Age | Commit message (Collapse) | Author | Files | Lines |
|
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the vprintf family of functions: vprintf_filtered,
vprintf_unfiltered, vfprintf_filtered and vfprintf_unfiltered. (For
the gdb_stdout variants, recall that only printf_unfiltered gets truly
unfiltered output at this point.) This removes one such function and
renames the remaining two to "gdb_vprintf". All callers are updated.
Much of this patch was written by script.
|
|
fputs_styled_unfiltered is only called from cli_ui_out, so remove it.
This area will be further simplified in future patches.
|
|
This rewrites the output pager as a ui_file implementation.
A new header is introduced to declare the pager class. The
implementation remains in utils.c for the time being, because there
are some static globals there that must be used by this code. (This
could be cleaned up at some future date.)
I went through all the text output in gdb to ensure that this change
should be ok. There are a few cases:
* Any existing call to printf_unfiltered is required to be avoid the
pager. This is ensured directly in the implementation.
* All remaining calls to the f*_unfiltered functions -- the ones that
take an explicit ui_file -- either send to an unfiltered stream
(e.g., gdb_stderr), which is obviously ok; or conditionally send to
gdb_stdout
I investigated all such calls by searching for:
grep -e '\bf[a-z0-9_]*_unfiltered' *.[chyl] */*.[ch] | grep -v gdb_stdlog | grep -v gdb_stderr
This yields a number of candidates to check.
* The breakpoint _print_recreate family, and
save_trace_state_variables. These are used for "save" commands
and so are fine.
* Things printing to a temporary stream. Obviously ok.
* Disassembly selftests.
* print_gdb_help - this is non-obvious, but ok because paging isn't
yet enabled at this point during startup.
* serial.c - doens't use gdb_stdout
* The code in compile/. This is all printing to a file.
* DWARF DIE dumping - doesn't reference gdb_stdout.
* Calls to the _filtered form -- these are all clearly ok, because if
they are using gdb_stdout, then filtering will still apply; and if
not, then filtering never applied and still will not.
Therefore, at this point, there is no longer any distinction between
all the other _filtered and _unfiltered calls, and they can be
unified.
In this patch, take special note of the vfprintf_maybe_filtered and
ui_file::vprintf change. This is one instance of the above idea,
erasing the distinction between filtered and unfiltered -- in this
part of the change, the "unfiltered_output" flag is never passe to
cli_ui_out. Subsequent patches will go much further in this
direction.
Also note the can_emit_style_escape changes in ui-file.c. Checking
against gdb_stdout or gdb_stderr was always a bit of a hack; and now
it is no longer needed, because this is decision can be more fully
delegated to the particular ui_file implementation.
ui_file::can_page is removed, because this patch removed the only call
to it.
I think this is the main part of fixing PR cli/7234.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7234
|
|
This removes vfprintf_styled_no_gdbfmt, inlining it at the sole point
of call.
|
|
This adds emit_style_escape and reset_style methods to ui_file. These
aren't used yet, but they will be once the pager is converted to be a
ui_file subclass.
|
|
When the pager is rewritten as a ui_file, gdb will still need a way to
bypass the filtering. After examining a few approaches, I chose this
patch, which adds a puts_unfiltered method to ui_file. For most
implementations of ui_file, this will just delegate to puts. This
patch also switches printf_unfiltered to use the new method.
|
|
At the end of this series, the use of unfiltered output will be very
restricted -- only places that definitely need it will use it. To
this end, I thought it would be good to reduce the number of
_unfiltered APIs that are exposed. This patch changes gdb so that
only printf_unfiltered exists. (After this patch, the f* variants
still exist as well, but those will be removed later.)
|
|
A number of spots call printf_unfiltered only because they are in code
that should not be interrupted by the pager. However, I believe these
cases are all handled by infrun's blanket ban on paging, and so can be
converted to the default (_filtered) API.
After this patch, I think all the remaining _unfiltered calls are ones
that really ought to be. A few -- namely in complete_command -- could
be replaced by a scoped assignment to pagination_enabled, but for the
remainder, the code seems simple enough like this.
|
|
It seems to me that annotations should not be filtered. While it
might be weird for an annotation-based UI to use the pager, it's not,
I think, out of the question. This patch makes this change.
|
|
When parsing the ptid out of a reply package, if the multi-process
extensions are not supported, use current_inferior's pid as the pid of
the reported thread, instead of inferior_ptid. This is needed because
the inferior_ptid may be null_ptid although a legit context exists,
due to a prior context switch via switch_to_inferior_no_thread.
Below is a scenario that illustrates what could go wrong. First,
setup a multi-target scenario. This is needed, because in a
multi-target setting, the inferior_ptid is cleared out before waiting
on targets. The second inferior below sits on top of a remote target.
Multi-process packets are disabled.
$ # First, spawn a process with PID 26253 to attach to later.
$ gdb-up a.out
Reading symbols from a.out...
(gdb) maint set target-non-stop on
(gdb) set remote multiprocess-feature-packet off
(gdb) start
...
(gdb) add-inferior -no-connection
[New inferior 2]
Added inferior 2
(gdb) inferior 2
[Switching to inferior 2 [<null>] (<noexec>)]
(gdb) target extended-remote | gdbserver --multi -
Remote debugging using | gdbserver --multi -
Remote debugging using stdio
(gdb) attach 26253
Attaching to Remote target
Attached; pid = 26253
[New Thread 26253]
[New inferior 3]
Reading /tmp/a.out from remote target...
...
[New Thread 26253]
...
Reading /usr/local/lib/debug/....debug from remote target...
>>> GDB seems to hang here.
After attaching to a process and reading some library files, GDB
seems to hang. One interesting thing to note is that
[New Thread 26253]
appears twice. We also see
[New inferior 3]
Running the same scenario with "debug infrun on" reveals more details.
...
(gdb) attach 26253
[infrun] scoped_disable_commit_resumed: reason=attaching
Attaching to Remote target
Attached; pid = 26253
[New Thread 26253]
[infrun] infrun_async: enable=1
[infrun] attach_command: immediately after attach:
[infrun] attach_command: thread 26253.26253.0, executing = 1, resumed = 0, state = RUNNING
[infrun] clear_proceed_status_thread: 26253.26253.0
[infrun] reset: reason=attaching
[infrun] maybe_set_commit_resumed_all_targets: not requesting commit-resumed for target native, no resumed threads
[infrun] maybe_set_commit_resumed_all_targets: enabling commit-resumed for target extended-remote
[infrun] fetch_inferior_event: enter
[infrun] scoped_disable_commit_resumed: reason=handling event
[infrun] do_target_wait: Found 2 inferiors, starting at #1
[infrun] random_pending_event_thread: None found.
[infrun] print_target_wait_results: target_wait (-1.0.0 [Thread 0], status) =
[infrun] print_target_wait_results: 26253.26253.0 [Thread 26253],
[infrun] print_target_wait_results: status->kind = STOPPED, sig = GDB_SIGNAL_0
[infrun] handle_inferior_event: status->kind = STOPPED, sig = GDB_SIGNAL_0
[infrun] start_step_over: enter
[infrun] start_step_over: stealing global queue of threads to step, length = 0
[infrun] operator(): step-over queue now empty
[infrun] start_step_over: exit
[infrun] context_switch: Switching context from 0.0.0 to 26253.26253.0
[infrun] handle_signal_stop: stop_pc=0x7f849d8cf151
[infrun] stop_waiting: stop_waiting
[infrun] stop_all_threads: starting
[infrun] stop_all_threads: pass=0, iterations=0
[New inferior 3]
Reading /tmp/a.out from remote target...
warning: File transfers from remote targets can be slow. Use "set sysroot" to access files locally instead.
Reading /tmp/a.out from remote target...
Reading symbols from target:/tmp/a.out...
[New Thread 26253]
[infrun] stop_all_threads: 4723.4723.0 not executing
[infrun] stop_all_threads: 26253.26253.0 not executing
[infrun] stop_all_threads: 42000.26253.0 executing, need stop
[infrun] print_target_wait_results: target_wait (-1.0.0 [Thread 0], status) =
[infrun] print_target_wait_results: -1.0.0 [Thread 0],
[infrun] print_target_wait_results: status->kind = IGNORE
[infrun] print_target_wait_results: target_wait (-1.0.0 [Thread 0], status) =
[infrun] print_target_wait_results: -1.0.0 [Thread 0],
[infrun] print_target_wait_results: status->kind = IGNORE
GDB tried to stop Thread 42000.26253.0, which does not exist, and we
are waiting for a stop event that will never happen. The PID in
'42000.26253.0', namely 42000, is the PID of magic_null_ptid.
It comes from gdb/remote.c:read_ptid:
/* Since the stub is not sending a process id, then default to
what's in inferior_ptid, unless it's null at this point. If so,
then since there's no way to know the pid of the reported
threads, use the magic number. */
if (inferior_ptid == null_ptid)
pid = magic_null_ptid.pid ();
else
pid = inferior_ptid.pid ();
if (obuf)
*obuf = pp;
return ptid_t (pid, tid);
Because multi-process was turned off, GDB did not parse an explicitly
specified PID. Furthermore, inferior_ptid == null_ptid, and
eventually GDB picked the PID from magic_null_ptid.
If target-non-stop is not turned on at the beginning, the same bug
reveals itself as a duplicated thread as shown below.
# Same setup as above, without 'maint set target-non-stop on'.
...
(gdb) attach 26253
Attaching to Remote target
Attached; pid = 26253
[New inferior 3]
...
[New Thread 26253]
...
(gdb) info threads
Id Target Id Frame
1.1 process 13517 "a.out" main () at test.c:3
* 2.1 Thread 26253 "a.out" 0x00007f12750c5151 in read () from target:/lib/x86_64-linux-gnu/libc.so.6
3.1 Thread 26253 "a.out" Remote 'g' packet reply is too long (expected 560 bytes, got 2496 bytes): 00feffffffffffff000a3a75127f000051510c75127f0000000400000000000060d24ef6af5500000000000000000000680d000000000000b85b31e3fc7f0000c0283a75127f000000e55b75127f000010d04ef6af550000460200000000000060c73975127f0000a0d23975127f0000000a3a75127f0000000000000000000051510c75127f000046020000330000002b0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000007f03000000000000ffff0000000000000000000000000000000000000000000080143a75127f000080143a75127f000040143a75127f000040143a75127f00007d0000007e0000007f00000080000000300c3a75127f0000300c3a75127f00000e000000000000000e0000000000000000000000000000000000000000000000ffffffffffffffffffffffffffffffff0400000004000000040000000400000020143a75127f000020143a75127f000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000801f0000000000000000000000e55b75127f0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
(gdb)
Fix the problem by preferring current_inferior()'s pid instead of
magic_null_ptid.
Regression-tested on X86-64 Linux.
Co-authored-by: Aleksandar Paunovic <aleksandar.paunovic@intel.com>
|
|
The test added in the commit:
commit a6b413d24ccc5d76179bab866834e11fd6fec294
Date: Fri Mar 11 14:44:03 2022 +0000
gdb: work around prompt corruption caused by bracketed-paste-mode
Was not written with readline 7 in mind, only readline 8+. Between
readline 7 and 8 the escape sequence used to disable bracketed paste
mode changed, an additional '\r' character was added to the end. In
fact, it was the addition of this '\r' character that triggered the
issue for which the above commit is part of the solution.
Anyway, the test tries to spot the case where the output from GDB is
not perfect, but does have the above work around applied. However,
the pattern in the test assumes that the problematic '\r' will be
present, and this is only true for readline 8+. With readline 7 the
test was failing.
In this commit I generalise the pattern a little so that the test will
still KFAIL with readline 7.
It's a little unfortunate that the test is KFAILing with readline 7,
as without the problematic '\r' there's actually no reason that GDB
couldn't "do the right thing" in this case, in which case, the test
would PASS, but that would require changes within GDB itself.
My preference then is that initially we patch the test to get it
KFAILing, then in a separate commit I can modify GDB so that it can
PASS with readline 7.
|
|
The test gdb.python/py-format-address.exp, added in commit:
commit 25209e2c6979c3838e14e099f0333609810db280
Date: Sat Oct 23 09:59:25 2021 +0100
gdb/python: add gdb.format_address function
included 3 copy & paste errors where the wrong address was used in the
expected output patterns.
The test compiles two almost identical test binaries (one function
changes its name, that's the only difference), two inferiors are
created, each inferior using one of the test binaries.
We then take the address of the name changing function in both
inferiors ('foo' in inferior 1 and 'bar' in inferior 2) and the tests
are carried out using these addresses.
What we're checking for is that symbols 'foo' and 'bar' show up in the
correct inferior, and that (as this test is for a Python API feature),
the user can have one inferior selected, but ask about the other
inferior, and see the correct symbol in the result.
The hope is that the two binaries will be laid out identically by the
compiler, and that 'foo' and 'bar' will be at the same address. This
is fine, unless the executable is compiled as PIE (position
independent executable), in which case there is a problem.
The problem is that though inferior 1 is set running, the inferior 2
never is. If the executables are compiled as PIE, then the address in
the inferior 2 will not have been resolved, while the address in the
inferior 1 will have been, and so the two addresses we use in the
tests will be different.
This issue was reported here:
https://sourceware.org/pipermail/gdb-patches/2022-March/186911.html
The first part of the fix is to use the correct address variable in
the expected output patterns, with this change the tests pass even
when the executables are compiled as PIE.
A second part of this fix is to pass the 'nopie' option when we
compile the tests, this should ensure that the address obtained in
inferior 2 is the same as the address from inferior 1, which makes the
test more useful.
|
|
In commit:
commit a2757c4ed693cef4ecc4dcdcb2518353eb6b3c3f
Date: Wed Mar 16 15:08:22 2022 +0000
gdb/mi: consistently notify user when GDB/MI client uses -thread-select
Changes were made to GDB to address some inconsistencies in when
notifications are sent from a MI terminal to a CLI terminal (when
multiple terminals are in use, see new-ui command).
Unfortunately, in order to track when the currently selected frame has
changed, that commit grabs a frame_info pointer before and after an MI
command has executed, and compares the pointers to see if the frame
has changed.
This is not safe.
If the frame cache is deleted for any reason then the frame_info
pointer captured before the command started, is no longer valid, and
any comparisons based on that pointer are undefined.
This was leading to random test failures for some folk, see:
https://sourceware.org/pipermail/gdb-patches/2022-March/186867.html
This commit changes GDB so we no longer hold frame_info pointers, but
instead store the frame_id and frame_level, this is safe even when the
frame cache is flushed.
|
|
I noticed that "print 5," passed in Rust -- the parser wasn't checking
that the entire input was used. This patch fixes the problem. This
in turn pointed out another bug in the parser, namely that it didn't
lex the next token after handling a string token. This is also fixed
here.
|
|
Currently, timestamps for logging are done by looking for the use of
gdb_stdlog in vfprintf_unfiltered. This seems potentially buggy, in
that during logging or other redirects (like execute_fn_to_ui_file) we
might have gdb_stdout==gdb_stdlog and so, conceivably, wind up with
timestamps in a log when they were not desired.
It seems better, instead, for timestamps to be a property of the
ui_file itself.
This patch changes gdb to use the new timestamped_file for gdb_stdlog
where appropriate, and removes the special case from
vfprintf_unfiltered.
Note that this may somewhat change the output in some cases -- in
particular, when going through execute_fn_to_ui_file (or the _string
variant), timestamps won't be emitted. This could be fixed in those
functions, but it wasn't clear to me whether this is really desirable.
Note also that this changes the TUI to send gdb_stdlog to gdb_stderr.
I imagine that the previous use of gdb_stdout here was inadvertent.
(And in any case it probably doesn't matter.)
|
|
This adds a "timestamped_file" subclass of ui_file. This class adds a
timestamp to its output when appropriate. That is, it follows the
rule already used in vfprintf_unfiltered of adding a timestamp at most
once per write.
The new class is not yet used.
|
|
This changes the CLI logging code to avoid manual memory management
(to the extent possible) by using unique_ptr in a couple of spots.
This will come in handy in a later patch.
|
|
The CLI's set_logging logic seemed unnecessarily complicated to me.
This patch simplifies it, with an eye toward changing it to use RAII
objects in a subsequent patch.
I did not touch the corresponding MI code. That code seems incorrect
(nothing ever uses raw_stdlog, and nothing ever sets
saved_raw_stdlog). I didn't attempt to fix this, because I question
whether this is even useful for MI.
|
|
A large customer program has a function that is partitioned into hot
and cold parts. A variable in a callee of this function is described
using DW_OP_GNU_entry_value, but gdb gets confused when trying to find
the caller. I tracked this down to dwarf2_get_pc_bounds interpreting
the function's changes so that the returned low PC is the "wrong"
function.
Intead, when processing DW_TAG_call_site, the low PC of each range in
DW_AT_ranges should be preserved in the call_site_target. This fixes
the variable lookup in the test case I have.
I didn't write a standalone test for this as it seemed excessively
complicated.
|
|
In order to handle the case where a call site target might refer to
multiple addresses, we change the code to use a callback style. Any
spot using call_site_target::address now passes in a callback function
that may be called multiple times.
|
|
call_site_find_chain_1 has a comment claiming that recursive calls
would be too expensive. However, I doubt this is so expensive; and
furthermore the explicit state management approach here is difficult
both to understand and to modify. This patch changes this code to use
explicit recursion, so that a subsequent patch can generalize this
code without undue trauma.
Additionally, I think this patch detects a latent bug in the recursion
code. (It's hard for me to be completely certain.) The bug is that
when a new target_call_site is entered, the code does:
if (target_call_site)
{
if (addr_hash.insert (target_call_site->pc ()).second)
{
/* Successfully entered TARGET_CALL_SITE. */
chain.push_back (target_call_site);
break;
}
}
Here, if entering the target_call_site fails, then any tail_call_next
elements in this call site are not visited. However, if this code
does happen to enter a call site, then the tail_call_next elements
will be visited during backtracking. This applies when doing the
backtracking as well -- it will only continue through a given chain as
long as each element in the chain can successfully be visited.
I'd appreciate some review of this. If this behavior is intentional,
it can be added to the new implementation.
|
|
While investigating this bug, I wasn't sure if chain_candidate might
update 'chain'. I changed it to accept a const reference, making it
clear that it cannot. This simplifies the code a tiny bit as well.
|
|
This makes the data members of call_site_target 'private'. This lets
us remove most of its public API. call_site_to_target_addr is changed
to be a method of this type. This is a preparatory refactoring for
the fix at the end of this series.
|
|
call_site_target reuses field_loc_kind and field_location. However,
it has never used the full range of the field_loc_kind enum. In a
subsequent patch, I plan to add a new 'kind' here, so it seemed best
to avoid this reuse and instead introduce new types here.
|
|
value.h has a declaration of value_print_array_elements that is
incorrect. In C, this would have been an error, but in C++ this is a
declaration of an overload that is neither defined nor used. This
patch removes the declaration.
|
|
Currently debuginfod progress update messages include the size of
each download:
Downloading 7.5 MB separate debug info for /lib/libxyz.so.0
This value originates from the Content-Length HTTP header of the
transfer. However this header is not guaranteed to be present for
each download. This can happen when debuginfod servers compress files
on-the-fly at the time of transfer. In this case gdb wrongly prints
"-0.00 MB" as the size.
This patch removes download sizes from progress messages when they are
not available. It also removes usage of the progress bar until
a more thorough reworking of progress updating is implemented. [1]
[1] https://sourceware.org/pipermail/gdb-patches/2022-February/185798.html
|
|
This test was added without a corresponding fix, with some setup_kfails.
However, it results in UNRESOLVED results when GDB is built with ASan.
ERROR: GDB process no longer exists
GDB process exited with wait status 1946871 exp7 0 1
UNRESOLVED: gdb.python/pretty-print-call-by-hand.exp: frame print: backtrace test (PRMS gdb/28856)
Remove the test from the tree, I'll attach it to the Bugzilla bug
instead [1].
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=28856
Change-Id: Id95d8949fb8742874bd12aeac758aa4d7564d678
|
|
The gdb.mi/mi-multi-commands.exp test was added in commit:
commit d08cbc5d3203118da5583296e49273cf82378042
Date: Wed Dec 22 12:57:44 2021 +0000
gdb: unbuffer all input streams when not using readline
And then tweaked in commit:
commit 144459531dd68a1287905079aaa131b777a8cc82
Date: Mon Feb 7 20:35:58 2022 +0000
gdb/testsuite: relax pattern in new gdb.mi/mi-multi-commands.exp test
The second of these commits was intended to address periodic test
failures that I was seeing, and this change did fix some problems,
but, unfortunately, introduced other issues.
The problem is that the test relies on sending two commands to GDB in
a single write. As the characters that make these two commands arrive
they are echoed to GDB's console. However, there is a race between
how quickly the characters are echoed and how quickly GDB decides to
act on the incoming commands.
Usually, both commands are echoed in full before GDB acts on the first
command, but sometimes this is not the case, and GDB can execute the
first command before both commands are fully echoed to the console.
In this case, the output of the first command will be mixed in with
the echoing of the second command.
This mixing of the command echoing and the first command output is
what was causing failures in the original version of the test.
The second commit relaxed the expected output pattern a little, but
was still susceptible to failures, so this commit further relaxes the
pattern.
Now, we look for the first command output with no regard to what is
before, or after the command. Then we look for the first mi prompt to
indicate that the first command has completed.
I believe that this change should make the test more stable than it
was before.
|
|
New in this version:
- Rebase on master, fix a few more issues that appeared.
python-internal.h contains a number of macros that helped make the code
work with both Python 2 and 3. Remove them and adjust the code to use
the Python 3 functions.
Change-Id: I99a3d80067fb2d65de4f69f6473ba6ffd16efb2d
|
|
New in this version:
- Add a PY_MAJOR_VERSION check in configure.ac / AC_TRY_LIBPYTHON. If
the user passes --with-python=python2, this will cause a configure
failure saying that GDB only supports Python 3.
Support for Python 2 is a maintenance burden for any patches touching
Python support. Among others, the differences between Python 2 and 3
string and integer types are subtle. It requires a lot of effort and
thinking to get something that behaves correctly on both. And that's if
the author and reviewer of the patch even remember to test with Python
2.
See this thread for an example:
https://sourceware.org/pipermail/gdb-patches/2021-December/184260.html
So, remove Python 2 support. Update the documentation to state that GDB
can be built against Python 3 (as opposed to Python 2 or 3).
Update all the spots that use:
- sys.version_info
- IS_PY3K
- PY_MAJOR_VERSION
- gdb_py_is_py3k
... to only keep the Python 3 portions and drop the use of some
now-removed compatibility macros.
I did not update the configure script more than just removing the
explicit references to Python 2. We could maybe do more there, like
check the Python version and reject it if that version is not
supported. Otherwise (with this patch), things will only fail at
compile time, so it won't really be clear to the user that they are
trying to use an unsupported Python version. But I'm a bit lost in the
configure code that checks for Python, so I kept that for later.
Change-Id: I75b0f79c148afbe3c07ac664cfa9cade052c0c62
|
|
Check 3 additional variants previously not recognized:
- TAG_CPU_ARCH_V7E_M
- TAG_CPU_ARCH_V8M_BASE
- TAG_CPU_ARCH_V8M_MAIN
|
|
If /proc/sys/kernel/yama/ptrace_scope is 1, when execute the following
command without superuser:
make check-gdb TESTS="gdb.base/jit-elf.exp"
we can see the following messages in gdb/testsuite/gdb.log:
(gdb) attach 1650108
Attaching to program: /home/yangtiezhu/build/gdb/testsuite/outputs/gdb.base/jit-elf/jit-elf-main, process 1650108
ptrace: Operation not permitted.
(gdb) FAIL: gdb.base/jit-elf.exp: attach: one_jit_test-2: break here 1: attach
use gdb_attach to fix the above issue, at the same time, the clean_reattach
proc should return a value to indicate whether it worked, and the callers
should return early as well on failure.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
If /proc/sys/kernel/yama/ptrace_scope is 1, when execute the following
command without superuser:
make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
we can see the following messages in gdb/testsuite/gdb.log:
(gdb) attach 6500
Attaching to process 6500
ptrace: Operation not permitted.
(gdb) PASS: gdb.base/attach-pie-noexec.exp: attach
It is obviously wrong, the expected result should be UNSUPPORTED in such
a case.
With this patch, we can see "Operation not permitted" in the log info,
and then we can do the following processes to test:
(1) set ptrace_scope as 0
$ echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
$ make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
(2) use sudo
$ sudo make check-gdb TESTS="gdb.base/attach-pie-noexec.exp"
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
This commit adds new gdb_attach to centralize the failure checking of
"attach" command. Return 0 if attach failed, otherwise return 1.
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
As Pedro Alves said, caching procs should not issue pass/fail [1],
this commit removes attach test from can_spawn_for_attach, at the
same time, use "verbose -log" instead of "unsupported" to get a
trace about why a test run doesn't support spawning for attach.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186311.html
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
This shares aarch64-nat.c and nat/aarch64-hw-point.c with the Linux
native target. Since FreeBSD writes all of the debug registers in one
ptrace op, use an unordered_set<> to track the "dirty" state for
threads rather than bitmasks of modified registers.
|
|
This method can be overridden by architecture-specific targets to
perform additional work before a thread is resumed.
|
|
This method can be overridden by architecture-specific targets to
perform additional work when a thread is deleted.
Note that this method is only invoked on systems supporting LWP
events, but the pending use case (aarch64 debug registers) is not
supported on older kernels that do not support LWP events.
|
|
|
|
This class includes platform-independent target methods for hardware
breakpoints and watchpoints using routines from
nat/aarch64-hw-point.c.
stopped_data_address is not platform-independent since the FAR
register holding the address for a breakpoint hit must be fetched in a
platform-specific manner. However, aarch64_stopped_data_address is
provided as a helper routine which performs platform-independent
validation given the value of the FAR register.
For tracking the per-process debug register mirror state, use an
unordered_map indexed by pid as recently adopted in x86-nat.c rather
than a manual linked-list.
|
|
Move non-Linux-specific support for hardware break/watchpoints from
nat/aarch64-linux-hw-point.c to nat/aarch64-hw-point.c. Changes
beyond a simple split of the code are:
- aarch64_linux_region_ok_for_watchpoint and
aarch64_linux_any_set_debug_regs_state renamed to drop linux_ as
they are not platform specific.
- Platforms must implement the aarch64_notify_debug_reg_change
function which is invoked from the platform-independent code when a
debug register changes for a given debug register state. This does
not use the indirection of a 'low' structure as is done for x86.
- The handling for kernel_supports_any_contiguous_range is not
pristine. For non-Linux it is simply defined to true. Some uses of
this could perhaps be implemented as new 'low' routines for the
various places that check it instead?
- Pass down ptid into aarch64_handle_breakpoint and
aarch64_handle_watchpoint rather than using current_lwp_ptid which
is only defined on Linux. In addition, pass the ptid on to
aarch64_notify_debug_reg_change instead of the unused state
argument.
|
|
Use the FreeBSD native target low_new_fork hook to copy the
per-process debug state from the parent to the child on fork.
|
|
This method can be overridden by architecture-specific targets to
perform additional work when a new child process is forked.
|
|
This class implements debug register support common between the i386
and amd64 native targets.
While here, remove #ifdef's for HAVE_PT_GETDBREGS in FreeBSD-specific
code. The ptrace request has been present on FreeBSD x86
architectures since 4.0 (released in March 2000). The last FreeBSD
release without this support is 3.5 released in June 2000.
|
|
This function returns nullptr if debug register state does not yet
exist for a given process rather than creating new state.
|
|
This replaces a manual linked list which used O(n) lookup and removal.
|
|
For BSD x86 targets, stopped_by_hw_breakpoint doesn't check siginfo_t
but inspects the DR6 register directly via PT_GETDBREGS.
|
|
I found a couple of spots that declare a symtab_and_line but don't
actually use it. I think this probably isn't detected as unused
because it has a constructor.
|
|
Add a new function, gdb.format_address, which is a wrapper around
GDB's print_address function.
This method takes an address, and returns a string with the format:
ADDRESS <SYMBOL+OFFSET>
Where, ADDRESS is the original address, formatted as hexadecimal,
SYMBOL is a symbol with an address lower than ADDRESS, and OFFSET is
the offset from SYMBOL to ADDRESS in decimal.
If there's no SYMBOL suitably close to ADDRESS then the
<SYMBOL+OFFSET> part is not included.
This is useful if a user wants to write a Python script that
pretty-prints addresses, the user no longer needs to do manual symbol
lookup, or worry about correctly formatting addresses.
Additionally, there are some settings that effect how GDB picks
SYMBOL, and whether the file name and line number should be included
with the SYMBOL name, the gdb.format_address function ensures that the
users Python script also benefits from these settings.
The gdb.format_address by default selects SYMBOL from the current
inferiors program space, and address is formatted using the
architecture for the current inferior. However, a user can also
explicitly pass a program space and architecture like this:
gdb.format_address(ADDRESS, PROGRAM_SPACE, ARCHITECTURE)
In order to format an address for a different inferior.
Notes on the implementation:
In py-arch.c I extended arch_object_to_gdbarch to add an assertion for
the type of the PyObject being worked on. Prior to this commit all
uses of arch_object_to_gdbarch were guaranteed to pass this function a
gdb.Architecture object, but, with this commit, this might not be the
case.
So, with this commit I've made it a requirement that the PyObject be a
gdb.Architecture, and this is checked with the assert. And in order
that callers from other files can check if they have a
gdb.Architecture object, I've added the new function
gdbpy_is_architecture.
In py-progspace.c I've added two new function, the first
progspace_object_to_program_space, converts a PyObject of type
gdb.Progspace to the associated program_space pointer, and
gdbpy_is_progspace checks if a PyObject is a gdb.Progspace or not.
|