Age | Commit message (Collapse) | Author | Files | Lines |
|
Previous code included the full $srcdir pathnames in the individual
subtest PASS/FAIL names, which makes it difficult to compute
comparisons or regressions between test runs on different machines.
This version switches to the basename only, which are common.
Signed-off-by: Frank Ch. Eigler <fche@redhat.com>
|
|
The libctf-regression/open-error-free.c test works by interposing malloc
and counting mallocs and frees across libctf operations. This only
works under suitably-interposable mallocs on systems supporting
dlsym (RTLD_NEXT, ...), so its operation is restricted to glibc
systems for now, but also it interacts badly with valgrind, which
interposes malloc itself. Detect a running valgrind and skip the test.
Add new facilities allowing libctf lookup tests to declare themselves
unsupported, by printing "UNSUPPORTED: " and then some meaningful
message instead of their normal output.
libctf/
* configure.ac: Check for <valgrind/valgrind.h>.
* config.h.in: Regenerate.
* configure: Likewise.
* testsuite/lib/ctf-lib.exp (run_lookup_test): Add support for
UNSUPPORTED tests.
* testsuite/libctf-regression/open-error-free.c: When running
under valgrind, this test is unsupported.
|
|
This .lk option lets you run the lookup program via a wrapper executable.
For example, to run under valgrind and check for leaks (albeit noisily
because of the libtool shell script wrapper):
libctf/
* testsuite/lib/ctf-lib.exp (run_lookup_test): Add wrapper.
|
|
This .lk option lets you execute particular tests only on specific host
architectures.
libctf/
* testsuite/lib/ctf-lib.exp (run_lookup_test): Add host.
|
|
This .lk option lets you link the lookup program with extra libraries
in addition to -lctf.
libctf/
* testsuite/lib/ctf-lib.exp (run_lookup_test): Add lookup_link.
|
|
Adds two new external authors to etc/update-copyright.py to cover
bfd/ax_tls.m4, and adds gprofng to dirs handled automatically, then
updates copyright messages as follows:
1) Update cgen/utils.scm emitted copyrights.
2) Run "etc/update-copyright.py --this-year" with an extra external
author I haven't committed, 'Kalray SA.', to cover gas testsuite
files (which should have their copyright message removed).
3) Build with --enable-maintainer-mode --enable-cgen-maint=yes.
4) Check out */po/*.pot which we don't update frequently.
|
|
The newly-introduced libctf-lookup unnamed-field-info test checks
C compiler-observed field offsets against libctf-computed ones
by #including the testcase in the lookup runner as well as
generating CTF for it. This only works if the host, on which
the lookup runner is compiled and executed, is the same architecture as
the target, for which the CTF is generated: when crossing, the trick
may fail.
So pass down an indication of whether this is a cross into the
testsuite, and add a new no_cross flag to .lk files that is used to
suppress test execution when a cross-compiler is being tested.
libctf/
* Makefile.am (check_DEJAGNU): Pass down TEST_CROSS.
* Makefile.in: Regenerated.
* testsuite/lib/ctf-lib.exp (run_lookup_test): Use it to
implement the new no_cross option.
* testsuite/libctf-lookup/unnamed-field-info.lk: Mark as
no_cross.
|
|
The newer update-copyright.py fixes file encoding too, removing cr/lf
on binutils/bfdtest2.c and ld/testsuite/ld-cygwin/exe-export.exp, and
embedded cr in binutils/testsuite/binutils-all/ar.exp string match.
|
|
We were failing to call prune_warnings appropriately, leading to
false-positive test failures on some platforms (observed on
sparclinux).
libctf/ChangeLog:
* testsuite/lib/ctf-lib.exp: Prune warnings from compiler and
linker output.
* testsuite/libctf-regression/libctf-repeat-cu.exp: Likewise,
and ar output too.
|
|
The result of running etc/update-copyright.py --this-year, fixing all
the files whose mode is changed by the script, plus a build with
--enable-maintainer-mode --enable-cgen-maint=yes, then checking
out */po/*.pot which we don't update frequently.
The copy of cgen was with commit d1dd5fcc38ead reverted as that commit
breaks building of bfp opcodes files.
|
|
The top level Makefile, the ld Makefile and others, define
CC_FOR_TARGET to be a compiler for the binutils target machine. This
is the compiler that should be used for almost all tests with C
source. There are _FOR_TARGET versions of CFLAGS, CXX, and CXXFLAGS
too. This was all supposed to work with the testsuite .exp files
using CC for the target compiler, and CC_FOR_HOST for the host
compiler, with the makefiles passing CC=$CC_FOR_TARGET and
CC_FOR_HOST=$CC to the runtest invocation.
One exception to the rule of using CC_FOR_TARGET is the native-only ld
bootstrap test, which uses the newly built ld to link a copy of
itself. Since the files being linked were created with the host
compiler, the boostrap test should use CC and CFLAGS, in case some
host compiler option provides needed libraries automatically.
However, bootstrap.exp used CC where it should have used CC_FOR_HOST.
I set about fixing that problem, then decided that playing games in
the makefiles with CC was a bad idea. Not only is it confusing, but
other dejagnu code knows about CC_FOR_TARGET. See dejagnu/target.exp.
So this patch gets rid of the makefile variable renaming and changes
all the .exp files to use the correct _FOR_TARGET variables.
CC_FOR_HOST and CFLAGS_FOR_HOST disappear. A followup patch will
correct bootstrap.exp to use CFLAGS, and a number of other things I
noticed.
binutils/
* testsuite/lib/binutils-common.exp (run_dump_test): Use
CC_FOR_TARGET and CFLAGS_FOR_TARGET rather than CC and CFLAGS.
ld/
* Makefile.am (check-DEJAGNU): Don't set CC to CC_FOR_TARGET
and similar. Pass variables with unchanged names. Don't set
CC_FOR_HOST or CFLAGS_FOR_HOST.
* Makefile.in: Regenerate.
* testsuite/config/default.exp: Update default CC and similar.
(compiler_supports, plug_opt): Use CC_FOR_TARGET.
* testsuite/ld-cdtest/cdtest.exp: Replace all uses of CC with
CC_FOR_TARGET, and similarly for CFLAGS, CXX and CXXFLAGS.
* testsuite/ld-auto-import/auto-import.exp: Likewise.
* testsuite/ld-cygwin/exe-export.exp: Likewise.
* testsuite/ld-elf/dwarf.exp: Likewise.
* testsuite/ld-elf/indirect.exp: Likewise.
* testsuite/ld-elf/shared.exp: Likewise.
* testsuite/ld-elfcomm/elfcomm.exp: Likewise.
* testsuite/ld-elfvers/vers.exp: Likewise.
* testsuite/ld-elfvsb/elfvsb.exp: Likewise.
* testsuite/ld-elfweak/elfweak.exp: Likewise.
* testsuite/ld-gc/gc.exp: Likewise.
* testsuite/ld-ifunc/ifunc.exp: Likewise.
* testsuite/ld-mn10300/mn10300.exp: Likewise.
* testsuite/ld-pe/pe-compile.exp: Likewise.
* testsuite/ld-pe/pe-run.exp: Likewise.
* testsuite/ld-pe/pe-run2.exp: Likewise.
* testsuite/ld-pie/pie.exp: Likewise.
* testsuite/ld-plugin/lto.exp: Likewise.
* testsuite/ld-plugin/plugin.exp: Likewise.
* testsuite/ld-scripts/crossref.exp: Likewise.
* testsuite/ld-selective/selective.exp: Likewise.
* testsuite/ld-sh/sh.exp: Likewise.
* testsuite/ld-shared/shared.exp: Likewise.
* testsuite/ld-srec/srec.exp: Likewise.
* testsuite/ld-undefined/undefined.exp: Likewise.
* testsuite/ld-unique/unique.exp: Likewise.
* testsuite/ld-x86-64/tls.exp: Likewise.
* testsuite/lib/ld-lib.exp: Likewise.
libctf/
* Makefile.am (check-DEJAGNU): Don't set CC to CC_FOR_TARGET.
Pass CC and CC_FOR_TARGET. Don't set CC_FOR_HOST.
* Makefile.in: Regenerate.
* testsuite/config/default.exp: Update default CC and similar.
* testsuite/lib/ctf-lib.exp (run_native_host_cmd): Use CC rather
than CC_FOR_HOST.
(run_lookup_test): Use CC_FOR_TARGET and CFLAGS_FOR_TARGET.
|
|
The tests currently in binutils are aimed at the original GCC-based
implementation of CTF, which emitted CTF directly from GCC's internal
representation. The approach now under review emits CTF from DWARF,
with an eye to eventually doing this for all non-DWARF debuginfo-like
formats GCC supports. It also uses a different flag to enable
CTF emission (-gctf rather than -gt).
Adjust the testsuite accordingly.
Given that the ld testsuite results are dependent on type ordering,
which we do not guarantee at all, it's amazing how little changes. We
see a few type ordering differences, slices change because the old GCC
was buggy (slices were emitted "backwards", from the wrong end of the
machine word) and its expected results were wrong, and GCC now emits the
underlying integral type for enumerated types, though CTF has no way to
record this yet (coming in v4).
GCC also now emits even hidden symbols into the symtab (and thus
symtypetab), so one symtypetab test changes its expected results
slightly to compensate.
Also add tests for the CTF_K_UNKNOWN nonrepresentable type: this
couldn't be done before now since the only GCC that emits CTF_K_UNKNOWN
for nonrepresentable types is the new one.
ld/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* testsuite/ld-ctf/ctf.exp: Use -gctf, not -gt.
* testsuite/lib/ld-lib.exp: Likewise.
* testsuite/ld-ctf/nonrepresentable-1.c: New test for nonrepresentable types.
* testsuite/ld-ctf/nonrepresentable-2.c: Likewise.
* testsuite/ld-ctf/nonrepresentable.d: Likewise.
* testsuite/ld-ctf/array.d: Larger type section.
* testsuite/ld-ctf/data-func-conflicted.d: Likewise.
* testsuite/ld-ctf/enums.d: Likewise.
* testsuite/ld-ctf/conflicting-enums.d: Don't compare types.
* testsuite/ld-ctf/cross-tu-cyclic-conflicting.d: Changed type order.
* testsuite/ld-ctf/cross-tu-noncyclic.d: Likewise.
* testsuite/ld-ctf/slice.d: Adjust for improved slice emission.
libctf/ChangeLog
2021-05-06 Nick Alcock <nick.alcock@oracle.com>
* testsuite/lib/ctf-lib.exp: Use -gctf, not -gt.
* testsuite/libctf-regression/nonstatic-var-section-ld-r.lk:
Hidden symbols now get into the symtypetab anyway.
|
|
* testsuite/config/default.exp (ld_L_opt): Define.
* testsuite/lib/ctf-lib.exp (load_common_lib): Delete. Instead load
ld-lib.exp.
(run_host_cmd, run_host_cmd_yesno, check_compiler_available): Delete.
(compile_one_cc, check_ctf_available): Delete.
|
|
The variable section in a CTF dict is meant to contain the types of
variables that do not appear in the symbol table (mostly file-scope
static declarations). We implement this by having the compiler emit
all potential data symbols into both sections, then delete those
symbols from the variable section that correspond to data symbols the
linker has reported.
Unfortunately, the check for this in ctf_serialize is wrong: rather than
checking the set of linker-reported symbols, we check the set of names
in the data object symtypetab section: if the linker has reported no
symbols at all (usually if ld -r has been run, or if a non-linker
program that does not use symbol tables is calling ctf_link) this will
include every single symbol, emptying the variable section completely.
Worse, when ld -r is in use, we want to force writeout of every
symtypetab entry on the inputs, in an indexed section, whether or not
the linker has reported them, since this isn't a final link yet and the
symbol table is not finalized (and may grow more symbols than the linker
has yet reported). But the check for this is flawed too: we were
relying on ctf_link_shuffle_syms not having been called if no symbols
exist, but that function is *always* called by ld even when ld -r is in
use: ctf_link_add_linker_symbol is the one that's not called when there
are no symbols.
We clearly need to rethink this. Using the emptiness of the set of
reported symbols as a test for ld -r is just ugly: the linker already
knows if ld -r is underway and can just tell us. So add a new linker
flag CTF_LINK_NO_FILTER_REPORTED_SYMS that is set to stop the linker
filtering the symbols in the symtypetab sections using the set that the
linker has reported: use the presence or absence of this flag to
determine whether to emit unindexed symtabs: we only remove entries from
the variable section when filtering symbols, and we only remove them if
they are in the reported symbol set, fixing the case where no symbols
are reported by the linker at all.
(The negative sense of the new CTF_LINK flag is intentional: the common
case, both for ld and for simple tools that want to do a ctf_link with
no ELF symbol table in sight, is probably to filter out symbols that no
linker has reported: i.e., for the simple tools, all of them.)
There's another wrinkle, though. It is quite possible for a non-linker
to add symbols to a dict via ctf_add_*_sym and then write it out via the
ctf_write APIs: perhaps it's preparing a dict for a later linker
invocation. Right now this would not lead to anything terribly
meaningful happening: ctf_serialize just assumes it was called via
ctf_link if symbols are present. So add an (internal-to-libctf) flag
that indicates that a writeout is happening via ctf_link_write, and set
it there (propagating it to child dicts as needed). ctf_serialize can
then spot when it is not being called by a linker, and arrange to always
write out an indexed, sorted symtypetab for fastest possible future
symbol lookup by name in that case. (The writeouts done by ld -r are
unsorted, because the only thing likely to use those symtabs is the
linker, which doesn't benefit from symtypetab sorting.)
Tests added for all three linking cases (ld -r, ld -shared, ld), with a
bit of testsuite framework enhancement to stop it unconditionally
linking the CTF to be checked by the lookup program with -shared, so
tests can now examine CTF linked with -r or indeed with no flags at all,
though the output filename is still foo.so even in this case.
Another test added for the non-linker case that endeavours to determine
whether the symtypetab is sorted by examining the order of entries
returned from ctf_symbol_next: nobody outside libctf should rely on
this ordering, but this test is not outside libctf :)
include/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ctf-api.h (CTF_LINK_NO_FILTER_REPORTED_SYMS): New.
ld/ChangeLog
2021-01-26 Nick Alcock <nick.alcock@oracle.com>
* ldlang.c (lang_merge_ctf): Set CTF_LINK_NO_FILTER_REPORTED_SYMS
when appropriate.
libctf/ChangeLog
2021-01-27 Nick Alcock <nick.alcock@oracle.com>
* ctf-impl.c (_libctf_nonnull_): Add parameters.
(LCTF_LINKING): New flag.
(ctf_dict_t) <ctf_link_flags>: Mention it.
* ctf-link.c (ctf_link): Keep LCTF_LINKING set across call.
(ctf_write): Likewise, including in child dictionaries.
(ctf_link_shuffle_syms): Make sure ctf_dynsyms is NULL if there
are no reported symbols.
* ctf-create.c (symtypetab_delete_nonstatic_vars): Make sure
the variable has been reported as a symbol by the linker.
(symtypetab_skippable): Mention relationship between SYMFP and the
flags.
(symtypetab_density): Adjust nonnullity. Exit early if no symbols
were reported and force-indexing is off (i.e., we are doing a
final link).
(ctf_serialize): Handle the !LCTF_LINKING case by writing out an
indexed, sorted symtypetab (and allow SYMFP to be NULL in this
case). Turn sorting off if this is a non-final link. Only delete
nonstatic vars if we are filtering symbols and the linker has
reported some.
* testsuite/libctf-regression/nonstatic-var-section-ld-r*:
New test of variable and symtypetab section population when
ld -r is used.
* testsuite/libctf-regression/nonstatic-var-section-ld-executable.lk:
Likewise, when ld of an executable is used.
* testsuite/libctf-regression/nonstatic-var-section-ld.lk:
Likewise, when ld -shared alone is used.
* testsuite/libctf-regression/nonstatic-var-section-ld*.c:
Lookup programs for the above.
* testsuite/libctf-writable/symtypetab-nonlinker-writeout.*: New
test, testing survival of symbols across ctf_write paths.
* testsuite/lib/ctf-lib.exp (run_lookup_test): New option,
nonshared, suppressing linking of the SOURCE with -shared.
|
|
We never actually check to see if the compiler supports CTF,
or even if a suitable compiler exists.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* Makefile.am (BASEDIR): New.
(BFDDIR): Likewise.
(check-DEJAGNU): Add development.exp to prerequisites.
(development.exp): New.
(CONFIG_STATUS_DEPENDENCIES): New.
(EXTRA_DEJAGNU_SITE_CONFIG): Likewise.
(DISTCLEANFILES): Likewise.
* Makefile.in: Regenerated.
* testsuite/lib/ctf-lib.exp (check_ctf_available): Return boolean.
* testsuite/libctf-lookup/lookup.exp: Call check_ctf_available.
* testsuite/libctf-regression/regression.exp: Likewise.
|
|
This introduces a new lookup testsuite under libctf, which operates by
compiling (with libtool) a "lookup" .c file that uses libctf to analyze
some other program, then compiling some number of test object files with
CTF and optionally linking them together and running the lookup program
on the test object files (or linked test binary), before diffing the
result much as run_dump_test does.
This lets us test the portions of libctf that are not previously
testable, notably the portions that do lookup on linked output and
that create dynamic dictionaries and then do lookup on them before
writing them out, something that is not tested by the ld-ctf testsuite
because the linker never does this.
A couple of simple tests are added: one testing the functionality of
enum lookups, and one testing that the recently-added commit adding
extra paranoia to incomplete type handling doesn't break linking and
that the result of the link is an (otherwise-impossible) array of
forward type in the shared CTF dict.
ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* Makefile.def (libctf): No longer no_check. Checking depends on
all-ld.
* Makefile.in: Regenerated.
libctf/ChangeLog
2021-01-05 Nick Alcock <nick.alcock@oracle.com>
* Makefile.am (EXPECT): New.
(RUNTEST): Likewise.
(RUNTESTFLAGS): Likewise.
(CC_FOR_TARGET): Likewise.
(check-DEJAGNU): Likewise.
(AUTOMAKE_OPTIONS): Add dejagnu.
* Makefile.in: Regenerated.
* testsuite/config/default.exp: New.
* testsuite/lib/ctf-lib.exp: Likewise.
* testsuite/libctf-lookup/enum.lk: New test.
* testsuite/libctf-lookup/enum-ctf.c: New CTF input.
* testsuite/libctf-lookup/enum.c: New lookup test.
* testsuite/libctf-lookup/ambiguous-struct*.c: New test.
* testsuite/libctf-lookup/lookup.exp: New.
|