/* tc-arm.c -- Assemble for the ARM Copyright 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc. Contributed by Richard Earnshaw (rwe@pegasus.esprit.ec.org) Modified by David Taylor (dtaylor@armltd.co.uk) Cirrus coprocessor mods by Aldy Hernandez (aldyh@redhat.com) Cirrus coprocessor fixes by Petko Manolov (petkan@nucleusys.com) Cirrus coprocessor fixes by Vladimir Ivanov (vladitx@nucleusys.com) This file is part of GAS, the GNU Assembler. GAS is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. GAS is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GAS; see the file COPYING. If not, write to the Free Software Foundation, 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ #include #include #define NO_RELOC 0 #include "as.h" #include "safe-ctype.h" #include "subsegs.h" #include "obstack.h" #include "opcode/arm.h" #ifdef OBJ_ELF #include "elf/arm.h" #include "dw2gencfi.h" #endif #include "dwarf2dbg.h" #define WARN_DEPRECATED 1 #ifdef OBJ_ELF /* Must be at least the size of the largest unwind opcode (currently two). */ #define ARM_OPCODE_CHUNK_SIZE 8 /* This structure holds the unwinding state. */ static struct { symbolS * proc_start; symbolS * table_entry; symbolS * personality_routine; int personality_index; /* The segment containing the function. */ segT saved_seg; subsegT saved_subseg; /* Opcodes generated from this function. */ unsigned char * opcodes; int opcode_count; int opcode_alloc; /* The number of bytes pushed to the stack. */ offsetT frame_size; /* We don't add stack adjustment opcodes immediately so that we can merge multiple adjustments. We can also omit the final adjustment when using a frame pointer. */ offsetT pending_offset; /* These two fields are set by both unwind_movsp and unwind_setfp. They hold the reg+offset to use when restoring sp from a frame pointer. */ offsetT fp_offset; int fp_reg; /* Nonzero if an unwind_setfp directive has been seen. */ unsigned fp_used:1; /* Nonzero if the last opcode restores sp from fp_reg. */ unsigned sp_restored:1; } unwind; /* Bit N indicates that an R_ARM_NONE relocation has been output for __aeabi_unwind_cpp_prN already if set. This enables dependencies to be emitted only once per section, to save unnecessary bloat. */ static unsigned int marked_pr_dependency = 0; #endif /* OBJ_ELF */ /* Results from operand parsing worker functions. */ typedef enum { PARSE_OPERAND_SUCCESS, PARSE_OPERAND_FAIL, PARSE_OPERAND_FAIL_NO_BACKTRACK } parse_operand_result; enum arm_float_abi { ARM_FLOAT_ABI_HARD, ARM_FLOAT_ABI_SOFTFP, ARM_FLOAT_ABI_SOFT }; /* Types of processor to assemble for. */ #ifndef CPU_DEFAULT #if defined __XSCALE__ #define CPU_DEFAULT ARM_ARCH_XSCALE #else #if defined __thumb__ #define CPU_DEFAULT ARM_ARCH_V5T #endif #endif #endif #ifndef FPU_DEFAULT # ifdef TE_LINUX # define FPU_DEFAULT FPU_ARCH_FPA # elif defined (TE_NetBSD) # ifdef OBJ_ELF # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, but VFP order. */ # else /* Legacy a.out format. */ # define FPU_DEFAULT FPU_ARCH_FPA /* Soft-float, but FPA order. */ # endif # elif defined (TE_VXWORKS) # define FPU_DEFAULT FPU_ARCH_VFP /* Soft-float, VFP order. */ # else /* For backwards compatibility, default to FPA. */ # define FPU_DEFAULT FPU_ARCH_FPA # endif #endif /* ifndef FPU_DEFAULT */ #define streq(a, b) (strcmp (a, b) == 0) static arm_feature_set cpu_variant; static arm_feature_set arm_arch_used; static arm_feature_set thumb_arch_used; /* Flags stored in private area of BFD structure. */ static int uses_apcs_26 = FALSE; static int atpcs = FALSE; static int support_interwork = FALSE; static int uses_apcs_float = FALSE; static int pic_code = FALSE; /* Variables that we set while parsing command-line options. Once all options have been read we re-process these values to set the real assembly flags. */ static const arm_feature_set *legacy_cpu = NULL; static const arm_feature_set *legacy_fpu = NULL; static const arm_feature_set *mcpu_cpu_opt = NULL; static const arm_feature_set *mcpu_fpu_opt = NULL; static const arm_feature_set *march_cpu_opt = NULL; static const arm_feature_set *march_fpu_opt = NULL; static const arm_feature_set *mfpu_opt = NULL; /* Constants for known architecture features. */ static const arm_feature_set fpu_default = FPU_DEFAULT; static const arm_feature_set fpu_arch_vfp_v1 = FPU_ARCH_VFP_V1; static const arm_feature_set fpu_arch_vfp_v2 = FPU_ARCH_VFP_V2; static const arm_feature_set fpu_arch_vfp_v3 = FPU_ARCH_VFP_V3; static const arm_feature_set fpu_arch_neon_v1 = FPU_ARCH_NEON_V1; static const arm_feature_set fpu_arch_fpa = FPU_ARCH_FPA; static const arm_feature_set fpu_any_hard = FPU_ANY_HARD; static const arm_feature_set fpu_arch_maverick = FPU_ARCH_MAVERICK; static const arm_feature_set fpu_endian_pure = FPU_ARCH_ENDIAN_PURE; #ifdef CPU_DEFAULT static const arm_feature_set cpu_default = CPU_DEFAULT; #endif static const arm_feature_set arm_ext_v1 = ARM_FEATURE (ARM_EXT_V1, 0); static const arm_feature_set arm_ext_v2 = ARM_FEATURE (ARM_EXT_V1, 0); static const arm_feature_set arm_ext_v2s = ARM_FEATURE (ARM_EXT_V2S, 0); static const arm_feature_set arm_ext_v3 = ARM_FEATURE (ARM_EXT_V3, 0); static const arm_feature_set arm_ext_v3m = ARM_FEATURE (ARM_EXT_V3M, 0); static const arm_feature_set arm_ext_v4 = ARM_FEATURE (ARM_EXT_V4, 0); static const arm_feature_set arm_ext_v4t = ARM_FEATURE (ARM_EXT_V4T, 0); static const arm_feature_set arm_ext_v5 = ARM_FEATURE (ARM_EXT_V5, 0); static const arm_feature_set arm_ext_v4t_5 = ARM_FEATURE (ARM_EXT_V4T | ARM_EXT_V5, 0); static const arm_feature_set arm_ext_v5t = ARM_FEATURE (ARM_EXT_V5T, 0); static const arm_feature_set arm_ext_v5e = ARM_FEATURE (ARM_EXT_V5E, 0); static const arm_feature_set arm_ext_v5exp = ARM_FEATURE (ARM_EXT_V5ExP, 0); static const arm_feature_set arm_ext_v5j = ARM_FEATURE (ARM_EXT_V5J, 0); static const arm_feature_set arm_ext_v6 = ARM_FEATURE (ARM_EXT_V6, 0); static const arm_feature_set arm_ext_v6k = ARM_FEATURE (ARM_EXT_V6K, 0); static const arm_feature_set arm_ext_v6z = ARM_FEATURE (ARM_EXT_V6Z, 0); static const arm_feature_set arm_ext_v6t2 = ARM_FEATURE (ARM_EXT_V6T2, 0); static const arm_feature_set arm_ext_v6_notm = ARM_FEATURE (ARM_EXT_V6_NOTM, 0); static const arm_feature_set arm_ext_div = ARM_FEATURE (ARM_EXT_DIV, 0); static const arm_feature_set arm_ext_v7 = ARM_FEATURE (ARM_EXT_V7, 0); static const arm_feature_set arm_ext_v7a = ARM_FEATURE (ARM_EXT_V7A, 0); static const arm_feature_set arm_ext_v7r = ARM_FEATURE (ARM_EXT_V7R, 0); static const arm_feature_set arm_ext_v7m = ARM_FEATURE (ARM_EXT_V7M, 0); static const arm_feature_set arm_arch_any = ARM_ANY; static const arm_feature_set arm_arch_full = ARM_FEATURE (-1, -1); static const arm_feature_set arm_arch_t2 = ARM_ARCH_THUMB2; static const arm_feature_set arm_arch_none = ARM_ARCH_NONE; static const arm_feature_set arm_cext_iwmmxt = ARM_FEATURE (0, ARM_CEXT_IWMMXT); static const arm_feature_set arm_cext_xscale = ARM_FEATURE (0, ARM_CEXT_XSCALE); static const arm_feature_set arm_cext_maverick = ARM_FEATURE (0, ARM_CEXT_MAVERICK); static const arm_feature_set fpu_fpa_ext_v1 = ARM_FEATURE (0, FPU_FPA_EXT_V1); static const arm_feature_set fpu_fpa_ext_v2 = ARM_FEATURE (0, FPU_FPA_EXT_V2); static const arm_feature_set fpu_vfp_ext_v1xd = ARM_FEATURE (0, FPU_VFP_EXT_V1xD); static const arm_feature_set fpu_vfp_ext_v1 = ARM_FEATURE (0, FPU_VFP_EXT_V1); static const arm_feature_set fpu_vfp_ext_v2 = ARM_FEATURE (0, FPU_VFP_EXT_V2); static const arm_feature_set fpu_vfp_ext_v3 = ARM_FEATURE (0, FPU_VFP_EXT_V3); static const arm_feature_set fpu_neon_ext_v1 = ARM_FEATURE (0, FPU_NEON_EXT_V1); static const arm_feature_set fpu_vfp_v3_or_neon_ext = ARM_FEATURE (0, FPU_NEON_EXT_V1 | FPU_VFP_EXT_V3); static int mfloat_abi_opt = -1; /* Record user cpu selection for object attributes. */ static arm_feature_set selected_cpu = ARM_ARCH_NONE; /* Must be long enough to hold any of the names in arm_cpus. */ static char selected_cpu_name[16]; #ifdef OBJ_ELF # ifdef EABI_DEFAULT static int meabi_flags = EABI_DEFAULT; # else static int meabi_flags = EF_ARM_EABI_UNKNOWN; # endif #endif #ifdef OBJ_ELF /* Pre-defined "_GLOBAL_OFFSET_TABLE_" */ symbolS * GOT_symbol; #endif /* 0: assemble for ARM, 1: assemble for Thumb, 2: assemble for Thumb even though target CPU does not support thumb instructions. */ static int thumb_mode = 0; /* If unified_syntax is true, we are processing the new unified ARM/Thumb syntax. Important differences from the old ARM mode: - Immediate operands do not require a # prefix. - Conditional affixes always appear at the end of the instruction. (For backward compatibility, those instructions that formerly had them in the middle, continue to accept them there.) - The IT instruction may appear, and if it does is validated against subsequent conditional affixes. It does not generate machine code. Important differences from the old Thumb mode: - Immediate operands do not require a # prefix. - Most of the V6T2 instructions are only available in unified mode. - The .N and .W suffixes are recognized and honored (it is an error if they cannot be honored). - All instructions set the flags if and only if they have an 's' affix. - Conditional affixes may be used. They are validated against preceding IT instructions. Unlike ARM mode, you cannot use a conditional affix except in the scope of an IT instruction. */ static bfd_boolean unified_syntax = FALSE; enum neon_el_type { NT_invtype, NT_untyped, NT_integer, NT_float, NT_poly, NT_signed, NT_unsigned }; struct neon_type_el { enum neon_el_type type; unsigned size; }; #define NEON_MAX_TYPE_ELS 4 struct neon_type { struct neon_type_el el[NEON_MAX_TYPE_ELS]; unsigned elems; }; struct arm_it { const char * error; unsigned long instruction; int size; int size_req; int cond; /* "uncond_value" is set to the value in place of the conditional field in unconditional versions of the instruction, or -1 if nothing is appropriate. */ int uncond_value; struct neon_type vectype; /* Set to the opcode if the instruction needs relaxation. Zero if the instruction is not relaxed. */ unsigned long relax; struct { bfd_reloc_code_real_type type; expressionS exp; int pc_rel; } reloc; struct { unsigned reg; signed int imm; struct neon_type_el vectype; unsigned present : 1; /* Operand present. */ unsigned isreg : 1; /* Operand was a register. */ unsigned immisreg : 1; /* .imm field is a second register. */ unsigned isscalar : 1; /* Operand is a (Neon) scalar. */ unsigned immisalign : 1; /* Immediate is an alignment specifier. */ /* Note: we abuse "regisimm" to mean "is Neon register" in VMOV instructions. This allows us to disambiguate ARM <-> vector insns. */ unsigned regisimm : 1; /* 64-bit immediate, reg forms high 32 bits. */ unsigned isvec : 1; /* Is a single, double or quad VFP/Neon reg. */ unsigned isquad : 1; /* Operand is Neon quad-precision register. */ unsigned issingle : 1; /* Operand is VFP single-precision register. */ unsigned hasreloc : 1; /* Operand has relocation suffix. */ unsigned writeback : 1; /* Operand has trailing ! */ unsigned preind : 1; /* Preindexed address. */ unsigned postind : 1; /* Postindexed address. */ unsigned negative : 1; /* Index register was negated. */ unsigned shifted : 1; /* Shift applied to operation. */ unsigned shift_kind : 3; /* Shift operation (enum shift_kind). */ } operands[6]; }; static struct arm_it inst; #define NUM_FLOAT_VALS 8 const char * fp_const[] = { "0.0", "1.0", "2.0", "3.0", "4.0", "5.0", "0.5", "10.0", 0 }; /* Number of littlenums required to hold an extended precision number. */ #define MAX_LITTLENUMS 6 LITTLENUM_TYPE fp_values[NUM_FLOAT_VALS][MAX_LITTLENUMS]; #define FAIL (-1) #define SUCCESS (0) #define SUFF_S 1 #define SUFF_D 2 #define SUFF_E 3 #define SUFF_P 4 #define CP_T_X 0x00008000 #define CP_T_Y 0x00400000 #define CONDS_BIT 0x00100000 #define LOAD_BIT 0x00100000 #define DOUBLE_LOAD_FLAG 0x00000001 struct asm_cond { const char * template; unsigned long value; }; #define COND_ALWAYS 0xE struct asm_psr { const char *template; unsigned long field; }; struct asm_barrier_opt { const char *template; unsigned long value; }; /* The bit that distinguishes CPSR and SPSR. */ #define SPSR_BIT (1 << 22) /* The individual PSR flag bits. */ #define PSR_c (1 << 16) #define PSR_x (1 << 17) #define PSR_s (1 << 18) #define PSR_f (1 << 19) struct reloc_entry { char *name; bfd_reloc_code_real_type reloc; }; enum vfp_reg_pos { VFP_REG_Sd, VFP_REG_Sm, VFP_REG_Sn, VFP_REG_Dd, VFP_REG_Dm, VFP_REG_Dn }; enum vfp_ldstm_type { VFP_LDSTMIA, VFP_LDSTMDB, VFP_LDSTMIAX, VFP_LDSTMDBX }; /* Bits for DEFINED field in neon_typed_alias. */ #define NTA_HASTYPE 1 #define NTA_HASINDEX 2 struct neon_typed_alias { unsigned char defined; unsigned char index; struct neon_type_el eltype; }; /* ARM register categories. This includes coprocessor numbers and various architecture extensions' registers. */ enum arm_reg_type { REG_TYPE_RN, REG_TYPE_CP, REG_TYPE_CN, REG_TYPE_FN, REG_TYPE_VFS, REG_TYPE_VFD, REG_TYPE_NQ, REG_TYPE_VFSD, REG_TYPE_NDQ, REG_TYPE_NSDQ, REG_TYPE_VFC, REG_TYPE_MVF, REG_TYPE_MVD, REG_TYPE_MVFX, REG_TYPE_MVDX, REG_TYPE_MVAX, REG_TYPE_DSPSC, REG_TYPE_MMXWR, REG_TYPE_MMXWC, REG_TYPE_MMXWCG, REG_TYPE_XSCALE, }; /* Structure for a hash table entry for a register. If TYPE is REG_TYPE_VFD or REG_TYPE_NQ, the NEON field can point to extra information which states whether a vector type or index is specified (for a register alias created with .dn or .qn). Otherwise NEON should be NULL. */ struct reg_entry { const char *name; unsigned char number; unsigned char type; unsigned char builtin; struct neon_typed_alias *neon; }; /* Diagnostics used when we don't get a register of the expected type. */ const char *const reg_expected_msgs[] = { N_("ARM register expected"), N_("bad or missing co-processor number"), N_("co-processor register expected"), N_("FPA register expected"), N_("VFP single precision register expected"), N_("VFP/Neon double precision register expected"), N_("Neon quad precision register expected"), N_("VFP single or double precision register expected"), N_("Neon double or quad precision register expected"), N_("VFP single, double or Neon quad precision register expected"), N_("VFP system register expected"), N_("Maverick MVF register expected"), N_("Maverick MVD register expected"), N_("Maverick MVFX register expected"), N_("Maverick MVDX register expected"), N_("Maverick MVAX register expected"), N_("Maverick DSPSC register expected"), N_("iWMMXt data register expected"), N_("iWMMXt control register expected"), N_("iWMMXt scalar register expected"), N_("XScale accumulator register expected"), }; /* Some well known registers that we refer to directly elsewhere. */ #define REG_SP 13 #define REG_LR 14 #define REG_PC 15 /* ARM instructions take 4bytes in the object file, Thumb instructions take 2: */ #define INSN_SIZE 4 struct asm_opcode { /* Basic string to match. */ const char *template; /* Parameters to instruction. */ unsigned char operands[8]; /* Conditional tag - see opcode_lookup. */ unsigned int tag : 4; /* Basic instruction code. */ unsigned int avalue : 28; /* Thumb-format instruction code. */ unsigned int tvalue; /* Which architecture variant provides this instruction. */ const arm_feature_set *avariant; const arm_feature_set *tvariant; /* Function to call to encode instruction in ARM format. */ void (* aencode) (void); /* Function to call to encode instruction in Thumb format. */ void (* tencode) (void); }; /* Defines for various bits that we will want to toggle. */ #define INST_IMMEDIATE 0x02000000 #define OFFSET_REG 0x02000000 #define HWOFFSET_IMM 0x00400000 #define SHIFT_BY_REG 0x00000010 #define PRE_INDEX 0x01000000 #define INDEX_UP 0x00800000 #define WRITE_BACK 0x00200000 #define LDM_TYPE_2_OR_3 0x00400000 #define LITERAL_MASK 0xf000f000 #define OPCODE_MASK 0xfe1fffff #define V4_STR_BIT 0x00000020 #define DATA_OP_SHIFT 21 #define T2_OPCODE_MASK 0xfe1fffff #define T2_DATA_OP_SHIFT 21 /* Codes to distinguish the arithmetic instructions. */ #define OPCODE_AND 0 #define OPCODE_EOR 1 #define OPCODE_SUB 2 #define OPCODE_RSB 3 #define OPCODE_ADD 4 #define OPCODE_ADC 5 #define OPCODE_SBC 6 #define OPCODE_RSC 7 #define OPCODE_TST 8 #define OPCODE_TEQ 9 #define OPCODE_CMP 10 #define OPCODE_CMN 11 #define OPCODE_ORR 12 #define OPCODE_MOV 13 #define OPCODE_BIC 14 #define OPCODE_MVN 15 #define T2_OPCODE_AND 0 #define T2_OPCODE_BIC 1 #define T2_OPCODE_ORR 2 #define T2_OPCODE_ORN 3 #define T2_OPCODE_EOR 4 #define T2_OPCODE_ADD 8 #define T2_OPCODE_ADC 10 #define T2_OPCODE_SBC 11 #define T2_OPCODE_SUB 13 #define T2_OPCODE_RSB 14 #define T_OPCODE_MUL 0x4340 #define T_OPCODE_TST 0x4200 #define T_OPCODE_CMN 0x42c0 #define T_OPCODE_NEG 0x4240 #define T_OPCODE_MVN 0x43c0 #define T_OPCODE_ADD_R3 0x1800 #define T_OPCODE_SUB_R3 0x1a00 #define T_OPCODE_ADD_HI 0x4400 #define T_OPCODE_ADD_ST 0xb000 #define T_OPCODE_SUB_ST 0xb080 #define T_OPCODE_ADD_SP 0xa800 #define T_OPCODE_ADD_PC 0xa000 #define T_OPCODE_ADD_I8 0x3000 #define T_OPCODE_SUB_I8 0x3800 #define T_OPCODE_ADD_I3 0x1c00 #define T_OPCODE_SUB_I3 0x1e00 #define T_OPCODE_ASR_R 0x4100 #define T_OPCODE_LSL_R 0x4080 #define T_OPCODE_LSR_R 0x40c0 #define T_OPCODE_ROR_R 0x41c0 #define T_OPCODE_ASR_I 0x1000 #define T_OPCODE_LSL_I 0x0000 #define T_OPCODE_LSR_I 0x0800 #define T_OPCODE_MOV_I8 0x2000 #define T_OPCODE_CMP_I8 0x2800 #define T_OPCODE_CMP_LR 0x4280 #define T_OPCODE_MOV_HR 0x4600 #define T_OPCODE_CMP_HR 0x4500 #define T_OPCODE_LDR_PC 0x4800 #define T_OPCODE_LDR_SP 0x9800 #define T_OPCODE_STR_SP 0x9000 #define T_OPCODE_LDR_IW 0x6800 #define T_OPCODE_STR_IW 0x6000 #define T_OPCODE_LDR_IH 0x8800 #define T_OPCODE_STR_IH 0x8000 #define T_OPCODE_LDR_IB 0x7800 #define T_OPCODE_STR_IB 0x7000 #define T_OPCODE_LDR_RW 0x5800 #define T_OPCODE_STR_RW 0x5000 #define T_OPCODE_LDR_RH 0x5a00 #define T_OPCODE_STR_RH 0x5200 #define T_OPCODE_LDR_RB 0x5c00 #define T_OPCODE_STR_RB 0x5400 #define T_OPCODE_PUSH 0xb400 #define T_OPCODE_POP 0xbc00 #define T_OPCODE_BRANCH 0xe000 #define THUMB_SIZE 2 /* Size of thumb instruction. */ #define THUMB_PP_PC_LR 0x0100 #define THUMB_LOAD_BIT 0x0800 #define THUMB2_LOAD_BIT 0x00100000 #define BAD_ARGS _("bad arguments to instruction") #define BAD_PC _("r15 not allowed here") #define BAD_COND _("instruction cannot be conditional") #define BAD_OVERLAP _("registers may not be the same") #define BAD_HIREG _("lo register required") #define BAD_THUMB32 _("instruction not supported in Thumb16 mode") #define BAD_ADDR_MODE _("instruction does not accept this addressing mode"); #define BAD_BRANCH _("branch must be last instruction in IT block") #define BAD_NOT_IT _("instruction not allowed in IT block") #define BAD_FPU _("selected FPU does not support instruction") static struct hash_control *arm_ops_hsh; static struct hash_control *arm_cond_hsh; static struct hash_control *arm_shift_hsh; static struct hash_control *arm_psr_hsh; static struct hash_control *arm_v7m_psr_hsh; static struct hash_control *arm_reg_hsh; static struct hash_control *arm_reloc_hsh; static struct hash_control *arm_barrier_opt_hsh; /* Stuff needed to resolve the label ambiguity As: ... label: may differ from: ... label: */ symbolS * last_label_seen; static int label_is_thumb_function_name = FALSE; /* Literal pool structure. Held on a per-section and per-sub-section basis. */ #define MAX_LITERAL_POOL_SIZE 1024 typedef struct literal_pool { expressionS literals [MAX_LITERAL_POOL_SIZE]; unsigned int next_free_entry; unsigned int id; symbolS * symbol; segT section; subsegT sub_section; struct literal_pool * next; } literal_pool; /* Pointer to a linked list of literal pools. */ literal_pool * list_of_pools = NULL; /* State variables for IT block handling. */ static bfd_boolean current_it_mask = 0; static int current_cc; /* Pure syntax. */ /* This array holds the chars that always start a comment. If the pre-processor is disabled, these aren't very useful. */ const char comment_chars[] = "@"; /* This array holds the chars that only start a comment at the beginning of a line. If the line seems to have the form '# 123 filename' .line and .file directives will appear in the pre-processed output. */ /* Note that input_file.c hand checks for '#' at the beginning of the first line of the input file. This is because the compiler outputs #NO_APP at the beginning of its output. */ /* Also note that comments like this one will always work. */ const char line_comment_chars[] = "#"; const char line_separator_chars[] = ";"; /* Chars that can be used to separate mant from exp in floating point numbers. */ const char EXP_CHARS[] = "eE"; /* Chars that mean this number is a floating point constant. */ /* As in 0f12.456 */ /* or 0d1.2345e12 */ const char FLT_CHARS[] = "rRsSfFdDxXeEpP"; /* Prefix characters that indicate the start of an immediate value. */ #define is_immediate_prefix(C) ((C) == '#' || (C) == '$') /* Separator character handling. */ #define skip_whitespace(str) do { if (*(str) == ' ') ++(str); } while (0) static inline int skip_past_char (char ** str, char c) { if (**str == c) { (*str)++; return SUCCESS; } else return FAIL; } #define skip_past_comma(str) skip_past_char (str, ',') /* Arithmetic expressions (possibly involving symbols). */ /* Return TRUE if anything in the expression is a bignum. */ static int walk_no_bignums (symbolS * sp) { if (symbol_get_value_expression (sp)->X_op == O_big) return 1; if (symbol_get_value_expression (sp)->X_add_symbol) { return (walk_no_bignums (symbol_get_value_expression (sp)->X_add_symbol) || (symbol_get_value_expression (sp)->X_op_symbol && walk_no_bignums (symbol_get_value_expression (sp)->X_op_symbol))); } return 0; } static int in_my_get_expression = 0; /* Third argument to my_get_expression. */ #define GE_NO_PREFIX 0 #define GE_IMM_PREFIX 1 #define GE_OPT_PREFIX 2 /* This is a bit of a hack. Use an optional prefix, and also allow big (64-bit) immediates, as can be used in Neon VMVN and VMOV immediate instructions. */ #define GE_OPT_PREFIX_BIG 3 static int my_get_expression (expressionS * ep, char ** str, int prefix_mode) { char * save_in; segT seg; /* In unified syntax, all prefixes are optional. */ if (unified_syntax) prefix_mode = (prefix_mode == GE_OPT_PREFIX_BIG) ? prefix_mode : GE_OPT_PREFIX; switch (prefix_mode) { case GE_NO_PREFIX: break; case GE_IMM_PREFIX: if (!is_immediate_prefix (**str)) { inst.error = _("immediate expression requires a # prefix"); return FAIL; } (*str)++; break; case GE_OPT_PREFIX: case GE_OPT_PREFIX_BIG: if (is_immediate_prefix (**str)) (*str)++; break; default: abort (); } memset (ep, 0, sizeof (expressionS)); save_in = input_line_pointer; input_line_pointer = *str; in_my_get_expression = 1; seg = expression (ep); in_my_get_expression = 0; if (ep->X_op == O_illegal) { /* We found a bad expression in md_operand(). */ *str = input_line_pointer; input_line_pointer = save_in; if (inst.error == NULL) inst.error = _("bad expression"); return 1; } #ifdef OBJ_AOUT if (seg != absolute_section && seg != text_section && seg != data_section && seg != bss_section && seg != undefined_section) { inst.error = _("bad segment"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } #endif /* Get rid of any bignums now, so that we don't generate an error for which we can't establish a line number later on. Big numbers are never valid in instructions, which is where this routine is always called. */ if (prefix_mode != GE_OPT_PREFIX_BIG && (ep->X_op == O_big || (ep->X_add_symbol && (walk_no_bignums (ep->X_add_symbol) || (ep->X_op_symbol && walk_no_bignums (ep->X_op_symbol)))))) { inst.error = _("invalid constant"); *str = input_line_pointer; input_line_pointer = save_in; return 1; } *str = input_line_pointer; input_line_pointer = save_in; return 0; } /* Turn a string in input_line_pointer into a floating point constant of type TYPE, and store the appropriate bytes in *LITP. The number of LITTLENUMS emitted is stored in *SIZEP. An error message is returned, or NULL on OK. Note that fp constants aren't represent in the normal way on the ARM. In big endian mode, things are as expected. However, in little endian mode fp constants are big-endian word-wise, and little-endian byte-wise within the words. For example, (double) 1.1 in big endian mode is the byte sequence 3f f1 99 99 99 99 99 9a, and in little endian mode is the byte sequence 99 99 f1 3f 9a 99 99 99. ??? The format of 12 byte floats is uncertain according to gcc's arm.h. */ char * md_atof (int type, char * litP, int * sizeP) { int prec; LITTLENUM_TYPE words[MAX_LITTLENUMS]; char *t; int i; switch (type) { case 'f': case 'F': case 's': case 'S': prec = 2; break; case 'd': case 'D': case 'r': case 'R': prec = 4; break; case 'x': case 'X': prec = 6; break; case 'p': case 'P': prec = 6; break; default: *sizeP = 0; return _("bad call to MD_ATOF()"); } t = atof_ieee (input_line_pointer, type, words); if (t) input_line_pointer = t; *sizeP = prec * 2; if (target_big_endian) { for (i = 0; i < prec; i++) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } } else { if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure)) for (i = prec - 1; i >= 0; i--) { md_number_to_chars (litP, (valueT) words[i], 2); litP += 2; } else /* For a 4 byte float the order of elements in `words' is 1 0. For an 8 byte float the order is 1 0 3 2. */ for (i = 0; i < prec; i += 2) { md_number_to_chars (litP, (valueT) words[i + 1], 2); md_number_to_chars (litP + 2, (valueT) words[i], 2); litP += 4; } } return 0; } /* We handle all bad expressions here, so that we can report the faulty instruction in the error message. */ void md_operand (expressionS * expr) { if (in_my_get_expression) expr->X_op = O_illegal; } /* Immediate values. */ /* Generic immediate-value read function for use in directives. Accepts anything that 'expression' can fold to a constant. *val receives the number. */ #ifdef OBJ_ELF static int immediate_for_directive (int *val) { expressionS exp; exp.X_op = O_illegal; if (is_immediate_prefix (*input_line_pointer)) { input_line_pointer++; expression (&exp); } if (exp.X_op != O_constant) { as_bad (_("expected #constant")); ignore_rest_of_line (); return FAIL; } *val = exp.X_add_number; return SUCCESS; } #endif /* Register parsing. */ /* Generic register parser. CCP points to what should be the beginning of a register name. If it is indeed a valid register name, advance CCP over it and return the reg_entry structure; otherwise return NULL. Does not issue diagnostics. */ static struct reg_entry * arm_reg_parse_multi (char **ccp) { char *start = *ccp; char *p; struct reg_entry *reg; #ifdef REGISTER_PREFIX if (*start != REGISTER_PREFIX) return NULL; start++; #endif #ifdef OPTIONAL_REGISTER_PREFIX if (*start == OPTIONAL_REGISTER_PREFIX) start++; #endif p = start; if (!ISALPHA (*p) || !is_name_beginner (*p)) return NULL; do p++; while (ISALPHA (*p) || ISDIGIT (*p) || *p == '_'); reg = (struct reg_entry *) hash_find_n (arm_reg_hsh, start, p - start); if (!reg) return NULL; *ccp = p; return reg; } static int arm_reg_alt_syntax (char **ccp, char *start, struct reg_entry *reg, enum arm_reg_type type) { /* Alternative syntaxes are accepted for a few register classes. */ switch (type) { case REG_TYPE_MVF: case REG_TYPE_MVD: case REG_TYPE_MVFX: case REG_TYPE_MVDX: /* Generic coprocessor register names are allowed for these. */ if (reg && reg->type == REG_TYPE_CN) return reg->number; break; case REG_TYPE_CP: /* For backward compatibility, a bare number is valid here. */ { unsigned long processor = strtoul (start, ccp, 10); if (*ccp != start && processor <= 15) return processor; } case REG_TYPE_MMXWC: /* WC includes WCG. ??? I'm not sure this is true for all instructions that take WC registers. */ if (reg && reg->type == REG_TYPE_MMXWCG) return reg->number; break; default: break; } return FAIL; } /* As arm_reg_parse_multi, but the register must be of type TYPE, and the return value is the register number or FAIL. */ static int arm_reg_parse (char **ccp, enum arm_reg_type type) { char *start = *ccp; struct reg_entry *reg = arm_reg_parse_multi (ccp); int ret; /* Do not allow a scalar (reg+index) to parse as a register. */ if (reg && reg->neon && (reg->neon->defined & NTA_HASINDEX)) return FAIL; if (reg && reg->type == type) return reg->number; if ((ret = arm_reg_alt_syntax (ccp, start, reg, type)) != FAIL) return ret; *ccp = start; return FAIL; } /* Parse a Neon type specifier. *STR should point at the leading '.' character. Does no verification at this stage that the type fits the opcode properly. E.g., .i32.i32.s16 .s32.f32 .u16 Can all be legally parsed by this function. Fills in neon_type struct pointer with parsed information, and updates STR to point after the parsed type specifier. Returns SUCCESS if this was a legal type, FAIL if not. */ static int parse_neon_type (struct neon_type *type, char **str) { char *ptr = *str; if (type) type->elems = 0; while (type->elems < NEON_MAX_TYPE_ELS) { enum neon_el_type thistype = NT_untyped; unsigned thissize = -1u; if (*ptr != '.') break; ptr++; /* Just a size without an explicit type. */ if (ISDIGIT (*ptr)) goto parsesize; switch (TOLOWER (*ptr)) { case 'i': thistype = NT_integer; break; case 'f': thistype = NT_float; break; case 'p': thistype = NT_poly; break; case 's': thistype = NT_signed; break; case 'u': thistype = NT_unsigned; break; case 'd': thistype = NT_float; thissize = 64; ptr++; goto done; default: as_bad (_("unexpected character `%c' in type specifier"), *ptr); return FAIL; } ptr++; /* .f is an abbreviation for .f32. */ if (thistype == NT_float && !ISDIGIT (*ptr)) thissize = 32; else { parsesize: thissize = strtoul (ptr, &ptr, 10); if (thissize != 8 && thissize != 16 && thissize != 32 && thissize != 64) { as_bad (_("bad size %d in type specifier"), thissize); return FAIL; } } done: if (type) { type->el[type->elems].type = thistype; type->el[type->elems].size = thissize; type->elems++; } } /* Empty/missing type is not a successful parse. */ if (type->elems == 0) return FAIL; *str = ptr; return SUCCESS; } /* Errors may be set multiple times during parsing or bit encoding (particularly in the Neon bits), but usually the earliest error which is set will be the most meaningful. Avoid overwriting it with later (cascading) errors by calling this function. */ static void first_error (const char *err) { if (!inst.error) inst.error = err; } /* Parse a single type, e.g. ".s32", leading period included. */ static int parse_neon_operand_type (struct neon_type_el *vectype, char **ccp) { char *str = *ccp; struct neon_type optype; if (*str == '.') { if (parse_neon_type (&optype, &str) == SUCCESS) { if (optype.elems == 1) *vectype = optype.el[0]; else { first_error (_("only one type should be specified for operand")); return FAIL; } } else { first_error (_("vector type expected")); return FAIL; } } else return FAIL; *ccp = str; return SUCCESS; } /* Special meanings for indices (which have a range of 0-7), which will fit into a 4-bit integer. */ #define NEON_ALL_LANES 15 #define NEON_INTERLEAVE_LANES 14 /* Parse either a register or a scalar, with an optional type. Return the register number, and optionally fill in the actual type of the register when multiple alternatives were given (NEON_TYPE_NDQ) in *RTYPE, and type/index information in *TYPEINFO. */ static int parse_typed_reg_or_scalar (char **ccp, enum arm_reg_type type, enum arm_reg_type *rtype, struct neon_typed_alias *typeinfo) { char *str = *ccp; struct reg_entry *reg = arm_reg_parse_multi (&str); struct neon_typed_alias atype; struct neon_type_el parsetype; atype.defined = 0; atype.index = -1; atype.eltype.type = NT_invtype; atype.eltype.size = -1; /* Try alternate syntax for some types of register. Note these are mutually exclusive with the Neon syntax extensions. */ if (reg == NULL) { int altreg = arm_reg_alt_syntax (&str, *ccp, reg, type); if (altreg != FAIL) *ccp = str; if (typeinfo) *typeinfo = atype; return altreg; } /* Undo polymorphism when a set of register types may be accepted. */ if ((type == REG_TYPE_NDQ && (reg->type == REG_TYPE_NQ || reg->type == REG_TYPE_VFD)) || (type == REG_TYPE_VFSD && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD)) || (type == REG_TYPE_NSDQ && (reg->type == REG_TYPE_VFS || reg->type == REG_TYPE_VFD || reg->type == REG_TYPE_NQ)) || (type == REG_TYPE_MMXWC && (reg->type == REG_TYPE_MMXWCG))) type = reg->type; if (type != reg->type) return FAIL; if (reg->neon) atype = *reg->neon; if (parse_neon_operand_type (&parsetype, &str) == SUCCESS) { if ((atype.defined & NTA_HASTYPE) != 0) { first_error (_("can't redefine type for operand")); return FAIL; } atype.defined |= NTA_HASTYPE; atype.eltype = parsetype; } if (skip_past_char (&str, '[') == SUCCESS) { if (type != REG_TYPE_VFD) { first_error (_("only D registers may be indexed")); return FAIL; } if ((atype.defined & NTA_HASINDEX) != 0) { first_error (_("can't change index for operand")); return FAIL; } atype.defined |= NTA_HASINDEX; if (skip_past_char (&str, ']') == SUCCESS) atype.index = NEON_ALL_LANES; else { expressionS exp; my_get_expression (&exp, &str, GE_NO_PREFIX); if (exp.X_op != O_constant) { first_error (_("constant expression required")); return FAIL; } if (skip_past_char (&str, ']') == FAIL) return FAIL; atype.index = exp.X_add_number; } } if (typeinfo) *typeinfo = atype; if (rtype) *rtype = type; *ccp = str; return reg->number; } /* Like arm_reg_parse, but allow allow the following extra features: - If RTYPE is non-zero, return the (possibly restricted) type of the register (e.g. Neon double or quad reg when either has been requested). - If this is a Neon vector type with additional type information, fill in the struct pointed to by VECTYPE (if non-NULL). This function will fault on encountering a scalar. */ static int arm_typed_reg_parse (char **ccp, enum arm_reg_type type, enum arm_reg_type *rtype, struct neon_type_el *vectype) { struct neon_typed_alias atype; char *str = *ccp; int reg = parse_typed_reg_or_scalar (&str, type, rtype, &atype); if (reg == FAIL) return FAIL; /* Do not allow a scalar (reg+index) to parse as a register. */ if ((atype.defined & NTA_HASINDEX) != 0) { first_error (_("register operand expected, but got scalar")); return FAIL; } if (vectype) *vectype = atype.eltype; *ccp = str; return reg; } #define NEON_SCALAR_REG(X) ((X) >> 4) #define NEON_SCALAR_INDEX(X) ((X) & 15) /* Parse a Neon scalar. Most of the time when we're parsing a scalar, we don't have enough information to be able to do a good job bounds-checking. So, we just do easy checks here, and do further checks later. */ static int parse_scalar (char **ccp, int elsize, struct neon_type_el *type) { int reg; char *str = *ccp; struct neon_typed_alias atype; reg = parse_typed_reg_or_scalar (&str, REG_TYPE_VFD, NULL, &atype); if (reg == FAIL || (atype.defined & NTA_HASINDEX) == 0) return FAIL; if (atype.index == NEON_ALL_LANES) { first_error (_("scalar must have an index")); return FAIL; } else if (atype.index >= 64 / elsize) { first_error (_("scalar index out of range")); return FAIL; } if (type) *type = atype.eltype; *ccp = str; return reg * 16 + atype.index; } /* Parse an ARM register list. Returns the bitmask, or FAIL. */ static long parse_reg_list (char ** strp) { char * str = * strp; long range = 0; int another_range; /* We come back here if we get ranges concatenated by '+' or '|'. */ do { another_range = 0; if (*str == '{') { int in_range = 0; int cur_reg = -1; str++; do { int reg; if ((reg = arm_reg_parse (&str, REG_TYPE_RN)) == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_RN])); return FAIL; } if (in_range) { int i; if (reg <= cur_reg) { first_error (_("bad range in register list")); return FAIL; } for (i = cur_reg + 1; i < reg; i++) { if (range & (1 << i)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), i); else range |= 1 << i; } in_range = 0; } if (range & (1 << reg)) as_tsktsk (_("Warning: duplicated register (r%d) in register list"), reg); else if (reg <= cur_reg) as_tsktsk (_("Warning: register range not in ascending order")); range |= 1 << reg; cur_reg = reg; } while (skip_past_comma (&str) != FAIL || (in_range = 1, *str++ == '-')); str--; if (*str++ != '}') { first_error (_("missing `}'")); return FAIL; } } else { expressionS expr; if (my_get_expression (&expr, &str, GE_NO_PREFIX)) return FAIL; if (expr.X_op == O_constant) { if (expr.X_add_number != (expr.X_add_number & 0x0000ffff)) { inst.error = _("invalid register mask"); return FAIL; } if ((range & expr.X_add_number) != 0) { int regno = range & expr.X_add_number; regno &= -regno; regno = (1 << regno) - 1; as_tsktsk (_("Warning: duplicated register (r%d) in register list"), regno); } range |= expr.X_add_number; } else { if (inst.reloc.type != 0) { inst.error = _("expression too complex"); return FAIL; } memcpy (&inst.reloc.exp, &expr, sizeof (expressionS)); inst.reloc.type = BFD_RELOC_ARM_MULTI; inst.reloc.pc_rel = 0; } } if (*str == '|' || *str == '+') { str++; another_range = 1; } } while (another_range); *strp = str; return range; } /* Types of registers in a list. */ enum reg_list_els { REGLIST_VFP_S, REGLIST_VFP_D, REGLIST_NEON_D }; /* Parse a VFP register list. If the string is invalid return FAIL. Otherwise return the number of registers, and set PBASE to the first register. Parses registers of type ETYPE. If REGLIST_NEON_D is used, several syntax enhancements are enabled: - Q registers can be used to specify pairs of D registers - { } can be omitted from around a singleton register list FIXME: This is not implemented, as it would require backtracking in some cases, e.g.: vtbl.8 d3,d4,d5 This could be done (the meaning isn't really ambiguous), but doesn't fit in well with the current parsing framework. - 32 D registers may be used (also true for VFPv3). FIXME: Types are ignored in these register lists, which is probably a bug. */ static int parse_vfp_reg_list (char **ccp, unsigned int *pbase, enum reg_list_els etype) { char *str = *ccp; int base_reg; int new_base; enum arm_reg_type regtype = 0; int max_regs = 0; int count = 0; int warned = 0; unsigned long mask = 0; int i; if (*str != '{') { inst.error = _("expecting {"); return FAIL; } str++; switch (etype) { case REGLIST_VFP_S: regtype = REG_TYPE_VFS; max_regs = 32; break; case REGLIST_VFP_D: regtype = REG_TYPE_VFD; break; case REGLIST_NEON_D: regtype = REG_TYPE_NDQ; break; } if (etype != REGLIST_VFP_S) { /* VFPv3 allows 32 D registers. */ if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3)) { max_regs = 32; if (thumb_mode) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, fpu_vfp_ext_v3); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, fpu_vfp_ext_v3); } else max_regs = 16; } base_reg = max_regs; do { int setmask = 1, addregs = 1; new_base = arm_typed_reg_parse (&str, regtype, ®type, NULL); if (new_base == FAIL) { first_error (_(reg_expected_msgs[regtype])); return FAIL; } if (new_base >= max_regs) { first_error (_("register out of range in list")); return FAIL; } /* Note: a value of 2 * n is returned for the register Q. */ if (regtype == REG_TYPE_NQ) { setmask = 3; addregs = 2; } if (new_base < base_reg) base_reg = new_base; if (mask & (setmask << new_base)) { first_error (_("invalid register list")); return FAIL; } if ((mask >> new_base) != 0 && ! warned) { as_tsktsk (_("register list not in ascending order")); warned = 1; } mask |= setmask << new_base; count += addregs; if (*str == '-') /* We have the start of a range expression */ { int high_range; str++; if ((high_range = arm_typed_reg_parse (&str, regtype, NULL, NULL)) == FAIL) { inst.error = gettext (reg_expected_msgs[regtype]); return FAIL; } if (high_range >= max_regs) { first_error (_("register out of range in list")); return FAIL; } if (regtype == REG_TYPE_NQ) high_range = high_range + 1; if (high_range <= new_base) { inst.error = _("register range not in ascending order"); return FAIL; } for (new_base += addregs; new_base <= high_range; new_base += addregs) { if (mask & (setmask << new_base)) { inst.error = _("invalid register list"); return FAIL; } mask |= setmask << new_base; count += addregs; } } } while (skip_past_comma (&str) != FAIL); str++; /* Sanity check -- should have raised a parse error above. */ if (count == 0 || count > max_regs) abort (); *pbase = base_reg; /* Final test -- the registers must be consecutive. */ mask >>= base_reg; for (i = 0; i < count; i++) { if ((mask & (1u << i)) == 0) { inst.error = _("non-contiguous register range"); return FAIL; } } *ccp = str; return count; } /* True if two alias types are the same. */ static int neon_alias_types_same (struct neon_typed_alias *a, struct neon_typed_alias *b) { if (!a && !b) return 1; if (!a || !b) return 0; if (a->defined != b->defined) return 0; if ((a->defined & NTA_HASTYPE) != 0 && (a->eltype.type != b->eltype.type || a->eltype.size != b->eltype.size)) return 0; if ((a->defined & NTA_HASINDEX) != 0 && (a->index != b->index)) return 0; return 1; } /* Parse element/structure lists for Neon VLD and VST instructions. The base register is put in *PBASE. The lane (or one of the NEON_*_LANES constants) is placed in bits [3:0] of the return value. The register stride (minus one) is put in bit 4 of the return value. Bits [6:5] encode the list length (minus one). The type of the list elements is put in *ELTYPE, if non-NULL. */ #define NEON_LANE(X) ((X) & 0xf) #define NEON_REG_STRIDE(X) ((((X) >> 4) & 1) + 1) #define NEON_REGLIST_LENGTH(X) ((((X) >> 5) & 3) + 1) static int parse_neon_el_struct_list (char **str, unsigned *pbase, struct neon_type_el *eltype) { char *ptr = *str; int base_reg = -1; int reg_incr = -1; int count = 0; int lane = -1; int leading_brace = 0; enum arm_reg_type rtype = REG_TYPE_NDQ; int addregs = 1; const char *const incr_error = "register stride must be 1 or 2"; const char *const type_error = "mismatched element/structure types in list"; struct neon_typed_alias firsttype; if (skip_past_char (&ptr, '{') == SUCCESS) leading_brace = 1; do { struct neon_typed_alias atype; int getreg = parse_typed_reg_or_scalar (&ptr, rtype, &rtype, &atype); if (getreg == FAIL) { first_error (_(reg_expected_msgs[rtype])); return FAIL; } if (base_reg == -1) { base_reg = getreg; if (rtype == REG_TYPE_NQ) { reg_incr = 1; addregs = 2; } firsttype = atype; } else if (reg_incr == -1) { reg_incr = getreg - base_reg; if (reg_incr < 1 || reg_incr > 2) { first_error (_(incr_error)); return FAIL; } } else if (getreg != base_reg + reg_incr * count) { first_error (_(incr_error)); return FAIL; } if (!neon_alias_types_same (&atype, &firsttype)) { first_error (_(type_error)); return FAIL; } /* Handle Dn-Dm or Qn-Qm syntax. Can only be used with non-indexed list modes. */ if (ptr[0] == '-') { struct neon_typed_alias htype; int hireg, dregs = (rtype == REG_TYPE_NQ) ? 2 : 1; if (lane == -1) lane = NEON_INTERLEAVE_LANES; else if (lane != NEON_INTERLEAVE_LANES) { first_error (_(type_error)); return FAIL; } if (reg_incr == -1) reg_incr = 1; else if (reg_incr != 1) { first_error (_("don't use Rn-Rm syntax with non-unit stride")); return FAIL; } ptr++; hireg = parse_typed_reg_or_scalar (&ptr, rtype, NULL, &htype); if (hireg == FAIL) { first_error (_(reg_expected_msgs[rtype])); return FAIL; } if (!neon_alias_types_same (&htype, &firsttype)) { first_error (_(type_error)); return FAIL; } count += hireg + dregs - getreg; continue; } /* If we're using Q registers, we can't use [] or [n] syntax. */ if (rtype == REG_TYPE_NQ) { count += 2; continue; } if ((atype.defined & NTA_HASINDEX) != 0) { if (lane == -1) lane = atype.index; else if (lane != atype.index) { first_error (_(type_error)); return FAIL; } } else if (lane == -1) lane = NEON_INTERLEAVE_LANES; else if (lane != NEON_INTERLEAVE_LANES) { first_error (_(type_error)); return FAIL; } count++; } while ((count != 1 || leading_brace) && skip_past_comma (&ptr) != FAIL); /* No lane set by [x]. We must be interleaving structures. */ if (lane == -1) lane = NEON_INTERLEAVE_LANES; /* Sanity check. */ if (lane == -1 || base_reg == -1 || count < 1 || count > 4 || (count > 1 && reg_incr == -1)) { first_error (_("error parsing element/structure list")); return FAIL; } if ((count > 1 || leading_brace) && skip_past_char (&ptr, '}') == FAIL) { first_error (_("expected }")); return FAIL; } if (reg_incr == -1) reg_incr = 1; if (eltype) *eltype = firsttype.eltype; *pbase = base_reg; *str = ptr; return lane | ((reg_incr - 1) << 4) | ((count - 1) << 5); } /* Parse an explicit relocation suffix on an expression. This is either nothing, or a word in parentheses. Note that if !OBJ_ELF, arm_reloc_hsh contains no entries, so this function can only succeed if there is no () after the word. Returns -1 on error, BFD_RELOC_UNUSED if there wasn't any suffix. */ static int parse_reloc (char **str) { struct reloc_entry *r; char *p, *q; if (**str != '(') return BFD_RELOC_UNUSED; p = *str + 1; q = p; while (*q && *q != ')' && *q != ',') q++; if (*q != ')') return -1; if ((r = hash_find_n (arm_reloc_hsh, p, q - p)) == NULL) return -1; *str = q + 1; return r->reloc; } /* Directives: register aliases. */ static struct reg_entry * insert_reg_alias (char *str, int number, int type) { struct reg_entry *new; const char *name; if ((new = hash_find (arm_reg_hsh, str)) != 0) { if (new->builtin) as_warn (_("ignoring attempt to redefine built-in register '%s'"), str); /* Only warn about a redefinition if it's not defined as the same register. */ else if (new->number != number || new->type != type) as_warn (_("ignoring redefinition of register alias '%s'"), str); return 0; } name = xstrdup (str); new = xmalloc (sizeof (struct reg_entry)); new->name = name; new->number = number; new->type = type; new->builtin = FALSE; new->neon = NULL; if (hash_insert (arm_reg_hsh, name, (PTR) new)) abort (); return new; } static void insert_neon_reg_alias (char *str, int number, int type, struct neon_typed_alias *atype) { struct reg_entry *reg = insert_reg_alias (str, number, type); if (!reg) { first_error (_("attempt to redefine typed alias")); return; } if (atype) { reg->neon = xmalloc (sizeof (struct neon_typed_alias)); *reg->neon = *atype; } } /* Look for the .req directive. This is of the form: new_register_name .req existing_register_name If we find one, or if it looks sufficiently like one that we want to handle any error here, return non-zero. Otherwise return zero. */ static int create_register_alias (char * newname, char *p) { struct reg_entry *old; char *oldname, *nbuf; size_t nlen; /* The input scrubber ensures that whitespace after the mnemonic is collapsed to single spaces. */ oldname = p; if (strncmp (oldname, " .req ", 6) != 0) return 0; oldname += 6; if (*oldname == '\0') return 0; old = hash_find (arm_reg_hsh, oldname); if (!old) { as_warn (_("unknown register '%s' -- .req ignored"), oldname); return 1; } /* If TC_CASE_SENSITIVE is defined, then newname already points to the desired alias name, and p points to its end. If not, then the desired alias name is in the global original_case_string. */ #ifdef TC_CASE_SENSITIVE nlen = p - newname; #else newname = original_case_string; nlen = strlen (newname); #endif nbuf = alloca (nlen + 1); memcpy (nbuf, newname, nlen); nbuf[nlen] = '\0'; /* Create aliases under the new name as stated; an all-lowercase version of the new name; and an all-uppercase version of the new name. */ insert_reg_alias (nbuf, old->number, old->type); for (p = nbuf; *p; p++) *p = TOUPPER (*p); if (strncmp (nbuf, newname, nlen)) insert_reg_alias (nbuf, old->number, old->type); for (p = nbuf; *p; p++) *p = TOLOWER (*p); if (strncmp (nbuf, newname, nlen)) insert_reg_alias (nbuf, old->number, old->type); return 1; } /* Create a Neon typed/indexed register alias using directives, e.g.: X .dn d5.s32[1] Y .qn 6.s16 Z .dn d7 T .dn Z[0] These typed registers can be used instead of the types specified after the Neon mnemonic, so long as all operands given have types. Types can also be specified directly, e.g.: vadd d0.s32, d1.s32, d2.s32 */ static int create_neon_reg_alias (char *newname, char *p) { enum arm_reg_type basetype; struct reg_entry *basereg; struct reg_entry mybasereg; struct neon_type ntype; struct neon_typed_alias typeinfo; char *namebuf, *nameend; int namelen; typeinfo.defined = 0; typeinfo.eltype.type = NT_invtype; typeinfo.eltype.size = -1; typeinfo.index = -1; nameend = p; if (strncmp (p, " .dn ", 5) == 0) basetype = REG_TYPE_VFD; else if (strncmp (p, " .qn ", 5) == 0) basetype = REG_TYPE_NQ; else return 0; p += 5; if (*p == '\0') return 0; basereg = arm_reg_parse_multi (&p); if (basereg && basereg->type != basetype) { as_bad (_("bad type for register")); return 0; } if (basereg == NULL) { expressionS exp; /* Try parsing as an integer. */ my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { as_bad (_("expression must be constant")); return 0; } basereg = &mybasereg; basereg->number = (basetype == REG_TYPE_NQ) ? exp.X_add_number * 2 : exp.X_add_number; basereg->neon = 0; } if (basereg->neon) typeinfo = *basereg->neon; if (parse_neon_type (&ntype, &p) == SUCCESS) { /* We got a type. */ if (typeinfo.defined & NTA_HASTYPE) { as_bad (_("can't redefine the type of a register alias")); return 0; } typeinfo.defined |= NTA_HASTYPE; if (ntype.elems != 1) { as_bad (_("you must specify a single type only")); return 0; } typeinfo.eltype = ntype.el[0]; } if (skip_past_char (&p, '[') == SUCCESS) { expressionS exp; /* We got a scalar index. */ if (typeinfo.defined & NTA_HASINDEX) { as_bad (_("can't redefine the index of a scalar alias")); return 0; } my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { as_bad (_("scalar index must be constant")); return 0; } typeinfo.defined |= NTA_HASINDEX; typeinfo.index = exp.X_add_number; if (skip_past_char (&p, ']') == FAIL) { as_bad (_("expecting ]")); return 0; } } namelen = nameend - newname; namebuf = alloca (namelen + 1); strncpy (namebuf, newname, namelen); namebuf[namelen] = '\0'; insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); /* Insert name in all uppercase. */ for (p = namebuf; *p; p++) *p = TOUPPER (*p); if (strncmp (namebuf, newname, namelen)) insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); /* Insert name in all lowercase. */ for (p = namebuf; *p; p++) *p = TOLOWER (*p); if (strncmp (namebuf, newname, namelen)) insert_neon_reg_alias (namebuf, basereg->number, basetype, typeinfo.defined != 0 ? &typeinfo : NULL); return 1; } /* Should never be called, as .req goes between the alias and the register name, not at the beginning of the line. */ static void s_req (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .req directive")); } static void s_dn (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .dn directive")); } static void s_qn (int a ATTRIBUTE_UNUSED) { as_bad (_("invalid syntax for .qn directive")); } /* The .unreq directive deletes an alias which was previously defined by .req. For example: my_alias .req r11 .unreq my_alias */ static void s_unreq (int a ATTRIBUTE_UNUSED) { char * name; char saved_char; name = input_line_pointer; while (*input_line_pointer != 0 && *input_line_pointer != ' ' && *input_line_pointer != '\n') ++input_line_pointer; saved_char = *input_line_pointer; *input_line_pointer = 0; if (!*name) as_bad (_("invalid syntax for .unreq directive")); else { struct reg_entry *reg = hash_find (arm_reg_hsh, name); if (!reg) as_bad (_("unknown register alias '%s'"), name); else if (reg->builtin) as_warn (_("ignoring attempt to undefine built-in register '%s'"), name); else { hash_delete (arm_reg_hsh, name); free ((char *) reg->name); if (reg->neon) free (reg->neon); free (reg); } } *input_line_pointer = saved_char; demand_empty_rest_of_line (); } /* Directives: Instruction set selection. */ #ifdef OBJ_ELF /* This code is to handle mapping symbols as defined in the ARM ELF spec. (See "Mapping symbols", section 4.5.5, ARM AAELF version 1.0). Note that previously, $a and $t has type STT_FUNC (BSF_OBJECT flag), and $d has type STT_OBJECT (BSF_OBJECT flag). Now all three are untyped. */ static enum mstate mapstate = MAP_UNDEFINED; static void mapping_state (enum mstate state) { symbolS * symbolP; const char * symname; int type; if (mapstate == state) /* The mapping symbol has already been emitted. There is nothing else to do. */ return; mapstate = state; switch (state) { case MAP_DATA: symname = "$d"; type = BSF_NO_FLAGS; break; case MAP_ARM: symname = "$a"; type = BSF_NO_FLAGS; break; case MAP_THUMB: symname = "$t"; type = BSF_NO_FLAGS; break; case MAP_UNDEFINED: return; default: abort (); } seg_info (now_seg)->tc_segment_info_data.mapstate = state; symbolP = symbol_new (symname, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (symbolP); symbol_get_bfdsym (symbolP)->flags |= type | BSF_LOCAL; switch (state) { case MAP_ARM: THUMB_SET_FUNC (symbolP, 0); ARM_SET_THUMB (symbolP, 0); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_THUMB: THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); ARM_SET_INTERWORK (symbolP, support_interwork); break; case MAP_DATA: default: return; } } #else #define mapping_state(x) /* nothing */ #endif /* Find the real, Thumb encoded start of a Thumb function. */ static symbolS * find_real_start (symbolS * symbolP) { char * real_start; const char * name = S_GET_NAME (symbolP); symbolS * new_target; /* This definition must agree with the one in gcc/config/arm/thumb.c. */ #define STUB_NAME ".real_start_of" if (name == NULL) abort (); /* The compiler may generate BL instructions to local labels because it needs to perform a branch to a far away location. These labels do not have a corresponding ".real_start_of" label. We check both for S_IS_LOCAL and for a leading dot, to give a way to bypass the ".real_start_of" convention for nonlocal branches. */ if (S_IS_LOCAL (symbolP) || name[0] == '.') return symbolP; real_start = ACONCAT ((STUB_NAME, name, NULL)); new_target = symbol_find (real_start); if (new_target == NULL) { as_warn ("Failed to find real start of function: %s\n", name); new_target = symbolP; } return new_target; } static void opcode_select (int width) { switch (width) { case 16: if (! thumb_mode) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t)) as_bad (_("selected processor does not support THUMB opcodes")); thumb_mode = 1; /* No need to force the alignment, since we will have been coming from ARM mode, which is word-aligned. */ record_alignment (now_seg, 1); } mapping_state (MAP_THUMB); break; case 32: if (thumb_mode) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)) as_bad (_("selected processor does not support ARM opcodes")); thumb_mode = 0; if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 1); } mapping_state (MAP_ARM); break; default: as_bad (_("invalid instruction size selected (%d)"), width); } } static void s_arm (int ignore ATTRIBUTE_UNUSED) { opcode_select (32); demand_empty_rest_of_line (); } static void s_thumb (int ignore ATTRIBUTE_UNUSED) { opcode_select (16); demand_empty_rest_of_line (); } static void s_code (int unused ATTRIBUTE_UNUSED) { int temp; temp = get_absolute_expression (); switch (temp) { case 16: case 32: opcode_select (temp); break; default: as_bad (_("invalid operand to .code directive (%d) (expecting 16 or 32)"), temp); } } static void s_force_thumb (int ignore ATTRIBUTE_UNUSED) { /* If we are not already in thumb mode go into it, EVEN if the target processor does not support thumb instructions. This is used by gcc/config/arm/lib1funcs.asm for example to compile interworking support functions even if the target processor should not support interworking. */ if (! thumb_mode) { thumb_mode = 2; record_alignment (now_seg, 1); } demand_empty_rest_of_line (); } static void s_thumb_func (int ignore ATTRIBUTE_UNUSED) { s_thumb (0); /* The following label is the name/address of the start of a Thumb function. We need to know this for the interworking support. */ label_is_thumb_function_name = TRUE; } /* Perform a .set directive, but also mark the alias as being a thumb function. */ static void s_thumb_set (int equiv) { /* XXX the following is a duplicate of the code for s_set() in read.c We cannot just call that code as we need to get at the symbol that is created. */ char * name; char delim; char * end_name; symbolS * symbolP; /* Especial apologies for the random logic: This just grew, and could be parsed much more simply! Dean - in haste. */ name = input_line_pointer; delim = get_symbol_end (); end_name = input_line_pointer; *end_name = delim; if (*input_line_pointer != ',') { *end_name = 0; as_bad (_("expected comma after name \"%s\""), name); *end_name = delim; ignore_rest_of_line (); return; } input_line_pointer++; *end_name = 0; if (name[0] == '.' && name[1] == '\0') { /* XXX - this should not happen to .thumb_set. */ abort (); } if ((symbolP = symbol_find (name)) == NULL && (symbolP = md_undefined_symbol (name)) == NULL) { #ifndef NO_LISTING /* When doing symbol listings, play games with dummy fragments living outside the normal fragment chain to record the file and line info for this symbol. */ if (listing & LISTING_SYMBOLS) { extern struct list_info_struct * listing_tail; fragS * dummy_frag = xmalloc (sizeof (fragS)); memset (dummy_frag, 0, sizeof (fragS)); dummy_frag->fr_type = rs_fill; dummy_frag->line = listing_tail; symbolP = symbol_new (name, undefined_section, 0, dummy_frag); dummy_frag->fr_symbol = symbolP; } else #endif symbolP = symbol_new (name, undefined_section, 0, &zero_address_frag); #ifdef OBJ_COFF /* "set" symbols are local unless otherwise specified. */ SF_SET_LOCAL (symbolP); #endif /* OBJ_COFF */ } /* Make a new symbol. */ symbol_table_insert (symbolP); * end_name = delim; if (equiv && S_IS_DEFINED (symbolP) && S_GET_SEGMENT (symbolP) != reg_section) as_bad (_("symbol `%s' already defined"), S_GET_NAME (symbolP)); pseudo_set (symbolP); demand_empty_rest_of_line (); /* XXX Now we come to the Thumb specific bit of code. */ THUMB_SET_FUNC (symbolP, 1); ARM_SET_THUMB (symbolP, 1); #if defined OBJ_ELF || defined OBJ_COFF ARM_SET_INTERWORK (symbolP, support_interwork); #endif } /* Directives: Mode selection. */ /* .syntax [unified|divided] - choose the new unified syntax (same for Arm and Thumb encoding, modulo slight differences in what can be represented) or the old divergent syntax for each mode. */ static void s_syntax (int unused ATTRIBUTE_UNUSED) { char *name, delim; name = input_line_pointer; delim = get_symbol_end (); if (!strcasecmp (name, "unified")) unified_syntax = TRUE; else if (!strcasecmp (name, "divided")) unified_syntax = FALSE; else { as_bad (_("unrecognized syntax mode \"%s\""), name); return; } *input_line_pointer = delim; demand_empty_rest_of_line (); } /* Directives: sectioning and alignment. */ /* Same as s_align_ptwo but align 0 => align 2. */ static void s_align (int unused ATTRIBUTE_UNUSED) { int temp; long temp_fill; long max_alignment = 15; temp = get_absolute_expression (); if (temp > max_alignment) as_bad (_("alignment too large: %d assumed"), temp = max_alignment); else if (temp < 0) { as_bad (_("alignment negative. 0 assumed.")); temp = 0; } if (*input_line_pointer == ',') { input_line_pointer++; temp_fill = get_absolute_expression (); } else temp_fill = 0; if (!temp) temp = 2; /* Only make a frag if we HAVE to. */ if (temp && !need_pass_2) frag_align (temp, (int) temp_fill, 0); demand_empty_rest_of_line (); record_alignment (now_seg, temp); } static void s_bss (int ignore ATTRIBUTE_UNUSED) { /* We don't support putting frags in the BSS segment, we fake it by marking in_bss, then looking at s_skip for clues. */ subseg_set (bss_section, 0); demand_empty_rest_of_line (); mapping_state (MAP_DATA); } static void s_even (int ignore ATTRIBUTE_UNUSED) { /* Never make frag if expect extra pass. */ if (!need_pass_2) frag_align (1, 0, 0); record_alignment (now_seg, 1); demand_empty_rest_of_line (); } /* Directives: Literal pools. */ static literal_pool * find_literal_pool (void) { literal_pool * pool; for (pool = list_of_pools; pool != NULL; pool = pool->next) { if (pool->section == now_seg && pool->sub_section == now_subseg) break; } return pool; } static literal_pool * find_or_make_literal_pool (void) { /* Next literal pool ID number. */ static unsigned int latest_pool_num = 1; literal_pool * pool; pool = find_literal_pool (); if (pool == NULL) { /* Create a new pool. */ pool = xmalloc (sizeof (* pool)); if (! pool) return NULL; pool->next_free_entry = 0; pool->section = now_seg; pool->sub_section = now_subseg; pool->next = list_of_pools; pool->symbol = NULL; /* Add it to the list. */ list_of_pools = pool; } /* New pools, and emptied pools, will have a NULL symbol. */ if (pool->symbol == NULL) { pool->symbol = symbol_create (FAKE_LABEL_NAME, undefined_section, (valueT) 0, &zero_address_frag); pool->id = latest_pool_num ++; } /* Done. */ return pool; } /* Add the literal in the global 'inst' structure to the relevent literal pool. */ static int add_to_lit_pool (void) { literal_pool * pool; unsigned int entry; pool = find_or_make_literal_pool (); /* Check if this literal value is already in the pool. */ for (entry = 0; entry < pool->next_free_entry; entry ++) { if ((pool->literals[entry].X_op == inst.reloc.exp.X_op) && (inst.reloc.exp.X_op == O_constant) && (pool->literals[entry].X_add_number == inst.reloc.exp.X_add_number) && (pool->literals[entry].X_unsigned == inst.reloc.exp.X_unsigned)) break; if ((pool->literals[entry].X_op == inst.reloc.exp.X_op) && (inst.reloc.exp.X_op == O_symbol) && (pool->literals[entry].X_add_number == inst.reloc.exp.X_add_number) && (pool->literals[entry].X_add_symbol == inst.reloc.exp.X_add_symbol) && (pool->literals[entry].X_op_symbol == inst.reloc.exp.X_op_symbol)) break; } /* Do we need to create a new entry? */ if (entry == pool->next_free_entry) { if (entry >= MAX_LITERAL_POOL_SIZE) { inst.error = _("literal pool overflow"); return FAIL; } pool->literals[entry] = inst.reloc.exp; pool->next_free_entry += 1; } inst.reloc.exp.X_op = O_symbol; inst.reloc.exp.X_add_number = ((int) entry) * 4; inst.reloc.exp.X_add_symbol = pool->symbol; return SUCCESS; } /* Can't use symbol_new here, so have to create a symbol and then at a later date assign it a value. Thats what these functions do. */ static void symbol_locate (symbolS * symbolP, const char * name, /* It is copied, the caller can modify. */ segT segment, /* Segment identifier (SEG_). */ valueT valu, /* Symbol value. */ fragS * frag) /* Associated fragment. */ { unsigned int name_length; char * preserved_copy_of_name; name_length = strlen (name) + 1; /* +1 for \0. */ obstack_grow (¬es, name, name_length); preserved_copy_of_name = obstack_finish (¬es); #ifdef tc_canonicalize_symbol_name preserved_copy_of_name = tc_canonicalize_symbol_name (preserved_copy_of_name); #endif S_SET_NAME (symbolP, preserved_copy_of_name); S_SET_SEGMENT (symbolP, segment); S_SET_VALUE (symbolP, valu); symbol_clear_list_pointers (symbolP); symbol_set_frag (symbolP, frag); /* Link to end of symbol chain. */ { extern int symbol_table_frozen; if (symbol_table_frozen) abort (); } symbol_append (symbolP, symbol_lastP, & symbol_rootP, & symbol_lastP); obj_symbol_new_hook (symbolP); #ifdef tc_symbol_new_hook tc_symbol_new_hook (symbolP); #endif #ifdef DEBUG_SYMS verify_symbol_chain (symbol_rootP, symbol_lastP); #endif /* DEBUG_SYMS */ } static void s_ltorg (int ignored ATTRIBUTE_UNUSED) { unsigned int entry; literal_pool * pool; char sym_name[20]; pool = find_literal_pool (); if (pool == NULL || pool->symbol == NULL || pool->next_free_entry == 0) return; mapping_state (MAP_DATA); /* Align pool as you have word accesses. Only make a frag if we have to. */ if (!need_pass_2) frag_align (2, 0, 0); record_alignment (now_seg, 2); sprintf (sym_name, "$$lit_\002%x", pool->id); symbol_locate (pool->symbol, sym_name, now_seg, (valueT) frag_now_fix (), frag_now); symbol_table_insert (pool->symbol); ARM_SET_THUMB (pool->symbol, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (pool->symbol, support_interwork); #endif for (entry = 0; entry < pool->next_free_entry; entry ++) /* First output the expression in the instruction to the pool. */ emit_expr (&(pool->literals[entry]), 4); /* .word */ /* Mark the pool as empty. */ pool->next_free_entry = 0; pool->symbol = NULL; } #ifdef OBJ_ELF /* Forward declarations for functions below, in the MD interface section. */ static void fix_new_arm (fragS *, int, short, expressionS *, int, int); static valueT create_unwind_entry (int); static void start_unwind_section (const segT, int); static void add_unwind_opcode (valueT, int); static void flush_pending_unwind (void); /* Directives: Data. */ static void s_arm_elf_cons (int nbytes) { expressionS exp; #ifdef md_flush_pending_output md_flush_pending_output (); #endif if (is_it_end_of_statement ()) { demand_empty_rest_of_line (); return; } #ifdef md_cons_align md_cons_align (nbytes); #endif mapping_state (MAP_DATA); do { int reloc; char *base = input_line_pointer; expression (& exp); if (exp.X_op != O_symbol) emit_expr (&exp, (unsigned int) nbytes); else { char *before_reloc = input_line_pointer; reloc = parse_reloc (&input_line_pointer); if (reloc == -1) { as_bad (_("unrecognized relocation suffix")); ignore_rest_of_line (); return; } else if (reloc == BFD_RELOC_UNUSED) emit_expr (&exp, (unsigned int) nbytes); else { reloc_howto_type *howto = bfd_reloc_type_lookup (stdoutput, reloc); int size = bfd_get_reloc_size (howto); if (reloc == BFD_RELOC_ARM_PLT32) { as_bad (_("(plt) is only valid on branch targets")); reloc = BFD_RELOC_UNUSED; size = 0; } if (size > nbytes) as_bad (_("%s relocations do not fit in %d bytes"), howto->name, nbytes); else { /* We've parsed an expression stopping at O_symbol. But there may be more expression left now that we have parsed the relocation marker. Parse it again. XXX Surely there is a cleaner way to do this. */ char *p = input_line_pointer; int offset; char *save_buf = alloca (input_line_pointer - base); memcpy (save_buf, base, input_line_pointer - base); memmove (base + (input_line_pointer - before_reloc), base, before_reloc - base); input_line_pointer = base + (input_line_pointer-before_reloc); expression (&exp); memcpy (base, save_buf, p - base); offset = nbytes - size; p = frag_more ((int) nbytes); fix_new_exp (frag_now, p - frag_now->fr_literal + offset, size, &exp, 0, reloc); } } } } while (*input_line_pointer++ == ','); /* Put terminator back into stream. */ input_line_pointer --; demand_empty_rest_of_line (); } /* Parse a .rel31 directive. */ static void s_arm_rel31 (int ignored ATTRIBUTE_UNUSED) { expressionS exp; char *p; valueT highbit; highbit = 0; if (*input_line_pointer == '1') highbit = 0x80000000; else if (*input_line_pointer != '0') as_bad (_("expected 0 or 1")); input_line_pointer++; if (*input_line_pointer != ',') as_bad (_("missing comma")); input_line_pointer++; #ifdef md_flush_pending_output md_flush_pending_output (); #endif #ifdef md_cons_align md_cons_align (4); #endif mapping_state (MAP_DATA); expression (&exp); p = frag_more (4); md_number_to_chars (p, highbit, 4); fix_new_arm (frag_now, p - frag_now->fr_literal, 4, &exp, 1, BFD_RELOC_ARM_PREL31); demand_empty_rest_of_line (); } /* Directives: AEABI stack-unwind tables. */ /* Parse an unwind_fnstart directive. Simply records the current location. */ static void s_arm_unwind_fnstart (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); /* Mark the start of the function. */ unwind.proc_start = expr_build_dot (); /* Reset the rest of the unwind info. */ unwind.opcode_count = 0; unwind.table_entry = NULL; unwind.personality_routine = NULL; unwind.personality_index = -1; unwind.frame_size = 0; unwind.fp_offset = 0; unwind.fp_reg = 13; unwind.fp_used = 0; unwind.sp_restored = 0; } /* Parse a handlerdata directive. Creates the exception handling table entry for the function. */ static void s_arm_unwind_handlerdata (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (unwind.table_entry) as_bad (_("dupicate .handlerdata directive")); create_unwind_entry (1); } /* Parse an unwind_fnend directive. Generates the index table entry. */ static void s_arm_unwind_fnend (int ignored ATTRIBUTE_UNUSED) { long where; char *ptr; valueT val; demand_empty_rest_of_line (); /* Add eh table entry. */ if (unwind.table_entry == NULL) val = create_unwind_entry (0); else val = 0; /* Add index table entry. This is two words. */ start_unwind_section (unwind.saved_seg, 1); frag_align (2, 0, 0); record_alignment (now_seg, 2); ptr = frag_more (8); where = frag_now_fix () - 8; /* Self relative offset of the function start. */ fix_new (frag_now, where, 4, unwind.proc_start, 0, 1, BFD_RELOC_ARM_PREL31); /* Indicate dependency on EHABI-defined personality routines to the linker, if it hasn't been done already. */ if (unwind.personality_index >= 0 && unwind.personality_index < 3 && !(marked_pr_dependency & (1 << unwind.personality_index))) { static const char *const name[] = { "__aeabi_unwind_cpp_pr0", "__aeabi_unwind_cpp_pr1", "__aeabi_unwind_cpp_pr2" }; symbolS *pr = symbol_find_or_make (name[unwind.personality_index]); fix_new (frag_now, where, 0, pr, 0, 1, BFD_RELOC_NONE); marked_pr_dependency |= 1 << unwind.personality_index; seg_info (now_seg)->tc_segment_info_data.marked_pr_dependency = marked_pr_dependency; } if (val) /* Inline exception table entry. */ md_number_to_chars (ptr + 4, val, 4); else /* Self relative offset of the table entry. */ fix_new (frag_now, where + 4, 4, unwind.table_entry, 0, 1, BFD_RELOC_ARM_PREL31); /* Restore the original section. */ subseg_set (unwind.saved_seg, unwind.saved_subseg); } /* Parse an unwind_cantunwind directive. */ static void s_arm_unwind_cantunwind (int ignored ATTRIBUTE_UNUSED) { demand_empty_rest_of_line (); if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("personality routine specified for cantunwind frame")); unwind.personality_index = -2; } /* Parse a personalityindex directive. */ static void s_arm_unwind_personalityindex (int ignored ATTRIBUTE_UNUSED) { expressionS exp; if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personalityindex directive")); expression (&exp); if (exp.X_op != O_constant || exp.X_add_number < 0 || exp.X_add_number > 15) { as_bad (_("bad personality routine number")); ignore_rest_of_line (); return; } unwind.personality_index = exp.X_add_number; demand_empty_rest_of_line (); } /* Parse a personality directive. */ static void s_arm_unwind_personality (int ignored ATTRIBUTE_UNUSED) { char *name, *p, c; if (unwind.personality_routine || unwind.personality_index != -1) as_bad (_("duplicate .personality directive")); name = input_line_pointer; c = get_symbol_end (); p = input_line_pointer; unwind.personality_routine = symbol_find_or_make (name); *p = c; demand_empty_rest_of_line (); } /* Parse a directive saving core registers. */ static void s_arm_unwind_save_core (void) { valueT op; long range; int n; range = parse_reg_list (&input_line_pointer); if (range == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); /* Turn .unwind_movsp ip followed by .unwind_save {..., ip, ...} into .unwind_save {..., sp...}. We aren't bothered about the value of ip because it is clobbered by calls. */ if (unwind.sp_restored && unwind.fp_reg == 12 && (range & 0x3000) == 0x1000) { unwind.opcode_count--; unwind.sp_restored = 0; range = (range | 0x2000) & ~0x1000; unwind.pending_offset = 0; } /* Pop r4-r15. */ if (range & 0xfff0) { /* See if we can use the short opcodes. These pop a block of up to 8 registers starting with r4, plus maybe r14. */ for (n = 0; n < 8; n++) { /* Break at the first non-saved register. */ if ((range & (1 << (n + 4))) == 0) break; } /* See if there are any other bits set. */ if (n == 0 || (range & (0xfff0 << n) & 0xbff0) != 0) { /* Use the long form. */ op = 0x8000 | ((range >> 4) & 0xfff); add_unwind_opcode (op, 2); } else { /* Use the short form. */ if (range & 0x4000) op = 0xa8; /* Pop r14. */ else op = 0xa0; /* Do not pop r14. */ op |= (n - 1); add_unwind_opcode (op, 1); } } /* Pop r0-r3. */ if (range & 0xf) { op = 0xb100 | (range & 0xf); add_unwind_opcode (op, 2); } /* Record the number of bytes pushed. */ for (n = 0; n < 16; n++) { if (range & (1 << n)) unwind.frame_size += 4; } } /* Parse a directive saving FPA registers. */ static void s_arm_unwind_save_fpa (int reg) { expressionS exp; int num_regs; valueT op; /* Get Number of registers to transfer. */ if (skip_past_comma (&input_line_pointer) != FAIL) expression (&exp); else exp.X_op = O_illegal; if (exp.X_op != O_constant) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } num_regs = exp.X_add_number; if (num_regs < 1 || num_regs > 4) { as_bad (_("number of registers must be in the range [1:4]")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == 4) { /* Short form. */ op = 0xb4 | (num_regs - 1); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xc800 | (reg << 4) | (num_regs - 1); add_unwind_opcode (op, 2); } unwind.frame_size += num_regs * 12; } /* Parse a directive saving VFP registers for ARMv6 and above. */ static void s_arm_unwind_save_vfp_armv6 (void) { int count; unsigned int start; valueT op; int num_vfpv3_regs = 0; int num_regs_below_16; count = parse_vfp_reg_list (&input_line_pointer, &start, REGLIST_VFP_D); if (count == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); /* We always generate FSTMD/FLDMD-style unwinding opcodes (rather than FSTMX/FLDMX-style ones). */ /* Generate opcode for (VFPv3) registers numbered in the range 16 .. 31. */ if (start >= 16) num_vfpv3_regs = count; else if (start + count > 16) num_vfpv3_regs = start + count - 16; if (num_vfpv3_regs > 0) { int start_offset = start > 16 ? start - 16 : 0; op = 0xc800 | (start_offset << 4) | (num_vfpv3_regs - 1); add_unwind_opcode (op, 2); } /* Generate opcode for registers numbered in the range 0 .. 15. */ num_regs_below_16 = num_vfpv3_regs > 0 ? 16 - (int) start : count; assert (num_regs_below_16 + num_vfpv3_regs == count); if (num_regs_below_16 > 0) { op = 0xc900 | (start << 4) | (num_regs_below_16 - 1); add_unwind_opcode (op, 2); } unwind.frame_size += count * 8; } /* Parse a directive saving VFP registers for pre-ARMv6. */ static void s_arm_unwind_save_vfp (void) { int count; unsigned int reg; valueT op; count = parse_vfp_reg_list (&input_line_pointer, ®, REGLIST_VFP_D); if (count == FAIL) { as_bad (_("expected register list")); ignore_rest_of_line (); return; } demand_empty_rest_of_line (); if (reg == 8) { /* Short form. */ op = 0xb8 | (count - 1); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xb300 | (reg << 4) | (count - 1); add_unwind_opcode (op, 2); } unwind.frame_size += count * 8 + 4; } /* Parse a directive saving iWMMXt data registers. */ static void s_arm_unwind_save_mmxwr (void) { int reg; int hi_reg; int i; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWR); if (hi_reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWR])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); if (*input_line_pointer == '}') input_line_pointer++; demand_empty_rest_of_line (); /* Generate any deferred opcodes because we're going to be looking at the list. */ flush_pending_unwind (); for (i = 0; i < 16; i++) { if (mask & (1 << i)) unwind.frame_size += 8; } /* Attempt to combine with a previous opcode. We do this because gcc likes to output separate unwind directives for a single block of registers. */ if (unwind.opcode_count > 0) { i = unwind.opcodes[unwind.opcode_count - 1]; if ((i & 0xf8) == 0xc0) { i &= 7; /* Only merge if the blocks are contiguous. */ if (i < 6) { if ((mask & 0xfe00) == (1 << 9)) { mask |= ((1 << (i + 11)) - 1) & 0xfc00; unwind.opcode_count--; } } else if (i == 6 && unwind.opcode_count >= 2) { i = unwind.opcodes[unwind.opcode_count - 2]; reg = i >> 4; i &= 0xf; op = 0xffff << (reg - 1); if (reg > 0 && ((mask & op) == (1u << (reg - 1)))) { op = (1 << (reg + i + 1)) - 1; op &= ~((1 << reg) - 1); mask |= op; unwind.opcode_count -= 2; } } } } hi_reg = 15; /* We want to generate opcodes in the order the registers have been saved, ie. descending order. */ for (reg = 15; reg >= -1; reg--) { /* Save registers in blocks. */ if (reg < 0 || !(mask & (1 << reg))) { /* We found an unsaved reg. Generate opcodes to save the preceeding block. */ if (reg != hi_reg) { if (reg == 9) { /* Short form. */ op = 0xc0 | (hi_reg - 10); add_unwind_opcode (op, 1); } else { /* Long form. */ op = 0xc600 | ((reg + 1) << 4) | ((hi_reg - reg) - 1); add_unwind_opcode (op, 2); } } hi_reg = reg - 1; } } return; error: ignore_rest_of_line (); } static void s_arm_unwind_save_mmxwcg (void) { int reg; int hi_reg; unsigned mask = 0; valueT op; if (*input_line_pointer == '{') input_line_pointer++; do { reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } reg -= 8; if (mask >> reg) as_tsktsk (_("register list not in ascending order")); mask |= 1 << reg; if (*input_line_pointer == '-') { input_line_pointer++; hi_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_MMXWCG); if (hi_reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_MMXWCG])); goto error; } else if (reg >= hi_reg) { as_bad (_("bad register range")); goto error; } for (; reg < hi_reg; reg++) mask |= 1 << reg; } } while (skip_past_comma (&input_line_pointer) != FAIL); if (*input_line_pointer == '}') input_line_pointer++; demand_empty_rest_of_line (); /* Generate any deferred opcodes because we're going to be looking at the list. */ flush_pending_unwind (); for (reg = 0; reg < 16; reg++) { if (mask & (1 << reg)) unwind.frame_size += 4; } op = 0xc700 | mask; add_unwind_opcode (op, 2); return; error: ignore_rest_of_line (); } /* Parse an unwind_save directive. If the argument is non-zero, this is a .vsave directive. */ static void s_arm_unwind_save (int arch_v6) { char *peek; struct reg_entry *reg; bfd_boolean had_brace = FALSE; /* Figure out what sort of save we have. */ peek = input_line_pointer; if (*peek == '{') { had_brace = TRUE; peek++; } reg = arm_reg_parse_multi (&peek); if (!reg) { as_bad (_("register expected")); ignore_rest_of_line (); return; } switch (reg->type) { case REG_TYPE_FN: if (had_brace) { as_bad (_("FPA .unwind_save does not take a register list")); ignore_rest_of_line (); return; } s_arm_unwind_save_fpa (reg->number); return; case REG_TYPE_RN: s_arm_unwind_save_core (); return; case REG_TYPE_VFD: if (arch_v6) s_arm_unwind_save_vfp_armv6 (); else s_arm_unwind_save_vfp (); return; case REG_TYPE_MMXWR: s_arm_unwind_save_mmxwr (); return; case REG_TYPE_MMXWCG: s_arm_unwind_save_mmxwcg (); return; default: as_bad (_(".unwind_save does not support this kind of register")); ignore_rest_of_line (); } } /* Parse an unwind_movsp directive. */ static void s_arm_unwind_movsp (int ignored ATTRIBUTE_UNUSED) { int reg; valueT op; int offset; reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (reg == FAIL) { as_bad (_(reg_expected_msgs[REG_TYPE_RN])); ignore_rest_of_line (); return; } /* Optional constant. */ if (skip_past_comma (&input_line_pointer) != FAIL) { if (immediate_for_directive (&offset) == FAIL) return; } else offset = 0; demand_empty_rest_of_line (); if (reg == REG_SP || reg == REG_PC) { as_bad (_("SP and PC not permitted in .unwind_movsp directive")); return; } if (unwind.fp_reg != REG_SP) as_bad (_("unexpected .unwind_movsp directive")); /* Generate opcode to restore the value. */ op = 0x90 | reg; add_unwind_opcode (op, 1); /* Record the information for later. */ unwind.fp_reg = reg; unwind.fp_offset = unwind.frame_size - offset; unwind.sp_restored = 1; } /* Parse an unwind_pad directive. */ static void s_arm_unwind_pad (int ignored ATTRIBUTE_UNUSED) { int offset; if (immediate_for_directive (&offset) == FAIL) return; if (offset & 3) { as_bad (_("stack increment must be multiple of 4")); ignore_rest_of_line (); return; } /* Don't generate any opcodes, just record the details for later. */ unwind.frame_size += offset; unwind.pending_offset += offset; demand_empty_rest_of_line (); } /* Parse an unwind_setfp directive. */ static void s_arm_unwind_setfp (int ignored ATTRIBUTE_UNUSED) { int sp_reg; int fp_reg; int offset; fp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (skip_past_comma (&input_line_pointer) == FAIL) sp_reg = FAIL; else sp_reg = arm_reg_parse (&input_line_pointer, REG_TYPE_RN); if (fp_reg == FAIL || sp_reg == FAIL) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } /* Optional constant. */ if (skip_past_comma (&input_line_pointer) != FAIL) { if (immediate_for_directive (&offset) == FAIL) return; } else offset = 0; demand_empty_rest_of_line (); if (sp_reg != 13 && sp_reg != unwind.fp_reg) { as_bad (_("register must be either sp or set by a previous" "unwind_movsp directive")); return; } /* Don't generate any opcodes, just record the information for later. */ unwind.fp_reg = fp_reg; unwind.fp_used = 1; if (sp_reg == 13) unwind.fp_offset = unwind.frame_size - offset; else unwind.fp_offset -= offset; } /* Parse an unwind_raw directive. */ static void s_arm_unwind_raw (int ignored ATTRIBUTE_UNUSED) { expressionS exp; /* This is an arbitrary limit. */ unsigned char op[16]; int count; expression (&exp); if (exp.X_op == O_constant && skip_past_comma (&input_line_pointer) != FAIL) { unwind.frame_size += exp.X_add_number; expression (&exp); } else exp.X_op = O_illegal; if (exp.X_op != O_constant) { as_bad (_("expected , ")); ignore_rest_of_line (); return; } count = 0; /* Parse the opcode. */ for (;;) { if (count >= 16) { as_bad (_("unwind opcode too long")); ignore_rest_of_line (); } if (exp.X_op != O_constant || exp.X_add_number & ~0xff) { as_bad (_("invalid unwind opcode")); ignore_rest_of_line (); return; } op[count++] = exp.X_add_number; /* Parse the next byte. */ if (skip_past_comma (&input_line_pointer) == FAIL) break; expression (&exp); } /* Add the opcode bytes in reverse order. */ while (count--) add_unwind_opcode (op[count], 1); demand_empty_rest_of_line (); } /* Parse a .eabi_attribute directive. */ static void s_arm_eabi_attribute (int ignored ATTRIBUTE_UNUSED) { expressionS exp; bfd_boolean is_string; int tag; unsigned int i = 0; char *s = NULL; char saved_char; expression (& exp); if (exp.X_op != O_constant) goto bad; tag = exp.X_add_number; if (tag == 4 || tag == 5 || tag == 32 || (tag > 32 && (tag & 1) != 0)) is_string = 1; else is_string = 0; if (skip_past_comma (&input_line_pointer) == FAIL) goto bad; if (tag == 32 || !is_string) { expression (& exp); if (exp.X_op != O_constant) { as_bad (_("expected numeric constant")); ignore_rest_of_line (); return; } i = exp.X_add_number; } if (tag == Tag_compatibility && skip_past_comma (&input_line_pointer) == FAIL) { as_bad (_("expected comma")); ignore_rest_of_line (); return; } if (is_string) { skip_whitespace(input_line_pointer); if (*input_line_pointer != '"') goto bad_string; input_line_pointer++; s = input_line_pointer; while (*input_line_pointer && *input_line_pointer != '"') input_line_pointer++; if (*input_line_pointer != '"') goto bad_string; saved_char = *input_line_pointer; *input_line_pointer = 0; } else { s = NULL; saved_char = 0; } if (tag == Tag_compatibility) elf32_arm_add_eabi_attr_compat (stdoutput, i, s); else if (is_string) elf32_arm_add_eabi_attr_string (stdoutput, tag, s); else elf32_arm_add_eabi_attr_int (stdoutput, tag, i); if (s) { *input_line_pointer = saved_char; input_line_pointer++; } demand_empty_rest_of_line (); return; bad_string: as_bad (_("bad string constant")); ignore_rest_of_line (); return; bad: as_bad (_("expected , ")); ignore_rest_of_line (); } #endif /* OBJ_ELF */ static void s_arm_arch (int); static void s_arm_cpu (int); static void s_arm_fpu (int); #ifdef TE_PE static void pe_directive_secrel (int dummy ATTRIBUTE_UNUSED) { expressionS exp; do { expression (&exp); if (exp.X_op == O_symbol) exp.X_op = O_secrel; emit_expr (&exp, 4); } while (*input_line_pointer++ == ','); input_line_pointer--; demand_empty_rest_of_line (); } #endif /* TE_PE */ /* This table describes all the machine specific pseudo-ops the assembler has to support. The fields are: pseudo-op name without dot function to call to execute this pseudo-op Integer arg to pass to the function. */ const pseudo_typeS md_pseudo_table[] = { /* Never called because '.req' does not start a line. */ { "req", s_req, 0 }, /* Following two are likewise never called. */ { "dn", s_dn, 0 }, { "qn", s_qn, 0 }, { "unreq", s_unreq, 0 }, { "bss", s_bss, 0 }, { "align", s_align, 0 }, { "arm", s_arm, 0 }, { "thumb", s_thumb, 0 }, { "code", s_code, 0 }, { "force_thumb", s_force_thumb, 0 }, { "thumb_func", s_thumb_func, 0 }, { "thumb_set", s_thumb_set, 0 }, { "even", s_even, 0 }, { "ltorg", s_ltorg, 0 }, { "pool", s_ltorg, 0 }, { "syntax", s_syntax, 0 }, { "cpu", s_arm_cpu, 0 }, { "arch", s_arm_arch, 0 }, { "fpu", s_arm_fpu, 0 }, #ifdef OBJ_ELF { "word", s_arm_elf_cons, 4 }, { "long", s_arm_elf_cons, 4 }, { "rel31", s_arm_rel31, 0 }, { "fnstart", s_arm_unwind_fnstart, 0 }, { "fnend", s_arm_unwind_fnend, 0 }, { "cantunwind", s_arm_unwind_cantunwind, 0 }, { "personality", s_arm_unwind_personality, 0 }, { "personalityindex", s_arm_unwind_personalityindex, 0 }, { "handlerdata", s_arm_unwind_handlerdata, 0 }, { "save", s_arm_unwind_save, 0 }, { "vsave", s_arm_unwind_save, 1 }, { "movsp", s_arm_unwind_movsp, 0 }, { "pad", s_arm_unwind_pad, 0 }, { "setfp", s_arm_unwind_setfp, 0 }, { "unwind_raw", s_arm_unwind_raw, 0 }, { "eabi_attribute", s_arm_eabi_attribute, 0 }, #else { "word", cons, 4}, /* These are used for dwarf. */ {"2byte", cons, 2}, {"4byte", cons, 4}, {"8byte", cons, 8}, /* These are used for dwarf2. */ { "file", (void (*) (int)) dwarf2_directive_file, 0 }, { "loc", dwarf2_directive_loc, 0 }, { "loc_mark_labels", dwarf2_directive_loc_mark_labels, 0 }, #endif { "extend", float_cons, 'x' }, { "ldouble", float_cons, 'x' }, { "packed", float_cons, 'p' }, #ifdef TE_PE {"secrel32", pe_directive_secrel, 0}, #endif { 0, 0, 0 } }; /* Parser functions used exclusively in instruction operands. */ /* Generic immediate-value read function for use in insn parsing. STR points to the beginning of the immediate (the leading #); VAL receives the value; if the value is outside [MIN, MAX] issue an error. PREFIX_OPT is true if the immediate prefix is optional. */ static int parse_immediate (char **str, int *val, int min, int max, bfd_boolean prefix_opt) { expressionS exp; my_get_expression (&exp, str, prefix_opt ? GE_OPT_PREFIX : GE_IMM_PREFIX); if (exp.X_op != O_constant) { inst.error = _("constant expression required"); return FAIL; } if (exp.X_add_number < min || exp.X_add_number > max) { inst.error = _("immediate value out of range"); return FAIL; } *val = exp.X_add_number; return SUCCESS; } /* Less-generic immediate-value read function with the possibility of loading a big (64-bit) immediate, as required by Neon VMOV and VMVN immediate instructions. Puts the result directly in inst.operands[i]. */ static int parse_big_immediate (char **str, int i) { expressionS exp; char *ptr = *str; my_get_expression (&exp, &ptr, GE_OPT_PREFIX_BIG); if (exp.X_op == O_constant) inst.operands[i].imm = exp.X_add_number; else if (exp.X_op == O_big && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number > 32 && LITTLENUM_NUMBER_OF_BITS * exp.X_add_number <= 64) { unsigned parts = 32 / LITTLENUM_NUMBER_OF_BITS, j, idx = 0; /* Bignums have their least significant bits in generic_bignum[0]. Make sure we put 32 bits in imm and 32 bits in reg, in a (hopefully) portable way. */ assert (parts != 0); inst.operands[i].imm = 0; for (j = 0; j < parts; j++, idx++) inst.operands[i].imm |= generic_bignum[idx] << (LITTLENUM_NUMBER_OF_BITS * j); inst.operands[i].reg = 0; for (j = 0; j < parts; j++, idx++) inst.operands[i].reg |= generic_bignum[idx] << (LITTLENUM_NUMBER_OF_BITS * j); inst.operands[i].regisimm = 1; } else return FAIL; *str = ptr; return SUCCESS; } /* Returns the pseudo-register number of an FPA immediate constant, or FAIL if there isn't a valid constant here. */ static int parse_fpa_immediate (char ** str) { LITTLENUM_TYPE words[MAX_LITTLENUMS]; char * save_in; expressionS exp; int i; int j; /* First try and match exact strings, this is to guarantee that some formats will work even for cross assembly. */ for (i = 0; fp_const[i]; i++) { if (strncmp (*str, fp_const[i], strlen (fp_const[i])) == 0) { char *start = *str; *str += strlen (fp_const[i]); if (is_end_of_line[(unsigned char) **str]) return i + 8; *str = start; } } /* Just because we didn't get a match doesn't mean that the constant isn't valid, just that it is in a format that we don't automatically recognize. Try parsing it with the standard expression routines. */ memset (words, 0, MAX_LITTLENUMS * sizeof (LITTLENUM_TYPE)); /* Look for a raw floating point number. */ if ((save_in = atof_ieee (*str, 'x', words)) != NULL && is_end_of_line[(unsigned char) *save_in]) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = save_in; return i + 8; } } } /* Try and parse a more complex expression, this will probably fail unless the code uses a floating point prefix (eg "0f"). */ save_in = input_line_pointer; input_line_pointer = *str; if (expression (&exp) == absolute_section && exp.X_op == O_big && exp.X_add_number < 0) { /* FIXME: 5 = X_PRECISION, should be #define'd where we can use it. Ditto for 15. */ if (gen_to_words (words, 5, (long) 15) == 0) { for (i = 0; i < NUM_FLOAT_VALS; i++) { for (j = 0; j < MAX_LITTLENUMS; j++) { if (words[j] != fp_values[i][j]) break; } if (j == MAX_LITTLENUMS) { *str = input_line_pointer; input_line_pointer = save_in; return i + 8; } } } } *str = input_line_pointer; input_line_pointer = save_in; inst.error = _("invalid FPA immediate expression"); return FAIL; } /* Returns 1 if a number has "quarter-precision" float format 0baBbbbbbc defgh000 00000000 00000000. */ static int is_quarter_float (unsigned imm) { int bs = (imm & 0x20000000) ? 0x3e000000 : 0x40000000; return (imm & 0x7ffff) == 0 && ((imm & 0x7e000000) ^ bs) == 0; } /* Parse an 8-bit "quarter-precision" floating point number of the form: 0baBbbbbbc defgh000 00000000 00000000. The minus-zero case needs special handling, since it can't be encoded in the "quarter-precision" float format, but can nonetheless be loaded as an integer constant. */ static unsigned parse_qfloat_immediate (char **ccp, int *immed) { char *str = *ccp; LITTLENUM_TYPE words[MAX_LITTLENUMS]; skip_past_char (&str, '#'); if ((str = atof_ieee (str, 's', words)) != NULL) { unsigned fpword = 0; int i; /* Our FP word must be 32 bits (single-precision FP). */ for (i = 0; i < 32 / LITTLENUM_NUMBER_OF_BITS; i++) { fpword <<= LITTLENUM_NUMBER_OF_BITS; fpword |= words[i]; } if (is_quarter_float (fpword) || fpword == 0x80000000) *immed = fpword; else return FAIL; *ccp = str; return SUCCESS; } return FAIL; } /* Shift operands. */ enum shift_kind { SHIFT_LSL, SHIFT_LSR, SHIFT_ASR, SHIFT_ROR, SHIFT_RRX }; struct asm_shift_name { const char *name; enum shift_kind kind; }; /* Third argument to parse_shift. */ enum parse_shift_mode { NO_SHIFT_RESTRICT, /* Any kind of shift is accepted. */ SHIFT_IMMEDIATE, /* Shift operand must be an immediate. */ SHIFT_LSL_OR_ASR_IMMEDIATE, /* Shift must be LSL or ASR immediate. */ SHIFT_ASR_IMMEDIATE, /* Shift must be ASR immediate. */ SHIFT_LSL_IMMEDIATE, /* Shift must be LSL immediate. */ }; /* Parse a specifier on an ARM data processing instruction. This has three forms: (LSL|LSR|ASL|ASR|ROR) Rs (LSL|LSR|ASL|ASR|ROR) #imm RRX Note that ASL is assimilated to LSL in the instruction encoding, and RRX to ROR #0 (which cannot be written as such). */ static int parse_shift (char **str, int i, enum parse_shift_mode mode) { const struct asm_shift_name *shift_name; enum shift_kind shift; char *s = *str; char *p = s; int reg; for (p = *str; ISALPHA (*p); p++) ; if (p == *str) { inst.error = _("shift expression expected"); return FAIL; } shift_name = hash_find_n (arm_shift_hsh, *str, p - *str); if (shift_name == NULL) { inst.error = _("shift expression expected"); return FAIL; } shift = shift_name->kind; switch (mode) { case NO_SHIFT_RESTRICT: case SHIFT_IMMEDIATE: break; case SHIFT_LSL_OR_ASR_IMMEDIATE: if (shift != SHIFT_LSL && shift != SHIFT_ASR) { inst.error = _("'LSL' or 'ASR' required"); return FAIL; } break; case SHIFT_LSL_IMMEDIATE: if (shift != SHIFT_LSL) { inst.error = _("'LSL' required"); return FAIL; } break; case SHIFT_ASR_IMMEDIATE: if (shift != SHIFT_ASR) { inst.error = _("'ASR' required"); return FAIL; } break; default: abort (); } if (shift != SHIFT_RRX) { /* Whitespace can appear here if the next thing is a bare digit. */ skip_whitespace (p); if (mode == NO_SHIFT_RESTRICT && (reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; } else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return FAIL; } inst.operands[i].shift_kind = shift; inst.operands[i].shifted = 1; *str = p; return SUCCESS; } /* Parse a for an ARM data processing instruction: # #, , where is defined by parse_shift above, and is a multiple of 2 between 0 and 30. Validation of immediate operands is deferred to md_apply_fix. */ static int parse_shifter_operand (char **str, int i) { int value; expressionS expr; if ((value = arm_reg_parse (str, REG_TYPE_RN)) != FAIL) { inst.operands[i].reg = value; inst.operands[i].isreg = 1; /* parse_shift will override this if appropriate */ inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; if (skip_past_comma (str) == FAIL) return SUCCESS; /* Shift operation on register. */ return parse_shift (str, i, NO_SHIFT_RESTRICT); } if (my_get_expression (&inst.reloc.exp, str, GE_IMM_PREFIX)) return FAIL; if (skip_past_comma (str) == SUCCESS) { /* #x, y -- ie explicit rotation by Y. */ if (my_get_expression (&expr, str, GE_NO_PREFIX)) return FAIL; if (expr.X_op != O_constant || inst.reloc.exp.X_op != O_constant) { inst.error = _("constant expression expected"); return FAIL; } value = expr.X_add_number; if (value < 0 || value > 30 || value % 2 != 0) { inst.error = _("invalid rotation"); return FAIL; } if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 255) { inst.error = _("invalid constant"); return FAIL; } /* Convert to decoded value. md_apply_fix will put it back. */ inst.reloc.exp.X_add_number = (((inst.reloc.exp.X_add_number << (32 - value)) | (inst.reloc.exp.X_add_number >> value)) & 0xffffffff); } inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; return SUCCESS; } /* Group relocation information. Each entry in the table contains the textual name of the relocation as may appear in assembler source and must end with a colon. Along with this textual name are the relocation codes to be used if the corresponding instruction is an ALU instruction (ADD or SUB only), an LDR, an LDRS, or an LDC. */ struct group_reloc_table_entry { const char *name; int alu_code; int ldr_code; int ldrs_code; int ldc_code; }; typedef enum { /* Varieties of non-ALU group relocation. */ GROUP_LDR, GROUP_LDRS, GROUP_LDC } group_reloc_type; static struct group_reloc_table_entry group_reloc_table[] = { /* Program counter relative: */ { "pc_g0_nc", BFD_RELOC_ARM_ALU_PC_G0_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "pc_g0", BFD_RELOC_ARM_ALU_PC_G0, /* ALU */ BFD_RELOC_ARM_LDR_PC_G0, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G0, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G0 }, /* LDC */ { "pc_g1_nc", BFD_RELOC_ARM_ALU_PC_G1_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "pc_g1", BFD_RELOC_ARM_ALU_PC_G1, /* ALU */ BFD_RELOC_ARM_LDR_PC_G1, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G1, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G1 }, /* LDC */ { "pc_g2", BFD_RELOC_ARM_ALU_PC_G2, /* ALU */ BFD_RELOC_ARM_LDR_PC_G2, /* LDR */ BFD_RELOC_ARM_LDRS_PC_G2, /* LDRS */ BFD_RELOC_ARM_LDC_PC_G2 }, /* LDC */ /* Section base relative */ { "sb_g0_nc", BFD_RELOC_ARM_ALU_SB_G0_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "sb_g0", BFD_RELOC_ARM_ALU_SB_G0, /* ALU */ BFD_RELOC_ARM_LDR_SB_G0, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G0, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G0 }, /* LDC */ { "sb_g1_nc", BFD_RELOC_ARM_ALU_SB_G1_NC, /* ALU */ 0, /* LDR */ 0, /* LDRS */ 0 }, /* LDC */ { "sb_g1", BFD_RELOC_ARM_ALU_SB_G1, /* ALU */ BFD_RELOC_ARM_LDR_SB_G1, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G1, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G1 }, /* LDC */ { "sb_g2", BFD_RELOC_ARM_ALU_SB_G2, /* ALU */ BFD_RELOC_ARM_LDR_SB_G2, /* LDR */ BFD_RELOC_ARM_LDRS_SB_G2, /* LDRS */ BFD_RELOC_ARM_LDC_SB_G2 } }; /* LDC */ /* Given the address of a pointer pointing to the textual name of a group relocation as may appear in assembler source, attempt to find its details in group_reloc_table. The pointer will be updated to the character after the trailing colon. On failure, FAIL will be returned; SUCCESS otherwise. On success, *entry will be updated to point at the relevant group_reloc_table entry. */ static int find_group_reloc_table_entry (char **str, struct group_reloc_table_entry **out) { unsigned int i; for (i = 0; i < ARRAY_SIZE (group_reloc_table); i++) { int length = strlen (group_reloc_table[i].name); if (strncasecmp (group_reloc_table[i].name, *str, length) == 0 && (*str)[length] == ':') { *out = &group_reloc_table[i]; *str += (length + 1); return SUCCESS; } } return FAIL; } /* Parse a for an ARM data processing instruction (as for parse_shifter_operand) where group relocations are allowed: # #, #:: , where is one of the strings defined in group_reloc_table. The hashes are optional. Everything else is as for parse_shifter_operand. */ static parse_operand_result parse_shifter_operand_group_reloc (char **str, int i) { /* Determine if we have the sequence of characters #: or just : coming next. If we do, then we check for a group relocation. If we don't, punt the whole lot to parse_shifter_operand. */ if (((*str)[0] == '#' && (*str)[1] == ':') || (*str)[0] == ':') { struct group_reloc_table_entry *entry; if ((*str)[0] == '#') (*str) += 2; else (*str)++; /* Try to parse a group relocation. Anything else is an error. */ if (find_group_reloc_table_entry (str, &entry) == FAIL) { inst.error = _("unknown group relocation"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } /* We now have the group relocation table entry corresponding to the name in the assembler source. Next, we parse the expression. */ if (my_get_expression (&inst.reloc.exp, str, GE_NO_PREFIX)) return PARSE_OPERAND_FAIL_NO_BACKTRACK; /* Record the relocation type (always the ALU variant here). */ inst.reloc.type = entry->alu_code; assert (inst.reloc.type != 0); return PARSE_OPERAND_SUCCESS; } else return parse_shifter_operand (str, i) == SUCCESS ? PARSE_OPERAND_SUCCESS : PARSE_OPERAND_FAIL; /* Never reached. */ } /* Parse all forms of an ARM address expression. Information is written to inst.operands[i] and/or inst.reloc. Preindexed addressing (.preind=1): [Rn, #offset] .reg=Rn .reloc.exp=offset [Rn, +/-Rm] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn, +/-Rm, shift] .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .reloc.exp=shift_imm These three may have a trailing ! which causes .writeback to be set also. Postindexed addressing (.postind=1, .writeback=1): [Rn], #offset .reg=Rn .reloc.exp=offset [Rn], +/-Rm .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 [Rn], +/-Rm, shift .reg=Rn .imm=Rm .immisreg=1 .negative=0/1 .shift_kind=shift .reloc.exp=shift_imm Unindexed addressing (.preind=0, .postind=0): [Rn], {option} .reg=Rn .imm=option .immisreg=0 Other: [Rn]{!} shorthand for [Rn,#0]{!} =immediate .isreg=0 .reloc.exp=immediate label .reg=PC .reloc.pc_rel=1 .reloc.exp=label It is the caller's responsibility to check for addressing modes not supported by the instruction, and to set inst.reloc.type. */ static parse_operand_result parse_address_main (char **str, int i, int group_relocations, group_reloc_type group_type) { char *p = *str; int reg; if (skip_past_char (&p, '[') == FAIL) { if (skip_past_char (&p, '=') == FAIL) { /* bare address - translate to PC-relative offset */ inst.reloc.pc_rel = 1; inst.operands[i].reg = REG_PC; inst.operands[i].isreg = 1; inst.operands[i].preind = 1; } /* else a load-constant pseudo op, no special treatment needed here */ if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX)) return PARSE_OPERAND_FAIL; *str = p; return PARSE_OPERAND_SUCCESS; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return PARSE_OPERAND_FAIL; } inst.operands[i].reg = reg; inst.operands[i].isreg = 1; if (skip_past_comma (&p) == SUCCESS) { inst.operands[i].preind = 1; if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return PARSE_OPERAND_FAIL; } else if (skip_past_char (&p, ':') == SUCCESS) { /* FIXME: '@' should be used here, but it's filtered out by generic code before we get to see it here. This may be subject to change. */ expressionS exp; my_get_expression (&exp, &p, GE_NO_PREFIX); if (exp.X_op != O_constant) { inst.error = _("alignment must be constant"); return PARSE_OPERAND_FAIL; } inst.operands[i].imm = exp.X_add_number << 8; inst.operands[i].immisalign = 1; /* Alignments are not pre-indexes. */ inst.operands[i].preind = 0; } else { if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (group_relocations && ((*p == '#' && *(p + 1) == ':') || *p == ':')) { struct group_reloc_table_entry *entry; /* Skip over the #: or : sequence. */ if (*p == '#') p += 2; else p++; /* Try to parse a group relocation. Anything else is an error. */ if (find_group_reloc_table_entry (&p, &entry) == FAIL) { inst.error = _("unknown group relocation"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } /* We now have the group relocation table entry corresponding to the name in the assembler source. Next, we parse the expression. */ if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX)) return PARSE_OPERAND_FAIL_NO_BACKTRACK; /* Record the relocation type. */ switch (group_type) { case GROUP_LDR: inst.reloc.type = entry->ldr_code; break; case GROUP_LDRS: inst.reloc.type = entry->ldrs_code; break; case GROUP_LDC: inst.reloc.type = entry->ldc_code; break; default: assert (0); } if (inst.reloc.type == 0) { inst.error = _("this group relocation is not allowed on this instruction"); return PARSE_OPERAND_FAIL_NO_BACKTRACK; } } else if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return PARSE_OPERAND_FAIL; } } if (skip_past_char (&p, ']') == FAIL) { inst.error = _("']' expected"); return PARSE_OPERAND_FAIL; } if (skip_past_char (&p, '!') == SUCCESS) inst.operands[i].writeback = 1; else if (skip_past_comma (&p) == SUCCESS) { if (skip_past_char (&p, '{') == SUCCESS) { /* [Rn], {expr} - unindexed, with option */ if (parse_immediate (&p, &inst.operands[i].imm, 0, 255, TRUE) == FAIL) return PARSE_OPERAND_FAIL; if (skip_past_char (&p, '}') == FAIL) { inst.error = _("'}' expected at end of 'option' field"); return PARSE_OPERAND_FAIL; } if (inst.operands[i].preind) { inst.error = _("cannot combine index with option"); return PARSE_OPERAND_FAIL; } *str = p; return PARSE_OPERAND_SUCCESS; } else { inst.operands[i].postind = 1; inst.operands[i].writeback = 1; if (inst.operands[i].preind) { inst.error = _("cannot combine pre- and post-indexing"); return PARSE_OPERAND_FAIL; } if (*p == '+') p++; else if (*p == '-') p++, inst.operands[i].negative = 1; if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) != FAIL) { /* We might be using the immediate for alignment already. If we are, OR the register number into the low-order bits. */ if (inst.operands[i].immisalign) inst.operands[i].imm |= reg; else inst.operands[i].imm = reg; inst.operands[i].immisreg = 1; if (skip_past_comma (&p) == SUCCESS) if (parse_shift (&p, i, SHIFT_IMMEDIATE) == FAIL) return PARSE_OPERAND_FAIL; } else { if (inst.operands[i].negative) { inst.operands[i].negative = 0; p--; } if (my_get_expression (&inst.reloc.exp, &p, GE_IMM_PREFIX)) return PARSE_OPERAND_FAIL; } } } /* If at this point neither .preind nor .postind is set, we have a bare [Rn]{!}, which is shorthand for [Rn,#0]{!}. */ if (inst.operands[i].preind == 0 && inst.operands[i].postind == 0) { inst.operands[i].preind = 1; inst.reloc.exp.X_op = O_constant; inst.reloc.exp.X_add_number = 0; } *str = p; return PARSE_OPERAND_SUCCESS; } static int parse_address (char **str, int i) { return parse_address_main (str, i, 0, 0) == PARSE_OPERAND_SUCCESS ? SUCCESS : FAIL; } static parse_operand_result parse_address_group_reloc (char **str, int i, group_reloc_type type) { return parse_address_main (str, i, 1, type); } /* Parse an operand for a MOVW or MOVT instruction. */ static int parse_half (char **str) { char * p; p = *str; skip_past_char (&p, '#'); if (strncasecmp (p, ":lower16:", 9) == 0) inst.reloc.type = BFD_RELOC_ARM_MOVW; else if (strncasecmp (p, ":upper16:", 9) == 0) inst.reloc.type = BFD_RELOC_ARM_MOVT; if (inst.reloc.type != BFD_RELOC_UNUSED) { p += 9; skip_whitespace(p); } if (my_get_expression (&inst.reloc.exp, &p, GE_NO_PREFIX)) return FAIL; if (inst.reloc.type == BFD_RELOC_UNUSED) { if (inst.reloc.exp.X_op != O_constant) { inst.error = _("constant expression expected"); return FAIL; } if (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 0xffff) { inst.error = _("immediate value out of range"); return FAIL; } } *str = p; return SUCCESS; } /* Miscellaneous. */ /* Parse a PSR flag operand. The value returned is FAIL on syntax error, or a bitmask suitable to be or-ed into the ARM msr instruction. */ static int parse_psr (char **str) { char *p; unsigned long psr_field; const struct asm_psr *psr; char *start; /* CPSR's and SPSR's can now be lowercase. This is just a convenience feature for ease of use and backwards compatibility. */ p = *str; if (strncasecmp (p, "SPSR", 4) == 0) psr_field = SPSR_BIT; else if (strncasecmp (p, "CPSR", 4) == 0) psr_field = 0; else { start = p; do p++; while (ISALNUM (*p) || *p == '_'); psr = hash_find_n (arm_v7m_psr_hsh, start, p - start); if (!psr) return FAIL; *str = p; return psr->field; } p += 4; if (*p == '_') { /* A suffix follows. */ p++; start = p; do p++; while (ISALNUM (*p) || *p == '_'); psr = hash_find_n (arm_psr_hsh, start, p - start); if (!psr) goto error; psr_field |= psr->field; } else { if (ISALNUM (*p)) goto error; /* Garbage after "[CS]PSR". */ psr_field |= (PSR_c | PSR_f); } *str = p; return psr_field; error: inst.error = _("flag for {c}psr instruction expected"); return FAIL; } /* Parse the flags argument to CPSI[ED]. Returns FAIL on error, or a value suitable for splatting into the AIF field of the instruction. */ static int parse_cps_flags (char **str) { int val = 0; int saw_a_flag = 0; char *s = *str; for (;;) switch (*s++) { case '\0': case ',': goto done; case 'a': case 'A': saw_a_flag = 1; val |= 0x4; break; case 'i': case 'I': saw_a_flag = 1; val |= 0x2; break; case 'f': case 'F': saw_a_flag = 1; val |= 0x1; break; default: inst.error = _("unrecognized CPS flag"); return FAIL; } done: if (saw_a_flag == 0) { inst.error = _("missing CPS flags"); return FAIL; } *str = s - 1; return val; } /* Parse an endian specifier ("BE" or "LE", case insensitive); returns 0 for big-endian, 1 for little-endian, FAIL for an error. */ static int parse_endian_specifier (char **str) { int little_endian; char *s = *str; if (strncasecmp (s, "BE", 2)) little_endian = 0; else if (strncasecmp (s, "LE", 2)) little_endian = 1; else { inst.error = _("valid endian specifiers are be or le"); return FAIL; } if (ISALNUM (s[2]) || s[2] == '_') { inst.error = _("valid endian specifiers are be or le"); return FAIL; } *str = s + 2; return little_endian; } /* Parse a rotation specifier: ROR #0, #8, #16, #24. *val receives a value suitable for poking into the rotate field of an sxt or sxta instruction, or FAIL on error. */ static int parse_ror (char **str) { int rot; char *s = *str; if (strncasecmp (s, "ROR", 3) == 0) s += 3; else { inst.error = _("missing rotation field after comma"); return FAIL; } if (parse_immediate (&s, &rot, 0, 24, FALSE) == FAIL) return FAIL; switch (rot) { case 0: *str = s; return 0x0; case 8: *str = s; return 0x1; case 16: *str = s; return 0x2; case 24: *str = s; return 0x3; default: inst.error = _("rotation can only be 0, 8, 16, or 24"); return FAIL; } } /* Parse a conditional code (from conds[] below). The value returned is in the range 0 .. 14, or FAIL. */ static int parse_cond (char **str) { char *p, *q; const struct asm_cond *c; p = q = *str; while (ISALPHA (*q)) q++; c = hash_find_n (arm_cond_hsh, p, q - p); if (!c) { inst.error = _("condition required"); return FAIL; } *str = q; return c->value; } /* Parse an option for a barrier instruction. Returns the encoding for the option, or FAIL. */ static int parse_barrier (char **str) { char *p, *q; const struct asm_barrier_opt *o; p = q = *str; while (ISALPHA (*q)) q++; o = hash_find_n (arm_barrier_opt_hsh, p, q - p); if (!o) return FAIL; *str = q; return o->value; } /* Parse the operands of a table branch instruction. Similar to a memory operand. */ static int parse_tb (char **str) { char * p = *str; int reg; if (skip_past_char (&p, '[') == FAIL) { inst.error = _("'[' expected"); return FAIL; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } inst.operands[0].reg = reg; if (skip_past_comma (&p) == FAIL) { inst.error = _("',' expected"); return FAIL; } if ((reg = arm_reg_parse (&p, REG_TYPE_RN)) == FAIL) { inst.error = _(reg_expected_msgs[REG_TYPE_RN]); return FAIL; } inst.operands[0].imm = reg; if (skip_past_comma (&p) == SUCCESS) { if (parse_shift (&p, 0, SHIFT_LSL_IMMEDIATE) == FAIL) return FAIL; if (inst.reloc.exp.X_add_number != 1) { inst.error = _("invalid shift"); return FAIL; } inst.operands[0].shifted = 1; } if (skip_past_char (&p, ']') == FAIL) { inst.error = _("']' expected"); return FAIL; } *str = p; return SUCCESS; } /* Parse the operands of a Neon VMOV instruction. See do_neon_mov for more information on the types the operands can take and how they are encoded. Up to four operands may be read; this function handles setting the ".present" field for each read operand itself. Updates STR and WHICH_OPERAND if parsing is successful and returns SUCCESS, else returns FAIL. */ static int parse_neon_mov (char **str, int *which_operand) { int i = *which_operand, val; enum arm_reg_type rtype; char *ptr = *str; struct neon_type_el optype; if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL) { /* Case 4: VMOV. , . */ inst.operands[i].reg = val; inst.operands[i].isscalar = 1; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype)) != FAIL) { /* Cases 0, 1, 2, 3, 5 (D only). */ if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isquad = (rtype == REG_TYPE_NQ); inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].isvec = 1; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Case 5: VMOV , , . Case 13: VMOV , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; if (rtype == REG_TYPE_NQ) { first_error (_("can't use Neon quad register here")); return FAIL; } else if (rtype != REG_TYPE_VFS) { i++; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].present = 1; } } else if (parse_qfloat_immediate (&ptr, &inst.operands[i].imm) == SUCCESS) /* Case 2: VMOV.
, # Case 3: VMOV.
, # Case 10: VMOV.F32 , # Case 11: VMOV.F64
, # */ ; else if (parse_big_immediate (&ptr, i) == SUCCESS) /* Case 2: VMOV.
, # Case 3: VMOV.
, # */ ; else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_NSDQ, &rtype, &optype)) != FAIL) { /* Case 0: VMOV , Case 1: VMOV
, Case 8: VMOV.F32 , Case 15: VMOV , , , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isquad = (rtype == REG_TYPE_NQ); inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].isvec = 1; inst.operands[i].vectype = optype; inst.operands[i].present = 1; if (skip_past_comma (&ptr) == SUCCESS) { /* Case 15. */ i++; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) == FAIL) goto wanted_arm; inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; } } else { first_error (_("expected or or operand")); return FAIL; } } else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Cases 6, 7. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = parse_scalar (&ptr, 8, &optype)) != FAIL) { /* Case 6: VMOV.
, */ inst.operands[i].reg = val; inst.operands[i].isscalar = 1; inst.operands[i].present = 1; inst.operands[i].vectype = optype; } else if ((val = arm_reg_parse (&ptr, REG_TYPE_RN)) != FAIL) { /* Case 7: VMOV , , */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i++].present = 1; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFSD, &rtype, &optype)) == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_VFSD])); return FAIL; } inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = (rtype == REG_TYPE_VFS); inst.operands[i].vectype = optype; inst.operands[i].present = 1; if (rtype == REG_TYPE_VFS) { /* Case 14. */ i++; if (skip_past_comma (&ptr) == FAIL) goto wanted_comma; if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype)) == FAIL) { first_error (_(reg_expected_msgs[REG_TYPE_VFS])); return FAIL; } inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = 1; inst.operands[i].vectype = optype; inst.operands[i].present = 1; } } else if ((val = arm_typed_reg_parse (&ptr, REG_TYPE_VFS, NULL, &optype)) != FAIL) { /* Case 13. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; inst.operands[i].isvec = 1; inst.operands[i].issingle = 1; inst.operands[i].vectype = optype; inst.operands[i++].present = 1; } } else { first_error (_("parse error")); return FAIL; } /* Successfully parsed the operands. Update args. */ *which_operand = i; *str = ptr; return SUCCESS; wanted_comma: first_error (_("expected comma")); return FAIL; wanted_arm: first_error (_(reg_expected_msgs[REG_TYPE_RN])); return FAIL; } /* Matcher codes for parse_operands. */ enum operand_parse_code { OP_stop, /* end of line */ OP_RR, /* ARM register */ OP_RRnpc, /* ARM register, not r15 */ OP_RRnpcb, /* ARM register, not r15, in square brackets */ OP_RRw, /* ARM register, not r15, optional trailing ! */ OP_RCP, /* Coprocessor number */ OP_RCN, /* Coprocessor register */ OP_RF, /* FPA register */ OP_RVS, /* VFP single precision register */ OP_RVD, /* VFP double precision register (0..15) */ OP_RND, /* Neon double precision register (0..31) */ OP_RNQ, /* Neon quad precision register */ OP_RVSD, /* VFP single or double precision register */ OP_RNDQ, /* Neon double or quad precision register */ OP_RNSDQ, /* Neon single, double or quad precision register */ OP_RNSC, /* Neon scalar D[X] */ OP_RVC, /* VFP control register */ OP_RMF, /* Maverick F register */ OP_RMD, /* Maverick D register */ OP_RMFX, /* Maverick FX register */ OP_RMDX, /* Maverick DX register */ OP_RMAX, /* Maverick AX register */ OP_RMDS, /* Maverick DSPSC register */ OP_RIWR, /* iWMMXt wR register */ OP_RIWC, /* iWMMXt wC register */ OP_RIWG, /* iWMMXt wCG register */ OP_RXA, /* XScale accumulator register */ OP_REGLST, /* ARM register list */ OP_VRSLST, /* VFP single-precision register list */ OP_VRDLST, /* VFP double-precision register list */ OP_VRSDLST, /* VFP single or double-precision register list (& quad) */ OP_NRDLST, /* Neon double-precision register list (d0-d31, qN aliases) */ OP_NSTRLST, /* Neon element/structure list */ OP_NILO, /* Neon immediate/logic operands 2 or 2+3. (VBIC, VORR...) */ OP_RNDQ_I0, /* Neon D or Q reg, or immediate zero. */ OP_RVSD_I0, /* VFP S or D reg, or immediate zero. */ OP_RR_RNSC, /* ARM reg or Neon scalar. */ OP_RNSDQ_RNSC, /* Vector S, D or Q reg, or Neon scalar. */ OP_RNDQ_RNSC, /* Neon D or Q reg, or Neon scalar. */ OP_RND_RNSC, /* Neon D reg, or Neon scalar. */ OP_VMOV, /* Neon VMOV operands. */ OP_RNDQ_IMVNb,/* Neon D or Q reg, or immediate good for VMVN. */ OP_RNDQ_I63b, /* Neon D or Q reg, or immediate for shift. */ OP_I0, /* immediate zero */ OP_I7, /* immediate value 0 .. 7 */ OP_I15, /* 0 .. 15 */ OP_I16, /* 1 .. 16 */ OP_I16z, /* 0 .. 16 */ OP_I31, /* 0 .. 31 */ OP_I31w, /* 0 .. 31, optional trailing ! */ OP_I32, /* 1 .. 32 */ OP_I32z, /* 0 .. 32 */ OP_I63, /* 0 .. 63 */ OP_I63s, /* -64 .. 63 */ OP_I64, /* 1 .. 64 */ OP_I64z, /* 0 .. 64 */ OP_I255, /* 0 .. 255 */ OP_I4b, /* immediate, prefix optional, 1 .. 4 */ OP_I7b, /* 0 .. 7 */ OP_I15b, /* 0 .. 15 */ OP_I31b, /* 0 .. 31 */ OP_SH, /* shifter operand */ OP_SHG, /* shifter operand with possible group relocation */ OP_ADDR, /* Memory address expression (any mode) */ OP_ADDRGLDR, /* Mem addr expr (any mode) with possible LDR group reloc */ OP_ADDRGLDRS, /* Mem addr expr (any mode) with possible LDRS group reloc */ OP_ADDRGLDC, /* Mem addr expr (any mode) with possible LDC group reloc */ OP_EXP, /* arbitrary expression */ OP_EXPi, /* same, with optional immediate prefix */ OP_EXPr, /* same, with optional relocation suffix */ OP_HALF, /* 0 .. 65535 or low/high reloc. */ OP_CPSF, /* CPS flags */ OP_ENDI, /* Endianness specifier */ OP_PSR, /* CPSR/SPSR mask for msr */ OP_COND, /* conditional code */ OP_TB, /* Table branch. */ OP_RVC_PSR, /* CPSR/SPSR mask for msr, or VFP control register. */ OP_APSR_RR, /* ARM register or "APSR_nzcv". */ OP_RRnpc_I0, /* ARM register or literal 0 */ OP_RR_EXr, /* ARM register or expression with opt. reloc suff. */ OP_RR_EXi, /* ARM register or expression with imm prefix */ OP_RF_IF, /* FPA register or immediate */ OP_RIWR_RIWC, /* iWMMXt R or C reg */ OP_RIWC_RIWG, /* iWMMXt wC or wCG reg */ /* Optional operands. */ OP_oI7b, /* immediate, prefix optional, 0 .. 7 */ OP_oI31b, /* 0 .. 31 */ OP_oI32b, /* 1 .. 32 */ OP_oIffffb, /* 0 .. 65535 */ OP_oI255c, /* curly-brace enclosed, 0 .. 255 */ OP_oRR, /* ARM register */ OP_oRRnpc, /* ARM register, not the PC */ OP_oRND, /* Optional Neon double precision register */ OP_oRNQ, /* Optional Neon quad precision register */ OP_oRNDQ, /* Optional Neon double or quad precision register */ OP_oRNSDQ, /* Optional single, double or quad precision vector register */ OP_oSHll, /* LSL immediate */ OP_oSHar, /* ASR immediate */ OP_oSHllar, /* LSL or ASR immediate */ OP_oROR, /* ROR 0/8/16/24 */ OP_oBARRIER, /* Option argument for a barrier instruction. */ OP_FIRST_OPTIONAL = OP_oI7b }; /* Generic instruction operand parser. This does no encoding and no semantic validation; it merely squirrels values away in the inst structure. Returns SUCCESS or FAIL depending on whether the specified grammar matched. */ static int parse_operands (char *str, const unsigned char *pattern) { unsigned const char *upat = pattern; char *backtrack_pos = 0; const char *backtrack_error = 0; int i, val, backtrack_index = 0; enum arm_reg_type rtype; parse_operand_result result; #define po_char_or_fail(chr) do { \ if (skip_past_char (&str, chr) == FAIL) \ goto bad_args; \ } while (0) #define po_reg_or_fail(regtype) do { \ val = arm_typed_reg_parse (&str, regtype, &rtype, \ &inst.operands[i].vectype); \ if (val == FAIL) \ { \ first_error (_(reg_expected_msgs[regtype])); \ goto failure; \ } \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \ inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \ inst.operands[i].isvec = (rtype == REG_TYPE_VFS \ || rtype == REG_TYPE_VFD \ || rtype == REG_TYPE_NQ); \ } while (0) #define po_reg_or_goto(regtype, label) do { \ val = arm_typed_reg_parse (&str, regtype, &rtype, \ &inst.operands[i].vectype); \ if (val == FAIL) \ goto label; \ \ inst.operands[i].reg = val; \ inst.operands[i].isreg = 1; \ inst.operands[i].isquad = (rtype == REG_TYPE_NQ); \ inst.operands[i].issingle = (rtype == REG_TYPE_VFS); \ inst.operands[i].isvec = (rtype == REG_TYPE_VFS \ || rtype == REG_TYPE_VFD \ || rtype == REG_TYPE_NQ); \ } while (0) #define po_imm_or_fail(min, max, popt) do { \ if (parse_immediate (&str, &val, min, max, popt) == FAIL) \ goto failure; \ inst.operands[i].imm = val; \ } while (0) #define po_scalar_or_goto(elsz, label) do { \ val = parse_scalar (&str, elsz, &inst.operands[i].vectype); \ if (val == FAIL) \ goto label; \ inst.operands[i].reg = val; \ inst.operands[i].isscalar = 1; \ } while (0) #define po_misc_or_fail(expr) do { \ if (expr) \ goto failure; \ } while (0) #define po_misc_or_fail_no_backtrack(expr) do { \ result = expr; \ if (result == PARSE_OPERAND_FAIL_NO_BACKTRACK)\ backtrack_pos = 0; \ if (result != PARSE_OPERAND_SUCCESS) \ goto failure; \ } while (0) skip_whitespace (str); for (i = 0; upat[i] != OP_stop; i++) { if (upat[i] >= OP_FIRST_OPTIONAL) { /* Remember where we are in case we need to backtrack. */ assert (!backtrack_pos); backtrack_pos = str; backtrack_error = inst.error; backtrack_index = i; } if (i > 0) po_char_or_fail (','); switch (upat[i]) { /* Registers */ case OP_oRRnpc: case OP_RRnpc: case OP_oRR: case OP_RR: po_reg_or_fail (REG_TYPE_RN); break; case OP_RCP: po_reg_or_fail (REG_TYPE_CP); break; case OP_RCN: po_reg_or_fail (REG_TYPE_CN); break; case OP_RF: po_reg_or_fail (REG_TYPE_FN); break; case OP_RVS: po_reg_or_fail (REG_TYPE_VFS); break; case OP_RVD: po_reg_or_fail (REG_TYPE_VFD); break; case OP_oRND: case OP_RND: po_reg_or_fail (REG_TYPE_VFD); break; case OP_RVC: po_reg_or_fail (REG_TYPE_VFC); break; case OP_RMF: po_reg_or_fail (REG_TYPE_MVF); break; case OP_RMD: po_reg_or_fail (REG_TYPE_MVD); break; case OP_RMFX: po_reg_or_fail (REG_TYPE_MVFX); break; case OP_RMDX: po_reg_or_fail (REG_TYPE_MVDX); break; case OP_RMAX: po_reg_or_fail (REG_TYPE_MVAX); break; case OP_RMDS: po_reg_or_fail (REG_TYPE_DSPSC); break; case OP_RIWR: po_reg_or_fail (REG_TYPE_MMXWR); break; case OP_RIWC: po_reg_or_fail (REG_TYPE_MMXWC); break; case OP_RIWG: po_reg_or_fail (REG_TYPE_MMXWCG); break; case OP_RXA: po_reg_or_fail (REG_TYPE_XSCALE); break; case OP_oRNQ: case OP_RNQ: po_reg_or_fail (REG_TYPE_NQ); break; case OP_oRNDQ: case OP_RNDQ: po_reg_or_fail (REG_TYPE_NDQ); break; case OP_RVSD: po_reg_or_fail (REG_TYPE_VFSD); break; case OP_oRNSDQ: case OP_RNSDQ: po_reg_or_fail (REG_TYPE_NSDQ); break; /* Neon scalar. Using an element size of 8 means that some invalid scalars are accepted here, so deal with those in later code. */ case OP_RNSC: po_scalar_or_goto (8, failure); break; /* WARNING: We can expand to two operands here. This has the potential to totally confuse the backtracking mechanism! It will be OK at least as long as we don't try to use optional args as well, though. */ case OP_NILO: { po_reg_or_goto (REG_TYPE_NDQ, try_imm); inst.operands[i].present = 1; i++; skip_past_comma (&str); po_reg_or_goto (REG_TYPE_NDQ, one_reg_only); break; one_reg_only: /* Optional register operand was omitted. Unfortunately, it's in operands[i-1] and we need it to be in inst.operands[i]. Fix that here (this is a bit grotty). */ inst.operands[i] = inst.operands[i-1]; inst.operands[i-1].present = 0; break; try_imm: /* Immediate gets verified properly later, so accept any now. */ po_imm_or_fail (INT_MIN, INT_MAX, TRUE); } break; case OP_RNDQ_I0: { po_reg_or_goto (REG_TYPE_NDQ, try_imm0); break; try_imm0: po_imm_or_fail (0, 0, TRUE); } break; case OP_RVSD_I0: po_reg_or_goto (REG_TYPE_VFSD, try_imm0); break; case OP_RR_RNSC: { po_scalar_or_goto (8, try_rr); break; try_rr: po_reg_or_fail (REG_TYPE_RN); } break; case OP_RNSDQ_RNSC: { po_scalar_or_goto (8, try_nsdq); break; try_nsdq: po_reg_or_fail (REG_TYPE_NSDQ); } break; case OP_RNDQ_RNSC: { po_scalar_or_goto (8, try_ndq); break; try_ndq: po_reg_or_fail (REG_TYPE_NDQ); } break; case OP_RND_RNSC: { po_scalar_or_goto (8, try_vfd); break; try_vfd: po_reg_or_fail (REG_TYPE_VFD); } break; case OP_VMOV: /* WARNING: parse_neon_mov can move the operand counter, i. If we're not careful then bad things might happen. */ po_misc_or_fail (parse_neon_mov (&str, &i) == FAIL); break; case OP_RNDQ_IMVNb: { po_reg_or_goto (REG_TYPE_NDQ, try_mvnimm); break; try_mvnimm: /* There's a possibility of getting a 64-bit immediate here, so we need special handling. */ if (parse_big_immediate (&str, i) == FAIL) { inst.error = _("immediate value is out of range"); goto failure; } } break; case OP_RNDQ_I63b: { po_reg_or_goto (REG_TYPE_NDQ, try_shimm); break; try_shimm: po_imm_or_fail (0, 63, TRUE); } break; case OP_RRnpcb: po_char_or_fail ('['); po_reg_or_fail (REG_TYPE_RN); po_char_or_fail (']'); break; case OP_RRw: po_reg_or_fail (REG_TYPE_RN); if (skip_past_char (&str, '!') == SUCCESS) inst.operands[i].writeback = 1; break; /* Immediates */ case OP_I7: po_imm_or_fail ( 0, 7, FALSE); break; case OP_I15: po_imm_or_fail ( 0, 15, FALSE); break; case OP_I16: po_imm_or_fail ( 1, 16, FALSE); break; case OP_I16z: po_imm_or_fail ( 0, 16, FALSE); break; case OP_I31: po_imm_or_fail ( 0, 31, FALSE); break; case OP_I32: po_imm_or_fail ( 1, 32, FALSE); break; case OP_I32z: po_imm_or_fail ( 0, 32, FALSE); break; case OP_I63s: po_imm_or_fail (-64, 63, FALSE); break; case OP_I63: po_imm_or_fail ( 0, 63, FALSE); break; case OP_I64: po_imm_or_fail ( 1, 64, FALSE); break; case OP_I64z: po_imm_or_fail ( 0, 64, FALSE); break; case OP_I255: po_imm_or_fail ( 0, 255, FALSE); break; case OP_I4b: po_imm_or_fail ( 1, 4, TRUE); break; case OP_oI7b: case OP_I7b: po_imm_or_fail ( 0, 7, TRUE); break; case OP_I15b: po_imm_or_fail ( 0, 15, TRUE); break; case OP_oI31b: case OP_I31b: po_imm_or_fail ( 0, 31, TRUE); break; case OP_oI32b: po_imm_or_fail ( 1, 32, TRUE); break; case OP_oIffffb: po_imm_or_fail ( 0, 0xffff, TRUE); break; /* Immediate variants */ case OP_oI255c: po_char_or_fail ('{'); po_imm_or_fail (0, 255, TRUE); po_char_or_fail ('}'); break; case OP_I31w: /* The expression parser chokes on a trailing !, so we have to find it first and zap it. */ { char *s = str; while (*s && *s != ',') s++; if (s[-1] == '!') { s[-1] = '\0'; inst.operands[i].writeback = 1; } po_imm_or_fail (0, 31, TRUE); if (str == s - 1) str = s; } break; /* Expressions */ case OP_EXPi: EXPi: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_OPT_PREFIX)); break; case OP_EXP: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_NO_PREFIX)); break; case OP_EXPr: EXPr: po_misc_or_fail (my_get_expression (&inst.reloc.exp, &str, GE_NO_PREFIX)); if (inst.reloc.exp.X_op == O_symbol) { val = parse_reloc (&str); if (val == -1) { inst.error = _("unrecognized relocation suffix"); goto failure; } else if (val != BFD_RELOC_UNUSED) { inst.operands[i].imm = val; inst.operands[i].hasreloc = 1; } } break; /* Operand for MOVW or MOVT. */ case OP_HALF: po_misc_or_fail (parse_half (&str)); break; /* Register or expression */ case OP_RR_EXr: po_reg_or_goto (REG_TYPE_RN, EXPr); break; case OP_RR_EXi: po_reg_or_goto (REG_TYPE_RN, EXPi); break; /* Register or immediate */ case OP_RRnpc_I0: po_reg_or_goto (REG_TYPE_RN, I0); break; I0: po_imm_or_fail (0, 0, FALSE); break; case OP_RF_IF: po_reg_or_goto (REG_TYPE_FN, IF); break; IF: if (!is_immediate_prefix (*str)) goto bad_args; str++; val = parse_fpa_immediate (&str); if (val == FAIL) goto failure; /* FPA immediates are encoded as registers 8-15. parse_fpa_immediate has already applied the offset. */ inst.operands[i].reg = val; inst.operands[i].isreg = 1; break; /* Two kinds of register */ case OP_RIWR_RIWC: { struct reg_entry *rege = arm_reg_parse_multi (&str); if (!rege || (rege->type != REG_TYPE_MMXWR && rege->type != REG_TYPE_MMXWC && rege->type != REG_TYPE_MMXWCG)) { inst.error = _("iWMMXt data or control register expected"); goto failure; } inst.operands[i].reg = rege->number; inst.operands[i].isreg = (rege->type == REG_TYPE_MMXWR); } break; case OP_RIWC_RIWG: { struct reg_entry *rege = arm_reg_parse_multi (&str); if (!rege || (rege->type != REG_TYPE_MMXWC && rege->type != REG_TYPE_MMXWCG)) { inst.error = _("iWMMXt control register expected"); goto failure; } inst.operands[i].reg = rege->number; inst.operands[i].isreg = 1; } break; /* Misc */ case OP_CPSF: val = parse_cps_flags (&str); break; case OP_ENDI: val = parse_endian_specifier (&str); break; case OP_oROR: val = parse_ror (&str); break; case OP_PSR: val = parse_psr (&str); break; case OP_COND: val = parse_cond (&str); break; case OP_oBARRIER:val = parse_barrier (&str); break; case OP_RVC_PSR: po_reg_or_goto (REG_TYPE_VFC, try_psr); inst.operands[i].isvec = 1; /* Mark VFP control reg as vector. */ break; try_psr: val = parse_psr (&str); break; case OP_APSR_RR: po_reg_or_goto (REG_TYPE_RN, try_apsr); break; try_apsr: /* Parse "APSR_nvzc" operand (for FMSTAT-equivalent MRS instruction). */ if (strncasecmp (str, "APSR_", 5) == 0) { unsigned found = 0; str += 5; while (found < 15) switch (*str++) { case 'c': found = (found & 1) ? 16 : found | 1; break; case 'n': found = (found & 2) ? 16 : found | 2; break; case 'z': found = (found & 4) ? 16 : found | 4; break; case 'v': found = (found & 8) ? 16 : found | 8; break; default: found = 16; } if (found != 15) goto failure; inst.operands[i].isvec = 1; } else goto failure; break; case OP_TB: po_misc_or_fail (parse_tb (&str)); break; /* Register lists */ case OP_REGLST: val = parse_reg_list (&str); if (*str == '^') { inst.operands[1].writeback = 1; str++; } break; case OP_VRSLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S); break; case OP_VRDLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_D); break; case OP_VRSDLST: /* Allow Q registers too. */ val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_NEON_D); if (val == FAIL) { inst.error = NULL; val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_VFP_S); inst.operands[i].issingle = 1; } break; case OP_NRDLST: val = parse_vfp_reg_list (&str, &inst.operands[i].reg, REGLIST_NEON_D); break; case OP_NSTRLST: val = parse_neon_el_struct_list (&str, &inst.operands[i].reg, &inst.operands[i].vectype); break; /* Addressing modes */ case OP_ADDR: po_misc_or_fail (parse_address (&str, i)); break; case OP_ADDRGLDR: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDR)); break; case OP_ADDRGLDRS: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDRS)); break; case OP_ADDRGLDC: po_misc_or_fail_no_backtrack ( parse_address_group_reloc (&str, i, GROUP_LDC)); break; case OP_SH: po_misc_or_fail (parse_shifter_operand (&str, i)); break; case OP_SHG: po_misc_or_fail_no_backtrack ( parse_shifter_operand_group_reloc (&str, i)); break; case OP_oSHll: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_IMMEDIATE)); break; case OP_oSHar: po_misc_or_fail (parse_shift (&str, i, SHIFT_ASR_IMMEDIATE)); break; case OP_oSHllar: po_misc_or_fail (parse_shift (&str, i, SHIFT_LSL_OR_ASR_IMMEDIATE)); break; default: as_fatal ("unhandled operand code %d", upat[i]); } /* Various value-based sanity checks and shared operations. We do not signal immediate failures for the register constraints; this allows a syntax error to take precedence. */ switch (upat[i]) { case OP_oRRnpc: case OP_RRnpc: case OP_RRnpcb: case OP_RRw: case OP_RRnpc_I0: if (inst.operands[i].isreg && inst.operands[i].reg == REG_PC) inst.error = BAD_PC; break; case OP_CPSF: case OP_ENDI: case OP_oROR: case OP_PSR: case OP_RVC_PSR: case OP_COND: case OP_oBARRIER: case OP_REGLST: case OP_VRSLST: case OP_VRDLST: case OP_VRSDLST: case OP_NRDLST: case OP_NSTRLST: if (val == FAIL) goto failure; inst.operands[i].imm = val; break; default: break; } /* If we get here, this operand was successfully parsed. */ inst.operands[i].present = 1; continue; bad_args: inst.error = BAD_ARGS; failure: if (!backtrack_pos) { /* The parse routine should already have set inst.error, but set a defaut here just in case. */ if (!inst.error) inst.error = _("syntax error"); return FAIL; } /* Do not backtrack over a trailing optional argument that absorbed some text. We will only fail again, with the 'garbage following instruction' error message, which is probably less helpful than the current one. */ if (backtrack_index == i && backtrack_pos != str && upat[i+1] == OP_stop) { if (!inst.error) inst.error = _("syntax error"); return FAIL; } /* Try again, skipping the optional argument at backtrack_pos. */ str = backtrack_pos; inst.error = backtrack_error; inst.operands[backtrack_index].present = 0; i = backtrack_index; backtrack_pos = 0; } /* Check that we have parsed all the arguments. */ if (*str != '\0' && !inst.error) inst.error = _("garbage following instruction"); return inst.error ? FAIL : SUCCESS; } #undef po_char_or_fail #undef po_reg_or_fail #undef po_reg_or_goto #undef po_imm_or_fail #undef po_scalar_or_fail /* Shorthand macro for instruction encoding functions issuing errors. */ #define constraint(expr, err) do { \ if (expr) \ { \ inst.error = err; \ return; \ } \ } while (0) /* Functions for operand encoding. ARM, then Thumb. */ #define rotate_left(v, n) (v << n | v >> (32 - n)) /* If VAL can be encoded in the immediate field of an ARM instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_arm_immediate (unsigned int val) { unsigned int a, i; for (i = 0; i < 32; i += 2) if ((a = rotate_left (val, i)) <= 0xff) return a | (i << 7); /* 12-bit pack: [shift-cnt,const]. */ return FAIL; } /* If VAL can be encoded in the immediate field of a Thumb32 instruction, return the encoded form. Otherwise, return FAIL. */ static unsigned int encode_thumb32_immediate (unsigned int val) { unsigned int a, i; if (val <= 0xff) return val; for (i = 1; i <= 24; i++) { a = val >> i; if ((val & ~(0xff << i)) == 0) return ((val >> i) & 0x7f) | ((32 - i) << 7); } a = val & 0xff; if (val == ((a << 16) | a)) return 0x100 | a; if (val == ((a << 24) | (a << 16) | (a << 8) | a)) return 0x300 | a; a = val & 0xff00; if (val == ((a << 16) | a)) return 0x200 | (a >> 8); return FAIL; } /* Encode a VFP SP or DP register number into inst.instruction. */ static void encode_arm_vfp_reg (int reg, enum vfp_reg_pos pos) { if ((pos == VFP_REG_Dd || pos == VFP_REG_Dn || pos == VFP_REG_Dm) && reg > 15) { if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v3)) { if (thumb_mode) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, fpu_vfp_ext_v3); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, fpu_vfp_ext_v3); } else { first_error (_("D register out of range for selected VFP version")); return; } } switch (pos) { case VFP_REG_Sd: inst.instruction |= ((reg >> 1) << 12) | ((reg & 1) << 22); break; case VFP_REG_Sn: inst.instruction |= ((reg >> 1) << 16) | ((reg & 1) << 7); break; case VFP_REG_Sm: inst.instruction |= ((reg >> 1) << 0) | ((reg & 1) << 5); break; case VFP_REG_Dd: inst.instruction |= ((reg & 15) << 12) | ((reg >> 4) << 22); break; case VFP_REG_Dn: inst.instruction |= ((reg & 15) << 16) | ((reg >> 4) << 7); break; case VFP_REG_Dm: inst.instruction |= (reg & 15) | ((reg >> 4) << 5); break; default: abort (); } } /* Encode a in an ARM-format instruction. The immediate, if any, is handled by md_apply_fix. */ static void encode_arm_shift (int i) { if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; if (inst.operands[i].immisreg) { inst.instruction |= SHIFT_BY_REG; inst.instruction |= inst.operands[i].imm << 8; } else inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } } static void encode_arm_shifter_operand (int i) { if (inst.operands[i].isreg) { inst.instruction |= inst.operands[i].reg; encode_arm_shift (i); } else inst.instruction |= INST_IMMEDIATE; } /* Subroutine of encode_arm_addr_mode_2 and encode_arm_addr_mode_3. */ static void encode_arm_addr_mode_common (int i, bfd_boolean is_t) { assert (inst.operands[i].isreg); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].preind) { if (is_t) { inst.error = _("instruction does not accept preindexed addressing"); return; } inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) inst.instruction |= WRITE_BACK; } else if (inst.operands[i].postind) { assert (inst.operands[i].writeback); if (is_t) inst.instruction |= WRITE_BACK; } else /* unindexed - only for coprocessor */ { inst.error = _("instruction does not accept unindexed addressing"); return; } if (((inst.instruction & WRITE_BACK) || !(inst.instruction & PRE_INDEX)) && (((inst.instruction & 0x000f0000) >> 16) == ((inst.instruction & 0x0000f000) >> 12))) as_warn ((inst.instruction & LOAD_BIT) ? _("destination register same as write-back base") : _("source register same as write-back base")); } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 2 load or store instruction. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_2 (int i, bfd_boolean is_t) { encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { inst.instruction |= INST_IMMEDIATE; /* yes, this is backwards */ inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; if (inst.operands[i].shifted) { if (inst.operands[i].shift_kind == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 5; else { inst.instruction |= inst.operands[i].shift_kind << 5; inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } } } else /* immediate offset in inst.reloc */ { if (inst.reloc.type == BFD_RELOC_UNUSED) inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM; } } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format mode 3 load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction (i.e. not post-indexed). */ static void encode_arm_addr_mode_3 (int i, bfd_boolean is_t) { if (inst.operands[i].immisreg && inst.operands[i].shifted) { inst.error = _("instruction does not accept scaled register index"); return; } encode_arm_addr_mode_common (i, is_t); if (inst.operands[i].immisreg) { inst.instruction |= inst.operands[i].imm; if (!inst.operands[i].negative) inst.instruction |= INDEX_UP; } else /* immediate offset in inst.reloc */ { inst.instruction |= HWOFFSET_IMM; if (inst.reloc.type == BFD_RELOC_UNUSED) inst.reloc.type = BFD_RELOC_ARM_OFFSET_IMM8; } } /* inst.operands[i] was set up by parse_address. Encode it into an ARM-format instruction. Reject all forms which cannot be encoded into a coprocessor load/store instruction. If wb_ok is false, reject use of writeback; if unind_ok is false, reject use of unindexed addressing. If reloc_override is not 0, use it instead of BFD_ARM_CP_OFF_IMM, unless the initial relocation is a group one (in which case it is preserved). */ static int encode_arm_cp_address (int i, int wb_ok, int unind_ok, int reloc_override) { inst.instruction |= inst.operands[i].reg << 16; assert (!(inst.operands[i].preind && inst.operands[i].postind)); if (!inst.operands[i].preind && !inst.operands[i].postind) /* unindexed */ { assert (!inst.operands[i].writeback); if (!unind_ok) { inst.error = _("instruction does not support unindexed addressing"); return FAIL; } inst.instruction |= inst.operands[i].imm; inst.instruction |= INDEX_UP; return SUCCESS; } if (inst.operands[i].preind) inst.instruction |= PRE_INDEX; if (inst.operands[i].writeback) { if (inst.operands[i].reg == REG_PC) { inst.error = _("pc may not be used with write-back"); return FAIL; } if (!wb_ok) { inst.error = _("instruction does not support writeback"); return FAIL; } inst.instruction |= WRITE_BACK; } if (reloc_override) inst.reloc.type = reloc_override; else if ((inst.reloc.type < BFD_RELOC_ARM_ALU_PC_G0_NC || inst.reloc.type > BFD_RELOC_ARM_LDC_SB_G2) && inst.reloc.type != BFD_RELOC_ARM_LDR_PC_G0) { if (thumb_mode) inst.reloc.type = BFD_RELOC_ARM_T32_CP_OFF_IMM; else inst.reloc.type = BFD_RELOC_ARM_CP_OFF_IMM; } return SUCCESS; } /* inst.reloc.exp describes an "=expr" load pseudo-operation. Determine whether it can be performed with a move instruction; if it can, convert inst.instruction to that move instruction and return 1; if it can't, convert inst.instruction to a literal-pool load and return 0. If this is not a valid thing to do in the current context, set inst.error and return 1. inst.operands[i] describes the destination register. */ static int move_or_literal_pool (int i, bfd_boolean thumb_p, bfd_boolean mode_3) { unsigned long tbit; if (thumb_p) tbit = (inst.instruction > 0xffff) ? THUMB2_LOAD_BIT : THUMB_LOAD_BIT; else tbit = LOAD_BIT; if ((inst.instruction & tbit) == 0) { inst.error = _("invalid pseudo operation"); return 1; } if (inst.reloc.exp.X_op != O_constant && inst.reloc.exp.X_op != O_symbol) { inst.error = _("constant expression expected"); return 1; } if (inst.reloc.exp.X_op == O_constant) { if (thumb_p) { if (!unified_syntax && (inst.reloc.exp.X_add_number & ~0xFF) == 0) { /* This can be done with a mov(1) instruction. */ inst.instruction = T_OPCODE_MOV_I8 | (inst.operands[i].reg << 8); inst.instruction |= inst.reloc.exp.X_add_number; return 1; } } else { int value = encode_arm_immediate (inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mov instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MOV << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return 1; } value = encode_arm_immediate (~inst.reloc.exp.X_add_number); if (value != FAIL) { /* This can be done with a mvn instruction. */ inst.instruction &= LITERAL_MASK; inst.instruction |= INST_IMMEDIATE | (OPCODE_MVN << DATA_OP_SHIFT); inst.instruction |= value & 0xfff; return 1; } } } if (add_to_lit_pool () == FAIL) { inst.error = _("literal pool insertion failed"); return 1; } inst.operands[1].reg = REG_PC; inst.operands[1].isreg = 1; inst.operands[1].preind = 1; inst.reloc.pc_rel = 1; inst.reloc.type = (thumb_p ? BFD_RELOC_ARM_THUMB_OFFSET : (mode_3 ? BFD_RELOC_ARM_HWLITERAL : BFD_RELOC_ARM_LITERAL)); return 0; } /* Functions for instruction encoding, sorted by subarchitecture. First some generics; their names are taken from the conventional bit positions for register arguments in ARM format instructions. */ static void do_noargs (void) { } static void do_rd (void) { inst.instruction |= inst.operands[0].reg << 12; } static void do_rd_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; } static void do_rd_rn (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } static void do_rn_rd (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; } static void do_rd_rm_rn (void) { unsigned Rn = inst.operands[2].reg; /* Enforce restrictions on SWP instruction. */ if ((inst.instruction & 0x0fbfffff) == 0x01000090) constraint (Rn == inst.operands[0].reg || Rn == inst.operands[1].reg, _("Rn must not overlap other operands")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= Rn << 16; } static void do_rd_rn_rm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_rm_rd_rn (void) { inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_imm0 (void) { inst.instruction |= inst.operands[0].imm; } static void do_rd_cpaddr (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, TRUE, 0); } /* ARM instructions, in alphabetical order by function name (except that wrapper functions appear immediately after the function they wrap). */ /* This is a pseudo-op of the form "adr rd, label" to be converted into a relative address of the form "add rd, pc, #label-.-8". */ static void do_adr (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 1; inst.reloc.exp.X_add_number -= 8; } /* This is a pseudo-op of the form "adrl rd, label" to be converted into a relative address of the form: add rd, pc, #low(label-.-8)" add rd, rd, #high(label-.-8)" */ static void do_adrl (void) { inst.instruction |= (inst.operands[0].reg << 12); /* Rd */ /* Frag hacking will turn this into a sub instruction if the offset turns out to be negative. */ inst.reloc.type = BFD_RELOC_ARM_ADRL_IMMEDIATE; inst.reloc.pc_rel = 1; inst.size = INSN_SIZE * 2; inst.reloc.exp.X_add_number -= 8; } static void do_arit (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_shifter_operand (2); } static void do_barrier (void) { if (inst.operands[0].present) { constraint ((inst.instruction & 0xf0) != 0x40 && inst.operands[0].imm != 0xf, "bad barrier type"); inst.instruction |= inst.operands[0].imm; } else inst.instruction |= 0xf; } static void do_bfc (void) { unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfi (void) { unsigned int msb; /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) inst.operands[1].reg = REG_PC; msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (msb - 1) << 16; } static void do_bfx (void) { constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 7; inst.instruction |= (inst.operands[3].imm - 1) << 16; } /* ARM V5 breakpoint instruction (argument parse) BKPT <16 bit unsigned immediate> Instruction is not conditional. The bit pattern given in insns[] has the COND_ALWAYS condition, and it is an error if the caller tried to override that. */ static void do_bkpt (void) { /* Top 12 of 16 bits to bits 19:8. */ inst.instruction |= (inst.operands[0].imm & 0xfff0) << 4; /* Bottom 4 of 16 bits to bits 3:0. */ inst.instruction |= inst.operands[0].imm & 0xf; } static void encode_branch (int default_reloc) { if (inst.operands[0].hasreloc) { constraint (inst.operands[0].imm != BFD_RELOC_ARM_PLT32, _("the only suffix valid here is '(plt)'")); inst.reloc.type = BFD_RELOC_ARM_PLT32; } else { inst.reloc.type = default_reloc; } inst.reloc.pc_rel = 1; } static void do_branch (void) { #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) encode_branch (BFD_RELOC_ARM_PCREL_JUMP); else #endif encode_branch (BFD_RELOC_ARM_PCREL_BRANCH); } static void do_bl (void) { #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) { if (inst.cond == COND_ALWAYS) encode_branch (BFD_RELOC_ARM_PCREL_CALL); else encode_branch (BFD_RELOC_ARM_PCREL_JUMP); } else #endif encode_branch (BFD_RELOC_ARM_PCREL_BRANCH); } /* ARM V5 branch-link-exchange instruction (argument parse) BLX ie BLX(1) BLX{} ie BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. Also, the can be 25 bits, hence has its own reloc. */ static void do_blx (void) { if (inst.operands[0].isreg) { /* Arg is a register; the opcode provided by insns[] is correct. It is not illegal to do "blx pc", just useless. */ if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in blx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; } else { /* Arg is an address; this instruction cannot be executed conditionally, and the opcode must be adjusted. */ constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction = 0xfa000000; #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) encode_branch (BFD_RELOC_ARM_PCREL_CALL); else #endif encode_branch (BFD_RELOC_ARM_PCREL_BLX); } } static void do_bx (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bx in ARM mode is not really useful")); inst.instruction |= inst.operands[0].reg; } /* ARM v5TEJ. Jump to Jazelle code. */ static void do_bxj (void) { if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bxj is not really useful")); inst.instruction |= inst.operands[0].reg; } /* Co-processor data operation: CDP{cond} , , , , {, } CDP2 , , , , {, } */ static void do_cdp (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 20; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } static void do_cmp (void) { inst.instruction |= inst.operands[0].reg << 16; encode_arm_shifter_operand (1); } /* Transfer between coprocessor and ARM registers. MRC{cond} , , , , {, } MRC2 MCR{cond} MCR2 No special properties. */ static void do_co_reg (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 21; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; inst.instruction |= inst.operands[5].imm << 5; } /* Transfer between coprocessor register and pair of ARM registers. MCRR{cond} , , , , . MCRR2 MRRC{cond} MRRC2 Two XScale instructions are special cases of these: MAR{cond} acc0, , == MCRR{cond} p0, #0, , , c0 MRA{cond} acc0, , == MRRC{cond} p0, #0, , , c0 Result unpredicatable if Rd or Rn is R15. */ static void do_co_reg2c (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm << 4; inst.instruction |= inst.operands[2].reg << 12; inst.instruction |= inst.operands[3].reg << 16; inst.instruction |= inst.operands[4].reg; } static void do_cpsi (void) { inst.instruction |= inst.operands[0].imm << 6; inst.instruction |= inst.operands[1].imm; } static void do_dbg (void) { inst.instruction |= inst.operands[0].imm; } static void do_it (void) { /* There is no IT instruction in ARM mode. We process it but do not generate code for it. */ inst.size = 0; } static void do_ldmstm (void) { int base_reg = inst.operands[0].reg; int range = inst.operands[1].imm; inst.instruction |= base_reg << 16; inst.instruction |= range; if (inst.operands[1].writeback) inst.instruction |= LDM_TYPE_2_OR_3; if (inst.operands[0].writeback) { inst.instruction |= WRITE_BACK; /* Check for unpredictable uses of writeback. */ if (inst.instruction & LOAD_BIT) { /* Not allowed in LDM type 2. */ if ((inst.instruction & LDM_TYPE_2_OR_3) && ((range & (1 << REG_PC)) == 0)) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list for other types. */ else if (range & (1 << base_reg)) as_warn (_("writeback of base register when in register list is UNPREDICTABLE")); } else /* STM. */ { /* Not allowed for type 2. */ if (inst.instruction & LDM_TYPE_2_OR_3) as_warn (_("writeback of base register is UNPREDICTABLE")); /* Only allowed if base reg not in list, or first in list. */ else if ((range & (1 << base_reg)) && (range & ((1 << base_reg) - 1))) as_warn (_("if writeback register is in list, it must be the lowest reg in the list")); } } } /* ARMv5TE load-consecutive (argument parse) Mode is like LDRH. LDRccD R, mode STRccD R, mode. */ static void do_ldrd (void) { constraint (inst.operands[0].reg % 2 != 0, _("first destination register must be even")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only load two consecutive registers")); constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); constraint (!inst.operands[2].isreg, _("'[' expected")); if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg + 1; if (inst.instruction & LOAD_BIT) { /* encode_arm_addr_mode_3 will diagnose overlap between the base register and the first register written; we have to diagnose overlap between the base and the second register written here. */ if (inst.operands[2].reg == inst.operands[1].reg && (inst.operands[2].writeback || inst.operands[2].postind)) as_warn (_("base register written back, and overlaps " "second destination register")); /* For an index-register load, the index register must not overlap the destination (even if not write-back). */ else if (inst.operands[2].immisreg && ((unsigned) inst.operands[2].imm == inst.operands[0].reg || (unsigned) inst.operands[2].imm == inst.operands[1].reg)) as_warn (_("index register overlaps destination register")); } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (2, /*is_t=*/FALSE); } static void do_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative /* This can arise if the programmer has written strex rN, rM, foo or if they have mistakenly used a register name as the last operand, eg: strex rN, rM, rX It is very difficult to distinguish between these two cases because "rX" might actually be a label. ie the register name has been occluded by a symbol of the same name. So we just generate a general 'bad addressing mode' type error message and leave it up to the programmer to discover the true cause and fix their mistake. */ || (inst.operands[1].reg == REG_PC), BAD_ADDR_MODE); constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("offset must be zero in ARM encoding")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.reloc.type = BFD_RELOC_UNUSED; } static void do_ldrexd (void) { constraint (inst.operands[0].reg % 2 != 0, _("even register required")); constraint (inst.operands[1].present && inst.operands[1].reg != inst.operands[0].reg + 1, _("can only load two consecutive registers")); /* If op 1 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_ldst (void) { inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/FALSE)) return; encode_arm_addr_mode_2 (1, /*is_t=*/FALSE); } static void do_ldstt (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_2 (1, /*is_t=*/TRUE); } /* Halfword and signed-byte load/store operations. */ static void do_ldstv4 (void) { inst.instruction |= inst.operands[0].reg << 12; if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/FALSE, /*mode_3=*/TRUE)) return; encode_arm_addr_mode_3 (1, /*is_t=*/FALSE); } static void do_ldsttv4 (void) { /* ldrt/strt always use post-indexed addressing. Turn [Rn] into [Rn]! and reject [Rn,...]. */ if (inst.operands[1].preind) { constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction requires a post-indexed address")); inst.operands[1].preind = 0; inst.operands[1].postind = 1; inst.operands[1].writeback = 1; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_addr_mode_3 (1, /*is_t=*/TRUE); } /* Co-processor register load/store. Format: {cond}[L] CP#,CRd,
*/ static void do_lstc (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; encode_arm_cp_address (2, TRUE, TRUE, 0); } static void do_mlas (void) { /* This restriction does not apply to mls (nor to mla in v6, but that's hard to detect at present). */ if (inst.operands[0].reg == inst.operands[1].reg && !(inst.instruction & 0x00400000)) as_tsktsk (_("rd and rm should be different in mla")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } static void do_mov (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_shifter_operand (1); } /* ARM V6T2 16-bit immediate register load: MOV[WT]{cond} Rd, #. */ static void do_mov16 (void) { bfd_vma imm; bfd_boolean top; top = (inst.instruction & 0x00400000) != 0; constraint (top && inst.reloc.type == BFD_RELOC_ARM_MOVW, _(":lower16: not allowed this instruction")); constraint (!top && inst.reloc.type == BFD_RELOC_ARM_MOVT, _(":upper16: not allowed instruction")); inst.instruction |= inst.operands[0].reg << 12; if (inst.reloc.type == BFD_RELOC_UNUSED) { imm = inst.reloc.exp.X_add_number; /* The value is in two pieces: 0:11, 16:19. */ inst.instruction |= (imm & 0x00000fff); inst.instruction |= (imm & 0x0000f000) << 4; } } static void do_vfp_nsyn_opcode (const char *); static int do_vfp_nsyn_mrs (void) { if (inst.operands[0].isvec) { if (inst.operands[1].reg != 1) first_error (_("operand 1 must be FPSCR")); memset (&inst.operands[0], '\0', sizeof (inst.operands[0])); memset (&inst.operands[1], '\0', sizeof (inst.operands[1])); do_vfp_nsyn_opcode ("fmstat"); } else if (inst.operands[1].isvec) do_vfp_nsyn_opcode ("fmrx"); else return FAIL; return SUCCESS; } static int do_vfp_nsyn_msr (void) { if (inst.operands[0].isvec) do_vfp_nsyn_opcode ("fmxr"); else return FAIL; return SUCCESS; } static void do_mrs (void) { if (do_vfp_nsyn_mrs () == SUCCESS) return; /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */ constraint ((inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f)) != (PSR_c|PSR_f), _("'CPSR' or 'SPSR' expected")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (inst.operands[1].imm & SPSR_BIT); } /* Two possible forms: "{C|S}PSR_, Rm", "{C|S}PSR_f, #expression". */ static void do_msr (void) { if (do_vfp_nsyn_msr () == SUCCESS) return; inst.instruction |= inst.operands[0].imm; if (inst.operands[1].isreg) inst.instruction |= inst.operands[1].reg; else { inst.instruction |= INST_IMMEDIATE; inst.reloc.type = BFD_RELOC_ARM_IMMEDIATE; inst.reloc.pc_rel = 0; } } static void do_mul (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rd and rm should be different in mul")); } /* Long Multiply Parser UMULL RdLo, RdHi, Rm, Rs SMULL RdLo, RdHi, Rm, Rs UMLAL RdLo, RdHi, Rm, Rs SMLAL RdLo, RdHi, Rm, Rs. */ static void do_mull (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; /* rdhi, rdlo and rm must all be different. */ if (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg || inst.operands[1].reg == inst.operands[2].reg) as_tsktsk (_("rdhi, rdlo and rm must all be different")); } static void do_nop (void) { if (inst.operands[0].present) { /* Architectural NOP hints are CPSR sets with no bits selected. */ inst.instruction &= 0xf0000000; inst.instruction |= 0x0320f000 + inst.operands[0].imm; } } /* ARM V6 Pack Halfword Bottom Top instruction (argument parse). PKHBT {} , , {, LSL #} Condition defaults to COND_ALWAYS. Error if Rd, Rn or Rm are R15. */ static void do_pkhbt (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 PKHTB (Argument Parse). */ static void do_pkhtb (void) { if (!inst.operands[3].present) { /* If the shift specifier is omitted, turn the instruction into pkhbt rd, rm, rn. */ inst.instruction &= 0xfff00010; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; } else { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; encode_arm_shift (3); } } /* ARMv5TE: Preload-Cache PLD Syntactically, like LDR with B=1, W=0, L=1. */ static void do_pld (void) { constraint (!inst.operands[0].isreg, _("'[' expected after PLD mnemonic")); constraint (inst.operands[0].postind, _("post-indexed expression used in preload instruction")); constraint (inst.operands[0].writeback, _("writeback used in preload instruction")); constraint (!inst.operands[0].preind, _("unindexed addressing used in preload instruction")); encode_arm_addr_mode_2 (0, /*is_t=*/FALSE); } /* ARMv7: PLI */ static void do_pli (void) { constraint (!inst.operands[0].isreg, _("'[' expected after PLI mnemonic")); constraint (inst.operands[0].postind, _("post-indexed expression used in preload instruction")); constraint (inst.operands[0].writeback, _("writeback used in preload instruction")); constraint (!inst.operands[0].preind, _("unindexed addressing used in preload instruction")); encode_arm_addr_mode_2 (0, /*is_t=*/FALSE); inst.instruction &= ~PRE_INDEX; } static void do_push_pop (void) { inst.operands[1] = inst.operands[0]; memset (&inst.operands[0], 0, sizeof inst.operands[0]); inst.operands[0].isreg = 1; inst.operands[0].writeback = 1; inst.operands[0].reg = REG_SP; do_ldmstm (); } /* ARM V6 RFE (Return from Exception) loads the PC and CPSR from the word at the specified address and the following word respectively. Unconditionally executed. Error if Rn is R15. */ static void do_rfe (void) { inst.instruction |= inst.operands[0].reg << 16; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 ssat (argument parse). */ static void do_ssat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (inst.operands[1].imm - 1) << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 usat (argument parse). */ static void do_usat (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) encode_arm_shift (3); } /* ARM V6 ssat16 (argument parse). */ static void do_ssat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= ((inst.operands[1].imm - 1) << 16); inst.instruction |= inst.operands[2].reg; } static void do_usat16 (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm << 16; inst.instruction |= inst.operands[2].reg; } /* ARM V6 SETEND (argument parse). Sets the E bit in the CPSR while preserving the other bits. setend , where is either BE or LE. */ static void do_setend (void) { if (inst.operands[0].imm) inst.instruction |= 0x200; } static void do_shift (void) { unsigned int Rm = (inst.operands[1].present ? inst.operands[1].reg : inst.operands[0].reg); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= Rm; if (inst.operands[2].isreg) /* Rd, {Rm,} Rs */ { inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= SHIFT_BY_REG; } else inst.reloc.type = BFD_RELOC_ARM_SHIFT_IMM; } static void do_smc (void) { inst.reloc.type = BFD_RELOC_ARM_SMC; inst.reloc.pc_rel = 0; } static void do_swi (void) { inst.reloc.type = BFD_RELOC_ARM_SWI; inst.reloc.pc_rel = 0; } /* ARM V5E (El Segundo) signed-multiply-accumulate (argument parse) SMLAxy{cond} Rd,Rm,Rs,Rn SMLAWy{cond} Rd,Rm,Rs,Rn Error if any register is R15. */ static void do_smla (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 12; } /* ARM V5E (El Segundo) signed-multiply-accumulate-long (argument parse) SMLALxy{cond} Rdlo,Rdhi,Rm,Rs Error if any register is R15. Warning if Rdlo == Rdhi. */ static void do_smlal (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 8; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); } /* ARM V5E (El Segundo) signed-multiply (argument parse) SMULxy{cond} Rd,Rm,Rs Error if any register is R15. */ static void do_smul (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 8; } /* ARM V6 srs (argument parse). */ static void do_srs (void) { inst.instruction |= inst.operands[0].imm; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } /* ARM V6 strex (argument parse). */ static void do_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative /* See comment in do_ldrex(). */ || (inst.operands[2].reg == REG_PC), BAD_ADDR_MODE); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg, BAD_OVERLAP); constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("offset must be zero in ARM encoding")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 16; inst.reloc.type = BFD_RELOC_UNUSED; } static void do_strexd (void) { constraint (inst.operands[1].reg % 2 != 0, _("even register required")); constraint (inst.operands[2].present && inst.operands[2].reg != inst.operands[1].reg + 1, _("can only store two consecutive registers")); /* If op 2 were present and equal to PC, this function wouldn't have been called in the first place. */ constraint (inst.operands[1].reg == REG_LR, _("r14 not allowed here")); constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[1].reg + 1 || inst.operands[0].reg == inst.operands[3].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[3].reg << 16; } /* ARM V6 SXTAH extracts a 16-bit value from a register, sign extends it to 32-bits, and adds the result to a value in another register. You can specify a rotation by 0, 8, 16, or 24 bits before extracting the 16-bit value. SXTAH{} , , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxtah (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 10; } /* ARM V6 SXTH. SXTH {} , {, } Condition defaults to COND_ALWAYS. Error if any register uses R15. */ static void do_sxth (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 10; } /* VFP instructions. In a logical order: SP variant first, monad before dyad, arithmetic then move then load/store. */ static void do_vfp_sp_monadic (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dyadic (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_compare_z (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); } static void do_vfp_dp_sp_cvt (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sm); } static void do_vfp_sp_dp_cvt (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm); } static void do_vfp_reg_from_sp (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sn); } static void do_vfp_reg2_from_sp2 (void) { constraint (inst.operands[2].imm != 2, _("only two consecutive VFP SP registers allowed here")); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Sm); } static void do_vfp_sp_from_reg (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sn); inst.instruction |= inst.operands[1].reg << 12; } static void do_vfp_sp2_from_reg2 (void) { constraint (inst.operands[0].imm != 2, _("only two consecutive VFP SP registers allowed here")); encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sm); inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } static void do_vfp_sp_ldst (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); encode_arm_cp_address (1, FALSE, TRUE, 0); } static void do_vfp_dp_ldst (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_cp_address (1, FALSE, TRUE, 0); } static void vfp_sp_ldstm (enum vfp_ldstm_type ldstm_type) { if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Sd); inst.instruction |= inst.operands[1].imm; } static void vfp_dp_ldstm (enum vfp_ldstm_type ldstm_type) { int count; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; else constraint (ldstm_type != VFP_LDSTMIA && ldstm_type != VFP_LDSTMIAX, _("this addressing mode requires base-register writeback")); inst.instruction |= inst.operands[0].reg << 16; encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); count = inst.operands[1].imm << 1; if (ldstm_type == VFP_LDSTMIAX || ldstm_type == VFP_LDSTMDBX) count += 1; inst.instruction |= count; } static void do_vfp_sp_ldstmia (void) { vfp_sp_ldstm (VFP_LDSTMIA); } static void do_vfp_sp_ldstmdb (void) { vfp_sp_ldstm (VFP_LDSTMDB); } static void do_vfp_dp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIA); } static void do_vfp_dp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDB); } static void do_vfp_xp_ldstmia (void) { vfp_dp_ldstm (VFP_LDSTMIAX); } static void do_vfp_xp_ldstmdb (void) { vfp_dp_ldstm (VFP_LDSTMDBX); } static void do_vfp_dp_rd_rm (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dm); } static void do_vfp_dp_rn_rd (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dn); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); } static void do_vfp_dp_rd_rn (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn); } static void do_vfp_dp_rd_rn_rm (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dn); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dm); } static void do_vfp_dp_rd (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); } static void do_vfp_dp_rm_rd_rn (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dm); encode_arm_vfp_reg (inst.operands[1].reg, VFP_REG_Dd); encode_arm_vfp_reg (inst.operands[2].reg, VFP_REG_Dn); } /* VFPv3 instructions. */ static void do_vfp_sp_const (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); inst.instruction |= (inst.operands[1].imm & 15) << 16; inst.instruction |= (inst.operands[1].imm >> 4); } static void do_vfp_dp_const (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); inst.instruction |= (inst.operands[1].imm & 15) << 16; inst.instruction |= (inst.operands[1].imm >> 4); } static void vfp_conv (int srcsize) { unsigned immbits = srcsize - inst.operands[1].imm; inst.instruction |= (immbits & 1) << 5; inst.instruction |= (immbits >> 1); } static void do_vfp_sp_conv_16 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); vfp_conv (16); } static void do_vfp_dp_conv_16 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); vfp_conv (16); } static void do_vfp_sp_conv_32 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Sd); vfp_conv (32); } static void do_vfp_dp_conv_32 (void) { encode_arm_vfp_reg (inst.operands[0].reg, VFP_REG_Dd); vfp_conv (32); } /* FPA instructions. Also in a logical order. */ static void do_fpa_cmp (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_fpa_ldmstm (void) { inst.instruction |= inst.operands[0].reg << 12; switch (inst.operands[1].imm) { case 1: inst.instruction |= CP_T_X; break; case 2: inst.instruction |= CP_T_Y; break; case 3: inst.instruction |= CP_T_Y | CP_T_X; break; case 4: break; default: abort (); } if (inst.instruction & (PRE_INDEX | INDEX_UP)) { /* The instruction specified "ea" or "fd", so we can only accept [Rn]{!}. The instruction does not really support stacking or unstacking, so we have to emulate these by setting appropriate bits and offsets. */ constraint (inst.reloc.exp.X_op != O_constant || inst.reloc.exp.X_add_number != 0, _("this instruction does not support indexing")); if ((inst.instruction & PRE_INDEX) || inst.operands[2].writeback) inst.reloc.exp.X_add_number = 12 * inst.operands[1].imm; if (!(inst.instruction & INDEX_UP)) inst.reloc.exp.X_add_number = -inst.reloc.exp.X_add_number; if (!(inst.instruction & PRE_INDEX) && inst.operands[2].writeback) { inst.operands[2].preind = 0; inst.operands[2].postind = 1; } } encode_arm_cp_address (2, TRUE, TRUE, 0); } /* iWMMXt instructions: strictly in alphabetical order. */ static void do_iwmmxt_tandorc (void) { constraint (inst.operands[0].reg != REG_PC, _("only r15 allowed here")); } static void do_iwmmxt_textrc (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].imm; } static void do_iwmmxt_textrm (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tinsr (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].imm; } static void do_iwmmxt_tmia (void) { inst.instruction |= inst.operands[0].reg << 5; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } static void do_iwmmxt_waligni (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 20; } static void do_iwmmxt_wmov (void) { /* WMOV rD, rN is an alias for WOR rD, rN, rN. */ inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_iwmmxt_wldstbh (void) { int reloc; inst.instruction |= inst.operands[0].reg << 12; if (thumb_mode) reloc = BFD_RELOC_ARM_T32_CP_OFF_IMM_S2; else reloc = BFD_RELOC_ARM_CP_OFF_IMM_S2; encode_arm_cp_address (1, TRUE, FALSE, reloc); } static void do_iwmmxt_wldstw (void) { /* RIWR_RIWC clears .isreg for a control register. */ if (!inst.operands[0].isreg) { constraint (inst.cond != COND_ALWAYS, BAD_COND); inst.instruction |= 0xf0000000; } inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, TRUE, 0); } static void do_iwmmxt_wldstd (void) { inst.instruction |= inst.operands[0].reg << 12; encode_arm_cp_address (1, TRUE, FALSE, 0); } static void do_iwmmxt_wshufh (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= ((inst.operands[2].imm & 0xf0) << 16); inst.instruction |= (inst.operands[2].imm & 0x0f); } static void do_iwmmxt_wzero (void) { /* WZERO reg is an alias for WANDN reg, reg, reg. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[0].reg << 16; } /* Cirrus Maverick instructions. Simple 2-, 3-, and 4-register operations first, then control, shift, and load/store. */ /* Insns like "foo X,Y,Z". */ static void do_mav_triple (void) { inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } /* Insns like "foo W,X,Y,Z". where W=MVAX[0:3] and X,Y,Z=MVFX[0:15]. */ static void do_mav_quad (void) { inst.instruction |= inst.operands[0].reg << 5; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; } /* cfmvsc32 DSPSC,MVDX[15:0]. */ static void do_mav_dspsc (void) { inst.instruction |= inst.operands[1].reg << 12; } /* Maverick shift immediate instructions. cfsh32 MVFX[15:0],MVFX[15:0],Shift[6:0]. cfsh64 MVDX[15:0],MVDX[15:0],Shift[6:0]. */ static void do_mav_shift (void) { int imm = inst.operands[2].imm; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; /* Bits 0-3 of the insn should have bits 0-3 of the immediate. Bits 5-7 of the insn should have bits 4-6 of the immediate. Bit 4 should be 0. */ imm = (imm & 0xf) | ((imm & 0x70) << 1); inst.instruction |= imm; } /* XScale instructions. Also sorted arithmetic before move. */ /* Xscale multiply-accumulate (argument parse) MIAcc acc0,Rm,Rs MIAPHcc acc0,Rm,Rs MIAxycc acc0,Rm,Rs. */ static void do_xsc_mia (void) { inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].reg << 12; } /* Xscale move-accumulator-register (argument parse) MARcc acc0,RdLo,RdHi. */ static void do_xsc_mar (void) { inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; } /* Xscale move-register-accumulator (argument parse) MRAcc RdLo,RdHi,acc0. */ static void do_xsc_mra (void) { constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; } /* Encoding functions relevant only to Thumb. */ /* inst.operands[i] is a shifted-register operand; encode it into inst.instruction in the format used by Thumb32. */ static void encode_thumb32_shifted_operand (int i) { unsigned int value = inst.reloc.exp.X_add_number; unsigned int shift = inst.operands[i].shift_kind; constraint (inst.operands[i].immisreg, _("shift by register not allowed in thumb mode")); inst.instruction |= inst.operands[i].reg; if (shift == SHIFT_RRX) inst.instruction |= SHIFT_ROR << 4; else { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); constraint (value > 32 || (value == 32 && (shift == SHIFT_LSL || shift == SHIFT_ROR)), _("shift expression is too large")); if (value == 0) shift = SHIFT_LSL; else if (value == 32) value = 0; inst.instruction |= shift << 4; inst.instruction |= (value & 0x1c) << 10; inst.instruction |= (value & 0x03) << 6; } } /* inst.operands[i] was set up by parse_address. Encode it into a Thumb32 format load or store instruction. Reject forms that cannot be used with such instructions. If is_t is true, reject forms that cannot be used with a T instruction; if is_d is true, reject forms that cannot be used with a D instruction. */ static void encode_thumb32_addr_mode (int i, bfd_boolean is_t, bfd_boolean is_d) { bfd_boolean is_pc = (inst.operands[i].reg == REG_PC); constraint (!inst.operands[i].isreg, _("Instruction does not support =N addresses")); inst.instruction |= inst.operands[i].reg << 16; if (inst.operands[i].immisreg) { constraint (is_pc, _("cannot use register index with PC-relative addressing")); constraint (is_t || is_d, _("cannot use register index with this instruction")); constraint (inst.operands[i].negative, _("Thumb does not support negative register indexing")); constraint (inst.operands[i].postind, _("Thumb does not support register post-indexing")); constraint (inst.operands[i].writeback, _("Thumb does not support register indexing with writeback")); constraint (inst.operands[i].shifted && inst.operands[i].shift_kind != SHIFT_LSL, _("Thumb supports only LSL in shifted register indexing")); inst.instruction |= inst.operands[i].imm; if (inst.operands[i].shifted) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); constraint (inst.reloc.exp.X_add_number < 0 || inst.reloc.exp.X_add_number > 3, _("shift out of range")); inst.instruction |= inst.reloc.exp.X_add_number << 4; } inst.reloc.type = BFD_RELOC_UNUSED; } else if (inst.operands[i].preind) { constraint (is_pc && inst.operands[i].writeback, _("cannot use writeback with PC-relative addressing")); constraint (is_t && inst.operands[i].writeback, _("cannot use writeback with this instruction")); if (is_d) { inst.instruction |= 0x01000000; if (inst.operands[i].writeback) inst.instruction |= 0x00200000; } else { inst.instruction |= 0x00000c00; if (inst.operands[i].writeback) inst.instruction |= 0x00000100; } inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else if (inst.operands[i].postind) { assert (inst.operands[i].writeback); constraint (is_pc, _("cannot use post-indexing with PC-relative addressing")); constraint (is_t, _("cannot use post-indexing with this instruction")); if (is_d) inst.instruction |= 0x00200000; else inst.instruction |= 0x00000900; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else /* unindexed - only for coprocessor */ inst.error = _("instruction does not accept unindexed addressing"); } /* Table of Thumb instructions which exist in both 16- and 32-bit encodings (the latter only in post-V6T2 cores). The index is the value used in the insns table below. When there is more than one possible 16-bit encoding for the instruction, this table always holds variant (1). Also contains several pseudo-instructions used during relaxation. */ #define T16_32_TAB \ X(adc, 4140, eb400000), \ X(adcs, 4140, eb500000), \ X(add, 1c00, eb000000), \ X(adds, 1c00, eb100000), \ X(addi, 0000, f1000000), \ X(addis, 0000, f1100000), \ X(add_pc,000f, f20f0000), \ X(add_sp,000d, f10d0000), \ X(adr, 000f, f20f0000), \ X(and, 4000, ea000000), \ X(ands, 4000, ea100000), \ X(asr, 1000, fa40f000), \ X(asrs, 1000, fa50f000), \ X(b, e000, f000b000), \ X(bcond, d000, f0008000), \ X(bic, 4380, ea200000), \ X(bics, 4380, ea300000), \ X(cmn, 42c0, eb100f00), \ X(cmp, 2800, ebb00f00), \ X(cpsie, b660, f3af8400), \ X(cpsid, b670, f3af8600), \ X(cpy, 4600, ea4f0000), \ X(dec_sp,80dd, f1bd0d00), \ X(eor, 4040, ea800000), \ X(eors, 4040, ea900000), \ X(inc_sp,00dd, f10d0d00), \ X(ldmia, c800, e8900000), \ X(ldr, 6800, f8500000), \ X(ldrb, 7800, f8100000), \ X(ldrh, 8800, f8300000), \ X(ldrsb, 5600, f9100000), \ X(ldrsh, 5e00, f9300000), \ X(ldr_pc,4800, f85f0000), \ X(ldr_pc2,4800, f85f0000), \ X(ldr_sp,9800, f85d0000), \ X(lsl, 0000, fa00f000), \ X(lsls, 0000, fa10f000), \ X(lsr, 0800, fa20f000), \ X(lsrs, 0800, fa30f000), \ X(mov, 2000, ea4f0000), \ X(movs, 2000, ea5f0000), \ X(mul, 4340, fb00f000), \ X(muls, 4340, ffffffff), /* no 32b muls */ \ X(mvn, 43c0, ea6f0000), \ X(mvns, 43c0, ea7f0000), \ X(neg, 4240, f1c00000), /* rsb #0 */ \ X(negs, 4240, f1d00000), /* rsbs #0 */ \ X(orr, 4300, ea400000), \ X(orrs, 4300, ea500000), \ X(pop, bc00, e8bd0000), /* ldmia sp!,... */ \ X(push, b400, e92d0000), /* stmdb sp!,... */ \ X(rev, ba00, fa90f080), \ X(rev16, ba40, fa90f090), \ X(revsh, bac0, fa90f0b0), \ X(ror, 41c0, fa60f000), \ X(rors, 41c0, fa70f000), \ X(sbc, 4180, eb600000), \ X(sbcs, 4180, eb700000), \ X(stmia, c000, e8800000), \ X(str, 6000, f8400000), \ X(strb, 7000, f8000000), \ X(strh, 8000, f8200000), \ X(str_sp,9000, f84d0000), \ X(sub, 1e00, eba00000), \ X(subs, 1e00, ebb00000), \ X(subi, 8000, f1a00000), \ X(subis, 8000, f1b00000), \ X(sxtb, b240, fa4ff080), \ X(sxth, b200, fa0ff080), \ X(tst, 4200, ea100f00), \ X(uxtb, b2c0, fa5ff080), \ X(uxth, b280, fa1ff080), \ X(nop, bf00, f3af8000), \ X(yield, bf10, f3af8001), \ X(wfe, bf20, f3af8002), \ X(wfi, bf30, f3af8003), \ X(sev, bf40, f3af9004), /* typo, 8004? */ /* To catch errors in encoding functions, the codes are all offset by 0xF800, putting them in one of the 32-bit prefix ranges, ergo undefined as 16-bit instructions. */ #define X(a,b,c) T_MNEM_##a enum t16_32_codes { T16_32_OFFSET = 0xF7FF, T16_32_TAB }; #undef X #define X(a,b,c) 0x##b static const unsigned short thumb_op16[] = { T16_32_TAB }; #define THUMB_OP16(n) (thumb_op16[(n) - (T16_32_OFFSET + 1)]) #undef X #define X(a,b,c) 0x##c static const unsigned int thumb_op32[] = { T16_32_TAB }; #define THUMB_OP32(n) (thumb_op32[(n) - (T16_32_OFFSET + 1)]) #define THUMB_SETS_FLAGS(n) (THUMB_OP32 (n) & 0x00100000) #undef X #undef T16_32_TAB /* Thumb instruction encoders, in alphabetical order. */ /* ADDW or SUBW. */ static void do_t_add_sub_w (void) { int Rd, Rn; Rd = inst.operands[0].reg; Rn = inst.operands[1].reg; constraint (Rd == 15, _("PC not allowed as destination")); inst.instruction |= (Rn << 16) | (Rd << 8); inst.reloc.type = BFD_RELOC_ARM_T32_IMM12; } /* Parse an add or subtract instruction. We get here with inst.instruction equalling any of THUMB_OPCODE_add, adds, sub, or subs. */ static void do_t_add_sub (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ if (unified_syntax) { bfd_boolean flags; bfd_boolean narrow; int opcode; flags = (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs); if (flags) narrow = (current_it_mask == 0); else narrow = (current_it_mask != 0); if (!inst.operands[2].isreg) { int add; add = (inst.instruction == T_MNEM_add || inst.instruction == T_MNEM_adds); opcode = 0; if (inst.size_req != 4) { /* Attempt to use a narrow opcode, with relaxation if appropriate. */ if (Rd == REG_SP && Rs == REG_SP && !flags) opcode = add ? T_MNEM_inc_sp : T_MNEM_dec_sp; else if (Rd <= 7 && Rs == REG_SP && add && !flags) opcode = T_MNEM_add_sp; else if (Rd <= 7 && Rs == REG_PC && add && !flags) opcode = T_MNEM_add_pc; else if (Rd <= 7 && Rs <= 7 && narrow) { if (flags) opcode = add ? T_MNEM_addis : T_MNEM_subis; else opcode = add ? T_MNEM_addi : T_MNEM_subi; } if (opcode) { inst.instruction = THUMB_OP16(opcode); inst.instruction |= (Rd << 4) | Rs; inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; if (inst.size_req != 2) inst.relax = opcode; } else constraint (inst.size_req == 2, BAD_HIREG); } if (inst.size_req == 4 || (inst.size_req != 2 && !opcode)) { if (Rs == REG_PC) { /* Always use addw/subw. */ inst.instruction = add ? 0xf20f0000 : 0xf2af0000; inst.reloc.type = BFD_RELOC_ARM_T32_IMM12; } else { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; if (flags) inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; else inst.reloc.type = BFD_RELOC_ARM_T32_ADD_IMM; } inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } } else { Rn = inst.operands[2].reg; /* See if we can do this with a 16-bit instruction. */ if (!inst.operands[2].shifted && inst.size_req != 4) { if (Rd > 7 || Rs > 7 || Rn > 7) narrow = FALSE; if (narrow) { inst.instruction = ((inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_add) ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); return; } if (inst.instruction == T_MNEM_add) { if (Rd == Rs) { inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); inst.instruction |= Rn << 3; return; } /* ... because addition is commutative! */ else if (Rd == Rn) { inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); inst.instruction |= Rs << 3; return; } } } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { constraint (inst.instruction == T_MNEM_adds || inst.instruction == T_MNEM_subs, BAD_THUMB32); if (!inst.operands[2].isreg) /* Rd, Rs, #imm */ { constraint ((Rd > 7 && (Rd != REG_SP || Rs != REG_SP)) || (Rs > 7 && Rs != REG_SP && Rs != REG_PC), BAD_HIREG); inst.instruction = (inst.instruction == T_MNEM_add ? 0x0000 : 0x8000); inst.instruction |= (Rd << 4) | Rs; inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; return; } Rn = inst.operands[2].reg; constraint (inst.operands[2].shifted, _("unshifted register required")); /* We now have Rd, Rs, and Rn set to registers. */ if (Rd > 7 || Rs > 7 || Rn > 7) { /* Can't do this for SUB. */ constraint (inst.instruction == T_MNEM_sub, BAD_HIREG); inst.instruction = T_OPCODE_ADD_HI; inst.instruction |= (Rd & 8) << 4; inst.instruction |= (Rd & 7); if (Rs == Rd) inst.instruction |= Rn << 3; else if (Rn == Rd) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } else { inst.instruction = (inst.instruction == T_MNEM_add ? T_OPCODE_ADD_R3 : T_OPCODE_SUB_R3); inst.instruction |= Rd | (Rs << 3) | (Rn << 6); } } } static void do_t_adr (void) { if (unified_syntax && inst.size_req == 0 && inst.operands[0].reg <= 7) { /* Defer to section relaxation. */ inst.relax = inst.instruction; inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 4; } else if (unified_syntax && inst.size_req != 2) { /* Generate a 32-bit opcode. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.reloc.type = BFD_RELOC_ARM_T32_ADD_PC12; inst.reloc.pc_rel = 1; } else { /* Generate a 16-bit opcode. */ inst.instruction = THUMB_OP16 (inst.instruction); inst.reloc.type = BFD_RELOC_ARM_THUMB_ADD; inst.reloc.exp.X_add_number -= 4; /* PC relative adjust. */ inst.reloc.pc_rel = 1; inst.instruction |= inst.operands[0].reg << 4; } } /* Arithmetic instructions for which there is just one 16-bit instruction encoding, and it allows only two low registers. For maximal compatibility with ARM syntax, we allow three register operands even when Thumb-32 instructions are not available, as long as the first two are identical. For instance, both "sbc r0,r1" and "sbc r0,r0,r1" are allowed. */ static void do_t_arit3 (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { bfd_boolean narrow; /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction)) narrow = current_it_mask == 0; else narrow = current_it_mask != 0; if (Rd > 7 || Rn > 7 || Rs > 7) narrow = FALSE; if (inst.operands[2].shifted) narrow = FALSE; if (inst.size_req == 4) narrow = FALSE; if (narrow && Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); constraint (Rd != Rs, _("dest and source1 must be the same register")); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; } } /* Similarly, but for instructions where the arithmetic operation is commutative, so we can allow either of them to be different from the destination operand in a 16-bit instruction. For instance, all three of "adc r0,r1", "adc r0,r0,r1", and "adc r0,r1,r0" are accepted. */ static void do_t_arit3c (void) { int Rd, Rs, Rn; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ Rn = inst.operands[2].reg; if (unified_syntax) { if (!inst.operands[2].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { bfd_boolean narrow; /* See if we can do this with a 16-bit instruction. */ if (THUMB_SETS_FLAGS (inst.instruction)) narrow = current_it_mask == 0; else narrow = current_it_mask != 0; if (Rd > 7 || Rn > 7 || Rs > 7) narrow = FALSE; if (inst.operands[2].shifted) narrow = FALSE; if (inst.size_req == 4) narrow = FALSE; if (narrow) { if (Rd == Rs) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rn << 3; return; } if (Rd == Rn) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; inst.instruction |= Rs << 3; return; } } /* If we get here, it can't be done in 16 bits. */ constraint (inst.operands[2].shifted && inst.operands[2].immisreg, _("shift must be constant")); inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; encode_thumb32_shifted_operand (2); } } else { /* On its face this is a lie - the instruction does set the flags. However, the only supported mnemonic in this mode says it doesn't. */ constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); constraint (!inst.operands[2].isreg || inst.operands[2].shifted, _("unshifted register required")); constraint (Rd > 7 || Rs > 7 || Rn > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= Rd; if (Rd == Rs) inst.instruction |= Rn << 3; else if (Rd == Rn) inst.instruction |= Rs << 3; else constraint (1, _("dest must overlap one source register")); } } static void do_t_barrier (void) { if (inst.operands[0].present) { constraint ((inst.instruction & 0xf0) != 0x40 && inst.operands[0].imm != 0xf, "bad barrier type"); inst.instruction |= inst.operands[0].imm; } else inst.instruction |= 0xf; } static void do_t_bfc (void) { unsigned int msb = inst.operands[1].imm + inst.operands[2].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= (inst.operands[1].imm & 0x1c) << 10; inst.instruction |= (inst.operands[1].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfi (void) { unsigned int msb; /* #0 in second position is alternative syntax for bfc, which is the same instruction but with REG_PC in the Rm field. */ if (!inst.operands[1].isreg) inst.operands[1].reg = REG_PC; msb = inst.operands[2].imm + inst.operands[3].imm; constraint (msb > 32, _("bit-field extends past end of register")); /* The instruction encoding stores the LSB and MSB, not the LSB and width. */ inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= msb - 1; } static void do_t_bfx (void) { constraint (inst.operands[2].imm + inst.operands[3].imm > 32, _("bit-field extends past end of register")); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= (inst.operands[2].imm & 0x1c) << 10; inst.instruction |= (inst.operands[2].imm & 0x03) << 6; inst.instruction |= inst.operands[3].imm - 1; } /* ARM V5 Thumb BLX (argument parse) BLX which is BLX(1) BLX which is BLX(2) Unfortunately, there are two different opcodes for this mnemonic. So, the insns[].value is not used, and the code here zaps values into inst.instruction. ??? How to take advantage of the additional two bits of displacement available in Thumb32 mode? Need new relocation? */ static void do_t_blx (void) { constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH); if (inst.operands[0].isreg) /* We have a register, so this is BLX(2). */ inst.instruction |= inst.operands[0].reg << 3; else { /* No register. This must be BLX(1). */ inst.instruction = 0xf000e800; #ifdef OBJ_ELF if (EF_ARM_EABI_VERSION (meabi_flags) >= EF_ARM_EABI_VER4) inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23; else #endif inst.reloc.type = BFD_RELOC_THUMB_PCREL_BLX; inst.reloc.pc_rel = 1; } } static void do_t_branch (void) { int opcode; int cond; if (current_it_mask) { /* Conditional branches inside IT blocks are encoded as unconditional branches. */ cond = COND_ALWAYS; /* A branch must be the last instruction in an IT block. */ constraint (current_it_mask != 0x10, BAD_BRANCH); } else cond = inst.cond; if (cond != COND_ALWAYS) opcode = T_MNEM_bcond; else opcode = inst.instruction; if (unified_syntax && inst.size_req == 4) { inst.instruction = THUMB_OP32(opcode); if (cond == COND_ALWAYS) inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH25; else { assert (cond != 0xF); inst.instruction |= cond << 22; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH20; } } else { inst.instruction = THUMB_OP16(opcode); if (cond == COND_ALWAYS) inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH12; else { inst.instruction |= cond << 8; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH9; } /* Allow section relaxation. */ if (unified_syntax && inst.size_req != 2) inst.relax = opcode; } inst.reloc.pc_rel = 1; } static void do_t_bkpt (void) { constraint (inst.cond != COND_ALWAYS, _("instruction is always unconditional")); if (inst.operands[0].present) { constraint (inst.operands[0].imm > 255, _("immediate value out of range")); inst.instruction |= inst.operands[0].imm; } } static void do_t_branch23 (void) { constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH); inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH23; inst.reloc.pc_rel = 1; /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if ( inst.reloc.exp.X_op == O_symbol && inst.reloc.exp.X_add_symbol != NULL && S_IS_DEFINED (inst.reloc.exp.X_add_symbol) && ! THUMB_IS_FUNC (inst.reloc.exp.X_add_symbol)) inst.reloc.exp.X_add_symbol = find_real_start (inst.reloc.exp.X_add_symbol); } static void do_t_bx (void) { constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH); inst.instruction |= inst.operands[0].reg << 3; /* ??? FIXME: Should add a hacky reloc here if reg is REG_PC. The reloc should cause the alignment to be checked once it is known. This is because BX PC only works if the instruction is word aligned. */ } static void do_t_bxj (void) { constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH); if (inst.operands[0].reg == REG_PC) as_tsktsk (_("use of r15 in bxj is not really useful")); inst.instruction |= inst.operands[0].reg << 16; } static void do_t_clz (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } static void do_t_cps (void) { constraint (current_it_mask, BAD_NOT_IT); inst.instruction |= inst.operands[0].imm; } static void do_t_cpsi (void) { constraint (current_it_mask, BAD_NOT_IT); if (unified_syntax && (inst.operands[1].present || inst.size_req == 4) && ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v6_notm)) { unsigned int imod = (inst.instruction & 0x0030) >> 4; inst.instruction = 0xf3af8000; inst.instruction |= imod << 9; inst.instruction |= inst.operands[0].imm << 5; if (inst.operands[1].present) inst.instruction |= 0x100 | inst.operands[1].imm; } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1) && (inst.operands[0].imm & 4), _("selected processor does not support 'A' form " "of this instruction")); constraint (inst.operands[1].present || inst.size_req == 4, _("Thumb does not support the 2-argument " "form of this instruction")); inst.instruction |= inst.operands[0].imm; } } /* THUMB CPY instruction (argument parse). */ static void do_t_cpy (void) { if (inst.size_req == 4) { inst.instruction = THUMB_OP32 (T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg; } else { inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_czb (void) { constraint (current_it_mask, BAD_NOT_IT); constraint (inst.operands[0].reg > 7, BAD_HIREG); inst.instruction |= inst.operands[0].reg; inst.reloc.pc_rel = 1; inst.reloc.type = BFD_RELOC_THUMB_PCREL_BRANCH7; } static void do_t_dbg (void) { inst.instruction |= inst.operands[0].imm; } static void do_t_div (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_t_hint (void) { if (unified_syntax && inst.size_req == 4) inst.instruction = THUMB_OP32 (inst.instruction); else inst.instruction = THUMB_OP16 (inst.instruction); } static void do_t_it (void) { unsigned int cond = inst.operands[0].imm; constraint (current_it_mask, BAD_NOT_IT); current_it_mask = (inst.instruction & 0xf) | 0x10; current_cc = cond; /* If the condition is a negative condition, invert the mask. */ if ((cond & 0x1) == 0x0) { unsigned int mask = inst.instruction & 0x000f; if ((mask & 0x7) == 0) /* no conversion needed */; else if ((mask & 0x3) == 0) mask ^= 0x8; else if ((mask & 0x1) == 0) mask ^= 0xC; else mask ^= 0xE; inst.instruction &= 0xfff0; inst.instruction |= mask; } inst.instruction |= cond << 4; } static void do_t_ldmstm (void) { /* This really doesn't seem worth it. */ constraint (inst.reloc.type != BFD_RELOC_UNUSED, _("expression too complex")); constraint (inst.operands[1].writeback, _("Thumb load/store multiple does not support {reglist}^")); if (unified_syntax) { /* See if we can use a 16-bit instruction. */ if (inst.instruction < 0xffff /* not ldmdb/stmdb */ && inst.size_req != 4 && inst.operands[0].reg <= 7 && !(inst.operands[1].imm & ~0xff) && (inst.instruction == T_MNEM_stmia ? inst.operands[0].writeback : (inst.operands[0].writeback == !(inst.operands[1].imm & (1 << inst.operands[0].reg))))) { if (inst.instruction == T_MNEM_stmia && (inst.operands[1].imm & (1 << inst.operands[0].reg)) && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1))) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; } else { if (inst.operands[1].imm & (1 << 13)) as_warn (_("SP should not be in register list")); if (inst.instruction == T_MNEM_stmia) { if (inst.operands[1].imm & (1 << 15)) as_warn (_("PC should not be in register list")); if (inst.operands[1].imm & (1 << inst.operands[0].reg)) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); } else { if (inst.operands[1].imm & (1 << 14) && inst.operands[1].imm & (1 << 15)) as_warn (_("LR and PC should not both be in register list")); if ((inst.operands[1].imm & (1 << inst.operands[0].reg)) && inst.operands[0].writeback) as_warn (_("base register should not be in register list " "when written back")); } if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[1].imm; if (inst.operands[0].writeback) inst.instruction |= WRITE_BACK; } } else { constraint (inst.operands[0].reg > 7 || (inst.operands[1].imm & ~0xff), BAD_HIREG); if (inst.instruction == T_MNEM_stmia) { if (!inst.operands[0].writeback) as_warn (_("this instruction will write back the base register")); if ((inst.operands[1].imm & (1 << inst.operands[0].reg)) && (inst.operands[1].imm & ((1 << inst.operands[0].reg) - 1))) as_warn (_("value stored for r%d is UNPREDICTABLE"), inst.operands[0].reg); } else { if (!inst.operands[0].writeback && !(inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will write back the base register")); else if (inst.operands[0].writeback && (inst.operands[1].imm & (1 << inst.operands[0].reg))) as_warn (_("this instruction will not write back the base register")); } inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; } } static void do_t_ldrex (void) { constraint (!inst.operands[1].isreg || !inst.operands[1].preind || inst.operands[1].postind || inst.operands[1].writeback || inst.operands[1].immisreg || inst.operands[1].shifted || inst.operands[1].negative, BAD_ADDR_MODE); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_ldrexd (void) { if (!inst.operands[1].present) { constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed as first register " "when second register is omitted")); inst.operands[1].reg = inst.operands[0].reg + 1; } constraint (inst.operands[0].reg == inst.operands[1].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; } static void do_t_ldst (void) { unsigned long opcode; int Rn; opcode = inst.instruction; if (unified_syntax) { if (!inst.operands[1].isreg) { if (opcode <= 0xffff) inst.instruction = THUMB_OP32 (opcode); if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE)) return; } if (inst.operands[1].isreg && !inst.operands[1].writeback && !inst.operands[1].shifted && !inst.operands[1].postind && !inst.operands[1].negative && inst.operands[0].reg <= 7 && opcode <= 0xffff && inst.size_req != 4) { /* Insn may have a 16-bit form. */ Rn = inst.operands[1].reg; if (inst.operands[1].immisreg) { inst.instruction = THUMB_OP16 (opcode); /* [Rn, Ri] */ if (Rn <= 7 && inst.operands[1].imm <= 7) goto op16; } else if ((Rn <= 7 && opcode != T_MNEM_ldrsh && opcode != T_MNEM_ldrsb) || ((Rn == REG_PC || Rn == REG_SP) && opcode == T_MNEM_ldr) || (Rn == REG_SP && opcode == T_MNEM_str)) { /* [Rn, #const] */ if (Rn > 7) { if (Rn == REG_PC) { if (inst.reloc.pc_rel) opcode = T_MNEM_ldr_pc2; else opcode = T_MNEM_ldr_pc; } else { if (opcode == T_MNEM_ldr) opcode = T_MNEM_ldr_sp; else opcode = T_MNEM_str_sp; } inst.instruction = inst.operands[0].reg << 8; } else { inst.instruction = inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } inst.instruction |= THUMB_OP16 (opcode); if (inst.size_req == 2) inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; else inst.relax = opcode; return; } } /* Definitely a 32-bit variant. */ inst.instruction = THUMB_OP32 (opcode); inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/FALSE, /*is_d=*/FALSE); return; } constraint (inst.operands[0].reg > 7, BAD_HIREG); if (inst.instruction == T_MNEM_ldrsh || inst.instruction == T_MNEM_ldrsb) { /* Only [Rn,Rm] is acceptable. */ constraint (inst.operands[1].reg > 7 || inst.operands[1].imm > 7, BAD_HIREG); constraint (!inst.operands[1].isreg || !inst.operands[1].immisreg || inst.operands[1].postind || inst.operands[1].shifted || inst.operands[1].negative, _("Thumb does not support this addressing mode")); inst.instruction = THUMB_OP16 (inst.instruction); goto op16; } inst.instruction = THUMB_OP16 (inst.instruction); if (!inst.operands[1].isreg) if (move_or_literal_pool (0, /*thumb_p=*/TRUE, /*mode_3=*/FALSE)) return; constraint (!inst.operands[1].preind || inst.operands[1].shifted || inst.operands[1].writeback, _("Thumb does not support this addressing mode")); if (inst.operands[1].reg == REG_PC || inst.operands[1].reg == REG_SP) { constraint (inst.instruction & 0x0600, _("byte or halfword not valid for base register")); constraint (inst.operands[1].reg == REG_PC && !(inst.instruction & THUMB_LOAD_BIT), _("r15 based store not allowed")); constraint (inst.operands[1].immisreg, _("invalid base register for register offset")); if (inst.operands[1].reg == REG_PC) inst.instruction = T_OPCODE_LDR_PC; else if (inst.instruction & THUMB_LOAD_BIT) inst.instruction = T_OPCODE_LDR_SP; else inst.instruction = T_OPCODE_STR_SP; inst.instruction |= inst.operands[0].reg << 8; inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; return; } constraint (inst.operands[1].reg > 7, BAD_HIREG); if (!inst.operands[1].immisreg) { /* Immediate offset. */ inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.reloc.type = BFD_RELOC_ARM_THUMB_OFFSET; return; } /* Register offset. */ constraint (inst.operands[1].imm > 7, BAD_HIREG); constraint (inst.operands[1].negative, _("Thumb does not support this addressing mode")); op16: switch (inst.instruction) { case T_OPCODE_STR_IW: inst.instruction = T_OPCODE_STR_RW; break; case T_OPCODE_STR_IH: inst.instruction = T_OPCODE_STR_RH; break; case T_OPCODE_STR_IB: inst.instruction = T_OPCODE_STR_RB; break; case T_OPCODE_LDR_IW: inst.instruction = T_OPCODE_LDR_RW; break; case T_OPCODE_LDR_IH: inst.instruction = T_OPCODE_LDR_RH; break; case T_OPCODE_LDR_IB: inst.instruction = T_OPCODE_LDR_RB; break; case 0x5600 /* ldrsb */: case 0x5e00 /* ldrsh */: break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; inst.instruction |= inst.operands[1].imm << 6; } static void do_t_ldstd (void) { if (!inst.operands[1].present) { inst.operands[1].reg = inst.operands[0].reg + 1; constraint (inst.operands[0].reg == REG_LR, _("r14 not allowed here")); } inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; encode_thumb32_addr_mode (2, /*is_t=*/FALSE, /*is_d=*/TRUE); } static void do_t_ldstt (void) { inst.instruction |= inst.operands[0].reg << 12; encode_thumb32_addr_mode (1, /*is_t=*/TRUE, /*is_d=*/FALSE); } static void do_t_mla (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].reg << 12; } static void do_t_mlal (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; } static void do_t_mov_cmp (void) { if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mov || inst.instruction == T_MNEM_movs) ? 8 : 16; unsigned long opcode; bfd_boolean narrow; bfd_boolean low_regs; low_regs = (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7); opcode = inst.instruction; if (current_it_mask) narrow = opcode != T_MNEM_movs; else narrow = opcode != T_MNEM_movs || low_regs; if (inst.size_req == 4 || inst.operands[1].shifted) narrow = FALSE; if (!inst.operands[1].isreg) { /* Immediate operand. */ if (current_it_mask == 0 && opcode == T_MNEM_mov) narrow = 0; if (low_regs && narrow) { inst.instruction = THUMB_OP16 (opcode); inst.instruction |= inst.operands[0].reg << 8; if (inst.size_req == 2) inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM; else inst.relax = opcode; } else { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= inst.operands[0].reg << r0off; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } } else if (!narrow) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << r0off; encode_thumb32_shifted_operand (1); } else switch (inst.instruction) { case T_MNEM_mov: inst.instruction = T_OPCODE_MOV_HR; inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; break; case T_MNEM_movs: /* We know we have low registers at this point. Generate ADD Rd, Rs, #0. */ inst.instruction = T_OPCODE_ADD_I3; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; break; case T_MNEM_cmp: if (low_regs) { inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { inst.instruction = T_OPCODE_CMP_HR; inst.instruction |= (inst.operands[0].reg & 0x8) << 4; inst.instruction |= (inst.operands[0].reg & 0x7); inst.instruction |= inst.operands[1].reg << 3; } break; } return; } inst.instruction = THUMB_OP16 (inst.instruction); if (inst.operands[1].isreg) { if (inst.operands[0].reg < 8 && inst.operands[1].reg < 8) { /* A move of two lowregs is encoded as ADD Rd, Rs, #0 since a MOV instruction produces unpredictable results. */ if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_ADD_I3; else inst.instruction = T_OPCODE_CMP_LR; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { if (inst.instruction == T_OPCODE_MOV_I8) inst.instruction = T_OPCODE_MOV_HR; else inst.instruction = T_OPCODE_CMP_HR; do_t_cpy (); } } else { constraint (inst.operands[0].reg > 7, _("only lo regs allowed with immediate")); inst.instruction |= inst.operands[0].reg << 8; inst.reloc.type = BFD_RELOC_ARM_THUMB_IMM; } } static void do_t_mov16 (void) { bfd_vma imm; bfd_boolean top; top = (inst.instruction & 0x00800000) != 0; if (inst.reloc.type == BFD_RELOC_ARM_MOVW) { constraint (top, _(":lower16: not allowed this instruction")); inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVW; } else if (inst.reloc.type == BFD_RELOC_ARM_MOVT) { constraint (!top, _(":upper16: not allowed this instruction")); inst.reloc.type = BFD_RELOC_ARM_THUMB_MOVT; } inst.instruction |= inst.operands[0].reg << 8; if (inst.reloc.type == BFD_RELOC_UNUSED) { imm = inst.reloc.exp.X_add_number; inst.instruction |= (imm & 0xf000) << 4; inst.instruction |= (imm & 0x0800) << 15; inst.instruction |= (imm & 0x0700) << 4; inst.instruction |= (imm & 0x00ff); } } static void do_t_mvn_tst (void) { if (unified_syntax) { int r0off = (inst.instruction == T_MNEM_mvn || inst.instruction == T_MNEM_mvns) ? 8 : 16; bfd_boolean narrow; if (inst.size_req == 4 || inst.instruction > 0xffff || inst.operands[1].shifted || inst.operands[0].reg > 7 || inst.operands[1].reg > 7) narrow = FALSE; else if (inst.instruction == T_MNEM_cmn) narrow = TRUE; else if (THUMB_SETS_FLAGS (inst.instruction)) narrow = (current_it_mask == 0); else narrow = (current_it_mask != 0); if (!inst.operands[1].isreg) { /* For an immediate, we always generate a 32-bit opcode; section relaxation will shrink it later if possible. */ if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.instruction |= inst.operands[0].reg << r0off; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { /* See if we can do this with a 16-bit instruction. */ if (narrow) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else { constraint (inst.operands[1].shifted && inst.operands[1].immisreg, _("shift must be constant")); if (inst.instruction < 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << r0off; encode_thumb32_shifted_operand (1); } } } else { constraint (inst.instruction > 0xffff || inst.instruction == T_MNEM_mvns, BAD_THUMB32); constraint (!inst.operands[1].isreg || inst.operands[1].shifted, _("unshifted register required")); constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_mrs (void) { int flags; if (do_vfp_nsyn_mrs () == SUCCESS) return; flags = inst.operands[1].imm & (PSR_c|PSR_x|PSR_s|PSR_f|SPSR_BIT); if (flags == 0) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m), _("selected processor does not support " "requested special purpose register")); } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1), _("selected processor does not support " "requested special purpose register %x")); /* mrs only accepts CPSR/SPSR/CPSR_all/SPSR_all. */ constraint ((flags & ~SPSR_BIT) != (PSR_c|PSR_f), _("'CPSR' or 'SPSR' expected")); } inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= (flags & SPSR_BIT) >> 2; inst.instruction |= inst.operands[1].imm & 0xff; } static void do_t_msr (void) { int flags; if (do_vfp_nsyn_msr () == SUCCESS) return; constraint (!inst.operands[1].isreg, _("Thumb encoding does not support an immediate here")); flags = inst.operands[0].imm; if (flags & ~0xff) { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1), _("selected processor does not support " "requested special purpose register")); } else { constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v7m), _("selected processor does not support " "requested special purpose register")); flags |= PSR_f; } inst.instruction |= (flags & SPSR_BIT) >> 2; inst.instruction |= (flags & ~SPSR_BIT) >> 8; inst.instruction |= (flags & 0xff); inst.instruction |= inst.operands[1].reg << 16; } static void do_t_mul (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[0].reg; /* There is no 32-bit MULS and no 16-bit MUL. */ if (unified_syntax && inst.instruction == T_MNEM_mul) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg << 0; } else { constraint (!unified_syntax && inst.instruction == T_MNEM_muls, BAD_THUMB32); constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; if (inst.operands[0].reg == inst.operands[1].reg) inst.instruction |= inst.operands[2].reg << 3; else if (inst.operands[0].reg == inst.operands[2].reg) inst.instruction |= inst.operands[1].reg << 3; else constraint (1, _("dest must overlap one source register")); } } static void do_t_mull (void) { inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 8; inst.instruction |= inst.operands[2].reg << 16; inst.instruction |= inst.operands[3].reg; if (inst.operands[0].reg == inst.operands[1].reg) as_tsktsk (_("rdhi and rdlo must be different")); } static void do_t_nop (void) { if (unified_syntax) { if (inst.size_req == 4 || inst.operands[0].imm > 15) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].imm; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].imm << 4; } } else { constraint (inst.operands[0].present, _("Thumb does not support NOP with hints")); inst.instruction = 0x46c0; } } static void do_t_neg (void) { if (unified_syntax) { bfd_boolean narrow; if (THUMB_SETS_FLAGS (inst.instruction)) narrow = (current_it_mask == 0); else narrow = (current_it_mask != 0); if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7) narrow = FALSE; if (inst.size_req == 4) narrow = FALSE; if (!narrow) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } else { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } static void do_t_pkhbt (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; if (inst.operands[3].present) { unsigned int val = inst.reloc.exp.X_add_number; constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); inst.instruction |= (val & 0x1c) << 10; inst.instruction |= (val & 0x03) << 6; } } static void do_t_pkhtb (void) { if (!inst.operands[3].present) inst.instruction &= ~0x00000020; do_t_pkhbt (); } static void do_t_pld (void) { encode_thumb32_addr_mode (0, /*is_t=*/FALSE, /*is_d=*/FALSE); } static void do_t_push_pop (void) { unsigned mask; constraint (inst.operands[0].writeback, _("push/pop do not support {reglist}^")); constraint (inst.reloc.type != BFD_RELOC_UNUSED, _("expression too complex")); mask = inst.operands[0].imm; if ((mask & ~0xff) == 0) inst.instruction = THUMB_OP16 (inst.instruction); else if ((inst.instruction == T_MNEM_push && (mask & ~0xff) == 1 << REG_LR) || (inst.instruction == T_MNEM_pop && (mask & ~0xff) == 1 << REG_PC)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= THUMB_PP_PC_LR; mask &= 0xff; } else if (unified_syntax) { if (mask & (1 << 13)) inst.error = _("SP not allowed in register list"); if (inst.instruction == T_MNEM_push) { if (mask & (1 << 15)) inst.error = _("PC not allowed in register list"); } else { if (mask & (1 << 14) && mask & (1 << 15)) inst.error = _("LR and PC should not both be in register list"); } if ((mask & (mask - 1)) == 0) { /* Single register push/pop implemented as str/ldr. */ if (inst.instruction == T_MNEM_push) inst.instruction = 0xf84d0d04; /* str reg, [sp, #-4]! */ else inst.instruction = 0xf85d0b04; /* ldr reg, [sp], #4 */ mask = ffs(mask) - 1; mask <<= 12; } else inst.instruction = THUMB_OP32 (inst.instruction); } else { inst.error = _("invalid register list to push/pop instruction"); return; } inst.instruction |= mask; } static void do_t_rbit (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; } static void do_t_rev (void) { if (inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && inst.size_req != 4) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else if (unified_syntax) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[1].reg; } else inst.error = BAD_HIREG; } static void do_t_rsb (void) { int Rd, Rs; Rd = inst.operands[0].reg; Rs = (inst.operands[1].present ? inst.operands[1].reg /* Rd, Rs, foo */ : inst.operands[0].reg); /* Rd, foo -> Rd, Rd, foo */ inst.instruction |= Rd << 8; inst.instruction |= Rs << 16; if (!inst.operands[2].isreg) { inst.instruction = (inst.instruction & 0xe1ffffff) | 0x10000000; inst.reloc.type = BFD_RELOC_ARM_T32_IMMEDIATE; } else encode_thumb32_shifted_operand (2); } static void do_t_setend (void) { constraint (current_it_mask, BAD_NOT_IT); if (inst.operands[0].imm) inst.instruction |= 0x8; } static void do_t_shift (void) { if (!inst.operands[1].present) inst.operands[1].reg = inst.operands[0].reg; if (unified_syntax) { bfd_boolean narrow; int shift_kind; switch (inst.instruction) { case T_MNEM_asr: case T_MNEM_asrs: shift_kind = SHIFT_ASR; break; case T_MNEM_lsl: case T_MNEM_lsls: shift_kind = SHIFT_LSL; break; case T_MNEM_lsr: case T_MNEM_lsrs: shift_kind = SHIFT_LSR; break; case T_MNEM_ror: case T_MNEM_rors: shift_kind = SHIFT_ROR; break; default: abort (); } if (THUMB_SETS_FLAGS (inst.instruction)) narrow = (current_it_mask == 0); else narrow = (current_it_mask != 0); if (inst.operands[0].reg > 7 || inst.operands[1].reg > 7) narrow = FALSE; if (!inst.operands[2].isreg && shift_kind == SHIFT_ROR) narrow = FALSE; if (inst.operands[2].isreg && (inst.operands[1].reg != inst.operands[0].reg || inst.operands[2].reg > 7)) narrow = FALSE; if (inst.size_req == 4) narrow = FALSE; if (!narrow) { if (inst.operands[2].isreg) { inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } else { inst.operands[1].shifted = 1; inst.operands[1].shift_kind = shift_kind; inst.instruction = THUMB_OP32 (THUMB_SETS_FLAGS (inst.instruction) ? T_MNEM_movs : T_MNEM_mov); inst.instruction |= inst.operands[0].reg << 8; encode_thumb32_shifted_operand (1); /* Prevent the incorrect generation of an ARM_IMMEDIATE fixup. */ inst.reloc.type = BFD_RELOC_UNUSED; } } else { if (inst.operands[2].isreg) { switch (shift_kind) { case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_R; break; case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_R; break; case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_R; break; case SHIFT_ROR: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; } else { switch (shift_kind) { case SHIFT_ASR: inst.instruction = T_OPCODE_ASR_I; break; case SHIFT_LSL: inst.instruction = T_OPCODE_LSL_I; break; case SHIFT_LSR: inst.instruction = T_OPCODE_LSR_I; break; default: abort (); } inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } else { constraint (inst.operands[0].reg > 7 || inst.operands[1].reg > 7, BAD_HIREG); constraint (THUMB_SETS_FLAGS (inst.instruction), BAD_THUMB32); if (inst.operands[2].isreg) /* Rd, {Rs,} Rn */ { constraint (inst.operands[2].reg > 7, BAD_HIREG); constraint (inst.operands[0].reg != inst.operands[1].reg, _("source1 and dest must be same register")); switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_R; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_R; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_R; break; case T_MNEM_ror: inst.instruction = T_OPCODE_ROR_R; break; default: abort (); } inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[2].reg << 3; } else { switch (inst.instruction) { case T_MNEM_asr: inst.instruction = T_OPCODE_ASR_I; break; case T_MNEM_lsl: inst.instruction = T_OPCODE_LSL_I; break; case T_MNEM_lsr: inst.instruction = T_OPCODE_LSR_I; break; case T_MNEM_ror: inst.error = _("ror #imm not supported"); return; default: abort (); } inst.reloc.type = BFD_RELOC_ARM_THUMB_SHIFT; inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } } } static void do_t_simd (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; } static void do_t_smc (void) { unsigned int value = inst.reloc.exp.X_add_number; constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); inst.reloc.type = BFD_RELOC_UNUSED; inst.instruction |= (value & 0xf000) >> 12; inst.instruction |= (value & 0x0ff0); inst.instruction |= (value & 0x000f) << 16; } static void do_t_ssat (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm - 1; inst.instruction |= inst.operands[2].reg << 16; if (inst.operands[3].present) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); if (inst.reloc.exp.X_add_number != 0) { if (inst.operands[3].shift_kind == SHIFT_ASR) inst.instruction |= 0x00200000; /* sh bit */ inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10; inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6; } inst.reloc.type = BFD_RELOC_UNUSED; } } static void do_t_ssat16 (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm - 1; inst.instruction |= inst.operands[2].reg << 16; } static void do_t_strex (void) { constraint (!inst.operands[2].isreg || !inst.operands[2].preind || inst.operands[2].postind || inst.operands[2].writeback || inst.operands[2].immisreg || inst.operands[2].shifted || inst.operands[2].negative, BAD_ADDR_MODE); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; inst.reloc.type = BFD_RELOC_ARM_T32_OFFSET_U8; } static void do_t_strexd (void) { if (!inst.operands[2].present) inst.operands[2].reg = inst.operands[1].reg + 1; constraint (inst.operands[0].reg == inst.operands[1].reg || inst.operands[0].reg == inst.operands[2].reg || inst.operands[0].reg == inst.operands[3].reg || inst.operands[1].reg == inst.operands[2].reg, BAD_OVERLAP); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 8; inst.instruction |= inst.operands[3].reg << 16; } static void do_t_sxtah (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= inst.operands[2].reg; inst.instruction |= inst.operands[3].imm << 4; } static void do_t_sxth (void) { if (inst.instruction <= 0xffff && inst.size_req != 4 && inst.operands[0].reg <= 7 && inst.operands[1].reg <= 7 && (!inst.operands[2].present || inst.operands[2].imm == 0)) { inst.instruction = THUMB_OP16 (inst.instruction); inst.instruction |= inst.operands[0].reg; inst.instruction |= inst.operands[1].reg << 3; } else if (unified_syntax) { if (inst.instruction <= 0xffff) inst.instruction = THUMB_OP32 (inst.instruction); inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].reg; inst.instruction |= inst.operands[2].imm << 4; } else { constraint (inst.operands[2].present && inst.operands[2].imm != 0, _("Thumb encoding does not support rotation")); constraint (1, BAD_HIREG); } } static void do_t_swi (void) { inst.reloc.type = BFD_RELOC_ARM_SWI; } static void do_t_tb (void) { int half; half = (inst.instruction & 0x10) != 0; constraint (current_it_mask && current_it_mask != 0x10, BAD_BRANCH); constraint (inst.operands[0].immisreg, _("instruction requires register index")); constraint (inst.operands[0].imm == 15, _("PC is not a valid index register")); constraint (!half && inst.operands[0].shifted, _("instruction does not allow shifted index")); inst.instruction |= (inst.operands[0].reg << 16) | inst.operands[0].imm; } static void do_t_usat (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; inst.instruction |= inst.operands[2].reg << 16; if (inst.operands[3].present) { constraint (inst.reloc.exp.X_op != O_constant, _("expression too complex")); if (inst.reloc.exp.X_add_number != 0) { if (inst.operands[3].shift_kind == SHIFT_ASR) inst.instruction |= 0x00200000; /* sh bit */ inst.instruction |= (inst.reloc.exp.X_add_number & 0x1c) << 10; inst.instruction |= (inst.reloc.exp.X_add_number & 0x03) << 6; } inst.reloc.type = BFD_RELOC_UNUSED; } } static void do_t_usat16 (void) { inst.instruction |= inst.operands[0].reg << 8; inst.instruction |= inst.operands[1].imm; inst.instruction |= inst.operands[2].reg << 16; } /* Neon instruction encoder helpers. */ /* Encodings for the different types for various Neon opcodes. */ /* An "invalid" code for the following tables. */ #define N_INV -1u struct neon_tab_entry { unsigned integer; unsigned float_or_poly; unsigned scalar_or_imm; }; /* Map overloaded Neon opcodes to their respective encodings. */ #define NEON_ENC_TAB \ X(vabd, 0x0000700, 0x1200d00, N_INV), \ X(vmax, 0x0000600, 0x0000f00, N_INV), \ X(vmin, 0x0000610, 0x0200f00, N_INV), \ X(vpadd, 0x0000b10, 0x1000d00, N_INV), \ X(vpmax, 0x0000a00, 0x1000f00, N_INV), \ X(vpmin, 0x0000a10, 0x1200f00, N_INV), \ X(vadd, 0x0000800, 0x0000d00, N_INV), \ X(vsub, 0x1000800, 0x0200d00, N_INV), \ X(vceq, 0x1000810, 0x0000e00, 0x1b10100), \ X(vcge, 0x0000310, 0x1000e00, 0x1b10080), \ X(vcgt, 0x0000300, 0x1200e00, 0x1b10000), \ /* Register variants of the following two instructions are encoded as vcge / vcgt with the operands reversed. */ \ X(vclt, 0x0000310, 0x1000e00, 0x1b10200), \ X(vcle, 0x0000300, 0x1200e00, 0x1b10180), \ X(vmla, 0x0000900, 0x0000d10, 0x0800040), \ X(vmls, 0x1000900, 0x0200d10, 0x0800440), \ X(vmul, 0x0000910, 0x1000d10, 0x0800840), \ X(vmull, 0x0800c00, 0x0800e00, 0x0800a40), /* polynomial not float. */ \ X(vmlal, 0x0800800, N_INV, 0x0800240), \ X(vmlsl, 0x0800a00, N_INV, 0x0800640), \ X(vqdmlal, 0x0800900, N_INV, 0x0800340), \ X(vqdmlsl, 0x0800b00, N_INV, 0x0800740), \ X(vqdmull, 0x0800d00, N_INV, 0x0800b40), \ X(vqdmulh, 0x0000b00, N_INV, 0x0800c40), \ X(vqrdmulh, 0x1000b00, N_INV, 0x0800d40), \ X(vshl, 0x0000400, N_INV, 0x0800510), \ X(vqshl, 0x0000410, N_INV, 0x0800710), \ X(vand, 0x0000110, N_INV, 0x0800030), \ X(vbic, 0x0100110, N_INV, 0x0800030), \ X(veor, 0x1000110, N_INV, N_INV), \ X(vorn, 0x0300110, N_INV, 0x0800010), \ X(vorr, 0x0200110, N_INV, 0x0800010), \ X(vmvn, 0x1b00580, N_INV, 0x0800030), \ X(vshll, 0x1b20300, N_INV, 0x0800a10), /* max shift, immediate. */ \ X(vcvt, 0x1b30600, N_INV, 0x0800e10), /* integer, fixed-point. */ \ X(vdup, 0xe800b10, N_INV, 0x1b00c00), /* arm, scalar. */ \ X(vld1, 0x0200000, 0x0a00000, 0x0a00c00), /* interlv, lane, dup. */ \ X(vst1, 0x0000000, 0x0800000, N_INV), \ X(vld2, 0x0200100, 0x0a00100, 0x0a00d00), \ X(vst2, 0x0000100, 0x0800100, N_INV), \ X(vld3, 0x0200200, 0x0a00200, 0x0a00e00), \ X(vst3, 0x0000200, 0x0800200, N_INV), \ X(vld4, 0x0200300, 0x0a00300, 0x0a00f00), \ X(vst4, 0x0000300, 0x0800300, N_INV), \ X(vmovn, 0x1b20200, N_INV, N_INV), \ X(vtrn, 0x1b20080, N_INV, N_INV), \ X(vqmovn, 0x1b20200, N_INV, N_INV), \ X(vqmovun, 0x1b20240, N_INV, N_INV), \ X(vnmul, 0xe200a40, 0xe200b40, N_INV), \ X(vnmla, 0xe000a40, 0xe000b40, N_INV), \ X(vnmls, 0xe100a40, 0xe100b40, N_INV), \ X(vcmp, 0xeb40a40, 0xeb40b40, N_INV), \ X(vcmpz, 0xeb50a40, 0xeb50b40, N_INV), \ X(vcmpe, 0xeb40ac0, 0xeb40bc0, N_INV), \ X(vcmpez, 0xeb50ac0, 0xeb50bc0, N_INV) enum neon_opc { #define X(OPC,I,F,S) N_MNEM_##OPC NEON_ENC_TAB #undef X }; static const struct neon_tab_entry neon_enc_tab[] = { #define X(OPC,I,F,S) { (I), (F), (S) } NEON_ENC_TAB #undef X }; #define NEON_ENC_INTEGER(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_ARMREG(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_POLY(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_FLOAT(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_SCALAR(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_IMMED(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_INTERLV(X) (neon_enc_tab[(X) & 0x0fffffff].integer) #define NEON_ENC_LANE(X) (neon_enc_tab[(X) & 0x0fffffff].float_or_poly) #define NEON_ENC_DUP(X) (neon_enc_tab[(X) & 0x0fffffff].scalar_or_imm) #define NEON_ENC_SINGLE(X) \ ((neon_enc_tab[(X) & 0x0fffffff].integer) | ((X) & 0xf0000000)) #define NEON_ENC_DOUBLE(X) \ ((neon_enc_tab[(X) & 0x0fffffff].float_or_poly) | ((X) & 0xf0000000)) /* Define shapes for instruction operands. The following mnemonic characters are used in this table: F - VFP S register D - Neon D register Q - Neon Q register I - Immediate S - Scalar R - ARM register L - D register list This table is used to generate various data: - enumerations of the form NS_DDR to be used as arguments to neon_select_shape. - a table classifying shapes into single, double, quad, mixed. - a table used to drive neon_select_shape. */ #define NEON_SHAPE_DEF \ X(3, (D, D, D), DOUBLE), \ X(3, (Q, Q, Q), QUAD), \ X(3, (D, D, I), DOUBLE), \ X(3, (Q, Q, I), QUAD), \ X(3, (D, D, S), DOUBLE), \ X(3, (Q, Q, S), QUAD), \ X(2, (D, D), DOUBLE), \ X(2, (Q, Q), QUAD), \ X(2, (D, S), DOUBLE), \ X(2, (Q, S), QUAD), \ X(2, (D, R), DOUBLE), \ X(2, (Q, R), QUAD), \ X(2, (D, I), DOUBLE), \ X(2, (Q, I), QUAD), \ X(3, (D, L, D), DOUBLE), \ X(2, (D, Q), MIXED), \ X(2, (Q, D), MIXED), \ X(3, (D, Q, I), MIXED), \ X(3, (Q, D, I), MIXED), \ X(3, (Q, D, D), MIXED), \ X(3, (D, Q, Q), MIXED), \ X(3, (Q, Q, D), MIXED), \ X(3, (Q, D, S), MIXED), \ X(3, (D, Q, S), MIXED), \ X(4, (D, D, D, I), DOUBLE), \ X(4, (Q, Q, Q, I), QUAD), \ X(2, (F, F), SINGLE), \ X(3, (F, F, F), SINGLE), \ X(2, (F, I), SINGLE), \ X(2, (F, D), MIXED), \ X(2, (D, F), MIXED), \ X(3, (F, F, I), MIXED), \ X(4, (R, R, F, F), SINGLE), \ X(4, (F, F, R, R), SINGLE), \ X(3, (D, R, R), DOUBLE), \ X(3, (R, R, D), DOUBLE), \ X(2, (S, R), SINGLE), \ X(2, (R, S), SINGLE), \ X(2, (F, R), SINGLE), \ X(2, (R, F), SINGLE) #define S2(A,B) NS_##A##B #define S3(A,B,C) NS_##A##B##C #define S4(A,B,C,D) NS_##A##B##C##D #define X(N, L, C) S##N L enum neon_shape { NEON_SHAPE_DEF, NS_NULL }; #undef X #undef S2 #undef S3 #undef S4 enum neon_shape_class { SC_SINGLE, SC_DOUBLE, SC_QUAD, SC_MIXED }; #define X(N, L, C) SC_##C static enum neon_shape_class neon_shape_class[] = { NEON_SHAPE_DEF }; #undef X enum neon_shape_el { SE_F, SE_D, SE_Q, SE_I, SE_S, SE_R, SE_L }; /* Register widths of above. */ static unsigned neon_shape_el_size[] = { 32, 64, 128, 0, 32, 32, 0 }; struct neon_shape_info { unsigned els; enum neon_shape_el el[NEON_MAX_TYPE_ELS]; }; #define S2(A,B) { SE_##A, SE_##B } #define S3(A,B,C) { SE_##A, SE_##B, SE_##C } #define S4(A,B,C,D) { SE_##A, SE_##B, SE_##C, SE_##D } #define X(N, L, C) { N, S##N L } static struct neon_shape_info neon_shape_tab[] = { NEON_SHAPE_DEF }; #undef X #undef S2 #undef S3 #undef S4 /* Bit masks used in type checking given instructions. 'N_EQK' means the type must be the same as (or based on in some way) the key type, which itself is marked with the 'N_KEY' bit. If the 'N_EQK' bit is set, various other bits can be set as well in order to modify the meaning of the type constraint. */ enum neon_type_mask { N_S8 = 0x000001, N_S16 = 0x000002, N_S32 = 0x000004, N_S64 = 0x000008, N_U8 = 0x000010, N_U16 = 0x000020, N_U32 = 0x000040, N_U64 = 0x000080, N_I8 = 0x000100, N_I16 = 0x000200, N_I32 = 0x000400, N_I64 = 0x000800, N_8 = 0x001000, N_16 = 0x002000, N_32 = 0x004000, N_64 = 0x008000, N_P8 = 0x010000, N_P16 = 0x020000, N_F32 = 0x040000, N_F64 = 0x080000, N_KEY = 0x100000, /* key element (main type specifier). */ N_EQK = 0x200000, /* given operand has the same type & size as the key. */ N_VFP = 0x400000, /* VFP mode: operand size must match register width. */ N_DBL = 0x000001, /* if N_EQK, this operand is twice the size. */ N_HLF = 0x000002, /* if N_EQK, this operand is half the size. */ N_SGN = 0x000004, /* if N_EQK, this operand is forced to be signed. */ N_UNS = 0x000008, /* if N_EQK, this operand is forced to be unsigned. */ N_INT = 0x000010, /* if N_EQK, this operand is forced to be integer. */ N_FLT = 0x000020, /* if N_EQK, this operand is forced to be float. */ N_SIZ = 0x000040, /* if N_EQK, this operand is forced to be size-only. */ N_UTYP = 0, N_MAX_NONSPECIAL = N_F64 }; #define N_ALLMODS (N_DBL | N_HLF | N_SGN | N_UNS | N_INT | N_FLT | N_SIZ) #define N_SU_ALL (N_S8 | N_S16 | N_S32 | N_S64 | N_U8 | N_U16 | N_U32 | N_U64) #define N_SU_32 (N_S8 | N_S16 | N_S32 | N_U8 | N_U16 | N_U32) #define N_SU_16_64 (N_S16 | N_S32 | N_S64 | N_U16 | N_U32 | N_U64) #define N_SUF_32 (N_SU_32 | N_F32) #define N_I_ALL (N_I8 | N_I16 | N_I32 | N_I64) #define N_IF_32 (N_I8 | N_I16 | N_I32 | N_F32) /* Pass this as the first type argument to neon_check_type to ignore types altogether. */ #define N_IGNORE_TYPE (N_KEY | N_EQK) /* Select a "shape" for the current instruction (describing register types or sizes) from a list of alternatives. Return NS_NULL if the current instruction doesn't fit. For non-polymorphic shapes, checking is usually done as a function of operand parsing, so this function doesn't need to be called. Shapes should be listed in order of decreasing length. */ static enum neon_shape neon_select_shape (enum neon_shape shape, ...) { va_list ap; enum neon_shape first_shape = shape; /* Fix missing optional operands. FIXME: we don't know at this point how many arguments we should have, so this makes the assumption that we have > 1. This is true of all current Neon opcodes, I think, but may not be true in the future. */ if (!inst.operands[1].present) inst.operands[1] = inst.operands[0]; va_start (ap, shape); for (; shape != NS_NULL; shape = va_arg (ap, int)) { unsigned j; int matches = 1; for (j = 0; j < neon_shape_tab[shape].els; j++) { if (!inst.operands[j].present) { matches = 0; break; } switch (neon_shape_tab[shape].el[j]) { case SE_F: if (!(inst.operands[j].isreg && inst.operands[j].isvec && inst.operands[j].issingle && !inst.operands[j].isquad)) matches = 0; break; case SE_D: if (!(inst.operands[j].isreg && inst.operands[j].isvec && !inst.operands[j].isquad && !inst.operands[j].issingle)) matches = 0; break; case SE_R: if (!(inst.operands[j].isreg && !inst.operands[j].isvec)) matches = 0; break; case SE_Q: if (!(inst.operands[j].isreg && inst.operands[j].isvec && inst.operands[j].isquad && !inst.operands[j].issingle)) matches = 0; break; case SE_I: if (!(!inst.operands[j].isreg && !inst.operands[j].isscalar)) matches = 0; break; case SE_S: if (!(!inst.operands[j].isreg && inst.operands[j].isscalar)) matches = 0; break; case SE_L: break; } } if (matches) break; } va_end (ap); if (shape == NS_NULL && first_shape != NS_NULL) first_error (_("invalid instruction shape")); return shape; } /* True if SHAPE is predominantly a quadword operation (most of the time, this means the Q bit should be set). */ static int neon_quad (enum neon_shape shape) { return neon_shape_class[shape] == SC_QUAD; } static void neon_modify_type_size (unsigned typebits, enum neon_el_type *g_type, unsigned *g_size) { /* Allow modification to be made to types which are constrained to be based on the key element, based on bits set alongside N_EQK. */ if ((typebits & N_EQK) != 0) { if ((typebits & N_HLF) != 0) *g_size /= 2; else if ((typebits & N_DBL) != 0) *g_size *= 2; if ((typebits & N_SGN) != 0) *g_type = NT_signed; else if ((typebits & N_UNS) != 0) *g_type = NT_unsigned; else if ((typebits & N_INT) != 0) *g_type = NT_integer; else if ((typebits & N_FLT) != 0) *g_type = NT_float; else if ((typebits & N_SIZ) != 0) *g_type = NT_untyped; } } /* Return operand OPNO promoted by bits set in THISARG. KEY should be the "key" operand type, i.e. the single type specified in a Neon instruction when it is the only one given. */ static struct neon_type_el neon_type_promote (struct neon_type_el *key, unsigned thisarg) { struct neon_type_el dest = *key; assert ((thisarg & N_EQK) != 0); neon_modify_type_size (thisarg, &dest.type, &dest.size); return dest; } /* Convert Neon type and size into compact bitmask representation. */ static enum neon_type_mask type_chk_of_el_type (enum neon_el_type type, unsigned size) { switch (type) { case NT_untyped: switch (size) { case 8: return N_8; case 16: return N_16; case 32: return N_32; case 64: return N_64; default: ; } break; case NT_integer: switch (size) { case 8: return N_I8; case 16: return N_I16; case 32: return N_I32; case 64: return N_I64; default: ; } break; case NT_float: switch (size) { case 32: return N_F32; case 64: return N_F64; default: ; } break; case NT_poly: switch (size) { case 8: return N_P8; case 16: return N_P16; default: ; } break; case NT_signed: switch (size) { case 8: return N_S8; case 16: return N_S16; case 32: return N_S32; case 64: return N_S64; default: ; } break; case NT_unsigned: switch (size) { case 8: return N_U8; case 16: return N_U16; case 32: return N_U32; case 64: return N_U64; default: ; } break; default: ; } return N_UTYP; } /* Convert compact Neon bitmask type representation to a type and size. Only handles the case where a single bit is set in the mask. */ static int el_type_of_type_chk (enum neon_el_type *type, unsigned *size, enum neon_type_mask mask) { if ((mask & N_EQK) != 0) return FAIL; if ((mask & (N_S8 | N_U8 | N_I8 | N_8 | N_P8)) != 0) *size = 8; else if ((mask & (N_S16 | N_U16 | N_I16 | N_16 | N_P16)) != 0) *size = 16; else if ((mask & (N_S32 | N_U32 | N_I32 | N_32 | N_F32)) != 0) *size = 32; else if ((mask & (N_S64 | N_U64 | N_I64 | N_64 | N_F64)) != 0) *size = 64; else return FAIL; if ((mask & (N_S8 | N_S16 | N_S32 | N_S64)) != 0) *type = NT_signed; else if ((mask & (N_U8 | N_U16 | N_U32 | N_U64)) != 0) *type = NT_unsigned; else if ((mask & (N_I8 | N_I16 | N_I32 | N_I64)) != 0) *type = NT_integer; else if ((mask & (N_8 | N_16 | N_32 | N_64)) != 0) *type = NT_untyped; else if ((mask & (N_P8 | N_P16)) != 0) *type = NT_poly; else if ((mask & (N_F32 | N_F64)) != 0) *type = NT_float; else return FAIL; return SUCCESS; } /* Modify a bitmask of allowed types. This is only needed for type relaxation. */ static unsigned modify_types_allowed (unsigned allowed, unsigned mods) { unsigned size; enum neon_el_type type; unsigned destmask; int i; destmask = 0; for (i = 1; i <= N_MAX_NONSPECIAL; i <<= 1) { if (el_type_of_type_chk (&type, &size, allowed & i) == SUCCESS) { neon_modify_type_size (mods, &type, &size); destmask |= type_chk_of_el_type (type, size); } } return destmask; } /* Check type and return type classification. The manual states (paraphrase): If one datatype is given, it indicates the type given in: - the second operand, if there is one - the operand, if there is no second operand - the result, if there are no operands. This isn't quite good enough though, so we use a concept of a "key" datatype which is set on a per-instruction basis, which is the one which matters when only one data type is written. Note: this function has side-effects (e.g. filling in missing operands). All Neon instructions should call it before performing bit encoding. */ static struct neon_type_el neon_check_type (unsigned els, enum neon_shape ns, ...) { va_list ap; unsigned i, pass, key_el = 0; unsigned types[NEON_MAX_TYPE_ELS]; enum neon_el_type k_type = NT_invtype; unsigned k_size = -1u; struct neon_type_el badtype = {NT_invtype, -1}; unsigned key_allowed = 0; /* Optional registers in Neon instructions are always (not) in operand 1. Fill in the missing operand here, if it was omitted. */ if (els > 1 && !inst.operands[1].present) inst.operands[1] = inst.operands[0]; /* Suck up all the varargs. */ va_start (ap, ns); for (i = 0; i < els; i++) { unsigned thisarg = va_arg (ap, unsigned); if (thisarg == N_IGNORE_TYPE) { va_end (ap); return badtype; } types[i] = thisarg; if ((thisarg & N_KEY) != 0) key_el = i; } va_end (ap); if (inst.vectype.elems > 0) for (i = 0; i < els; i++) if (inst.operands[i].vectype.type != NT_invtype) { first_error (_("types specified in both the mnemonic and operands")); return badtype; } /* Duplicate inst.vectype elements here as necessary. FIXME: No idea if this is exactly the same as the ARM assembler, particularly when an insn takes one register and one non-register operand. */ if (inst.vectype.elems == 1 && els > 1) { unsigned j; inst.vectype.elems = els; inst.vectype.el[key_el] = inst.vectype.el[0]; for (j = 0; j < els; j++) if (j != key_el) inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el], types[j]); } else if (inst.vectype.elems == 0 && els > 0) { unsigned j; /* No types were given after the mnemonic, so look for types specified after each operand. We allow some flexibility here; as long as the "key" operand has a type, we can infer the others. */ for (j = 0; j < els; j++) if (inst.operands[j].vectype.type != NT_invtype) inst.vectype.el[j] = inst.operands[j].vectype; if (inst.operands[key_el].vectype.type != NT_invtype) { for (j = 0; j < els; j++) if (inst.operands[j].vectype.type == NT_invtype) inst.vectype.el[j] = neon_type_promote (&inst.vectype.el[key_el], types[j]); } else { first_error (_("operand types can't be inferred")); return badtype; } } else if (inst.vectype.elems != els) { first_error (_("type specifier has the wrong number of parts")); return badtype; } for (pass = 0; pass < 2; pass++) { for (i = 0; i < els; i++) { unsigned thisarg = types[i]; unsigned types_allowed = ((thisarg & N_EQK) != 0 && pass != 0) ? modify_types_allowed (key_allowed, thisarg) : thisarg; enum neon_el_type g_type = inst.vectype.el[i].type; unsigned g_size = inst.vectype.el[i].size; /* Decay more-specific signed & unsigned types to sign-insensitive integer types if sign-specific variants are unavailable. */ if ((g_type == NT_signed || g_type == NT_unsigned) && (types_allowed & N_SU_ALL) == 0) g_type = NT_integer; /* If only untyped args are allowed, decay any more specific types to them. Some instructions only care about signs for some element sizes, so handle that properly. */ if ((g_size == 8 && (types_allowed & N_8) != 0) || (g_size == 16 && (types_allowed & N_16) != 0) || (g_size == 32 && (types_allowed & N_32) != 0) || (g_size == 64 && (types_allowed & N_64) != 0)) g_type = NT_untyped; if (pass == 0) { if ((thisarg & N_KEY) != 0) { k_type = g_type; k_size = g_size; key_allowed = thisarg & ~N_KEY; } } else { if ((thisarg & N_VFP) != 0) { enum neon_shape_el regshape = neon_shape_tab[ns].el[i]; unsigned regwidth = neon_shape_el_size[regshape], match; /* In VFP mode, operands must match register widths. If we have a key operand, use its width, else use the width of the current operand. */ if (k_size != -1u) match = k_size; else match = g_size; if (regwidth != match) { first_error (_("operand size must match register width")); return badtype; } } if ((thisarg & N_EQK) == 0) { unsigned given_type = type_chk_of_el_type (g_type, g_size); if ((given_type & types_allowed) == 0) { first_error (_("bad type in Neon instruction")); return badtype; } } else { enum neon_el_type mod_k_type = k_type; unsigned mod_k_size = k_size; neon_modify_type_size (thisarg, &mod_k_type, &mod_k_size); if (g_type != mod_k_type || g_size != mod_k_size) { first_error (_("inconsistent types in Neon instruction")); return badtype; } } } } } return inst.vectype.el[key_el]; } /* Neon-style VFP instruction forwarding. */ /* Thumb VFP instructions have 0xE in the condition field. */ static void do_vfp_cond_or_thumb (void) { if (thumb_mode) inst.instruction |= 0xe0000000; else inst.instruction |= inst.cond << 28; } /* Look up and encode a simple mnemonic, for use as a helper function for the Neon-style VFP syntax. This avoids duplication of bits of the insns table, etc. It is assumed that operand parsing has already been done, and that the operands are in the form expected by the given opcode (this isn't necessarily the same as the form in which they were parsed, hence some massaging must take place before this function is called). Checks current arch version against that in the looked-up opcode. */ static void do_vfp_nsyn_opcode (const char *opname) { const struct asm_opcode *opcode; opcode = hash_find (arm_ops_hsh, opname); if (!opcode) abort (); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, thumb_mode ? *opcode->tvariant : *opcode->avariant), _(BAD_FPU)); if (thumb_mode) { inst.instruction = opcode->tvalue; opcode->tencode (); } else { inst.instruction = (inst.cond << 28) | opcode->avalue; opcode->aencode (); } } static void do_vfp_nsyn_add_sub (enum neon_shape rs) { int is_add = (inst.instruction & 0x0fffffff) == N_MNEM_vadd; if (rs == NS_FFF) { if (is_add) do_vfp_nsyn_opcode ("fadds"); else do_vfp_nsyn_opcode ("fsubs"); } else { if (is_add) do_vfp_nsyn_opcode ("faddd"); else do_vfp_nsyn_opcode ("fsubd"); } } /* Check operand types to see if this is a VFP instruction, and if so call PFN (). */ static int try_vfp_nsyn (int args, void (*pfn) (enum neon_shape)) { enum neon_shape rs; struct neon_type_el et; switch (args) { case 2: rs = neon_select_shape (NS_FF, NS_DD, NS_NULL); et = neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); break; case 3: rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL); et = neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); break; default: abort (); } if (et.type != NT_invtype) { pfn (rs); return SUCCESS; } else inst.error = NULL; return FAIL; } static void do_vfp_nsyn_mla_mls (enum neon_shape rs) { int is_mla = (inst.instruction & 0x0fffffff) == N_MNEM_vmla; if (rs == NS_FFF) { if (is_mla) do_vfp_nsyn_opcode ("fmacs"); else do_vfp_nsyn_opcode ("fmscs"); } else { if (is_mla) do_vfp_nsyn_opcode ("fmacd"); else do_vfp_nsyn_opcode ("fmscd"); } } static void do_vfp_nsyn_mul (enum neon_shape rs) { if (rs == NS_FFF) do_vfp_nsyn_opcode ("fmuls"); else do_vfp_nsyn_opcode ("fmuld"); } static void do_vfp_nsyn_abs_neg (enum neon_shape rs) { int is_neg = (inst.instruction & 0x80) != 0; neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_VFP | N_KEY); if (rs == NS_FF) { if (is_neg) do_vfp_nsyn_opcode ("fnegs"); else do_vfp_nsyn_opcode ("fabss"); } else { if (is_neg) do_vfp_nsyn_opcode ("fnegd"); else do_vfp_nsyn_opcode ("fabsd"); } } /* Encode single-precision (only!) VFP fldm/fstm instructions. Double precision insns belong to Neon, and are handled elsewhere. */ static void do_vfp_nsyn_ldm_stm (int is_dbmode) { int is_ldm = (inst.instruction & (1 << 20)) != 0; if (is_ldm) { if (is_dbmode) do_vfp_nsyn_opcode ("fldmdbs"); else do_vfp_nsyn_opcode ("fldmias"); } else { if (is_dbmode) do_vfp_nsyn_opcode ("fstmdbs"); else do_vfp_nsyn_opcode ("fstmias"); } } static void do_vfp_nsyn_sqrt (void) { enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL); neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); if (rs == NS_FF) do_vfp_nsyn_opcode ("fsqrts"); else do_vfp_nsyn_opcode ("fsqrtd"); } static void do_vfp_nsyn_div (void) { enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL); neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); if (rs == NS_FFF) do_vfp_nsyn_opcode ("fdivs"); else do_vfp_nsyn_opcode ("fdivd"); } static void do_vfp_nsyn_nmul (void) { enum neon_shape rs = neon_select_shape (NS_FFF, NS_DDD, NS_NULL); neon_check_type (3, rs, N_EQK | N_VFP, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); if (rs == NS_FFF) { inst.instruction = NEON_ENC_SINGLE (inst.instruction); do_vfp_sp_dyadic (); } else { inst.instruction = NEON_ENC_DOUBLE (inst.instruction); do_vfp_dp_rd_rn_rm (); } do_vfp_cond_or_thumb (); } static void do_vfp_nsyn_cmp (void) { if (inst.operands[1].isreg) { enum neon_shape rs = neon_select_shape (NS_FF, NS_DD, NS_NULL); neon_check_type (2, rs, N_EQK | N_VFP, N_F32 | N_F64 | N_KEY | N_VFP); if (rs == NS_FF) { inst.instruction = NEON_ENC_SINGLE (inst.instruction); do_vfp_sp_monadic (); } else { inst.instruction = NEON_ENC_DOUBLE (inst.instruction); do_vfp_dp_rd_rm (); } } else { enum neon_shape rs = neon_select_shape (NS_FI, NS_DI, NS_NULL); neon_check_type (2, rs, N_F32 | N_F64 | N_KEY | N_VFP, N_EQK); switch (inst.instruction & 0x0fffffff) { case N_MNEM_vcmp: inst.instruction += N_MNEM_vcmpz - N_MNEM_vcmp; break; case N_MNEM_vcmpe: inst.instruction += N_MNEM_vcmpez - N_MNEM_vcmpe; break; default: abort (); } if (rs == NS_FI) { inst.instruction = NEON_ENC_SINGLE (inst.instruction); do_vfp_sp_compare_z (); } else { inst.instruction = NEON_ENC_DOUBLE (inst.instruction); do_vfp_dp_rd (); } } do_vfp_cond_or_thumb (); } static void nsyn_insert_sp (void) { inst.operands[1] = inst.operands[0]; memset (&inst.operands[0], '\0', sizeof (inst.operands[0])); inst.operands[0].reg = 13; inst.operands[0].isreg = 1; inst.operands[0].writeback = 1; inst.operands[0].present = 1; } static void do_vfp_nsyn_push (void) { nsyn_insert_sp (); if (inst.operands[1].issingle) do_vfp_nsyn_opcode ("fstmdbs"); else do_vfp_nsyn_opcode ("fstmdbd"); } static void do_vfp_nsyn_pop (void) { nsyn_insert_sp (); if (inst.operands[1].issingle) do_vfp_nsyn_opcode ("fldmdbs"); else do_vfp_nsyn_opcode ("fldmdbd"); } /* Fix up Neon data-processing instructions, ORing in the correct bits for ARM mode or Thumb mode and moving the encoded bit 24 to bit 28. */ static unsigned neon_dp_fixup (unsigned i) { if (thumb_mode) { /* The U bit is at bit 24 by default. Move to bit 28 in Thumb mode. */ if (i & (1 << 24)) i |= 1 << 28; i &= ~(1 << 24); i |= 0xef000000; } else i |= 0xf2000000; return i; } /* Turn a size (8, 16, 32, 64) into the respective bit number minus 3 (0, 1, 2, 3). */ static unsigned neon_logbits (unsigned x) { return ffs (x) - 4; } #define LOW4(R) ((R) & 0xf) #define HI1(R) (((R) >> 4) & 1) /* Encode insns with bit pattern: |28/24|23|22 |21 20|19 16|15 12|11 8|7|6|5|4|3 0| | U |x |D |size | Rn | Rd |x x x x|N|Q|M|x| Rm | SIZE is passed in bits. -1 means size field isn't changed, in case it has a different meaning for some instruction. */ static void neon_three_same (int isquad, int ubit, int size) { inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= (isquad != 0) << 6; inst.instruction |= (ubit != 0) << 24; if (size != -1) inst.instruction |= neon_logbits (size) << 20; inst.instruction = neon_dp_fixup (inst.instruction); } /* Encode instructions of the form: |28/24|23|22|21 20|19 18|17 16|15 12|11 7|6|5|4|3 0| | U |x |D |x x |size |x x | Rd |x x x x x|Q|M|x| Rm | Don't write size if SIZE == -1. */ static void neon_two_same (int qbit, int ubit, int size) { inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= (qbit != 0) << 6; inst.instruction |= (ubit != 0) << 24; if (size != -1) inst.instruction |= neon_logbits (size) << 18; inst.instruction = neon_dp_fixup (inst.instruction); } /* Neon instruction encoders, in approximate order of appearance. */ static void do_neon_dyadic_i_su (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_32 | N_KEY); neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size); } static void do_neon_dyadic_i64_su (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_SU_ALL | N_KEY); neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size); } static void neon_imm_shift (int write_ubit, int uval, int isquad, struct neon_type_el et, unsigned immbits) { unsigned size = et.size >> 3; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= (isquad != 0) << 6; inst.instruction |= immbits << 16; inst.instruction |= (size >> 3) << 7; inst.instruction |= (size & 0x7) << 19; if (write_ubit) inst.instruction |= (uval != 0) << 24; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_shl_imm (void) { if (!inst.operands[2].isreg) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_KEY | N_I_ALL); inst.instruction = NEON_ENC_IMMED (inst.instruction); neon_imm_shift (FALSE, 0, neon_quad (rs), et, inst.operands[2].imm); } else { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN); inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size); } } static void do_neon_qshl_imm (void) { if (!inst.operands[2].isreg) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY); inst.instruction = NEON_ENC_IMMED (inst.instruction); neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, inst.operands[2].imm); } else { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_SU_ALL | N_KEY, N_EQK | N_SGN); inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_three_same (neon_quad (rs), et.type == NT_unsigned, et.size); } } static int neon_cmode_for_logic_imm (unsigned immediate, unsigned *immbits, int size) { /* Handle .I8 and .I64 as pseudo-instructions. */ switch (size) { case 8: /* Unfortunately, this will make everything apart from zero out-of-range. FIXME is this the intended semantics? There doesn't seem much point in accepting .I8 if so. */ immediate |= immediate << 8; size = 16; break; case 64: /* Similarly, anything other than zero will be replicated in bits [63:32], which probably isn't want we want if we specified .I64. */ if (immediate != 0) goto bad_immediate; size = 32; break; default: ; } if (immediate == (immediate & 0x000000ff)) { *immbits = immediate; return (size == 16) ? 0x9 : 0x1; } else if (immediate == (immediate & 0x0000ff00)) { *immbits = immediate >> 8; return (size == 16) ? 0xb : 0x3; } else if (immediate == (immediate & 0x00ff0000)) { *immbits = immediate >> 16; return 0x5; } else if (immediate == (immediate & 0xff000000)) { *immbits = immediate >> 24; return 0x7; } bad_immediate: first_error (_("immediate value out of range")); return FAIL; } /* True if IMM has form 0bAAAAAAAABBBBBBBBCCCCCCCCDDDDDDDD for bits A, B, C, D. */ static int neon_bits_same_in_bytes (unsigned imm) { return ((imm & 0x000000ff) == 0 || (imm & 0x000000ff) == 0x000000ff) && ((imm & 0x0000ff00) == 0 || (imm & 0x0000ff00) == 0x0000ff00) && ((imm & 0x00ff0000) == 0 || (imm & 0x00ff0000) == 0x00ff0000) && ((imm & 0xff000000) == 0 || (imm & 0xff000000) == 0xff000000); } /* For immediate of above form, return 0bABCD. */ static unsigned neon_squash_bits (unsigned imm) { return (imm & 0x01) | ((imm & 0x0100) >> 7) | ((imm & 0x010000) >> 14) | ((imm & 0x01000000) >> 21); } /* Compress quarter-float representation to 0b...000 abcdefgh. */ static unsigned neon_qfloat_bits (unsigned imm) { return ((imm >> 19) & 0x7f) | ((imm >> 24) & 0x80); } /* Returns CMODE. IMMBITS [7:0] is set to bits suitable for inserting into the instruction. *OP is passed as the initial value of the op field, and may be set to a different value depending on the constant (i.e. "MOV I64, 0bAAAAAAAABBBB..." which uses OP = 1 despite being MOV not MVN). */ static int neon_cmode_for_move_imm (unsigned immlo, unsigned immhi, unsigned *immbits, int *op, int size, enum neon_el_type type) { if (type == NT_float && is_quarter_float (immlo) && immhi == 0) { if (size != 32 || *op == 1) return FAIL; *immbits = neon_qfloat_bits (immlo); return 0xf; } else if (size == 64 && neon_bits_same_in_bytes (immhi) && neon_bits_same_in_bytes (immlo)) { /* Check this one first so we don't have to bother with immhi in later tests. */ if (*op == 1) return FAIL; *immbits = (neon_squash_bits (immhi) << 4) | neon_squash_bits (immlo); *op = 1; return 0xe; } else if (immhi != 0) return FAIL; else if (immlo == (immlo & 0x000000ff)) { /* 64-bit case was already handled. Don't allow MVN with 8-bit immediate. */ if ((size != 8 && size != 16 && size != 32) || (size == 8 && *op == 1)) return FAIL; *immbits = immlo; return (size == 8) ? 0xe : (size == 16) ? 0x8 : 0x0; } else if (immlo == (immlo & 0x0000ff00)) { if (size != 16 && size != 32) return FAIL; *immbits = immlo >> 8; return (size == 16) ? 0xa : 0x2; } else if (immlo == (immlo & 0x00ff0000)) { if (size != 32) return FAIL; *immbits = immlo >> 16; return 0x4; } else if (immlo == (immlo & 0xff000000)) { if (size != 32) return FAIL; *immbits = immlo >> 24; return 0x6; } else if (immlo == ((immlo & 0x0000ff00) | 0x000000ff)) { if (size != 32) return FAIL; *immbits = (immlo >> 8) & 0xff; return 0xc; } else if (immlo == ((immlo & 0x00ff0000) | 0x0000ffff)) { if (size != 32) return FAIL; *immbits = (immlo >> 16) & 0xff; return 0xd; } return FAIL; } /* Write immediate bits [7:0] to the following locations: |28/24|23 19|18 16|15 4|3 0| | a |x x x x x|b c d|x x x x x x x x x x x x|e f g h| This function is used by VMOV/VMVN/VORR/VBIC. */ static void neon_write_immbits (unsigned immbits) { inst.instruction |= immbits & 0xf; inst.instruction |= ((immbits >> 4) & 0x7) << 16; inst.instruction |= ((immbits >> 7) & 0x1) << 24; } /* Invert low-order SIZE bits of XHI:XLO. */ static void neon_invert_size (unsigned *xlo, unsigned *xhi, int size) { unsigned immlo = xlo ? *xlo : 0; unsigned immhi = xhi ? *xhi : 0; switch (size) { case 8: immlo = (~immlo) & 0xff; break; case 16: immlo = (~immlo) & 0xffff; break; case 64: immhi = (~immhi) & 0xffffffff; /* fall through. */ case 32: immlo = (~immlo) & 0xffffffff; break; default: abort (); } if (xlo) *xlo = immlo; if (xhi) *xhi = immhi; } static void do_neon_logic (void) { if (inst.operands[2].present && inst.operands[2].isreg) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_IGNORE_TYPE); /* U bit and size field were set as part of the bitmask. */ inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_three_same (neon_quad (rs), 0, -1); } else { enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK); enum neon_opc opcode = inst.instruction & 0x0fffffff; unsigned immbits; int cmode; if (et.type == NT_invtype) return; inst.instruction = NEON_ENC_IMMED (inst.instruction); switch (opcode) { case N_MNEM_vbic: cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits, et.size); break; case N_MNEM_vorr: cmode = neon_cmode_for_logic_imm (inst.operands[1].imm, &immbits, et.size); break; case N_MNEM_vand: /* Pseudo-instruction for VBIC. */ immbits = inst.operands[1].imm; neon_invert_size (&immbits, 0, et.size); cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size); break; case N_MNEM_vorn: /* Pseudo-instruction for VORR. */ immbits = inst.operands[1].imm; neon_invert_size (&immbits, 0, et.size); cmode = neon_cmode_for_logic_imm (immbits, &immbits, et.size); break; default: abort (); } if (cmode == FAIL) return; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= cmode << 8; neon_write_immbits (immbits); inst.instruction = neon_dp_fixup (inst.instruction); } } static void do_neon_bitfield (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_IGNORE_TYPE); neon_three_same (neon_quad (rs), 0, -1); } static void neon_dyadic_misc (enum neon_el_type ubit_meaning, unsigned types, unsigned destbits) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK | destbits, N_EQK, types | N_KEY); if (et.type == NT_float) { inst.instruction = NEON_ENC_FLOAT (inst.instruction); neon_three_same (neon_quad (rs), 0, -1); } else { inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_three_same (neon_quad (rs), et.type == ubit_meaning, et.size); } } static void do_neon_dyadic_if_su (void) { neon_dyadic_misc (NT_unsigned, N_SUF_32, 0); } static void do_neon_dyadic_if_su_d (void) { /* This version only allow D registers, but that constraint is enforced during operand parsing so we don't need to do anything extra here. */ neon_dyadic_misc (NT_unsigned, N_SUF_32, 0); } static void do_neon_dyadic_if_i_d (void) { /* The "untyped" case can't happen. Do this to stop the "U" bit being affected if we specify unsigned args. */ neon_dyadic_misc (NT_untyped, N_IF_32, 0); } enum vfp_or_neon_is_neon_bits { NEON_CHECK_CC = 1, NEON_CHECK_ARCH = 2 }; /* Call this function if an instruction which may have belonged to the VFP or Neon instruction sets, but turned out to be a Neon instruction (due to the operand types involved, etc.). We have to check and/or fix-up a couple of things: - Make sure the user hasn't attempted to make a Neon instruction conditional. - Alter the value in the condition code field if necessary. - Make sure that the arch supports Neon instructions. Which of these operations take place depends on bits from enum vfp_or_neon_is_neon_bits. WARNING: This function has side effects! If NEON_CHECK_CC is used and the current instruction's condition is COND_ALWAYS, the condition field is changed to inst.uncond_value. This is necessary because instructions shared between VFP and Neon may be conditional for the VFP variants only, and the unconditional Neon version must have, e.g., 0xF in the condition field. */ static int vfp_or_neon_is_neon (unsigned check) { /* Conditions are always legal in Thumb mode (IT blocks). */ if (!thumb_mode && (check & NEON_CHECK_CC)) { if (inst.cond != COND_ALWAYS) { first_error (_(BAD_COND)); return FAIL; } if (inst.uncond_value != -1) inst.instruction |= inst.uncond_value << 28; } if ((check & NEON_CHECK_ARCH) && !ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1)) { first_error (_(BAD_FPU)); return FAIL; } return SUCCESS; } static void do_neon_addsub_if_i (void) { if (try_vfp_nsyn (3, do_vfp_nsyn_add_sub) == SUCCESS) return; if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; /* The "untyped" case can't happen. Do this to stop the "U" bit being affected if we specify unsigned args. */ neon_dyadic_misc (NT_untyped, N_IF_32 | N_I64, 0); } /* Swaps operands 1 and 2. If operand 1 (optional arg) was omitted, we want the result to be: V A,B (A is operand 0, B is operand 2) to mean: V A,B,A not: V A,B,B so handle that case specially. */ static void neon_exchange_operands (void) { void *scratch = alloca (sizeof (inst.operands[0])); if (inst.operands[1].present) { /* Swap operands[1] and operands[2]. */ memcpy (scratch, &inst.operands[1], sizeof (inst.operands[0])); inst.operands[1] = inst.operands[2]; memcpy (&inst.operands[2], scratch, sizeof (inst.operands[0])); } else { inst.operands[1] = inst.operands[2]; inst.operands[2] = inst.operands[0]; } } static void neon_compare (unsigned regtypes, unsigned immtypes, int invert) { if (inst.operands[2].isreg) { if (invert) neon_exchange_operands (); neon_dyadic_misc (NT_unsigned, regtypes, N_SIZ); } else { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_SIZ, immtypes | N_KEY); inst.instruction = NEON_ENC_IMMED (inst.instruction); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= (et.type == NT_float) << 10; inst.instruction |= neon_logbits (et.size) << 18; inst.instruction = neon_dp_fixup (inst.instruction); } } static void do_neon_cmp (void) { neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, FALSE); } static void do_neon_cmp_inv (void) { neon_compare (N_SUF_32, N_S8 | N_S16 | N_S32 | N_F32, TRUE); } static void do_neon_ceq (void) { neon_compare (N_IF_32, N_IF_32, FALSE); } /* For multiply instructions, we have the possibility of 16-bit or 32-bit scalars, which are encoded in 5 bits, M : Rm. For 16-bit scalars, the register is encoded in Rm[2:0] and the index in M:Rm[3], and for 32-bit scalars, the register is encoded in Rm[3:0] and the index in M. */ static unsigned neon_scalar_for_mul (unsigned scalar, unsigned elsize) { unsigned regno = NEON_SCALAR_REG (scalar); unsigned elno = NEON_SCALAR_INDEX (scalar); switch (elsize) { case 16: if (regno > 7 || elno > 3) goto bad_scalar; return regno | (elno << 3); case 32: if (regno > 15 || elno > 1) goto bad_scalar; return regno | (elno << 4); default: bad_scalar: first_error (_("scalar out of range for multiply instruction")); } return 0; } /* Encode multiply / multiply-accumulate scalar instructions. */ static void neon_mul_mac (struct neon_type_el et, int ubit) { unsigned scalar; /* Give a more helpful error message if we have an invalid type. */ if (et.type == NT_invtype) return; scalar = neon_scalar_for_mul (inst.operands[2].reg, et.size); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (scalar); inst.instruction |= HI1 (scalar) << 5; inst.instruction |= (et.type == NT_float) << 8; inst.instruction |= neon_logbits (et.size) << 20; inst.instruction |= (ubit != 0) << 24; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_mac_maybe_scalar (void) { if (try_vfp_nsyn (3, do_vfp_nsyn_mla_mls) == SUCCESS) return; if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; if (inst.operands[2].isscalar) { enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_I16 | N_I32 | N_F32 | N_KEY); inst.instruction = NEON_ENC_SCALAR (inst.instruction); neon_mul_mac (et, neon_quad (rs)); } else { /* The "untyped" case can't happen. Do this to stop the "U" bit being affected if we specify unsigned args. */ neon_dyadic_misc (NT_untyped, N_IF_32, 0); } } static void do_neon_tst (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_KEY); neon_three_same (neon_quad (rs), 0, et.size); } /* VMUL with 3 registers allows the P8 type. The scalar version supports the same types as the MAC equivalents. The polynomial type for this instruction is encoded the same as the integer type. */ static void do_neon_mul (void) { if (try_vfp_nsyn (3, do_vfp_nsyn_mul) == SUCCESS) return; if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; if (inst.operands[2].isscalar) do_neon_mac_maybe_scalar (); else neon_dyadic_misc (NT_poly, N_I8 | N_I16 | N_I32 | N_F32 | N_P8, 0); } static void do_neon_qdmulh (void) { if (inst.operands[2].isscalar) { enum neon_shape rs = neon_select_shape (NS_DDS, NS_QQS, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY); inst.instruction = NEON_ENC_SCALAR (inst.instruction); neon_mul_mac (et, neon_quad (rs)); } else { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_S16 | N_S32 | N_KEY); inst.instruction = NEON_ENC_INTEGER (inst.instruction); /* The U bit (rounding) comes from bit mask. */ neon_three_same (neon_quad (rs), 0, et.size); } } static void do_neon_fcmp_absolute (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY); /* Size field comes from bit mask. */ neon_three_same (neon_quad (rs), 1, -1); } static void do_neon_fcmp_absolute_inv (void) { neon_exchange_operands (); do_neon_fcmp_absolute (); } static void do_neon_step (void) { enum neon_shape rs = neon_select_shape (NS_DDD, NS_QQQ, NS_NULL); neon_check_type (3, rs, N_EQK, N_EQK, N_F32 | N_KEY); neon_three_same (neon_quad (rs), 0, -1); } static void do_neon_abs_neg (void) { enum neon_shape rs; struct neon_type_el et; if (try_vfp_nsyn (2, do_vfp_nsyn_abs_neg) == SUCCESS) return; if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_F32 | N_KEY); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= (et.type == NT_float) << 10; inst.instruction |= neon_logbits (et.size) << 18; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_sli (void) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY); int imm = inst.operands[2].imm; constraint (imm < 0 || (unsigned)imm >= et.size, _("immediate out of range for insert")); neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm); } static void do_neon_sri (void) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY); int imm = inst.operands[2].imm; constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range for insert")); neon_imm_shift (FALSE, 0, neon_quad (rs), et, et.size - imm); } static void do_neon_qshlu_imm (void) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_UNS, N_S8 | N_S16 | N_S32 | N_S64 | N_KEY); int imm = inst.operands[2].imm; constraint (imm < 0 || (unsigned)imm >= et.size, _("immediate out of range for shift")); /* Only encodes the 'U present' variant of the instruction. In this case, signed types have OP (bit 8) set to 0. Unsigned types have OP set to 1. */ inst.instruction |= (et.type == NT_unsigned) << 8; /* The rest of the bits are the same as other immediate shifts. */ neon_imm_shift (FALSE, 0, neon_quad (rs), et, imm); } static void do_neon_qmovn (void) { struct neon_type_el et = neon_check_type (2, NS_DQ, N_EQK | N_HLF, N_SU_16_64 | N_KEY); /* Saturating move where operands can be signed or unsigned, and the destination has the same signedness. */ inst.instruction = NEON_ENC_INTEGER (inst.instruction); if (et.type == NT_unsigned) inst.instruction |= 0xc0; else inst.instruction |= 0x80; neon_two_same (0, 1, et.size / 2); } static void do_neon_qmovun (void) { struct neon_type_el et = neon_check_type (2, NS_DQ, N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY); /* Saturating move with unsigned results. Operands must be signed. */ inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_two_same (0, 1, et.size / 2); } static void do_neon_rshift_sat_narrow (void) { /* FIXME: Types for narrowing. If operands are signed, results can be signed or unsigned. If operands are unsigned, results must also be unsigned. */ struct neon_type_el et = neon_check_type (2, NS_DQI, N_EQK | N_HLF, N_SU_16_64 | N_KEY); int imm = inst.operands[2].imm; /* This gets the bounds check, size encoding and immediate bits calculation right. */ et.size /= 2; /* VQ{R}SHRN.I
, , #0 is a synonym for VQMOVN.I
, . */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vqmovn; do_neon_qmovn (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range")); neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, et.size - imm); } static void do_neon_rshift_sat_narrow_u (void) { /* FIXME: Types for narrowing. If operands are signed, results can be signed or unsigned. If operands are unsigned, results must also be unsigned. */ struct neon_type_el et = neon_check_type (2, NS_DQI, N_EQK | N_HLF | N_UNS, N_S16 | N_S32 | N_S64 | N_KEY); int imm = inst.operands[2].imm; /* This gets the bounds check, size encoding and immediate bits calculation right. */ et.size /= 2; /* VQSHRUN.I
, , #0 is a synonym for VQMOVUN.I
, . */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vqmovun; do_neon_qmovun (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range")); /* FIXME: The manual is kind of unclear about what value U should have in VQ{R}SHRUN instructions, but U=0, op=0 definitely encodes VRSHR, so it must be 1. */ neon_imm_shift (TRUE, 1, 0, et, et.size - imm); } static void do_neon_movn (void) { struct neon_type_el et = neon_check_type (2, NS_DQ, N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY); inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_two_same (0, 1, et.size / 2); } static void do_neon_rshift_narrow (void) { struct neon_type_el et = neon_check_type (2, NS_DQI, N_EQK | N_HLF, N_I16 | N_I32 | N_I64 | N_KEY); int imm = inst.operands[2].imm; /* This gets the bounds check, size encoding and immediate bits calculation right. */ et.size /= 2; /* If immediate is zero then we are a pseudo-instruction for VMOVN.I
, */ if (imm == 0) { inst.operands[2].present = 0; inst.instruction = N_MNEM_vmovn; do_neon_movn (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range for narrowing operation")); neon_imm_shift (FALSE, 0, 0, et, et.size - imm); } static void do_neon_shll (void) { /* FIXME: Type checking when lengthening. */ struct neon_type_el et = neon_check_type (2, NS_QDI, N_EQK | N_DBL, N_I8 | N_I16 | N_I32 | N_KEY); unsigned imm = inst.operands[2].imm; if (imm == et.size) { /* Maximum shift variant. */ inst.instruction = NEON_ENC_INTEGER (inst.instruction); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_logbits (et.size) << 18; inst.instruction = neon_dp_fixup (inst.instruction); } else { /* A more-specific type check for non-max versions. */ et = neon_check_type (2, NS_QDI, N_EQK | N_DBL, N_SU_32 | N_KEY); inst.instruction = NEON_ENC_IMMED (inst.instruction); neon_imm_shift (TRUE, et.type == NT_unsigned, 0, et, imm); } } /* Check the various types for the VCVT instruction, and return which version the current instruction is. */ static int neon_cvt_flavour (enum neon_shape rs) { #define CVT_VAR(C,X,Y) \ et = neon_check_type (2, rs, whole_reg | (X), whole_reg | (Y)); \ if (et.type != NT_invtype) \ { \ inst.error = NULL; \ return (C); \ } struct neon_type_el et; unsigned whole_reg = (rs == NS_FFI || rs == NS_FD || rs == NS_DF || rs == NS_FF) ? N_VFP : 0; /* The instruction versions which take an immediate take one register argument, which is extended to the width of the full register. Thus the "source" and "destination" registers must have the same width. Hack that here by making the size equal to the key (wider, in this case) operand. */ unsigned key = (rs == NS_QQI || rs == NS_DDI || rs == NS_FFI) ? N_KEY : 0; CVT_VAR (0, N_S32, N_F32); CVT_VAR (1, N_U32, N_F32); CVT_VAR (2, N_F32, N_S32); CVT_VAR (3, N_F32, N_U32); whole_reg = N_VFP; /* VFP instructions. */ CVT_VAR (4, N_F32, N_F64); CVT_VAR (5, N_F64, N_F32); CVT_VAR (6, N_S32, N_F64 | key); CVT_VAR (7, N_U32, N_F64 | key); CVT_VAR (8, N_F64 | key, N_S32); CVT_VAR (9, N_F64 | key, N_U32); /* VFP instructions with bitshift. */ CVT_VAR (10, N_F32 | key, N_S16); CVT_VAR (11, N_F32 | key, N_U16); CVT_VAR (12, N_F64 | key, N_S16); CVT_VAR (13, N_F64 | key, N_U16); CVT_VAR (14, N_S16, N_F32 | key); CVT_VAR (15, N_U16, N_F32 | key); CVT_VAR (16, N_S16, N_F64 | key); CVT_VAR (17, N_U16, N_F64 | key); return -1; #undef CVT_VAR } /* Neon-syntax VFP conversions. */ static void do_vfp_nsyn_cvt (enum neon_shape rs, int flavour) { const char *opname = 0; if (rs == NS_DDI || rs == NS_QQI || rs == NS_FFI) { /* Conversions with immediate bitshift. */ const char *enc[] = { "ftosls", "ftouls", "fsltos", "fultos", NULL, NULL, "ftosld", "ftould", "fsltod", "fultod", "fshtos", "fuhtos", "fshtod", "fuhtod", "ftoshs", "ftouhs", "ftoshd", "ftouhd" }; if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc)) { opname = enc[flavour]; constraint (inst.operands[0].reg != inst.operands[1].reg, _("operands 0 and 1 must be the same register")); inst.operands[1] = inst.operands[2]; memset (&inst.operands[2], '\0', sizeof (inst.operands[2])); } } else { /* Conversions without bitshift. */ const char *enc[] = { "ftosis", "ftouis", "fsitos", "fuitos", "fcvtsd", "fcvtds", "ftosid", "ftouid", "fsitod", "fuitod" }; if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc)) opname = enc[flavour]; } if (opname) do_vfp_nsyn_opcode (opname); } static void do_vfp_nsyn_cvtz (void) { enum neon_shape rs = neon_select_shape (NS_FF, NS_FD, NS_NULL); int flavour = neon_cvt_flavour (rs); const char *enc[] = { "ftosizs", "ftouizs", NULL, NULL, NULL, NULL, "ftosizd", "ftouizd" }; if (flavour >= 0 && flavour < (int) ARRAY_SIZE (enc) && enc[flavour]) do_vfp_nsyn_opcode (enc[flavour]); } static void do_neon_cvt (void) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_FFI, NS_DD, NS_QQ, NS_FD, NS_DF, NS_FF, NS_NULL); int flavour = neon_cvt_flavour (rs); /* VFP rather than Neon conversions. */ if (flavour >= 4) { do_vfp_nsyn_cvt (rs, flavour); return; } switch (rs) { case NS_DDI: case NS_QQI: { if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; /* Fixed-point conversion with #0 immediate is encoded as an integer conversion. */ if (inst.operands[2].present && inst.operands[2].imm == 0) goto int_encode; unsigned immbits = 32 - inst.operands[2].imm; unsigned enctab[] = { 0x0000100, 0x1000100, 0x0, 0x1000000 }; inst.instruction = NEON_ENC_IMMED (inst.instruction); if (flavour != -1) inst.instruction |= enctab[flavour]; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= 1 << 21; inst.instruction |= immbits << 16; inst.instruction = neon_dp_fixup (inst.instruction); } break; case NS_DD: case NS_QQ: int_encode: { unsigned enctab[] = { 0x100, 0x180, 0x0, 0x080 }; inst.instruction = NEON_ENC_INTEGER (inst.instruction); if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; if (flavour != -1) inst.instruction |= enctab[flavour]; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= 2 << 18; inst.instruction = neon_dp_fixup (inst.instruction); } break; default: /* Some VFP conversions go here (s32 <-> f32, u32 <-> f32). */ do_vfp_nsyn_cvt (rs, flavour); } } static void neon_move_immediate (void) { enum neon_shape rs = neon_select_shape (NS_DI, NS_QI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_I8 | N_I16 | N_I32 | N_I64 | N_F32 | N_KEY, N_EQK); unsigned immlo, immhi = 0, immbits; int op, cmode; constraint (et.type == NT_invtype, _("operand size must be specified for immediate VMOV")); /* We start out as an MVN instruction if OP = 1, MOV otherwise. */ op = (inst.instruction & (1 << 5)) != 0; immlo = inst.operands[1].imm; if (inst.operands[1].regisimm) immhi = inst.operands[1].reg; constraint (et.size < 32 && (immlo & ~((1 << et.size) - 1)) != 0, _("immediate has bits set outside the operand size")); if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op, et.size, et.type)) == FAIL) { /* Invert relevant bits only. */ neon_invert_size (&immlo, &immhi, et.size); /* Flip from VMOV/VMVN to VMVN/VMOV. Some immediate types are unavailable with one or the other; those cases are caught by neon_cmode_for_move_imm. */ op = !op; if ((cmode = neon_cmode_for_move_imm (immlo, immhi, &immbits, &op, et.size, et.type)) == FAIL) { first_error (_("immediate out of range")); return; } } inst.instruction &= ~(1 << 5); inst.instruction |= op << 5; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= cmode << 8; neon_write_immbits (immbits); } static void do_neon_mvn (void) { if (inst.operands[1].isreg) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); inst.instruction = NEON_ENC_INTEGER (inst.instruction); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= neon_quad (rs) << 6; } else { inst.instruction = NEON_ENC_IMMED (inst.instruction); neon_move_immediate (); } inst.instruction = neon_dp_fixup (inst.instruction); } /* Encode instructions of form: |28/24|23|22|21 20|19 16|15 12|11 8|7|6|5|4|3 0| | U |x |D |size | Rn | Rd |x x x x|N|x|M|x| Rm | */ static void neon_mixed_length (struct neon_type_el et, unsigned size) { inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= (et.type == NT_unsigned) << 24; inst.instruction |= neon_logbits (size) << 20; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_dyadic_long (void) { /* FIXME: Type checking for lengthening op. */ struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } static void do_neon_abal (void) { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_INT | N_DBL, N_EQK, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } static void neon_mac_reg_scalar_long (unsigned regtypes, unsigned scalartypes) { if (inst.operands[2].isscalar) { struct neon_type_el et = neon_check_type (3, NS_QDS, N_EQK | N_DBL, N_EQK, regtypes | N_KEY); inst.instruction = NEON_ENC_SCALAR (inst.instruction); neon_mul_mac (et, et.type == NT_unsigned); } else { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, scalartypes | N_KEY); inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_mixed_length (et, et.size); } } static void do_neon_mac_maybe_scalar_long (void) { neon_mac_reg_scalar_long (N_S16 | N_S32 | N_U16 | N_U32, N_SU_32); } static void do_neon_dyadic_wide (void) { struct neon_type_el et = neon_check_type (3, NS_QQD, N_EQK | N_DBL, N_EQK | N_DBL, N_SU_32 | N_KEY); neon_mixed_length (et, et.size); } static void do_neon_dyadic_narrow (void) { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_I16 | N_I32 | N_I64 | N_KEY); /* Operand sign is unimportant, and the U bit is part of the opcode, so force the operand type to integer. */ et.type = NT_integer; neon_mixed_length (et, et.size / 2); } static void do_neon_mul_sat_scalar_long (void) { neon_mac_reg_scalar_long (N_S16 | N_S32, N_S16 | N_S32); } static void do_neon_vmull (void) { if (inst.operands[2].isscalar) do_neon_mac_maybe_scalar_long (); else { struct neon_type_el et = neon_check_type (3, NS_QDD, N_EQK | N_DBL, N_EQK, N_SU_32 | N_P8 | N_KEY); if (et.type == NT_poly) inst.instruction = NEON_ENC_POLY (inst.instruction); else inst.instruction = NEON_ENC_INTEGER (inst.instruction); /* For polynomial encoding, size field must be 0b00 and the U bit must be zero. Should be OK as-is. */ neon_mixed_length (et, et.size); } } static void do_neon_ext (void) { enum neon_shape rs = neon_select_shape (NS_DDDI, NS_QQQI, NS_NULL); struct neon_type_el et = neon_check_type (3, rs, N_EQK, N_EQK, N_8 | N_16 | N_32 | N_64 | N_KEY); unsigned imm = (inst.operands[3].imm * et.size) / 8; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= imm << 8; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_rev (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); unsigned op = (inst.instruction >> 7) & 3; /* N (width of reversed regions) is encoded as part of the bitmask. We extract it here to check the elements to be reversed are smaller. Otherwise we'd get a reserved instruction. */ unsigned elsize = (op == 2) ? 16 : (op == 1) ? 32 : (op == 0) ? 64 : 0; assert (elsize != 0); constraint (et.size >= elsize, _("elements must be smaller than reversal region")); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_dup (void) { if (inst.operands[1].isscalar) { enum neon_shape rs = neon_select_shape (NS_DS, NS_QS, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); unsigned sizebits = et.size >> 3; unsigned dm = NEON_SCALAR_REG (inst.operands[1].reg); int logsize = neon_logbits (et.size); unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg) << logsize; if (vfp_or_neon_is_neon (NEON_CHECK_CC) == FAIL) return; inst.instruction = NEON_ENC_SCALAR (inst.instruction); inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (dm); inst.instruction |= HI1 (dm) << 5; inst.instruction |= neon_quad (rs) << 6; inst.instruction |= x << 17; inst.instruction |= sizebits << 16; inst.instruction = neon_dp_fixup (inst.instruction); } else { enum neon_shape rs = neon_select_shape (NS_DR, NS_QR, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_8 | N_16 | N_32 | N_KEY, N_EQK); /* Duplicate ARM register to lanes of vector. */ inst.instruction = NEON_ENC_ARMREG (inst.instruction); switch (et.size) { case 8: inst.instruction |= 0x400000; break; case 16: inst.instruction |= 0x000020; break; case 32: inst.instruction |= 0x000000; break; default: break; } inst.instruction |= LOW4 (inst.operands[1].reg) << 12; inst.instruction |= LOW4 (inst.operands[0].reg) << 16; inst.instruction |= HI1 (inst.operands[0].reg) << 7; inst.instruction |= neon_quad (rs) << 21; /* The encoding for this instruction is identical for the ARM and Thumb variants, except for the condition field. */ do_vfp_cond_or_thumb (); } } /* VMOV has particularly many variations. It can be one of: 0. VMOV , 1. VMOV
, (Register operations, which are VORR with Rm = Rn.) 2. VMOV.
, # 3. VMOV.
, # (Immediate loads.) 4. VMOV. , (ARM register to scalar.) 5. VMOV , , (Two ARM registers to vector.) 6. VMOV.
, (Scalar to ARM register.) 7. VMOV , , (Vector to two ARM registers.) 8. VMOV.F32 , 9. VMOV.F64
, (VFP register moves.) 10. VMOV.F32 , #imm 11. VMOV.F64
, #imm (VFP float immediate load.) 12. VMOV , (VFP single to ARM reg.) 13. VMOV , (ARM reg to VFP single.) 14. VMOV , , , (Two ARM regs to two VFP singles.) 15. VMOV , , , (Two VFP singles to two ARM regs.) These cases can be disambiguated using neon_select_shape, except cases 1/9 and 3/11 which depend on the operand type too. All the encoded bits are hardcoded by this function. Cases 4, 6 may be used with VFPv1 and above (only 32-bit transfers!). Cases 5, 7 may be used with VFPv2 and above. FIXME: Some of the checking may be a bit sloppy (in a couple of cases you can specify a type where it doesn't make sense to, and is ignored). */ static void do_neon_mov (void) { enum neon_shape rs = neon_select_shape (NS_RRFF, NS_FFRR, NS_DRR, NS_RRD, NS_QQ, NS_DD, NS_QI, NS_DI, NS_SR, NS_RS, NS_FF, NS_FI, NS_RF, NS_FR, NS_NULL); struct neon_type_el et; const char *ldconst = 0; switch (rs) { case NS_DD: /* case 1/9. */ et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY); /* It is not an error here if no type is given. */ inst.error = NULL; if (et.type == NT_float && et.size == 64) { do_vfp_nsyn_opcode ("fcpyd"); break; } /* fall through. */ case NS_QQ: /* case 0/1. */ { if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; /* The architecture manual I have doesn't explicitly state which value the U bit should have for register->register moves, but the equivalent VORR instruction has U = 0, so do that. */ inst.instruction = 0x0200110; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg); inst.instruction |= HI1 (inst.operands[1].reg) << 5; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= neon_quad (rs) << 6; inst.instruction = neon_dp_fixup (inst.instruction); } break; case NS_DI: /* case 3/11. */ et = neon_check_type (2, rs, N_EQK, N_F64 | N_KEY); inst.error = NULL; if (et.type == NT_float && et.size == 64) { /* case 11 (fconstd). */ ldconst = "fconstd"; goto encode_fconstd; } /* fall through. */ case NS_QI: /* case 2/3. */ if (vfp_or_neon_is_neon (NEON_CHECK_CC | NEON_CHECK_ARCH) == FAIL) return; inst.instruction = 0x0800010; neon_move_immediate (); inst.instruction = neon_dp_fixup (inst.instruction); break; case NS_SR: /* case 4. */ { unsigned bcdebits = 0; struct neon_type_el et = neon_check_type (2, NS_NULL, N_8 | N_16 | N_32 | N_KEY, N_EQK); int logsize = neon_logbits (et.size); unsigned dn = NEON_SCALAR_REG (inst.operands[0].reg); unsigned x = NEON_SCALAR_INDEX (inst.operands[0].reg); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1), _(BAD_FPU)); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1) && et.size != 32, _(BAD_FPU)); constraint (et.type == NT_invtype, _("bad type for scalar")); constraint (x >= 64 / et.size, _("scalar index out of range")); switch (et.size) { case 8: bcdebits = 0x8; break; case 16: bcdebits = 0x1; break; case 32: bcdebits = 0x0; break; default: ; } bcdebits |= x << logsize; inst.instruction = 0xe000b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (dn) << 16; inst.instruction |= HI1 (dn) << 7; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= (bcdebits & 3) << 5; inst.instruction |= (bcdebits >> 2) << 21; } break; case NS_DRR: /* case 5 (fmdrr). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2), _(BAD_FPU)); inst.instruction = 0xc400b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (inst.operands[0].reg); inst.instruction |= HI1 (inst.operands[0].reg) << 5; inst.instruction |= inst.operands[1].reg << 12; inst.instruction |= inst.operands[2].reg << 16; break; case NS_RS: /* case 6. */ { struct neon_type_el et = neon_check_type (2, NS_NULL, N_EQK, N_S8 | N_S16 | N_U8 | N_U16 | N_32 | N_KEY); unsigned logsize = neon_logbits (et.size); unsigned dn = NEON_SCALAR_REG (inst.operands[1].reg); unsigned x = NEON_SCALAR_INDEX (inst.operands[1].reg); unsigned abcdebits = 0; constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v1), _(BAD_FPU)); constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1) && et.size != 32, _(BAD_FPU)); constraint (et.type == NT_invtype, _("bad type for scalar")); constraint (x >= 64 / et.size, _("scalar index out of range")); switch (et.size) { case 8: abcdebits = (et.type == NT_signed) ? 0x08 : 0x18; break; case 16: abcdebits = (et.type == NT_signed) ? 0x01 : 0x11; break; case 32: abcdebits = 0x00; break; default: ; } abcdebits |= x << logsize; inst.instruction = 0xe100b10; do_vfp_cond_or_thumb (); inst.instruction |= LOW4 (dn) << 16; inst.instruction |= HI1 (dn) << 7; inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= (abcdebits & 3) << 5; inst.instruction |= (abcdebits >> 2) << 21; } break; case NS_RRD: /* case 7 (fmrrd). */ constraint (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_vfp_ext_v2), _(BAD_FPU)); inst.instruction = 0xc500b10; do_vfp_cond_or_thumb (); inst.instruction |= inst.operands[0].reg << 12; inst.instruction |= inst.operands[1].reg << 16; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; break; case NS_FF: /* case 8 (fcpys). */ do_vfp_nsyn_opcode ("fcpys"); break; case NS_FI: /* case 10 (fconsts). */ ldconst = "fconsts"; encode_fconstd: if (is_quarter_float (inst.operands[1].imm)) { inst.operands[1].imm = neon_qfloat_bits (inst.operands[1].imm); do_vfp_nsyn_opcode (ldconst); } else first_error (_("immediate out of range")); break; case NS_RF: /* case 12 (fmrs). */ do_vfp_nsyn_opcode ("fmrs"); break; case NS_FR: /* case 13 (fmsr). */ do_vfp_nsyn_opcode ("fmsr"); break; /* The encoders for the fmrrs and fmsrr instructions expect three operands (one of which is a list), but we have parsed four. Do some fiddling to make the operands what do_vfp_reg2_from_sp2 and do_vfp_sp2_from_reg2 expect. */ case NS_RRFF: /* case 14 (fmrrs). */ constraint (inst.operands[3].reg != inst.operands[2].reg + 1, _("VFP registers must be adjacent")); inst.operands[2].imm = 2; memset (&inst.operands[3], '\0', sizeof (inst.operands[3])); do_vfp_nsyn_opcode ("fmrrs"); break; case NS_FFRR: /* case 15 (fmsrr). */ constraint (inst.operands[1].reg != inst.operands[0].reg + 1, _("VFP registers must be adjacent")); inst.operands[1] = inst.operands[2]; inst.operands[2] = inst.operands[3]; inst.operands[0].imm = 2; memset (&inst.operands[3], '\0', sizeof (inst.operands[3])); do_vfp_nsyn_opcode ("fmsrr"); break; default: abort (); } } static void do_neon_rshift_round_imm (void) { enum neon_shape rs = neon_select_shape (NS_DDI, NS_QQI, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_ALL | N_KEY); int imm = inst.operands[2].imm; /* imm == 0 case is encoded as VMOV for V{R}SHR. */ if (imm == 0) { inst.operands[2].present = 0; do_neon_mov (); return; } constraint (imm < 1 || (unsigned)imm > et.size, _("immediate out of range for shift")); neon_imm_shift (TRUE, et.type == NT_unsigned, neon_quad (rs), et, et.size - imm); } static void do_neon_movl (void) { struct neon_type_el et = neon_check_type (2, NS_QD, N_EQK | N_DBL, N_SU_32 | N_KEY); unsigned sizebits = et.size >> 3; inst.instruction |= sizebits << 19; neon_two_same (0, et.type == NT_unsigned, -1); } static void do_neon_trn (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); inst.instruction = NEON_ENC_INTEGER (inst.instruction); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_zip_uzp (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_8 | N_16 | N_32 | N_KEY); if (rs == NS_DD && et.size == 32) { /* Special case: encode as VTRN.32
, . */ inst.instruction = N_MNEM_vtrn; do_neon_trn (); return; } neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_sat_abs_neg (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_pair_long (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_SU_32 | N_KEY); /* Unsigned is encoded in OP field (bit 7) for these instruction. */ inst.instruction |= (et.type == NT_unsigned) << 7; neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_recip_est (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_FLT, N_F32 | N_U32 | N_KEY); inst.instruction |= (et.type == NT_float) << 8; neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_cls (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_S8 | N_S16 | N_S32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_clz (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK, N_I8 | N_I16 | N_I32 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_cnt (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); struct neon_type_el et = neon_check_type (2, rs, N_EQK | N_INT, N_8 | N_KEY); neon_two_same (neon_quad (rs), 1, et.size); } static void do_neon_swp (void) { enum neon_shape rs = neon_select_shape (NS_DD, NS_QQ, NS_NULL); neon_two_same (neon_quad (rs), 1, -1); } static void do_neon_tbl_tbx (void) { unsigned listlenbits; neon_check_type (3, NS_DLD, N_EQK, N_EQK, N_8 | N_KEY); if (inst.operands[1].imm < 1 || inst.operands[1].imm > 4) { first_error (_("bad list length for table lookup")); return; } listlenbits = inst.operands[1].imm - 1; inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= LOW4 (inst.operands[1].reg) << 16; inst.instruction |= HI1 (inst.operands[1].reg) << 7; inst.instruction |= LOW4 (inst.operands[2].reg); inst.instruction |= HI1 (inst.operands[2].reg) << 5; inst.instruction |= listlenbits << 8; inst.instruction = neon_dp_fixup (inst.instruction); } static void do_neon_ldm_stm (void) { /* P, U and L bits are part of bitmask. */ int is_dbmode = (inst.instruction & (1 << 24)) != 0; unsigned offsetbits = inst.operands[1].imm * 2; if (inst.operands[1].issingle) { do_vfp_nsyn_ldm_stm (is_dbmode); return; } constraint (is_dbmode && !inst.operands[0].writeback, _("writeback (!) must be used for VLDMDB and VSTMDB")); constraint (inst.operands[1].imm < 1 || inst.operands[1].imm > 16, _("register list must contain at least 1 and at most 16 " "registers")); inst.instruction |= inst.operands[0].reg << 16; inst.instruction |= inst.operands[0].writeback << 21; inst.instruction |= LOW4 (inst.operands[1].reg) << 12; inst.instruction |= HI1 (inst.operands[1].reg) << 22; inst.instruction |= offsetbits; do_vfp_cond_or_thumb (); } static void do_neon_ldr_str (void) { int is_ldr = (inst.instruction & (1 << 20)) != 0; if (inst.operands[0].issingle) { if (is_ldr) do_vfp_nsyn_opcode ("flds"); else do_vfp_nsyn_opcode ("fsts"); } else { if (is_ldr) do_vfp_nsyn_opcode ("fldd"); else do_vfp_nsyn_opcode ("fstd"); } } /* "interleave" version also handles non-interleaving register VLD1/VST1 instructions. */ static void do_neon_ld_st_interleave (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32 | N_64); unsigned alignbits = 0; unsigned idx; /* The bits in this table go: 0: register stride of one (0) or two (1) 1,2: register list length, minus one (1, 2, 3, 4). 3,4: in instruction type, minus one (VLD / VST). We use -1 for invalid entries. */ const int typetable[] = { 0x7, -1, 0xa, -1, 0x6, -1, 0x2, -1, /* VLD1 / VST1. */ -1, -1, 0x8, 0x9, -1, -1, 0x3, -1, /* VLD2 / VST2. */ -1, -1, -1, -1, 0x4, 0x5, -1, -1, /* VLD3 / VST3. */ -1, -1, -1, -1, -1, -1, 0x0, 0x1 /* VLD4 / VST4. */ }; int typebits; if (et.type == NT_invtype) return; if (inst.operands[1].immisalign) switch (inst.operands[1].imm >> 8) { case 64: alignbits = 1; break; case 128: if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3) goto bad_alignment; alignbits = 2; break; case 256: if (NEON_REGLIST_LENGTH (inst.operands[0].imm) == 3) goto bad_alignment; alignbits = 3; break; default: bad_alignment: first_error (_("bad alignment")); return; } inst.instruction |= alignbits << 4; inst.instruction |= neon_logbits (et.size) << 6; /* Bits [4:6] of the immediate in a list specifier encode register stride (minus 1) in bit 4, and list length in bits [5:6]. We put the of VLD/VST in bits [9:8] of the initial bitmask. Suck it out here, look up the right value for "type" in a table based on this value and the given list style, then stick it back. */ idx = ((inst.operands[0].imm >> 4) & 7) | (((inst.instruction >> 8) & 3) << 3); typebits = typetable[idx]; constraint (typebits == -1, _("bad list type for instruction")); inst.instruction &= ~0xf00; inst.instruction |= typebits << 8; } /* Check alignment is valid for do_neon_ld_st_lane and do_neon_ld_dup. *DO_ALIGN is set to 1 if the relevant alignment bit should be set, 0 otherwise. The variable arguments are a list of pairs of legal (size, align) values, terminated with -1. */ static int neon_alignment_bit (int size, int align, int *do_align, ...) { va_list ap; int result = FAIL, thissize, thisalign; if (!inst.operands[1].immisalign) { *do_align = 0; return SUCCESS; } va_start (ap, do_align); do { thissize = va_arg (ap, int); if (thissize == -1) break; thisalign = va_arg (ap, int); if (size == thissize && align == thisalign) result = SUCCESS; } while (result != SUCCESS); va_end (ap); if (result == SUCCESS) *do_align = 1; else first_error (_("unsupported alignment for instruction")); return result; } static void do_neon_ld_st_lane (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32); int align_good, do_align = 0; int logsize = neon_logbits (et.size); int align = inst.operands[1].imm >> 8; int n = (inst.instruction >> 8) & 3; int max_el = 64 / et.size; if (et.type == NT_invtype) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != n + 1, _("bad list length")); constraint (NEON_LANE (inst.operands[0].imm) >= max_el, _("scalar index out of range")); constraint (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2 && et.size == 8, _("stride of 2 unavailable when element size is 8")); switch (n) { case 0: /* VLD1 / VST1. */ align_good = neon_alignment_bit (et.size, align, &do_align, 16, 16, 32, 32, -1); if (align_good == FAIL) return; if (do_align) { unsigned alignbits = 0; switch (et.size) { case 16: alignbits = 0x1; break; case 32: alignbits = 0x3; break; default: ; } inst.instruction |= alignbits << 4; } break; case 1: /* VLD2 / VST2. */ align_good = neon_alignment_bit (et.size, align, &do_align, 8, 16, 16, 32, 32, 64, -1); if (align_good == FAIL) return; if (do_align) inst.instruction |= 1 << 4; break; case 2: /* VLD3 / VST3. */ constraint (inst.operands[1].immisalign, _("can't use alignment with this instruction")); break; case 3: /* VLD4 / VST4. */ align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32, 16, 64, 32, 64, 32, 128, -1); if (align_good == FAIL) return; if (do_align) { unsigned alignbits = 0; switch (et.size) { case 8: alignbits = 0x1; break; case 16: alignbits = 0x1; break; case 32: alignbits = (align == 64) ? 0x1 : 0x2; break; default: ; } inst.instruction |= alignbits << 4; } break; default: ; } /* Reg stride of 2 is encoded in bit 5 when size==16, bit 6 when size==32. */ if (n != 0 && NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << (4 + logsize); inst.instruction |= NEON_LANE (inst.operands[0].imm) << (logsize + 5); inst.instruction |= logsize << 10; } /* Encode single n-element structure to all lanes VLD instructions. */ static void do_neon_ld_dup (void) { struct neon_type_el et = neon_check_type (1, NS_NULL, N_8 | N_16 | N_32); int align_good, do_align = 0; if (et.type == NT_invtype) return; switch ((inst.instruction >> 8) & 3) { case 0: /* VLD1. */ assert (NEON_REG_STRIDE (inst.operands[0].imm) != 2); align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8, &do_align, 16, 16, 32, 32, -1); if (align_good == FAIL) return; switch (NEON_REGLIST_LENGTH (inst.operands[0].imm)) { case 1: break; case 2: inst.instruction |= 1 << 5; break; default: first_error (_("bad list length")); return; } inst.instruction |= neon_logbits (et.size) << 6; break; case 1: /* VLD2. */ align_good = neon_alignment_bit (et.size, inst.operands[1].imm >> 8, &do_align, 8, 16, 16, 32, 32, 64, -1); if (align_good == FAIL) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 2, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; inst.instruction |= neon_logbits (et.size) << 6; break; case 2: /* VLD3. */ constraint (inst.operands[1].immisalign, _("can't use alignment with this instruction")); constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 3, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; inst.instruction |= neon_logbits (et.size) << 6; break; case 3: /* VLD4. */ { int align = inst.operands[1].imm >> 8; align_good = neon_alignment_bit (et.size, align, &do_align, 8, 32, 16, 64, 32, 64, 32, 128, -1); if (align_good == FAIL) return; constraint (NEON_REGLIST_LENGTH (inst.operands[0].imm) != 4, _("bad list length")); if (NEON_REG_STRIDE (inst.operands[0].imm) == 2) inst.instruction |= 1 << 5; if (et.size == 32 && align == 128) inst.instruction |= 0x3 << 6; else inst.instruction |= neon_logbits (et.size) << 6; } break; default: ; } inst.instruction |= do_align << 4; } /* Disambiguate VLD and VST instructions, and fill in common bits (those apart from bits [11:4]. */ static void do_neon_ldx_stx (void) { switch (NEON_LANE (inst.operands[0].imm)) { case NEON_INTERLEAVE_LANES: inst.instruction = NEON_ENC_INTERLV (inst.instruction); do_neon_ld_st_interleave (); break; case NEON_ALL_LANES: inst.instruction = NEON_ENC_DUP (inst.instruction); do_neon_ld_dup (); break; default: inst.instruction = NEON_ENC_LANE (inst.instruction); do_neon_ld_st_lane (); } /* L bit comes from bit mask. */ inst.instruction |= LOW4 (inst.operands[0].reg) << 12; inst.instruction |= HI1 (inst.operands[0].reg) << 22; inst.instruction |= inst.operands[1].reg << 16; if (inst.operands[1].postind) { int postreg = inst.operands[1].imm & 0xf; constraint (!inst.operands[1].immisreg, _("post-index must be a register")); constraint (postreg == 0xd || postreg == 0xf, _("bad register for post-index")); inst.instruction |= postreg; } else if (inst.operands[1].writeback) { inst.instruction |= 0xd; } else inst.instruction |= 0xf; if (thumb_mode) inst.instruction |= 0xf9000000; else inst.instruction |= 0xf4000000; } /* Overall per-instruction processing. */ /* We need to be able to fix up arbitrary expressions in some statements. This is so that we can handle symbols that are an arbitrary distance from the pc. The most common cases are of the form ((+/-sym -/+ . - 8) & mask), which returns part of an address in a form which will be valid for a data instruction. We do this by pushing the expression into a symbol in the expr_section, and creating a fix for that. */ static void fix_new_arm (fragS * frag, int where, short int size, expressionS * exp, int pc_rel, int reloc) { fixS * new_fix; switch (exp->X_op) { case O_constant: case O_symbol: case O_add: case O_subtract: new_fix = fix_new_exp (frag, where, size, exp, pc_rel, reloc); break; default: new_fix = fix_new (frag, where, size, make_expr_symbol (exp), 0, pc_rel, reloc); break; } /* Mark whether the fix is to a THUMB instruction, or an ARM instruction. */ new_fix->tc_fix_data = thumb_mode; } /* Create a frg for an instruction requiring relaxation. */ static void output_relax_insn (void) { char * to; symbolS *sym; int offset; /* The size of the instruction is unknown, so tie the debug info to the start of the instruction. */ dwarf2_emit_insn (0); switch (inst.reloc.exp.X_op) { case O_symbol: sym = inst.reloc.exp.X_add_symbol; offset = inst.reloc.exp.X_add_number; break; case O_constant: sym = NULL; offset = inst.reloc.exp.X_add_number; break; default: sym = make_expr_symbol (&inst.reloc.exp); offset = 0; break; } to = frag_var (rs_machine_dependent, INSN_SIZE, THUMB_SIZE, inst.relax, sym, offset, NULL/*offset, opcode*/); md_number_to_chars (to, inst.instruction, THUMB_SIZE); } /* Write a 32-bit thumb instruction to buf. */ static void put_thumb32_insn (char * buf, unsigned long insn) { md_number_to_chars (buf, insn >> 16, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, insn, THUMB_SIZE); } static void output_inst (const char * str) { char * to = NULL; if (inst.error) { as_bad ("%s -- `%s'", inst.error, str); return; } if (inst.relax) { output_relax_insn(); return; } if (inst.size == 0) return; to = frag_more (inst.size); if (thumb_mode && (inst.size > THUMB_SIZE)) { assert (inst.size == (2 * THUMB_SIZE)); put_thumb32_insn (to, inst.instruction); } else if (inst.size > INSN_SIZE) { assert (inst.size == (2 * INSN_SIZE)); md_number_to_chars (to, inst.instruction, INSN_SIZE); md_number_to_chars (to + INSN_SIZE, inst.instruction, INSN_SIZE); } else md_number_to_chars (to, inst.instruction, inst.size); if (inst.reloc.type != BFD_RELOC_UNUSED) fix_new_arm (frag_now, to - frag_now->fr_literal, inst.size, & inst.reloc.exp, inst.reloc.pc_rel, inst.reloc.type); dwarf2_emit_insn (inst.size); } /* Tag values used in struct asm_opcode's tag field. */ enum opcode_tag { OT_unconditional, /* Instruction cannot be conditionalized. The ARM condition field is still 0xE. */ OT_unconditionalF, /* Instruction cannot be conditionalized and carries 0xF in its ARM condition field. */ OT_csuffix, /* Instruction takes a conditional suffix. */ OT_csuffixF, /* Some forms of the instruction take a conditional suffix, others place 0xF where the condition field would be. */ OT_cinfix3, /* Instruction takes a conditional infix, beginning at character index 3. (In unified mode, it becomes a suffix.) */ OT_cinfix3_deprecated, /* The same as OT_cinfix3. This is used for tsts, cmps, cmns, and teqs. */ OT_cinfix3_legacy, /* Legacy instruction takes a conditional infix at character index 3, even in unified mode. Used for legacy instructions where suffix and infix forms may be ambiguous. */ OT_csuf_or_in3, /* Instruction takes either a conditional suffix or an infix at character index 3. */ OT_odd_infix_unc, /* This is the unconditional variant of an instruction that takes a conditional infix at an unusual position. In unified mode, this variant will accept a suffix. */ OT_odd_infix_0 /* Values greater than or equal to OT_odd_infix_0 are the conditional variants of instructions that take conditional infixes in unusual positions. The infix appears at character index (tag - OT_odd_infix_0). These are not accepted in unified mode. */ }; /* Subroutine of md_assemble, responsible for looking up the primary opcode from the mnemonic the user wrote. STR points to the beginning of the mnemonic. This is not simply a hash table lookup, because of conditional variants. Most instructions have conditional variants, which are expressed with a _conditional affix_ to the mnemonic. If we were to encode each conditional variant as a literal string in the opcode table, it would have approximately 20,000 entries. Most mnemonics take this affix as a suffix, and in unified syntax, 'most' is upgraded to 'all'. However, in the divided syntax, some instructions take the affix as an infix, notably the s-variants of the arithmetic instructions. Of those instructions, all but six have the infix appear after the third character of the mnemonic. Accordingly, the algorithm for looking up primary opcodes given an identifier is: 1. Look up the identifier in the opcode table. If we find a match, go to step U. 2. Look up the last two characters of the identifier in the conditions table. If we find a match, look up the first N-2 characters of the identifier in the opcode table. If we find a match, go to step CE. 3. Look up the fourth and fifth characters of the identifier in the conditions table. If we find a match, extract those characters from the identifier, and look up the remaining characters in the opcode table. If we find a match, go to step CM. 4. Fail. U. Examine the tag field of the opcode structure, in case this is one of the six instructions with its conditional infix in an unusual place. If it is, the tag tells us where to find the infix; look it up in the conditions table and set inst.cond accordingly. Otherwise, this is an unconditional instruction. Again set inst.cond accordingly. Return the opcode structure. CE. Examine the tag field to make sure this is an instruction that should receive a conditional suffix. If it is not, fail. Otherwise, set inst.cond from the suffix we already looked up, and return the opcode structure. CM. Examine the tag field to make sure this is an instruction that should receive a conditional infix after the third character. If it is not, fail. Otherwise, undo the edits to the current line of input and proceed as for case CE. */ static const struct asm_opcode * opcode_lookup (char **str) { char *end, *base; char *affix; const struct asm_opcode *opcode; const struct asm_cond *cond; char save[2]; bfd_boolean neon_supported; neon_supported = ARM_CPU_HAS_FEATURE (cpu_variant, fpu_neon_ext_v1); /* Scan up to the end of the mnemonic, which must end in white space, '.' (in unified mode, or for Neon instructions), or end of string. */ for (base = end = *str; *end != '\0'; end++) if (*end == ' ' || ((unified_syntax || neon_supported) && *end == '.')) break; if (end == base) return 0; /* Handle a possible width suffix and/or Neon type suffix. */ if (end[0] == '.') { int offset = 2; /* The .w and .n suffixes are only valid if the unified syntax is in use. */ if (unified_syntax && end[1] == 'w') inst.size_req = 4; else if (unified_syntax && end[1] == 'n') inst.size_req = 2; else offset = 0; inst.vectype.elems = 0; *str = end + offset; if (end[offset] == '.') { /* See if we have a Neon type suffix (possible in either unified or non-unified ARM syntax mode). */ if (parse_neon_type (&inst.vectype, str) == FAIL) return 0; } else if (end[offset] != '\0' && end[offset] != ' ') return 0; } else *str = end; /* Look for unaffixed or special-case affixed mnemonic. */ opcode = hash_find_n (arm_ops_hsh, base, end - base); if (opcode) { /* step U */ if (opcode->tag < OT_odd_infix_0) { inst.cond = COND_ALWAYS; return opcode; } if (unified_syntax) as_warn (_("conditional infixes are deprecated in unified syntax")); affix = base + (opcode->tag - OT_odd_infix_0); cond = hash_find_n (arm_cond_hsh, affix, 2); assert (cond); inst.cond = cond->value; return opcode; } /* Cannot have a conditional suffix on a mnemonic of less than two characters. */ if (end - base < 3) return 0; /* Look for suffixed mnemonic. */ affix = end - 2; cond = hash_find_n (arm_cond_hsh, affix, 2); opcode = hash_find_n (arm_ops_hsh, base, affix - base); if (opcode && cond) { /* step CE */ switch (opcode->tag) { case OT_cinfix3_legacy: /* Ignore conditional suffixes matched on infix only mnemonics. */ break; case OT_cinfix3: case OT_cinfix3_deprecated: case OT_odd_infix_unc: if (!unified_syntax) return 0; /* else fall through */ case OT_csuffix: case OT_csuffixF: case OT_csuf_or_in3: inst.cond = cond->value; return opcode; case OT_unconditional: case OT_unconditionalF: if (thumb_mode) { inst.cond = cond->value; } else { /* delayed diagnostic */ inst.error = BAD_COND; inst.cond = COND_ALWAYS; } return opcode; default: return 0; } } /* Cannot have a usual-position infix on a mnemonic of less than six characters (five would be a suffix). */ if (end - base < 6) return 0; /* Look for infixed mnemonic in the usual position. */ affix = base + 3; cond = hash_find_n (arm_cond_hsh, affix, 2); if (!cond) return 0; memcpy (save, affix, 2); memmove (affix, affix + 2, (end - affix) - 2); opcode = hash_find_n (arm_ops_hsh, base, (end - base) - 2); memmove (affix + 2, affix, (end - affix) - 2); memcpy (affix, save, 2); if (opcode && (opcode->tag == OT_cinfix3 || opcode->tag == OT_cinfix3_deprecated || opcode->tag == OT_csuf_or_in3 || opcode->tag == OT_cinfix3_legacy)) { /* step CM */ if (unified_syntax && (opcode->tag == OT_cinfix3 || opcode->tag == OT_cinfix3_deprecated)) as_warn (_("conditional infixes are deprecated in unified syntax")); inst.cond = cond->value; return opcode; } return 0; } void md_assemble (char *str) { char *p = str; const struct asm_opcode * opcode; /* Align the previous label if needed. */ if (last_label_seen != NULL) { symbol_set_frag (last_label_seen, frag_now); S_SET_VALUE (last_label_seen, (valueT) frag_now_fix ()); S_SET_SEGMENT (last_label_seen, now_seg); } memset (&inst, '\0', sizeof (inst)); inst.reloc.type = BFD_RELOC_UNUSED; opcode = opcode_lookup (&p); if (!opcode) { /* It wasn't an instruction, but it might be a register alias of the form alias .req reg, or a Neon .dn/.qn directive. */ if (!create_register_alias (str, p) && !create_neon_reg_alias (str, p)) as_bad (_("bad instruction `%s'"), str); return; } if (opcode->tag == OT_cinfix3_deprecated) as_warn (_("s suffix on comparison instruction is deprecated")); /* The value which unconditional instructions should have in place of the condition field. */ inst.uncond_value = (opcode->tag == OT_csuffixF) ? 0xf : -1; if (thumb_mode) { arm_feature_set variant; variant = cpu_variant; /* Only allow coprocessor instructions on Thumb-2 capable devices. */ if (!ARM_CPU_HAS_FEATURE (variant, arm_arch_t2)) ARM_CLEAR_FEATURE (variant, variant, fpu_any_hard); /* Check that this instruction is supported for this CPU. */ if (!opcode->tvariant || (thumb_mode == 1 && !ARM_CPU_HAS_FEATURE (variant, *opcode->tvariant))) { as_bad (_("selected processor does not support `%s'"), str); return; } if (inst.cond != COND_ALWAYS && !unified_syntax && opcode->tencode != do_t_branch) { as_bad (_("Thumb does not support conditional execution")); return; } /* Check conditional suffixes. */ if (current_it_mask) { int cond; cond = current_cc ^ ((current_it_mask >> 4) & 1) ^ 1; current_it_mask <<= 1; current_it_mask &= 0x1f; /* The BKPT instruction is unconditional even in an IT block. */ if (!inst.error && cond != inst.cond && opcode->tencode != do_t_bkpt) { as_bad (_("incorrect condition in IT block")); return; } } else if (inst.cond != COND_ALWAYS && opcode->tencode != do_t_branch) { as_bad (_("thumb conditional instrunction not in IT block")); return; } mapping_state (MAP_THUMB); inst.instruction = opcode->tvalue; if (!parse_operands (p, opcode->operands)) opcode->tencode (); /* Clear current_it_mask at the end of an IT block. */ if (current_it_mask == 0x10) current_it_mask = 0; if (!(inst.error || inst.relax)) { assert (inst.instruction < 0xe800 || inst.instruction > 0xffff); inst.size = (inst.instruction > 0xffff ? 4 : 2); if (inst.size_req && inst.size_req != inst.size) { as_bad (_("cannot honor width suffix -- `%s'"), str); return; } } ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, *opcode->tvariant); /* Many Thumb-2 instructions also have Thumb-1 variants, so explicitly set those bits when Thumb-2 32-bit instructions are seen. ie. anything other than bl/blx. This is overly pessimistic for relaxable instructions. */ if ((inst.size == 4 && (inst.instruction & 0xf800e800) != 0xf000e800) || inst.relax) ARM_MERGE_FEATURE_SETS (thumb_arch_used, thumb_arch_used, arm_ext_v6t2); } else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)) { /* Check that this instruction is supported for this CPU. */ if (!opcode->avariant || !ARM_CPU_HAS_FEATURE (cpu_variant, *opcode->avariant)) { as_bad (_("selected processor does not support `%s'"), str); return; } if (inst.size_req) { as_bad (_("width suffixes are invalid in ARM mode -- `%s'"), str); return; } mapping_state (MAP_ARM); inst.instruction = opcode->avalue; if (opcode->tag == OT_unconditionalF) inst.instruction |= 0xF << 28; else inst.instruction |= inst.cond << 28; inst.size = INSN_SIZE; if (!parse_operands (p, opcode->operands)) opcode->aencode (); /* Arm mode bx is marked as both v4T and v5 because it's still required on a hypothetical non-thumb v5 core. */ if (ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v4t) || ARM_CPU_HAS_FEATURE (*opcode->avariant, arm_ext_v5)) ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, arm_ext_v4t); else ARM_MERGE_FEATURE_SETS (arm_arch_used, arm_arch_used, *opcode->avariant); } else { as_bad (_("attempt to use an ARM instruction on a Thumb-only processor " "-- `%s'"), str); return; } output_inst (str); } /* Various frobbings of labels and their addresses. */ void arm_start_line_hook (void) { last_label_seen = NULL; } void arm_frob_label (symbolS * sym) { last_label_seen = sym; ARM_SET_THUMB (sym, thumb_mode); #if defined OBJ_COFF || defined OBJ_ELF ARM_SET_INTERWORK (sym, support_interwork); #endif /* Note - do not allow local symbols (.Lxxx) to be labeled as Thumb functions. This is because these labels, whilst they exist inside Thumb code, are not the entry points for possible ARM->Thumb calls. Also, these labels can be used as part of a computed goto or switch statement. eg gcc can generate code that looks like this: ldr r2, [pc, .Laaa] lsl r3, r3, #2 ldr r2, [r3, r2] mov pc, r2 .Lbbb: .word .Lxxx .Lccc: .word .Lyyy ..etc... .Laaa: .word Lbbb The first instruction loads the address of the jump table. The second instruction converts a table index into a byte offset. The third instruction gets the jump address out of the table. The fourth instruction performs the jump. If the address stored at .Laaa is that of a symbol which has the Thumb_Func bit set, then the linker will arrange for this address to have the bottom bit set, which in turn would mean that the address computation performed by the third instruction would end up with the bottom bit set. Since the ARM is capable of unaligned word loads, the instruction would then load the incorrect address out of the jump table, and chaos would ensue. */ if (label_is_thumb_function_name && (S_GET_NAME (sym)[0] != '.' || S_GET_NAME (sym)[1] != 'L') && (bfd_get_section_flags (stdoutput, now_seg) & SEC_CODE) != 0) { /* When the address of a Thumb function is taken the bottom bit of that address should be set. This will allow interworking between Arm and Thumb functions to work correctly. */ THUMB_SET_FUNC (sym, 1); label_is_thumb_function_name = FALSE; } dwarf2_emit_label (sym); } int arm_data_in_code (void) { if (thumb_mode && ! strncmp (input_line_pointer + 1, "data:", 5)) { *input_line_pointer = '/'; input_line_pointer += 5; *input_line_pointer = 0; return 1; } return 0; } char * arm_canonicalize_symbol_name (char * name) { int len; if (thumb_mode && (len = strlen (name)) > 5 && streq (name + len - 5, "/data")) *(name + len - 5) = 0; return name; } /* Table of all register names defined by default. The user can define additional names with .req. Note that all register names should appear in both upper and lowercase variants. Some registers also have mixed-case names. */ #define REGDEF(s,n,t) { #s, n, REG_TYPE_##t, TRUE, 0 } #define REGNUM(p,n,t) REGDEF(p##n, n, t) #define REGNUM2(p,n,t) REGDEF(p##n, 2 * n, t) #define REGSET(p,t) \ REGNUM(p, 0,t), REGNUM(p, 1,t), REGNUM(p, 2,t), REGNUM(p, 3,t), \ REGNUM(p, 4,t), REGNUM(p, 5,t), REGNUM(p, 6,t), REGNUM(p, 7,t), \ REGNUM(p, 8,t), REGNUM(p, 9,t), REGNUM(p,10,t), REGNUM(p,11,t), \ REGNUM(p,12,t), REGNUM(p,13,t), REGNUM(p,14,t), REGNUM(p,15,t) #define REGSETH(p,t) \ REGNUM(p,16,t), REGNUM(p,17,t), REGNUM(p,18,t), REGNUM(p,19,t), \ REGNUM(p,20,t), REGNUM(p,21,t), REGNUM(p,22,t), REGNUM(p,23,t), \ REGNUM(p,24,t), REGNUM(p,25,t), REGNUM(p,26,t), REGNUM(p,27,t), \ REGNUM(p,28,t), REGNUM(p,29,t), REGNUM(p,30,t), REGNUM(p,31,t) #define REGSET2(p,t) \ REGNUM2(p, 0,t), REGNUM2(p, 1,t), REGNUM2(p, 2,t), REGNUM2(p, 3,t), \ REGNUM2(p, 4,t), REGNUM2(p, 5,t), REGNUM2(p, 6,t), REGNUM2(p, 7,t), \ REGNUM2(p, 8,t), REGNUM2(p, 9,t), REGNUM2(p,10,t), REGNUM2(p,11,t), \ REGNUM2(p,12,t), REGNUM2(p,13,t), REGNUM2(p,14,t), REGNUM2(p,15,t) static const struct reg_entry reg_names[] = { /* ARM integer registers. */ REGSET(r, RN), REGSET(R, RN), /* ATPCS synonyms. */ REGDEF(a1,0,RN), REGDEF(a2,1,RN), REGDEF(a3, 2,RN), REGDEF(a4, 3,RN), REGDEF(v1,4,RN), REGDEF(v2,5,RN), REGDEF(v3, 6,RN), REGDEF(v4, 7,RN), REGDEF(v5,8,RN), REGDEF(v6,9,RN), REGDEF(v7,10,RN), REGDEF(v8,11,RN), REGDEF(A1,0,RN), REGDEF(A2,1,RN), REGDEF(A3, 2,RN), REGDEF(A4, 3,RN), REGDEF(V1,4,RN), REGDEF(V2,5,RN), REGDEF(V3, 6,RN), REGDEF(V4, 7,RN), REGDEF(V5,8,RN), REGDEF(V6,9,RN), REGDEF(V7,10,RN), REGDEF(V8,11,RN), /* Well-known aliases. */ REGDEF(wr, 7,RN), REGDEF(sb, 9,RN), REGDEF(sl,10,RN), REGDEF(fp,11,RN), REGDEF(ip,12,RN), REGDEF(sp,13,RN), REGDEF(lr,14,RN), REGDEF(pc,15,RN), REGDEF(WR, 7,RN), REGDEF(SB, 9,RN), REGDEF(SL,10,RN), REGDEF(FP,11,RN), REGDEF(IP,12,RN), REGDEF(SP,13,RN), REGDEF(LR,14,RN), REGDEF(PC,15,RN), /* Coprocessor numbers. */ REGSET(p, CP), REGSET(P, CP), /* Coprocessor register numbers. The "cr" variants are for backward compatibility. */ REGSET(c, CN), REGSET(C, CN), REGSET(cr, CN), REGSET(CR, CN), /* FPA registers. */ REGNUM(f,0,FN), REGNUM(f,1,FN), REGNUM(f,2,FN), REGNUM(f,3,FN), REGNUM(f,4,FN), REGNUM(f,5,FN), REGNUM(f,6,FN), REGNUM(f,7, FN), REGNUM(F,0,FN), REGNUM(F,1,FN), REGNUM(F,2,FN), REGNUM(F,3,FN), REGNUM(F,4,FN), REGNUM(F,5,FN), REGNUM(F,6,FN), REGNUM(F,7, FN), /* VFP SP registers. */ REGSET(s,VFS), REGSET(S,VFS), REGSETH(s,VFS), REGSETH(S,VFS), /* VFP DP Registers. */ REGSET(d,VFD), REGSET(D,VFD), /* Extra Neon DP registers. */ REGSETH(d,VFD), REGSETH(D,VFD), /* Neon QP registers. */ REGSET2(q,NQ), REGSET2(Q,NQ), /* VFP control registers. */ REGDEF(fpsid,0,VFC), REGDEF(fpscr,1,VFC), REGDEF(fpexc,8,VFC), REGDEF(FPSID,0,VFC), REGDEF(FPSCR,1,VFC), REGDEF(FPEXC,8,VFC), /* Maverick DSP coprocessor registers. */ REGSET(mvf,MVF), REGSET(mvd,MVD), REGSET(mvfx,MVFX), REGSET(mvdx,MVDX), REGSET(MVF,MVF), REGSET(MVD,MVD), REGSET(MVFX,MVFX), REGSET(MVDX,MVDX), REGNUM(mvax,0,MVAX), REGNUM(mvax,1,MVAX), REGNUM(mvax,2,MVAX), REGNUM(mvax,3,MVAX), REGDEF(dspsc,0,DSPSC), REGNUM(MVAX,0,MVAX), REGNUM(MVAX,1,MVAX), REGNUM(MVAX,2,MVAX), REGNUM(MVAX,3,MVAX), REGDEF(DSPSC,0,DSPSC), /* iWMMXt data registers - p0, c0-15. */ REGSET(wr,MMXWR), REGSET(wR,MMXWR), REGSET(WR, MMXWR), /* iWMMXt control registers - p1, c0-3. */ REGDEF(wcid, 0,MMXWC), REGDEF(wCID, 0,MMXWC), REGDEF(WCID, 0,MMXWC), REGDEF(wcon, 1,MMXWC), REGDEF(wCon, 1,MMXWC), REGDEF(WCON, 1,MMXWC), REGDEF(wcssf, 2,MMXWC), REGDEF(wCSSF, 2,MMXWC), REGDEF(WCSSF, 2,MMXWC), REGDEF(wcasf, 3,MMXWC), REGDEF(wCASF, 3,MMXWC), REGDEF(WCASF, 3,MMXWC), /* iWMMXt scalar (constant/offset) registers - p1, c8-11. */ REGDEF(wcgr0, 8,MMXWCG), REGDEF(wCGR0, 8,MMXWCG), REGDEF(WCGR0, 8,MMXWCG), REGDEF(wcgr1, 9,MMXWCG), REGDEF(wCGR1, 9,MMXWCG), REGDEF(WCGR1, 9,MMXWCG), REGDEF(wcgr2,10,MMXWCG), REGDEF(wCGR2,10,MMXWCG), REGDEF(WCGR2,10,MMXWCG), REGDEF(wcgr3,11,MMXWCG), REGDEF(wCGR3,11,MMXWCG), REGDEF(WCGR3,11,MMXWCG), /* XScale accumulator registers. */ REGNUM(acc,0,XSCALE), REGNUM(ACC,0,XSCALE), }; #undef REGDEF #undef REGNUM #undef REGSET /* Table of all PSR suffixes. Bare "CPSR" and "SPSR" are handled within psr_required_here. */ static const struct asm_psr psrs[] = { /* Backward compatibility notation. Note that "all" is no longer truly all possible PSR bits. */ {"all", PSR_c | PSR_f}, {"flg", PSR_f}, {"ctl", PSR_c}, /* Individual flags. */ {"f", PSR_f}, {"c", PSR_c}, {"x", PSR_x}, {"s", PSR_s}, /* Combinations of flags. */ {"fs", PSR_f | PSR_s}, {"fx", PSR_f | PSR_x}, {"fc", PSR_f | PSR_c}, {"sf", PSR_s | PSR_f}, {"sx", PSR_s | PSR_x}, {"sc", PSR_s | PSR_c}, {"xf", PSR_x | PSR_f}, {"xs", PSR_x | PSR_s}, {"xc", PSR_x | PSR_c}, {"cf", PSR_c | PSR_f}, {"cs", PSR_c | PSR_s}, {"cx", PSR_c | PSR_x}, {"fsx", PSR_f | PSR_s | PSR_x}, {"fsc", PSR_f | PSR_s | PSR_c}, {"fxs", PSR_f | PSR_x | PSR_s}, {"fxc", PSR_f | PSR_x | PSR_c}, {"fcs", PSR_f | PSR_c | PSR_s}, {"fcx", PSR_f | PSR_c | PSR_x}, {"sfx", PSR_s | PSR_f | PSR_x}, {"sfc", PSR_s | PSR_f | PSR_c}, {"sxf", PSR_s | PSR_x | PSR_f}, {"sxc", PSR_s | PSR_x | PSR_c}, {"scf", PSR_s | PSR_c | PSR_f}, {"scx", PSR_s | PSR_c | PSR_x}, {"xfs", PSR_x | PSR_f | PSR_s}, {"xfc", PSR_x | PSR_f | PSR_c}, {"xsf", PSR_x | PSR_s | PSR_f}, {"xsc", PSR_x | PSR_s | PSR_c}, {"xcf", PSR_x | PSR_c | PSR_f}, {"xcs", PSR_x | PSR_c | PSR_s}, {"cfs", PSR_c | PSR_f | PSR_s}, {"cfx", PSR_c | PSR_f | PSR_x}, {"csf", PSR_c | PSR_s | PSR_f}, {"csx", PSR_c | PSR_s | PSR_x}, {"cxf", PSR_c | PSR_x | PSR_f}, {"cxs", PSR_c | PSR_x | PSR_s}, {"fsxc", PSR_f | PSR_s | PSR_x | PSR_c}, {"fscx", PSR_f | PSR_s | PSR_c | PSR_x}, {"fxsc", PSR_f | PSR_x | PSR_s | PSR_c}, {"fxcs", PSR_f | PSR_x | PSR_c | PSR_s}, {"fcsx", PSR_f | PSR_c | PSR_s | PSR_x}, {"fcxs", PSR_f | PSR_c | PSR_x | PSR_s}, {"sfxc", PSR_s | PSR_f | PSR_x | PSR_c}, {"sfcx", PSR_s | PSR_f | PSR_c | PSR_x}, {"sxfc", PSR_s | PSR_x | PSR_f | PSR_c}, {"sxcf", PSR_s | PSR_x | PSR_c | PSR_f}, {"scfx", PSR_s | PSR_c | PSR_f | PSR_x}, {"scxf", PSR_s | PSR_c | PSR_x | PSR_f}, {"xfsc", PSR_x | PSR_f | PSR_s | PSR_c}, {"xfcs", PSR_x | PSR_f | PSR_c | PSR_s}, {"xsfc", PSR_x | PSR_s | PSR_f | PSR_c}, {"xscf", PSR_x | PSR_s | PSR_c | PSR_f}, {"xcfs", PSR_x | PSR_c | PSR_f | PSR_s}, {"xcsf", PSR_x | PSR_c | PSR_s | PSR_f}, {"cfsx", PSR_c | PSR_f | PSR_s | PSR_x}, {"cfxs", PSR_c | PSR_f | PSR_x | PSR_s}, {"csfx", PSR_c | PSR_s | PSR_f | PSR_x}, {"csxf", PSR_c | PSR_s | PSR_x | PSR_f}, {"cxfs", PSR_c | PSR_x | PSR_f | PSR_s}, {"cxsf", PSR_c | PSR_x | PSR_s | PSR_f}, }; /* Table of V7M psr names. */ static const struct asm_psr v7m_psrs[] = { {"apsr", 0 }, {"iapsr", 1 }, {"eapsr", 2 }, {"psr", 3 }, {"ipsr", 5 }, {"epsr", 6 }, {"iepsr", 7 }, {"msp", 8 }, {"psp", 9 }, {"primask", 16}, {"basepri", 17}, {"basepri_max", 18}, {"faultmask", 19}, {"control", 20} }; /* Table of all shift-in-operand names. */ static const struct asm_shift_name shift_names [] = { { "asl", SHIFT_LSL }, { "ASL", SHIFT_LSL }, { "lsl", SHIFT_LSL }, { "LSL", SHIFT_LSL }, { "lsr", SHIFT_LSR }, { "LSR", SHIFT_LSR }, { "asr", SHIFT_ASR }, { "ASR", SHIFT_ASR }, { "ror", SHIFT_ROR }, { "ROR", SHIFT_ROR }, { "rrx", SHIFT_RRX }, { "RRX", SHIFT_RRX } }; /* Table of all explicit relocation names. */ #ifdef OBJ_ELF static struct reloc_entry reloc_names[] = { { "got", BFD_RELOC_ARM_GOT32 }, { "GOT", BFD_RELOC_ARM_GOT32 }, { "gotoff", BFD_RELOC_ARM_GOTOFF }, { "GOTOFF", BFD_RELOC_ARM_GOTOFF }, { "plt", BFD_RELOC_ARM_PLT32 }, { "PLT", BFD_RELOC_ARM_PLT32 }, { "target1", BFD_RELOC_ARM_TARGET1 }, { "TARGET1", BFD_RELOC_ARM_TARGET1 }, { "target2", BFD_RELOC_ARM_TARGET2 }, { "TARGET2", BFD_RELOC_ARM_TARGET2 }, { "sbrel", BFD_RELOC_ARM_SBREL32 }, { "SBREL", BFD_RELOC_ARM_SBREL32 }, { "tlsgd", BFD_RELOC_ARM_TLS_GD32}, { "TLSGD", BFD_RELOC_ARM_TLS_GD32}, { "tlsldm", BFD_RELOC_ARM_TLS_LDM32}, { "TLSLDM", BFD_RELOC_ARM_TLS_LDM32}, { "tlsldo", BFD_RELOC_ARM_TLS_LDO32}, { "TLSLDO", BFD_RELOC_ARM_TLS_LDO32}, { "gottpoff",BFD_RELOC_ARM_TLS_IE32}, { "GOTTPOFF",BFD_RELOC_ARM_TLS_IE32}, { "tpoff", BFD_RELOC_ARM_TLS_LE32}, { "TPOFF", BFD_RELOC_ARM_TLS_LE32} }; #endif /* Table of all conditional affixes. 0xF is not defined as a condition code. */ static const struct asm_cond conds[] = { {"eq", 0x0}, {"ne", 0x1}, {"cs", 0x2}, {"hs", 0x2}, {"cc", 0x3}, {"ul", 0x3}, {"lo", 0x3}, {"mi", 0x4}, {"pl", 0x5}, {"vs", 0x6}, {"vc", 0x7}, {"hi", 0x8}, {"ls", 0x9}, {"ge", 0xa}, {"lt", 0xb}, {"gt", 0xc}, {"le", 0xd}, {"al", 0xe} }; static struct asm_barrier_opt barrier_opt_names[] = { { "sy", 0xf }, { "un", 0x7 }, { "st", 0xe }, { "unst", 0x6 } }; /* Table of ARM-format instructions. */ /* Macros for gluing together operand strings. N.B. In all cases other than OPS0, the trailing OP_stop comes from default zero-initialization of the unspecified elements of the array. */ #define OPS0() { OP_stop, } #define OPS1(a) { OP_##a, } #define OPS2(a,b) { OP_##a,OP_##b, } #define OPS3(a,b,c) { OP_##a,OP_##b,OP_##c, } #define OPS4(a,b,c,d) { OP_##a,OP_##b,OP_##c,OP_##d, } #define OPS5(a,b,c,d,e) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e, } #define OPS6(a,b,c,d,e,f) { OP_##a,OP_##b,OP_##c,OP_##d,OP_##e,OP_##f, } /* These macros abstract out the exact format of the mnemonic table and save some repeated characters. */ /* The normal sort of mnemonic; has a Thumb variant; takes a conditional suffix. */ #define TxCE(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* Two variants of the above - TCE for a numeric Thumb opcode, tCE for a T_MNEM_xyz enumerator. */ #define TCE(mnem, aop, top, nops, ops, ae, te) \ TxCE(mnem, aop, 0x##top, nops, ops, ae, te) #define tCE(mnem, aop, top, nops, ops, ae, te) \ TxCE(mnem, aop, T_MNEM_##top, nops, ops, ae, te) /* Second most common sort of mnemonic: has a Thumb variant, takes a conditional infix after the third character. */ #define TxC3(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } #define TxC3w(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_cinfix3_deprecated, 0x##op, top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } #define TC3(mnem, aop, top, nops, ops, ae, te) \ TxC3(mnem, aop, 0x##top, nops, ops, ae, te) #define TC3w(mnem, aop, top, nops, ops, ae, te) \ TxC3w(mnem, aop, 0x##top, nops, ops, ae, te) #define tC3(mnem, aop, top, nops, ops, ae, te) \ TxC3(mnem, aop, T_MNEM_##top, nops, ops, ae, te) #define tC3w(mnem, aop, top, nops, ops, ae, te) \ TxC3w(mnem, aop, T_MNEM_##top, nops, ops, ae, te) /* Mnemonic with a conditional infix in an unusual place. Each and every variant has to appear in the condition table. */ #define TxCM_(m1, m2, m3, op, top, nops, ops, ae, te) \ { #m1 #m2 #m3, OPS##nops ops, sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \ 0x##op, top, ARM_VARIANT, THUMB_VARIANT, do_##ae, do_##te } #define TxCM(m1, m2, op, top, nops, ops, ae, te) \ TxCM_(m1, , m2, op, top, nops, ops, ae, te), \ TxCM_(m1, eq, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ne, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, cs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, hs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, cc, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ul, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, lo, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, mi, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, pl, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, vs, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, vc, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, hi, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ls, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, ge, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, lt, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, gt, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, le, m2, op, top, nops, ops, ae, te), \ TxCM_(m1, al, m2, op, top, nops, ops, ae, te) #define TCM(m1,m2, aop, top, nops, ops, ae, te) \ TxCM(m1,m2, aop, 0x##top, nops, ops, ae, te) #define tCM(m1,m2, aop, top, nops, ops, ae, te) \ TxCM(m1,m2, aop, T_MNEM_##top, nops, ops, ae, te) /* Mnemonic that cannot be conditionalized. The ARM condition-code field is still 0xE. Many of the Thumb variants can be executed conditionally, so this is checked separately. */ #define TUE(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* Mnemonic that cannot be conditionalized, and bears 0xF in its ARM condition code field. */ #define TUF(mnem, op, top, nops, ops, ae, te) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##top, ARM_VARIANT, \ THUMB_VARIANT, do_##ae, do_##te } /* ARM-only variants of all the above. */ #define CE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } #define C3(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_cinfix3, 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } /* Legacy mnemonics that always have conditional infix after the third character. */ #define CL(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_cinfix3_legacy, \ 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } /* Coprocessor instructions. Isomorphic between Arm and Thumb-2. */ #define cCE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuffix, 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae } /* Legacy coprocessor instructions where conditional infix and conditional suffix are ambiguous. For consistency this includes all FPA instructions, not just the potentially ambiguous ones. */ #define cCL(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_cinfix3_legacy, \ 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae } /* Coprocessor, takes either a suffix or a position-3 infix (for an FPA corner case). */ #define C3E(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_csuf_or_in3, \ 0x##op, 0xe##op, ARM_VARIANT, ARM_VARIANT, do_##ae, do_##ae } #define xCM_(m1, m2, m3, op, nops, ops, ae) \ { #m1 #m2 #m3, OPS##nops ops, \ sizeof(#m2) == 1 ? OT_odd_infix_unc : OT_odd_infix_0 + sizeof(#m1) - 1, \ 0x##op, 0x0, ARM_VARIANT, 0, do_##ae, NULL } #define CM(m1, m2, op, nops, ops, ae) \ xCM_(m1, , m2, op, nops, ops, ae), \ xCM_(m1, eq, m2, op, nops, ops, ae), \ xCM_(m1, ne, m2, op, nops, ops, ae), \ xCM_(m1, cs, m2, op, nops, ops, ae), \ xCM_(m1, hs, m2, op, nops, ops, ae), \ xCM_(m1, cc, m2, op, nops, ops, ae), \ xCM_(m1, ul, m2, op, nops, ops, ae), \ xCM_(m1, lo, m2, op, nops, ops, ae), \ xCM_(m1, mi, m2, op, nops, ops, ae), \ xCM_(m1, pl, m2, op, nops, ops, ae), \ xCM_(m1, vs, m2, op, nops, ops, ae), \ xCM_(m1, vc, m2, op, nops, ops, ae), \ xCM_(m1, hi, m2, op, nops, ops, ae), \ xCM_(m1, ls, m2, op, nops, ops, ae), \ xCM_(m1, ge, m2, op, nops, ops, ae), \ xCM_(m1, lt, m2, op, nops, ops, ae), \ xCM_(m1, gt, m2, op, nops, ops, ae), \ xCM_(m1, le, m2, op, nops, ops, ae), \ xCM_(m1, al, m2, op, nops, ops, ae) #define UE(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditional, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL } #define UF(mnem, op, nops, ops, ae) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0, ARM_VARIANT, 0, do_##ae, NULL } /* Neon data-processing. ARM versions are unconditional with cond=0xf. The Thumb and ARM variants are mostly the same (bits 0-23 and 24/28), so we use the same encoding function for each. */ #define NUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, 0x##op, 0x##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc } /* Neon data processing, version which indirects through neon_enc_tab for the various overloaded versions of opcodes. */ #define nUF(mnem, op, nops, ops, enc) \ { #mnem, OPS##nops ops, OT_unconditionalF, N_MNEM_##op, N_MNEM_##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc } /* Neon insn with conditional suffix for the ARM version, non-overloaded version. */ #define NCE_tag(mnem, op, nops, ops, enc, tag) \ { #mnem, OPS##nops ops, tag, 0x##op, 0x##op, ARM_VARIANT, \ THUMB_VARIANT, do_##enc, do_##enc } #define NCE(mnem, op, nops, ops, enc) \ NCE_tag(mnem, op, nops, ops, enc, OT_csuffix) #define NCEF(mnem, op, nops, ops, enc) \ NCE_tag(mnem, op, nops, ops, enc, OT_csuffixF) /* Neon insn with conditional suffix for the ARM version, overloaded types. */ #define nCE_tag(mnem, op, nops, ops, enc, tag) \ { #mnem, OPS##nops ops, tag, N_MNEM_##op, N_MNEM_##op, \ ARM_VARIANT, THUMB_VARIANT, do_##enc, do_##enc } #define nCE(mnem, op, nops, ops, enc) \ nCE_tag(mnem, op, nops, ops, enc, OT_csuffix) #define nCEF(mnem, op, nops, ops, enc) \ nCE_tag(mnem, op, nops, ops, enc, OT_csuffixF) #define do_0 0 /* Thumb-only, unconditional. */ #define UT(mnem, op, nops, ops, te) TUE(mnem, 0, op, nops, ops, 0, te) static const struct asm_opcode insns[] = { #define ARM_VARIANT &arm_ext_v1 /* Core ARM Instructions. */ #define THUMB_VARIANT &arm_ext_v4t tCE(and, 0000000, and, 3, (RR, oRR, SH), arit, t_arit3c), tC3(ands, 0100000, ands, 3, (RR, oRR, SH), arit, t_arit3c), tCE(eor, 0200000, eor, 3, (RR, oRR, SH), arit, t_arit3c), tC3(eors, 0300000, eors, 3, (RR, oRR, SH), arit, t_arit3c), tCE(sub, 0400000, sub, 3, (RR, oRR, SH), arit, t_add_sub), tC3(subs, 0500000, subs, 3, (RR, oRR, SH), arit, t_add_sub), tCE(add, 0800000, add, 3, (RR, oRR, SHG), arit, t_add_sub), tC3(adds, 0900000, adds, 3, (RR, oRR, SHG), arit, t_add_sub), tCE(adc, 0a00000, adc, 3, (RR, oRR, SH), arit, t_arit3c), tC3(adcs, 0b00000, adcs, 3, (RR, oRR, SH), arit, t_arit3c), tCE(sbc, 0c00000, sbc, 3, (RR, oRR, SH), arit, t_arit3), tC3(sbcs, 0d00000, sbcs, 3, (RR, oRR, SH), arit, t_arit3), tCE(orr, 1800000, orr, 3, (RR, oRR, SH), arit, t_arit3c), tC3(orrs, 1900000, orrs, 3, (RR, oRR, SH), arit, t_arit3c), tCE(bic, 1c00000, bic, 3, (RR, oRR, SH), arit, t_arit3), tC3(bics, 1d00000, bics, 3, (RR, oRR, SH), arit, t_arit3), /* The p-variants of tst/cmp/cmn/teq (below) are the pre-V6 mechanism for setting PSR flag bits. They are obsolete in V6 and do not have Thumb equivalents. */ tCE(tst, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst), tC3w(tsts, 1100000, tst, 2, (RR, SH), cmp, t_mvn_tst), CL(tstp, 110f000, 2, (RR, SH), cmp), tCE(cmp, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp), tC3w(cmps, 1500000, cmp, 2, (RR, SH), cmp, t_mov_cmp), CL(cmpp, 150f000, 2, (RR, SH), cmp), tCE(cmn, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst), tC3w(cmns, 1700000, cmn, 2, (RR, SH), cmp, t_mvn_tst), CL(cmnp, 170f000, 2, (RR, SH), cmp), tCE(mov, 1a00000, mov, 2, (RR, SH), mov, t_mov_cmp), tC3(movs, 1b00000, movs, 2, (RR, SH), mov, t_mov_cmp), tCE(mvn, 1e00000, mvn, 2, (RR, SH), mov, t_mvn_tst), tC3(mvns, 1f00000, mvns, 2, (RR, SH), mov, t_mvn_tst), tCE(ldr, 4100000, ldr, 2, (RR, ADDRGLDR),ldst, t_ldst), tC3(ldrb, 4500000, ldrb, 2, (RR, ADDRGLDR),ldst, t_ldst), tCE(str, 4000000, str, 2, (RR, ADDRGLDR),ldst, t_ldst), tC3(strb, 4400000, strb, 2, (RR, ADDRGLDR),ldst, t_ldst), tCE(stm, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(stmia, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(stmea, 8800000, stmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tCE(ldm, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(ldmia, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), tC3(ldmfd, 8900000, ldmia, 2, (RRw, REGLST), ldmstm, t_ldmstm), TCE(swi, f000000, df00, 1, (EXPi), swi, t_swi), TCE(svc, f000000, df00, 1, (EXPi), swi, t_swi), tCE(b, a000000, b, 1, (EXPr), branch, t_branch), TCE(bl, b000000, f000f800, 1, (EXPr), bl, t_branch23), /* Pseudo ops. */ tCE(adr, 28f0000, adr, 2, (RR, EXP), adr, t_adr), C3(adrl, 28f0000, 2, (RR, EXP), adrl), tCE(nop, 1a00000, nop, 1, (oI255c), nop, t_nop), /* Thumb-compatibility pseudo ops. */ tCE(lsl, 1a00000, lsl, 3, (RR, oRR, SH), shift, t_shift), tC3(lsls, 1b00000, lsls, 3, (RR, oRR, SH), shift, t_shift), tCE(lsr, 1a00020, lsr, 3, (RR, oRR, SH), shift, t_shift), tC3(lsrs, 1b00020, lsrs, 3, (RR, oRR, SH), shift, t_shift), tCE(asr, 1a00040, asr, 3, (RR, oRR, SH), shift, t_shift), tC3(asrs, 1b00040, asrs, 3, (RR, oRR, SH), shift, t_shift), tCE(ror, 1a00060, ror, 3, (RR, oRR, SH), shift, t_shift), tC3(rors, 1b00060, rors, 3, (RR, oRR, SH), shift, t_shift), tCE(neg, 2600000, neg, 2, (RR, RR), rd_rn, t_neg), tC3(negs, 2700000, negs, 2, (RR, RR), rd_rn, t_neg), tCE(push, 92d0000, push, 1, (REGLST), push_pop, t_push_pop), tCE(pop, 8bd0000, pop, 1, (REGLST), push_pop, t_push_pop), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6 TCE(cpy, 1a00000, 4600, 2, (RR, RR), rd_rm, t_cpy), /* V1 instructions with no Thumb analogue prior to V6T2. */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6t2 TCE(rsb, 0600000, ebc00000, 3, (RR, oRR, SH), arit, t_rsb), TC3(rsbs, 0700000, ebd00000, 3, (RR, oRR, SH), arit, t_rsb), TCE(teq, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), TC3w(teqs, 1300000, ea900f00, 2, (RR, SH), cmp, t_mvn_tst), CL(teqp, 130f000, 2, (RR, SH), cmp), TC3(ldrt, 4300000, f8500e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(ldrbt, 4700000, f8100e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(strt, 4200000, f8400e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(strbt, 4600000, f8000e00, 2, (RR, ADDR), ldstt, t_ldstt), TC3(stmdb, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(stmfd, 9000000, e9000000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(ldmdb, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), TC3(ldmea, 9100000, e9100000, 2, (RRw, REGLST), ldmstm, t_ldmstm), /* V1 instructions with no Thumb analogue at all. */ CE(rsc, 0e00000, 3, (RR, oRR, SH), arit), C3(rscs, 0f00000, 3, (RR, oRR, SH), arit), C3(stmib, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmfa, 9800000, 2, (RRw, REGLST), ldmstm), C3(stmda, 8000000, 2, (RRw, REGLST), ldmstm), C3(stmed, 8000000, 2, (RRw, REGLST), ldmstm), C3(ldmib, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmed, 9900000, 2, (RRw, REGLST), ldmstm), C3(ldmda, 8100000, 2, (RRw, REGLST), ldmstm), C3(ldmfa, 8100000, 2, (RRw, REGLST), ldmstm), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v2 /* ARM 2 - multiplies. */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v4t tCE(mul, 0000090, mul, 3, (RRnpc, RRnpc, oRR), mul, t_mul), tC3(muls, 0100090, muls, 3, (RRnpc, RRnpc, oRR), mul, t_mul), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6t2 TCE(mla, 0200090, fb000000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), C3(mlas, 0300090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas), /* Generic coprocessor instructions. */ TCE(cdp, e000000, ee000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TCE(ldc, c100000, ec100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TC3(ldcl, c500000, ec500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TCE(stc, c000000, ec000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TC3(stcl, c400000, ec400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TCE(mcr, e000010, ee000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TCE(mrc, e100010, ee100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v2s /* ARM 3 - swp instructions. */ CE(swp, 1000090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), C3(swpb, 1400090, 3, (RRnpc, RRnpc, RRnpcb), rd_rm_rn), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v3 /* ARM 6 Status register instructions. */ TCE(mrs, 10f0000, f3ef8000, 2, (APSR_RR, RVC_PSR), mrs, t_mrs), TCE(msr, 120f000, f3808000, 2, (RVC_PSR, RR_EXi), msr, t_msr), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v3m /* ARM 7M long multiplies. */ TCE(smull, 0c00090, fb800000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(smull,s, 0d00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(umull, 0800090, fba00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(umull,s, 0900090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(smlal, 0e00090, fbc00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(smlal,s, 0f00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), TCE(umlal, 0a00090, fbe00000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull, t_mull), CM(umlal,s, 0b00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mull), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v4 /* ARM Architecture 4. */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v4t tC3(ldrh, 01000b0, ldrh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), tC3(strh, 00000b0, strh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), tC3(ldrsh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), tC3(ldrsb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), tCM(ld,sh, 01000f0, ldrsh, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), tCM(ld,sb, 01000d0, ldrsb, 2, (RR, ADDRGLDRS), ldstv4, t_ldst), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v4t_5 /* ARM Architecture 4T. */ /* Note: bx (and blx) are required on V5, even if the processor does not support Thumb. */ TCE(bx, 12fff10, 4700, 1, (RR), bx, t_bx), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v5 /* ARM Architecture 5T. */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v5t /* Note: blx has 2 variants; the .value coded here is for BLX(2). Only this variant has conditional execution. */ TCE(blx, 12fff30, 4780, 1, (RR_EXr), blx, t_blx), TUE(bkpt, 1200070, be00, 1, (oIffffb), bkpt, t_bkpt), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6t2 TCE(clz, 16f0f10, fab0f080, 2, (RRnpc, RRnpc), rd_rm, t_clz), TUF(ldc2, c100000, fc100000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF(ldc2l, c500000, fc500000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF(stc2, c000000, fc000000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF(stc2l, c400000, fc400000, 3, (RCP, RCN, ADDRGLDC), lstc, lstc), TUF(cdp2, e000000, fe000000, 6, (RCP, I15b, RCN, RCN, RCN, oI7b), cdp, cdp), TUF(mcr2, e000010, fe000010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), TUF(mrc2, e100010, fe100010, 6, (RCP, I7b, RR, RCN, RCN, oI7b), co_reg, co_reg), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v5exp /* ARM Architecture 5TExP. */ TCE(smlabb, 1000080, fb100000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlatb, 10000a0, fb100020, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlabt, 10000c0, fb100010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlatt, 10000e0, fb100030, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlawb, 1200080, fb300000, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlawt, 12000c0, fb300010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smla, t_mla), TCE(smlalbb, 1400080, fbc00080, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlaltb, 14000a0, fbc000a0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlalbt, 14000c0, fbc00090, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smlaltt, 14000e0, fbc000b0, 4, (RRnpc, RRnpc, RRnpc, RRnpc), smlal, t_mlal), TCE(smulbb, 1600080, fb10f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smultb, 16000a0, fb10f020, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulbt, 16000c0, fb10f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smultt, 16000e0, fb10f030, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulwb, 12000a0, fb30f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smulwt, 12000e0, fb30f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(qadd, 1000050, fa80f080, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qdadd, 1400050, fa80f090, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qsub, 1200050, fa80f0a0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), TCE(qdsub, 1600050, fa80f0b0, 3, (RRnpc, RRnpc, RRnpc), rd_rm_rn, rd_rm_rn), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v5e /* ARM Architecture 5TE. */ TUF(pld, 450f000, f810f000, 1, (ADDR), pld, t_pld), TC3(ldrd, 00000d0, e9500000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd), TC3(strd, 00000f0, e9400000, 3, (RRnpc, oRRnpc, ADDRGLDRS), ldrd, t_ldstd), TCE(mcrr, c400000, ec400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE(mrrc, c500000, ec500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v5j /* ARM Architecture 5TEJ. */ TCE(bxj, 12fff20, f3c08f00, 1, (RR), bxj, t_bxj), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v6 /* ARM V6. */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6 TUF(cpsie, 1080000, b660, 2, (CPSF, oI31b), cpsi, t_cpsi), TUF(cpsid, 10c0000, b670, 2, (CPSF, oI31b), cpsi, t_cpsi), tCE(rev, 6bf0f30, rev, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(rev16, 6bf0fb0, rev16, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(revsh, 6ff0fb0, revsh, 2, (RRnpc, RRnpc), rd_rm, t_rev), tCE(sxth, 6bf0070, sxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(uxth, 6ff0070, uxth, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(sxtb, 6af0070, sxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), tCE(uxtb, 6ef0070, uxtb, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TUF(setend, 1010000, b650, 1, (ENDI), setend, t_setend), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6t2 TCE(ldrex, 1900f9f, e8500f00, 2, (RRnpc, ADDR), ldrex, t_ldrex), TUF(mcrr2, c400000, fc400000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TUF(mrrc2, c500000, fc500000, 5, (RCP, I15b, RRnpc, RRnpc, RCN), co_reg2c, co_reg2c), TCE(ssat, 6a00010, f3000000, 4, (RRnpc, I32, RRnpc, oSHllar),ssat, t_ssat), TCE(usat, 6e00010, f3800000, 4, (RRnpc, I31, RRnpc, oSHllar),usat, t_usat), /* ARM V6 not included in V7M (eg. integer SIMD). */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6_notm TUF(cps, 1020000, f3af8100, 1, (I31b), imm0, t_cps), TCE(pkhbt, 6800010, eac00000, 4, (RRnpc, RRnpc, RRnpc, oSHll), pkhbt, t_pkhbt), TCE(pkhtb, 6800050, eac00020, 4, (RRnpc, RRnpc, RRnpc, oSHar), pkhtb, t_pkhtb), TCE(qadd16, 6200f10, fa90f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qadd8, 6200f90, fa80f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qaddsubx, 6200f30, faa0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsub16, 6200f70, fad0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsub8, 6200ff0, fac0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(qsubaddx, 6200f50, fae0f010, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(sadd16, 6100f10, fa90f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(sadd8, 6100f90, fa80f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(saddsubx, 6100f30, faa0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shadd16, 6300f10, fa90f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shadd8, 6300f90, fa80f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shaddsubx, 6300f30, faa0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsub16, 6300f70, fad0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsub8, 6300ff0, fac0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(shsubaddx, 6300f50, fae0f020, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssub16, 6100f70, fad0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssub8, 6100ff0, fac0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(ssubaddx, 6100f50, fae0f000, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uadd16, 6500f10, fa90f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uadd8, 6500f90, fa80f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uaddsubx, 6500f30, faa0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhadd16, 6700f10, fa90f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhadd8, 6700f90, fa80f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhaddsubx, 6700f30, faa0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsub16, 6700f70, fad0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsub8, 6700ff0, fac0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uhsubaddx, 6700f50, fae0f060, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqadd16, 6600f10, fa90f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqadd8, 6600f90, fa80f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqaddsubx, 6600f30, faa0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsub16, 6600f70, fad0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsub8, 6600ff0, fac0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(uqsubaddx, 6600f50, fae0f050, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usub16, 6500f70, fad0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usub8, 6500ff0, fac0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(usubaddx, 6500f50, fae0f040, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TUF(rfeia, 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfeib, 9900a00, 1, (RRw), rfe), UF(rfeda, 8100a00, 1, (RRw), rfe), TUF(rfedb, 9100a00, e810c000, 1, (RRw), rfe, rfe), TUF(rfefd, 8900a00, e990c000, 1, (RRw), rfe, rfe), UF(rfefa, 9900a00, 1, (RRw), rfe), UF(rfeea, 8100a00, 1, (RRw), rfe), TUF(rfeed, 9100a00, e810c000, 1, (RRw), rfe, rfe), TCE(sxtah, 6b00070, fa00f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtab16, 6800070, fa20f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtab, 6a00070, fa40f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(sxtb16, 68f0070, fa2ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE(uxtah, 6f00070, fa10f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtab16, 6c00070, fa30f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtab, 6e00070, fa50f080, 4, (RRnpc, RRnpc, RRnpc, oROR), sxtah, t_sxtah), TCE(uxtb16, 6cf0070, fa3ff080, 3, (RRnpc, RRnpc, oROR), sxth, t_sxth), TCE(sel, 6800fb0, faa0f080, 3, (RRnpc, RRnpc, RRnpc), rd_rn_rm, t_simd), TCE(smlad, 7000010, fb200000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smladx, 7000030, fb200010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlald, 7400010, fbc000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlaldx, 7400030, fbc000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlsd, 7000050, fb400000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlsdx, 7000070, fb400010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smlsld, 7400050, fbd000c0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smlsldx, 7400070, fbd000d0, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal,t_mlal), TCE(smmla, 7500010, fb500000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmlar, 7500030, fb500010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmls, 75000d0, fb600000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmlsr, 75000f0, fb600010, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(smmul, 750f010, fb50f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smmulr, 750f030, fb50f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smuad, 700f010, fb20f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smuadx, 700f030, fb20f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smusd, 700f050, fb40f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(smusdx, 700f070, fb40f010, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TUF(srsia, 8cd0500, e980c000, 1, (I31w), srs, srs), UF(srsib, 9cd0500, 1, (I31w), srs), UF(srsda, 84d0500, 1, (I31w), srs), TUF(srsdb, 94d0500, e800c000, 1, (I31w), srs, srs), TCE(ssat16, 6a00f30, f3200000, 3, (RRnpc, I16, RRnpc), ssat16, t_ssat16), TCE(strex, 1800f90, e8400000, 3, (RRnpc, RRnpc, ADDR), strex, t_strex), TCE(umaal, 0400090, fbe00060, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smlal, t_mlal), TCE(usad8, 780f010, fb70f000, 3, (RRnpc, RRnpc, RRnpc), smul, t_simd), TCE(usada8, 7800010, fb700000, 4, (RRnpc, RRnpc, RRnpc, RRnpc),smla, t_mla), TCE(usat16, 6e00f30, f3a00000, 3, (RRnpc, I15, RRnpc), usat16, t_usat16), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v6k #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6k tCE(yield, 320f001, yield, 0, (), noargs, t_hint), tCE(wfe, 320f002, wfe, 0, (), noargs, t_hint), tCE(wfi, 320f003, wfi, 0, (), noargs, t_hint), tCE(sev, 320f004, sev, 0, (), noargs, t_hint), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6_notm TCE(ldrexd, 1b00f9f, e8d0007f, 3, (RRnpc, oRRnpc, RRnpcb), ldrexd, t_ldrexd), TCE(strexd, 1a00f90, e8c00070, 4, (RRnpc, RRnpc, oRRnpc, RRnpcb), strexd, t_strexd), #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v6t2 TCE(ldrexb, 1d00f9f, e8d00f4f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE(ldrexh, 1f00f9f, e8d00f5f, 2, (RRnpc, RRnpcb), rd_rn, rd_rn), TCE(strexb, 1c00f90, e8c00f40, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn), TCE(strexh, 1e00f90, e8c00f50, 3, (RRnpc, RRnpc, ADDR), strex, rm_rd_rn), TUF(clrex, 57ff01f, f3bf8f2f, 0, (), noargs, noargs), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v6z TCE(smc, 1600070, f7f08000, 1, (EXPi), smc, t_smc), #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v6t2 TCE(bfc, 7c0001f, f36f0000, 3, (RRnpc, I31, I32), bfc, t_bfc), TCE(bfi, 7c00010, f3600000, 4, (RRnpc, RRnpc_I0, I31, I32), bfi, t_bfi), TCE(sbfx, 7a00050, f3400000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE(ubfx, 7e00050, f3c00000, 4, (RR, RR, I31, I32), bfx, t_bfx), TCE(mls, 0600090, fb000010, 4, (RRnpc, RRnpc, RRnpc, RRnpc), mlas, t_mla), TCE(movw, 3000000, f2400000, 2, (RRnpc, HALF), mov16, t_mov16), TCE(movt, 3400000, f2c00000, 2, (RRnpc, HALF), mov16, t_mov16), TCE(rbit, 6ff0f30, fa90f0a0, 2, (RR, RR), rd_rm, t_rbit), TC3(ldrht, 03000b0, f8300e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(ldrsht, 03000f0, f9300e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(ldrsbt, 03000d0, f9100e00, 2, (RR, ADDR), ldsttv4, t_ldstt), TC3(strht, 02000b0, f8200e00, 2, (RR, ADDR), ldsttv4, t_ldstt), UT(cbnz, b900, 2, (RR, EXP), t_czb), UT(cbz, b100, 2, (RR, EXP), t_czb), /* ARM does not really have an IT instruction, so always allow it. */ #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v1 TUE(it, 0, bf08, 1, (COND), it, t_it), TUE(itt, 0, bf0c, 1, (COND), it, t_it), TUE(ite, 0, bf04, 1, (COND), it, t_it), TUE(ittt, 0, bf0e, 1, (COND), it, t_it), TUE(itet, 0, bf06, 1, (COND), it, t_it), TUE(itte, 0, bf0a, 1, (COND), it, t_it), TUE(itee, 0, bf02, 1, (COND), it, t_it), TUE(itttt, 0, bf0f, 1, (COND), it, t_it), TUE(itett, 0, bf07, 1, (COND), it, t_it), TUE(ittet, 0, bf0b, 1, (COND), it, t_it), TUE(iteet, 0, bf03, 1, (COND), it, t_it), TUE(ittte, 0, bf0d, 1, (COND), it, t_it), TUE(itete, 0, bf05, 1, (COND), it, t_it), TUE(ittee, 0, bf09, 1, (COND), it, t_it), TUE(iteee, 0, bf01, 1, (COND), it, t_it), /* Thumb2 only instructions. */ #undef ARM_VARIANT #define ARM_VARIANT NULL TCE(addw, 0, f2000000, 3, (RR, RR, EXPi), 0, t_add_sub_w), TCE(subw, 0, f2a00000, 3, (RR, RR, EXPi), 0, t_add_sub_w), TCE(tbb, 0, e8d0f000, 1, (TB), 0, t_tb), TCE(tbh, 0, e8d0f010, 1, (TB), 0, t_tb), /* Thumb-2 hardware division instructions (R and M profiles only). */ #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_div TCE(sdiv, 0, fb90f0f0, 3, (RR, oRR, RR), 0, t_div), TCE(udiv, 0, fbb0f0f0, 3, (RR, oRR, RR), 0, t_div), /* ARM V7 instructions. */ #undef ARM_VARIANT #define ARM_VARIANT &arm_ext_v7 #undef THUMB_VARIANT #define THUMB_VARIANT &arm_ext_v7 TUF(pli, 450f000, f910f000, 1, (ADDR), pli, t_pld), TCE(dbg, 320f0f0, f3af80f0, 1, (I15), dbg, t_dbg), TUF(dmb, 57ff050, f3bf8f50, 1, (oBARRIER), barrier, t_barrier), TUF(dsb, 57ff040, f3bf8f40, 1, (oBARRIER), barrier, t_barrier), TUF(isb, 57ff060, f3bf8f60, 1, (oBARRIER), barrier, t_barrier), #undef ARM_VARIANT #define ARM_VARIANT &fpu_fpa_ext_v1 /* Core FPA instruction set (V1). */ cCE(wfs, e200110, 1, (RR), rd), cCE(rfs, e300110, 1, (RR), rd), cCE(wfc, e400110, 1, (RR), rd), cCE(rfc, e500110, 1, (RR), rd), cCL(ldfs, c100100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(ldfd, c108100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(ldfe, c500100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(ldfp, c508100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(stfs, c000100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(stfd, c008100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(stfe, c400100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(stfp, c408100, 2, (RF, ADDRGLDC), rd_cpaddr), cCL(mvfs, e008100, 2, (RF, RF_IF), rd_rm), cCL(mvfsp, e008120, 2, (RF, RF_IF), rd_rm), cCL(mvfsm, e008140, 2, (RF, RF_IF), rd_rm), cCL(mvfsz, e008160, 2, (RF, RF_IF), rd_rm), cCL(mvfd, e008180, 2, (RF, RF_IF), rd_rm), cCL(mvfdp, e0081a0, 2, (RF, RF_IF), rd_rm), cCL(mvfdm, e0081c0, 2, (RF, RF_IF), rd_rm), cCL(mvfdz, e0081e0, 2, (RF, RF_IF), rd_rm), cCL(mvfe, e088100, 2, (RF, RF_IF), rd_rm), cCL(mvfep, e088120, 2, (RF, RF_IF), rd_rm), cCL(mvfem, e088140, 2, (RF, RF_IF), rd_rm), cCL(mvfez, e088160, 2, (RF, RF_IF), rd_rm), cCL(mnfs, e108100, 2, (RF, RF_IF), rd_rm), cCL(mnfsp, e108120, 2, (RF, RF_IF), rd_rm), cCL(mnfsm, e108140, 2, (RF, RF_IF), rd_rm), cCL(mnfsz, e108160, 2, (RF, RF_IF), rd_rm), cCL(mnfd, e108180, 2, (RF, RF_IF), rd_rm), cCL(mnfdp, e1081a0, 2, (RF, RF_IF), rd_rm), cCL(mnfdm, e1081c0, 2, (RF, RF_IF), rd_rm), cCL(mnfdz, e1081e0, 2, (RF, RF_IF), rd_rm), cCL(mnfe, e188100, 2, (RF, RF_IF), rd_rm), cCL(mnfep, e188120, 2, (RF, RF_IF), rd_rm), cCL(mnfem, e188140, 2, (RF, RF_IF), rd_rm), cCL(mnfez, e188160, 2, (RF, RF_IF), rd_rm), cCL(abss, e208100, 2, (RF, RF_IF), rd_rm), cCL(abssp, e208120, 2, (RF, RF_IF), rd_rm), cCL(abssm, e208140, 2, (RF, RF_IF), rd_rm), cCL(abssz, e208160, 2, (RF, RF_IF), rd_rm), cCL(absd, e208180, 2, (RF, RF_IF), rd_rm), cCL(absdp, e2081a0, 2, (RF, RF_IF), rd_rm), cCL(absdm, e2081c0, 2, (RF, RF_IF), rd_rm), cCL(absdz, e2081e0, 2, (RF, RF_IF), rd_rm), cCL(abse, e288100, 2, (RF, RF_IF), rd_rm), cCL(absep, e288120, 2, (RF, RF_IF), rd_rm), cCL(absem, e288140, 2, (RF, RF_IF), rd_rm), cCL(absez, e288160, 2, (RF, RF_IF), rd_rm), cCL(rnds, e308100, 2, (RF, RF_IF), rd_rm), cCL(rndsp, e308120, 2, (RF, RF_IF), rd_rm), cCL(rndsm, e308140, 2, (RF, RF_IF), rd_rm), cCL(rndsz, e308160, 2, (RF, RF_IF), rd_rm), cCL(rndd, e308180, 2, (RF, RF_IF), rd_rm), cCL(rnddp, e3081a0, 2, (RF, RF_IF), rd_rm), cCL(rnddm, e3081c0, 2, (RF, RF_IF), rd_rm), cCL(rnddz, e3081e0, 2, (RF, RF_IF), rd_rm), cCL(rnde, e388100, 2, (RF, RF_IF), rd_rm), cCL(rndep, e388120, 2, (RF, RF_IF), rd_rm), cCL(rndem, e388140, 2, (RF, RF_IF), rd_rm), cCL(rndez, e388160, 2, (RF, RF_IF), rd_rm), cCL(sqts, e408100, 2, (RF, RF_IF), rd_rm), cCL(sqtsp, e408120, 2, (RF, RF_IF), rd_rm), cCL(sqtsm, e408140, 2, (RF, RF_IF), rd_rm), cCL(sqtsz, e408160, 2, (RF, RF_IF), rd_rm), cCL(sqtd, e408180, 2, (RF, RF_IF), rd_rm), cCL(sqtdp, e4081a0, 2, (RF, RF_IF), rd_rm), cCL(sqtdm, e4081c0, 2, (RF, RF_IF), rd_rm), cCL(sqtdz, e4081e0, 2, (RF, RF_IF), rd_rm), cCL(sqte, e488100, 2, (RF, RF_IF), rd_rm), cCL(sqtep, e488120, 2, (RF, RF_IF), rd_rm), cCL(sqtem, e488140, 2, (RF, RF_IF), rd_rm), cCL(sqtez, e488160, 2, (RF, RF_IF), rd_rm), cCL(logs, e508100, 2, (RF, RF_IF), rd_rm), cCL(logsp, e508120, 2, (RF, RF_IF), rd_rm), cCL(logsm, e508140, 2, (RF, RF_IF), rd_rm), cCL(logsz, e508160, 2, (RF, RF_IF), rd_rm), cCL(logd, e508180, 2, (RF, RF_IF), rd_rm), cCL(logdp, e5081a0, 2, (RF, RF_IF), rd_rm), cCL(logdm, e5081c0, 2, (RF, RF_IF), rd_rm), cCL(logdz, e5081e0, 2, (RF, RF_IF), rd_rm), cCL(loge, e588100, 2, (RF, RF_IF), rd_rm), cCL(logep, e588120, 2, (RF, RF_IF), rd_rm), cCL(logem, e588140, 2, (RF, RF_IF), rd_rm), cCL(logez, e588160, 2, (RF, RF_IF), rd_rm), cCL(lgns, e608100, 2, (RF, RF_IF), rd_rm), cCL(lgnsp, e608120, 2, (RF, RF_IF), rd_rm), cCL(lgnsm, e608140, 2, (RF, RF_IF), rd_rm), cCL(lgnsz, e608160, 2, (RF, RF_IF), rd_rm), cCL(lgnd, e608180, 2, (RF, RF_IF), rd_rm), cCL(lgndp, e6081a0, 2, (RF, RF_IF), rd_rm), cCL(lgndm, e6081c0, 2, (RF, RF_IF), rd_rm), cCL(lgndz, e6081e0, 2, (RF, RF_IF), rd_rm), cCL(lgne, e688100, 2, (RF, RF_IF), rd_rm), cCL(lgnep, e688120, 2, (RF, RF_IF), rd_rm), cCL(lgnem, e688140, 2, (RF, RF_IF), rd_rm), cCL(lgnez, e688160, 2, (RF, RF_IF), rd_rm), cCL(exps, e708100, 2, (RF, RF_IF), rd_rm), cCL(expsp, e708120, 2, (RF, RF_IF), rd_rm), cCL(expsm, e708140, 2, (RF, RF_IF), rd_rm), cCL(expsz, e708160, 2, (RF, RF_IF), rd_rm), cCL(expd, e708180, 2, (RF, RF_IF), rd_rm), cCL(expdp, e7081a0, 2, (RF, RF_IF), rd_rm), cCL(expdm, e7081c0, 2, (RF, RF_IF), rd_rm), cCL(expdz, e7081e0, 2, (RF, RF_IF), rd_rm), cCL(expe, e788100, 2, (RF, RF_IF), rd_rm), cCL(expep, e788120, 2, (RF, RF_IF), rd_rm), cCL(expem, e788140, 2, (RF, RF_IF), rd_rm), cCL(expdz, e788160, 2, (RF, RF_IF), rd_rm), cCL(sins, e808100, 2, (RF, RF_IF), rd_rm), cCL(sinsp, e808120, 2, (RF, RF_IF), rd_rm), cCL(sinsm, e808140, 2, (RF, RF_IF), rd_rm), cCL(sinsz, e808160, 2, (RF, RF_IF), rd_rm), cCL(sind, e808180, 2, (RF, RF_IF), rd_rm), cCL(sindp, e8081a0, 2, (RF, RF_IF), rd_rm), cCL(sindm, e8081c0, 2, (RF, RF_IF), rd_rm), cCL(sindz, e8081e0, 2, (RF, RF_IF), rd_rm), cCL(sine, e888100, 2, (RF, RF_IF), rd_rm), cCL(sinep, e888120, 2, (RF, RF_IF), rd_rm), cCL(sinem, e888140, 2, (RF, RF_IF), rd_rm), cCL(sinez, e888160, 2, (RF, RF_IF), rd_rm), cCL(coss, e908100, 2, (RF, RF_IF), rd_rm), cCL(cossp, e908120, 2, (RF, RF_IF), rd_rm), cCL(cossm, e908140, 2, (RF, RF_IF), rd_rm), cCL(cossz, e908160, 2, (RF, RF_IF), rd_rm), cCL(cosd, e908180, 2, (RF, RF_IF), rd_rm), cCL(cosdp, e9081a0, 2, (RF, RF_IF), rd_rm), cCL(cosdm, e9081c0, 2, (RF, RF_IF), rd_rm), cCL(cosdz, e9081e0, 2, (RF, RF_IF), rd_rm), cCL(cose, e988100, 2, (RF, RF_IF), rd_rm), cCL(cosep, e988120, 2, (RF, RF_IF), rd_rm), cCL(cosem, e988140, 2, (RF, RF_IF), rd_rm), cCL(cosez, e988160, 2, (RF, RF_IF), rd_rm), cCL(tans, ea08100, 2, (RF, RF_IF), rd_rm), cCL(tansp, ea08120, 2, (RF, RF_IF), rd_rm), cCL(tansm, ea08140, 2, (RF, RF_IF), rd_rm), cCL(tansz, ea08160, 2, (RF, RF_IF), rd_rm), cCL(tand, ea08180, 2, (RF, RF_IF), rd_rm), cCL(tandp, ea081a0, 2, (RF, RF_IF), rd_rm), cCL(tandm, ea081c0, 2, (RF, RF_IF), rd_rm), cCL(tandz, ea081e0, 2, (RF, RF_IF), rd_rm), cCL(tane, ea88100, 2, (RF, RF_IF), rd_rm), cCL(tanep, ea88120, 2, (RF, RF_IF), rd_rm), cCL(tanem, ea88140, 2, (RF, RF_IF), rd_rm), cCL(tanez, ea88160, 2, (RF, RF_IF), rd_rm), cCL(asns, eb08100, 2, (RF, RF_IF), rd_rm), cCL(asnsp, eb08120, 2, (RF, RF_IF), rd_rm), cCL(asnsm, eb08140, 2, (RF, RF_IF), rd_rm), cCL(asnsz, eb08160, 2, (RF, RF_IF), rd_rm), cCL(asnd, eb08180, 2, (RF, RF_IF), rd_rm), cCL(asndp, eb081a0, 2, (RF, RF_IF), rd_rm), cCL(asndm, eb081c0, 2, (RF, RF_IF), rd_rm), cCL(asndz, eb081e0, 2, (RF, RF_IF), rd_rm), cCL(asne, eb88100, 2, (RF, RF_IF), rd_rm), cCL(asnep, eb88120, 2, (RF, RF_IF), rd_rm), cCL(asnem, eb88140, 2, (RF, RF_IF), rd_rm), cCL(asnez, eb88160, 2, (RF, RF_IF), rd_rm), cCL(acss, ec08100, 2, (RF, RF_IF), rd_rm), cCL(acssp, ec08120, 2, (RF, RF_IF), rd_rm), cCL(acssm, ec08140, 2, (RF, RF_IF), rd_rm), cCL(acssz, ec08160, 2, (RF, RF_IF), rd_rm), cCL(acsd, ec08180, 2, (RF, RF_IF), rd_rm), cCL(acsdp, ec081a0, 2, (RF, RF_IF), rd_rm), cCL(acsdm, ec081c0, 2, (RF, RF_IF), rd_rm), cCL(acsdz, ec081e0, 2, (RF, RF_IF), rd_rm), cCL(acse, ec88100, 2, (RF, RF_IF), rd_rm), cCL(acsep, ec88120, 2, (RF, RF_IF), rd_rm), cCL(acsem, ec88140, 2, (RF, RF_IF), rd_rm), cCL(acsez, ec88160, 2, (RF, RF_IF), rd_rm), cCL(atns, ed08100, 2, (RF, RF_IF), rd_rm), cCL(atnsp, ed08120, 2, (RF, RF_IF), rd_rm), cCL(atnsm, ed08140, 2, (RF, RF_IF), rd_rm), cCL(atnsz, ed08160, 2, (RF, RF_IF), rd_rm), cCL(atnd, ed08180, 2, (RF, RF_IF), rd_rm), cCL(atndp, ed081a0, 2, (RF, RF_IF), rd_rm), cCL(atndm, ed081c0, 2, (RF, RF_IF), rd_rm), cCL(atndz, ed081e0, 2, (RF, RF_IF), rd_rm), cCL(atne, ed88100, 2, (RF, RF_IF), rd_rm), cCL(atnep, ed88120, 2, (RF, RF_IF), rd_rm), cCL(atnem, ed88140, 2, (RF, RF_IF), rd_rm), cCL(atnez, ed88160, 2, (RF, RF_IF), rd_rm), cCL(urds, ee08100, 2, (RF, RF_IF), rd_rm), cCL(urdsp, ee08120, 2, (RF, RF_IF), rd_rm), cCL(urdsm, ee08140, 2, (RF, RF_IF), rd_rm), cCL(urdsz, ee08160, 2, (RF, RF_IF), rd_rm), cCL(urdd, ee08180, 2, (RF, RF_IF), rd_rm), cCL(urddp, ee081a0, 2, (RF, RF_IF), rd_rm), cCL(urddm, ee081c0, 2, (RF, RF_IF), rd_rm), cCL(urddz, ee081e0, 2, (RF, RF_IF), rd_rm), cCL(urde, ee88100, 2, (RF, RF_IF), rd_rm), cCL(urdep, ee88120, 2, (RF, RF_IF), rd_rm), cCL(urdem, ee88140, 2, (RF, RF_IF), rd_rm), cCL(urdez, ee88160, 2, (RF, RF_IF), rd_rm), cCL(nrms, ef08100, 2, (RF, RF_IF), rd_rm), cCL(nrmsp, ef08120, 2, (RF, RF_IF), rd_rm), cCL(nrmsm, ef08140, 2, (RF, RF_IF), rd_rm), cCL(nrmsz, ef08160, 2, (RF, RF_IF), rd_rm), cCL(nrmd, ef08180, 2, (RF, RF_IF), rd_rm), cCL(nrmdp, ef081a0, 2, (RF, RF_IF), rd_rm), cCL(nrmdm, ef081c0, 2, (RF, RF_IF), rd_rm), cCL(nrmdz, ef081e0, 2, (RF, RF_IF), rd_rm), cCL(nrme, ef88100, 2, (RF, RF_IF), rd_rm), cCL(nrmep, ef88120, 2, (RF, RF_IF), rd_rm), cCL(nrmem, ef88140, 2, (RF, RF_IF), rd_rm), cCL(nrmez, ef88160, 2, (RF, RF_IF), rd_rm), cCL(adfs, e000100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfsp, e000120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfsm, e000140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfsz, e000160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfd, e000180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfdp, e0001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfdm, e0001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfdz, e0001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfe, e080100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfep, e080120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfem, e080140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(adfez, e080160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufs, e200100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufsp, e200120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufsm, e200140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufsz, e200160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufd, e200180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufdp, e2001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufdm, e2001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufdz, e2001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufe, e280100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufep, e280120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufem, e280140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(sufez, e280160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfs, e300100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfsp, e300120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfsm, e300140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfsz, e300160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfd, e300180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfdp, e3001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfdm, e3001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfdz, e3001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfe, e380100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfep, e380120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfem, e380140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rsfez, e380160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufs, e100100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufsp, e100120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufsm, e100140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufsz, e100160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufd, e100180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufdp, e1001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufdm, e1001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufdz, e1001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufe, e180100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufep, e180120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufem, e180140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(mufez, e180160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfs, e400100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfsp, e400120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfsm, e400140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfsz, e400160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfd, e400180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfdp, e4001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfdm, e4001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfdz, e4001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfe, e480100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfep, e480120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfem, e480140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(dvfez, e480160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfs, e500100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfsp, e500120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfsm, e500140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfsz, e500160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfd, e500180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfdp, e5001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfdm, e5001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfdz, e5001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfe, e580100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfep, e580120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfem, e580140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rdfez, e580160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(pows, e600100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powsp, e600120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powsm, e600140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powsz, e600160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powd, e600180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powdp, e6001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powdm, e6001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powdz, e6001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powe, e680100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powep, e680120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powem, e680140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(powez, e680160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpws, e700100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwsp, e700120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwsm, e700140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwsz, e700160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwd, e700180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwdp, e7001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwdm, e7001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwdz, e7001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwe, e780100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwep, e780120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwem, e780140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rpwez, e780160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfs, e800100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfsp, e800120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfsm, e800140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfsz, e800160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfd, e800180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfdp, e8001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfdm, e8001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfdz, e8001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfe, e880100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfep, e880120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfem, e880140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(rmfez, e880160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmls, e900100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlsp, e900120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlsm, e900140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlsz, e900160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmld, e900180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmldp, e9001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmldm, e9001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmldz, e9001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmle, e980100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlep, e980120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlem, e980140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fmlez, e980160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvs, ea00100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvsp, ea00120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvsm, ea00140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvsz, ea00160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvd, ea00180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvdp, ea001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvdm, ea001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvdz, ea001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdve, ea80100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvep, ea80120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvem, ea80140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(fdvez, ea80160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frds, eb00100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdsp, eb00120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdsm, eb00140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdsz, eb00160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdd, eb00180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frddp, eb001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frddm, eb001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frddz, eb001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frde, eb80100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdep, eb80120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdem, eb80140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(frdez, eb80160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(pols, ec00100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polsp, ec00120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polsm, ec00140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polsz, ec00160, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(pold, ec00180, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(poldp, ec001a0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(poldm, ec001c0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(poldz, ec001e0, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(pole, ec80100, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polep, ec80120, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polem, ec80140, 3, (RF, RF, RF_IF), rd_rn_rm), cCL(polez, ec80160, 3, (RF, RF, RF_IF), rd_rn_rm), cCE(cmf, e90f110, 2, (RF, RF_IF), fpa_cmp), C3E(cmfe, ed0f110, 2, (RF, RF_IF), fpa_cmp), cCE(cnf, eb0f110, 2, (RF, RF_IF), fpa_cmp), C3E(cnfe, ef0f110, 2, (RF, RF_IF), fpa_cmp), cCL(flts, e000110, 2, (RF, RR), rn_rd), cCL(fltsp, e000130, 2, (RF, RR), rn_rd), cCL(fltsm, e000150, 2, (RF, RR), rn_rd), cCL(fltsz, e000170, 2, (RF, RR), rn_rd), cCL(fltd, e000190, 2, (RF, RR), rn_rd), cCL(fltdp, e0001b0, 2, (RF, RR), rn_rd), cCL(fltdm, e0001d0, 2, (RF, RR), rn_rd), cCL(fltdz, e0001f0, 2, (RF, RR), rn_rd), cCL(flte, e080110, 2, (RF, RR), rn_rd), cCL(fltep, e080130, 2, (RF, RR), rn_rd), cCL(fltem, e080150, 2, (RF, RR), rn_rd), cCL(fltez, e080170, 2, (RF, RR), rn_rd), /* The implementation of the FIX instruction is broken on some assemblers, in that it accepts a precision specifier as well as a rounding specifier, despite the fact that this is meaningless. To be more compatible, we accept it as well, though of course it does not set any bits. */ cCE(fix, e100110, 2, (RR, RF), rd_rm), cCL(fixp, e100130, 2, (RR, RF), rd_rm), cCL(fixm, e100150, 2, (RR, RF), rd_rm), cCL(fixz, e100170, 2, (RR, RF), rd_rm), cCL(fixsp, e100130, 2, (RR, RF), rd_rm), cCL(fixsm, e100150, 2, (RR, RF), rd_rm), cCL(fixsz, e100170, 2, (RR, RF), rd_rm), cCL(fixdp, e100130, 2, (RR, RF), rd_rm), cCL(fixdm, e100150, 2, (RR, RF), rd_rm), cCL(fixdz, e100170, 2, (RR, RF), rd_rm), cCL(fixep, e100130, 2, (RR, RF), rd_rm), cCL(fixem, e100150, 2, (RR, RF), rd_rm), cCL(fixez, e100170, 2, (RR, RF), rd_rm), /* Instructions that were new with the real FPA, call them V2. */ #undef ARM_VARIANT #define ARM_VARIANT &fpu_fpa_ext_v2 cCE(lfm, c100200, 3, (RF, I4b, ADDR), fpa_ldmstm), cCL(lfmfd, c900200, 3, (RF, I4b, ADDR), fpa_ldmstm), cCL(lfmea, d100200, 3, (RF, I4b, ADDR), fpa_ldmstm), cCE(sfm, c000200, 3, (RF, I4b, ADDR), fpa_ldmstm), cCL(sfmfd, d000200, 3, (RF, I4b, ADDR), fpa_ldmstm), cCL(sfmea, c800200, 3, (RF, I4b, ADDR), fpa_ldmstm), #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_ext_v1xd /* VFP V1xD (single precision). */ /* Moves and type conversions. */ cCE(fcpys, eb00a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(fmrs, e100a10, 2, (RR, RVS), vfp_reg_from_sp), cCE(fmsr, e000a10, 2, (RVS, RR), vfp_sp_from_reg), cCE(fmstat, ef1fa10, 0, (), noargs), cCE(fsitos, eb80ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE(fuitos, eb80a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(ftosis, ebd0a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(ftosizs, ebd0ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE(ftouis, ebc0a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(ftouizs, ebc0ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE(fmrx, ef00a10, 2, (RR, RVC), rd_rn), cCE(fmxr, ee00a10, 2, (RVC, RR), rn_rd), /* Memory operations. */ cCE(flds, d100a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst), cCE(fsts, d000a00, 2, (RVS, ADDRGLDC), vfp_sp_ldst), cCE(fldmias, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), cCE(fldmfds, c900a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), cCE(fldmdbs, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), cCE(fldmeas, d300a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), cCE(fldmiax, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), cCE(fldmfdx, c900b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), cCE(fldmdbx, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), cCE(fldmeax, d300b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), cCE(fstmias, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), cCE(fstmeas, c800a00, 2, (RRw, VRSLST), vfp_sp_ldstmia), cCE(fstmdbs, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), cCE(fstmfds, d200a00, 2, (RRw, VRSLST), vfp_sp_ldstmdb), cCE(fstmiax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), cCE(fstmeax, c800b00, 2, (RRw, VRDLST), vfp_xp_ldstmia), cCE(fstmdbx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), cCE(fstmfdx, d200b00, 2, (RRw, VRDLST), vfp_xp_ldstmdb), /* Monadic operations. */ cCE(fabss, eb00ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE(fnegs, eb10a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(fsqrts, eb10ac0, 2, (RVS, RVS), vfp_sp_monadic), /* Dyadic operations. */ cCE(fadds, e300a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fsubs, e300a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fmuls, e200a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fdivs, e800a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fmacs, e000a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fmscs, e100a00, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fnmuls, e200a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fnmacs, e000a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), cCE(fnmscs, e100a40, 3, (RVS, RVS, RVS), vfp_sp_dyadic), /* Comparisons. */ cCE(fcmps, eb40a40, 2, (RVS, RVS), vfp_sp_monadic), cCE(fcmpzs, eb50a40, 1, (RVS), vfp_sp_compare_z), cCE(fcmpes, eb40ac0, 2, (RVS, RVS), vfp_sp_monadic), cCE(fcmpezs, eb50ac0, 1, (RVS), vfp_sp_compare_z), #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_ext_v1 /* VFP V1 (Double precision). */ /* Moves and type conversions. */ cCE(fcpyd, eb00b40, 2, (RVD, RVD), vfp_dp_rd_rm), cCE(fcvtds, eb70ac0, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE(fcvtsd, eb70bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE(fmdhr, e200b10, 2, (RVD, RR), vfp_dp_rn_rd), cCE(fmdlr, e000b10, 2, (RVD, RR), vfp_dp_rn_rd), cCE(fmrdh, e300b10, 2, (RR, RVD), vfp_dp_rd_rn), cCE(fmrdl, e100b10, 2, (RR, RVD), vfp_dp_rd_rn), cCE(fsitod, eb80bc0, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE(fuitod, eb80b40, 2, (RVD, RVS), vfp_dp_sp_cvt), cCE(ftosid, ebd0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE(ftosizd, ebd0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE(ftouid, ebc0b40, 2, (RVS, RVD), vfp_sp_dp_cvt), cCE(ftouizd, ebc0bc0, 2, (RVS, RVD), vfp_sp_dp_cvt), /* Memory operations. */ cCE(fldd, d100b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst), cCE(fstd, d000b00, 2, (RVD, ADDRGLDC), vfp_dp_ldst), cCE(fldmiad, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), cCE(fldmfdd, c900b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), cCE(fldmdbd, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), cCE(fldmead, d300b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), cCE(fstmiad, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), cCE(fstmead, c800b00, 2, (RRw, VRDLST), vfp_dp_ldstmia), cCE(fstmdbd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), cCE(fstmfdd, d200b00, 2, (RRw, VRDLST), vfp_dp_ldstmdb), /* Monadic operations. */ cCE(fabsd, eb00bc0, 2, (RVD, RVD), vfp_dp_rd_rm), cCE(fnegd, eb10b40, 2, (RVD, RVD), vfp_dp_rd_rm), cCE(fsqrtd, eb10bc0, 2, (RVD, RVD), vfp_dp_rd_rm), /* Dyadic operations. */ cCE(faddd, e300b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fsubd, e300b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fmuld, e200b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fdivd, e800b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fmacd, e000b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fmscd, e100b00, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fnmuld, e200b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fnmacd, e000b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), cCE(fnmscd, e100b40, 3, (RVD, RVD, RVD), vfp_dp_rd_rn_rm), /* Comparisons. */ cCE(fcmpd, eb40b40, 2, (RVD, RVD), vfp_dp_rd_rm), cCE(fcmpzd, eb50b40, 1, (RVD), vfp_dp_rd), cCE(fcmped, eb40bc0, 2, (RVD, RVD), vfp_dp_rd_rm), cCE(fcmpezd, eb50bc0, 1, (RVD), vfp_dp_rd), #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_ext_v2 cCE(fmsrr, c400a10, 3, (VRSLST, RR, RR), vfp_sp2_from_reg2), cCE(fmrrs, c500a10, 3, (RR, RR, VRSLST), vfp_reg2_from_sp2), cCE(fmdrr, c400b10, 3, (RVD, RR, RR), vfp_dp_rm_rd_rn), cCE(fmrrd, c500b10, 3, (RR, RR, RVD), vfp_dp_rd_rn_rm), /* Instructions which may belong to either the Neon or VFP instruction sets. Individual encoder functions perform additional architecture checks. */ #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_ext_v1xd #undef THUMB_VARIANT #define THUMB_VARIANT &fpu_vfp_ext_v1xd /* These mnemonics are unique to VFP. */ NCE(vsqrt, 0, 2, (RVSD, RVSD), vfp_nsyn_sqrt), NCE(vdiv, 0, 3, (RVSD, RVSD, RVSD), vfp_nsyn_div), nCE(vnmul, vnmul, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vnmla, vnmla, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vnmls, vnmls, 3, (RVSD, RVSD, RVSD), vfp_nsyn_nmul), nCE(vcmp, vcmp, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp), nCE(vcmpe, vcmpe, 2, (RVSD, RVSD_I0), vfp_nsyn_cmp), NCE(vpush, 0, 1, (VRSDLST), vfp_nsyn_push), NCE(vpop, 0, 1, (VRSDLST), vfp_nsyn_pop), NCE(vcvtz, 0, 2, (RVSD, RVSD), vfp_nsyn_cvtz), /* Mnemonics shared by Neon and VFP. */ nCEF(vmul, vmul, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mul), nCEF(vmla, vmla, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar), nCEF(vmls, vmls, 3, (RNSDQ, oRNSDQ, RNSDQ_RNSC), neon_mac_maybe_scalar), nCEF(vadd, vadd, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i), nCEF(vsub, vsub, 3, (RNSDQ, oRNSDQ, RNSDQ), neon_addsub_if_i), NCEF(vabs, 1b10300, 2, (RNSDQ, RNSDQ), neon_abs_neg), NCEF(vneg, 1b10380, 2, (RNSDQ, RNSDQ), neon_abs_neg), NCE(vldm, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vldmia, c900b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vldmdb, d100b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vstm, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vstmia, c800b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vstmdb, d000b00, 2, (RRw, VRSDLST), neon_ldm_stm), NCE(vldr, d100b00, 2, (RVSD, ADDRGLDC), neon_ldr_str), NCE(vstr, d000b00, 2, (RVSD, ADDRGLDC), neon_ldr_str), nCEF(vcvt, vcvt, 3, (RNSDQ, RNSDQ, oI32b), neon_cvt), /* NOTE: All VMOV encoding is special-cased! */ NCE(vmov, 0, 1, (VMOV), neon_mov), NCE(vmovq, 0, 1, (VMOV), neon_mov), #undef THUMB_VARIANT #define THUMB_VARIANT &fpu_neon_ext_v1 #undef ARM_VARIANT #define ARM_VARIANT &fpu_neon_ext_v1 /* Data processing with three registers of the same length. */ /* integer ops, valid types S8 S16 S32 U8 U16 U32. */ NUF(vaba, 0000710, 3, (RNDQ, RNDQ, RNDQ), neon_dyadic_i_su), NUF(vabaq, 0000710, 3, (RNQ, RNQ, RNQ), neon_dyadic_i_su), NUF(vhadd, 0000000, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su), NUF(vhaddq, 0000000, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), NUF(vrhadd, 0000100, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su), NUF(vrhaddq, 0000100, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), NUF(vhsub, 0000200, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i_su), NUF(vhsubq, 0000200, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i_su), /* integer ops, valid types S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vqadd, 0000010, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su), NUF(vqaddq, 0000010, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), NUF(vqsub, 0000210, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su), NUF(vqsubq, 0000210, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), NUF(vrshl, 0000500, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su), NUF(vrshlq, 0000500, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), NUF(vqrshl, 0000510, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_i64_su), NUF(vqrshlq, 0000510, 3, (RNQ, oRNQ, RNQ), neon_dyadic_i64_su), /* If not immediate, fall back to neon_dyadic_i64_su. shl_imm should accept I8 I16 I32 I64, qshl_imm should accept S8 S16 S32 S64 U8 U16 U32 U64. */ nUF(vshl, vshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_shl_imm), nUF(vshlq, vshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_shl_imm), nUF(vqshl, vqshl, 3, (RNDQ, oRNDQ, RNDQ_I63b), neon_qshl_imm), nUF(vqshlq, vqshl, 3, (RNQ, oRNQ, RNDQ_I63b), neon_qshl_imm), /* Logic ops, types optional & ignored. */ nUF(vand, vand, 2, (RNDQ, NILO), neon_logic), nUF(vandq, vand, 2, (RNQ, NILO), neon_logic), nUF(vbic, vbic, 2, (RNDQ, NILO), neon_logic), nUF(vbicq, vbic, 2, (RNQ, NILO), neon_logic), nUF(vorr, vorr, 2, (RNDQ, NILO), neon_logic), nUF(vorrq, vorr, 2, (RNQ, NILO), neon_logic), nUF(vorn, vorn, 2, (RNDQ, NILO), neon_logic), nUF(vornq, vorn, 2, (RNQ, NILO), neon_logic), nUF(veor, veor, 3, (RNDQ, oRNDQ, RNDQ), neon_logic), nUF(veorq, veor, 3, (RNQ, oRNQ, RNQ), neon_logic), /* Bitfield ops, untyped. */ NUF(vbsl, 1100110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbslq, 1100110, 3, (RNQ, RNQ, RNQ), neon_bitfield), NUF(vbit, 1200110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbitq, 1200110, 3, (RNQ, RNQ, RNQ), neon_bitfield), NUF(vbif, 1300110, 3, (RNDQ, RNDQ, RNDQ), neon_bitfield), NUF(vbifq, 1300110, 3, (RNQ, RNQ, RNQ), neon_bitfield), /* Int and float variants, types S8 S16 S32 U8 U16 U32 F32. */ nUF(vabd, vabd, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su), nUF(vabdq, vabd, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), nUF(vmax, vmax, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su), nUF(vmaxq, vmax, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), nUF(vmin, vmin, 3, (RNDQ, oRNDQ, RNDQ), neon_dyadic_if_su), nUF(vminq, vmin, 3, (RNQ, oRNQ, RNQ), neon_dyadic_if_su), /* Comparisons. Types S8 S16 S32 U8 U16 U32 F32. Non-immediate versions fall back to neon_dyadic_if_su. */ nUF(vcge, vcge, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp), nUF(vcgeq, vcge, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp), nUF(vcgt, vcgt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp), nUF(vcgtq, vcgt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp), nUF(vclt, vclt, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv), nUF(vcltq, vclt, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv), nUF(vcle, vcle, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_cmp_inv), nUF(vcleq, vcle, 3, (RNQ, oRNQ, RNDQ_I0), neon_cmp_inv), /* Comparison. Type I8 I16 I32 F32. */ nUF(vceq, vceq, 3, (RNDQ, oRNDQ, RNDQ_I0), neon_ceq), nUF(vceqq, vceq, 3, (RNQ, oRNQ, RNDQ_I0), neon_ceq), /* As above, D registers only. */ nUF(vpmax, vpmax, 3, (RND, oRND, RND), neon_dyadic_if_su_d), nUF(vpmin, vpmin, 3, (RND, oRND, RND), neon_dyadic_if_su_d), /* Int and float variants, signedness unimportant. */ nUF(vmlaq, vmla, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar), nUF(vmlsq, vmls, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mac_maybe_scalar), nUF(vpadd, vpadd, 3, (RND, oRND, RND), neon_dyadic_if_i_d), /* Add/sub take types I8 I16 I32 I64 F32. */ nUF(vaddq, vadd, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i), nUF(vsubq, vsub, 3, (RNQ, oRNQ, RNQ), neon_addsub_if_i), /* vtst takes sizes 8, 16, 32. */ NUF(vtst, 0000810, 3, (RNDQ, oRNDQ, RNDQ), neon_tst), NUF(vtstq, 0000810, 3, (RNQ, oRNQ, RNQ), neon_tst), /* VMUL takes I8 I16 I32 F32 P8. */ nUF(vmulq, vmul, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_mul), /* VQD{R}MULH takes S16 S32. */ nUF(vqdmulh, vqdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh), nUF(vqdmulhq, vqdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh), nUF(vqrdmulh, vqrdmulh, 3, (RNDQ, oRNDQ, RNDQ_RNSC), neon_qdmulh), nUF(vqrdmulhq, vqrdmulh, 3, (RNQ, oRNQ, RNDQ_RNSC), neon_qdmulh), NUF(vacge, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute), NUF(vacgeq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute), NUF(vacgt, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute), NUF(vacgtq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute), NUF(vaclt, 0000e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv), NUF(vacltq, 0000e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv), NUF(vacle, 0200e10, 3, (RNDQ, oRNDQ, RNDQ), neon_fcmp_absolute_inv), NUF(vacleq, 0200e10, 3, (RNQ, oRNQ, RNQ), neon_fcmp_absolute_inv), NUF(vrecps, 0000f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step), NUF(vrecpsq, 0000f10, 3, (RNQ, oRNQ, RNQ), neon_step), NUF(vrsqrts, 0200f10, 3, (RNDQ, oRNDQ, RNDQ), neon_step), NUF(vrsqrtsq, 0200f10, 3, (RNQ, oRNQ, RNQ), neon_step), /* Two address, int/float. Types S8 S16 S32 F32. */ NUF(vabsq, 1b10300, 2, (RNQ, RNQ), neon_abs_neg), NUF(vnegq, 1b10380, 2, (RNQ, RNQ), neon_abs_neg), /* Data processing with two registers and a shift amount. */ /* Right shifts, and variants with rounding. Types accepted S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vshr, 0800010, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm), NUF(vshrq, 0800010, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm), NUF(vrshr, 0800210, 3, (RNDQ, oRNDQ, I64z), neon_rshift_round_imm), NUF(vrshrq, 0800210, 3, (RNQ, oRNQ, I64z), neon_rshift_round_imm), NUF(vsra, 0800110, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm), NUF(vsraq, 0800110, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm), NUF(vrsra, 0800310, 3, (RNDQ, oRNDQ, I64), neon_rshift_round_imm), NUF(vrsraq, 0800310, 3, (RNQ, oRNQ, I64), neon_rshift_round_imm), /* Shift and insert. Sizes accepted 8 16 32 64. */ NUF(vsli, 1800510, 3, (RNDQ, oRNDQ, I63), neon_sli), NUF(vsliq, 1800510, 3, (RNQ, oRNQ, I63), neon_sli), NUF(vsri, 1800410, 3, (RNDQ, oRNDQ, I64), neon_sri), NUF(vsriq, 1800410, 3, (RNQ, oRNQ, I64), neon_sri), /* QSHL{U} immediate accepts S8 S16 S32 S64 U8 U16 U32 U64. */ NUF(vqshlu, 1800610, 3, (RNDQ, oRNDQ, I63), neon_qshlu_imm), NUF(vqshluq, 1800610, 3, (RNQ, oRNQ, I63), neon_qshlu_imm), /* Right shift immediate, saturating & narrowing, with rounding variants. Types accepted S16 S32 S64 U16 U32 U64. */ NUF(vqshrn, 0800910, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow), NUF(vqrshrn, 0800950, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow), /* As above, unsigned. Types accepted S16 S32 S64. */ NUF(vqshrun, 0800810, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u), NUF(vqrshrun, 0800850, 3, (RND, RNQ, I32z), neon_rshift_sat_narrow_u), /* Right shift narrowing. Types accepted I16 I32 I64. */ NUF(vshrn, 0800810, 3, (RND, RNQ, I32z), neon_rshift_narrow), NUF(vrshrn, 0800850, 3, (RND, RNQ, I32z), neon_rshift_narrow), /* Special case. Types S8 S16 S32 U8 U16 U32. Handles max shift variant. */ nUF(vshll, vshll, 3, (RNQ, RND, I32), neon_shll), /* CVT with optional immediate for fixed-point variant. */ nUF(vcvtq, vcvt, 3, (RNQ, RNQ, oI32b), neon_cvt), nUF(vmvn, vmvn, 2, (RNDQ, RNDQ_IMVNb), neon_mvn), nUF(vmvnq, vmvn, 2, (RNQ, RNDQ_IMVNb), neon_mvn), /* Data processing, three registers of different lengths. */ /* Dyadic, long insns. Types S8 S16 S32 U8 U16 U32. */ NUF(vabal, 0800500, 3, (RNQ, RND, RND), neon_abal), NUF(vabdl, 0800700, 3, (RNQ, RND, RND), neon_dyadic_long), NUF(vaddl, 0800000, 3, (RNQ, RND, RND), neon_dyadic_long), NUF(vsubl, 0800200, 3, (RNQ, RND, RND), neon_dyadic_long), /* If not scalar, fall back to neon_dyadic_long. Vector types as above, scalar types S16 S32 U16 U32. */ nUF(vmlal, vmlal, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long), nUF(vmlsl, vmlsl, 3, (RNQ, RND, RND_RNSC), neon_mac_maybe_scalar_long), /* Dyadic, widening insns. Types S8 S16 S32 U8 U16 U32. */ NUF(vaddw, 0800100, 3, (RNQ, oRNQ, RND), neon_dyadic_wide), NUF(vsubw, 0800300, 3, (RNQ, oRNQ, RND), neon_dyadic_wide), /* Dyadic, narrowing insns. Types I16 I32 I64. */ NUF(vaddhn, 0800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vraddhn, 1800400, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vsubhn, 0800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), NUF(vrsubhn, 1800600, 3, (RND, RNQ, RNQ), neon_dyadic_narrow), /* Saturating doubling multiplies. Types S16 S32. */ nUF(vqdmlal, vqdmlal, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), nUF(vqdmlsl, vqdmlsl, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), nUF(vqdmull, vqdmull, 3, (RNQ, RND, RND_RNSC), neon_mul_sat_scalar_long), /* VMULL. Vector types S8 S16 S32 U8 U16 U32 P8, scalar types S16 S32 U16 U32. */ nUF(vmull, vmull, 3, (RNQ, RND, RND_RNSC), neon_vmull), /* Extract. Size 8. */ NUF(vext, 0b00000, 4, (RNDQ, oRNDQ, RNDQ, I7), neon_ext), NUF(vextq, 0b00000, 4, (RNQ, oRNQ, RNQ, I7), neon_ext), /* Two registers, miscellaneous. */ /* Reverse. Sizes 8 16 32 (must be < size in opcode). */ NUF(vrev64, 1b00000, 2, (RNDQ, RNDQ), neon_rev), NUF(vrev64q, 1b00000, 2, (RNQ, RNQ), neon_rev), NUF(vrev32, 1b00080, 2, (RNDQ, RNDQ), neon_rev), NUF(vrev32q, 1b00080, 2, (RNQ, RNQ), neon_rev), NUF(vrev16, 1b00100, 2, (RNDQ, RNDQ), neon_rev), NUF(vrev16q, 1b00100, 2, (RNQ, RNQ), neon_rev), /* Vector replicate. Sizes 8 16 32. */ nCE(vdup, vdup, 2, (RNDQ, RR_RNSC), neon_dup), nCE(vdupq, vdup, 2, (RNQ, RR_RNSC), neon_dup), /* VMOVL. Types S8 S16 S32 U8 U16 U32. */ NUF(vmovl, 0800a10, 2, (RNQ, RND), neon_movl), /* VMOVN. Types I16 I32 I64. */ nUF(vmovn, vmovn, 2, (RND, RNQ), neon_movn), /* VQMOVN. Types S16 S32 S64 U16 U32 U64. */ nUF(vqmovn, vqmovn, 2, (RND, RNQ), neon_qmovn), /* VQMOVUN. Types S16 S32 S64. */ nUF(vqmovun, vqmovun, 2, (RND, RNQ), neon_qmovun), /* VZIP / VUZP. Sizes 8 16 32. */ NUF(vzip, 1b20180, 2, (RNDQ, RNDQ), neon_zip_uzp), NUF(vzipq, 1b20180, 2, (RNQ, RNQ), neon_zip_uzp), NUF(vuzp, 1b20100, 2, (RNDQ, RNDQ), neon_zip_uzp), NUF(vuzpq, 1b20100, 2, (RNQ, RNQ), neon_zip_uzp), /* VQABS / VQNEG. Types S8 S16 S32. */ NUF(vqabs, 1b00700, 2, (RNDQ, RNDQ), neon_sat_abs_neg), NUF(vqabsq, 1b00700, 2, (RNQ, RNQ), neon_sat_abs_neg), NUF(vqneg, 1b00780, 2, (RNDQ, RNDQ), neon_sat_abs_neg), NUF(vqnegq, 1b00780, 2, (RNQ, RNQ), neon_sat_abs_neg), /* Pairwise, lengthening. Types S8 S16 S32 U8 U16 U32. */ NUF(vpadal, 1b00600, 2, (RNDQ, RNDQ), neon_pair_long), NUF(vpadalq, 1b00600, 2, (RNQ, RNQ), neon_pair_long), NUF(vpaddl, 1b00200, 2, (RNDQ, RNDQ), neon_pair_long), NUF(vpaddlq, 1b00200, 2, (RNQ, RNQ), neon_pair_long), /* Reciprocal estimates. Types U32 F32. */ NUF(vrecpe, 1b30400, 2, (RNDQ, RNDQ), neon_recip_est), NUF(vrecpeq, 1b30400, 2, (RNQ, RNQ), neon_recip_est), NUF(vrsqrte, 1b30480, 2, (RNDQ, RNDQ), neon_recip_est), NUF(vrsqrteq, 1b30480, 2, (RNQ, RNQ), neon_recip_est), /* VCLS. Types S8 S16 S32. */ NUF(vcls, 1b00400, 2, (RNDQ, RNDQ), neon_cls), NUF(vclsq, 1b00400, 2, (RNQ, RNQ), neon_cls), /* VCLZ. Types I8 I16 I32. */ NUF(vclz, 1b00480, 2, (RNDQ, RNDQ), neon_clz), NUF(vclzq, 1b00480, 2, (RNQ, RNQ), neon_clz), /* VCNT. Size 8. */ NUF(vcnt, 1b00500, 2, (RNDQ, RNDQ), neon_cnt), NUF(vcntq, 1b00500, 2, (RNQ, RNQ), neon_cnt), /* Two address, untyped. */ NUF(vswp, 1b20000, 2, (RNDQ, RNDQ), neon_swp), NUF(vswpq, 1b20000, 2, (RNQ, RNQ), neon_swp), /* VTRN. Sizes 8 16 32. */ nUF(vtrn, vtrn, 2, (RNDQ, RNDQ), neon_trn), nUF(vtrnq, vtrn, 2, (RNQ, RNQ), neon_trn), /* Table lookup. Size 8. */ NUF(vtbl, 1b00800, 3, (RND, NRDLST, RND), neon_tbl_tbx), NUF(vtbx, 1b00840, 3, (RND, NRDLST, RND), neon_tbl_tbx), #undef THUMB_VARIANT #define THUMB_VARIANT &fpu_vfp_v3_or_neon_ext #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_v3_or_neon_ext /* Neon element/structure load/store. */ nUF(vld1, vld1, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst1, vst1, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld2, vld2, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst2, vst2, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld3, vld3, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst3, vst3, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vld4, vld4, 2, (NSTRLST, ADDR), neon_ldx_stx), nUF(vst4, vst4, 2, (NSTRLST, ADDR), neon_ldx_stx), #undef THUMB_VARIANT #define THUMB_VARIANT &fpu_vfp_ext_v3 #undef ARM_VARIANT #define ARM_VARIANT &fpu_vfp_ext_v3 cCE(fconsts, eb00a00, 2, (RVS, I255), vfp_sp_const), cCE(fconstd, eb00b00, 2, (RVD, I255), vfp_dp_const), cCE(fshtos, eba0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE(fshtod, eba0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE(fsltos, eba0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE(fsltod, eba0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE(fuhtos, ebb0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE(fuhtod, ebb0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE(fultos, ebb0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE(fultod, ebb0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE(ftoshs, ebe0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE(ftoshd, ebe0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE(ftosls, ebe0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE(ftosld, ebe0bc0, 2, (RVD, I32), vfp_dp_conv_32), cCE(ftouhs, ebf0a40, 2, (RVS, I16z), vfp_sp_conv_16), cCE(ftouhd, ebf0b40, 2, (RVD, I16z), vfp_dp_conv_16), cCE(ftouls, ebf0ac0, 2, (RVS, I32), vfp_sp_conv_32), cCE(ftould, ebf0bc0, 2, (RVD, I32), vfp_dp_conv_32), #undef THUMB_VARIANT #undef ARM_VARIANT #define ARM_VARIANT &arm_cext_xscale /* Intel XScale extensions. */ cCE(mia, e200010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(miaph, e280010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(miabb, e2c0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(miabt, e2d0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(miatb, e2e0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(miatt, e2f0010, 3, (RXA, RRnpc, RRnpc), xsc_mia), cCE(mar, c400000, 3, (RXA, RRnpc, RRnpc), xsc_mar), cCE(mra, c500000, 3, (RRnpc, RRnpc, RXA), xsc_mra), #undef ARM_VARIANT #define ARM_VARIANT &arm_cext_iwmmxt /* Intel Wireless MMX technology. */ cCE(tandcb, e13f130, 1, (RR), iwmmxt_tandorc), cCE(tandch, e53f130, 1, (RR), iwmmxt_tandorc), cCE(tandcw, e93f130, 1, (RR), iwmmxt_tandorc), cCE(tbcstb, e400010, 2, (RIWR, RR), rn_rd), cCE(tbcsth, e400050, 2, (RIWR, RR), rn_rd), cCE(tbcstw, e400090, 2, (RIWR, RR), rn_rd), cCE(textrcb, e130170, 2, (RR, I7), iwmmxt_textrc), cCE(textrch, e530170, 2, (RR, I7), iwmmxt_textrc), cCE(textrcw, e930170, 2, (RR, I7), iwmmxt_textrc), cCE(textrmub, e100070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(textrmuh, e500070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(textrmuw, e900070, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(textrmsb, e100078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(textrmsh, e500078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(textrmsw, e900078, 3, (RR, RIWR, I7), iwmmxt_textrm), cCE(tinsrb, e600010, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE(tinsrh, e600050, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE(tinsrw, e600090, 3, (RIWR, RR, I7), iwmmxt_tinsr), cCE(tmcr, e000110, 2, (RIWC_RIWG, RR), rn_rd), cCE(tmcrr, c400000, 3, (RIWR, RR, RR), rm_rd_rn), cCE(tmia, e200010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmiaph, e280010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmiabb, e2c0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmiabt, e2d0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmiatb, e2e0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmiatt, e2f0010, 3, (RIWR, RR, RR), iwmmxt_tmia), cCE(tmovmskb, e100030, 2, (RR, RIWR), rd_rn), cCE(tmovmskh, e500030, 2, (RR, RIWR), rd_rn), cCE(tmovmskw, e900030, 2, (RR, RIWR), rd_rn), cCE(tmrc, e100110, 2, (RR, RIWC_RIWG), rd_rn), cCE(tmrrc, c500000, 3, (RR, RR, RIWR), rd_rn_rm), cCE(torcb, e13f150, 1, (RR), iwmmxt_tandorc), cCE(torch, e53f150, 1, (RR), iwmmxt_tandorc), cCE(torcw, e93f150, 1, (RR), iwmmxt_tandorc), cCE(waccb, e0001c0, 2, (RIWR, RIWR), rd_rn), cCE(wacch, e4001c0, 2, (RIWR, RIWR), rd_rn), cCE(waccw, e8001c0, 2, (RIWR, RIWR), rd_rn), cCE(waddbss, e300180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddb, e000180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddbus, e100180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddhss, e700180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddh, e400180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddhus, e500180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddwss, eb00180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddw, e800180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waddwus, e900180, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(waligni, e000020, 4, (RIWR, RIWR, RIWR, I7), iwmmxt_waligni), cCE(walignr0, e800020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(walignr1, e900020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(walignr2, ea00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(walignr3, eb00020, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wand, e200000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wandn, e300000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wavg2b, e800000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wavg2br, e900000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wavg2h, ec00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wavg2hr, ed00000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpeqb, e000060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpeqh, e400060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpeqw, e800060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtub, e100060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtuh, e500060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtuw, e900060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtsb, e300060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtsh, e700060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wcmpgtsw, eb00060, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wldrb, c100000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE(wldrh, c500000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE(wldrw, c100100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), cCE(wldrd, c500100, 2, (RIWR, ADDR), iwmmxt_wldstd), cCE(wmacs, e600100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmacsz, e700100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmacu, e400100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmacuz, e500100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmadds, ea00100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaddu, e800100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxsb, e200160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxsh, e600160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxsw, ea00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxub, e000160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxuh, e400160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmaxuw, e800160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminsb, e300160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminsh, e700160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminsw, eb00160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminub, e100160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminuh, e500160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wminuw, e900160, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmov, e000000, 2, (RIWR, RIWR), iwmmxt_wmov), cCE(wmulsm, e300100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmulsl, e200100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmulum, e100100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wmulul, e000100, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wor, e000000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackhss, e700080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackhus, e500080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackwss, eb00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackwus, e900080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackdss, ef00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wpackdus, ed00080, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wrorh, e700040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wrorhg, e700148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wrorw, eb00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wrorwg, eb00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wrord, ef00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wrordg, ef00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsadb, e000120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsadbz, e100120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsadh, e400120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsadhz, e500120, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wshufh, e0001e0, 3, (RIWR, RIWR, I255), iwmmxt_wshufh), cCE(wsllh, e500040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsllhg, e500148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsllw, e900040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsllwg, e900148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wslld, ed00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wslldg, ed00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsrah, e400040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsrahg, e400148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsraw, e800040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsrawg, e800148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsrad, ec00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsradg, ec00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsrlh, e600040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsrlhg, e600148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsrlw, ea00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsrlwg, ea00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wsrld, ee00040, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsrldg, ee00148, 3, (RIWR, RIWR, RIWG), rd_rn_rm), cCE(wstrb, c000000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE(wstrh, c400000, 2, (RIWR, ADDR), iwmmxt_wldstbh), cCE(wstrw, c000100, 2, (RIWR_RIWC, ADDR), iwmmxt_wldstw), cCE(wstrd, c400100, 2, (RIWR, ADDR), iwmmxt_wldstd), cCE(wsubbss, e3001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubb, e0001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubbus, e1001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubhss, e7001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubh, e4001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubhus, e5001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubwss, eb001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubw, e8001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wsubwus, e9001a0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckehub,e0000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckehuh,e4000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckehuw,e8000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckehsb,e2000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckehsh,e6000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckehsw,ea000c0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckihb, e1000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckihh, e5000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckihw, e9000c0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckelub,e0000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckeluh,e4000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckeluw,e8000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckelsb,e2000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckelsh,e6000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckelsw,ea000e0, 2, (RIWR, RIWR), rd_rn), cCE(wunpckilb, e1000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckilh, e5000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wunpckilw, e9000e0, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wxor, e100000, 3, (RIWR, RIWR, RIWR), rd_rn_rm), cCE(wzero, e300000, 1, (RIWR), iwmmxt_wzero), #undef ARM_VARIANT #define ARM_VARIANT &arm_cext_maverick /* Cirrus Maverick instructions. */ cCE(cfldrs, c100400, 2, (RMF, ADDRGLDC), rd_cpaddr), cCE(cfldrd, c500400, 2, (RMD, ADDRGLDC), rd_cpaddr), cCE(cfldr32, c100500, 2, (RMFX, ADDRGLDC), rd_cpaddr), cCE(cfldr64, c500500, 2, (RMDX, ADDRGLDC), rd_cpaddr), cCE(cfstrs, c000400, 2, (RMF, ADDRGLDC), rd_cpaddr), cCE(cfstrd, c400400, 2, (RMD, ADDRGLDC), rd_cpaddr), cCE(cfstr32, c000500, 2, (RMFX, ADDRGLDC), rd_cpaddr), cCE(cfstr64, c400500, 2, (RMDX, ADDRGLDC), rd_cpaddr), cCE(cfmvsr, e000450, 2, (RMF, RR), rn_rd), cCE(cfmvrs, e100450, 2, (RR, RMF), rd_rn), cCE(cfmvdlr, e000410, 2, (RMD, RR), rn_rd), cCE(cfmvrdl, e100410, 2, (RR, RMD), rd_rn), cCE(cfmvdhr, e000430, 2, (RMD, RR), rn_rd), cCE(cfmvrdh, e100430, 2, (RR, RMD), rd_rn), cCE(cfmv64lr, e000510, 2, (RMDX, RR), rn_rd), cCE(cfmvr64l, e100510, 2, (RR, RMDX), rd_rn), cCE(cfmv64hr, e000530, 2, (RMDX, RR), rn_rd), cCE(cfmvr64h, e100530, 2, (RR, RMDX), rd_rn), cCE(cfmval32, e200440, 2, (RMAX, RMFX), rd_rn), cCE(cfmv32al, e100440, 2, (RMFX, RMAX), rd_rn), cCE(cfmvam32, e200460, 2, (RMAX, RMFX), rd_rn), cCE(cfmv32am, e100460, 2, (RMFX, RMAX), rd_rn), cCE(cfmvah32, e200480, 2, (RMAX, RMFX), rd_rn), cCE(cfmv32ah, e100480, 2, (RMFX, RMAX), rd_rn), cCE(cfmva32, e2004a0, 2, (RMAX, RMFX), rd_rn), cCE(cfmv32a, e1004a0, 2, (RMFX, RMAX), rd_rn), cCE(cfmva64, e2004c0, 2, (RMAX, RMDX), rd_rn), cCE(cfmv64a, e1004c0, 2, (RMDX, RMAX), rd_rn), cCE(cfmvsc32, e2004e0, 2, (RMDS, RMDX), mav_dspsc), cCE(cfmv32sc, e1004e0, 2, (RMDX, RMDS), rd), cCE(cfcpys, e000400, 2, (RMF, RMF), rd_rn), cCE(cfcpyd, e000420, 2, (RMD, RMD), rd_rn), cCE(cfcvtsd, e000460, 2, (RMD, RMF), rd_rn), cCE(cfcvtds, e000440, 2, (RMF, RMD), rd_rn), cCE(cfcvt32s, e000480, 2, (RMF, RMFX), rd_rn), cCE(cfcvt32d, e0004a0, 2, (RMD, RMFX), rd_rn), cCE(cfcvt64s, e0004c0, 2, (RMF, RMDX), rd_rn), cCE(cfcvt64d, e0004e0, 2, (RMD, RMDX), rd_rn), cCE(cfcvts32, e100580, 2, (RMFX, RMF), rd_rn), cCE(cfcvtd32, e1005a0, 2, (RMFX, RMD), rd_rn), cCE(cftruncs32,e1005c0, 2, (RMFX, RMF), rd_rn), cCE(cftruncd32,e1005e0, 2, (RMFX, RMD), rd_rn), cCE(cfrshl32, e000550, 3, (RMFX, RMFX, RR), mav_triple), cCE(cfrshl64, e000570, 3, (RMDX, RMDX, RR), mav_triple), cCE(cfsh32, e000500, 3, (RMFX, RMFX, I63s), mav_shift), cCE(cfsh64, e200500, 3, (RMDX, RMDX, I63s), mav_shift), cCE(cfcmps, e100490, 3, (RR, RMF, RMF), rd_rn_rm), cCE(cfcmpd, e1004b0, 3, (RR, RMD, RMD), rd_rn_rm), cCE(cfcmp32, e100590, 3, (RR, RMFX, RMFX), rd_rn_rm), cCE(cfcmp64, e1005b0, 3, (RR, RMDX, RMDX), rd_rn_rm), cCE(cfabss, e300400, 2, (RMF, RMF), rd_rn), cCE(cfabsd, e300420, 2, (RMD, RMD), rd_rn), cCE(cfnegs, e300440, 2, (RMF, RMF), rd_rn), cCE(cfnegd, e300460, 2, (RMD, RMD), rd_rn), cCE(cfadds, e300480, 3, (RMF, RMF, RMF), rd_rn_rm), cCE(cfaddd, e3004a0, 3, (RMD, RMD, RMD), rd_rn_rm), cCE(cfsubs, e3004c0, 3, (RMF, RMF, RMF), rd_rn_rm), cCE(cfsubd, e3004e0, 3, (RMD, RMD, RMD), rd_rn_rm), cCE(cfmuls, e100400, 3, (RMF, RMF, RMF), rd_rn_rm), cCE(cfmuld, e100420, 3, (RMD, RMD, RMD), rd_rn_rm), cCE(cfabs32, e300500, 2, (RMFX, RMFX), rd_rn), cCE(cfabs64, e300520, 2, (RMDX, RMDX), rd_rn), cCE(cfneg32, e300540, 2, (RMFX, RMFX), rd_rn), cCE(cfneg64, e300560, 2, (RMDX, RMDX), rd_rn), cCE(cfadd32, e300580, 3, (RMFX, RMFX, RMFX), rd_rn_rm), cCE(cfadd64, e3005a0, 3, (RMDX, RMDX, RMDX), rd_rn_rm), cCE(cfsub32, e3005c0, 3, (RMFX, RMFX, RMFX), rd_rn_rm), cCE(cfsub64, e3005e0, 3, (RMDX, RMDX, RMDX), rd_rn_rm), cCE(cfmul32, e100500, 3, (RMFX, RMFX, RMFX), rd_rn_rm), cCE(cfmul64, e100520, 3, (RMDX, RMDX, RMDX), rd_rn_rm), cCE(cfmac32, e100540, 3, (RMFX, RMFX, RMFX), rd_rn_rm), cCE(cfmsc32, e100560, 3, (RMFX, RMFX, RMFX), rd_rn_rm), cCE(cfmadd32, e000600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad), cCE(cfmsub32, e100600, 4, (RMAX, RMFX, RMFX, RMFX), mav_quad), cCE(cfmadda32, e200600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad), cCE(cfmsuba32, e300600, 4, (RMAX, RMAX, RMFX, RMFX), mav_quad), }; #undef ARM_VARIANT #undef THUMB_VARIANT #undef TCE #undef TCM #undef TUE #undef TUF #undef TCC #undef cCE #undef cCL #undef C3E #undef CE #undef CM #undef UE #undef UF #undef UT #undef NUF #undef nUF #undef NCE #undef nCE #undef OPS0 #undef OPS1 #undef OPS2 #undef OPS3 #undef OPS4 #undef OPS5 #undef OPS6 #undef do_0 /* MD interface: bits in the object file. */ /* Turn an integer of n bytes (in val) into a stream of bytes appropriate for use in the a.out file, and stores them in the array pointed to by buf. This knows about the endian-ness of the target machine and does THE RIGHT THING, whatever it is. Possible values for n are 1 (byte) 2 (short) and 4 (long) Floating numbers are put out as a series of LITTLENUMS (shorts, here at least). */ void md_number_to_chars (char * buf, valueT val, int n) { if (target_big_endian) number_to_chars_bigendian (buf, val, n); else number_to_chars_littleendian (buf, val, n); } static valueT md_chars_to_number (char * buf, int n) { valueT result = 0; unsigned char * where = (unsigned char *) buf; if (target_big_endian) { while (n--) { result <<= 8; result |= (*where++ & 255); } } else { while (n--) { result <<= 8; result |= (where[n] & 255); } } return result; } /* MD interface: Sections. */ /* Estimate the size of a frag before relaxing. Assume everything fits in 2 bytes. */ int md_estimate_size_before_relax (fragS * fragp, segT segtype ATTRIBUTE_UNUSED) { fragp->fr_var = 2; return 2; } /* Convert a machine dependent frag. */ void md_convert_frag (bfd *abfd, segT asec ATTRIBUTE_UNUSED, fragS *fragp) { unsigned long insn; unsigned long old_op; char *buf; expressionS exp; fixS *fixp; int reloc_type; int pc_rel; int opcode; buf = fragp->fr_literal + fragp->fr_fix; old_op = bfd_get_16(abfd, buf); if (fragp->fr_symbol) { exp.X_op = O_symbol; exp.X_add_symbol = fragp->fr_symbol; } else { exp.X_op = O_constant; } exp.X_add_number = fragp->fr_offset; opcode = fragp->fr_subtype; switch (opcode) { case T_MNEM_ldr_pc: case T_MNEM_ldr_pc2: case T_MNEM_ldr_sp: case T_MNEM_str_sp: case T_MNEM_ldr: case T_MNEM_ldrb: case T_MNEM_ldrh: case T_MNEM_str: case T_MNEM_strb: case T_MNEM_strh: if (fragp->fr_var == 4) { insn = THUMB_OP32(opcode); if ((old_op >> 12) == 4 || (old_op >> 12) == 9) { insn |= (old_op & 0x700) << 4; } else { insn |= (old_op & 7) << 12; insn |= (old_op & 0x38) << 13; } insn |= 0x00000c00; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_OFFSET_IMM; } else { reloc_type = BFD_RELOC_ARM_THUMB_OFFSET; } pc_rel = (opcode == T_MNEM_ldr_pc2); break; case T_MNEM_adr: if (fragp->fr_var == 4) { insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_ADD_PC12; } else { reloc_type = BFD_RELOC_ARM_THUMB_ADD; exp.X_add_number -= 4; } pc_rel = 1; break; case T_MNEM_mov: case T_MNEM_movs: case T_MNEM_cmp: case T_MNEM_cmn: if (fragp->fr_var == 4) { int r0off = (opcode == T_MNEM_mov || opcode == T_MNEM_movs) ? 0 : 8; insn = THUMB_OP32 (opcode); insn = (insn & 0xe1ffffff) | 0x10000000; insn |= (old_op & 0x700) << r0off; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE; } else { reloc_type = BFD_RELOC_ARM_THUMB_IMM; } pc_rel = 0; break; case T_MNEM_b: if (fragp->fr_var == 4) { insn = THUMB_OP32(opcode); put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH25; } else reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH12; pc_rel = 1; break; case T_MNEM_bcond: if (fragp->fr_var == 4) { insn = THUMB_OP32(opcode); insn |= (old_op & 0xf00) << 14; put_thumb32_insn (buf, insn); reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH20; } else reloc_type = BFD_RELOC_THUMB_PCREL_BRANCH9; pc_rel = 1; break; case T_MNEM_add_sp: case T_MNEM_add_pc: case T_MNEM_inc_sp: case T_MNEM_dec_sp: if (fragp->fr_var == 4) { /* ??? Choose between add and addw. */ insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; put_thumb32_insn (buf, insn); if (opcode == T_MNEM_add_pc) reloc_type = BFD_RELOC_ARM_T32_IMM12; else reloc_type = BFD_RELOC_ARM_T32_ADD_IMM; } else reloc_type = BFD_RELOC_ARM_THUMB_ADD; pc_rel = 0; break; case T_MNEM_addi: case T_MNEM_addis: case T_MNEM_subi: case T_MNEM_subis: if (fragp->fr_var == 4) { insn = THUMB_OP32 (opcode); insn |= (old_op & 0xf0) << 4; insn |= (old_op & 0xf) << 16; put_thumb32_insn (buf, insn); if (insn & (1 << 20)) reloc_type = BFD_RELOC_ARM_T32_ADD_IMM; else reloc_type = BFD_RELOC_ARM_T32_IMMEDIATE; } else reloc_type = BFD_RELOC_ARM_THUMB_ADD; pc_rel = 0; break; default: abort(); } fixp = fix_new_exp (fragp, fragp->fr_fix, fragp->fr_var, &exp, pc_rel, reloc_type); fixp->fx_file = fragp->fr_file; fixp->fx_line = fragp->fr_line; fragp->fr_fix += fragp->fr_var; } /* Return the size of a relaxable immediate operand instruction. SHIFT and SIZE specify the form of the allowable immediate. */ static int relax_immediate (fragS *fragp, int size, int shift) { offsetT offset; offsetT mask; offsetT low; /* ??? Should be able to do better than this. */ if (fragp->fr_symbol) return 4; low = (1 << shift) - 1; mask = (1 << (shift + size)) - (1 << shift); offset = fragp->fr_offset; /* Force misaligned offsets to 32-bit variant. */ if (offset & low) return -4; if (offset & ~mask) return 4; return 2; } /* Return the size of a relaxable adr pseudo-instruction or PC-relative load. */ static int relax_adr (fragS *fragp, asection *sec) { addressT addr; offsetT val; /* Assume worst case for symbols not known to be in the same section. */ if (!S_IS_DEFINED(fragp->fr_symbol) || sec != S_GET_SEGMENT (fragp->fr_symbol)) return 4; val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset; addr = fragp->fr_address + fragp->fr_fix; addr = (addr + 4) & ~3; /* Fix the insn as the 4-byte version if the target address is not sufficiently aligned. This is prevents an infinite loop when two instructions have contradictory range/alignment requirements. */ if (val & 3) return -4; val -= addr; if (val < 0 || val > 1020) return 4; return 2; } /* Return the size of a relaxable add/sub immediate instruction. */ static int relax_addsub (fragS *fragp, asection *sec) { char *buf; int op; buf = fragp->fr_literal + fragp->fr_fix; op = bfd_get_16(sec->owner, buf); if ((op & 0xf) == ((op >> 4) & 0xf)) return relax_immediate (fragp, 8, 0); else return relax_immediate (fragp, 3, 0); } /* Return the size of a relaxable branch instruction. BITS is the size of the offset field in the narrow instruction. */ static int relax_branch (fragS *fragp, asection *sec, int bits) { addressT addr; offsetT val; offsetT limit; /* Assume worst case for symbols not known to be in the same section. */ if (!S_IS_DEFINED(fragp->fr_symbol) || sec != S_GET_SEGMENT (fragp->fr_symbol)) return 4; val = S_GET_VALUE(fragp->fr_symbol) + fragp->fr_offset; addr = fragp->fr_address + fragp->fr_fix + 4; val -= addr; /* Offset is a signed value *2 */ limit = 1 << bits; if (val >= limit || val < -limit) return 4; return 2; } /* Relax a machine dependent frag. This returns the amount by which the current size of the frag should change. */ int arm_relax_frag (asection *sec, fragS *fragp, long stretch ATTRIBUTE_UNUSED) { int oldsize; int newsize; oldsize = fragp->fr_var; switch (fragp->fr_subtype) { case T_MNEM_ldr_pc2: newsize = relax_adr(fragp, sec); break; case T_MNEM_ldr_pc: case T_MNEM_ldr_sp: case T_MNEM_str_sp: newsize = relax_immediate(fragp, 8, 2); break; case T_MNEM_ldr: case T_MNEM_str: newsize = relax_immediate(fragp, 5, 2); break; case T_MNEM_ldrh: case T_MNEM_strh: newsize = relax_immediate(fragp, 5, 1); break; case T_MNEM_ldrb: case T_MNEM_strb: newsize = relax_immediate(fragp, 5, 0); break; case T_MNEM_adr: newsize = relax_adr(fragp, sec); break; case T_MNEM_mov: case T_MNEM_movs: case T_MNEM_cmp: case T_MNEM_cmn: newsize = relax_immediate(fragp, 8, 0); break; case T_MNEM_b: newsize = relax_branch(fragp, sec, 11); break; case T_MNEM_bcond: newsize = relax_branch(fragp, sec, 8); break; case T_MNEM_add_sp: case T_MNEM_add_pc: newsize = relax_immediate (fragp, 8, 2); break; case T_MNEM_inc_sp: case T_MNEM_dec_sp: newsize = relax_immediate (fragp, 7, 2); break; case T_MNEM_addi: case T_MNEM_addis: case T_MNEM_subi: case T_MNEM_subis: newsize = relax_addsub (fragp, sec); break; default: abort(); } if (newsize < 0) { fragp->fr_var = -newsize; md_convert_frag (sec->owner, sec, fragp); frag_wane(fragp); return -(newsize + oldsize); } fragp->fr_var = newsize; return newsize - oldsize; } /* Round up a section size to the appropriate boundary. */ valueT md_section_align (segT segment ATTRIBUTE_UNUSED, valueT size) { #if (defined (OBJ_AOUT) || defined (OBJ_MAYBE_AOUT)) if (OUTPUT_FLAVOR == bfd_target_aout_flavour) { /* For a.out, force the section size to be aligned. If we don't do this, BFD will align it for us, but it will not write out the final bytes of the section. This may be a bug in BFD, but it is easier to fix it here since that is how the other a.out targets work. */ int align; align = bfd_get_section_alignment (stdoutput, segment); size = ((size + (1 << align) - 1) & ((valueT) -1 << align)); } #endif return size; } /* This is called from HANDLE_ALIGN in write.c. Fill in the contents of an rs_align_code fragment. */ void arm_handle_align (fragS * fragP) { static char const arm_noop[4] = { 0x00, 0x00, 0xa0, 0xe1 }; static char const thumb_noop[2] = { 0xc0, 0x46 }; static char const arm_bigend_noop[4] = { 0xe1, 0xa0, 0x00, 0x00 }; static char const thumb_bigend_noop[2] = { 0x46, 0xc0 }; int bytes, fix, noop_size; char * p; const char * noop; if (fragP->fr_type != rs_align_code) return; bytes = fragP->fr_next->fr_address - fragP->fr_address - fragP->fr_fix; p = fragP->fr_literal + fragP->fr_fix; fix = 0; if (bytes > MAX_MEM_FOR_RS_ALIGN_CODE) bytes &= MAX_MEM_FOR_RS_ALIGN_CODE; if (fragP->tc_frag_data) { if (target_big_endian) noop = thumb_bigend_noop; else noop = thumb_noop; noop_size = sizeof (thumb_noop); } else { if (target_big_endian) noop = arm_bigend_noop; else noop = arm_noop; noop_size = sizeof (arm_noop); } if (bytes & (noop_size - 1)) { fix = bytes & (noop_size - 1); memset (p, 0, fix); p += fix; bytes -= fix; } while (bytes >= noop_size) { memcpy (p, noop, noop_size); p += noop_size; bytes -= noop_size; fix += noop_size; } fragP->fr_fix += fix; fragP->fr_var = noop_size; } /* Called from md_do_align. Used to create an alignment frag in a code section. */ void arm_frag_align_code (int n, int max) { char * p; /* We assume that there will never be a requirement to support alignments greater than 32 bytes. */ if (max > MAX_MEM_FOR_RS_ALIGN_CODE) as_fatal (_("alignments greater than 32 bytes not supported in .text sections.")); p = frag_var (rs_align_code, MAX_MEM_FOR_RS_ALIGN_CODE, 1, (relax_substateT) max, (symbolS *) NULL, (offsetT) n, (char *) NULL); *p = 0; } /* Perform target specific initialisation of a frag. */ void arm_init_frag (fragS * fragP) { /* Record whether this frag is in an ARM or a THUMB area. */ fragP->tc_frag_data = thumb_mode; } #ifdef OBJ_ELF /* When we change sections we need to issue a new mapping symbol. */ void arm_elf_change_section (void) { flagword flags; segment_info_type *seginfo; /* Link an unlinked unwind index table section to the .text section. */ if (elf_section_type (now_seg) == SHT_ARM_EXIDX && elf_linked_to_section (now_seg) == NULL) elf_linked_to_section (now_seg) = text_section; if (!SEG_NORMAL (now_seg)) return; flags = bfd_get_section_flags (stdoutput, now_seg); /* We can ignore sections that only contain debug info. */ if ((flags & SEC_ALLOC) == 0) return; seginfo = seg_info (now_seg); mapstate = seginfo->tc_segment_info_data.mapstate; marked_pr_dependency = seginfo->tc_segment_info_data.marked_pr_dependency; } int arm_elf_section_type (const char * str, size_t len) { if (len == 5 && strncmp (str, "exidx", 5) == 0) return SHT_ARM_EXIDX; return -1; } /* Code to deal with unwinding tables. */ static void add_unwind_adjustsp (offsetT); /* Cenerate and deferred unwind frame offset. */ static void flush_pending_unwind (void) { offsetT offset; offset = unwind.pending_offset; unwind.pending_offset = 0; if (offset != 0) add_unwind_adjustsp (offset); } /* Add an opcode to this list for this function. Two-byte opcodes should be passed as op[0] << 8 | op[1]. The list of opcodes is built in reverse order. */ static void add_unwind_opcode (valueT op, int length) { /* Add any deferred stack adjustment. */ if (unwind.pending_offset) flush_pending_unwind (); unwind.sp_restored = 0; if (unwind.opcode_count + length > unwind.opcode_alloc) { unwind.opcode_alloc += ARM_OPCODE_CHUNK_SIZE; if (unwind.opcodes) unwind.opcodes = xrealloc (unwind.opcodes, unwind.opcode_alloc); else unwind.opcodes = xmalloc (unwind.opcode_alloc); } while (length > 0) { length--; unwind.opcodes[unwind.opcode_count] = op & 0xff; op >>= 8; unwind.opcode_count++; } } /* Add unwind opcodes to adjust the stack pointer. */ static void add_unwind_adjustsp (offsetT offset) { valueT op; if (offset > 0x200) { /* We need at most 5 bytes to hold a 32-bit value in a uleb128. */ char bytes[5]; int n; valueT o; /* Long form: 0xb2, uleb128. */ /* This might not fit in a word so add the individual bytes, remembering the list is built in reverse order. */ o = (valueT) ((offset - 0x204) >> 2); if (o == 0) add_unwind_opcode (0, 1); /* Calculate the uleb128 encoding of the offset. */ n = 0; while (o) { bytes[n] = o & 0x7f; o >>= 7; if (o) bytes[n] |= 0x80; n++; } /* Add the insn. */ for (; n; n--) add_unwind_opcode (bytes[n - 1], 1); add_unwind_opcode (0xb2, 1); } else if (offset > 0x100) { /* Two short opcodes. */ add_unwind_opcode (0x3f, 1); op = (offset - 0x104) >> 2; add_unwind_opcode (op, 1); } else if (offset > 0) { /* Short opcode. */ op = (offset - 4) >> 2; add_unwind_opcode (op, 1); } else if (offset < 0) { offset = -offset; while (offset > 0x100) { add_unwind_opcode (0x7f, 1); offset -= 0x100; } op = ((offset - 4) >> 2) | 0x40; add_unwind_opcode (op, 1); } } /* Finish the list of unwind opcodes for this function. */ static void finish_unwind_opcodes (void) { valueT op; if (unwind.fp_used) { /* Adjust sp as necessary. */ unwind.pending_offset += unwind.fp_offset - unwind.frame_size; flush_pending_unwind (); /* After restoring sp from the frame pointer. */ op = 0x90 | unwind.fp_reg; add_unwind_opcode (op, 1); } else flush_pending_unwind (); } /* Start an exception table entry. If idx is nonzero this is an index table entry. */ static void start_unwind_section (const segT text_seg, int idx) { const char * text_name; const char * prefix; const char * prefix_once; const char * group_name; size_t prefix_len; size_t text_len; char * sec_name; size_t sec_name_len; int type; int flags; int linkonce; if (idx) { prefix = ELF_STRING_ARM_unwind; prefix_once = ELF_STRING_ARM_unwind_once; type = SHT_ARM_EXIDX; } else { prefix = ELF_STRING_ARM_unwind_info; prefix_once = ELF_STRING_ARM_unwind_info_once; type = SHT_PROGBITS; } text_name = segment_name (text_seg); if (streq (text_name, ".text")) text_name = ""; if (strncmp (text_name, ".gnu.linkonce.t.", strlen (".gnu.linkonce.t.")) == 0) { prefix = prefix_once; text_name += strlen (".gnu.linkonce.t."); } prefix_len = strlen (prefix); text_len = strlen (text_name); sec_name_len = prefix_len + text_len; sec_name = xmalloc (sec_name_len + 1); memcpy (sec_name, prefix, prefix_len); memcpy (sec_name + prefix_len, text_name, text_len); sec_name[prefix_len + text_len] = '\0'; flags = SHF_ALLOC; linkonce = 0; group_name = 0; /* Handle COMDAT group. */ if (prefix != prefix_once && (text_seg->flags & SEC_LINK_ONCE) != 0) { group_name = elf_group_name (text_seg); if (group_name == NULL) { as_bad ("Group section `%s' has no group signature", segment_name (text_seg)); ignore_rest_of_line (); return; } flags |= SHF_GROUP; linkonce = 1; } obj_elf_change_section (sec_name, type, flags, 0, group_name, linkonce, 0); /* Set the setion link for index tables. */ if (idx) elf_linked_to_section (now_seg) = text_seg; } /* Start an unwind table entry. HAVE_DATA is nonzero if we have additional personality routine data. Returns zero, or the index table value for and inline entry. */ static valueT create_unwind_entry (int have_data) { int size; addressT where; char *ptr; /* The current word of data. */ valueT data; /* The number of bytes left in this word. */ int n; finish_unwind_opcodes (); /* Remember the current text section. */ unwind.saved_seg = now_seg; unwind.saved_subseg = now_subseg; start_unwind_section (now_seg, 0); if (unwind.personality_routine == NULL) { if (unwind.personality_index == -2) { if (have_data) as_bad (_("handerdata in cantunwind frame")); return 1; /* EXIDX_CANTUNWIND. */ } /* Use a default personality routine if none is specified. */ if (unwind.personality_index == -1) { if (unwind.opcode_count > 3) unwind.personality_index = 1; else unwind.personality_index = 0; } /* Space for the personality routine entry. */ if (unwind.personality_index == 0) { if (unwind.opcode_count > 3) as_bad (_("too many unwind opcodes for personality routine 0")); if (!have_data) { /* All the data is inline in the index table. */ data = 0x80; n = 3; while (unwind.opcode_count > 0) { unwind.opcode_count--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; n--; } /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; return data; } size = 0; } else /* We get two opcodes "free" in the first word. */ size = unwind.opcode_count - 2; } else /* An extra byte is required for the opcode count. */ size = unwind.opcode_count + 1; size = (size + 3) >> 2; if (size > 0xff) as_bad (_("too many unwind opcodes")); frag_align (2, 0, 0); record_alignment (now_seg, 2); unwind.table_entry = expr_build_dot (); /* Allocate the table entry. */ ptr = frag_more ((size << 2) + 4); where = frag_now_fix () - ((size << 2) + 4); switch (unwind.personality_index) { case -1: /* ??? Should this be a PLT generating relocation? */ /* Custom personality routine. */ fix_new (frag_now, where, 4, unwind.personality_routine, 0, 1, BFD_RELOC_ARM_PREL31); where += 4; ptr += 4; /* Set the first byte to the number of additional words. */ data = size - 1; n = 3; break; /* ABI defined personality routines. */ case 0: /* Three opcodes bytes are packed into the first word. */ data = 0x80; n = 3; break; case 1: case 2: /* The size and first two opcode bytes go in the first word. */ data = ((0x80 + unwind.personality_index) << 8) | size; n = 2; break; default: /* Should never happen. */ abort (); } /* Pack the opcodes into words (MSB first), reversing the list at the same time. */ while (unwind.opcode_count > 0) { if (n == 0) { md_number_to_chars (ptr, data, 4); ptr += 4; n = 4; data = 0; } unwind.opcode_count--; n--; data = (data << 8) | unwind.opcodes[unwind.opcode_count]; } /* Finish off the last word. */ if (n < 4) { /* Pad with "finish" opcodes. */ while (n--) data = (data << 8) | 0xb0; md_number_to_chars (ptr, data, 4); } if (!have_data) { /* Add an empty descriptor if there is no user-specified data. */ ptr = frag_more (4); md_number_to_chars (ptr, 0, 4); } return 0; } /* Initialize the DWARF-2 unwind information for this procedure. */ void tc_arm_frame_initial_instructions (void) { cfi_add_CFA_def_cfa (REG_SP, 0); } #endif /* OBJ_ELF */ /* Convert REGNAME to a DWARF-2 register number. */ int tc_arm_regname_to_dw2regnum (char *regname) { int reg = arm_reg_parse (®name, REG_TYPE_RN); if (reg == FAIL) return -1; return reg; } #ifdef TE_PE void tc_pe_dwarf2_emit_offset (symbolS *symbol, unsigned int size) { expressionS expr; expr.X_op = O_secrel; expr.X_add_symbol = symbol; expr.X_add_number = 0; emit_expr (&expr, size); } #endif /* MD interface: Symbol and relocation handling. */ /* Return the address within the segment that a PC-relative fixup is relative to. For ARM, PC-relative fixups applied to instructions are generally relative to the location of the fixup plus 8 bytes. Thumb branches are offset by 4, and Thumb loads relative to PC require special handling. */ long md_pcrel_from_section (fixS * fixP, segT seg) { offsetT base = fixP->fx_where + fixP->fx_frag->fr_address; /* If this is pc-relative and we are going to emit a relocation then we just want to put out any pipeline compensation that the linker will need. Otherwise we want to use the calculated base. For WinCE we skip the bias for externals as well, since this is how the MS ARM-CE assembler behaves and we want to be compatible. */ if (fixP->fx_pcrel && ((fixP->fx_addsy && S_GET_SEGMENT (fixP->fx_addsy) != seg) || (arm_force_relocation (fixP) #ifdef TE_WINCE && !S_IS_EXTERNAL (fixP->fx_addsy) #endif ))) base = 0; switch (fixP->fx_r_type) { /* PC relative addressing on the Thumb is slightly odd as the bottom two bits of the PC are forced to zero for the calculation. This happens *after* application of the pipeline offset. However, Thumb adrl already adjusts for this, so we need not do it again. */ case BFD_RELOC_ARM_THUMB_ADD: return base & ~3; case BFD_RELOC_ARM_THUMB_OFFSET: case BFD_RELOC_ARM_T32_OFFSET_IMM: case BFD_RELOC_ARM_T32_ADD_PC12: case BFD_RELOC_ARM_T32_CP_OFF_IMM: return (base + 4) & ~3; /* Thumb branches are simply offset by +4. */ case BFD_RELOC_THUMB_PCREL_BRANCH7: case BFD_RELOC_THUMB_PCREL_BRANCH9: case BFD_RELOC_THUMB_PCREL_BRANCH12: case BFD_RELOC_THUMB_PCREL_BRANCH20: case BFD_RELOC_THUMB_PCREL_BRANCH23: case BFD_RELOC_THUMB_PCREL_BRANCH25: case BFD_RELOC_THUMB_PCREL_BLX: return base + 4; /* ARM mode branches are offset by +8. However, the Windows CE loader expects the relocation not to take this into account. */ case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_ARM_PCREL_CALL: case BFD_RELOC_ARM_PCREL_JUMP: case BFD_RELOC_ARM_PCREL_BLX: case BFD_RELOC_ARM_PLT32: #ifdef TE_WINCE /* When handling fixups immediately, because we have already discovered the value of a symbol, or the address of the frag involved we must account for the offset by +8, as the OS loader will never see the reloc. see fixup_segment() in write.c The S_IS_EXTERNAL test handles the case of global symbols. Those need the calculated base, not just the pipe compensation the linker will need. */ if (fixP->fx_pcrel && fixP->fx_addsy != NULL && (S_GET_SEGMENT (fixP->fx_addsy) == seg) && (S_IS_EXTERNAL (fixP->fx_addsy) || !arm_force_relocation (fixP))) return base + 8; return base; #else return base + 8; #endif /* ARM mode loads relative to PC are also offset by +8. Unlike branches, the Windows CE loader *does* expect the relocation to take this into account. */ case BFD_RELOC_ARM_OFFSET_IMM: case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_CP_OFF_IMM: return base + 8; /* Other PC-relative relocations are un-offset. */ default: return base; } } /* Under ELF we need to default _GLOBAL_OFFSET_TABLE. Otherwise we have no need to default values of symbols. */ symbolS * md_undefined_symbol (char * name ATTRIBUTE_UNUSED) { #ifdef OBJ_ELF if (name[0] == '_' && name[1] == 'G' && streq (name, GLOBAL_OFFSET_TABLE_NAME)) { if (!GOT_symbol) { if (symbol_find (name)) as_bad ("GOT already in the symbol table"); GOT_symbol = symbol_new (name, undefined_section, (valueT) 0, & zero_address_frag); } return GOT_symbol; } #endif return 0; } /* Subroutine of md_apply_fix. Check to see if an immediate can be computed as two separate immediate values, added together. We already know that this value cannot be computed by just one ARM instruction. */ static unsigned int validate_immediate_twopart (unsigned int val, unsigned int * highpart) { unsigned int a; unsigned int i; for (i = 0; i < 32; i += 2) if (((a = rotate_left (val, i)) & 0xff) != 0) { if (a & 0xff00) { if (a & ~ 0xffff) continue; * highpart = (a >> 8) | ((i + 24) << 7); } else if (a & 0xff0000) { if (a & 0xff000000) continue; * highpart = (a >> 16) | ((i + 16) << 7); } else { assert (a & 0xff000000); * highpart = (a >> 24) | ((i + 8) << 7); } return (a & 0xff) | (i << 7); } return FAIL; } static int validate_offset_imm (unsigned int val, int hwse) { if ((hwse && val > 255) || val > 4095) return FAIL; return val; } /* Subroutine of md_apply_fix. Do those data_ops which can take a negative immediate constant by altering the instruction. A bit of a hack really. MOV <-> MVN AND <-> BIC ADC <-> SBC by inverting the second operand, and ADD <-> SUB CMP <-> CMN by negating the second operand. */ static int negate_data_op (unsigned long * instruction, unsigned long value) { int op, new_inst; unsigned long negated, inverted; negated = encode_arm_immediate (-value); inverted = encode_arm_immediate (~value); op = (*instruction >> DATA_OP_SHIFT) & 0xf; switch (op) { /* First negates. */ case OPCODE_SUB: /* ADD <-> SUB */ new_inst = OPCODE_ADD; value = negated; break; case OPCODE_ADD: new_inst = OPCODE_SUB; value = negated; break; case OPCODE_CMP: /* CMP <-> CMN */ new_inst = OPCODE_CMN; value = negated; break; case OPCODE_CMN: new_inst = OPCODE_CMP; value = negated; break; /* Now Inverted ops. */ case OPCODE_MOV: /* MOV <-> MVN */ new_inst = OPCODE_MVN; value = inverted; break; case OPCODE_MVN: new_inst = OPCODE_MOV; value = inverted; break; case OPCODE_AND: /* AND <-> BIC */ new_inst = OPCODE_BIC; value = inverted; break; case OPCODE_BIC: new_inst = OPCODE_AND; value = inverted; break; case OPCODE_ADC: /* ADC <-> SBC */ new_inst = OPCODE_SBC; value = inverted; break; case OPCODE_SBC: new_inst = OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned) FAIL) return FAIL; *instruction &= OPCODE_MASK; *instruction |= new_inst << DATA_OP_SHIFT; return value; } /* Like negate_data_op, but for Thumb-2. */ static unsigned int thumb32_negate_data_op (offsetT *instruction, unsigned int value) { int op, new_inst; int rd; unsigned int negated, inverted; negated = encode_thumb32_immediate (-value); inverted = encode_thumb32_immediate (~value); rd = (*instruction >> 8) & 0xf; op = (*instruction >> T2_DATA_OP_SHIFT) & 0xf; switch (op) { /* ADD <-> SUB. Includes CMP <-> CMN. */ case T2_OPCODE_SUB: new_inst = T2_OPCODE_ADD; value = negated; break; case T2_OPCODE_ADD: new_inst = T2_OPCODE_SUB; value = negated; break; /* ORR <-> ORN. Includes MOV <-> MVN. */ case T2_OPCODE_ORR: new_inst = T2_OPCODE_ORN; value = inverted; break; case T2_OPCODE_ORN: new_inst = T2_OPCODE_ORR; value = inverted; break; /* AND <-> BIC. TST has no inverted equivalent. */ case T2_OPCODE_AND: new_inst = T2_OPCODE_BIC; if (rd == 15) value = FAIL; else value = inverted; break; case T2_OPCODE_BIC: new_inst = T2_OPCODE_AND; value = inverted; break; /* ADC <-> SBC */ case T2_OPCODE_ADC: new_inst = T2_OPCODE_SBC; value = inverted; break; case T2_OPCODE_SBC: new_inst = T2_OPCODE_ADC; value = inverted; break; /* We cannot do anything. */ default: return FAIL; } if (value == (unsigned int)FAIL) return FAIL; *instruction &= T2_OPCODE_MASK; *instruction |= new_inst << T2_DATA_OP_SHIFT; return value; } /* Read a 32-bit thumb instruction from buf. */ static unsigned long get_thumb32_insn (char * buf) { unsigned long insn; insn = md_chars_to_number (buf, THUMB_SIZE) << 16; insn |= md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); return insn; } /* We usually want to set the low bit on the address of thumb function symbols. In particular .word foo - . should have the low bit set. Generic code tries to fold the difference of two symbols to a constant. Prevent this and force a relocation when the first symbols is a thumb function. */ int arm_optimize_expr (expressionS *l, operatorT op, expressionS *r) { if (op == O_subtract && l->X_op == O_symbol && r->X_op == O_symbol && THUMB_IS_FUNC (l->X_add_symbol)) { l->X_op = O_subtract; l->X_op_symbol = r->X_add_symbol; l->X_add_number -= r->X_add_number; return 1; } /* Process as normal. */ return 0; } void md_apply_fix (fixS * fixP, valueT * valP, segT seg) { offsetT value = * valP; offsetT newval; unsigned int newimm; unsigned long temp; int sign; char * buf = fixP->fx_where + fixP->fx_frag->fr_literal; assert (fixP->fx_r_type <= BFD_RELOC_UNUSED); /* Note whether this will delete the relocation. */ if (fixP->fx_addsy == 0 && !fixP->fx_pcrel) fixP->fx_done = 1; /* On a 64-bit host, silently truncate 'value' to 32 bits for consistency with the behavior on 32-bit hosts. Remember value for emit_reloc. */ value &= 0xffffffff; value ^= 0x80000000; value -= 0x80000000; *valP = value; fixP->fx_addnumber = value; /* Same treatment for fixP->fx_offset. */ fixP->fx_offset &= 0xffffffff; fixP->fx_offset ^= 0x80000000; fixP->fx_offset -= 0x80000000; switch (fixP->fx_r_type) { case BFD_RELOC_NONE: /* This will need to go in the object file. */ fixP->fx_done = 0; break; case BFD_RELOC_ARM_IMMEDIATE: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy && ! S_IS_DEFINED (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("undefined symbol %s used as an immediate value"), S_GET_NAME (fixP->fx_addsy)); break; } newimm = encode_arm_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (&temp, value)) == (unsigned int) FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); break; case BFD_RELOC_ARM_ADRL_IMMEDIATE: { unsigned int highpart = 0; unsigned int newinsn = 0xe1a00000; /* nop. */ newimm = encode_arm_immediate (value); temp = md_chars_to_number (buf, INSN_SIZE); /* If the instruction will fail, see if we can fix things up by changing the opcode. */ if (newimm == (unsigned int) FAIL && (newimm = negate_data_op (& temp, value)) == (unsigned int) FAIL) { /* No ? OK - try using two ADD instructions to generate the value. */ newimm = validate_immediate_twopart (value, & highpart); /* Yes - then make sure that the second instruction is also an add. */ if (newimm != (unsigned int) FAIL) newinsn = temp; /* Still No ? Try using a negated value. */ else if ((newimm = validate_immediate_twopart (- value, & highpart)) != (unsigned int) FAIL) temp = newinsn = (temp & OPCODE_MASK) | OPCODE_SUB << DATA_OP_SHIFT; /* Otherwise - give up. */ else { as_bad_where (fixP->fx_file, fixP->fx_line, _("unable to compute ADRL instructions for PC offset of 0x%lx"), (long) value); break; } /* Replace the first operand in the 2nd instruction (which is the PC) with the destination register. We have already added in the PC in the first instruction and we do not want to do it again. */ newinsn &= ~ 0xf0000; newinsn |= ((newinsn & 0x0f000) << 4); } newimm |= (temp & 0xfffff000); md_number_to_chars (buf, (valueT) newimm, INSN_SIZE); highpart |= (newinsn & 0xfffff000); md_number_to_chars (buf + INSN_SIZE, (valueT) highpart, INSN_SIZE); } break; case BFD_RELOC_ARM_OFFSET_IMM: if (!fixP->fx_done && seg->use_rela_p) value = 0; case BFD_RELOC_ARM_LITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 0) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_LITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff000; newval |= value | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_OFFSET_IMM8: case BFD_RELOC_ARM_HWLITERAL: sign = value >= 0; if (value < 0) value = - value; if (validate_offset_imm (value, 1) == FAIL) { if (fixP->fx_r_type == BFD_RELOC_ARM_HWLITERAL) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid literal constant: pool needs to be closer")); else as_bad (_("bad immediate value for half-word offset (%ld)"), (long) value); break; } newval = md_chars_to_number (buf, INSN_SIZE); newval &= 0xff7ff0f0; newval |= ((value >> 4) << 8) | (value & 0xf) | (sign ? INDEX_UP : 0); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_U8: if (value < 0 || value > 1020 || value % 4 != 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad immediate value for offset (%ld)"), (long) value); value /= 4; newval = md_chars_to_number (buf+2, THUMB_SIZE); newval |= value; md_number_to_chars (buf+2, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_T32_OFFSET_IMM: /* This is a complicated relocation used for all varieties of Thumb32 load/store instruction with immediate offset: 1110 100P u1WL NNNN XXXX YYYY iiii iiii - +/-(U) pre/post(P) 8-bit, *4, optional writeback(W) (doubleword load/store) 1111 100S uTTL 1111 XXXX iiii iiii iiii - +/-(U) 12-bit PC-rel 1111 100S 0TTL NNNN XXXX 1Pu1 iiii iiii - +/-(U) pre/post(P) 8-bit 1111 100S 0TTL NNNN XXXX 1110 iiii iiii - positive 8-bit (T instruction) 1111 100S 1TTL NNNN XXXX iiii iiii iiii - positive 12-bit 1111 100S 0TTL NNNN XXXX 1100 iiii iiii - negative 8-bit Uppercase letters indicate bits that are already encoded at this point. Lowercase letters are our problem. For the second block of instructions, the secondary opcode nybble (bits 8..11) is present, and bit 23 is zero, even if this is a PC-relative operation. */ newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+THUMB_SIZE, THUMB_SIZE); if ((newval & 0xf0000000) == 0xe0000000) { /* Doubleword load/store: 8-bit offset, scaled by 4. */ if (value >= 0) newval |= (1 << 23); else value = -value; if (value % 4 != 0) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset not a multiple of 4")); break; } value /= 4; if (value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x000f0000) == 0x000f0000) { /* PC-relative, 12-bit offset. */ if (value >= 0) newval |= (1 << 23); else value = -value; if (value > 0xfff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xfff; } else if ((newval & 0x00000100) == 0x00000100) { /* Writeback: 8-bit, +/- offset. */ if (value >= 0) newval |= (1 << 9); else value = -value; if (value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; } else if ((newval & 0x00000f00) == 0x00000e00) { /* T-instruction: positive 8-bit offset. */ if (value < 0 || value > 0xff) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~0xff; newval |= value; } else { /* Positive 12-bit or negative 8-bit offset. */ int limit; if (value >= 0) { newval |= (1 << 23); limit = 0xfff; } else { value = -value; limit = 0xff; } if (value > limit) { as_bad_where (fixP->fx_file, fixP->fx_line, _("offset out of range")); break; } newval &= ~limit; } newval |= value; md_number_to_chars (buf, (newval >> 16) & 0xffff, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval & 0xffff, THUMB_SIZE); break; case BFD_RELOC_ARM_SHIFT_IMM: newval = md_chars_to_number (buf, INSN_SIZE); if (((unsigned long) value) > 32 || (value == 32 && (((newval & 0x60) == 0) || (newval & 0x60) == 0x60))) { as_bad_where (fixP->fx_file, fixP->fx_line, _("shift expression is too large")); break; } if (value == 0) /* Shifts of zero must be done as lsl. */ newval &= ~0x60; else if (value == 32) value = 0; newval &= 0xfffff07f; newval |= (value & 0x1f) << 7; md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_T32_IMMEDIATE: case BFD_RELOC_ARM_T32_ADD_IMM: case BFD_RELOC_ARM_T32_IMM12: case BFD_RELOC_ARM_T32_ADD_PC12: /* We claim that this fixup has been processed here, even if in fact we generate an error because we do not have a reloc for it, so tc_gen_reloc will reject it. */ fixP->fx_done = 1; if (fixP->fx_addsy && ! S_IS_DEFINED (fixP->fx_addsy)) { as_bad_where (fixP->fx_file, fixP->fx_line, _("undefined symbol %s used as an immediate value"), S_GET_NAME (fixP->fx_addsy)); break; } newval = md_chars_to_number (buf, THUMB_SIZE); newval <<= 16; newval |= md_chars_to_number (buf+2, THUMB_SIZE); newimm = FAIL; if (fixP->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE || fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM) { newimm = encode_thumb32_immediate (value); if (newimm == (unsigned int) FAIL) newimm = thumb32_negate_data_op (&newval, value); } if (fixP->fx_r_type != BFD_RELOC_ARM_T32_IMMEDIATE && newimm == (unsigned int) FAIL) { /* Turn add/sum into addw/subw. */ if (fixP->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM) newval = (newval & 0xfeffffff) | 0x02000000; /* 12 bit immediate for addw/subw. */ if (value < 0) { value = -value; newval ^= 0x00a00000; } if (value > 0xfff) newimm = (unsigned int) FAIL; else newimm = value; } if (newimm == (unsigned int)FAIL) { as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid constant (%lx) after fixup"), (unsigned long) value); break; } newval |= (newimm & 0x800) << 15; newval |= (newimm & 0x700) << 4; newval |= (newimm & 0x0ff); md_number_to_chars (buf, (valueT) ((newval >> 16) & 0xffff), THUMB_SIZE); md_number_to_chars (buf+2, (valueT) (newval & 0xffff), THUMB_SIZE); break; case BFD_RELOC_ARM_SMC: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid smc expression")); newval = md_chars_to_number (buf, INSN_SIZE); newval |= (value & 0xf) | ((value & 0xfff0) << 4); md_number_to_chars (buf, newval, INSN_SIZE); break; case BFD_RELOC_ARM_SWI: if (fixP->tc_fix_data != 0) { if (((unsigned long) value) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, THUMB_SIZE); newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); } else { if (((unsigned long) value) > 0x00ffffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid swi expression")); newval = md_chars_to_number (buf, INSN_SIZE); newval |= value; md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_ARM_MULTI: if (((unsigned long) value) > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid expression in load/store multiple")); newval = value | md_chars_to_number (buf, INSN_SIZE); md_number_to_chars (buf, newval, INSN_SIZE); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PCREL_CALL: newval = md_chars_to_number (buf, INSN_SIZE); if ((newval & 0xf0000000) == 0xf0000000) temp = 1; else temp = 3; goto arm_branch_common; case BFD_RELOC_ARM_PCREL_JUMP: case BFD_RELOC_ARM_PLT32: #endif case BFD_RELOC_ARM_PCREL_BRANCH: temp = 3; goto arm_branch_common; case BFD_RELOC_ARM_PCREL_BLX: temp = 1; arm_branch_common: /* We are going to store value (shifted right by two) in the instruction, in a 24 bit, signed field. Bits 26 through 32 either all clear or all set and bit 0 must be clear. For B/BL bit 1 must also be be clear. */ if (value & temp) as_bad_where (fixP->fx_file, fixP->fx_line, _("misaligned branch destination")); if ((value & (offsetT)0xfe000000) != (offsetT)0 && (value & (offsetT)0xfe000000) != (offsetT)0xfe000000) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, INSN_SIZE); newval |= (value >> 2) & 0x00ffffff; /* Set the H bit on BLX instructions. */ if (temp == 1) { if (value & 2) newval |= 0x01000000; else newval &= ~0x01000000; } md_number_to_chars (buf, newval, INSN_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH7: /* CZB */ /* CZB can only branch forward. */ if (value & ~0x7e) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= ((value & 0x3e) << 2) | ((value & 0x40) << 3); md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH9: /* Conditional branch. */ if ((value & ~0xff) && ((value & ~0xff) != ~0xff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= (value & 0x1ff) >> 1; md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH12: /* Unconditional branch. */ if ((value & ~0x7ff) && ((value & ~0x7ff) != ~0x7ff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, THUMB_SIZE); newval |= (value & 0xfff) >> 1; md_number_to_chars (buf, newval, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH20: if ((value & ~0x1fffff) && ((value & ~0x1fffff) != ~0x1fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("conditional branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT S, J1, J2, lo, hi; S = (value & 0x00100000) >> 20; J2 = (value & 0x00080000) >> 19; J1 = (value & 0x00040000) >> 18; hi = (value & 0x0003f000) >> 12; lo = (value & 0x00000ffe) >> 1; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= (S << 10) | hi; newval2 |= (J1 << 13) | (J2 << 11) | lo; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_THUMB_PCREL_BRANCH23: if ((value & ~0x3fffff) && ((value & ~0x3fffff) != ~0x3fffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BLX) /* For a BLX instruction, make sure that the relocation is rounded up to a word boundary. This follows the semantics of the instruction which specifies that bit 1 of the target address will come from bit 1 of the base address. */ value = (value + 1) & ~ 1; if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= (value & 0x7fffff) >> 12; newval2 |= (value & 0xfff) >> 1; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_THUMB_PCREL_BRANCH25: if ((value & ~0x1ffffff) && ((value & ~0x1ffffff) != ~0x1ffffff)) as_bad_where (fixP->fx_file, fixP->fx_line, _("branch out of range")); if (fixP->fx_done || !seg->use_rela_p) { offsetT newval2; addressT S, I1, I2, lo, hi; S = (value & 0x01000000) >> 24; I1 = (value & 0x00800000) >> 23; I2 = (value & 0x00400000) >> 22; hi = (value & 0x003ff000) >> 12; lo = (value & 0x00000ffe) >> 1; I1 = !(I1 ^ S); I2 = !(I2 ^ S); newval = md_chars_to_number (buf, THUMB_SIZE); newval2 = md_chars_to_number (buf + THUMB_SIZE, THUMB_SIZE); newval |= (S << 10) | hi; newval2 |= (I1 << 13) | (I2 << 11) | lo; md_number_to_chars (buf, newval, THUMB_SIZE); md_number_to_chars (buf + THUMB_SIZE, newval2, THUMB_SIZE); } break; case BFD_RELOC_8: if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, value, 1); break; case BFD_RELOC_16: if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, value, 2); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_TLS_GD32: case BFD_RELOC_ARM_TLS_LE32: case BFD_RELOC_ARM_TLS_IE32: case BFD_RELOC_ARM_TLS_LDM32: case BFD_RELOC_ARM_TLS_LDO32: S_SET_THREAD_LOCAL (fixP->fx_addsy); /* fall through */ case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: case BFD_RELOC_ARM_TARGET2: if (fixP->fx_done || !seg->use_rela_p) md_number_to_chars (buf, 0, 4); break; #endif case BFD_RELOC_RVA: case BFD_RELOC_32: case BFD_RELOC_ARM_TARGET1: case BFD_RELOC_ARM_ROSEGREL32: case BFD_RELOC_ARM_SBREL32: case BFD_RELOC_32_PCREL: #ifdef TE_PE case BFD_RELOC_32_SECREL: #endif if (fixP->fx_done || !seg->use_rela_p) #ifdef TE_WINCE /* For WinCE we only do this for pcrel fixups. */ if (fixP->fx_done || fixP->fx_pcrel) #endif md_number_to_chars (buf, value, 4); break; #ifdef OBJ_ELF case BFD_RELOC_ARM_PREL31: if (fixP->fx_done || !seg->use_rela_p) { newval = md_chars_to_number (buf, 4) & 0x80000000; if ((value ^ (value >> 1)) & 0x40000000) { as_bad_where (fixP->fx_file, fixP->fx_line, _("rel31 relocation overflow")); } newval |= value & 0x7fffffff; md_number_to_chars (buf, newval, 4); } break; #endif case BFD_RELOC_ARM_CP_OFF_IMM: case BFD_RELOC_ARM_T32_CP_OFF_IMM: if (value < -1023 || value > 1023 || (value & 3)) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); cp_off_common: sign = value >= 0; if (value < 0) value = -value; if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2) newval = md_chars_to_number (buf, INSN_SIZE); else newval = get_thumb32_insn (buf); newval &= 0xff7fff00; newval |= (value >> 2) | (sign ? INDEX_UP : 0); if (value == 0) newval &= ~WRITE_BACK; if (fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM || fixP->fx_r_type == BFD_RELOC_ARM_CP_OFF_IMM_S2) md_number_to_chars (buf, newval, INSN_SIZE); else put_thumb32_insn (buf, newval); break; case BFD_RELOC_ARM_CP_OFF_IMM_S2: case BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: if (value < -255 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("co-processor offset out of range")); value *= 4; goto cp_off_common; case BFD_RELOC_ARM_THUMB_OFFSET: newval = md_chars_to_number (buf, THUMB_SIZE); /* Exactly what ranges, and where the offset is inserted depends on the type of instruction, we can establish this from the top 4 bits. */ switch (newval >> 12) { case 4: /* PC load. */ /* Thumb PC loads are somewhat odd, bit 1 of the PC is forced to zero for these loads; md_pcrel_from has already compensated for this. */ if (value & 3) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, target not word aligned (0x%08lX)"), (((unsigned long) fixP->fx_frag->fr_address + (unsigned long) fixP->fx_where) & ~3) + (unsigned long) value); if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 9: /* SP load/store. */ if (value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value >> 2; break; case 6: /* Word load/store. */ if (value & ~0x7c) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 4; /* 6 - 2. */ break; case 7: /* Byte load/store. */ if (value & ~0x1f) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 6; break; case 8: /* Halfword load/store. */ if (value & ~0x3e) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid offset, value too big (0x%08lX)"), (long) value); newval |= value << 5; /* 6 - 1. */ break; default: as_bad_where (fixP->fx_file, fixP->fx_line, "Unable to process relocation for thumb opcode: %lx", (unsigned long) newval); break; } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_ADD: /* This is a complicated relocation, since we use it for all of the following immediate relocations: 3bit ADD/SUB 8bit ADD/SUB 9bit ADD/SUB SP word-aligned 10bit ADD PC/SP word-aligned The type of instruction being processed is encoded in the instruction field: 0x8000 SUB 0x00F0 Rd 0x000F Rs */ newval = md_chars_to_number (buf, THUMB_SIZE); { int rd = (newval >> 4) & 0xf; int rs = newval & 0xf; int subtract = !!(newval & 0x8000); /* Check for HI regs, only very restricted cases allowed: Adjusting SP, and using PC or SP to get an address. */ if ((rd > 7 && (rd != REG_SP || rs != REG_SP)) || (rs > 7 && rs != REG_SP && rs != REG_PC)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid Hi register with immediate")); /* If value is negative, choose the opposite instruction. */ if (value < 0) { value = -value; subtract = !subtract; if (value < 0) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); } if (rd == REG_SP) { if (value & ~0x1fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for stack address calculation")); newval = subtract ? T_OPCODE_SUB_ST : T_OPCODE_ADD_ST; newval |= value >> 2; } else if (rs == REG_PC || rs == REG_SP) { if (subtract || value & ~0x3fc) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate for address calculation (value = 0x%08lX)"), (unsigned long) value); newval = (rs == REG_PC ? T_OPCODE_ADD_PC : T_OPCODE_ADD_SP); newval |= rd << 8; newval |= value >> 2; } else if (rs == rd) { if (value & ~0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I8 : T_OPCODE_ADD_I8; newval |= (rd << 8) | value; } else { if (value & ~0x7) as_bad_where (fixP->fx_file, fixP->fx_line, _("immediate value out of range")); newval = subtract ? T_OPCODE_SUB_I3 : T_OPCODE_ADD_I3; newval |= rd | (rs << 3) | (value << 6); } } md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_IMM: newval = md_chars_to_number (buf, THUMB_SIZE); if (value < 0 || value > 255) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid immediate: %ld is too large"), (long) value); newval |= value; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_ARM_THUMB_SHIFT: /* 5bit shift value (0..32). LSL cannot take 32. */ newval = md_chars_to_number (buf, THUMB_SIZE) & 0xf83f; temp = newval & 0xf800; if (value < 0 || value > 32 || (value == 32 && temp == T_OPCODE_LSL_I)) as_bad_where (fixP->fx_file, fixP->fx_line, _("invalid shift value: %ld"), (long) value); /* Shifts of zero must be encoded as LSL. */ if (value == 0) newval = (newval & 0x003f) | T_OPCODE_LSL_I; /* Shifts of 32 are encoded as zero. */ else if (value == 32) value = 0; newval |= value << 6; md_number_to_chars (buf, newval, THUMB_SIZE); break; case BFD_RELOC_VTABLE_INHERIT: case BFD_RELOC_VTABLE_ENTRY: fixP->fx_done = 0; return; case BFD_RELOC_ARM_MOVW: case BFD_RELOC_ARM_MOVT: case BFD_RELOC_ARM_THUMB_MOVW: case BFD_RELOC_ARM_THUMB_MOVT: if (fixP->fx_done || !seg->use_rela_p) { /* REL format relocations are limited to a 16-bit addend. */ if (!fixP->fx_done) { if (value < -0x1000 || value > 0xffff) as_bad_where (fixP->fx_file, fixP->fx_line, _("offset too big")); } else if (fixP->fx_r_type == BFD_RELOC_ARM_MOVT || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT) { value >>= 16; } if (fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVW || fixP->fx_r_type == BFD_RELOC_ARM_THUMB_MOVT) { newval = get_thumb32_insn (buf); newval &= 0xfbf08f00; newval |= (value & 0xf000) << 4; newval |= (value & 0x0800) << 15; newval |= (value & 0x0700) << 4; newval |= (value & 0x00ff); put_thumb32_insn (buf, newval); } else { newval = md_chars_to_number (buf, 4); newval &= 0xfff0f000; newval |= value & 0x0fff; newval |= (value & 0xf000) << 4; md_number_to_chars (buf, newval, 4); } } return; case BFD_RELOC_ARM_ALU_PC_G0_NC: case BFD_RELOC_ARM_ALU_PC_G0: case BFD_RELOC_ARM_ALU_PC_G1_NC: case BFD_RELOC_ARM_ALU_PC_G1: case BFD_RELOC_ARM_ALU_PC_G2: case BFD_RELOC_ARM_ALU_SB_G0_NC: case BFD_RELOC_ARM_ALU_SB_G0: case BFD_RELOC_ARM_ALU_SB_G1_NC: case BFD_RELOC_ARM_ALU_SB_G1: case BFD_RELOC_ARM_ALU_SB_G2: assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma encoded_addend; bfd_vma addend_abs = abs (value); /* Check that the absolute value of the addend can be expressed as an 8-bit constant plus a rotation. */ encoded_addend = encode_arm_immediate (addend_abs); if (encoded_addend == (unsigned int) FAIL) as_bad_where (fixP->fx_file, fixP->fx_line, _("the offset 0x%08lX is not representable"), addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is positive, use an ADD instruction. Otherwise use a SUB. Take care not to destroy the S bit. */ insn &= 0xff1fffff; if (value < 0) insn |= 1 << 22; else insn |= 1 << 23; /* Place the encoded addend into the first 12 bits of the instruction. */ insn &= 0xfffff000; insn |= encoded_addend; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDR_PC_G0: case BFD_RELOC_ARM_LDR_PC_G1: case BFD_RELOC_ARM_LDR_PC_G2: case BFD_RELOC_ARM_LDR_SB_G0: case BFD_RELOC_ARM_LDR_SB_G1: case BFD_RELOC_ARM_LDR_SB_G2: assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = abs (value); /* Check that the absolute value of the addend can be encoded in 12 bits. */ if (addend_abs >= 0x1000) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (only 12 bits available for the magnitude)"), addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if (value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the absolute value of the addend into the first 12 bits of the instruction. */ insn &= 0xfffff000; insn |= addend_abs; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDRS_PC_G0: case BFD_RELOC_ARM_LDRS_PC_G1: case BFD_RELOC_ARM_LDRS_PC_G2: case BFD_RELOC_ARM_LDRS_SB_G0: case BFD_RELOC_ARM_LDRS_SB_G1: case BFD_RELOC_ARM_LDRS_SB_G2: assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = abs (value); /* Check that the absolute value of the addend can be encoded in 8 bits. */ if (addend_abs >= 0x100) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (only 8 bits available for the magnitude)"), addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if (value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the first four bits of the absolute value of the addend into the first 4 bits of the instruction, and the remaining four into bits 8 .. 11. */ insn &= 0xfffff0f0; insn |= (addend_abs & 0xf) | ((addend_abs & 0xf0) << 4); /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_ARM_LDC_PC_G0: case BFD_RELOC_ARM_LDC_PC_G1: case BFD_RELOC_ARM_LDC_PC_G2: case BFD_RELOC_ARM_LDC_SB_G0: case BFD_RELOC_ARM_LDC_SB_G1: case BFD_RELOC_ARM_LDC_SB_G2: assert (!fixP->fx_done); if (!seg->use_rela_p) { bfd_vma insn; bfd_vma addend_abs = abs (value); /* Check that the absolute value of the addend is a multiple of four and, when divided by four, fits in 8 bits. */ if (addend_abs & 0x3) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (must be word-aligned)"), addend_abs); if ((addend_abs >> 2) > 0xff) as_bad_where (fixP->fx_file, fixP->fx_line, _("bad offset 0x%08lX (must be an 8-bit number of words)"), addend_abs); /* Extract the instruction. */ insn = md_chars_to_number (buf, INSN_SIZE); /* If the addend is negative, clear bit 23 of the instruction. Otherwise set it. */ if (value < 0) insn &= ~(1 << 23); else insn |= 1 << 23; /* Place the addend (divided by four) into the first eight bits of the instruction. */ insn &= 0xfffffff0; insn |= addend_abs >> 2; /* Update the instruction. */ md_number_to_chars (buf, insn, INSN_SIZE); } break; case BFD_RELOC_UNUSED: default: as_bad_where (fixP->fx_file, fixP->fx_line, _("bad relocation fixup type (%d)"), fixP->fx_r_type); } } /* Translate internal representation of relocation info to BFD target format. */ arelent * tc_gen_reloc (asection *section, fixS *fixp) { arelent * reloc; bfd_reloc_code_real_type code; reloc = xmalloc (sizeof (arelent)); reloc->sym_ptr_ptr = xmalloc (sizeof (asymbol *)); *reloc->sym_ptr_ptr = symbol_get_bfdsym (fixp->fx_addsy); reloc->address = fixp->fx_frag->fr_address + fixp->fx_where; if (fixp->fx_pcrel) { if (section->use_rela_p) fixp->fx_offset -= md_pcrel_from_section (fixp, section); else fixp->fx_offset = reloc->address; } reloc->addend = fixp->fx_offset; switch (fixp->fx_r_type) { case BFD_RELOC_8: if (fixp->fx_pcrel) { code = BFD_RELOC_8_PCREL; break; } case BFD_RELOC_16: if (fixp->fx_pcrel) { code = BFD_RELOC_16_PCREL; break; } case BFD_RELOC_32: if (fixp->fx_pcrel) { code = BFD_RELOC_32_PCREL; break; } case BFD_RELOC_ARM_MOVW: if (fixp->fx_pcrel) { code = BFD_RELOC_ARM_MOVW_PCREL; break; } case BFD_RELOC_ARM_MOVT: if (fixp->fx_pcrel) { code = BFD_RELOC_ARM_MOVT_PCREL; break; } case BFD_RELOC_ARM_THUMB_MOVW: if (fixp->fx_pcrel) { code = BFD_RELOC_ARM_THUMB_MOVW_PCREL; break; } case BFD_RELOC_ARM_THUMB_MOVT: if (fixp->fx_pcrel) { code = BFD_RELOC_ARM_THUMB_MOVT_PCREL; break; } case BFD_RELOC_NONE: case BFD_RELOC_ARM_PCREL_BRANCH: case BFD_RELOC_ARM_PCREL_BLX: case BFD_RELOC_RVA: case BFD_RELOC_THUMB_PCREL_BRANCH7: case BFD_RELOC_THUMB_PCREL_BRANCH9: case BFD_RELOC_THUMB_PCREL_BRANCH12: case BFD_RELOC_THUMB_PCREL_BRANCH20: case BFD_RELOC_THUMB_PCREL_BRANCH23: case BFD_RELOC_THUMB_PCREL_BRANCH25: case BFD_RELOC_THUMB_PCREL_BLX: case BFD_RELOC_VTABLE_ENTRY: case BFD_RELOC_VTABLE_INHERIT: #ifdef TE_PE case BFD_RELOC_32_SECREL: #endif code = fixp->fx_r_type; break; case BFD_RELOC_ARM_LITERAL: case BFD_RELOC_ARM_HWLITERAL: /* If this is called then the a literal has been referenced across a section boundary. */ as_bad_where (fixp->fx_file, fixp->fx_line, _("literal referenced across section boundary")); return NULL; #ifdef OBJ_ELF case BFD_RELOC_ARM_GOT32: case BFD_RELOC_ARM_GOTOFF: case BFD_RELOC_ARM_PLT32: case BFD_RELOC_ARM_TARGET1: case BFD_RELOC_ARM_ROSEGREL32: case BFD_RELOC_ARM_SBREL32: case BFD_RELOC_ARM_PREL31: case BFD_RELOC_ARM_TARGET2: case BFD_RELOC_ARM_TLS_LE32: case BFD_RELOC_ARM_TLS_LDO32: case BFD_RELOC_ARM_PCREL_CALL: case BFD_RELOC_ARM_PCREL_JUMP: case BFD_RELOC_ARM_ALU_PC_G0_NC: case BFD_RELOC_ARM_ALU_PC_G0: case BFD_RELOC_ARM_ALU_PC_G1_NC: case BFD_RELOC_ARM_ALU_PC_G1: case BFD_RELOC_ARM_ALU_PC_G2: case BFD_RELOC_ARM_LDR_PC_G0: case BFD_RELOC_ARM_LDR_PC_G1: case BFD_RELOC_ARM_LDR_PC_G2: case BFD_RELOC_ARM_LDRS_PC_G0: case BFD_RELOC_ARM_LDRS_PC_G1: case BFD_RELOC_ARM_LDRS_PC_G2: case BFD_RELOC_ARM_LDC_PC_G0: case BFD_RELOC_ARM_LDC_PC_G1: case BFD_RELOC_ARM_LDC_PC_G2: case BFD_RELOC_ARM_ALU_SB_G0_NC: case BFD_RELOC_ARM_ALU_SB_G0: case BFD_RELOC_ARM_ALU_SB_G1_NC: case BFD_RELOC_ARM_ALU_SB_G1: case BFD_RELOC_ARM_ALU_SB_G2: case BFD_RELOC_ARM_LDR_SB_G0: case BFD_RELOC_ARM_LDR_SB_G1: case BFD_RELOC_ARM_LDR_SB_G2: case BFD_RELOC_ARM_LDRS_SB_G0: case BFD_RELOC_ARM_LDRS_SB_G1: case BFD_RELOC_ARM_LDRS_SB_G2: case BFD_RELOC_ARM_LDC_SB_G0: case BFD_RELOC_ARM_LDC_SB_G1: case BFD_RELOC_ARM_LDC_SB_G2: code = fixp->fx_r_type; break; case BFD_RELOC_ARM_TLS_GD32: case BFD_RELOC_ARM_TLS_IE32: case BFD_RELOC_ARM_TLS_LDM32: /* BFD will include the symbol's address in the addend. But we don't want that, so subtract it out again here. */ if (!S_IS_COMMON (fixp->fx_addsy)) reloc->addend -= (*reloc->sym_ptr_ptr)->value; code = fixp->fx_r_type; break; #endif case BFD_RELOC_ARM_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("internal relocation (type: IMMEDIATE) not fixed up")); return NULL; case BFD_RELOC_ARM_ADRL_IMMEDIATE: as_bad_where (fixp->fx_file, fixp->fx_line, _("ADRL used for a symbol not defined in the same file")); return NULL; case BFD_RELOC_ARM_OFFSET_IMM: if (section->use_rela_p) { code = fixp->fx_r_type; break; } if (fixp->fx_addsy != NULL && !S_IS_DEFINED (fixp->fx_addsy) && S_IS_LOCAL (fixp->fx_addsy)) { as_bad_where (fixp->fx_file, fixp->fx_line, _("undefined local label `%s'"), S_GET_NAME (fixp->fx_addsy)); return NULL; } as_bad_where (fixp->fx_file, fixp->fx_line, _("internal_relocation (type: OFFSET_IMM) not fixed up")); return NULL; default: { char * type; switch (fixp->fx_r_type) { case BFD_RELOC_NONE: type = "NONE"; break; case BFD_RELOC_ARM_OFFSET_IMM8: type = "OFFSET_IMM8"; break; case BFD_RELOC_ARM_SHIFT_IMM: type = "SHIFT_IMM"; break; case BFD_RELOC_ARM_SMC: type = "SMC"; break; case BFD_RELOC_ARM_SWI: type = "SWI"; break; case BFD_RELOC_ARM_MULTI: type = "MULTI"; break; case BFD_RELOC_ARM_CP_OFF_IMM: type = "CP_OFF_IMM"; break; case BFD_RELOC_ARM_T32_CP_OFF_IMM: type = "T32_CP_OFF_IMM"; break; case BFD_RELOC_ARM_THUMB_ADD: type = "THUMB_ADD"; break; case BFD_RELOC_ARM_THUMB_SHIFT: type = "THUMB_SHIFT"; break; case BFD_RELOC_ARM_THUMB_IMM: type = "THUMB_IMM"; break; case BFD_RELOC_ARM_THUMB_OFFSET: type = "THUMB_OFFSET"; break; default: type = _(""); break; } as_bad_where (fixp->fx_file, fixp->fx_line, _("cannot represent %s relocation in this object file format"), type); return NULL; } } #ifdef OBJ_ELF if ((code == BFD_RELOC_32_PCREL || code == BFD_RELOC_32) && GOT_symbol && fixp->fx_addsy == GOT_symbol) { code = BFD_RELOC_ARM_GOTPC; reloc->addend = fixp->fx_offset = reloc->address; } #endif reloc->howto = bfd_reloc_type_lookup (stdoutput, code); if (reloc->howto == NULL) { as_bad_where (fixp->fx_file, fixp->fx_line, _("cannot represent %s relocation in this object file format"), bfd_get_reloc_code_name (code)); return NULL; } /* HACK: Since arm ELF uses Rel instead of Rela, encode the vtable entry to be used in the relocation's section offset. */ if (fixp->fx_r_type == BFD_RELOC_VTABLE_ENTRY) reloc->address = fixp->fx_offset; return reloc; } /* This fix_new is called by cons via TC_CONS_FIX_NEW. */ void cons_fix_new_arm (fragS * frag, int where, int size, expressionS * exp) { bfd_reloc_code_real_type type; int pcrel = 0; /* Pick a reloc. FIXME: @@ Should look at CPU word size. */ switch (size) { case 1: type = BFD_RELOC_8; break; case 2: type = BFD_RELOC_16; break; case 4: default: type = BFD_RELOC_32; break; case 8: type = BFD_RELOC_64; break; } #ifdef TE_PE if (exp->X_op == O_secrel) { exp->X_op = O_symbol; type = BFD_RELOC_32_SECREL; } #endif fix_new_exp (frag, where, (int) size, exp, pcrel, type); } #if defined OBJ_COFF || defined OBJ_ELF void arm_validate_fix (fixS * fixP) { /* If the destination of the branch is a defined symbol which does not have the THUMB_FUNC attribute, then we must be calling a function which has the (interfacearm) attribute. We look for the Thumb entry point to that function and change the branch to refer to that function instead. */ if (fixP->fx_r_type == BFD_RELOC_THUMB_PCREL_BRANCH23 && fixP->fx_addsy != NULL && S_IS_DEFINED (fixP->fx_addsy) && ! THUMB_IS_FUNC (fixP->fx_addsy)) { fixP->fx_addsy = find_real_start (fixP->fx_addsy); } } #endif int arm_force_relocation (struct fix * fixp) { #if defined (OBJ_COFF) && defined (TE_PE) if (fixp->fx_r_type == BFD_RELOC_RVA) return 1; #endif /* Resolve these relocations even if the symbol is extern or weak. */ if (fixp->fx_r_type == BFD_RELOC_ARM_IMMEDIATE || fixp->fx_r_type == BFD_RELOC_ARM_OFFSET_IMM || fixp->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_IMM || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMMEDIATE || fixp->fx_r_type == BFD_RELOC_ARM_T32_IMM12 || fixp->fx_r_type == BFD_RELOC_ARM_T32_ADD_PC12) return 0; /* Always leave these relocations for the linker. */ if ((fixp->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC && fixp->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2) || fixp->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0) return 1; return generic_force_reloc (fixp); } #ifdef OBJ_COFF bfd_boolean arm_fix_adjustable (fixS * fixP) { /* This is a little hack to help the gas/arm/adrl.s test. It prevents local labels from being added to the output symbol table when they are used with the ADRL pseudo op. The ADRL relocation should always be resolved before the binbary is emitted, so it is safe to say that it is adjustable. */ if (fixP->fx_r_type == BFD_RELOC_ARM_ADRL_IMMEDIATE) return 1; /* This is a hack for the gas/all/redef2.s test. This test causes symbols to be cloned, and without this test relocs would still be generated against the original, pre-cloned symbol. Such symbols would not appear in the symbol table however, and so a valid reloc could not be generated. So check to see if the fixup is against a symbol which has been removed from the symbol chain, and if it is, then allow it to be adjusted into a reloc against a section symbol. */ if (fixP->fx_addsy != NULL && ! S_IS_LOCAL (fixP->fx_addsy) && symbol_next (fixP->fx_addsy) == NULL && symbol_next (fixP->fx_addsy) == symbol_previous (fixP->fx_addsy)) return 1; return 0; } #endif #ifdef OBJ_ELF /* Relocations against function names must be left unadjusted, so that the linker can use this information to generate interworking stubs. The MIPS version of this function also prevents relocations that are mips-16 specific, but I do not know why it does this. FIXME: There is one other problem that ought to be addressed here, but which currently is not: Taking the address of a label (rather than a function) and then later jumping to that address. Such addresses also ought to have their bottom bit set (assuming that they reside in Thumb code), but at the moment they will not. */ bfd_boolean arm_fix_adjustable (fixS * fixP) { if (fixP->fx_addsy == NULL) return 1; /* Preserve relocations against symbols with function type. */ if (symbol_get_bfdsym (fixP->fx_addsy)->flags & BSF_FUNCTION) return 0; if (THUMB_IS_FUNC (fixP->fx_addsy) && fixP->fx_subsy == NULL) return 0; /* We need the symbol name for the VTABLE entries. */ if ( fixP->fx_r_type == BFD_RELOC_VTABLE_INHERIT || fixP->fx_r_type == BFD_RELOC_VTABLE_ENTRY) return 0; /* Don't allow symbols to be discarded on GOT related relocs. */ if (fixP->fx_r_type == BFD_RELOC_ARM_PLT32 || fixP->fx_r_type == BFD_RELOC_ARM_GOT32 || fixP->fx_r_type == BFD_RELOC_ARM_GOTOFF || fixP->fx_r_type == BFD_RELOC_ARM_TLS_GD32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LE32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_IE32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDM32 || fixP->fx_r_type == BFD_RELOC_ARM_TLS_LDO32 || fixP->fx_r_type == BFD_RELOC_ARM_TARGET2) return 0; /* Similarly for group relocations. */ if ((fixP->fx_r_type >= BFD_RELOC_ARM_ALU_PC_G0_NC && fixP->fx_r_type <= BFD_RELOC_ARM_LDC_SB_G2) || fixP->fx_r_type == BFD_RELOC_ARM_LDR_PC_G0) return 0; return 1; } const char * elf32_arm_target_format (void) { #ifdef TE_SYMBIAN return (target_big_endian ? "elf32-bigarm-symbian" : "elf32-littlearm-symbian"); #elif defined (TE_VXWORKS) return (target_big_endian ? "elf32-bigarm-vxworks" : "elf32-littlearm-vxworks"); #else if (target_big_endian) return "elf32-bigarm"; else return "elf32-littlearm"; #endif } void armelf_frob_symbol (symbolS * symp, int * puntp) { elf_frob_symbol (symp, puntp); } #endif /* MD interface: Finalization. */ /* A good place to do this, although this was probably not intended for this kind of use. We need to dump the literal pool before references are made to a null symbol pointer. */ void arm_cleanup (void) { literal_pool * pool; for (pool = list_of_pools; pool; pool = pool->next) { /* Put it at the end of the relevent section. */ subseg_set (pool->section, pool->sub_section); #ifdef OBJ_ELF arm_elf_change_section (); #endif s_ltorg (0); } } /* Adjust the symbol table. This marks Thumb symbols as distinct from ARM ones. */ void arm_adjust_symtab (void) { #ifdef OBJ_COFF symbolS * sym; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { if (THUMB_IS_FUNC (sym)) { /* Mark the symbol as a Thumb function. */ if ( S_GET_STORAGE_CLASS (sym) == C_STAT || S_GET_STORAGE_CLASS (sym) == C_LABEL) /* This can happen! */ S_SET_STORAGE_CLASS (sym, C_THUMBSTATFUNC); else if (S_GET_STORAGE_CLASS (sym) == C_EXT) S_SET_STORAGE_CLASS (sym, C_THUMBEXTFUNC); else as_bad (_("%s: unexpected function type: %d"), S_GET_NAME (sym), S_GET_STORAGE_CLASS (sym)); } else switch (S_GET_STORAGE_CLASS (sym)) { case C_EXT: S_SET_STORAGE_CLASS (sym, C_THUMBEXT); break; case C_STAT: S_SET_STORAGE_CLASS (sym, C_THUMBSTAT); break; case C_LABEL: S_SET_STORAGE_CLASS (sym, C_THUMBLABEL); break; default: /* Do nothing. */ break; } } if (ARM_IS_INTERWORK (sym)) coffsymbol (symbol_get_bfdsym (sym))->native->u.syment.n_flags = 0xFF; } #endif #ifdef OBJ_ELF symbolS * sym; char bind; for (sym = symbol_rootP; sym != NULL; sym = symbol_next (sym)) { if (ARM_IS_THUMB (sym)) { elf_symbol_type * elf_sym; elf_sym = elf_symbol (symbol_get_bfdsym (sym)); bind = ELF_ST_BIND (elf_sym->internal_elf_sym.st_info); if (! bfd_is_arm_special_symbol_name (elf_sym->symbol.name, BFD_ARM_SPECIAL_SYM_TYPE_ANY)) { /* If it's a .thumb_func, declare it as so, otherwise tag label as .code 16. */ if (THUMB_IS_FUNC (sym)) elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_TFUNC); else elf_sym->internal_elf_sym.st_info = ELF_ST_INFO (bind, STT_ARM_16BIT); } } } #endif } /* MD interface: Initialization. */ static void set_constant_flonums (void) { int i; for (i = 0; i < NUM_FLOAT_VALS; i++) if (atof_ieee ((char *) fp_const[i], 'x', fp_values[i]) == NULL) abort (); } /* Auto-select Thumb mode if it's the only available instruction set for the given architecture. */ static void autoselect_thumb_from_cpu_variant (void) { if (!ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v1)) opcode_select (16); } void md_begin (void) { unsigned mach; unsigned int i; if ( (arm_ops_hsh = hash_new ()) == NULL || (arm_cond_hsh = hash_new ()) == NULL || (arm_shift_hsh = hash_new ()) == NULL || (arm_psr_hsh = hash_new ()) == NULL || (arm_v7m_psr_hsh = hash_new ()) == NULL || (arm_reg_hsh = hash_new ()) == NULL || (arm_reloc_hsh = hash_new ()) == NULL || (arm_barrier_opt_hsh = hash_new ()) == NULL) as_fatal (_("virtual memory exhausted")); for (i = 0; i < sizeof (insns) / sizeof (struct asm_opcode); i++) hash_insert (arm_ops_hsh, insns[i].template, (PTR) (insns + i)); for (i = 0; i < sizeof (conds) / sizeof (struct asm_cond); i++) hash_insert (arm_cond_hsh, conds[i].template, (PTR) (conds + i)); for (i = 0; i < sizeof (shift_names) / sizeof (struct asm_shift_name); i++) hash_insert (arm_shift_hsh, shift_names[i].name, (PTR) (shift_names + i)); for (i = 0; i < sizeof (psrs) / sizeof (struct asm_psr); i++) hash_insert (arm_psr_hsh, psrs[i].template, (PTR) (psrs + i)); for (i = 0; i < sizeof (v7m_psrs) / sizeof (struct asm_psr); i++) hash_insert (arm_v7m_psr_hsh, v7m_psrs[i].template, (PTR) (v7m_psrs + i)); for (i = 0; i < sizeof (reg_names) / sizeof (struct reg_entry); i++) hash_insert (arm_reg_hsh, reg_names[i].name, (PTR) (reg_names + i)); for (i = 0; i < sizeof (barrier_opt_names) / sizeof (struct asm_barrier_opt); i++) hash_insert (arm_barrier_opt_hsh, barrier_opt_names[i].template, (PTR) (barrier_opt_names + i)); #ifdef OBJ_ELF for (i = 0; i < sizeof (reloc_names) / sizeof (struct reloc_entry); i++) hash_insert (arm_reloc_hsh, reloc_names[i].name, (PTR) (reloc_names + i)); #endif set_constant_flonums (); /* Set the cpu variant based on the command-line options. We prefer -mcpu= over -march= if both are set (as for GCC); and we prefer -mfpu= over any other way of setting the floating point unit. Use of legacy options with new options are faulted. */ if (legacy_cpu) { if (mcpu_cpu_opt || march_cpu_opt) as_bad (_("use of old and new-style options to set CPU type")); mcpu_cpu_opt = legacy_cpu; } else if (!mcpu_cpu_opt) mcpu_cpu_opt = march_cpu_opt; if (legacy_fpu) { if (mfpu_opt) as_bad (_("use of old and new-style options to set FPU type")); mfpu_opt = legacy_fpu; } else if (!mfpu_opt) { #if !(defined (TE_LINUX) || defined (TE_NetBSD) || defined (TE_VXWORKS)) /* Some environments specify a default FPU. If they don't, infer it from the processor. */ if (mcpu_fpu_opt) mfpu_opt = mcpu_fpu_opt; else mfpu_opt = march_fpu_opt; #else mfpu_opt = &fpu_default; #endif } if (!mfpu_opt) { if (!mcpu_cpu_opt) mfpu_opt = &fpu_default; else if (ARM_CPU_HAS_FEATURE (*mcpu_fpu_opt, arm_ext_v5)) mfpu_opt = &fpu_arch_vfp_v2; else mfpu_opt = &fpu_arch_fpa; } #ifdef CPU_DEFAULT if (!mcpu_cpu_opt) { mcpu_cpu_opt = &cpu_default; selected_cpu = cpu_default; } #else if (mcpu_cpu_opt) selected_cpu = *mcpu_cpu_opt; else mcpu_cpu_opt = &arm_arch_any; #endif ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt); autoselect_thumb_from_cpu_variant (); arm_arch_used = thumb_arch_used = arm_arch_none; #if defined OBJ_COFF || defined OBJ_ELF { unsigned int flags = 0; #if defined OBJ_ELF flags = meabi_flags; switch (meabi_flags) { case EF_ARM_EABI_UNKNOWN: #endif /* Set the flags in the private structure. */ if (uses_apcs_26) flags |= F_APCS26; if (support_interwork) flags |= F_INTERWORK; if (uses_apcs_float) flags |= F_APCS_FLOAT; if (pic_code) flags |= F_PIC; if (!ARM_CPU_HAS_FEATURE (cpu_variant, fpu_any_hard)) flags |= F_SOFT_FLOAT; switch (mfloat_abi_opt) { case ARM_FLOAT_ABI_SOFT: case ARM_FLOAT_ABI_SOFTFP: flags |= F_SOFT_FLOAT; break; case ARM_FLOAT_ABI_HARD: if (flags & F_SOFT_FLOAT) as_bad (_("hard-float conflicts with specified fpu")); break; } /* Using pure-endian doubles (even if soft-float). */ if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_endian_pure)) flags |= F_VFP_FLOAT; #if defined OBJ_ELF if (ARM_CPU_HAS_FEATURE (cpu_variant, fpu_arch_maverick)) flags |= EF_ARM_MAVERICK_FLOAT; break; case EF_ARM_EABI_VER4: case EF_ARM_EABI_VER5: /* No additional flags to set. */ break; default: abort (); } #endif bfd_set_private_flags (stdoutput, flags); /* We have run out flags in the COFF header to encode the status of ATPCS support, so instead we create a dummy, empty, debug section called .arm.atpcs. */ if (atpcs) { asection * sec; sec = bfd_make_section (stdoutput, ".arm.atpcs"); if (sec != NULL) { bfd_set_section_flags (stdoutput, sec, SEC_READONLY | SEC_DEBUGGING /* | SEC_HAS_CONTENTS */); bfd_set_section_size (stdoutput, sec, 0); bfd_set_section_contents (stdoutput, sec, NULL, 0, 0); } } } #endif /* Record the CPU type as well. */ if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_iwmmxt)) mach = bfd_mach_arm_iWMMXt; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_xscale)) mach = bfd_mach_arm_XScale; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_cext_maverick)) mach = bfd_mach_arm_ep9312; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5e)) mach = bfd_mach_arm_5TE; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v5)) { if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t)) mach = bfd_mach_arm_5T; else mach = bfd_mach_arm_5; } else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4)) { if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v4t)) mach = bfd_mach_arm_4T; else mach = bfd_mach_arm_4; } else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3m)) mach = bfd_mach_arm_3M; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v3)) mach = bfd_mach_arm_3; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2s)) mach = bfd_mach_arm_2a; else if (ARM_CPU_HAS_FEATURE (cpu_variant, arm_ext_v2)) mach = bfd_mach_arm_2; else mach = bfd_mach_arm_unknown; bfd_set_arch_mach (stdoutput, TARGET_ARCH, mach); } /* Command line processing. */ /* md_parse_option Invocation line includes a switch not recognized by the base assembler. See if it's a processor-specific option. This routine is somewhat complicated by the need for backwards compatibility (since older releases of gcc can't be changed). The new options try to make the interface as compatible as possible with GCC. New options (supported) are: -mcpu= Assemble for selected processor -march= Assemble for selected architecture -mfpu= Assemble for selected FPU. -EB/-mbig-endian Big-endian -EL/-mlittle-endian Little-endian -k Generate PIC code -mthumb Start in Thumb mode -mthumb-interwork Code supports ARM/Thumb interworking For now we will also provide support for: -mapcs-32 32-bit Program counter -mapcs-26 26-bit Program counter -macps-float Floats passed in FP registers -mapcs-reentrant Reentrant code -matpcs (sometime these will probably be replaced with -mapcs= and -matpcs=) The remaining options are only supported for back-wards compatibility. Cpu variants, the arm part is optional: -m[arm]1 Currently not supported. -m[arm]2, -m[arm]250 Arm 2 and Arm 250 processor -m[arm]3 Arm 3 processor -m[arm]6[xx], Arm 6 processors -m[arm]7[xx][t][[d]m] Arm 7 processors -m[arm]8[10] Arm 8 processors -m[arm]9[20][tdmi] Arm 9 processors -mstrongarm[110[0]] StrongARM processors -mxscale XScale processors -m[arm]v[2345[t[e]]] Arm architectures -mall All (except the ARM1) FP variants: -mfpa10, -mfpa11 FPA10 and 11 co-processor instructions -mfpe-old (No float load/store multiples) -mvfpxd VFP Single precision -mvfp All VFP -mno-fpu Disable all floating point instructions The following CPU names are recognized: arm1, arm2, arm250, arm3, arm6, arm600, arm610, arm620, arm7, arm7m, arm7d, arm7dm, arm7di, arm7dmi, arm70, arm700, arm700i, arm710 arm710t, arm720, arm720t, arm740t, arm710c, arm7100, arm7500, arm7500fe, arm7tdmi, arm8, arm810, arm9, arm920, arm920t, arm940t, arm946, arm966, arm9tdmi, arm9e, arm10t arm10e, arm1020t, arm1020e, arm10200e, strongarm, strongarm110, strongarm1100, strongarm1110, xscale. */ const char * md_shortopts = "m:k"; #ifdef ARM_BI_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) #define OPTION_EL (OPTION_MD_BASE + 1) #else #if TARGET_BYTES_BIG_ENDIAN #define OPTION_EB (OPTION_MD_BASE + 0) #else #define OPTION_EL (OPTION_MD_BASE + 1) #endif #endif struct option md_longopts[] = { #ifdef OPTION_EB {"EB", no_argument, NULL, OPTION_EB}, #endif #ifdef OPTION_EL {"EL", no_argument, NULL, OPTION_EL}, #endif {NULL, no_argument, NULL, 0} }; size_t md_longopts_size = sizeof (md_longopts); struct arm_option_table { char *option; /* Option name to match. */ char *help; /* Help information. */ int *var; /* Variable to change. */ int value; /* What to change it to. */ char *deprecated; /* If non-null, print this message. */ }; struct arm_option_table arm_opts[] = { {"k", N_("generate PIC code"), &pic_code, 1, NULL}, {"mthumb", N_("assemble Thumb code"), &thumb_mode, 1, NULL}, {"mthumb-interwork", N_("support ARM/Thumb interworking"), &support_interwork, 1, NULL}, {"mapcs-32", N_("code uses 32-bit program counter"), &uses_apcs_26, 0, NULL}, {"mapcs-26", N_("code uses 26-bit program counter"), &uses_apcs_26, 1, NULL}, {"mapcs-float", N_("floating point args are in fp regs"), &uses_apcs_float, 1, NULL}, {"mapcs-reentrant", N_("re-entrant code"), &pic_code, 1, NULL}, {"matpcs", N_("code is ATPCS conformant"), &atpcs, 1, NULL}, {"mbig-endian", N_("assemble for big-endian"), &target_big_endian, 1, NULL}, {"mlittle-endian", N_("assemble for little-endian"), &target_big_endian, 0, NULL}, /* These are recognized by the assembler, but have no affect on code. */ {"mapcs-frame", N_("use frame pointer"), NULL, 0, NULL}, {"mapcs-stack-check", N_("use stack size checking"), NULL, 0, NULL}, {NULL, NULL, NULL, 0, NULL} }; struct arm_legacy_option_table { char *option; /* Option name to match. */ const arm_feature_set **var; /* Variable to change. */ const arm_feature_set value; /* What to change it to. */ char *deprecated; /* If non-null, print this message. */ }; const struct arm_legacy_option_table arm_legacy_opts[] = { /* DON'T add any new processors to this list -- we want the whole list to go away... Add them to the processors table instead. */ {"marm1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")}, {"m1", &legacy_cpu, ARM_ARCH_V1, N_("use -mcpu=arm1")}, {"marm2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")}, {"m2", &legacy_cpu, ARM_ARCH_V2, N_("use -mcpu=arm2")}, {"marm250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")}, {"m250", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm250")}, {"marm3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")}, {"m3", &legacy_cpu, ARM_ARCH_V2S, N_("use -mcpu=arm3")}, {"marm6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")}, {"m6", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm6")}, {"marm600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")}, {"m600", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm600")}, {"marm610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")}, {"m610", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm610")}, {"marm620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")}, {"m620", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm620")}, {"marm7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")}, {"m7", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7")}, {"marm70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")}, {"m70", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm70")}, {"marm700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")}, {"m700", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700")}, {"marm700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")}, {"m700i", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm700i")}, {"marm710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")}, {"m710", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710")}, {"marm710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")}, {"m710c", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm710c")}, {"marm720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")}, {"m720", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm720")}, {"marm7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")}, {"m7d", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7d")}, {"marm7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")}, {"m7di", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7di")}, {"marm7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")}, {"m7m", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7m")}, {"marm7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")}, {"m7dm", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dm")}, {"marm7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")}, {"m7dmi", &legacy_cpu, ARM_ARCH_V3M, N_("use -mcpu=arm7dmi")}, {"marm7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")}, {"m7100", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7100")}, {"marm7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")}, {"m7500", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500")}, {"marm7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")}, {"m7500fe", &legacy_cpu, ARM_ARCH_V3, N_("use -mcpu=arm7500fe")}, {"marm7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"m7t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"marm7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"m7tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm7tdmi")}, {"marm710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")}, {"m710t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm710t")}, {"marm720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")}, {"m720t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm720t")}, {"marm740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")}, {"m740t", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm740t")}, {"marm8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")}, {"m8", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm8")}, {"marm810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")}, {"m810", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=arm810")}, {"marm9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")}, {"m9", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9")}, {"marm9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")}, {"m9tdmi", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm9tdmi")}, {"marm920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")}, {"m920", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm920")}, {"marm940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")}, {"m940", &legacy_cpu, ARM_ARCH_V4T, N_("use -mcpu=arm940")}, {"mstrongarm", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm")}, {"mstrongarm110", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm110")}, {"mstrongarm1100", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm1100")}, {"mstrongarm1110", &legacy_cpu, ARM_ARCH_V4, N_("use -mcpu=strongarm1110")}, {"mxscale", &legacy_cpu, ARM_ARCH_XSCALE, N_("use -mcpu=xscale")}, {"miwmmxt", &legacy_cpu, ARM_ARCH_IWMMXT, N_("use -mcpu=iwmmxt")}, {"mall", &legacy_cpu, ARM_ANY, N_("use -mcpu=all")}, /* Architecture variants -- don't add any more to this list either. */ {"mv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")}, {"marmv2", &legacy_cpu, ARM_ARCH_V2, N_("use -march=armv2")}, {"mv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")}, {"marmv2a", &legacy_cpu, ARM_ARCH_V2S, N_("use -march=armv2a")}, {"mv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")}, {"marmv3", &legacy_cpu, ARM_ARCH_V3, N_("use -march=armv3")}, {"mv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")}, {"marmv3m", &legacy_cpu, ARM_ARCH_V3M, N_("use -march=armv3m")}, {"mv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")}, {"marmv4", &legacy_cpu, ARM_ARCH_V4, N_("use -march=armv4")}, {"mv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")}, {"marmv4t", &legacy_cpu, ARM_ARCH_V4T, N_("use -march=armv4t")}, {"mv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")}, {"marmv5", &legacy_cpu, ARM_ARCH_V5, N_("use -march=armv5")}, {"mv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")}, {"marmv5t", &legacy_cpu, ARM_ARCH_V5T, N_("use -march=armv5t")}, {"mv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")}, {"marmv5e", &legacy_cpu, ARM_ARCH_V5TE, N_("use -march=armv5te")}, /* Floating point variants -- don't add any more to this list either. */ {"mfpe-old", &legacy_fpu, FPU_ARCH_FPE, N_("use -mfpu=fpe")}, {"mfpa10", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa10")}, {"mfpa11", &legacy_fpu, FPU_ARCH_FPA, N_("use -mfpu=fpa11")}, {"mno-fpu", &legacy_fpu, ARM_ARCH_NONE, N_("use either -mfpu=softfpa or -mfpu=softvfp")}, {NULL, NULL, ARM_ARCH_NONE, NULL} }; struct arm_cpu_option_table { char *name; const arm_feature_set value; /* For some CPUs we assume an FPU unless the user explicitly sets -mfpu=... */ const arm_feature_set default_fpu; /* The canonical name of the CPU, or NULL to use NAME converted to upper case. */ const char *canonical_name; }; /* This list should, at a minimum, contain all the cpu names recognized by GCC. */ static const struct arm_cpu_option_table arm_cpus[] = { {"all", ARM_ANY, FPU_ARCH_FPA, NULL}, {"arm1", ARM_ARCH_V1, FPU_ARCH_FPA, NULL}, {"arm2", ARM_ARCH_V2, FPU_ARCH_FPA, NULL}, {"arm250", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL}, {"arm3", ARM_ARCH_V2S, FPU_ARCH_FPA, NULL}, {"arm6", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm60", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm600", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm610", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm620", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7m", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL}, {"arm7d", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7dm", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL}, {"arm7di", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7dmi", ARM_ARCH_V3M, FPU_ARCH_FPA, NULL}, {"arm70", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm700", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm700i", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm710", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm710t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm720", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm720t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm740t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm710c", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7100", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7500", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7500fe", ARM_ARCH_V3, FPU_ARCH_FPA, NULL}, {"arm7t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm7tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm7tdmi-s", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm8", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"arm810", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"strongarm", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"strongarm1", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"strongarm110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"strongarm1100", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"strongarm1110", ARM_ARCH_V4, FPU_ARCH_FPA, NULL}, {"arm9", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm920", ARM_ARCH_V4T, FPU_ARCH_FPA, "ARM920T"}, {"arm920t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm922t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm940t", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, {"arm9tdmi", ARM_ARCH_V4T, FPU_ARCH_FPA, NULL}, /* For V5 or later processors we default to using VFP; but the user should really set the FPU type explicitly. */ {"arm9e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL}, {"arm9e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm926ej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"}, {"arm926ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM926EJ-S"}, {"arm926ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL}, {"arm946e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL}, {"arm946e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM946E-S"}, {"arm946e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm966e-r0", ARM_ARCH_V5TExP, FPU_ARCH_VFP_V2, NULL}, {"arm966e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM966E-S"}, {"arm966e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm968e-s", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm10t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL}, {"arm10tdmi", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL}, {"arm10e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm1020", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, "ARM1020E"}, {"arm1020t", ARM_ARCH_V5T, FPU_ARCH_VFP_V1, NULL}, {"arm1020e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm1022e", ARM_ARCH_V5TE, FPU_ARCH_VFP_V2, NULL}, {"arm1026ejs", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, "ARM1026EJ-S"}, {"arm1026ej-s", ARM_ARCH_V5TEJ, FPU_ARCH_VFP_V2, NULL}, {"arm1136js", ARM_ARCH_V6, FPU_NONE, "ARM1136J-S"}, {"arm1136j-s", ARM_ARCH_V6, FPU_NONE, NULL}, {"arm1136jfs", ARM_ARCH_V6, FPU_ARCH_VFP_V2, "ARM1136JF-S"}, {"arm1136jf-s", ARM_ARCH_V6, FPU_ARCH_VFP_V2, NULL}, {"mpcore", ARM_ARCH_V6K, FPU_ARCH_VFP_V2, NULL}, {"mpcorenovfp", ARM_ARCH_V6K, FPU_NONE, NULL}, {"arm1156t2-s", ARM_ARCH_V6T2, FPU_NONE, NULL}, {"arm1156t2f-s", ARM_ARCH_V6T2, FPU_ARCH_VFP_V2, NULL}, {"arm1176jz-s", ARM_ARCH_V6ZK, FPU_NONE, NULL}, {"arm1176jzf-s", ARM_ARCH_V6ZK, FPU_ARCH_VFP_V2, NULL}, {"cortex-a8", ARM_ARCH_V7A, ARM_FEATURE(0, FPU_VFP_V3 | FPU_NEON_EXT_V1), NULL}, {"cortex-r4", ARM_ARCH_V7R, FPU_NONE, NULL}, {"cortex-m3", ARM_ARCH_V7M, FPU_NONE, NULL}, /* ??? XSCALE is really an architecture. */ {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL}, /* ??? iwmmxt is not a processor. */ {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP_V2, NULL}, {"i80200", ARM_ARCH_XSCALE, FPU_ARCH_VFP_V2, NULL}, /* Maverick */ {"ep9312", ARM_FEATURE(ARM_AEXT_V4T, ARM_CEXT_MAVERICK), FPU_ARCH_MAVERICK, "ARM920T"}, {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE, NULL} }; struct arm_arch_option_table { char *name; const arm_feature_set value; const arm_feature_set default_fpu; }; /* This list should, at a minimum, contain all the architecture names recognized by GCC. */ static const struct arm_arch_option_table arm_archs[] = { {"all", ARM_ANY, FPU_ARCH_FPA}, {"armv1", ARM_ARCH_V1, FPU_ARCH_FPA}, {"armv2", ARM_ARCH_V2, FPU_ARCH_FPA}, {"armv2a", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"armv2s", ARM_ARCH_V2S, FPU_ARCH_FPA}, {"armv3", ARM_ARCH_V3, FPU_ARCH_FPA}, {"armv3m", ARM_ARCH_V3M, FPU_ARCH_FPA}, {"armv4", ARM_ARCH_V4, FPU_ARCH_FPA}, {"armv4xm", ARM_ARCH_V4xM, FPU_ARCH_FPA}, {"armv4t", ARM_ARCH_V4T, FPU_ARCH_FPA}, {"armv4txm", ARM_ARCH_V4TxM, FPU_ARCH_FPA}, {"armv5", ARM_ARCH_V5, FPU_ARCH_VFP}, {"armv5t", ARM_ARCH_V5T, FPU_ARCH_VFP}, {"armv5txm", ARM_ARCH_V5TxM, FPU_ARCH_VFP}, {"armv5te", ARM_ARCH_V5TE, FPU_ARCH_VFP}, {"armv5texp", ARM_ARCH_V5TExP, FPU_ARCH_VFP}, {"armv5tej", ARM_ARCH_V5TEJ, FPU_ARCH_VFP}, {"armv6", ARM_ARCH_V6, FPU_ARCH_VFP}, {"armv6j", ARM_ARCH_V6, FPU_ARCH_VFP}, {"armv6k", ARM_ARCH_V6K, FPU_ARCH_VFP}, {"armv6z", ARM_ARCH_V6Z, FPU_ARCH_VFP}, {"armv6zk", ARM_ARCH_V6ZK, FPU_ARCH_VFP}, {"armv6t2", ARM_ARCH_V6T2, FPU_ARCH_VFP}, {"armv6kt2", ARM_ARCH_V6KT2, FPU_ARCH_VFP}, {"armv6zt2", ARM_ARCH_V6ZT2, FPU_ARCH_VFP}, {"armv6zkt2", ARM_ARCH_V6ZKT2, FPU_ARCH_VFP}, {"armv7", ARM_ARCH_V7, FPU_ARCH_VFP}, {"armv7a", ARM_ARCH_V7A, FPU_ARCH_VFP}, {"armv7r", ARM_ARCH_V7R, FPU_ARCH_VFP}, {"armv7m", ARM_ARCH_V7M, FPU_ARCH_VFP}, {"xscale", ARM_ARCH_XSCALE, FPU_ARCH_VFP}, {"iwmmxt", ARM_ARCH_IWMMXT, FPU_ARCH_VFP}, {NULL, ARM_ARCH_NONE, ARM_ARCH_NONE} }; /* ISA extensions in the co-processor space. */ struct arm_option_cpu_value_table { char *name; const arm_feature_set value; }; static const struct arm_option_cpu_value_table arm_extensions[] = { {"maverick", ARM_FEATURE (0, ARM_CEXT_MAVERICK)}, {"xscale", ARM_FEATURE (0, ARM_CEXT_XSCALE)}, {"iwmmxt", ARM_FEATURE (0, ARM_CEXT_IWMMXT)}, {NULL, ARM_ARCH_NONE} }; /* This list should, at a minimum, contain all the fpu names recognized by GCC. */ static const struct arm_option_cpu_value_table arm_fpus[] = { {"softfpa", FPU_NONE}, {"fpe", FPU_ARCH_FPE}, {"fpe2", FPU_ARCH_FPE}, {"fpe3", FPU_ARCH_FPA}, /* Third release supports LFM/SFM. */ {"fpa", FPU_ARCH_FPA}, {"fpa10", FPU_ARCH_FPA}, {"fpa11", FPU_ARCH_FPA}, {"arm7500fe", FPU_ARCH_FPA}, {"softvfp", FPU_ARCH_VFP}, {"softvfp+vfp", FPU_ARCH_VFP_V2}, {"vfp", FPU_ARCH_VFP_V2}, {"vfp9", FPU_ARCH_VFP_V2}, {"vfp3", FPU_ARCH_VFP_V3}, {"vfp10", FPU_ARCH_VFP_V2}, {"vfp10-r0", FPU_ARCH_VFP_V1}, {"vfpxd", FPU_ARCH_VFP_V1xD}, {"arm1020t", FPU_ARCH_VFP_V1}, {"arm1020e", FPU_ARCH_VFP_V2}, {"arm1136jfs", FPU_ARCH_VFP_V2}, {"arm1136jf-s", FPU_ARCH_VFP_V2}, {"maverick", FPU_ARCH_MAVERICK}, {"neon", FPU_ARCH_VFP_V3_PLUS_NEON_V1}, {NULL, ARM_ARCH_NONE} }; struct arm_option_value_table { char *name; long value; }; static const struct arm_option_value_table arm_float_abis[] = { {"hard", ARM_FLOAT_ABI_HARD}, {"softfp", ARM_FLOAT_ABI_SOFTFP}, {"soft", ARM_FLOAT_ABI_SOFT}, {NULL, 0} }; #ifdef OBJ_ELF /* We only know how to output GNU and ver 4/5 (AAELF) formats. */ static const struct arm_option_value_table arm_eabis[] = { {"gnu", EF_ARM_EABI_UNKNOWN}, {"4", EF_ARM_EABI_VER4}, {"5", EF_ARM_EABI_VER5}, {NULL, 0} }; #endif struct arm_long_option_table { char * option; /* Substring to match. */ char * help; /* Help information. */ int (* func) (char * subopt); /* Function to decode sub-option. */ char * deprecated; /* If non-null, print this message. */ }; static int arm_parse_extension (char * str, const arm_feature_set **opt_p) { arm_feature_set *ext_set = xmalloc (sizeof (arm_feature_set)); /* Copy the feature set, so that we can modify it. */ *ext_set = **opt_p; *opt_p = ext_set; while (str != NULL && *str != 0) { const struct arm_option_cpu_value_table * opt; char * ext; int optlen; if (*str != '+') { as_bad (_("invalid architectural extension")); return 0; } str++; ext = strchr (str, '+'); if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing architectural extension")); return 0; } for (opt = arm_extensions; opt->name != NULL; opt++) if (strncmp (opt->name, str, optlen) == 0) { ARM_MERGE_FEATURE_SETS (*ext_set, *ext_set, opt->value); break; } if (opt->name == NULL) { as_bad (_("unknown architectural extnsion `%s'"), str); return 0; } str = ext; }; return 1; } static int arm_parse_cpu (char * str) { const struct arm_cpu_option_table * opt; char * ext = strchr (str, '+'); int optlen; if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing cpu name `%s'"), str); return 0; } for (opt = arm_cpus; opt->name != NULL; opt++) if (strncmp (opt->name, str, optlen) == 0) { mcpu_cpu_opt = &opt->value; mcpu_fpu_opt = &opt->default_fpu; if (opt->canonical_name) strcpy(selected_cpu_name, opt->canonical_name); else { int i; for (i = 0; i < optlen; i++) selected_cpu_name[i] = TOUPPER (opt->name[i]); selected_cpu_name[i] = 0; } if (ext != NULL) return arm_parse_extension (ext, &mcpu_cpu_opt); return 1; } as_bad (_("unknown cpu `%s'"), str); return 0; } static int arm_parse_arch (char * str) { const struct arm_arch_option_table *opt; char *ext = strchr (str, '+'); int optlen; if (ext != NULL) optlen = ext - str; else optlen = strlen (str); if (optlen == 0) { as_bad (_("missing architecture name `%s'"), str); return 0; } for (opt = arm_archs; opt->name != NULL; opt++) if (streq (opt->name, str)) { march_cpu_opt = &opt->value; march_fpu_opt = &opt->default_fpu; strcpy(selected_cpu_name, opt->name); if (ext != NULL) return arm_parse_extension (ext, &march_cpu_opt); return 1; } as_bad (_("unknown architecture `%s'\n"), str); return 0; } static int arm_parse_fpu (char * str) { const struct arm_option_cpu_value_table * opt; for (opt = arm_fpus; opt->name != NULL; opt++) if (streq (opt->name, str)) { mfpu_opt = &opt->value; return 1; } as_bad (_("unknown floating point format `%s'\n"), str); return 0; } static int arm_parse_float_abi (char * str) { const struct arm_option_value_table * opt; for (opt = arm_float_abis; opt->name != NULL; opt++) if (streq (opt->name, str)) { mfloat_abi_opt = opt->value; return 1; } as_bad (_("unknown floating point abi `%s'\n"), str); return 0; } #ifdef OBJ_ELF static int arm_parse_eabi (char * str) { const struct arm_option_value_table *opt; for (opt = arm_eabis; opt->name != NULL; opt++) if (streq (opt->name, str)) { meabi_flags = opt->value; return 1; } as_bad (_("unknown EABI `%s'\n"), str); return 0; } #endif struct arm_long_option_table arm_long_opts[] = { {"mcpu=", N_("\t assemble for CPU "), arm_parse_cpu, NULL}, {"march=", N_("\t assemble for architecture "), arm_parse_arch, NULL}, {"mfpu=", N_("\t assemble for FPU architecture "), arm_parse_fpu, NULL}, {"mfloat-abi=", N_("\t assemble for floating point ABI "), arm_parse_float_abi, NULL}, #ifdef OBJ_ELF {"meabi=", N_("\t assemble for eabi version "), arm_parse_eabi, NULL}, #endif {NULL, NULL, 0, NULL} }; int md_parse_option (int c, char * arg) { struct arm_option_table *opt; const struct arm_legacy_option_table *fopt; struct arm_long_option_table *lopt; switch (c) { #ifdef OPTION_EB case OPTION_EB: target_big_endian = 1; break; #endif #ifdef OPTION_EL case OPTION_EL: target_big_endian = 0; break; #endif case 'a': /* Listing option. Just ignore these, we don't support additional ones. */ return 0; default: for (opt = arm_opts; opt->option != NULL; opt++) { if (c == opt->option[0] && ((arg == NULL && opt->option[1] == 0) || streq (arg, opt->option + 1))) { #if WARN_DEPRECATED /* If the option is deprecated, tell the user. */ if (opt->deprecated != NULL) as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg ? arg : "", _(opt->deprecated)); #endif if (opt->var != NULL) *opt->var = opt->value; return 1; } } for (fopt = arm_legacy_opts; fopt->option != NULL; fopt++) { if (c == fopt->option[0] && ((arg == NULL && fopt->option[1] == 0) || streq (arg, fopt->option + 1))) { #if WARN_DEPRECATED /* If the option is deprecated, tell the user. */ if (fopt->deprecated != NULL) as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg ? arg : "", _(fopt->deprecated)); #endif if (fopt->var != NULL) *fopt->var = &fopt->value; return 1; } } for (lopt = arm_long_opts; lopt->option != NULL; lopt++) { /* These options are expected to have an argument. */ if (c == lopt->option[0] && arg != NULL && strncmp (arg, lopt->option + 1, strlen (lopt->option + 1)) == 0) { #if WARN_DEPRECATED /* If the option is deprecated, tell the user. */ if (lopt->deprecated != NULL) as_tsktsk (_("option `-%c%s' is deprecated: %s"), c, arg, _(lopt->deprecated)); #endif /* Call the sup-option parser. */ return lopt->func (arg + strlen (lopt->option) - 1); } } return 0; } return 1; } void md_show_usage (FILE * fp) { struct arm_option_table *opt; struct arm_long_option_table *lopt; fprintf (fp, _(" ARM-specific assembler options:\n")); for (opt = arm_opts; opt->option != NULL; opt++) if (opt->help != NULL) fprintf (fp, " -%-23s%s\n", opt->option, _(opt->help)); for (lopt = arm_long_opts; lopt->option != NULL; lopt++) if (lopt->help != NULL) fprintf (fp, " -%s%s\n", lopt->option, _(lopt->help)); #ifdef OPTION_EB fprintf (fp, _("\ -EB assemble code for a big-endian cpu\n")); #endif #ifdef OPTION_EL fprintf (fp, _("\ -EL assemble code for a little-endian cpu\n")); #endif } #ifdef OBJ_ELF typedef struct { int val; arm_feature_set flags; } cpu_arch_ver_table; /* Mapping from CPU features to EABI CPU arch values. Table must be sorted least features first. */ static const cpu_arch_ver_table cpu_arch_ver[] = { {1, ARM_ARCH_V4}, {2, ARM_ARCH_V4T}, {3, ARM_ARCH_V5}, {4, ARM_ARCH_V5TE}, {5, ARM_ARCH_V5TEJ}, {6, ARM_ARCH_V6}, {7, ARM_ARCH_V6Z}, {8, ARM_ARCH_V6K}, {9, ARM_ARCH_V6T2}, {10, ARM_ARCH_V7A}, {10, ARM_ARCH_V7R}, {10, ARM_ARCH_V7M}, {0, ARM_ARCH_NONE} }; /* Set the public EABI object attributes. */ static void aeabi_set_public_attributes (void) { int arch; arm_feature_set flags; arm_feature_set tmp; const cpu_arch_ver_table *p; /* Choose the architecture based on the capabilities of the requested cpu (if any) and/or the instructions actually used. */ ARM_MERGE_FEATURE_SETS (flags, arm_arch_used, thumb_arch_used); ARM_MERGE_FEATURE_SETS (flags, flags, *mfpu_opt); ARM_MERGE_FEATURE_SETS (flags, flags, selected_cpu); tmp = flags; arch = 0; for (p = cpu_arch_ver; p->val; p++) { if (ARM_CPU_HAS_FEATURE (tmp, p->flags)) { arch = p->val; ARM_CLEAR_FEATURE (tmp, tmp, p->flags); } } /* Tag_CPU_name. */ if (selected_cpu_name[0]) { char *p; p = selected_cpu_name; if (strncmp(p, "armv", 4) == 0) { int i; p += 4; for (i = 0; p[i]; i++) p[i] = TOUPPER (p[i]); } elf32_arm_add_eabi_attr_string (stdoutput, 5, p); } /* Tag_CPU_arch. */ elf32_arm_add_eabi_attr_int (stdoutput, 6, arch); /* Tag_CPU_arch_profile. */ if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7a)) elf32_arm_add_eabi_attr_int (stdoutput, 7, 'A'); else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7r)) elf32_arm_add_eabi_attr_int (stdoutput, 7, 'R'); else if (ARM_CPU_HAS_FEATURE (flags, arm_ext_v7m)) elf32_arm_add_eabi_attr_int (stdoutput, 7, 'M'); /* Tag_ARM_ISA_use. */ if (ARM_CPU_HAS_FEATURE (arm_arch_used, arm_arch_full)) elf32_arm_add_eabi_attr_int (stdoutput, 8, 1); /* Tag_THUMB_ISA_use. */ if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_full)) elf32_arm_add_eabi_attr_int (stdoutput, 9, ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_arch_t2) ? 2 : 1); /* Tag_VFP_arch. */ if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v3) || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v3)) elf32_arm_add_eabi_attr_int (stdoutput, 10, 3); else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v2) || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v2)) elf32_arm_add_eabi_attr_int (stdoutput, 10, 2); else if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1) || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1) || ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_vfp_ext_v1xd) || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_vfp_ext_v1xd)) elf32_arm_add_eabi_attr_int (stdoutput, 10, 1); /* Tag_WMMX_arch. */ if (ARM_CPU_HAS_FEATURE (thumb_arch_used, arm_cext_iwmmxt) || ARM_CPU_HAS_FEATURE (arm_arch_used, arm_cext_iwmmxt)) elf32_arm_add_eabi_attr_int (stdoutput, 11, 1); /* Tag_NEON_arch. */ if (ARM_CPU_HAS_FEATURE (thumb_arch_used, fpu_neon_ext_v1) || ARM_CPU_HAS_FEATURE (arm_arch_used, fpu_neon_ext_v1)) elf32_arm_add_eabi_attr_int (stdoutput, 12, 1); } /* Add the .ARM.attributes section. */ void arm_md_end (void) { segT s; char *p; addressT addr; offsetT size; if (EF_ARM_EABI_VERSION (meabi_flags) < EF_ARM_EABI_VER4) return; aeabi_set_public_attributes (); size = elf32_arm_eabi_attr_size (stdoutput); s = subseg_new (".ARM.attributes", 0); bfd_set_section_flags (stdoutput, s, SEC_READONLY | SEC_DATA); addr = frag_now_fix (); p = frag_more (size); elf32_arm_set_eabi_attr_contents (stdoutput, (bfd_byte *)p, size); } #endif /* OBJ_ELF */ /* Parse a .cpu directive. */ static void s_arm_cpu (int ignored ATTRIBUTE_UNUSED) { const struct arm_cpu_option_table *opt; char *name; char saved_char; name = input_line_pointer; while (*input_line_pointer && !ISSPACE(*input_line_pointer)) input_line_pointer++; saved_char = *input_line_pointer; *input_line_pointer = 0; /* Skip the first "all" entry. */ for (opt = arm_cpus + 1; opt->name != NULL; opt++) if (streq (opt->name, name)) { mcpu_cpu_opt = &opt->value; selected_cpu = opt->value; if (opt->canonical_name) strcpy(selected_cpu_name, opt->canonical_name); else { int i; for (i = 0; opt->name[i]; i++) selected_cpu_name[i] = TOUPPER (opt->name[i]); selected_cpu_name[i] = 0; } ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt); *input_line_pointer = saved_char; demand_empty_rest_of_line (); return; } as_bad (_("unknown cpu `%s'"), name); *input_line_pointer = saved_char; ignore_rest_of_line (); } /* Parse a .arch directive. */ static void s_arm_arch (int ignored ATTRIBUTE_UNUSED) { const struct arm_arch_option_table *opt; char saved_char; char *name; name = input_line_pointer; while (*input_line_pointer && !ISSPACE(*input_line_pointer)) input_line_pointer++; saved_char = *input_line_pointer; *input_line_pointer = 0; /* Skip the first "all" entry. */ for (opt = arm_archs + 1; opt->name != NULL; opt++) if (streq (opt->name, name)) { mcpu_cpu_opt = &opt->value; selected_cpu = opt->value; strcpy(selected_cpu_name, opt->name); ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt); *input_line_pointer = saved_char; demand_empty_rest_of_line (); return; } as_bad (_("unknown architecture `%s'\n"), name); *input_line_pointer = saved_char; ignore_rest_of_line (); } /* Parse a .fpu directive. */ static void s_arm_fpu (int ignored ATTRIBUTE_UNUSED) { const struct arm_option_cpu_value_table *opt; char saved_char; char *name; name = input_line_pointer; while (*input_line_pointer && !ISSPACE(*input_line_pointer)) input_line_pointer++; saved_char = *input_line_pointer; *input_line_pointer = 0; for (opt = arm_fpus; opt->name != NULL; opt++) if (streq (opt->name, name)) { mfpu_opt = &opt->value; ARM_MERGE_FEATURE_SETS (cpu_variant, *mcpu_cpu_opt, *mfpu_opt); *input_line_pointer = saved_char; demand_empty_rest_of_line (); return; } as_bad (_("unknown floating point format `%s'\n"), name); *input_line_pointer = saved_char; ignore_rest_of_line (); }