ix; ix = strchr (backslashable, host_char); if (! ix) return 0; else *target_char = represented[ix - backslashable]; return 1; } /* Parse a C escape sequence. STRING_PTR points to a variable containing a pointer to the string to parse. That pointer should point to the character after the \. That pointer is updated past the characters we use. The value of the escape sequence is returned. A negative value means the sequence \ newline was seen, which is supposed to be equivalent to nothing at all. If \ is followed by a null character, we return a negative value and leave the string pointer pointing at the null character. If \ is followed by 000, we return 0 and leave the string pointer after the zeros. A value of 0 does not mean end of string. */ static int parse_escape (const char **string_ptr) { int target_char; int c = *(*string_ptr)++; if (c_parse_backslash (c, &target_char)) return target_char; else switch (c) { case '\n': return -2; case 0: (*string_ptr)--; return 0; case '^': { /* Remember where this escape sequence started, for reporting errors. */ const char *sequence_start_pos = *string_ptr - 1; c = *(*string_ptr)++; if (c == '?') { /* XXXCHARSET: What is `delete' in the host character set? */ c = 0177; if (!host_char_to_target (c, &target_char)) error ("There is no character corresponding to `Delete' " "in the target character set `%s'.", host_charset ()); return target_char; } else if (c == '\\') target_char = parse_escape (string_ptr); else { if (!host_char_to_target (c, &target_char)) no_control_char_error (sequence_start_pos, *string_ptr); } /* Now target_char is something like `c', and we want to find its control-character equivalent. */ if (!target_char_to_control_char (target_char, &target_char)) no_control_char_error (sequence_start_pos, *string_ptr); return target_char; } /* XXXCHARSET: we need to use isdigit and value-of-digit methods of the host character set here. */ case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': { int i = c - '0'; int count = 0; while (++count < 3) { c = (**string_ptr); if (c >= '0' && c <= '7') { (*string_ptr)++; i *= 8; i += c - '0'; } else { break; } } return i; } default: if (!host_char_to_target (c, &target_char)) error ("The escape sequence `\%c' is equivalent to plain `%c', which" " has no equivalent\n" "in the `%s' character set.", c, c, target_charset ()); return target_char; } } struct token { char *operator; int token; int opcode; }; #define HANDLE_SPECIAL(string, comp) \ if (strncmp (tokstart, string, sizeof (string) - 1) == 0) \ { \ lexptr = tokstart + sizeof (string) - 1; \ yylval.lval = comp; \ return DEMANGLER_SPECIAL; \ } #define HANDLE_TOKEN2(string, token, op) \ if (lexptr[1] == string[1]) \ { \ lexptr += 2; \ yylval.opname = string; \ return token; \ } #define HANDLE_TOKEN3(string, token, op) \ if (lexptr[1] == string[1] && lexptr[2] == string[2]) \ { \ lexptr += 3; \ yylval.opname = string; \ return token; \ } /* Read one token, getting characters through lexptr. */ static int yylex (void) { int c; int namelen; const char *tokstart, *tokptr; int tempbufindex; static char *tempbuf; static int tempbufsize; retry: prev_lexptr = lexptr; tokstart = lexptr; switch (c = *tokstart) { case 0: return 0; case ' ': case '\t': case '\n': lexptr++; goto retry; case '\'': /* We either have a character constant ('0' or '\177' for example) or we have a quoted symbol reference ('foo(int,int)' in C++ for example). */ lexptr++; c = *lexptr++; if (c == '\\') c = parse_escape (&lexptr); else if (c == '\'') error ("Empty character constant."); else if (! host_char_to_target (c, &c)) { int toklen = lexptr - tokstart + 1; char *tok = alloca (toklen + 1); memcpy (tok, tokstart, toklen); tok[toklen] = '\0'; error ("There is no character corresponding to %s in the target " "character set `%s'.", tok, target_charset ()); } c = *lexptr++; if (c != '\'') error ("Invalid character constant."); /* FIXME: We should refer to a canonical form of the character, presumably the same one that appears in manglings - the decimal representation. But if that isn't in our input then we have to allocate memory for it somewhere. */ yylval.comp = fill_comp (DEMANGLE_COMPONENT_LITERAL, make_builtin_type ("char"), make_name (tokstart, lexptr - tokstart)); return INT; case '(': if (strncmp (tokstart, "(anonymous namespace)", 21) == 0) { lexptr += 21; yylval.comp = make_name ("(anonymous namespace)", sizeof "(anonymous namespace)" - 1); return NAME; } /* FALL THROUGH */ case ')': case ',': lexptr++; return c; case '.': if (lexptr[1] == '.' && lexptr[2] == '.') { lexptr += 3; return ELLIPSIS; } /* Might be a floating point number. */ if (lexptr[1] < '0' || lexptr[1] > '9') goto symbol; /* Nope, must be a symbol. */ goto try_number; case '-': HANDLE_TOKEN2 ("-=", ASSIGN_MODIFY, BINOP_SUB); HANDLE_TOKEN2 ("--", DECREMENT, BINOP_END); HANDLE_TOKEN2 ("->", ARROW, BINOP_END); /* For construction vtables. This is kind of hokey. */ if (strncmp (tokstart, "-in-", 4) == 0) { lexptr += 4; return CONSTRUCTION_IN; } if (lexptr[1] < '0' || lexptr[1] > '9') { lexptr++; return '-'; } /* FALL THRU into number case. */ try_number: case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': { /* It's a number. */ int got_dot = 0, got_e = 0, toktype; const char *p = tokstart; int hex = 0; if (c == '-') p++; if (c == '0' && (p[1] == 'x' || p[1] == 'X')) { p += 2; hex = 1; } else if (c == '0' && (p[1]=='t' || p[1]=='T' || p[1]=='d' || p[1]=='D')) { p += 2; hex = 0; } for (;; ++p) { /* This test includes !hex because 'e' is a valid hex digit and thus does not indicate a floating point number when the radix is hex. */ if (!hex && !got_e && (*p == 'e' || *p == 'E')) got_dot = got_e = 1; /* This test does not include !hex, because a '.' always indicates a decimal floating point number regardless of the radix. */ /* drow: Is that true in C99? */ else if (!got_dot && *p == '.') got_dot = 1; else if (got_e && (p[-1] == 'e' || p[-1] == 'E') && (*p == '-' || *p == '+')) /* This is the sign of the exponent, not the end of the number. */ continue; /* We will take any letters or digits. parse_number will complain if past the radix, or if L or U are not final. */ else if (! ISALNUM (*p)) break; } toktype = parse_number (tokstart, p - tokstart, got_dot|got_e, &yylval); if (toktype == ERROR) { char *err_copy = (char *) alloca (p - tokstart + 1); memcpy (err_copy, tokstart, p - tokstart); err_copy[p - tokstart] = 0; error ("Invalid number \"%s\".", err_copy); return ERROR; } lexptr = p; return toktype; } case '+': HANDLE_TOKEN2 ("+=", ASSIGN_MODIFY, BINOP_ADD); HANDLE_TOKEN2 ("++", INCREMENT, BINOP_END); lexptr++; return c; case '*': HANDLE_TOKEN2 ("*=", ASSIGN_MODIFY, BINOP_MUL); lexptr++; return c; case '/': HANDLE_TOKEN2 ("/=", ASSIGN_MODIFY, BINOP_DIV); lexptr++; return c; case '%': HANDLE_TOKEN2 ("%=", ASSIGN_MODIFY, BINOP_REM); lexptr++; return c; case '|': HANDLE_TOKEN2 ("|=", ASSIGN_MODIFY, BINOP_BITWISE_IOR); HANDLE_TOKEN2 ("||", OROR, BINOP_END); lexptr++; return c; case '&': HANDLE_TOKEN2 ("&=", ASSIGN_MODIFY, BINOP_BITWISE_AND); HANDLE_TOKEN2 ("&&", ANDAND, BINOP_END); lexptr++; return c; case '^': HANDLE_TOKEN2 ("^=", ASSIGN_MODIFY, BINOP_BITWISE_XOR); lexptr++; return c; case '!': HANDLE_TOKEN2 ("!=", NOTEQUAL, BINOP_END); lexptr++; return c; case '<': HANDLE_TOKEN3 ("<<=", ASSIGN_MODIFY, BINOP_LSH); HANDLE_TOKEN2 ("<=", LEQ, BINOP_END); HANDLE_TOKEN2 ("<<", LSH, BINOP_END); lexptr++; return c; case '>': HANDLE_TOKEN3 (">>=", ASSIGN_MODIFY, BINOP_RSH); HANDLE_TOKEN2 (">=", GEQ, BINOP_END); HANDLE_TOKEN2 (">>", RSH, BINOP_END); lexptr++; return c; case '=': HANDLE_TOKEN2 ("==", EQUAL, BINOP_END); lexptr++; return c; case ':': HANDLE_TOKEN2 ("::", COLONCOLON, BINOP_END); lexptr++; return c; case '[': case ']': case '?': case '@': case '~': case '{': case '}': symbol: lexptr++; return c; case '"': /* Build the gdb internal form of the input string in tempbuf, translating any standard C escape forms seen. Note that the buffer is null byte terminated *only* for the convenience of debugging gdb itself and printing the buffer contents when the buffer contains no embedded nulls. Gdb does not depend upon the buffer being null byte terminated, it uses the length string instead. This allows gdb to handle C strings (as well as strings in other languages) with embedded null bytes */ tokptr = ++tokstart; tempbufindex = 0; do { const char *char_start_pos = tokptr; /* Grow the static temp buffer if necessary, including allocating the first one on demand. */ if (tempbufindex + 1 >= tempbufsize) { tempbuf = (char *) realloc (tempbuf, tempbufsize += 64); } switch (*tokptr) { case '\0': case '"': /* Do nothing, loop will terminate. */ break; case '\\': tokptr++; c = parse_escape (&tokptr); if (c == -1) { continue; } tempbuf[tempbufindex++] = c; break; default: c = *tokptr++; if (! host_char_to_target (c, &c)) { int len = tokptr - char_start_pos; char *copy = alloca (len + 1); memcpy (copy, char_start_pos, len); copy[len] = '\0'; error ("There is no character corresponding to `%s' " "in the target character set `%s'.", copy, target_charset ()); } tempbuf[tempbufindex++] = c; break; } } while ((*tokptr != '"') && (*tokptr != '\0')); if (*tokptr++ != '"') { error ("Unterminated string in expression."); } tempbuf[tempbufindex] = '\0'; /* See note above */ #if 1 free (tempbuf); error ("Unexpected string literal."); #else yylval.sval.ptr = tempbuf; yylval.sval.length = tempbufindex; lexptr = tokptr; return (STRING); #endif } if (!(c == '_' || c == '$' || ISALPHA (c))) /* We must have come across a bad character (e.g. ';'). */ error ("Invalid character '%c' in expression.", c); /* It's a name. See how long it is. */ namelen = 0; for (c = tokstart[namelen]; ISALNUM (c) || c == '_' || c == '$'; ) c = tokstart[++namelen]; lexptr += namelen; /* Catch specific keywords. Notice that some of the keywords contain spaces, and are sorted by the length of the first word. They must all include a trailing space in the string comparison. */ switch (namelen) { case 16: if (strncmp (tokstart, "reinterpret_cast", 16) == 0) return REINTERPRET_CAST; break; case 12: if (strncmp (tokstart, "construction vtable for ", 24) == 0) { lexptr = tokstart + 24; return CONSTRUCTION_VTABLE; } if (strncmp (tokstart, "dynamic_cast", 12) == 0) return DYNAMIC_CAST; break; case 11: if (strncmp (tokstart, "static_cast", 11) == 0) return STATIC_CAST; break; case 9: HANDLE_SPECIAL ("covariant return thunk to ", DEMANGLE_COMPONENT_COVARIANT_THUNK); HANDLE_SPECIAL ("reference temporary for ", DEMANGLE_COMPONENT_REFTEMP); break; case 8: HANDLE_SPECIAL ("typeinfo for ", DEMANGLE_COMPONENT_TYPEINFO); HANDLE_SPECIAL ("typeinfo fn for ", DEMANGLE_COMPONENT_TYPEINFO_FN); HANDLE_SPECIAL ("typeinfo name for ", DEMANGLE_COMPONENT_TYPEINFO_NAME); if (strncmp (tokstart, "operator", 8) == 0) return OPERATOR; if (strncmp (tokstart, "restrict", 8) == 0) return RESTRICT; if (strncmp (tokstart, "unsigned", 8) == 0) return UNSIGNED; if (strncmp (tokstart, "template", 8) == 0) return TEMPLATE; if (strncmp (tokstart, "volatile", 8) == 0) return VOLATILE_KEYWORD; break; case 7: HANDLE_SPECIAL ("virtual thunk to ", DEMANGLE_COMPONENT_VIRTUAL_THUNK); if (strncmp (tokstart, "wchar_t", 7) == 0) return WCHAR_T; break; case 6: if (strncmp (tokstart, "global constructors keyed to ", 29) == 0) { const char *p; lexptr = tokstart + 29; yylval.typed_val_int.val = GLOBAL_CONSTRUCTORS; /* Find the end of the symbol. */ p = symbol_end (lexptr); yylval.typed_val_int.type = make_name (lexptr, p - lexptr); lexptr = p; return GLOBAL; } if (strncmp (tokstart, "global destructors keyed to ", 28) == 0) { const char *p; lexptr = tokstart + 28; yylval.typed_val_int.val = GLOBAL_DESTRUCTORS; /* Find the end of the symbol. */ p = symbol_end (lexptr); yylval.typed_val_int.type = make_name (lexptr, p - lexptr); lexptr = p; return GLOBAL; } HANDLE_SPECIAL ("vtable for ", DEMANGLE_COMPONENT_VTABLE); if (strncmp (tokstart, "delete", 6) == 0) return DELETE; if (strncmp (tokstart, "struct", 6) == 0) return STRUCT; if (strncmp (tokstart, "signed", 6) == 0) return SIGNED_KEYWORD; if (strncmp (tokstart, "sizeof", 6) == 0) return SIZEOF; if (strncmp (tokstart, "double", 6) == 0) return DOUBLE_KEYWORD; break; case 5: HANDLE_SPECIAL ("guard variable for ", DEMANGLE_COMPONENT_GUARD); if (strncmp (tokstart, "false", 5) == 0) return FALSEKEYWORD; if (strncmp (tokstart, "class", 5) == 0) return CLASS; if (strncmp (tokstart, "union", 5) == 0) return UNION; if (strncmp (tokstart, "float", 5) == 0) return FLOAT_KEYWORD; if (strncmp (tokstart, "short", 5) == 0) return SHORT; if (strncmp (tokstart, "const", 5) == 0) return CONST_KEYWORD; break; case 4: if (strncmp (tokstart, "void", 4) == 0) return VOID; if (strncmp (tokstart, "bool", 4) == 0) return BOOL; if (strncmp (tokstart, "char", 4) == 0) return CHAR; if (strncmp (tokstart, "enum", 4) == 0) return ENUM; if (strncmp (tokstart, "long", 4) == 0) return LONG; if (strncmp (tokstart, "true", 4) == 0) return TRUEKEYWORD; break; case 3: HANDLE_SPECIAL ("VTT for ", DEMANGLE_COMPONENT_VTT); HANDLE_SPECIAL ("non-virtual thunk to ", DEMANGLE_COMPONENT_THUNK); if (strncmp (tokstart, "new", 3) == 0) return NEW; if (strncmp (tokstart, "int", 3) == 0) return INT_KEYWORD; break; default: break; } yylval.comp = make_name (tokstart, namelen); return NAME; } void yyerror (msg) char *msg; { if (prev_lexptr) lexptr = prev_lexptr; printf ("Orig expression: %s\n", orig_lexptr); error ("A %s in expression, near `%s'.\n", (msg ? msg : "error"), lexptr); } static const char * symbol_end (const char *lexptr) { const char *p = lexptr; while (*p && (ISALNUM (*p) || *p == '_' || *p == '$' || *p == '.')) p++; return p; } /* Allocate all the components we'll need to build a tree. We generally allocate too many components, but the extra memory usage doesn't hurt because the trees are temporary. If we start keeping the trees for a longer lifetime we'll need to be cleverer. */ static struct demangle_info * allocate_info (int comps) { struct demangle_info *ret; ret = malloc (sizeof (struct demangle_info) + sizeof (struct demangle_component) * (comps - 1)); ret->allocated = comps; ret->used = 0; return ret; } char * cp_comp_to_string (struct demangle_component *result, int estimated_len) { char *str, *prefix = NULL, *buf; size_t err = 0; if (result->type == GLOBAL_DESTRUCTORS) { result = d_left (result); prefix = "global destructors keyed to "; } else if (result->type == GLOBAL_CONSTRUCTORS) { result = d_left (result); prefix = "global constructors keyed to "; } str = cplus_demangle_print (DMGL_PARAMS | DMGL_ANSI, result, estimated_len, &err); if (str == NULL) return NULL; if (prefix == NULL) return str; buf = malloc (strlen (str) + strlen (prefix) + 1); strcpy (buf, prefix); strcat (buf, str); free (str); return (buf); } /* Convert a demangled name to a demangle_component tree. *MEMORY is set to the block of used memory that should be freed when finished with the tree. */ struct demangle_component * demangled_name_to_comp (const char *demangled_name, void **memory) { int len = strlen (demangled_name); len = len + len / 8; orig_lexptr = lexptr = demangled_name; di = allocate_info (len); if (yyparse () || result == NULL) { free (di); return NULL; } *memory = di; return result; } /* Convert a mangled name to a demangle_component tree. *MEMORY is set to the block of used memory that should be freed when finished with the tree. DEMANGLED_P is set to the char * that should be freed when finished with the tree, or NULL if none was needed. OPTIONS will be passed to the demangler. */ struct demangle_component * mangled_name_to_comp (const char *mangled_name, int options, void **memory, char **demangled_p) { struct demangle_component *ret; char *demangled_name; int len; /* If it looks like a v3 mangled name, then try to go directly to trees. */ if (mangled_name[0] == '_' && mangled_name[1] == 'Z') { ret = cplus_demangle_v3_components (mangled_name, options, memory); if (ret) { *demangled_p = NULL; return ret; } } /* If it doesn't, or if that failed, then try to demangle the name. */ demangled_name = cplus_demangle (mangled_name, options); if (demangled_name == NULL) return NULL; /* If we could demangle the name, parse it to build the component tree. */ ret = demangled_name_to_comp (demangled_name, memory); if (ret == NULL) { free (demangled_name); return NULL; } *demangled_p = demangled_name; return ret; } #ifdef TEST_CPNAMES static void cp_print (struct demangle_component *result, int len) { char *str; size_t err = 0; if (result->type == GLOBAL_DESTRUCTORS) { result = d_left (result); fputs ("global destructors keyed to ", stdout); } else if (result->type == GLOBAL_CONSTRUCTORS) { result = d_left (result); fputs ("global constructors keyed to ", stdout); } str = cplus_demangle_print (DMGL_PARAMS | DMGL_ANSI, result, len, &err); if (str == NULL) return; fputs (str, stdout); free (str); } static char trim_chars (char *lexptr, char **extra_chars) { char *p = (char *) symbol_end (lexptr); char c = 0; if (*p) { c = *p; *p = 0; *extra_chars = p + 1; } return c; } int main (int argc, char **argv) { char *str2, *extra_chars, c; char buf[65536]; int arg; arg = 1; if (argv[arg] && strcmp (argv[arg], "--debug") == 0) { yydebug = 1; arg++; } if (argv[arg] == NULL) while (fgets (buf, 65536, stdin) != NULL) { int len; result = NULL; buf[strlen (buf) - 1] = 0; /* Use DMGL_VERBOSE to get expanded standard substitutions. */ c = trim_chars (buf, &extra_chars); str2 = cplus_demangle (buf, DMGL_PARAMS | DMGL_ANSI | DMGL_VERBOSE); orig_lexptr = lexptr = str2; if (lexptr == NULL) { /* printf ("Demangling error\n"); */ if (c) printf ("%s%c%s\n", buf, c, extra_chars); else printf ("%s\n", buf); continue; } len = strlen (lexptr); len = len + len / 8; di = allocate_info (len); if (yyparse () || result == NULL) continue; cp_print (result, len); free (str2); if (c) { putchar (c); fputs (extra_chars, stdout); } putchar ('\n'); free (di); } else { int len; orig_lexptr = lexptr = argv[arg]; len = strlen (lexptr); len = len + len / 8; di = allocate_info (len); if (yyparse () || result == NULL) return 0; cp_print (result, len); putchar ('\n'); free (di); } return 0; } #endif