Age | Commit message (Collapse) | Author | Files | Lines |
|
This commit removes some arbitrary adjustments made in
tui_cmd_window::max_height, tui_win_info::max_height, and
tui_win_info::max_width.
These member functions all subtract some constant from the theoretical
maximum height or width. I've looked back through the history a
little and can see no real reason why these adjustments should be
needed, with these adjustments removed all the existing tui tests
still pass.
However, retaining these restrictions causes some bugs, consider:
(gdb) tui new-layout hsrc {-horizontal src 1 cmd 1} 1
When this layout is selected with current master, gdb will leave a 4
line gap at the bottom of the terminal.
The problem is that the maximum height is restricted, for the cmd
window, to 4 less than the terminal height.
By removing this restriction gdb is able to size the windows to the
complete terminal height, and the layout is done correctly.
This 4 line restriction is also what prevents this layout from working
correctly:
(gdb) tui new-layout conly cmd 1
Previously, this layout would present a cmd window only, but there
would be a 4 line gap at the bottom of the terminal. This issue was
mentioned in an earlier commit in this series (when a different bug
was fixed), but with this commit, the above layout now correctly fills
the terminal. The associated test is updated.
After removing the adjustment in tui_cmd_window::max_height, the
implementation is now the same as the implementation in the parent
class tui_win_info, so I've completely removed the max_height call
from tui_cmd_window.
|
|
This commit just adds an extra check of the src window size prior to
sending all the commands to gdb. We also set the cmd window height to
its existing height, this (obviously) shouldn't change the window
layout, which we check.
My main motivation was adding the initial window layout check, the
winheight and recheck are just extras. All of these test pass both
before and after this commit.
|
|
This commit allows the user to place the cmd window within horizontal
tui layouts. Consider this set of steps, carried out in an 80 columns
by 24 lines terminal, using current master gdb:
(gdb) tui new-layout hsrc { -horizontal src 1 cmd 1 } 1 status 1
(gdb) tui layout hsrc
What you end up with is a full width cmd window with the status bar
beneath. Where's the src window gone? We then try:
(gdb) info win
Name Lines Columns Focus
src 23 3 (has focus)
cmd 23 80
status 1 80
(gdb)
Something weird has gone on, gdb has overlapped the cmd window with
the src window. If we trigger the src window to redraw is content,
for example, 'list main', then we see corruption in the cmd window as
the src window overwrites it.
So, what's going on?
The problem is some code in tui_layout_split::apply, in tui-layout.c.
Within 'Step 1', there is a loop that calculates the min/max window
sizes for all windows within a tui_layout_split. However, there's a
special case for the cmd window.
This special case is trying to have the cmd window retain its current
size when a layout is re-applied, or a new layout is applied. This
makes sense, consider moving from the 'src' layout to the 'asm'
layout, this looks something like this (status window removed):
.-------. .-------.
| src | | asm |
|-------| ====> |-------|
| cmd | | cmd |
'-------' '-------'
If the user has gone to the effort of adjusting the cmd window size,
then, the thinking goes, we shouldn't reset the cmd window size when
switching layouts like this.
The problem though, is that when we do a switch more like this:
.-----------. .-----------.
| src | | | |
|-----------| ====> | asm | cmd |
| cmd | | | |
'-----------' '-----------'
Now retaining the cmd window width makes no sense; the new layout has
a completely different placement for the cmd window, instead of sizing
by height, we're now sizing by width. The existing code doesn't
understand this though, and tried to retain the full width for the cmd
window.
To solve this problem, I propose we introduce the idea of a layout
"fingerprint". The fingerprint tries to capture, in an abstract way,
where the cmd window lives within the layout.
Only when two layouts have the same fingerprint will we attempt to
retain the cmd window size.
The fingerprint for a layout is represented as a string, the string is
a series of 'V' or 'H' characters, ending with a single 'C'
character. The series of 'V' and 'H' characters represent the
vertical or horizontal layouts that must be passed through to find the
cmd window.
Here are a few examples:
# This layout is equivalent to the builtin 'src' layout.
# Fingerprint: VC
tui new-layout example1 src 2 status 0 cmd 1
# This layout is equivalent to the builtin 'split' layout.
# Fingerprint: VC
tui new-layout example2 src 1 asm 1 status 0 cmd 1
# This is the same layout that was given at the top.
# Fingerprint: VHC
tui new-layout hsrc { -horizontal src 1 cmd 1 } 1 status 1
And so, when switching between example1 and example2, gdb knows that
the cmd window is, basically, in the same sort of position within the
layout, and will retain the cmd window size.
In contrast, when switching to the hsrc layout, gdb understands that
the position of the cmd window is different, and does not try to
retain the cmd window size.
|
|
When we switch layouts we call the tui_layout_split::apply member
function to reapply the layout, and recalculate all the window sizes.
One special case is the cmd window, which we try to keep at its
existing size.
However, in some cases it is not appropriate to keep the cmd window at
its existing size. I will describe two such cases here, in one, we
want the cmd window to reduce in size, and in the other, we want the
cmd window to grow in size.
Try these steps in a 80 columns, by 24 lines terminal:
(gdb) tui enable
(gdb) layout src
(gdb) winheight cmd 20
(gdb) layout split
You should see that the status window is missing from the new layout,
and that the cmd window has been placed over the border of the asm
window. The 'info win' output is:
(gdb) info win
Name Lines Columns Focus
src 3 80 (has focus)
asm 3 80
status 1 80
cmd 20 80
Notice that gdb has assigned 27 lines of screen space, even with the
border overlap between the src and asm windows, this is still 2 lines
too many.
The problem here is that after switching layouts, gdb has forced the
cmd window to retain its 20 line height. Really, we want the cmd
window to reduce in height so that the src and asm windows can occupy
their minimum required space.
This commit allows this (details on how are below). After this
commit, in the above situation, we now see the status window displayed
correctly, and the 'info win' output is:
(gdb) info win
Name Lines Columns Focus
src 3 80 (has focus)
asm 3 80
status 1 80
cmd 18 80
The cmd window has been reduced in size by 2 lines so that everything
can fit on the screen.
The second example is one which was discussed in a recent commit,
consider this case (still in the 80 column, 24 line terminal):
(gdb) tui enable
(gdb) tui new-layout conly cmd 1
(gdb) layout conly
(gdb) info win
Name Lines Columns Focus
cmd 8 80 (has focus)
(gdb)
This layout only contains a cmd window, which we would expect to
occupy the entire terminal. But instead, the cmd window only occupies
the first 8 lines, and the rest of the terminal is unused!
The reason is, again, that the cmd window is keeping its previous
size (8 lines).
After this commit things are slightly different, the 'info win' output
is now:
(gdb) info win
Name Lines Columns Focus
cmd 20 80 (has focus)
Which is a little better, but why only 20 lines? Turns out there's
yet another bug hitting this case. That bug will be addressed in a
later commit, so, for now, we're accepting the 20 lines.
What this commit does is modify the phase of tui_layout_split::apply
that handles any left over space. Usually, in "Step 2", each
sub-layout has a size calculated. As the size is an integer, then,
when all sizes are calculated we may have some space left over.
This extra space is then distributed between all the windows fairly
until all the space is used up.
When we consider windows minimum size, or fixed size windows, then it
is possible that we might try to use more space than is available,
this was our first example above. The same code that added extra
space to the windows, can also be used to reclaim space (in the over
allocation case) to allow all windows to fit.
The problem then is the cmd window, which we often force to a fixed
size. Inside the loop that handles the allocation of excess space, if
we find that we have tried every window, and still have space either
left to give, or we need to claim back more space, then, if the cmd
window was changed to a fixed size, we can change the cmd window back
to a non-fixed-size window, and proceed to either give, or take space
from the cmd window as needed.
|
|
When applying layouts gdb computes the size of each window (or rather,
each sub-layout within a layout) using integer arithmetic. As this
rounds down the results, then, when all sub-layouts are sized, there
is the possibility that we have some space left over.
Currently, this space is just assigned to an arbitrary sub-layout.
This can result in some unbalanced results. Consider this set of
steps with current master:
(gdb) tui enable
(gdb) layout regs
(gdb) info win
Name Lines Columns Focus
regs 7 80
src 9 80 (has focus)
status 1 80
cmd 8 80
Notice the weird split between the src and regs windows, the original
layout specification has these windows given equal weight. The
problem is that, with rounding, both the regs and src windows are
initially sized to 7, the extra 2 lines are then arbitrarily added to
the src window.
In this commit, rather than add all the extra space to one single
window, I instead hand out the extra space 1 line at a time, looping
over all the sub-layouts. We take care to respect the min/max sizes,
and so, we now get this result:
(gdb) tui enable
(gdb) layout regs
(gdb) info win
Name Lines Columns Focus
regs 8 80
src 8 80 (has focus)
status 1 80
cmd 8 80
This looks more natural to me.
This is obviously a change in behaviour, and so, lots of the existing
tests need to be updated to take this into account. None of the
changes are huge, it's just a line or two (or column for width) moved
between windows.
|
|
Consider:
(gdb) tui enable
(gdb) layout src
(gdb) tui new-layout conly cmd 1
(gdb) layout conly
After this, with current master, gdb crashes with a floating-point
exception.
The problem is that in tui_layout_split::apply, when we switch from
'src' to 'conly', we will try to retain the cmd window height. As
such, the cmd window will become a fixed size window, which decreases
the available_size, but doesn't count towards the total_weight.
As the cmd window is the only window, the total_weight stays at zero,
and, when we move into step 2, where we attempt to size the windows,
we perform a divide by zero, and crash.
After this commit we avoid the divide by zero, and just directly set
the window size based on the fixed size.
There is still a problem after this commit, when the conly layout is
selected the cmd window retains its original height, which will only
be part of the terminal. The rest of the terminal is left unused.
This issue will be addressed in a later commit, this commit is just
about the floating-point exception.
|
|
This commit changes the gdb.tui/new-layout.exp test to make use of a
list of test descriptions, and a loop to check each description in
turn. There's no change to what is actually tested after this commit.
In future commits I plan to add additional tests to this file, and
this will be easier now that all I have to do is add a new test
description to the list.
|
|
When I initially saw this code in tui_layout_split::apply, I assumed
that this must be a bug:
/* Two adjacent boxed windows will share a border, making a bit
more size available. */
if (i > 0
&& m_splits[i - 1].layout->bottom_boxed_p ()
&& m_splits[i].layout->top_boxed_p ())
...
After all, the apply might be laying out a horizontal layout, right?
So checking bottom_boxed_p and top_boxed_p is clearly wrong.
Well, it turns on, that due to the implementations of these things,
bottom_boxed_p is equivalent to an imagined right_boxed_p, and
top_boxed_p is equivalent to an imagined left_boxed_p.
In this commit I've renamed both top_boxed_p and bottom_boxed_p to
first_edge_has_border_p and last_edge_has_border_p respectively, and
extended the comments in tui_layout_base to mention that these methods
handle both horizontal and vertical layouts.
Now, hopefully, the code shouldn't look like it only applies for
vertical layouts.
There should be no user visible changes after this commit.
|
|
This commit adds 'set debug tui on|off' and 'show debug tui'. This
commit adds the control variable, and the printing macros in
tui/tui.h. I've then added some uses of these in tui.c and
tui-layout.c.
To help produce more useful debug output in tui-layout.c, I've added
some helper member functions in the class tui_layout_split, and also
moved the size_info struct out of tui_layout_split::apply into the
tui_layout_split class.
If tui debug is not turned on, then there should be no user visible
changes after this commit.
One thing to note is that, due to the way that the tui terminal is
often cleared, the only way I've found this useful is when I do:
(gdb) tui enable
(gdb) set logging file /path/to/file
(gdb) set logging debugredirect on
(gdb) set logging enable on
Additionally, gdb has some quirks when it comes to setting up logging
redirect and switching interpreters. Thus, the above only really
works if the logging is enabled after the tui is enabled, and disabled
again before the tui is disabled.
Enabling logging and switching interpreters can cause undefined
results, including crashes. This is an existing bug in gdb[1], and
has nothing directly to do with tui debug, but it is worth mentioning
here I think.
[1] https://sourceware.org/bugzilla/show_bug.cgi?id=28948
|
|
This commit adds a new command 'tui window width', and an alias
'winwidth'. This command is equivalent to the old 'winheight'
command (which was recently renamed 'tui window height').
Even though I recently moved the old tui commands under the tui
namespace, and I would strongly encourage all new tui commands to be
added as 'tui ....' only (users can create their own top-level aliases
if they want), I'm breaking that suggestion here, and adding a
'winwidth' alias.
Given that we already have 'winheight' and have done for years, it
just didn't seem right to no have the matching 'winwidth'.
You might notice in the test that the window resizing doesn't quite
work right. I setup a horizontal layout, then grow and shrink the
windows. At the end of the test the windows should be back to their
original size...
... they are not. This isn't my fault, honest! GDB's window resizing
is a little ... temperamental, and is prone to getting things slightly
wrong during resizes, off by 1 type things. This is true for height
resizing, as well as the new width resizing.
Later patches in this series will rework the resizing algorithm, which
should improve things in this area. For now, I'm happy that the width
resizing is as good as the height resizing, given the existing quirks.
For the docs side I include a paragraph that explains how multiple
windows are required before the width can be adjusted. For
completeness, I've added the same paragraph to the winheight
description. With the predefined layouts this extra paragraph is not
really needed for winheight, as there are always multiple windows on
the screen. However, with custom layouts, this might not be true, so
adding the paragraph seems like a good idea.
As for the changes in gdb itself, I've mostly just taken the existing
height adjustment code, changed the name to make it generic 'size'
adjustment, and added a boolean flag to indicate if we are adjusting
the width or the height.
|
|
In a following commit I'm going to add the ability to change the width
of a tui window (when in a horizontal layout). As a result, some of
the places where we currently hard-code references to height need to
be changed to handle either height, or width, based on whether we are
in a vertical, or horizontal layout.
This commit renames set_weights_from_heights to
set_weights_from_sizes, and makes the function use either the height,
or width as appropriate.
Currently, the only place that we call this function is from the
tui_layout_split::set_height function, in a part of the code we will
only reach for vertical layouts, so the new code is not actually being
used, but, this small change will help make later patches smaller, so
I'm proposing this as a stand alone change.
There should be no user visible changes after this commit.
|
|
Rename tui_layout_base::adjust_size to tui_layout_base::set_height,
the new name more accurately reflects what this member function does,
and makes it easier for a later commit to add a new
tui_layout_base::set_width member function.
There should be no user visible changes after this commit.
|
|
There are a lot of tui related commands that live in the top-level
command name space, e.g. layout, focus, refresh, winheight.
Having them at the top level means less typing for the user, which is
good, but, I think, makes command discovery harder.
In this commit, I propose moving all of the above mentioned commands
into the tui namespace, so 'layout' becomes 'tui layout', etc. But I
will then add aliases so that the old commands will still work,
e.g. I'll make 'layout' an alias for 'tui layout'.
The benefit I see in this work is that tui related commands can be
more easily discovered by typing 'tui ' and then tab-completing. Also
the "official" command is now a tui-sub-command, this is visible in,
for example, the help output, e.g.:
(gdb) help layout
tui layout, layout
Change the layout of windows.
Usage: tui layout prev | next | LAYOUT-NAME
List of tui layout subcommands:
tui layout asm -- Apply the "asm" layout.
tui layout next -- Apply the next TUI layout.
tui layout prev -- Apply the previous TUI layout.
tui layout regs -- Apply the TUI register layout.
tui layout split -- Apply the "split" layout.
tui layout src -- Apply the "src" layout.
Which I think is a good thing, it makes it clearer that this is a tui
command.
I've added a NEWS entry and updated the docs to mention the new and
old command names, with the new name being mentioned first.
|
|
This caused a build failure with !CXX_STD_THREAD.
Change-Id: I30f0c89c43a76f85c0db34809192644fa64a9d18
|
|
It is better to rename floatformats_ia64_quad to floatformats_ieee_quad
to reflect the reality, and then we can clean up the related code.
As Tom Tromey said [1]:
These files are maintained in gcc and then imported into the
binutils-gdb repository, so any changes to them will have to
be proposed there first.
the related changes have been merged into gcc master now [2], it is time
to do it for gdb.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186569.html
[2] https://gcc.gnu.org/git/?p=gcc.git;a=commit;h=b2dff6b2d9d6
Signed-off-by: Tiezhu Yang <yangtiezhu@loongson.cn>
|
|
|
|
Errors encountered when downloading files from debuginfod servers
are not displayed if debuginfod verbosity is set to 0 (via
'set debuginfod verbose 0').
Tom recommended that these errors always be displayed, regardless
of the verbosity setting [1]. Fix this.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186350.html
|
|
32-bit x86 arches always the I386_*BASE_REGNUM values. Only code that
needs to support both 64-bit and 32-bit arches needs to use
tdep->fsbase_regnum to compute a segment base register number.
|
|
FreeBSD kernels recently grew a new register core dump note containing
the base addresses of the %fs and %gs segments (corresponding to the
%fsbase and %gsbase registers). Parse this note to permit inspecting
TLS variables in core dumps. Native processes already supported TLS
via older ptrace() operations.
|
|
This patch was original part of this series:
https://sourceware.org/pipermail/gdb-patches/2022-March/186429.html
https://sourceware.org/pipermail/gdb-patches/2022-March/186433.html
I've pulled this out as it might be useful ahead of the bigger series
being merged.
This commit adds:
_csi_L - insert line
_csi_S - pan down
_csi_T - pan up
|
|
I noticed that the CTF symbol reader passes the objfile's name to all
buildsym_compunit instances it creates. The result is that all
compunit_symtabs created have the same name, that of the objfile:
{ objfile /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0 ((struct objfile *) 0x613000005d00)
{ ((struct compunit_symtab *) 0x621000286760)
debugformat ctf
producer (null)
name libbabeltrace2.so.0.0.0
dirname (null)
blockvector ((struct blockvector *) 0x6210003911d0)
user ((struct compunit_symtab *) (null))
{ symtab /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0 ((struct symtab *) 0x6210003911f0)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
{ ((struct compunit_symtab *) 0x621000275c10)
debugformat ctf
producer (null)
name libbabeltrace2.so.0.0.0
dirname (null)
blockvector ((struct blockvector *) 0x621000286710)
user ((struct compunit_symtab *) (null))
{ symtab /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0 ((struct symtab *) 0x621000286730)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
Notice the two "name libbabeltrace2.so.0.0.0".
Change it to pass the partial_symtab's filename instead. The output
becomes:
{ objfile /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0 ((struct objfile *) 0x613000005d00)
{ ((struct compunit_symtab *) 0x621000295610)
debugformat ctf
producer (null)
name libbabeltrace2.so.0.0.0
dirname (null)
blockvector ((struct blockvector *) 0x6210003a15d0)
user ((struct compunit_symtab *) (null))
{ symtab /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0 ((struct symtab *) 0x6210003a15f0)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
{ ((struct compunit_symtab *) 0x621000288700)
debugformat ctf
producer (null)
name current-thread.c
dirname (null)
blockvector ((struct blockvector *) 0x6210002955c0)
user ((struct compunit_symtab *) (null))
{ symtab /home/simark/src/babeltrace/src/lib/current-thread.c ((struct symtab *) 0x6210002955e0)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
Note that the first compunit_symtab still has libbabeltrace2.so.0.0.0 as
its name. This is because the CTF symbol reader really creates a
partial symtab named like this. It appears to be because the debug info
contains information that has been factored out of all CUs and is at the
"top-level" of the objfile, outside any real CU. So it creates a
partial symtab and an artificial CU that's named after the objfile.
Change-Id: I576316bab2a3668adf87b4e6cebda900a8159b1b
|
|
I think it would make sense to print a compunit_symtab's name in "maint
info symtabs". If you are looking for a given CU in the list, that's
probably the field you will be looking at. As the doc of
compunit_symtab::name says, it is not meant to be a reliable file name,
it is for debugging purposes (and "maint info symtabs" exists for
debugging purposes).
Sample output with the new field:
(gdb) maintenance info symtabs
{ objfile /home/simark/build/binutils-gdb-one-target/gdb/a.out ((struct objfile *) 0x613000005d00)
{ ((struct compunit_symtab *) 0x621000131630)
debugformat DWARF 5
producer GNU C17 11.2.0 -mtune=generic -march=x86-64 -g3 -O0
name test.c
dirname /home/simark/build/binutils-gdb-one-target/gdb
blockvector ((struct blockvector *) 0x621000131d10)
user ((struct compunit_symtab *) (null))
{ symtab test.c ((struct symtab *) 0x6210001316b0)
fullname (null)
linetable ((struct linetable *) 0x621000131d40)
}
{ symtab /home/simark/build/binutils-gdb-one-target/gdb/test.h ((struct symtab *) 0x6210001316e0)
fullname (null)
linetable ((struct linetable *) 0x0)
}
{ symtab /usr/include/stdc-predef.h ((struct symtab *) 0x621000131710)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
{ ((struct compunit_symtab *) 0x6210001170a0)
debugformat DWARF 5
producer GNU C17 11.2.0 -mtune=generic -march=x86-64 -g3 -O0
name foo.c
dirname /home/simark/build/binutils-gdb-one-target/gdb
blockvector ((struct blockvector *) 0x621000131580)
user ((struct compunit_symtab *) (null))
{ symtab foo.c ((struct symtab *) 0x621000117120)
fullname (null)
linetable ((struct linetable *) 0x6210001315b0)
}
{ symtab /usr/include/stdc-predef.h ((struct symtab *) 0x621000117150)
fullname (null)
linetable ((struct linetable *) 0x0)
}
}
}
Change-Id: I17b87adfac2f6551cb5bda30d59f6c6882789211
|
|
I am trying to do some changes to buildsym_compunit, so I am auditing
the current uses. Something seems odd with this use of
buildsym_compunit (that this patch removes).
A buildsym_compunit is normally used when building a compunit_symtab.
That is, when expanding a partial symtab into a full compunit symtab.
In ctfread.c, a buildsym_compunit is created in ctf_start_archive, which
is only used when creating partial symtabs. At this moment, I don't
see how that's useful. ctf_start_archive creates a new
buildsym_compunit and starts a subfile. But that buildsym_compunit is
never used again. It's just overriden in ctf_start_symtab, which means
we leak the old buildsym_compunit, I suppose.
Remove ctf_start_archive completely. Add an assert in
ctf_start_symtab to verify that we are not overwriting an existing
buildsym_compunit (meaning we'd leak the existing one). This assert
triggers without the other part of the fix. When doing:
$ ./gdb --data-directory=data-directory /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0
...
(gdb) maintenance expand-symtabs
/home/simark/src/binutils-gdb/gdb/ctfread.c:1255: internal-error: ctf_start_symtab: Assertion `!ccp->builder' failed.
Change-Id: I666d146454a019f08e7305f3a1c4a974d27b4592
|
|
I noticed that GDB will display URLs in a few spots. This changes
them to be styled. Originally I thought I'd introduce a new "url"
style, but there aren't many places to use this, so I just reused
filename styling instead. This patch also changes the debuginfod URL
list to be printed one URL per line. I think this is probably a bit
easier to read.
|
|
I built a random project with -gctf, in order to test the CTF support in
GDB. With my ASan/UBSan/etc-enabled build of GDB, I get:
$ ./gdb --data-directory=data-directory /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0
...
Reading symbols from /tmp/babeltrace-ctf/src/lib/.libs/libbabeltrace2.so.0.0.0...
/home/simark/src/binutils-gdb/gdb/ctfread.c:1545:31: runtime error: member call on misaligned address 0xbebebebebebebebe for type 'struct buildsym_compunit', which requires 8 byte alignment
0xbebebebebebebebe: note: pointer points here
The 0xbebebebebebebebe value is a sign that the ctf_context::builder
field is uninitialized. The problem probably goes under the radar if
the field happens to be zero-initialized, because ctf_start_archive
contains this code:
if (ccx->builder == nullptr)
{
ccx->builder = new buildsym_compunit (of,
of->original_name, nullptr, language_c, 0);
If the field was zero-initialized (by chance), this will create a new
buildsym_compunit. But if the field was purposely filled with random
bytes by one of the sanitizers, we won't create a buildsym_compunit here
and we'll continue with ccx->builder equal to 0xbebebebebebebebe.
Fix this the easy way by initializing ccx->builder where the other
ctf_context fields are initialized (yeah, this code could be made nicer
C++, but I am going for the obvious fix here).
With this patch, this passes cleanly on my system:
$ make check TESTS="gdb.ctf/*.exp" RUNTESTFLAGS="CC_FOR_TARGET=/opt/gcc/git/bin/gcc"
# of expected passes 40
... where /opt/gcc/git/bin/gcc is a gcc with CTF support, given my
system gcc does not have it.
Change-Id: Idea1b0cf3e3708b72ecb16b1b60222439160f9b9
|
|
This patch removes gdb's dbx mode. Regression tested on x86-64 Fedora
34.
|
|
1. Since 32bit-pkeys.xml and 64bit-pkeys.xml are identical, consolidate
them into a single keys.xml.
2. Enable PKU for x32 to fix:
$ gdbserver :123456 x32-program
...
.../gdbserver/regcache.cc:255: A problem internal to GDBserver has been detected
.
Unknown register pkru requested
on Tiger Lake.
|
|
linux_handle_extended_wait
The check removed by this patch, using current_inferior, looks wrong.
When debugging multiple inferiors with the Linux native target and
linux_handle_extended_wait is called, there's no guarantee about which
is the current inferior. The vfork-done event we receive could be for
any inferior. If the vfork-done event is for a non-current inferior, we
end up wrongfully ignoring it. As a result, the core never processes a
TARGET_WAITKIND_VFORK_DONE event, program_space::breakpoints_not_allowed
is never cleared, and breakpoints are never reinserted. However,
because the Linux native target decided to ignore the event, it resumed
the thread - while breakpoints out. And that's bad.
The proposed fix is to remove this check. Always report vfork-done
events and let infrun's logic decide if it should be ignored. We don't
save much cycles by filtering the event here.
Add a test that replicates the situation described above. See comments
in the test for more details.
Change-Id: Ibe33c1716c3602e847be6c2093120696f2286fbf
|
|
Since commit 3cd522938792 ("Change the pager to a ui_file"), I see these
errors when running gdb.tui/scroll.exp:
ERROR: invalid command name "_csi_P"
while executing
"::gdb_tcl_unknown _csi_P 2"
("uplevel" body line 1)
invoked from within
"uplevel 1 ::gdb_tcl_unknown $args"
(procedure "::unknown" line 5)
invoked from within
"_csi_P 2"
("eval" body line 1)
invoked from within
"eval _csi_$cmd $params"
It looks like GDB is emitting a CSI that it did not emit before, the
"Delete character" one:
https://vt100.net/docs/vt510-rm/DCH.html
Implement it.
Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
Change-Id: I5bf86b6104d51b0623a26a69df83d1ca9a4851b7
|
|
A race condition in how patches were pushed causes this build failure:
CXX top.o
/home/simark/src/binutils-gdb/gdb/top.c: In function ‘void print_gdb_configuration(ui_file*)’:
/home/simark/src/binutils-gdb/gdb/top.c:1622:3: error: ‘fprintf_filtered’ was not declared in this scope; did you mean ‘printf_unfiltered’?
1622 | fprintf_filtered (stream, _("\
| ^~~~~~~~~~~~~~~~
fprintf_filtered has been removed, gdb_printf must be used now. Fix
this.
Change-Id: I6a172ba0d53dab2e7cc43ed0ed2696c82925245b
|
|
This includes the reporting of --enable/disable-threading as part of
the GDB configuration description.
|
|
Add a "reason" parameter, only used to show in debug messages what is
the reason for stopping all threads. This helped me understand the
debug logs while adding some new uses of stop_all_threads, so I am
proposing to merge it.
Change-Id: I66c8c335ebf41836a7bc3d5fe1db92c195f65e55
|
|
I forgot to do this before pushing the previous commit.
Change-Id: Ia343f702e8357d0fd109e9ddd778973e91862805
|
|
The particular behavior we have when using that combination of settings
doesn't seem tested at all (at least, I don't find it if I grep for "Can
not resume the parent process"). Add a simple test for that.
Change-Id: Ib9454a615abba661b42f1b15056df73ed1bcd4c5
|
|
procfs.c doesn't compile on Solaris:
/vol/src/gnu/gdb/hg/master/local/gdb/procfs.c: In member function ‘virtual bool procfs_target::info_proc(const char*, info_proc_what)’:
/vol/src/gnu/gdb/hg/master/local/gdb/procfs.c:3302:3: error: ‘gdb_argv’ was not declared in this scope
3302 | gdb_argv built_argv (args);
| ^~~~~~~~
/vol/src/gnu/gdb/hg/master/local/gdb/procfs.c:3303:20: error: ‘built_argv’ was not declared in this scope; did you mean ‘buildargv’?
3303 | for (char *arg : built_argv)
| ^~~~~~~~~~
| buildargv
Fixed by including "gdbsupport/buildargv.h".
Tested on amd64-pc-solaris2.11, sparcv9-sun-solaris2.11.
|
|
While trying to review Andrew's patch here [1], I thought I spotted a
bug in the handling of a CSI, but I had no way to know for sure. So I
thought it would be useful to have unit tests for the handling of
control characters and control sequences of our toy terminal
implementation. It might help avoid chasing bugs in the GDB TUI when in
reality it's a problem with the testsuite's terminal implementation.
Add the gdb.tui/tuiterm.exp file to do that. All currently supported
control sequences and characters are tested, except _csi_m (the one that
handles colors and stuff). _csi_m should probably be tested too, but it
will require more work.
Fix a few issues that the tests spotted:
- backspace: according to [3] (table 4-1), a backspace when the cursor
is at the beginning of a line should have no effect. Our
implementation did wrap to the end of the previous line. Change our
implementation to match the doc (and the test).
- insert character: this control sequence is supposed to insert blank
characters, shifting all the rest of the line right. The current
implementation moves N characters right, but it overwrites the
characters on the right instead of shifting them. It also doesn't
insert blank characters at the cursor.
- Cursor down, forward, next line: off-by-one error when reaching the
end of the display.
- erase in display, line: off-by-one errors.
- vertical line position absolute: allowed setting the cursor outside
the display, when it should clamp it to the display size.
I found that this web page [2] gave some good clues on the expected
behavior of some control characters or sequences that some other pages
didn't.
[1] https://sourceware.org/pipermail/gdb-patches/2022-March/186433.html
[2] https://docs.microsoft.com/en-us/windows/console/console-virtual-terminal-sequences
[3] https://vt100.net/docs/vt510-rm/chapter4.html#S4.3.3
Change-Id: Iab4141fdcfb7459d1b7c45cc63bd1fcb50a78d5d
|
|
Pedro pointed out that gdb worker threads should not react to quits.
While I don't think that the new DWARF reader can call QUIT from a
worker thread (and I don't think the existing minsym threading code
can either), it seems safest to address this before checking in the
new code. This patch arranges for the QUIT macro to only work on the
main thread.
|
|
Luis pointed out that I missed a spot in the gdb_printf conversion --
namely aarch64-nat.c. While looking at this, I found another spot in
darwin-nat.c that I also missed. I can't build either of these, but I
think this patch should fix the problems.
|
|
I noticed that both gdbserver and gdb define current_directory.
However, as it is referenced by gdbsupport, it seemed better to define
it there as well. This patch also moves the declaration to
pathstuff.h. Tested by rebuilding.
|
|
In Ada, if a class implements an interface and has a dynamic
superclass, then the "offset to top" -- the offset that says how to
turn a pointer to the interface into a pointer to the whole object --
is stored in the object itself. This patch changes GDB to understand
this.
Because this only touches Ada code, and because Joel already reviewed
it internally, I am checking it in.
|
|
I noticed that a couple of deprecated hooks aren't ever called, so
they can't really be used by Insight. This patch removes them
entirely. I checked the Insight sources, and these aren't mentioned
there, either.
|
|
Various spots in gdb currently know about the wrap buffer, and so are
careful to call wrap_here to be certain that all output has been
flushed.
Now that the pager is just an ordinary stream, this isn't needed, and
a simple call to gdb_flush is enough.
Similarly, there are places where gdb prints to gdb_stderr, but first
flushes gdb_stdout. stderr_file already flushes gdb_stdout, so these
aren't needed.
|
|
This patch updates some comments in utils.h to more closely reflect
the new reality.
|
|
Nothing calls vfprintf_styled any more, so remove it.
|
|
There is no longer any need for ui_out_flag::unfiltered_output --
nothing ever sets this flag. This used to be needed to make the
_unfiltered output work, but now only printf_unfiltered can be used,
and it uses the puts_unfiltered method. This patch removes the flag
and the dead code.
|
|
fprintf_symbol_filtered is misnamed, because whether filtering happens
is now up to the stream. This renames it to fprintf_symbol, which
isn't a great name (the first "f" doesn't mean much and the second one
is truly meaningless here), but "print_symbol" was already taken.
|
|
puts_filtered_tabular is now misnamed, because whether filtering
happens is now up to the stream. So, rename it. (This function is
pretty weird, and should probably be rewritten to avoid using the
chars_printed global, and moved into objc-lang.c. However, I haven't
done so.)
|
|
print_spaces_filtered is now misnamed, because whether filtering
happens is up to the stream. So, rename it.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the putc family of functions. This is done under the name
"gdb_putc". Most of this patch was written by script.
|