/* BFD back-end for verilog hex memory dump files. Copyright (C) 2009-2025 Free Software Foundation, Inc. Written by Anthony Green This file is part of BFD, the Binary File Descriptor library. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston, MA 02110-1301, USA. */ /* SUBSECTION Verilog hex memory file handling DESCRIPTION Verilog hex memory files cannot hold anything but addresses and data, so that's all that we implement. The syntax of the text file is described in the IEEE standard for Verilog. Briefly, the file contains two types of tokens: data and optional addresses. The tokens are separated by whitespace and comments. Comments may be single line or multiline, using syntax similar to C++. Addresses are specified by a leading "at" character (@) and are always hexadecimal strings. Data and addresses may contain underscore (_) characters. If no address is specified, the data is assumed to start at address 0. Similarly, if data exists before the first specified address, then that data is assumed to start at address 0. EXAMPLE @1000 01 ae 3f 45 12 DESCRIPTION @1000 specifies the starting address for the memory data. The following characters describe the 5 bytes at 0x1000. */ #include "sysdep.h" #include "bfd.h" #include "libbfd.h" #include "libiberty.h" #include "safe-ctype.h" /* Modified by obcopy.c Data width in bytes. */ unsigned int VerilogDataWidth = 1; /* Modified by obcopy.c Data endianness. */ enum bfd_endian VerilogDataEndianness = BFD_ENDIAN_UNKNOWN; /* Macros for converting between hex and binary. */ static const char digs[] = "0123456789ABCDEF"; #define NIBBLE(x) hex_value (x) #define HEX(buffer) ((NIBBLE ((buffer)[0]) << 4) + NIBBLE ((buffer)[1])) #define TOHEX(d, x) \ d[1] = digs[(x) & 0xf]; \ d[0] = digs[((x) >> 4) & 0xf]; /* When writing a verilog memory dump file, we write them in the order in which they appear in memory. This structure is used to hold them in memory. */ struct verilog_data_list_struct { struct verilog_data_list_struct *next; bfd_byte * data; bfd_vma where; bfd_size_type size; }; typedef struct verilog_data_list_struct verilog_data_list_type; /* The verilog tdata information. */ typedef struct verilog_data_struct { verilog_data_list_type *head; verilog_data_list_type *tail; } tdata_type; static bool verilog_set_arch_mach (bfd *abfd, enum bfd_architecture arch, unsigned long mach) { if (arch != bfd_arch_unknown) return bfd_default_set_arch_mach (abfd, arch, mach); abfd->arch_info = & bfd_default_arch_struct; return true; } /* We have to save up all the output for a splurge before output. */ static bool verilog_set_section_contents (bfd *abfd, sec_ptr section, const void * location, file_ptr offset, bfd_size_type bytes_to_do) { tdata_type *tdata = abfd->tdata.verilog_data; verilog_data_list_type *entry; entry = (verilog_data_list_type *) bfd_alloc (abfd, sizeof (* entry)); if (entry == NULL) return false; if (bytes_to_do && (section->flags & SEC_ALLOC) && (section->flags & SEC_LOAD)) { bfd_byte *data; data = (bfd_byte *) bfd_alloc (abfd, bytes_to_do); if (data == NULL) return false; memcpy ((void *) data, location, (size_t) bytes_to_do); entry->data = data; entry->where = section->lma + offset; entry->size = bytes_to_do; /* Sort the records by address. Optimize for the common case of adding a record to the end of the list. */ if (tdata->tail != NULL && entry->where >= tdata->tail->where) { tdata->tail->next = entry; entry->next = NULL; tdata->tail = entry; } else { verilog_data_list_type **look; for (look = &tdata->head; *look != NULL && (*look)->where < entry->where; look = &(*look)->next) ; entry->next = *look; *look = entry; if (entry->next == NULL) tdata->tail = entry; } } return true; } static bool verilog_write_address (bfd *abfd, bfd_vma address) { char buffer[20]; char *dst = buffer; bfd_size_type wrlen; /* Write the address. */ *dst++ = '@'; #ifdef BFD64 if (address >= (bfd_vma)1 << 32) { TOHEX (dst, (address >> 56)); dst += 2; TOHEX (dst, (address >> 48)); dst += 2; TOHEX (dst, (address >> 40)); dst += 2; TOHEX (dst, (address >> 32)); dst += 2; } #endif TOHEX (dst, (address >> 24)); dst += 2; TOHEX (dst, (address >> 16)); dst += 2; TOHEX (dst, (address >> 8)); dst += 2; TOHEX (dst, (address)); dst += 2; *dst++ = '\r'; *dst++ = '\n'; wrlen = dst - buffer; return bfd_write (buffer, wrlen, abfd) == wrlen; } /* Write a record of type, of the supplied number of bytes. The supplied bytes and length don't have a checksum. That's worked out here. */ static bool verilog_write_record (bfd *abfd, const bfd_byte *data, const bfd_byte *end) { char buffer[52]; const bfd_byte *src = data; char *dst = buffer; bfd_size_type wrlen; /* Paranoia - check that we will not overflow "buffer". */ if (((end - data) * 2) /* Number of hex characters we want to emit. */ + ((end - data) / VerilogDataWidth) /* Number of spaces we want to emit. */ + 2 /* The carriage return & line feed characters. */ > (long) sizeof (buffer)) { /* FIXME: Should we generate an error message ? */ return false; } /* Write the data. FIXME: Under some circumstances we can emit a space at the end of the line. This is not really necessary, but catching these cases would make the code more complicated. */ if (VerilogDataWidth == 1) { for (src = data; src < end;) { TOHEX (dst, *src); dst += 2; src ++; if (src < end) *dst++ = ' '; } } else if ((VerilogDataEndianness == BFD_ENDIAN_UNKNOWN && bfd_little_endian (abfd)) /* FIXME: Can this happen ? */ || (VerilogDataEndianness == BFD_ENDIAN_LITTLE)) { /* If the input byte stream contains: 05 04 03 02 01 00 and VerilogDataWidth is 4 then we want to emit: 02030405 0001 */ int i; for (src = data; src < (end - VerilogDataWidth); src += VerilogDataWidth) { for (i = VerilogDataWidth - 1; i >= 0; i--) { TOHEX (dst, src[i]); dst += 2; } *dst++ = ' '; } /* Emit any remaining bytes. Be careful not to read beyond "end". */ while (end > src) { -- end; TOHEX (dst, *end); dst += 2; } /* FIXME: Should padding bytes be inserted here ? */ } else /* Big endian output. */ { for (src = data; src < end;) { TOHEX (dst, *src); dst += 2; ++ src; if ((src - data) % VerilogDataWidth == 0) *dst++ = ' '; } /* FIXME: Should padding bytes be inserted here ? */ } *dst++ = '\r'; *dst++ = '\n'; wrlen = dst - buffer; return bfd_write (buffer, wrlen, abfd) == wrlen; } static bool verilog_write_section (bfd *abfd, tdata_type *tdata ATTRIBUTE_UNUSED, verilog_data_list_type *list) { unsigned int octets_written = 0; bfd_byte *location = list->data; /* Insist that the starting address is a multiple of the data width. */ if (list->where % VerilogDataWidth) { bfd_set_error (bfd_error_invalid_operation); return false; } verilog_write_address (abfd, list->where / VerilogDataWidth); while (octets_written < list->size) { unsigned int octets_this_chunk = list->size - octets_written; if (octets_this_chunk > 16) octets_this_chunk = 16; if (! verilog_write_record (abfd, location, location + octets_this_chunk)) return false; octets_written += octets_this_chunk; location += octets_this_chunk; } return true; } static bool verilog_write_object_contents (bfd *abfd) { tdata_type *tdata = abfd->tdata.verilog_data; verilog_data_list_type *list; /* Now wander though all the sections provided and output them. */ list = tdata->head; while (list != (verilog_data_list_type *) NULL) { if (! verilog_write_section (abfd, tdata, list)) return false; list = list->next; } return true; } /* Initialize by filling in the hex conversion array. */ static void verilog_init (void) { static bool inited = false; if (! inited) { inited = true; hex_init (); } } /* Set up the verilog tdata information. */ static bool verilog_mkobject (bfd *abfd) { tdata_type *tdata; verilog_init (); tdata = (tdata_type *) bfd_alloc (abfd, sizeof (tdata_type)); if (tdata == NULL) return false; abfd->tdata.verilog_data = tdata; tdata->head = NULL; tdata->tail = NULL; return true; } const bfd_target verilog_vec = { "verilog", /* Name. */ bfd_target_verilog_flavour, BFD_ENDIAN_UNKNOWN, /* Target byte order. */ BFD_ENDIAN_UNKNOWN, /* Target headers byte order. */ EXEC_P, /* Object flags. */ (SEC_CODE | SEC_DATA | SEC_ROM | SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD), /* Section flags. */ 0, /* Leading underscore. */ ' ', /* AR_pad_char. */ 16, /* AR_max_namelen. */ 0, /* match priority. */ TARGET_KEEP_UNUSED_SECTION_SYMBOLS, /* keep unused section symbols. */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Data. */ bfd_getb64, bfd_getb_signed_64, bfd_putb64, bfd_getb32, bfd_getb_signed_32, bfd_putb32, bfd_getb16, bfd_getb_signed_16, bfd_putb16, /* Hdrs. */ { _bfd_dummy_target, _bfd_dummy_target, _bfd_dummy_target, _bfd_dummy_target, }, { _bfd_bool_bfd_false_error, verilog_mkobject, _bfd_bool_bfd_false_error, _bfd_bool_bfd_false_error, }, { /* bfd_write_contents. */ _bfd_bool_bfd_false_error, verilog_write_object_contents, _bfd_bool_bfd_false_error, _bfd_bool_bfd_false_error, }, BFD_JUMP_TABLE_GENERIC (_bfd_generic), BFD_JUMP_TABLE_COPY (_bfd_generic), BFD_JUMP_TABLE_CORE (_bfd_nocore), BFD_JUMP_TABLE_ARCHIVE (_bfd_noarchive), BFD_JUMP_TABLE_SYMBOLS (_bfd_nosymbols), BFD_JUMP_TABLE_RELOCS (_bfd_norelocs), BFD_JUMP_TABLE_WRITE (verilog), BFD_JUMP_TABLE_LINK (_bfd_nolink), BFD_JUMP_TABLE_DYNAMIC (_bfd_nodynamic), NULL, NULL };