Age | Commit message (Collapse) | Author | Files | Lines |
|
Clang generates a warning if there is a variable that is set but not used
otherwise ("-Wunused-but-set-variable"). On the default configuration, it
causes a build failure (unless "--disable-werror" is specified).
The only extra_lines use in arrange_linetable function is removed on the
commit 558802e4d1c5dcbd0df7d2c6ef62a6deac247a2f
("gdb: change subfile::line_vector to an std::vector"). So, this variable
should be removed to prevent a build failure.
|
|
This changes struct objfile to use a gdb_bfd_ref_ptr. In addition to
removing some manual memory management, this fixes a use-after-free
that was introduced by the registry rewrite series. The issue there
was that, in some cases, registry shutdown could refer to memory that
had already been freed. This help fix the bug by delaying the
destruction of the BFD reference (and thus the per-bfd object) until
after the registry has been shut down.
|
|
Printing macros defined in the main source file doesn't work reliably
using various toolchains, especially when DWARF 5 is used. For example,
using the binaries produced by either of these commands:
$ gcc --version
gcc (GCC) 11.2.0
$ ld --version
GNU ld (GNU Binutils) 2.38
$ gcc test.c -g3 -gdwarf-5
$ clang --version
clang version 13.0.1
$ clang test.c -gdwarf-5 -fdebug-macro
I get:
$ ./gdb -nx -q --data-directory=data-directory a.out
(gdb) start
Temporary breakpoint 1 at 0x111d: file test.c, line 6.
Starting program: /home/simark/build/binutils-gdb-one-target/gdb/a.out
Temporary breakpoint 1, main () at test.c:6
6 return ZERO;
(gdb) p ZERO
No symbol "ZERO" in current context.
When starting to investigate this (taking the gcc-compiled binary as an
example), we see that GDB fails to look up the appropriate macro scope
when evaluating the expression. While stopped in
macro_lookup_inclusion:
(top-gdb) p name
$1 = 0x62100011a980 "test.c"
(top-gdb) p source.filename
$2 = 0x62100011a9a0 "/home/simark/build/binutils-gdb-one-target/gdb/test.c"
`source` is the macro_source_file that we would expect GDB to find.
`name` comes from the symtab::filename field of the symtab we are
stopped in. GDB doesn't find the appropriate macro_source_file because
the name of the macro_source_file doesn't match exactly the name of the
symtab.
The name of the main symtab comes from the compilation unit's
DW_AT_name, passed to the buildsym_compunit's constructor:
https://gitlab.com/gnutools/binutils-gdb/-/blob/4815d6125ec580cc02a1094d61b8c9d1cc83c0a1/gdb/dwarf2/read.c#L10627-10630
The contents of DW_AT_name, in this case, is "test.c". It is typically
(what I witnessed all compilers do) the same string that was passed to
the compiler on the command-line.
The name of the macro_source_file comes from the line number program
header's file table, from the call to the line_header::file_file_name
method:
https://gitlab.com/gnutools/binutils-gdb/-/blob/4815d6125ec580cc02a1094d61b8c9d1cc83c0a1/gdb/dwarf2/macro.c#L54-65
line_header::file_file_name prepends the directory path that the file
entry refers to, in the file table (if the file name is not already
absolute). In this case, the file name is "test.c", appended to the
directory "/home/simark/build/binutils-gdb-one-target/gdb".
Because the symtab's name is not created the same way as the
macro_source_file's name is created, we get this mismatch. GDB fails to
find the appropriate macro scope for the symtab, and we can't print
macros when stopped in that symtab.
To make this work, we must ensure that paths produced in these two ways
end up identical. This can be tricky because of the different ways a
path can be passed to the compiler by the user.
Another thing to consider is that while the main symtab's name (or
subfile, before it becomes a symtab) is created using DW_AT_name, the
main symtab is also referred to using its entry in the line table
header's file table, when processing the line table. We must therefore
ensure that the same name is produced in both cases, so that a call to
"start_subfile" for the main subfile will correctly find the
already-created subfile, created by buildsym_compunit's constructor. If
we fail to do that, things still often work, because of a fallback: the
watch_main_source_file_lossage method. This method determines that if
the main subfile has no symbols but there exists another subfile with
the same basename (e.g. "test.c") that does have symbols, it's probably
because there was some filename mismatch. So it replaces the main
subfile with that other subfile. I think that heuristic is useful as a
last effort to work around any bug or bad debug info, but I don't think
we should design things such as to rely on it. It's a heuristic, it can
get things wrong. So in my search for a fix, it is important that given
some good debug info, we don't end up relying on that for things to
work.
A first attempt at fixing this was to try to prepend the compilation
directory here or not prepend it there. In practice, because of all the
possible combinations of debug info the compilers produce, it was not
possible to get something that would produce reliable, consistent paths.
Another attempt at fixing this was to make both macro_source_file
objects and symtab objects use the most complete form of path possible.
That means to prepend directories at least until we get an absolute
path. In theory, we should end up with the same path in all cases.
This generally worked, but because it changed the symtab names, it
resulted in user-visible changes (for example, paths to source files in
Breakpoint hit messages becoming always absolute). I didn't find this
very good, first because there is a "set filename-display" setting that
lets the user control how they want the paths to be displayed, and that
would suddenly make this setting completely ineffective (although even
today, it is a bit dependent on the debug info). Second, it would
require a good amount of testsuite tweaks to make tests accept these
suddenly absolute paths.
This new patch is a slight variation of that: it adds a new field called
"filename_for_id" in struct symtab and struct subfile, next to the
existing filename field. The goal is to separate the internal ids used
for finding objects from the names used for presentation. This field is
used for identifying subfiles, symtabs and macro_source_files
internally. For DWARF symtabs, this new field is meant to contain the
"most complete possible" path, as discussed above. So for a given file,
it must always be in the same form, everywhere. The existing
symtab::filename field remains the one used for printing to the user, so
there shouldn't be any change in how paths are printed.
Changes in the core symtab files are:
- Add "name_for_id" and "filename_for_id" fields to "struct subfile"
and "struct symtab", next to existing "name" and "filename" fields.
- Make buildsym_compunit::buildsym_compunit and
buildsym_compunit::start_subfile accept a "name_for_id" parameter
next to the existing "name" ones.
- Make buildsym_compunit::start_subfile use "name_for_id" for looking
up existing subfiles. This is the key thing for making calls
to start_subfile for the main source file look up the existing
subfile successfully, and avoid relying on
watch_main_source_file_lossage.
- Make sal_macro_scope pass "filename_for_id", rather than "filename",
to macro_lookup_inclusion. This is the key thing to making the
lookup work and macro printing work.
Changes in the DWARF files are:
- Make line_header::file_file_name return the "most complete possible"
name. The only pre-existing user of this method is the macro code,
to give the macro_source_file objects their name. And we now want
them to have this "most complete possible" name, which will match the
corresponding symtab's "filename_for_id".
- Make dwarf2_cu::start_compunit_symtab pass the "most complete
possible" name for the main symtab's "filename_for_id". In this
context, where the info comes from the compilation unit's DW_AT_name
/ DW_AT_comp_dir, it means prepending DW_AT_comp_dir to DW_AT_name if
DW_AT_name is not already absolute.
- Change dwarf2_start_subfile to build a name_for_id for the subfile
being started. The simplest way is to re-use
line_header::file_file_name, since the callers always have a
file_entry handy. This ensures that it will get the exact same path
representation as the macro code does, for the same file (since it
also uses line_header::file_file_name).
- Update calls to allocate_symtab to pass the "name_for_id" from the
subfile.
Tests exercising all this are added by the following patch.
Of all the cases I tried, the only one I found that ends up relying on
watch_main_source_file_lossage is the following one:
$ clang --version
clang version 13.0.1
Target: x86_64-pc-linux-gnu
Thread model: posix
InstalledDir: /usr/bin
$ clang ./test.c -g3 -O0 -gdwarf-4
$ ./gdb -nx --data-directory=data-directory -q -readnow -iex "set debug symtab-create 1" a.out
...
[symtab-create] start_subfile: name = test.c, name_for_id = /home/simark/build/binutils-gdb-one-target/gdb/test.c
[symtab-create] start_subfile: name = ./test.c, name_for_id = /home/simark/build/binutils-gdb-one-target/gdb/./test.c
[symtab-create] start_subfile: name = ./test.c, name_for_id = /home/simark/build/binutils-gdb-one-target/gdb/./test.c
[symtab-create] start_subfile: found existing symtab with name_for_id /home/simark/build/binutils-gdb-one-target/gdb/./test.c (/home/simark/build/binutils-gdb-one-target/gdb/./test.c)
[symtab-create] watch_main_source_file_lossage: using subfile ./test.c as the main subfile
As we can see, there are two forms used for "test.c", one with a "." and
one without. This comes from the fact that the compilation unit DIE
contains:
DW_AT_name ("test.c")
DW_AT_comp_dir ("/home/simark/build/binutils-gdb-one-target/gdb")
without a ".", and the line table for that file contains:
include_directories[ 1] = "."
file_names[ 1]:
name: "test.c"
dir_index: 1
When assembling the filename from that entry, we get a ".".
It is a bit unexpected that the main filename resulting from the line
table header does not match exactly the name in the compilation unit.
For instance, gcc uses "./test.c" for the DW_AT_name, which gives
identical paths in the compilation unit and in the line table header.
Similarly, with DWARF 5:
$ clang ./test.c -g3 -O0 -gdwarf-5
clang create two entries that refer to the same file but are of in a different
form.
include_directories[ 0] = "/home/simark/build/binutils-gdb-one-target/gdb"
include_directories[ 1] = "."
file_names[ 0]:
name: "test.c"
dir_index: 0
file_names[ 1]:
name: "test.c"
dir_index: 1
The first file name produces a path without a "." while the second does.
This is not caught by watch_main_source_file_lossage, because of
dwarf_decode_lines that creates a symtab for each file entry in the line
table. It therefore appears as "non-empty" to
watch_main_source_file_lossage. This results in two symtabs:
(gdb) maintenance info symtabs
{ objfile /home/simark/build/binutils-gdb-one-target/gdb/a.out ((struct objfile *) 0x613000005d00)
{ ((struct compunit_symtab *) 0x62100011aca0)
debugformat DWARF 5
producer clang version 13.0.1
name test.c
dirname /home/simark/build/binutils-gdb-one-target/gdb
blockvector ((struct blockvector *) 0x621000129ec0)
user ((struct compunit_symtab *) (null))
{ symtab test.c ((struct symtab *) 0x62100011ad20)
fullname (null)
linetable ((struct linetable *) 0x0)
}
{ symtab ./test.c ((struct symtab *) 0x62100011ad60)
fullname (null)
linetable ((struct linetable *) 0x621000129ef0)
}
}
}
I am not sure what is the consequence of this, but this is also what
happens before my patch, so I think its acceptable to leave it as-is.
To handle these two cases nicely, I think we will need a function that
removes the unnecessary "." from path names, something that can be done
later.
Finally, I made a change in find_file_and_directory is necessary to
avoid breaking test
gdb.dwarf2/dw2-compdir-oldgcc.exp: info source gcc42
Without that change, we would get:
(gdb) info source
Current source file is /dir/d/dw2-compdir-oldgcc42.S
Compilation directory is /dir/d
whereas the expected result is:
(gdb) info source
Current source file is dw2-compdir-oldgcc42.S
Compilation directory is /dir/d
This test was added here:
https://sourceware.org/pipermail/gdb-patches/2012-November/098144.html
Long story short, GCC <= 4.2 apparently had a bug where it would
generate a DW_AT_name with a full path ("/dir/d/dw2-compdir-oldgcc42.S")
and no DW_AT_comp_dir. The line table has one entry with filename
"dw2-compdir-oldgcc42.S", which refers to directory 0. Directory 0
normally refers to the compilation unit's comp dir, but it is
non-existent in this case.
This caused some symtab lookup problems, and to work around them, some
workaround was added, which today reads as:
if (res.get_comp_dir () == nullptr
&& producer_is_gcc_lt_4_3 (cu)
&& res.get_name () != nullptr
&& IS_ABSOLUTE_PATH (res.get_name ()))
res.set_comp_dir (ldirname (res.get_name ()));
Source: https://gitlab.com/gnutools/binutils-gdb/-/blob/6577f365ebdee7dda71cb996efa29d3714cbccd0/gdb/dwarf2/read.c#L9428-9432
It extracts an artificial DW_AT_comp_dir from DW_AT_name, if there is no
DW_AT_comp_dir and DW_AT_name is absolute.
Prior to my patch, a subfile would get created with filename
"/dir/d/dw2-compdir-oldgcc42.S", from DW_AT_name, and another would get
created with filename "dw2-compdir-oldgcc42.S" from the line table's
file table. Then watch_main_source_file_lossage would kick in and merge
them, keeping only the "dw2-compdir-oldgcc42.S" one:
[symtab-create] start_subfile: name = /dir/d/dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: name = dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: name = dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: found existing symtab with name dw2-compdir-oldgcc42.S (dw2-compdir-oldgcc42.S)
[symtab-create] watch_main_source_file_lossage: using subfile dw2-compdir-oldgcc42.S as the main subfile
And so "info source" would show "dw2-compdir-oldgcc42.S" as the
filename.
With my patch applied, but without the change in
find_file_and_directory, both DW_AT_name and the line table would try to
start a subfile with the same filename_for_id, and there was no need for
watch_main_source_file_lossage - which is what we want:
[symtab-create] start_subfile: name = /dir/d/dw2-compdir-oldgcc42.S, name_for_id = /dir/d/dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: name = dw2-compdir-oldgcc42.S, name_for_id = /dir/d/dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: found existing symtab with name_for_id /dir/d/dw2-compdir-oldgcc42.S (/dir/d/dw2-compdir-oldgcc42.S)
[symtab-create] start_subfile: name = dw2-compdir-oldgcc42.S, name_for_id = /dir/d/dw2-compdir-oldgcc42.S
[symtab-create] start_subfile: found existing symtab with name_for_id /dir/d/dw2-compdir-oldgcc42.S (/dir/d/dw2-compdir-oldgcc42.S)
But since the one with name == "/dir/d/dw2-compdir-oldgcc42.S", coming
from DW_AT_name, gets created first, it wins, and the symtab ends up
with "/dir/d/dw2-compdir-oldgcc42.S" as the name, "info source" shows
"/dir/d/dw2-compdir-oldgcc42.S" and the test breaks.
This is not wrong per-se, after all DW_AT_name is
"/dir/d/dw2-compdir-oldgcc42.S", so it wouldn't be wrong to report the
current source file as "/dir/d/dw2-compdir-oldgcc42.S". If you compile
a file passing "/an/absolute/path.c", DW_AT_name typically contains (at
least with GCC) "/an/absolute/path.c" and GDB tells you that the source
file is "/an/absolute/path.c". But we can also keep the existing
behavior fairly easily with a little change in find_file_and_directory.
When extracting an artificial DW_AT_comp_dir from DW_AT_name, we now
modify the name to just keep the file part. The result is coherent with
what compilers do when you compile a file by just passing its filename
("gcc path.c -g"):
DW_AT_name ("path.c")
DW_AT_comp_dir ("/home/simark/build/binutils-gdb-one-target/gdb")
With this change, filename_for_id is still the full name,
"/dir/d/dw2-compdir-oldgcc42.S", but the filename of the subfile /
symtab (what ends up shown by "info source") is just
"dw2-compdir-oldgcc42.S", and that makes the test happy.
Change-Id: I8b5cc4bb3052afdb172ee815c051187290566307
|
|
This rewrites registry.h, removing all the macros and replacing it
with relatively ordinary template classes. The result is less code
than the previous setup. It replaces large macros with a relatively
straightforward C++ class, and now manages its own cleanup.
The existing type-safe "key" class is replaced with the equivalent
template class. This approach ended up requiring relatively few
changes to the users of the registry code in gdb -- code using the key
system just required a small change to the key's declaration.
All existing users of the old C-like API are now converted to use the
type-safe API. This mostly involved changing explicit deletion
functions to be an operator() in a deleter class.
The old "save/free" two-phase process is removed, and replaced with a
single "free" phase. No existing code used both phases.
The old "free" callbacks took a parameter for the enclosing container
object. However, this wasn't truly needed and is removed here as
well.
|
|
With the registry rewrite series, on Fedora 34, I started seeing this
error in xcoffread.c:
../../binutils-gdb/gdb/xcoffread.c: In function ‘void read_xcoff_symtab(objfile*, legacy_psymtab*)’:
../../binutils-gdb/gdb/xcoffread.c:948:25: error: ‘main_aux’ is used uninitialized [-Werror=uninitialized]
948 | union internal_auxent fcn_aux_saved = main_aux;
| ^~~~~~~~~~~~~
../../binutils-gdb/gdb/xcoffread.c:933:25: note: ‘main_aux’ declared here
933 | union internal_auxent main_aux;
| ^~~~~~~~
I don't know why this error started suddenly... that seems weird,
because it's not obviously related to the changes I made.
Looking into it, it seems this line was intended to avoid a similar
warning -- but since 'main_aux' is uninitialized at the point where it
is used, this fix was incomplete.
This patch avoids the warning by initializing using "{}". I'm
checking this in.
|
|
"struct coff_symbol" is defined in multiple .c files, causing ODR
warnings. This patch renames just the xcoffread.c type.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=22395
|
|
"struct find_targ_sec_arg" is defined in multiple .c files, causing
ODR warnings. This patch renames the types.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=22395
|
|
"struct symloc" is defined in multiple spots in gdb, causing ODR
warnings. This patch renames these.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=22395
|
|
Internally we noticed that some tests would fail like so on Windows:
warning: Section .debug_aranges in [...] has duplicate debug_info_offset 0x0, ignoring .debug_aranges.
Debugging showed that, in fact, a second CU was being created at this
offset. We tracked this down to the fact that, while the ELF reader
is careful to re-use the per-BFD data, other readers are not, and
could re-read the DWARF data multiple times.
However, since the change to allow an objfile to have multiple "quick
symbol" implementations, there's no reason for this approach -- it's
safe and easy for all symbol readers to reuse the per-BFD data when
reading DWARF.
This patch implements this idea, simplifying dwarf2_build_psymtabs and
making it private, and then switching to dwarf2_initialize_objfile as
the sole way to start the DWARF reader.
Note that, while I think the call to dwarf2_build_frame_info in
machoread.c is also obsolete, I haven't attempted to remove it here.
|
|
Change this field to an std::vector to facilitate memory management.
Since the linetable_entry array is copied into the symtab resulting from
the subfile, it is possible to change it without changing how symtab
stores the linetable entries (which would be a much larger change).
There is a small change in buildsym_compunit::record_line to avoid
accessing a now invalid linetable_entry. Before this patch, we keep a
pointer to the last linetable entry, pop it from the vector, and then
read last->line. It works with the manually-maintained array, but since
we now use std::vector::pop_back, I am afraid that it could be flagged
as an invalid access by the various static / dynamic analysis tools to
access the linetable_entry object after popping it from the vector.
Instead, record just the line number in an optional and use it.
There are substantial changes in xcoffread.c that simplify the code, but
I can't test them. I was hesitant to do this change because of that,
but I decided to send it anyway. I don't think that an almost dead
platform should hold back improving the code in the common parts of GDB.
The changes in xcoffread.c are:
- Make arrange_linetable "arrange" the linetable passed as a parameter,
instead of returning possibly a new one, possibly the same one.
- In the "Process main file's line numbers.", I'm not too sure what
happens. We get the lintable from "main_subfile", "arrange" it, but
then assign the result to the current subfile, obtained with
get_current_subfile. I assume that the current subfile is also the
main one, so now I just call arrange_linetable on the main subfile's
line table.
- Remove that weird "Useless if!!!" FIXME comment. It's been there
forever, but the "if" is still there, so I guess the "if" can stay
there.
Change-Id: I11799006fd85189e8cf5bd3a168f8f38c2c27a80
|
|
Reduce manual memory management and make the code a bit easier to read.
This helps me a bit in the following patch.
I don't have a way to test this, it's best-effort.
Change-Id: I64af9cd756311deabc6cd95e701dfb21234a40a5
|
|
Change subfile::name to be a string, for easier memory management.
Change buildsym_compunit::m_comp_dir as well, since we move one in to
the other at some point in patch_subfile_names, so it's easier to do
both at the same time. There are various NULL checks for both fields
currently, replace them with empty checks, I think it ends up
equivalent.
I can't test the change in xcoffread.c, it's best-effort.
Change-Id: I62b5fb08b2089e096768a090627ac7617e90a016
|
|
Allocate struct subfile with new, initialize its fields instead of
memset-ing it to 0. Use a unique_ptr for the window after a subfile has
been allocated but before it is linked in the buildsym_compunit's list
of subfile (and therefore owned by the buildsym_compunit.
I can't test the change in xcoffread.c, it's best-effort. I couldn't
find where subfiles are freed in that file, I assume they were
intentionally (or not) leaked.
Change-Id: Ib3b6877de31b7e65bc466682f08dbf5840225f24
|
|
Remove all macros related to getting and setting some symbol value:
#define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
#define SYMBOL_VALUE_ADDRESS(symbol) \
#define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
#define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
#define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
#define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
#define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
#define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
#define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
#define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
#define BMSYMBOL_VALUE_ADDRESS(symbol) \
#define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
#define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
#define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
Replace them with equivalent methods on the appropriate objects.
Change-Id: Iafdab3b8eefc6dc2fd895aa955bf64fafc59ed50
|
|
It's a bit confusing because we have both "compunit_symtab" and "symtab"
types, and many methods and functions containing "start_symtab" or
"end_symtab", which actually deal with compunit_symtabs. I believe this
comes from the time before compunit_symtab was introduced, where
symtab did the job of both.
Rename everything I found containing start_symtab or end_symtab to use
start_compunit_symtab or end_compunit_symtab.
Change-Id: If3849b156f6433640173085ad479b6a0b085ade2
|
|
While taking a look through dbxread.c I spotted a couple of places
where making use of std::string would remove the need for manual
memory allocation and memcpy.
During review Simon pointed out that the same code exists in
xcoffread.c, so I've applied the same fix there too.
There should be no user visible changes after this commit.
|
|
Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
|
|
Add a getter and a setter for a symbol's domain. Remove the
corresponding macro and adjust all callers.
Change-Id: I54465b50ac89739c663859a726aef8cdc6e4b8f3
|
|
Add a getter and a setter for a symbol's aclass index. Remove the
corresponding macro and adjust all callers.
Change-Id: Ie8c8d732624cfadb714aba5ddafa3d29409b3d39
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
Commit e86fc4a5bc37 ("PR 28447: implement multiple parameters for .file
on XCOFF") changes the structure associated to the internal
representation of files in COFF formats. However, gdb directory update
has been forgotten, leading to compilation errors of this kind:
CXX coffread.o
/home/simark/src/binutils-gdb/gdb/coffread.c: In function 'const char* coff_getfilename(internal_auxent*)':
/home/simark/src/binutils-gdb/gdb/coffread.c:1343:29: error: 'union internal_auxent::<unnamed struct>::<unnamed>' has no member named 'x_zeroes'
1343 | if (aux_entry->x_file.x_n.x_zeroes == 0)
| ^~~~~~~~
Fix it by adjusting the COFF code in GDB.
Change-Id: I703fa134bc722d47515efbd72b88fa5650af6c3c
|
|
I wrote a small script to spot a pattern of indentation mistakes I saw
happened in breakpoint.c. And while at it I ran it on all files and
fixed what I found. No behavior changes intended, just indentation and
addition / removal of curly braces.
gdb/ChangeLog:
* Fix some indentation mistakes throughout.
gdbserver/ChangeLog:
* Fix some indentation mistakes throughout.
Change-Id: Ia01990c26c38e83a243d8f33da1d494f16315c6e
|
|
Since partial_symtab is supposed to be objfile-independent (since series
[1]), I think it would make sense for partial_symtab to not take an
objfile as a parameter in its constructor.
This patch replaces that parameter with an objfile_per_bfd_storage
parameter.
The objfile is used for two things:
- to get the objfile_name, for debug messages. We can get that name
from the bfd instead.
- to intern the partial symtab filename. Even though it goes through
an objfile method, the request is actually forwarded to the
underlying objfile_per_bfd_storage. So we can ask the new
objfile_per_bfd_storage instead.
In order to get a reference to the BFD from the objfile_per_bfd_storage,
the BFD is saved in the objfile_per_bfd_storage object.
[1] https://sourceware.org/pipermail/gdb-patches/2021-February/176625.html
gdb/ChangeLog:
* psympriv.h (struct partial_symtab) <partial_symtab>: Change
objfile parameter for objfile_per_bfd_storage, adjust callers.
(struct standard_psymtab) <standard_psymtab>: Likewise.
(struct legacy_psymtab) <legacy_psymtab>: Likewise.
* psymtab.c (partial_symtab::partial_symtab): Likewise.
* ctfread.c (struct ctf_psymtab): Likewise.
* dwarf2/read.h (struct dwarf2_psymtab): Likewise.
* dwarf2/read.c (struct dwarf2_include_psymtab): Likewise.
(dwarf2_create_include_psymtab): Likewise.
* objfiles.h (struct objfile_per_bfd_storage)
<objfile_per_bfd_storage>: Add bfd parameter, adjust callers.
<get_bfd>: New method.
<m_bfd>: New field.
* objfiles.c (get_objfile_bfd_data): Adjust.
Change-Id: I2ed3ab5d2e6f27d034bd4dc26ae2fae7b0b8a2b9
|
|
This patch finally changes gdb so that an objfile can have multiple
sources of partial symbols (or mixed partial symbols and other kinds
of indices).
This is done by having each symbol reader create its own
psymbol_functions object and add it to the 'qf' list in the objfile.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_initial_scan): Create partial symtabs.
* symfile.c (syms_from_objfile_1, reread_symbols): Update.
* psymtab.h (make_psymbol_functions): Don't declare.
* psymtab.c (make_psymbol_functions): Remove.
(maintenance_print_psymbols): Update.
* psympriv.h (struct psymbol_functions): Add no-argument
constructor.
* objfiles.h (struct objfile) <reset_psymtabs>: Remove.
<partial_symtabs>: Remove.
* mdebugread.c (mdebug_build_psymtabs): Create partial symtabs.
* elfread.c (read_partial_symbols): Update.
(elf_symfile_read): Remove check for existing partial symbols.
Don't clear "qf".
* dwarf2/read.c (dwarf2_has_info): Remove check for existing
partial symbols.
(dwarf2_build_psymtabs): Add psymbol_functions parameter. Create
partial symtabs.
* dwarf2/public.h (dwarf2_build_psymtabs): Add psymbol_functions
parameter.
* dbxread.c (dbx_symfile_read): Create partial symtabs.
* ctfread.c (elfctf_build_psymtabs): Create partial symtabs.
|
|
This adds a partial_symtabs parameter to the psymtab constructors and
to add_psymbol. This helps with the overall project of removing the
partial symtabs from the objfile.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_start_psymtab): Add partial_symtabs parameter.
(xcoff_end_psymtab, scan_xcoff_symtab): Update.
* psymtab.c (partial_symtab::partial_symtab): Add partial_symtabs
parameter.
(add_psymbol_to_bcache): Remove.
(partial_symtab::add_psymbol): Add partial_symtabs parameter.
(partial_symtab::add_psymbol, partial_symtab::partial_symtab):
Likewise.
* psympriv.h (partial_symtab): Add partial_symtabs parameter.
<add_psymbol>: Likewise.
(standard_psymtab, legacy_psymtab): Likewise.
* mdebugread.c (parse_partial_symbols): Update.
(handle_psymbol_enumerators): Add partial_symtabs parameter.
(handle_psymbol_enumerators): Update.
(new_psymtab): Add partial_symtabs parameter.
* dwarf2/read.h (dwarf2_psymtab): Add partial_symtabs parameter.
* dwarf2/read.c (dwarf2_include_psymtab): Add partial_symtabs
parameter.
(dwarf2_create_include_psymtab): Add partial_symtabs parameter.
(create_partial_symtab, add_partial_symbol, dwarf_decode_lines):
Update.
* dbxread.c (read_dbx_symtab): Update.
(start_psymtab): Add partial_symtabs parameter.
(dbx_end_psymtab): Update.
* ctfread.c (struct ctf_context) <partial_symtabs>: New member.
(ctf_psymtab): Add partial_symtabs parameter.
(create_partial_symtab, ctf_psymtab_type_cb, ctf_psymtab_var_cb):
Update.
(scan_partial_symbols): Add partial_symtabs parameter.
(scan_partial_symbols, elfctf_build_psymtabs)
(ctf_psymtab_add_enums): Update.
|
|
Partial symbols are read via the sym_fns::sym_read_psymbols function
pointer. In order to separate the partial symbols from the objfile,
this must instead be done via a virtual method on
quick_symbol_functions. This patch implements this change.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_sym_fns): Update.
* symfile.h (struct sym_fns) <sym_read_psymbols>: Remove.
* symfile-debug.c (objfile::has_partial_symbols): Use
can_lazily_read_symbols.
(debug_sym_read_psymbols): Remove.
(debug_sym_fns, install_symfile_debug_logging): Update.
* quick-symbol.h (struct quick_symbol_functions)
<can_lazily_read_symbols, read_partial_symbols>: New methods.
* psymtab.c (require_partial_symbols): Use new 'qf' methods.
* mipsread.c (ecoff_sym_fns): Update.
* machoread.c (macho_sym_fns): Update.
* elfread.c (struct lazy_dwarf_reader): New.
(elf_symfile_read): Update.
(read_psyms): Now a method of lazy_dwarf_reader.
(elf_sym_fns): Update.
(elf_sym_fns_lazy_psyms): Remove.
* dbxread.c (aout_sym_fns): Update.
* coffread.c (coff_sym_fns): Update.
|
|
Currently, all psymbol readers access the psymtab storage via the
objfile. This is done directly at any spot requiring the storage.
In order to move psymbols out of the objfile, the psymtab_storage must
be passed in explicitly. This patch consolidates the access of the
storage in a single place in these readers, updating various functions
to pass the storage object around. "Hidden" uses, like
"objfile->psymtabs ()", are also updated.
The DWARF reader is not yet touched. That requires more complicated
changes.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_end_psymtab): Add partial_symtabs parameter.
(xcoff_end_psymtab): Update.
(scan_xcoff_symtab): Add partial_symtabs parameter.
(xcoff_initial_scan): Update.
* stabsread.h (dbx_end_psymtab): Add partial_symtabs parameter.
* mdebugread.c (mdebug_build_psymtabs): Update.
(parse_partial_symbols): Add partial_symtabs parameter.
* dbxread.c (dbx_symfile_read): Update.
(read_dbx_symtab): Add partial_symtabs parameter.
(read_dbx_symtab): Update.
(dbx_end_psymtab): Add partial_symtabs parameter.
|
|
Currently the "partial" symbol reader is attached to the objfile's
symbol functions. However, in order to allow multiple separate
partial symbol readers, this association must be changed. This patch
moves the "qf" member out of sym_fns as a step toward that goal.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* psymtab.c (require_partial_symbols): Check that 'sf' is not
null.
* xcoffread.c (xcoff_sym_fns): Update.
* symfile.h (struct sym_fns) <qf>: Remove.
* symfile.c (syms_from_objfile_1, reread_symbols): Update.
* symfile-debug.c (objfile::has_partial_symbols)
(objfile::find_last_source_symtab)
(objfile::forget_cached_source_info)
(objfile::map_symtabs_matching_filename, objfile::lookup_symbol)
(objfile::print_stats, objfile::dump)
(objfile::expand_symtabs_for_function)
(objfile::expand_all_symtabs)
(objfile::expand_symtabs_with_fullname)
(objfile::map_matching_symbols)
(objfile::expand_symtabs_matching)
(objfile::find_pc_sect_compunit_symtab)
(objfile::map_symbol_filenames)
(objfile::find_compunit_symtab_by_address)
(objfile::lookup_global_symbol_language, debug_sym_fns)
(install_symfile_debug_logging): Update.
* objfiles.h (struct objfile) <qf>: New member.
* mipsread.c (ecoff_sym_fns): Update.
* machoread.c (macho_sym_fns): Update.
* elfread.c (elf_sym_fns_gdb_index, elf_sym_fns_debug_names):
Don't declare.
(elf_symfile_read, elf_sym_fns, elf_sym_fns_lazy_psyms): Update.
* dbxread.c (aout_sym_fns): Update.
* coffread.c (coff_sym_fns): Update.
|
|
This moves some more DWARF code out of symfile.h and into a new
header, dwarf2/public.h. This header is intended to describe the
public API of the DWARF reader.
gdb/ChangeLog
2021-03-20 Tom Tromey <tom@tromey.com>
* coffread.c: Include dwarf2/public.h.
* dwarf2/frame.c: Include dwarf2/public.h.
* dwarf2/index-write.h: Include dwarf2/public.h, not symfile.h.
* dwarf2/public.h: New file.
* dwarf2/read.c: Include dwarf2/public.h.
* elfread.c: Include dwarf2/public.h.
* machoread.c: Include dwarf2/public.h.
* symfile.h (dwarf2_has_info, enum dw_index_kind)
(dwarf2_initialize_objfile, dwarf2_build_psymtabs)
(dwarf2_build_frame_info): Move to dwarf2/public.h.
* xcoffread.c: Include dwarf2/public.h.
|
|
This creates a new file, dwarf2/sect-names.h, and moves some
DWARF-specific type definitions from symfile.h into it.
gdb/ChangeLog
2021-03-06 Tom Tromey <tom@tromey.com>
* xcoffread.c: Include sect-names.h.
* symfile.h (struct dwarf2_section_names, struct
dwarf2_debug_sections): Move to dwarf2/sect-names.h.
* dwarf2/sect-names.h: New file, from symfile.h.
* dwarf2/read.c: Include sect-names.h.
|
|
Delete two more symbol/section related macros. This time it's
SYMBOL_SECTION and MSYMBOL_SECTION.
As with general_symbol_info::m_name it is not currently possible to
make general_symbol_info::m_section private as general_symbol_info
must remain a POD type.
But other than failing to make the new m_section private, this change
does what you'd expect, adds a get and set member function and updates
all users to use the new functions instead of the previous wrapper
macros.
There should be no user visible change after this commit.
gdb/ChangeLog:
* coff-pe-read.c (add_pe_forwarded_sym): Make use of section_index
and set_section_index member functions where appropriate.
* coffread.c (coff_symtab_read): Likewise.
(process_coff_symbol): Likewise.
* ctfread.c (set_symbol_address): Likewise.
* dwarf2/read.c (add_partial_symbol): Likewise.
(var_decode_location): Likewise.
* language.c: Likewise.
* minsyms.c (minimal_symbol_reader::record_full): Likewise.
(compact_minimal_symbols): Likewise.
(minimal_symbol_upper_bound): Likewise.
* objfiles.c (relocate_one_symbol): Likewise.
* psympriv.h (partial_symbol::obj_section): Likewise.
(partial_symbol::address): Likewise.
* psymtab.c (partial_symtab::add_psymbol): Likewise.
* stabsread.c (scan_file_globals): Likewise.
* symmisc.c (dump_msymbols): Likewise.
* symtab.c (general_symbol_info::obj_section): Likewise.
(fixup_section): Likewise.
(get_msymbol_address): Likewise.
* symtab.h (general_symbol_info::section): Rename to...
(general_symbol_info::m_section): ...this.
(general_symbol_info::set_section_index): New member function.
(general_symbol_info::section_index): Likewise.
(SYMBOL_SECTION): Delete.
(MSYMBOL_VALUE_ADDRESS): Make use of section_index and
set_section_index member functions where appropriate.
(MSYMBOL_SECTION): Delete.
(symbol::symbol): Update to initialize 'm_section'.
* xcoffread.c (read_xcoff_symtab): Make use of set_section_index.
(process_xcoff_symbol): Likewise.
|
|
This commits the result of running gdb/copyright.py as per our Start
of New Year procedure...
gdb/ChangeLog
Update copyright year range in copyright header of all GDB files.
|
|
Many spots incorrectly use only spaces for indentation (for example,
there are a lot of spots in ada-lang.c). I've always found it awkward
when I needed to edit one of these spots: do I keep the original wrong
indentation, or do I fix it? What if the lines around it are also
wrong, do I fix them too? I probably don't want to fix them in the same
patch, to avoid adding noise to my patch.
So I propose to fix as much as possible once and for all (hopefully).
One typical counter argument for this is that it makes code archeology
more difficult, because git-blame will show this commit as the last
change for these lines. My counter counter argument is: when
git-blaming, you often need to do "blame the file at the parent commit"
anyway, to go past some other refactor that touched the line you are
interested in, but is not the change you are looking for. So you
already need a somewhat efficient way to do this.
Using some interactive tool, rather than plain git-blame, makes this
trivial. For example, I use "tig blame <file>", where going back past
the commit that changed the currently selected line is one keystroke.
It looks like Magit in Emacs does it too (though I've never used it).
Web viewers of Github and Gitlab do it too. My point is that it won't
really make archeology more difficult.
The other typical counter argument is that it will cause conflicts with
existing patches. That's true... but it's a one time cost, and those
are not conflicts that are difficult to resolve. I have also tried "git
rebase --ignore-whitespace", it seems to work well. Although that will
re-introduce the faulty indentation, so one needs to take care of fixing
the indentation in the patch after that (which is easy).
gdb/ChangeLog:
* aarch64-linux-tdep.c: Fix indentation.
* aarch64-ravenscar-thread.c: Fix indentation.
* aarch64-tdep.c: Fix indentation.
* aarch64-tdep.h: Fix indentation.
* ada-lang.c: Fix indentation.
* ada-lang.h: Fix indentation.
* ada-tasks.c: Fix indentation.
* ada-typeprint.c: Fix indentation.
* ada-valprint.c: Fix indentation.
* ada-varobj.c: Fix indentation.
* addrmap.c: Fix indentation.
* addrmap.h: Fix indentation.
* agent.c: Fix indentation.
* aix-thread.c: Fix indentation.
* alpha-bsd-nat.c: Fix indentation.
* alpha-linux-tdep.c: Fix indentation.
* alpha-mdebug-tdep.c: Fix indentation.
* alpha-nbsd-tdep.c: Fix indentation.
* alpha-obsd-tdep.c: Fix indentation.
* alpha-tdep.c: Fix indentation.
* amd64-bsd-nat.c: Fix indentation.
* amd64-darwin-tdep.c: Fix indentation.
* amd64-linux-nat.c: Fix indentation.
* amd64-linux-tdep.c: Fix indentation.
* amd64-nat.c: Fix indentation.
* amd64-obsd-tdep.c: Fix indentation.
* amd64-tdep.c: Fix indentation.
* amd64-windows-tdep.c: Fix indentation.
* annotate.c: Fix indentation.
* arc-tdep.c: Fix indentation.
* arch-utils.c: Fix indentation.
* arch/arm-get-next-pcs.c: Fix indentation.
* arch/arm.c: Fix indentation.
* arm-linux-nat.c: Fix indentation.
* arm-linux-tdep.c: Fix indentation.
* arm-nbsd-tdep.c: Fix indentation.
* arm-pikeos-tdep.c: Fix indentation.
* arm-tdep.c: Fix indentation.
* arm-tdep.h: Fix indentation.
* arm-wince-tdep.c: Fix indentation.
* auto-load.c: Fix indentation.
* auxv.c: Fix indentation.
* avr-tdep.c: Fix indentation.
* ax-gdb.c: Fix indentation.
* ax-general.c: Fix indentation.
* bfin-linux-tdep.c: Fix indentation.
* block.c: Fix indentation.
* block.h: Fix indentation.
* blockframe.c: Fix indentation.
* bpf-tdep.c: Fix indentation.
* break-catch-sig.c: Fix indentation.
* break-catch-syscall.c: Fix indentation.
* break-catch-throw.c: Fix indentation.
* breakpoint.c: Fix indentation.
* breakpoint.h: Fix indentation.
* bsd-uthread.c: Fix indentation.
* btrace.c: Fix indentation.
* build-id.c: Fix indentation.
* buildsym-legacy.h: Fix indentation.
* buildsym.c: Fix indentation.
* c-typeprint.c: Fix indentation.
* c-valprint.c: Fix indentation.
* c-varobj.c: Fix indentation.
* charset.c: Fix indentation.
* cli/cli-cmds.c: Fix indentation.
* cli/cli-decode.c: Fix indentation.
* cli/cli-decode.h: Fix indentation.
* cli/cli-script.c: Fix indentation.
* cli/cli-setshow.c: Fix indentation.
* coff-pe-read.c: Fix indentation.
* coffread.c: Fix indentation.
* compile/compile-cplus-types.c: Fix indentation.
* compile/compile-object-load.c: Fix indentation.
* compile/compile-object-run.c: Fix indentation.
* completer.c: Fix indentation.
* corefile.c: Fix indentation.
* corelow.c: Fix indentation.
* cp-abi.h: Fix indentation.
* cp-namespace.c: Fix indentation.
* cp-support.c: Fix indentation.
* cp-valprint.c: Fix indentation.
* cris-linux-tdep.c: Fix indentation.
* cris-tdep.c: Fix indentation.
* darwin-nat-info.c: Fix indentation.
* darwin-nat.c: Fix indentation.
* darwin-nat.h: Fix indentation.
* dbxread.c: Fix indentation.
* dcache.c: Fix indentation.
* disasm.c: Fix indentation.
* dtrace-probe.c: Fix indentation.
* dwarf2/abbrev.c: Fix indentation.
* dwarf2/attribute.c: Fix indentation.
* dwarf2/expr.c: Fix indentation.
* dwarf2/frame.c: Fix indentation.
* dwarf2/index-cache.c: Fix indentation.
* dwarf2/index-write.c: Fix indentation.
* dwarf2/line-header.c: Fix indentation.
* dwarf2/loc.c: Fix indentation.
* dwarf2/macro.c: Fix indentation.
* dwarf2/read.c: Fix indentation.
* dwarf2/read.h: Fix indentation.
* elfread.c: Fix indentation.
* eval.c: Fix indentation.
* event-top.c: Fix indentation.
* exec.c: Fix indentation.
* exec.h: Fix indentation.
* expprint.c: Fix indentation.
* f-lang.c: Fix indentation.
* f-typeprint.c: Fix indentation.
* f-valprint.c: Fix indentation.
* fbsd-nat.c: Fix indentation.
* fbsd-tdep.c: Fix indentation.
* findvar.c: Fix indentation.
* fork-child.c: Fix indentation.
* frame-unwind.c: Fix indentation.
* frame-unwind.h: Fix indentation.
* frame.c: Fix indentation.
* frv-linux-tdep.c: Fix indentation.
* frv-tdep.c: Fix indentation.
* frv-tdep.h: Fix indentation.
* ft32-tdep.c: Fix indentation.
* gcore.c: Fix indentation.
* gdb_bfd.c: Fix indentation.
* gdbarch.sh: Fix indentation.
* gdbarch.c: Re-generate
* gdbarch.h: Re-generate.
* gdbcore.h: Fix indentation.
* gdbthread.h: Fix indentation.
* gdbtypes.c: Fix indentation.
* gdbtypes.h: Fix indentation.
* glibc-tdep.c: Fix indentation.
* gnu-nat.c: Fix indentation.
* gnu-nat.h: Fix indentation.
* gnu-v2-abi.c: Fix indentation.
* gnu-v3-abi.c: Fix indentation.
* go32-nat.c: Fix indentation.
* guile/guile-internal.h: Fix indentation.
* guile/scm-cmd.c: Fix indentation.
* guile/scm-frame.c: Fix indentation.
* guile/scm-iterator.c: Fix indentation.
* guile/scm-math.c: Fix indentation.
* guile/scm-ports.c: Fix indentation.
* guile/scm-pretty-print.c: Fix indentation.
* guile/scm-value.c: Fix indentation.
* h8300-tdep.c: Fix indentation.
* hppa-linux-nat.c: Fix indentation.
* hppa-linux-tdep.c: Fix indentation.
* hppa-nbsd-nat.c: Fix indentation.
* hppa-nbsd-tdep.c: Fix indentation.
* hppa-obsd-nat.c: Fix indentation.
* hppa-tdep.c: Fix indentation.
* hppa-tdep.h: Fix indentation.
* i386-bsd-nat.c: Fix indentation.
* i386-darwin-nat.c: Fix indentation.
* i386-darwin-tdep.c: Fix indentation.
* i386-dicos-tdep.c: Fix indentation.
* i386-gnu-nat.c: Fix indentation.
* i386-linux-nat.c: Fix indentation.
* i386-linux-tdep.c: Fix indentation.
* i386-nto-tdep.c: Fix indentation.
* i386-obsd-tdep.c: Fix indentation.
* i386-sol2-nat.c: Fix indentation.
* i386-tdep.c: Fix indentation.
* i386-tdep.h: Fix indentation.
* i386-windows-tdep.c: Fix indentation.
* i387-tdep.c: Fix indentation.
* i387-tdep.h: Fix indentation.
* ia64-libunwind-tdep.c: Fix indentation.
* ia64-libunwind-tdep.h: Fix indentation.
* ia64-linux-nat.c: Fix indentation.
* ia64-linux-tdep.c: Fix indentation.
* ia64-tdep.c: Fix indentation.
* ia64-tdep.h: Fix indentation.
* ia64-vms-tdep.c: Fix indentation.
* infcall.c: Fix indentation.
* infcmd.c: Fix indentation.
* inferior.c: Fix indentation.
* infrun.c: Fix indentation.
* iq2000-tdep.c: Fix indentation.
* language.c: Fix indentation.
* linespec.c: Fix indentation.
* linux-fork.c: Fix indentation.
* linux-nat.c: Fix indentation.
* linux-tdep.c: Fix indentation.
* linux-thread-db.c: Fix indentation.
* lm32-tdep.c: Fix indentation.
* m2-lang.c: Fix indentation.
* m2-typeprint.c: Fix indentation.
* m2-valprint.c: Fix indentation.
* m32c-tdep.c: Fix indentation.
* m32r-linux-tdep.c: Fix indentation.
* m32r-tdep.c: Fix indentation.
* m68hc11-tdep.c: Fix indentation.
* m68k-bsd-nat.c: Fix indentation.
* m68k-linux-nat.c: Fix indentation.
* m68k-linux-tdep.c: Fix indentation.
* m68k-tdep.c: Fix indentation.
* machoread.c: Fix indentation.
* macrocmd.c: Fix indentation.
* macroexp.c: Fix indentation.
* macroscope.c: Fix indentation.
* macrotab.c: Fix indentation.
* macrotab.h: Fix indentation.
* main.c: Fix indentation.
* mdebugread.c: Fix indentation.
* mep-tdep.c: Fix indentation.
* mi/mi-cmd-catch.c: Fix indentation.
* mi/mi-cmd-disas.c: Fix indentation.
* mi/mi-cmd-env.c: Fix indentation.
* mi/mi-cmd-stack.c: Fix indentation.
* mi/mi-cmd-var.c: Fix indentation.
* mi/mi-cmds.c: Fix indentation.
* mi/mi-main.c: Fix indentation.
* mi/mi-parse.c: Fix indentation.
* microblaze-tdep.c: Fix indentation.
* minidebug.c: Fix indentation.
* minsyms.c: Fix indentation.
* mips-linux-nat.c: Fix indentation.
* mips-linux-tdep.c: Fix indentation.
* mips-nbsd-tdep.c: Fix indentation.
* mips-tdep.c: Fix indentation.
* mn10300-linux-tdep.c: Fix indentation.
* mn10300-tdep.c: Fix indentation.
* moxie-tdep.c: Fix indentation.
* msp430-tdep.c: Fix indentation.
* namespace.h: Fix indentation.
* nat/fork-inferior.c: Fix indentation.
* nat/gdb_ptrace.h: Fix indentation.
* nat/linux-namespaces.c: Fix indentation.
* nat/linux-osdata.c: Fix indentation.
* nat/netbsd-nat.c: Fix indentation.
* nat/x86-dregs.c: Fix indentation.
* nbsd-nat.c: Fix indentation.
* nbsd-tdep.c: Fix indentation.
* nios2-linux-tdep.c: Fix indentation.
* nios2-tdep.c: Fix indentation.
* nto-procfs.c: Fix indentation.
* nto-tdep.c: Fix indentation.
* objfiles.c: Fix indentation.
* objfiles.h: Fix indentation.
* opencl-lang.c: Fix indentation.
* or1k-tdep.c: Fix indentation.
* osabi.c: Fix indentation.
* osabi.h: Fix indentation.
* osdata.c: Fix indentation.
* p-lang.c: Fix indentation.
* p-typeprint.c: Fix indentation.
* p-valprint.c: Fix indentation.
* parse.c: Fix indentation.
* ppc-linux-nat.c: Fix indentation.
* ppc-linux-tdep.c: Fix indentation.
* ppc-nbsd-nat.c: Fix indentation.
* ppc-nbsd-tdep.c: Fix indentation.
* ppc-obsd-nat.c: Fix indentation.
* ppc-ravenscar-thread.c: Fix indentation.
* ppc-sysv-tdep.c: Fix indentation.
* ppc64-tdep.c: Fix indentation.
* printcmd.c: Fix indentation.
* proc-api.c: Fix indentation.
* producer.c: Fix indentation.
* producer.h: Fix indentation.
* prologue-value.c: Fix indentation.
* prologue-value.h: Fix indentation.
* psymtab.c: Fix indentation.
* python/py-arch.c: Fix indentation.
* python/py-bpevent.c: Fix indentation.
* python/py-event.c: Fix indentation.
* python/py-event.h: Fix indentation.
* python/py-finishbreakpoint.c: Fix indentation.
* python/py-frame.c: Fix indentation.
* python/py-framefilter.c: Fix indentation.
* python/py-inferior.c: Fix indentation.
* python/py-infthread.c: Fix indentation.
* python/py-objfile.c: Fix indentation.
* python/py-prettyprint.c: Fix indentation.
* python/py-registers.c: Fix indentation.
* python/py-signalevent.c: Fix indentation.
* python/py-stopevent.c: Fix indentation.
* python/py-stopevent.h: Fix indentation.
* python/py-threadevent.c: Fix indentation.
* python/py-tui.c: Fix indentation.
* python/py-unwind.c: Fix indentation.
* python/py-value.c: Fix indentation.
* python/py-xmethods.c: Fix indentation.
* python/python-internal.h: Fix indentation.
* python/python.c: Fix indentation.
* ravenscar-thread.c: Fix indentation.
* record-btrace.c: Fix indentation.
* record-full.c: Fix indentation.
* record.c: Fix indentation.
* reggroups.c: Fix indentation.
* regset.h: Fix indentation.
* remote-fileio.c: Fix indentation.
* remote.c: Fix indentation.
* reverse.c: Fix indentation.
* riscv-linux-tdep.c: Fix indentation.
* riscv-ravenscar-thread.c: Fix indentation.
* riscv-tdep.c: Fix indentation.
* rl78-tdep.c: Fix indentation.
* rs6000-aix-tdep.c: Fix indentation.
* rs6000-lynx178-tdep.c: Fix indentation.
* rs6000-nat.c: Fix indentation.
* rs6000-tdep.c: Fix indentation.
* rust-lang.c: Fix indentation.
* rx-tdep.c: Fix indentation.
* s12z-tdep.c: Fix indentation.
* s390-linux-tdep.c: Fix indentation.
* score-tdep.c: Fix indentation.
* ser-base.c: Fix indentation.
* ser-mingw.c: Fix indentation.
* ser-uds.c: Fix indentation.
* ser-unix.c: Fix indentation.
* serial.c: Fix indentation.
* sh-linux-tdep.c: Fix indentation.
* sh-nbsd-tdep.c: Fix indentation.
* sh-tdep.c: Fix indentation.
* skip.c: Fix indentation.
* sol-thread.c: Fix indentation.
* solib-aix.c: Fix indentation.
* solib-darwin.c: Fix indentation.
* solib-frv.c: Fix indentation.
* solib-svr4.c: Fix indentation.
* solib.c: Fix indentation.
* source.c: Fix indentation.
* sparc-linux-tdep.c: Fix indentation.
* sparc-nbsd-tdep.c: Fix indentation.
* sparc-obsd-tdep.c: Fix indentation.
* sparc-ravenscar-thread.c: Fix indentation.
* sparc-tdep.c: Fix indentation.
* sparc64-linux-tdep.c: Fix indentation.
* sparc64-nbsd-tdep.c: Fix indentation.
* sparc64-obsd-tdep.c: Fix indentation.
* sparc64-tdep.c: Fix indentation.
* stabsread.c: Fix indentation.
* stack.c: Fix indentation.
* stap-probe.c: Fix indentation.
* stubs/ia64vms-stub.c: Fix indentation.
* stubs/m32r-stub.c: Fix indentation.
* stubs/m68k-stub.c: Fix indentation.
* stubs/sh-stub.c: Fix indentation.
* stubs/sparc-stub.c: Fix indentation.
* symfile-mem.c: Fix indentation.
* symfile.c: Fix indentation.
* symfile.h: Fix indentation.
* symmisc.c: Fix indentation.
* symtab.c: Fix indentation.
* symtab.h: Fix indentation.
* target-float.c: Fix indentation.
* target.c: Fix indentation.
* target.h: Fix indentation.
* tic6x-tdep.c: Fix indentation.
* tilegx-linux-tdep.c: Fix indentation.
* tilegx-tdep.c: Fix indentation.
* top.c: Fix indentation.
* tracefile-tfile.c: Fix indentation.
* tracepoint.c: Fix indentation.
* tui/tui-disasm.c: Fix indentation.
* tui/tui-io.c: Fix indentation.
* tui/tui-regs.c: Fix indentation.
* tui/tui-stack.c: Fix indentation.
* tui/tui-win.c: Fix indentation.
* tui/tui-winsource.c: Fix indentation.
* tui/tui.c: Fix indentation.
* typeprint.c: Fix indentation.
* ui-out.h: Fix indentation.
* unittests/copy_bitwise-selftests.c: Fix indentation.
* unittests/memory-map-selftests.c: Fix indentation.
* utils.c: Fix indentation.
* v850-tdep.c: Fix indentation.
* valarith.c: Fix indentation.
* valops.c: Fix indentation.
* valprint.c: Fix indentation.
* valprint.h: Fix indentation.
* value.c: Fix indentation.
* value.h: Fix indentation.
* varobj.c: Fix indentation.
* vax-tdep.c: Fix indentation.
* windows-nat.c: Fix indentation.
* windows-tdep.c: Fix indentation.
* xcoffread.c: Fix indentation.
* xml-syscall.c: Fix indentation.
* xml-tdesc.c: Fix indentation.
* xstormy16-tdep.c: Fix indentation.
* xtensa-config.c: Fix indentation.
* xtensa-linux-nat.c: Fix indentation.
* xtensa-linux-tdep.c: Fix indentation.
* xtensa-tdep.c: Fix indentation.
gdbserver/ChangeLog:
* ax.cc: Fix indentation.
* dll.cc: Fix indentation.
* inferiors.h: Fix indentation.
* linux-low.cc: Fix indentation.
* linux-nios2-low.cc: Fix indentation.
* linux-ppc-ipa.cc: Fix indentation.
* linux-ppc-low.cc: Fix indentation.
* linux-x86-low.cc: Fix indentation.
* linux-xtensa-low.cc: Fix indentation.
* regcache.cc: Fix indentation.
* server.cc: Fix indentation.
* tracepoint.cc: Fix indentation.
gdbsupport/ChangeLog:
* common-exceptions.h: Fix indentation.
* event-loop.cc: Fix indentation.
* fileio.cc: Fix indentation.
* filestuff.cc: Fix indentation.
* gdb-dlfcn.cc: Fix indentation.
* gdb_string_view.h: Fix indentation.
* job-control.cc: Fix indentation.
* signals.cc: Fix indentation.
Change-Id: I4bad7ae6be0fbe14168b8ebafb98ffe14964a695
|
|
This changes end_psymtab_common to be a method on partial_symtab.
This seems a little cleaner to me.
gdb/ChangeLog
2020-11-01 Tom Tromey <tom@tromey.com>
* dbxread.c (dbx_end_psymtab): Update.
* dwarf2/read.c (process_psymtab_comp_unit_reader)
(build_type_psymtabs_reader): Update.
* xcoffread.c (xcoff_end_psymtab): Update.
* ctfread.c (scan_partial_symbols): Update.
* psymtab.c (sort_pst_symbols): Remove.
(partial_symtab::end): Rename from end_psymtab_common. Inline
sort_pst_symbols.
* psympriv.h (struct partial_symtab) <end>: New method.
(end_psymtab_common): Don't declare.
|
|
The objfile parameter to end_psymtab_common is no longer needed, so
this removes it.
gdb/ChangeLog
2020-11-01 Tom Tromey <tom@tromey.com>
* dbxread.c (dbx_end_psymtab): Update.
* dwarf2/read.c (process_psymtab_comp_unit_reader): Update.
(build_type_psymtabs_reader): Update.
* xcoffread.c (xcoff_end_psymtab): Update.
* ctfread.c (scan_partial_symbols): Update.
* psympriv.h (end_psymtab_common): Update.
* psymtab.c (end_psymtab_common): Remove objfile parameter.
(sort_pst_symbols): Likewise.
|
|
init_psymbol_list is now empty, and so this removes it.
gdb/ChangeLog
2020-11-01 Tom Tromey <tom@tromey.com>
* dbxread.c (dbx_symfile_read): Update.
* dwarf2/read.c (dwarf2_build_psymtabs): Update.
* xcoffread.c (xcoff_initial_scan): Update.
* psympriv.h (init_psymbol_list): Don't declare.
* psymtab.c (init_psymbol_list): Remove.
|
|
Currently pointers to all partial symbols are stored in two vectors;
and then indices into these vectors are stored in each partial_symtab.
This patch changes this so that each partial symtab instead has
vectors of symbols. add_psymbol_to_list can now be changed into a
method on partial_symtab as well.
My main motivation for doing this is that I am looking into calling
sort_pst_symbols in the background. However, I haven't actually
implemented this yet. (Also this may make it more feasible to also
sort the static psymbols, though I haven't tried that either.)
Also, though, this lets us remove the "current_global_psymbols"
vector, because now the callers can simply refer directly to the
psymtab that they are modifying (formerly this was implicit).
The main drawback of this patch is that it increases the size of
partial symtab.
gdb/ChangeLog
2020-10-17 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_end_psymtab): Use partial_symtab::empty.
(scan_xcoff_symtab): Update.
* psymtab.h (class psymtab_storage) <global_psymbols,
static_psymbols, current_global_psymbols,
current_static_psymbols>: Remove.
* psymtab.c (require_partial_symbols, find_pc_sect_psymbol)
(match_partial_symbol, lookup_partial_symbol): Update.
(print_partial_symbols): Change parameters.
(dump_psymtab, recursively_search_psymtabs)
(psym_fill_psymbol_map, psym_find_compunit_symtab_by_address)
(sort_pst_symbols, partial_symtab::partial_symtab): Update.
(concat): Remove.
(end_psymtab_common): Simplify.
(append_psymbol_to_list): Change parameters.
(partial_symtabs::add_psymbol): Rename from add_psymbol_to_list.
(init_psymbol_list): Simplify.
(maintenance_info_psymtabs, maintenance_check_psymtabs): Update.
* psympriv.h (struct partial_symtab) <empty>: New method.
<globals_offset, n_global_syms, statics_offset, n_static_syms>:
Remove.
<global_psymbols, static_psymbols>: New members.
<add_psymbol>: New methods.
(add_psymbol_to_list): Don't declare.
(psymbol_placement): Move earlier.
* mdebugread.c (parse_partial_symbols): Update.
(handle_psymbol_enumerators): Change parameters.
(mdebug_expand_psymtab): Update.
* dwarf2/read.c (process_psymtab_comp_unit_reader)
(add_partial_symbol): Update.
* dwarf2/index-write.c (write_psymbols): Change parameters.
(write_one_signatured_type): Update.
(recursively_count_psymbols): Update.
(recursively_write_psymbols): Update.
(class debug_names) <recursively_write_psymbols>: Update.
<write_psymbols>: Change parameters.
<write_one_signatured_type>: Update.
* dbxread.c (read_dbx_symtab): Update.
(dbx_end_psymtab): Use partial_symtab::empty.
* ctfread.c (struct ctf_context) <pst>: New member.
(create_partial_symtab): Set it.
(ctf_psymtab_type_cb, ctf_psymtab_var_cb): Update.
(scan_partial_symbols): Use the psymtab's context. Update.
|
|
While looking at psymtabs again, I noticed a couple of outdated
comments. These days, psymtabs can be destroyed, as they are no
longer obstack-allocated.
gdb/ChangeLog
2020-08-28 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_end_psymtab): Update comment.
* dbxread.c (dbx_end_psymtab): Update comment.
|
|
gdbarch_static_transform_name is completely Solaris-specific or rather
specific to the Studio compilers. Studio cc has deprecated Stabs support
in the 12.4 release back in 2015, GCC has defaulted to DWARF-2 on Solaris
7+ since 2004 and Stabs themselves are pretty much obsolete, so the whole
code can go.
Tested on sparcv9-sun-solaris2.11 and x86_64-pc-linux-gnu with
--enable-targets=all.
* sol2-tdep.c (sol2_static_transform_name): Remove.
(sol2_init_abi): Don't register it.
* gdbarch.sh (static_transform_name): Remove.
* gdbarch.c, gdbarch.h: Regenerate.
* dbxread.c (read_dbx_symtab) <'S'>: Remove call to
gdbarch_static_transform_name.
* mdebugread.c (parse_partial_symbols) <'S'>: Likewise.
* stabsread.c (define_symbol) <'X'>: Remove.
(define_symbol) <'S'>: Remove gdbarch_static_transform_name
handling.
<'V'>: Likewise.
* xcoffread.c (scan_xcoff_symtab): Remove gdbarch.
<'S'>: Remove call to gdbarch_static_transform_name.
|
|
This removes allocate_symbol, allocate_template_symbol, and
initialize_objfile_symbol in favor of changing the default values for
symbol members, and updating the one per-arch caller.
gdb/ChangeLog
2020-05-15 Tom Tromey <tom@tromey.com>
* language.c (language_alloc_type_symbol): Set
SYMBOL_SECTION.
* symtab.c (initialize_objfile_symbol): Remove.
(allocate_symbol): Remove.
(allocate_template_symbol): Remove.
* dwarf2/read.c (fixup_go_packaging): Use "new".
(new_symbol): Use "new".
(read_variable): Don't call initialize_objfile_symbol. Use
"new".
(read_func_scope): Use "new".
* xcoffread.c (process_xcoff_symbol): Don't call
initialize_objfile_symbol.
(SYMBOL_DUP): Remove.
* coffread.c (process_coff_symbol, coff_read_enum_type): Use
"new".
* symtab.h (allocate_symbol, initialize_objfile_symbol)
(allocate_template_symbol): Don't declare.
(struct symbol): Add copy constructor. Change defaults.
* jit.c (finalize_symtab): Use "new".
* ctfread.c (ctf_add_enum_member_cb, new_symbol, ctf_add_var_cb):
Use "new".
* stabsread.c (patch_block_stabs, define_symbol, read_enum_type)
(common_block_end): Use "new".
* mdebugread.c (parse_symbol): Use "new".
(new_symbol): Likewise.
|
|
This changes get_objfile_arch to be a new inline method,
objfile::arch.
To my surprise, this function came up while profiling DWARF psymbol
reading. Making this change improved performance from 1.986 seconds
to 1.869 seconds. Both measurements were done by taking the mean of
10 runs on a fixed copy of the gdb executable.
gdb/ChangeLog
2020-04-18 Tom Tromey <tom@tromey.com>
* xcoffread.c (enter_line_range, scan_xcoff_symtab): Update.
* value.c (value_fn_field): Update.
* valops.c (find_function_in_inferior)
(value_allocate_space_in_inferior): Update.
* tui/tui-winsource.c (tui_update_source_windows_with_line):
Update.
* tui/tui-source.c (tui_source_window::set_contents): Update.
* symtab.c (lookup_global_or_static_symbol)
(find_function_start_sal_1, skip_prologue_sal)
(print_msymbol_info, find_gnu_ifunc, symbol_arch): Update.
* symmisc.c (dump_msymbols, dump_symtab_1)
(maintenance_print_one_line_table): Update.
* symfile.c (init_entry_point_info, section_is_mapped)
(list_overlays_command, simple_read_overlay_table)
(simple_overlay_update_1): Update.
* stap-probe.c (handle_stap_probe): Update.
* stabsread.c (dbx_init_float_type, define_symbol)
(read_one_struct_field, read_enum_type, read_range_type): Update.
* source.c (info_line_command): Update.
* python/python.c (gdbpy_source_objfile_script)
(gdbpy_execute_objfile_script): Update.
* python/py-type.c (save_objfile_types): Update.
* python/py-objfile.c (py_free_objfile): Update.
* python/py-inferior.c (python_new_objfile): Update.
* psymtab.c (psym_find_pc_sect_compunit_symtab, dump_psymtab)
(dump_psymtab_addrmap_1, maintenance_info_psymtabs)
(maintenance_check_psymtabs): Update.
* printcmd.c (info_address_command): Update.
* objfiles.h (struct objfile) <arch>: New method, from
get_objfile_arch.
(get_objfile_arch): Don't declare.
* objfiles.c (get_objfile_arch): Remove.
(filter_overlapping_sections): Update.
* minsyms.c (msymbol_is_function): Update.
* mi/mi-symbol-cmds.c (mi_cmd_symbol_list_lines)
(output_nondebug_symbol): Update.
* mdebugread.c (parse_symbol, basic_type, parse_partial_symbols)
(mdebug_expand_psymtab): Update.
* machoread.c (macho_add_oso_symfile): Update.
* linux-tdep.c (linux_infcall_mmap, linux_infcall_munmap):
Update.
* linux-fork.c (checkpoint_command): Update.
* linespec.c (convert_linespec_to_sals): Update.
* jit.c (finalize_symtab): Update.
* infrun.c (insert_exception_resume_from_probe): Update.
* ia64-tdep.c (ia64_find_unwind_table): Update.
* hppa-tdep.c (internalize_unwinds): Update.
* gdbtypes.c (get_type_arch, init_float_type, objfile_type):
Update.
* gcore.c (call_target_sbrk): Update.
* elfread.c (record_minimal_symbol, elf_symtab_read)
(elf_rel_plt_read, elf_gnu_ifunc_record_cache)
(elf_gnu_ifunc_resolve_by_got): Update.
* dwarf2/read.c (create_addrmap_from_index)
(create_addrmap_from_aranges, dw2_find_pc_sect_compunit_symtab)
(read_debug_names_from_section)
(process_psymtab_comp_unit_reader, add_partial_symbol)
(add_partial_subprogram, process_full_comp_unit)
(read_file_scope, read_func_scope, read_lexical_block_scope)
(read_call_site_scope, dwarf2_ranges_read)
(dwarf2_record_block_ranges, dwarf2_add_field)
(mark_common_block_symbol_computed, read_tag_pointer_type)
(read_tag_string_type, dwarf2_init_float_type)
(dwarf2_init_complex_target_type, read_base_type)
(partial_die_info::read, partial_die_info::read)
(read_attribute_value, dwarf_decode_lines_1, new_symbol)
(dwarf2_fetch_die_loc_sect_off): Update.
* dwarf2/loc.c (dwarf2_find_location_expression)
(class dwarf_evaluate_loc_desc, rw_pieced_value)
(dwarf2_evaluate_loc_desc_full, dwarf2_locexpr_baton_eval)
(dwarf2_loc_desc_get_symbol_read_needs)
(locexpr_describe_location_piece, locexpr_describe_location_1)
(loclist_describe_location): Update.
* dwarf2/index-write.c (write_debug_names): Update.
* dwarf2/frame.c (dwarf2_build_frame_info): Update.
* dtrace-probe.c (dtrace_process_dof): Update.
* dbxread.c (read_dbx_symtab, dbx_end_psymtab)
(process_one_symbol): Update.
* ctfread.c (ctf_init_float_type, read_base_type): Update.
* coffread.c (coff_symtab_read, enter_linenos, decode_base_type)
(coff_read_enum_type): Update.
* cli/cli-cmds.c (edit_command, list_command): Update.
* buildsym.c (buildsym_compunit::finish_block_internal): Update.
* breakpoint.c (create_overlay_event_breakpoint)
(create_longjmp_master_breakpoint)
(create_std_terminate_master_breakpoint)
(create_exception_master_breakpoint, get_sal_arch): Update.
* block.c (block_gdbarch): Update.
* annotate.c (annotate_source_line): Update.
|
|
legacy_psymtab
As I am trying to understand the dynamic of partial_symtab::read_symtab
and partial_symtab::expand_psymtab, I think that renaming these
functions helps make it clear that they are effectively implementations
of the partial_symtab::expand_psymtab method.
gdb/ChangeLog:
* dbxread.c (dbx_psymtab_to_symtab_1): Rename to...
(dbx_expand_psymtab): ... this.
(start_psymtab): Update.
* mdebugread.c (psymtab_to_symtab_1): Rename to...
(mdebug_expand_psymtab): ... this.
(parse_partial_symbols): Update.
(new_psymtab): Update.
* xcoffread.c (xcoff_psymtab_to_symtab_1): Rename to...
(xcoff_expand_psymtab): ... this.
(xcoff_start_psymtab): Update.
|
|
This method calls partial_symtab::expand_psymtab on all dependencies of
a psymtab. Given that there is also a partial_symtab::read_symtab
method, I think it would be clearer to name this function
expand_dependencies, rather than read_dependencies.
gdb/ChangeLog:
* psympriv.h (partial_symtab) <read_dependencies>: Rename to...
<expand_dependencies>: ... this.
* psymtab.c (partial_symtab::read_dependencies): Rename to...
(partial_symtab::expand_dependencies): ... this.
* dwarf2/read.c (dwarf2_include_psymtab) <expand_psymtab>:
Update.
(dwarf2_psymtab::expand_psymtab): Update.
* dbxread.c (dbx_psymtab_to_symtab_1): Update.
* mdebugread.c (psymtab_to_symtab_1): Update.
* xcoffread.c (xcoff_psymtab_to_symtab_1): Update.
|
|
This function does not add much value, compared to calling the method on
the psymtab_storage object directly.
gdb/ChangeLog:
* psympriv.h (discard_psymtab): Remove.
* dbxread.c (dbx_end_psymtab): Update.
* xcoffread.c (xcoff_end_psymtab): Update.
|
|
This commit brings support for the DWARF line table is_stmt field to
GDB. The is_stmt field is used by the compiler when a single source
line is split into multiple assembler instructions, especially if the
assembler instructions are interleaved with instruction from other
source lines.
The compiler will set the is_stmt flag false from some instructions
from the source lines, these instructions are not a good place to
insert a breakpoint in order to stop at the source line.
Instructions which are marked with the is_stmt flag true are a good
place to insert a breakpoint for that source line.
Currently GDB ignores all instructions for which is_stmt is false.
This is fine in a lot of cases, however, there are some cases where
this means the debug experience is not as good as it could be.
Consider stopping at a random instruction, currently this instruction
will be attributed to the last line table entry before this point for
which is_stmt was true - as these are the only line table entries that
GDB tracks. This can easily be incorrect in code with even a low
level of optimisation.
With is_stmt tracking in place, when stopping at a random instruction
we now attribute the instruction back to the real source line, even
when is_stmt is false for that instruction in the line table.
When inserting breakpoints we still select line table entries for
which is_stmt is true, so the breakpoint placing behaviour should not
change.
When stepping though code (at the line level, not the instruction
level) we will still stop at instruction where is_stmt is true, I
think this is more likely to be the desired behaviour.
Instruction stepping is, of course, unchanged, stepping one
instruction at a time, but we should now report more accurate line
table information with each instruction step.
The original motivation for this work was a patch posted by Bernd
here:
https://sourceware.org/ml/gdb-patches/2019-11/msg00792.html
As part of that thread it was suggested that many issues would be
resolved if GDB supported line table views, this isn't something I've
attempted in this patch, though reading the spec, it seems like this
would be a useful feature to support in GDB in the future. The spec
is here:
http://dwarfstd.org/ShowIssue.php?issue=170427.1
And Bernd gives a brief description of the benefits here:
https://sourceware.org/ml/gdb-patches/2020-01/msg00147.html
With that all said, I think that there is benefit to having proper
is_stmt support regardless of whether we have views support, so I
think we should consider getting this in first, and then building view
support on top of this.
The gdb.cp/step-and-next-inline.exp test is based off a test proposed
by Bernd Edlinger in this message:
https://sourceware.org/ml/gdb-patches/2019-12/msg00842.html
gdb/ChangeLog:
* buildsym-legacy.c (record_line): Pass extra parameter to
record_line.
* buildsym.c (buildsym_compunit::record_line): Take an extra
parameter, reduce duplication in the line table, and record the
is_stmt flag in the line table.
* buildsym.h (buildsym_compunit::record_line): Add extra
parameter.
* disasm.c (do_mixed_source_and_assembly_deprecated): Ignore
non-statement lines.
* dwarf2/read.c (dwarf_record_line_1): Add extra parameter, pass
this to the symtab builder.
(dwarf_finish_line): Pass extra parameter to dwarf_record_line_1.
(lnp_state_machine::record_line): Pass a suitable is_stmt flag
through to dwarf_record_line_1.
* infrun.c (process_event_stop_test): When stepping, don't stop at
a non-statement instruction, and only refresh the step info when
we land in the middle of a line's range. Also add an extra
comment.
* jit.c (jit_symtab_line_mapping_add_impl): Initialise is_stmt
field.
* record-btrace.c (btrace_find_line_range): Only record lines
marked as is-statement.
* stack.c (frame_show_address): Show the frame address if we are
in a non-statement sal.
* symmisc.c (dump_symtab_1): Print the is_stmt flag.
(maintenance_print_one_line_table): Print a header for the is_stmt
column, and include is_stmt information in the output.
* symtab.c (find_pc_sect_line): Find lines marked as statements in
preference to non-statements.
(find_pcs_for_symtab_line): Prefer is-statement entries.
(find_line_common): Likewise.
* symtab.h (struct linetable_entry): Add is_stmt field.
(struct symtab_and_line): Likewise.
* xcoffread.c (arrange_linetable): Initialise is_stmt field when
arranging the line table.
gdb/testsuite/ChangeLog:
* gdb.cp/step-and-next-inline.cc: New file.
* gdb.cp/step-and-next-inline.exp: New file.
* gdb.cp/step-and-next-inline.h: New file.
* gdb.dwarf2/dw2-is-stmt.c: New file.
* gdb.dwarf2/dw2-is-stmt.exp: New file.
* gdb.dwarf2/dw2-is-stmt-2.c: New file.
* gdb.dwarf2/dw2-is-stmt-2.exp: New file.
* gdb.dwarf2/dw2-ranges-base.exp: Update line table pattern.
|
|
Most of the symbol readers have code to iterate over a partial symtabs
dependencies, expanding each one and optionally printing a message.
Now that the "second-stage" psymtab expansion is available as a
method, these implementations can all be merged.
This patch also changes a couple more warnings into assertions.
gdb/ChangeLog
2020-01-26 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_psymtab_to_symtab_1): Call
read_dependencies. Add assert.
* psymtab.c (partial_symtab::read_dependencies): New method.
* psympriv.h (struct partial_symtab) <read_dependencies>: New
method.
* mdebugread.c (psymtab_to_symtab_1): Call read_dependencies.
* dwarf2read.c (dwarf2_psymtab::expand_psymtab): Call
read_dependencies.
* dbxread.c (dbx_psymtab_to_symtab_1): Call read_dependencies.
Add assert.
Change-Id: I8151e05677794e90223edc1a4cb70f7f69137d46
|
|
The symbol readers generally used two functions to expand a partial
symtab: an outer function (now the "read_symtab" method), and an inner
function, typically named something like "psymtab_to_symtab".
This patch changes this second step to be a method on partial_symtab,
and updates all the callers. For legacy_psymtab, a new function
pointer member is introduced.
This patch enables a subsequent cleanup.
gdb/ChangeLog
2020-01-26 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_psymtab_to_symtab_1): Change argument order.
Call expand_psymtab.
(xcoff_read_symtab): Call expand_psymtab.
(xcoff_start_psymtab, xcoff_end_psymtab): Set
legacy_expand_psymtab.
* psympriv.h (struct partial_symtab) <expand_psymtab>: New
method.
(struct legacy_psymtab) <expand_psymtab>: Implement.
<legacy_expand_psymtab>: New member.
* mdebugread.c (mdebug_read_symtab): Call expand_psymtab.
(parse_partial_symbols): Set legacy_expand_psymtab.
(psymtab_to_symtab_1): Change argument order. Call
expand_psymtab.
(new_psymtab): Set legacy_expand_psymtab.
* dwarf2read.h (struct dwarf2_psymtab) <expand_psymtab>: Declare.
* dwarf2read.c (dwarf2_psymtab::read_symtab): Call
expand_psymtab.
(dwarf2_psymtab::expand_psymtab): Rename from
psymtab_to_symtab_1. Call expand_psymtab.
* dbxread.c (start_psymtab): Set legacy_expand_psymtab.
(dbx_end_psymtab): Likewise.
(dbx_psymtab_to_symtab_1): Change argument order. Call
expand_psymtab.
(dbx_read_symtab): Call expand_psymtab.
* ctfread.c (struct ctf_psymtab) <expand_psymtab>: Declare.
(ctf_psymtab::expand_psymtab): Rename from psymtab_to_symtab.
(ctf_psymtab::read_symtab): Call expand_psymtab.
Change-Id: Ic39a2d7aa7b424088d910b59dbd21271fa1c3430
|
|
Each symbol reader implemented its own "Reading..." messages, and most
of them double-checked that a previously-expanded psymtab could not be
re-read.
This patch consolidates the message-printing, and changes these checks
into asserts.
gdb/ChangeLog
2020-01-26 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_read_symtab): Remove prints. Add assert.
* psymtab.c (psymtab_to_symtab): Print verbose "Reading"
messages.
* mdebugread.c (mdebug_read_symtab): Remove prints.
* dwarf2read.c (dwarf2_psymtab::read_symtab): Remove prints. Add
assert.
* dbxread.c (dbx_read_symtab): Remove prints. Add assert.
Change-Id: I795be9710d42708299bb7b44972cffd27aec9413
|
|
This introduces a new partial_symtab::read_symtab method, and updates
the symbol readers to subclass partial_symtab and implement this
method. The old read_symtab and read_symtab_private members are
removed.
In practice, only DWARF and CTF are truly updated to take advantage of
the new setup. The other symbol readers are less actively maintained,
and so this patch also introduces a "legacy_psymtab", which
essentially works the same way as the old partial_symtab.
(Note that, without more knowledge of the interaction between these
symbol readers, fixing this to remove the new (small) overhead is not
trivial, because these readers copy the read_symtab pointer between
partial symtabs.)
gdb/ChangeLog
2020-01-26 Tom Tromey <tom@tromey.com>
* xcoffread.c (this_symtab_psymtab, read_xcoff_symtab)
(xcoff_psymtab_to_symtab_1, xcoff_read_symtab)
(xcoff_start_psymtab, xcoff_end_psymtab, scan_xcoff_symtab): Use
legacy_symtab.
* stabsread.h (dbx_end_psymtab): Use legacy_symtab.
* psymtab.c (psymtab_to_symtab): Call method.
(dump_psymtab): Update.
* psympriv.h (struct partial_symtab): Add virtual destructor.
<read_symtab>: New method.
(struct legacy_symtab): New.
* mdebugread.c (mdebug_read_symtab): Use legacy_psymtab.
(struct pst_map) <pst>: Now a legacy_psymtab.
(parse_procedure, parse_partial_symbols, psymtab_to_symtab_1)
(new_psymtab): Use legacy_psymtab.
* dwarf2read.h (struct dwarf2_psymtab): New.
(struct dwarf2_per_cu_data) <psymtab>: Use it.
* dwarf2read.c (dwarf2_create_include_psymtab)
(dwarf2_build_include_psymtabs, create_type_unit_group)
(create_partial_symtab, process_psymtab_comp_unit_reader)
(build_type_psymtabs_reader, build_type_psymtab_dependencies)
(set_partial_user): Use dwarf2_psymtab.
(dwarf2_psymtab::read_symtab): Rename from dwarf2_read_symtab.
(psymtab_to_symtab_1, process_full_comp_unit)
(process_full_type_unit, dwarf2_ranges_read)
(dwarf2_get_pc_bounds, psymtab_include_file_name)
(dwarf_decode_lines): Use dwarf2_psymtab.
* dwarf-index-write.c (psym_index_map): Use dwarf2_psymtab.
(add_address_entry_worker, write_one_signatured_type)
(recursively_count_psymbols, recursively_write_psymbols)
(write_one_signatured_type, psyms_seen_size, write_gdbindex)
(write_debug_names): Likewise.
* dbxread.c (struct header_file_location): Take a legacy_psymtab.
<pst>: Now a legacy_psymtab.
(find_corresponding_bincl_psymtab): Return a legacy_psymtab.
(read_dbx_symtab, start_psymtab, dbx_end_psymtab)
(dbx_psymtab_to_symtab_1, read_ofile_symtab): Use legacy_psymtab.
* ctfread.c (struct ctf_psymtab): New.
(ctf_start_symtab, ctf_end_symtab, psymtab_to_symtab): Take a
ctf_psymtab.
(ctf_psymtab::read_symtab): Rename from ctf_read_symtab.
(create_partial_symtab): Return a ctf_psymtab.
(scan_partial_symbols): Update.
Change-Id: Ia57a828786867d6ad03200af8f996f48ed15285e
|
|
This turns start_psymtab_common into a constructor, and then changes
the callers to use "new" directly. This completes the psymtab
allocation transition -- now it is possible for symbol readers to
subclass struct partial_symtab.
gdb/ChangeLog
2020-01-26 Tom Tromey <tom@tromey.com>
* xcoffread.c (xcoff_start_psymtab): Use new.
* psymtab.c (partial_symtab::partial_symtab): New constructor,
renamed from start_psymtab_common.
* psympriv.h (struct partial_symtab): Add new constructor.
(start_psymtab_common): Don't declare.
* mdebugread.c (parse_partial_symbols): Use new.
* dwarf2read.c (create_partial_symtab): Use new.
* dbxread.c (start_psymtab): Use new.
* ctfread.c (create_partial_symtab): Use new.
Change-Id: I5a0217bcb52bcfa442559771954bb66bd9ccbf02
|