Age | Commit message (Collapse) | Author | Files | Lines |
|
I happened to notice recently that "gdb --version" says:
GNU gdb (GDB) 8.0.50.20170911-git
Copyright (C) 2017 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law. Type "show copying"
and "show warranty" for details.
This GDB was configured as "x86_64-pc-linux-gnu".
Type "show configuration" for configuration details.
For bug reporting instructions, please see:
<http://www.gnu.org/software/gdb/bugs/>.
Find the GDB manual and other documentation resources online at:
<http://www.gnu.org/software/gdb/documentation/>.
For help, type "help".
Type "apropos word" to search for commands related to "word".
This is a bit on the wordy side, but also references interactive
commands, which I think doesn't really make sense for --version.
This patch removes some text from --version, while leaving it in the
"show version" output. It also adds a newline between the URLs and
the "For help, ..." text, because I thought that was easier to read.
Finally, it indents one of the URLs, since that was simpler to read,
but not the other URL, because the current format is specified by the
GNU coding standards section on "--version".
Now the --version output looks like:
GNU gdb (GDB) 8.1.50.20180511-git
Copyright (C) 2018 Free Software Foundation, Inc.
License GPLv3+: GNU GPL version 3 or later <http://gnu.org/licenses/gpl.html>
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.
Tested by the buildbot.
gdb/ChangeLog
2018-06-05 Tom Tromey <tom@tromey.com>
* cli/cli-cmds.c (show_version): Update.
* top.c (print_gdb_version): Add "interactive" parameter.
Update.
* main.c (captured_main_1): Update.
* top.h (print_gdb_version): Add "interactive" parameter and a
comment.
gdb/testsuite/ChangeLog
2018-06-05 Tom Tromey <tom@tromey.com>
* gdb.base/default.exp: Update expected "show version" output.
|
|
This adds a "continue" response to the pager. If the user types "c"
in response to the pager prompt, pagination will be disabled for the
duration of one command -- but re-enabled afterward. This is handy if
you type a command that produces a lot of output, and you don't want
to baby-sit it by typing "return" each time the prompt comes up.
Tested by the buildbot.
gdb/ChangeLog
2018-06-05 Tom Tromey <tom@tromey.com>
PR cli/12326:
* NEWS: Add entry about pager.
* utils.c (pagination_disabled_for_command): New global.
(prompt_for_continue): Allow "c" response to prompt.
(reinitialize_more_filter): Clear
pagination_disabled_for_command.
(fputs_maybe_filtered): Check pagination_disabled_for_command.
gdb/doc/ChangeLog
2018-06-05 Tom Tromey <tom@tromey.com>
PR cli/12326:
* gdb.texinfo (Screen Size): Document "c" response to pagination
prompt.
gdb/testsuite/ChangeLog
2018-06-05 Tom Tromey <tom@tromey.com>
PR cli/12326:
* gdb.cp/static-print-quit.exp: Update.
* lib/gdb.exp (pagination_prompt): Update.
* gdb.base/page.exp: Use pagination_prompt. Add new tests.
* gdb.python/python.exp: Update.
|
|
On Windows, using the "-list-thread-groups --available" GDB/MI command
before an inferior is being debugged:
% gdb -q -i=mi
=thread-group-added,id="i1"
=cmd-param-changed,param="auto-load safe-path",value="/"
(gdb)
-list-thread-groups --available
Segmentation fault
Ooops!
The SEGV happens because the -list-thread-groups --available command
triggers a windows_nat_target::xfer_partial call for a TARGET_OBJECT_OSDATA
object. Until a program is being debugged, the target_ops layer that
gets the call is the Windows "native" layer. Except for a couple of
specific objects (TARGET_OBJECT_MEMORY and TARGET_OBJECT_LIBRARIES),
this layer's xfer_partial method delegates the xfer of other objects
to the target beneath:
default:
return beneath->xfer_partial (object, annex,
readbuf, writebuf, offset, len,
xfered_len);
Unfortunately, there is no "beneath layer" in this case, so
beneath is NULL and dereferencing it leads to the SEGV.
This patch fixes the issue by checking beneath before trying
to delegate the request.
gdb/ChangeLog:
* windows-nat.c (windows_nat_target::xfer_partial): Return
TARGET_XFER_E_IO if we need to delegate to the target beneath
but BENEATH is NULL.
gdb/testsuite/ChangeLog:
* gdb.mi/list-thread-groups-no-inferior.exp: New testcase.
|
|
Trying to insert a breakpoint using *FUNC'address with an Ada program
and then running the program until reaching that breakpoint currently
yields the following behavior:
(gdb) break *a'address
Breakpoint 1 at 0x40240c: file a.adb, line 1.
(gdb) run
[1] + 27222 suspended (tty output) /[...]/gdb -q simple_main
Unsuspending GDB then shows it was suspended trying to report
the following error:
Starting program: /home/takamaka.a/brobecke/ex/simple/a
Error in re-setting breakpoint 1: Unmatched single quote.
Error in re-setting breakpoint 1: Unmatched single quote.
Error in re-setting breakpoint 1: Unmatched single quote.
[Inferior 1 (process 32470) exited normally]
The "a'address" is Ada speak for function A's address ("A" by
itself means the result of calling A with no arguments). The
transcript above shows that we're having problems trying to
parse the breakpoint location while re-setting it. As a result,
we also fail to stop at the breakpoint.
Normally, breakpoint locations are evaluated with the current_language
being set to the language of the breakpoint. But, unfortunately for us,
what happened in this case is that parse_exp_in_context_1 calls
get_selected_block which eventually leads to a call to select_frame
because the current_frame hadn't been set yet. select_frame then
finds that our language_mode is auto, and therefore changes the
current_language to match the language of the frame we just selected.
In our case, the language chosen was 'c', which of course is not
able to parse an Ada expression, hence the error.
This patch prevents this by forcing the language_mode to manual
before we call breakpoint_re_set_one.
gdb/ChangeLog:
* breakpoint.c (breakpoint_re_set): Temporarily force language_mode
to language_mode_manual while calling breakpoint_re_set_one.
gdb/testsuite/ChangeLog:
* gdb.ada/bp_fun_addr: New testcase.
Tested on x86_64-linux.
|
|
TYPE_TAG_NAME has been an occasional source of confusion and bugs. It
seems to me that it is only useful for C and C++ -- but even there,
not so much, because at least with DWARF there doesn't seem to be any
way to wind up with a type where the name and the tag name are both
non-NULL and different.
So, this patch removes TYPE_TAG_NAME entirely. This should save a
little memory, but more importantly, it simplifies this part of gdb.
A few minor test suite adjustments were needed. In some situations
the new code does not yield identical output to the old code.
gdb/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* valops.c (enum_constant_from_type, value_namespace_elt)
(value_maybe_namespace_elt): Update.
* valarith.c (find_size_for_pointer_math): Update.
* target-descriptions.c (make_gdb_type): Update.
* symmisc.c (print_symbol): Update.
* stabsread.c (define_symbol, read_type)
(complain_about_struct_wipeout, add_undefined_type)
(cleanup_undefined_types_1): Update.
* rust-lang.c (rust_tuple_type_p, rust_slice_type_p)
(rust_range_type_p, val_print_struct, rust_print_struct_def)
(rust_internal_print_type, rust_composite_type)
(rust_evaluate_funcall, rust_evaluate_subexp)
(rust_inclusive_range_type_p): Update.
* python/py-type.c (typy_get_tag): Update.
* p-typeprint.c (pascal_type_print_base): Update.
* mdebugread.c (parse_symbol, parse_type): Update.
* m2-typeprint.c (m2_long_set, m2_record_fields, m2_enum):
Update.
* guile/scm-type.c (gdbscm_type_tag): Update.
* go-lang.c (sixg_string_p): Update.
* gnu-v3-abi.c (build_gdb_vtable_type, build_std_type_info_type):
Update.
* gdbtypes.h (struct main_type) <tag_name>: Remove.
(TYPE_TAG_NAME): Remove.
* gdbtypes.c (type_name_no_tag): Simplify.
(check_typedef, check_types_equal, recursive_dump_type)
(copy_type_recursive, arch_composite_type): Update.
* f-typeprint.c (f_type_print_base): Update. Print "Type" prefix
in summary mode when needed.
* eval.c (evaluate_funcall): Update.
* dwarf2read.c (fixup_go_packaging, read_structure_type)
(process_structure_scope, read_enumeration_type)
(read_namespace_type, read_module_type, determine_prefix): Update.
* cp-support.c (inspect_type): Update.
* coffread.c (process_coff_symbol, decode_base_type): Update.
* c-varobj.c (c_is_path_expr_parent): Update.
* c-typeprint.c (c_type_print_base_struct_union): Update.
(c_type_print_base_1): Update. Print struct/class/union/enum in
summary when using C language.
* ax-gdb.c (gen_struct_ref, gen_namespace_elt)
(gen_maybe_namespace_elt): Update.
* ada-lang.c (ada_type_name): Simplify.
(empty_record, ada_template_to_fixed_record_type_1)
(template_to_static_fixed_type)
(to_record_with_fixed_variant_part, ada_check_typedef): Update.
gdb/testsuite/ChangeLog
2018-06-01 Tom Tromey <tom@tromey.com>
* gdb.xml/tdesc-regs.exp (load_description): Update expected
results.
* gdb.dwarf2/method-ptr.exp: Set language to C++.
* gdb.dwarf2/member-ptr-forwardref.exp: Set language to C++.
* gdb.cp/typeid.exp (do_typeid_tests): Update type_re.
* gdb.base/maint.exp (maint_pass_if): Update.
|
|
It's long bothered me that setting a Python parameter from the CLI
will print the "set" help text by default. I think usually "set"
commands should be silent. And, while you can modify this behavior a
bit by providing a "get_set_string" method, if this method returns an
empty string, a blank line will be printed.
This patch removes the "help" behavior and changes the get_set_string
behavior to avoid printing a blank line. The code has a comment about
preserving API behavior, but I don't think this is truly important;
and in any case the workaround -- implementing get_set_string -- is
trivial.
Regression tested on x86-64 Fedora 26.
2018-04-26 Tom Tromey <tom@tromey.com>
* NEWS: Mention new "set" behavior.
* python/py-param.c (get_set_value): Don't print an empty string.
Don't call get_doc_string.
gdb/doc/ChangeLog
2018-04-26 Tom Tromey <tom@tromey.com>
* python.texi (Parameters In Python): Update get_set_string
documentation.
|
|
This adds a basic Python API for accessing convenience variables.
With this, convenience variables can be read and set from Python.
Although gdb supports convenience variables whose value changes at
each call, this is not exposed to Python; it could be, but I think
it's just as good to write a convenience function in this situation.
This is PR python/23080.
Tested on x86-64 Fedora 26.
2018-04-22 Tom Tromey <tom@tromey.com>
PR python/23080:
* NEWS: Update for new functions.
* python/py-value.c (gdbpy_set_convenience_variable)
(gdbpy_convenience_variable): New functions.
* python/python-internal.h (gdbpy_convenience_variable)
(gdbpy_set_convenience_variable): Declare.
* python/python.c (python_GdbMethods): Add convenience_variable,
set_convenience_variable.
doc/ChangeLog
2018-04-22 Tom Tromey <tom@tromey.com>
PR python/23080:
* python.texi (Basic Python): Document gdb.convenience_variable,
gdb.set_convenience_variable.
testsuite/ChangeLog
2018-04-22 Tom Tromey <tom@tromey.com>
PR python/23080:
* gdb.python/python.exp: Add convenience variable tests.
|
|
Use the last endianness explicitly selected, either by choosing a binary
file or with the `set endian' command, for future automatic selection.
As observed with the `gdb.base/step-over-no-symbols.exp' test case when
discarding the binary file even while connected to a live target the
endianness automatically selected is reset to the GDB target's default,
even if it does not match the endianness of the target being talked to.
For example with a little-endian MIPS target and the default endianness
being big we get this:
(gdb) file .../gdb/testsuite/outputs/gdb.base/step-over-no-symbols/step-over-no-symbols
Reading symbols from .../gdb/testsuite/outputs/gdb.base/step-over-no-symbols/step-over-no-symbols...done.
(gdb) delete breakpoints
(gdb) info breakpoints
No breakpoints or watchpoints.
(gdb) break main
Breakpoint 1 at 0x400840: file .../gdb/testsuite/gdb.base/start.c, line 34.
[...]
(gdb) continue
Continuing.
Breakpoint 1, main () at .../gdb/testsuite/gdb.base/start.c:34
34 foo();
(gdb) delete breakpoints
Delete all breakpoints? (y or n) y
(gdb) info breakpoints
No breakpoints or watchpoints.
(gdb) file
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
No executable file now.
Discard symbol table from `.../gdb/testsuite/outputs/gdb.base/step-over-no-symbols/step-over-no-symbols'? (y or n) y
No symbol file now.
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: purging symbols
p /x $pc
$1 = 0x40084000
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: get before PC
break *$pc
Breakpoint 2 at 0x40084000
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: break *$pc
set displaced-stepping off
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: set displaced-stepping off
stepi
Warning:
Cannot insert breakpoint 2.
Cannot access memory at address 0x40084000
Command aborted.
(gdb) FAIL: gdb.base/step-over-no-symbols.exp: displaced=off: stepi
p /x $pc
$2 = 0x40084000
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: get after PC
FAIL: gdb.base/step-over-no-symbols.exp: displaced=off: advanced
Remote debugging from host ...
monitor exit
(gdb) Killing process(es): ...
testcase .../gdb/testsuite/gdb.base/step-over-no-symbols.exp completed in 2 seconds
which shows that with the removal of the executable debugged the
endianness of $pc still at `main' gets swapped and the value in that
register is now incorrectly interpreted as 0x40084000 rather than
0x400840 as shown earlier on with the `break' command. Consequently the
debug session no longer works as expected, until the endianness is
overridden with an explicit `set endian little' command.
This will happen while working with any target hardware whose endianness
does not match the default GDB target's endianness guessed and recorded
for a later use in `initialize_current_architecture'.
Given that within a single run of GDB it is more likely that consecutive
target connections will use the same endianness than that the endianness
will be swapped between connections, it makes sense to preserve the last
endianness explicitly selected as the automatic default. It will make a
session like above, where an executable is removed, work correctly and
will retain the endianness for a further reconnection to the target.
And the new automatic default will still be overridden by subsequently
choosing a binary to debug, or with an explicit `set endian' command.
With the change in place the test case above completes successfully:
(gdb) continue
Continuing.
Breakpoint 1, main () at .../gdb/testsuite/gdb.base/start.c:34
34 foo();
(gdb) delete breakpoints
Delete all breakpoints? (y or n) y
(gdb) info breakpoints
No breakpoints or watchpoints.
(gdb) file
A program is being debugged already.
Are you sure you want to change the file? (y or n) y
No executable file now.
Discard symbol table from `.../gdb/testsuite/outputs/gdb.base/step-over-no-symbols/step-over-no-symbols'? (y or n) y
No symbol file now.
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: purging symbols
p /x $pc
warning: GDB can't find the start of the function at 0x400840.
GDB is unable to find the start of the function at 0x400840
and thus can't determine the size of that function's stack frame.
This means that GDB may be unable to access that stack frame, or
the frames below it.
This problem is most likely caused by an invalid program counter or
stack pointer.
However, if you think GDB should simply search farther back
from 0x400840 for code which looks like the beginning of a
function, you can increase the range of the search using the `set
heuristic-fence-post' command.
$1 = 0x400840
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: get before PC
break *$pc
Breakpoint 2 at 0x400840
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: break *$pc
set displaced-stepping off
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: set displaced-stepping off
stepi
warning: GDB can't find the start of the function at 0x4007f8.
0x004007f8 in ?? ()
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: stepi
p /x $pc
$2 = 0x4007f8
(gdb) PASS: gdb.base/step-over-no-symbols.exp: displaced=off: get after PC
PASS: gdb.base/step-over-no-symbols.exp: displaced=off: advanced
Remote debugging from host ...
monitor exit
(gdb) Killing process(es): ...
testcase .../gdb/testsuite/gdb.base/step-over-no-symbols.exp completed in 2 seconds
gdb/
* arch-utils.c (gdbarch_info_fill): Set `default_byte_order' to
the endianness selected.
* NEWS: Document `set endian auto' mode operation update.
gdb/doc/
* gdb.texinfo (Choosing Target Byte Order): Document endianness
selection details with the `set endian auto' mode.
gdb/testsuite
* gdb.base/endian.exp: New test.
* gdb.base/endian.c: New test source.
|
|
Our interpretation of the layout of floating-point general registers
(FGRs) in o32 MIPS/Linux core files is different from how the kernel
makes them, affecting the CP0 Status.FR=0 aka FP32 mode (we don't
currently support the CP0 Status.FR=1 aka FP64 mode with the o32 ABI).
In the FP32 mode pairs of consecutive even/odd-numbered 32-bit registers
are placed together as 64-bit values in even-indexed 64-bit slots
corresponding to the even index, leaving the odd-indexed 64-bit slots
unused. These 64-bit values are stored according to the endianness in
effect, which is how the MIPS II SDC1 instruction would store them.
It has always been like that with the Linux kernel for MIPS II and
higher ISA processors, which are the vast majority ever supported, as it
is indeed SDC1 that the kernel uses to store FGRs in a floating-point
context.
With MIPS I processors, which lack the SDC1 instruction, a layout that
we expect used to be used long ago, but it was corrected for consistency
with newer processors back in 2002, with `linux-mips.org' (LMO) commit
42533948caac ("Major pile of FP emulator changes."), the fix corrected
with LMO commit 849fa7a50dff ("R3k FPU ptrace() handling fixes."), and
then broken and fixed over and over again, until last time fixed with
commit 80cbfad79096 ("MIPS: Correct MIPS I FP context layout").
Consequently the values we see in FP32 core files or produce with the
`gcore' command are different from those obtained from the same FP
context of a live process, e.g. with a big-endian configuration these
live values:
(gdb) info registers float
f0: 0x4b5c6d7e flt: 14445950 dbl: 1.7446153562345001e-274
f1: 0x0718293a flt: 1.14473244e-34
f2: 0xc3d4e5f6 flt: -425.79657 dbl: -1.046160437414959e-233
f3: 0x8f90a1b2 flt: -1.42617791e-29
f4: 0x4c5d6e7f flt: 58046972 dbl: 1.1908587841220294e-269
f5: 0x08192a3b flt: 4.60914044e-34
f6: 0xc4d5e6f7 flt: -1711.21765 dbl: -6.2784661835068965e-306
f7: 0x8091a2b3 flt: -1.33745124e-38
f8: 0x45566778 flt: 3430.4668 dbl: 1.6530355595710607e-303
f9: 0x01122334 flt: 2.68412219e-38
f10: 0xcddeeff0 flt: -467533312 dbl: -2.1174864564135575e-262
f11: 0x899aabbc flt: -3.72356497e-33
f12: 0x46576879 flt: 13786.1182 dbl: 1.143296486773654e-298
f13: 0x02132435 flt: 1.08102453e-37
f14: 0xcedfe0f1 flt: -1.87803046e+09 dbl: -1.4399511533369862e-257
f15: 0x8a9bacbd flt: -1.4990934e-32
f16: 0x4758697a flt: 55401.4766 dbl: 7.8856820439568725e-294
f17: 0x03142536 flt: 4.3536007e-37
f18: 0xcfd0e1f2 flt: -7.00893696e+09 dbl: -9.7791926757340559e-253
f19: 0x8b9cadbe flt: -6.03504325e-32
f20: 0x48596a7b flt: 222633.922 dbl: 5.4255001483306113e-289
f21: 0x04152637 flt: 1.75324132e-36
f22: 0xc0d1e2f3 flt: -6.55895376 dbl: -6.6332401002310683e-248
f23: 0x8c9daebf flt: -2.42948516e-31
f24: 0x495a6b7c flt: 894647.75 dbl: 3.7244369058749787e-284
f25: 0x05162738 flt: 7.06016945e-36
f26: 0xc1d2e3f4 flt: -26.3613052 dbl: -4.4941535759306202e-243
f27: 0x8d9eafb0 flt: -9.77979703e-31
f28: 0x4a5b6c7d flt: 3595039.25 dbl: 2.5514593711161396e-279
f29: 0x06172839 flt: 2.84294945e-35
f30: 0xc2d3e4f5 flt: -105.947182 dbl: -3.035646690850097e-238
f31: 0x8e9fa0b1 flt: -3.93512664e-30
fcsr: 0x0
fir: 0xf30000
(gdb)
show up in a core file as these:
(gdb) info registers float
f0: 0x0718293a flt: 1.14473244e-34 dbl: nan
f1: 0x7ff80000 flt: nan
f2: 0x8f90a1b2 flt: -1.42617791e-29 dbl: nan
f3: 0x7ff80000 flt: nan
f4: 0x08192a3b flt: 4.60914044e-34 dbl: nan
f5: 0x7ff80000 flt: nan
f6: 0x8091a2b3 flt: -1.33745124e-38 dbl: nan
f7: 0x7ff80000 flt: nan
f8: 0x01122334 flt: 2.68412219e-38 dbl: nan
f9: 0x7ff80000 flt: nan
f10: 0x899aabbc flt: -3.72356497e-33 dbl: nan
f11: 0x7ff80000 flt: nan
f12: 0x02132435 flt: 1.08102453e-37 dbl: nan
f13: 0x7ff80000 flt: nan
f14: 0x8a9bacbd flt: -1.4990934e-32 dbl: nan
f15: 0x7ff80000 flt: nan
f16: 0x03142536 flt: 4.3536007e-37 dbl: nan
f17: 0x7ff80000 flt: nan
f18: 0x8b9cadbe flt: -6.03504325e-32 dbl: nan
f19: 0x7ff80000 flt: nan
f20: 0x04152637 flt: 1.75324132e-36 dbl: nan
f21: 0x7ff80000 flt: nan
f22: 0x8c9daebf flt: -2.42948516e-31 dbl: nan
f23: 0x7ff80000 flt: nan
f24: 0x05162738 flt: 7.06016945e-36 dbl: nan
f25: 0x7ff80000 flt: nan
f26: 0x8d9eafb0 flt: -9.77979703e-31 dbl: nan
f27: 0x7ff80000 flt: nan
f28: 0x06172839 flt: 2.84294945e-35 dbl: nan
f29: 0x7ff80000 flt: nan
f30: 0x8e9fa0b1 flt: -3.93512664e-30 dbl: nan
f31: 0x7ff80000 flt: nan
(gdb)
Notice how values from odd-numbered registers are shown in corresponding
even-numbered registers and how dummy 0x7ff80000 NaN values, which the
kernel places in unused slots, are reported in odd-numbered registers.
Correct our intepretation then, to match the kernel's. As it happens
the o32 FGR core file representation matches that used by the `ptrace'
PTRACE_GETFPREGS request, which means our 64-bit handlers can be readily
used, as they already correctly handle the differences between o32 FP32
mode vs n32/n64 representations.
Adjust comments accordingly throughout, in particular remove a reference
to the r3000/tx39 MIPS I processor peculiarity, long irrelevant.
Add a test case to verify correctness. Avoid GCC bugs and limitations
in the test case where possible; the test case still fails to build with
GCC 8 and the o32 FP64 mode (i.e. with `-mips32r2 -mfp64' options)
giving:
mips-fpregset-core.c: In function 'main':
mips-fpregset-core.c:66:3: error: inconsistent operand constraints in an 'asm'
asm (
^~~
(GCC PR target/85909), but that is not a concern for us as yet, because
as noted above we do not currently support the o32 FP64 mode anyway.
gdb/
* mips-linux-tdep.h (mips_supply_fpregset, mips_fill_fpregset):
Remove prototypes.
* mips-linux-nat.c (supply_fpregset): Always call
`mips64_supply_fpregset' rather than `mips_supply_fpregset'.
(fill_fpregset): Always call `mips64_fill_fpregset' rather than
`mips_fill_fpregset'.
* mips-linux-tdep.c (mips_supply_fpregset)
(mips_supply_fpregset_wrapper, mips_fill_fpregset)
(mips_fill_fpregset_wrapper): Remove functions.
(mips64_supply_fpregset, mips64_fill_fpregset): Update comments.
(mips_linux_fpregset): Remove variable.
(mips_linux_iterate_over_regset_sections): Use
`mips64_linux_fpregset' in place of `mips_linux_fpregset'.
(mips_linux_o32_sigframe_init): Remove comment.
gdb/testsuite/
* gdb.arch/mips-fpregset-core.exp: New test.
* gdb.arch/mips-fpregset-core.c: New test source.
|
|
This changes the help text of a couple of commands in tracepoint.c to
follow the GNU style.
ChangeLog
2018-04-29 Tom Tromey <tom@tromey.com>
* tracepoint.c (_initialize_tracepoint): Update help text.
testsuite/ChangeLog
2018-04-30 Tom Tromey <tom@tromey.com>
* gdb.trace/tfind.exp: Update help tests.
|
|
PR gdb/23203 reports 'bt full' causing the currently selected frame to
change, this issue is fixed in this commit.
Add a new class scoped_restore_selected_frame that saves and restores
the selected frame. Make use of this in print_frame_local_vars to
restore the selected frame on exit.
gdb/ChangeLog:
PR gdb/23203
* frame.c
(scoped_restore_selected_frame::scoped_restore_selected_frame):
Define.
(scoped_restore_selected_frame::~scoped_restore_selected_frame):
Define.
* frame.h (class scoped_restore_selected_frame): New class.
* stack.c (print_frame_local_vars): Remove catching and rethrowing
of any exception, use scoped_restore_selected_frame to restore the
frame instead.
gdb/testsuite/ChangeLog:
PR gdb/23203
* gdb.base/bt-selected-frame.c: New file.
* gdb.base/bt-selected-frame.exp: New file.
* lib/gdb.exp (get_current_frame_number): New function.
|
|
Complementing commit 280ca31f4d60 ("Add test for fetching TLS from
core file") extend gdb.threads/tls-core.exp with an OS-generated dump
where supported.
This verifies not only that our core dump interpreter is consistent
with our producer, but that it matches the OS verified as well,
avoiding a possible case where our interpreter would be bug-compatible
with our producer but not the OS and it would go unnoticed in testing.
This results in:
PASS: gdb.threads/tls-core.exp: native: load core file
PASS: gdb.threads/tls-core.exp: native: print thread-local storage variable
PASS: gdb.threads/tls-core.exp: gcore: load core file
PASS: gdb.threads/tls-core.exp: gcore: print thread-local storage variable
with local testing and:
UNSUPPORTED: gdb.threads/tls-core.exp: native: load core file
UNSUPPORTED: gdb.threads/tls-core.exp: native: print thread-local storage variable
PASS: gdb.threads/tls-core.exp: gcore: load core file
PASS: gdb.threads/tls-core.exp: gcore: print thread-local storage variable
with remote testing, or for testing on ports that don't supports
cores.
gdb/testsuite/ChangeLog:
2018-05-24 Maciej W. Rozycki <macro@mips.com>
Pedro Alves <palves@redhat.com>
* gdb.threads/tls-core.c: Include <stdlib.h>
(thread_proc): Call `abort'.
* gdb.threads/tls-core.exp: Generate a core with core_find too.
(tls_core_test): New procedure, bits factored out from ...
(top level): ... here. Test both native cores and gcore cores.
|
|
At this point, struct complain is just holds a key, a value, and a
"next" pointer to form a linked list. It's simpler to replace this
with an unordered map.
gdb/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* complaints.c (counters): New global.
(struct complain): Remove.
(struct complaints) <root>: Remove.
(complaint_sentinel): Remove.
(symfile_complaint_book): Update.
(find_complaint) Remove.
(complaint_internal, clear_complaints): Update.
gdb/testsuite/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* gdb.gdb/complaints.exp (test_initial_complaints): Simplify.
|
|
The complaint system seems to allow for multiple different complaint
topics. However, in practice only symfile_complaints has ever been
defined. Seeing that complaints.c dates to 1992, and that no new
complaints have been added in the intervening years, I think it is
reasonable to admit that complaints are specifically related to
debuginfo reading.
This patch removes symfile_complaints and updates all the callers.
Some of these spots should perhaps be calls to warning instead, but I
did not make that change.
gdb/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* complaints.c (symfile_complaints): Remove.
(complaint_internal): Remove "complaints" parameter.
(clear_complaints, vcomplaint): Remove "c" parameter.
(get_complaints): Remove.
* dwarf2read.c (dwarf2_statement_list_fits_in_line_number_section_complaint)
(dwarf2_debug_line_missing_file_complaint)
(dwarf2_debug_line_missing_end_sequence_complaint)
(dwarf2_complex_location_expr_complaint)
(dwarf2_const_value_length_mismatch_complaint)
(dwarf2_section_buffer_overflow_complaint)
(dwarf2_macro_malformed_definition_complaint)
(dwarf2_invalid_attrib_class_complaint)
(create_addrmap_from_index, dw2_symtab_iter_next)
(dw2_expand_marked_cus)
(dw2_debug_names_iterator::find_vec_in_debug_names)
(dw2_debug_names_iterator::next, dw2_debug_names_iterator::next)
(create_debug_type_hash_table, init_cutu_and_read_dies)
(partial_die_parent_scope, add_partial_enumeration)
(skip_one_die, fixup_go_packaging, quirk_rust_enum, process_die)
(dwarf2_compute_name, dwarf2_physname, read_namespace_alias)
(read_import_statement, read_file_scope, create_dwo_cu_reader)
(create_cus_hash_table, create_dwp_hash_table)
(inherit_abstract_dies, read_func_scope, read_call_site_scope)
(dwarf2_rnglists_process, dwarf2_ranges_process)
(dwarf2_add_type_defn, dwarf2_attach_fields_to_type)
(dwarf2_add_member_fn, get_alignment, maybe_set_alignment)
(handle_struct_member_die, process_structure_scope)
(read_array_type, read_common_block, read_module_type)
(read_tag_pointer_type, read_typedef, read_base_type)
(read_subrange_type, load_partial_dies, partial_die_info::read)
(partial_die_info::read, partial_die_info::read)
(partial_die_info::read, read_checked_initial_length_and_offset)
(dwarf2_string_attr, read_formatted_entries)
(dwarf_decode_line_header)
(lnp_state_machine::check_line_address, dwarf_decode_lines_1)
(new_symbol, dwarf2_const_value_attr, lookup_die_type)
(read_type_die_1, determine_prefix, dwarf2_get_ref_die_offset)
(dwarf2_get_attr_constant_value, dwarf2_fetch_constant_bytes)
(get_signatured_type, get_DW_AT_signature_type)
(decode_locdesc, file_file_name, consume_improper_spaces)
(skip_form_bytes, skip_unknown_opcode, dwarf_parse_macro_header)
(dwarf_decode_macro_bytes, dwarf_decode_macros)
(dwarf2_symbol_mark_computed, set_die_type)
(read_attribute_value): Update.
* stap-probe.c (handle_stap_probe, get_stap_base_address):
Update.
* dbxread.c (unknown_symtype_complaint)
(lbrac_mismatch_complaint, repeated_header_complaint)
(set_namestring, function_outside_compilation_unit_complaint)
(read_dbx_symtab, process_one_symbol): Update.
* gdbtypes.c (stub_noname_complaint): Update.
* windows-nat.c (handle_unload_dll): Update.
* coffread.c (coff_symtab_read, enter_linenos, decode_type)
(decode_base_type): Update.
* xcoffread.c (bf_notfound_complaint, ef_complaint)
(eb_complaint, record_include_begin, record_include_end)
(enter_line_range, xcoff_next_symbol_text, read_xcoff_symtab)
(process_xcoff_symbol, read_symbol)
(function_outside_compilation_unit_complaint)
(scan_xcoff_symtab): Update.
* machoread.c (macho_symtab_read, macho_add_oso_symfile): Update.
* buildsym.c (finish_block_internal, make_blockvector)
(end_symtab_get_static_block, augment_type_symtab): Update.
* dtrace-probe.c (dtrace_process_dof)
(dtrace_static_probe_ops::get_probes): Update.
* complaints.h (struct complaint): Don't declare.
(symfile_complaints): Remove.
(complaint_internal): Remove "complaints" parameter.
(complaint): Likewise.
(clear_complaints): Likewise.
* symfile.c (syms_from_objfile_1, finish_new_objfile)
(reread_symbols): Update.
* dwarf2-frame.c (dwarf2_restore_rule, execute_cfa_program)
(dwarf2_frame_cache, decode_frame_entry): Update.
* dwarf2loc.c (dwarf_reg_to_regnum): Update.
* objc-lang.c (lookup_objc_class, lookup_child_selector)
(info_selectors_command): Update.
* macrotab.c (macro_include, check_for_redefinition)
(macro_undef): Update.
* objfiles.c (filter_overlapping_sections): Update.
* stabsread.c (invalid_cpp_abbrev_complaint)
(reg_value_complaint, stabs_general_complaint, dbx_lookup_type)
(define_symbol, error_type, read_type, rs6000_builtin_type)
(stabs_method_name_from_physname, read_member_functions)
(read_cpp_abbrev, read_baseclasses, read_tilde_fields)
(attach_fields_to_type, complain_about_struct_wipeout)
(read_range_type, read_args, common_block_start)
(common_block_end, cleanup_undefined_types_1, scan_file_globals):
Update.
* mdebugread.c (index_complaint, unknown_ext_complaint)
(basic_type_complaint, bad_tag_guess_complaint)
(bad_rfd_entry_complaint, unexpected_type_code_complaint)
(reg_value_complaint, parse_symbol, parse_type, upgrade_type)
(parse_procedure, parse_lines)
(function_outside_compilation_unit_complaint)
(parse_partial_symbols, psymtab_to_symtab_1, cross_ref)
(bad_tag_guess_complaint, reg_value_complaint): Update.
* cp-support.c (demangled_name_complaint): Update.
* macroscope.c (sal_macro_scope): Update.
* dwarf-index-write.c (class debug_names): Update.
gdb/testsuite/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* gdb.gdb/complaints.exp (test_initial_complaints): Don't mention
symfile_complaints.
(test_short_complaints): Likewise.
(test_empty_complaints): Likewise.
(test_initial_complaints): Update.
|
|
After the previous patch, the "noisy" parameter to clear_complaints is
no longer used, so this patch removes it.
gdb/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* complaints.c (clear_complaints): Remove "noisy" parameter.
* complaints.h (clear_complaints): Update.
* symfile.c (syms_from_objfile_1, finish_new_objfile)
(reread_symbols): Update.
gdb/testsuite/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* gdb.gdb/complaints.exp (test_empty_complaints): Update.
|
|
I couldn't find a way to get complaints to use a couple of cases, and
the difference between the actual printed output for these cases was
minimal anyway. So, this patch removes a couple of constants from
complaint_series, plus the associated code.
gdb/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* complaints.c (enum complaint_series): Remove FIRST_MESSAGE,
SUBSEQUENT_MESSAGE.
(vcomplaint, clear_complaints): Update.
(symfile_explanations): Remove some messages.
gdb/testsuite/ChangeLog
2018-05-23 Tom Tromey <tom@tromey.com>
* gdb.gdb/complaints.exp (test_serial_complaints): Remove.
(test_short_complaints): Update.
|
|
This fixes gdb.base/remote.exp regressions caused by the previous
commit to the testcase, when tested with
--target_board=native-extended-gdbserver. For example:
...
show remote memory-write-packet-size
The memory-write-packet-size is 0 (default). Packets are limited to 16383 bytes.
(gdb) FAIL: gdb.base/remote.exp: write-packet default
...
With that board, GDB connects to GDBserver at gdb_start time, so GDB
is showing the actual remote/gdbserver packet size limits.
Fix it using the usual "disconnect" pattern. While at it, there's no
need to start GDB before compiling the testcase.
gdb/testsuite/ChangeLog:
2018-05-22 Pedro Alves <palves@redhat.com>
* gdb.base/remote.exp: Only gdb_start after compiling the
testcase. Issue "disconnect" before testing "set remote" command
defaults. Issue clean_restart before running to main.
|
|
Currently "show remote memory-write-packet-size" says that the packet
size is limited to whatever is stored in the remote_state global, even
if not connected to a target.
When we get to support multiple instances of remote targets, there
won't be a remote_state global anymore, so that must be replaced by
something else.
Since it doesn't make sense to print the limit of the packet size of a
non-existing connection, this patch makes us say that the limit will
be further reduced when we connect.
The text is taken from the command's online help, which says:
"The actual limit is further reduced dependent on the target."
Note that a value of "0" is special, as per "help set remote
memory-write-packet-size":
~~~
Specify the number of bytes in a packet or 0 (zero) for the
default packet size.
~~~
I've tweaked "show remote memory-write-packet-size" to include
"(default)" in the output in that case, like this:
(gdb) show remote memory-write-packet-size
The memory-write-packet-size is 0 (default). The actual limit will be further reduced dependent on the target.
While working on this, I noticed that an explicit "set remote
write-packet-size 0" does not makes GDB go back to the exact same
state as the default state when GDB starts up:
(gdb) show remote memory-write-packet-size
The memory-write-packet-size is 0. [...]
^^
(gdb) set remote memory-write-packet-size 0
(gdb) show remote memory-write-packet-size
The memory-write-packet-size is 16384. [...]
^^^^^
The "16384" number comes from DEFAULT_MAX_MEMORY_PACKET_SIZE.
This happens because git commit a5c0808e221c ("gdb: remove packet size
limit") at
<https://sourceware.org/ml/gdb-patches/2015-08/msg00743.html>, added
this:
/* So that the query shows the correct value. */
if (size <= 0)
size = DEFAULT_MAX_MEMORY_PACKET_SIZE;
to set_memory_packet_size, but despite what the comment suggests, that
also has the side-effect of recording DEFAULT_MAX_MEMORY_PACKET_SIZE
in config->size.
Finally, DEFAULT_MAX_MEMORY_PACKET_SIZE only makes sense for "set
remote memory-write-packet-size fixed", so I've renamed it
accordingly, to make it a little bit clearer.
gdb/ChangeLog:
2018-05-22 Pedro Alves <palves@redhat.com>
* remote.c (DEFAULT_MAX_MEMORY_PACKET_SIZE): Rename to ...
(DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED): ... this.
(get_fixed_memory_packet_size): New.
(get_memory_packet_size): Use it.
(set_memory_packet_size): Don't override the config size with
DEFAULT_MAX_MEMORY_PACKET_SIZE.
(show_memory_packet_size): Use get_fixed_memory_packet_size.
Don't refer to get_memory_packet_size if not connected to a remote
target. Show "(default)" if configured size is 0.
gdb/testsuite/ChangeLog:
2018-05-22 Pedro Alves <palves@redhat.com>
* gdb.base/remote.exp: Adjust expected output of "show remote
memory-write-packet-size". Add tests for "set remote
memory-write-packet-size 0" and "set remote
memory-write-packet-size fixed/limit".
|
|
Factor out cp_ident_is_alpha/cp_ident_is_alnum out of
gdb/cp-name-parser.y and use it in the C/C++ expression parser too.
New test included.
gdb/ChangeLog:
2018-05-22 Pedro Alves <palves@redhat.com>
張俊芝 <zjz@zjz.name>
PR gdb/22973
* c-exp.y: Include "c-support.h".
(parse_number, c_parse_escape, lex_one_token): Use TOLOWER instead
of tolower. Use c_ident_is_alpha to scan names.
* c-lang.c: Include "c-support.h".
(convert_ucn, convert_octal, convert_hex, convert_escape): Use
ISXDIGIT instead of isxdigit and ISDIGIT instead of isdigit.
* c-support.h: New file, with bits factored out from ...
* cp-name-parser.y: ... this file.
Include "c-support.h".
(cp_ident_is_alpha, cp_ident_is_alnum): Deleted, moved to
c-support.h and renamed.
(symbol_end, yylex): Adjust.
gdb/testsuite/ChangeLog:
2018-05-22 Pedro Alves <palves@redhat.com>
PR gdb/22973
* gdb.base/utf8-identifiers.c: New file.
* gdb.base/utf8-identifiers.exp: New file.
|
|
Currently the ppc linux core file target doesn't return target
descriptions with the lager FPSCR introduced in isa205.
This patch changes the core file target so that the auxv is read from
the core file to determine the size of FPSCR, so that the appropriate
target description is selected.
gdb/ChangeLog:
2018-05-22 Pedro Franco de Carvalho <pedromfc@linux.vnet.ibm.com>
* arch/ppc-linux-common.c (ppc_linux_has_isa205): Change the
parameter type to CORE_ADDR.
* arch/ppc-linux-common.h (ppc_linux_has_isa205): Change the
parameter type in declaration to CORE_ADDR.
* ppc-linux-tdep.c (ppc_linux_core_read_description): Call
target_auxv_search to get AT_HWCAP and use the result to get the
target description.
* ppc-linux-nat.c (ppc_linux_get_hwcap): Change the return type
to CORE_ADDR. Remove the cast of the return value to unsigned
long. Fix error predicate of target_auxv_search.
(ppc_linux_nat_target::read_description): Change the type of the
hwcap variable to CORE_ADDR.
gdb/testsuite/ChangeLog:
2018-05-22 Pedro Franco de Carvalho <pedromfc@linux.vnet.ibm.com>
* gdb.arch/powerpc-fpscr-gcore.exp: New file.
|
|
The functions used by the VSX regset to collect and supply registers
from core files where incorrect. This patch changes the regset to use
the standard regset collect/supply functions to fix this. The native
target is also changed to use the same regset.
gdb/ChangeLog:
2018-05-22 Pedro Franco de Carvalho <pedromfc@linux.vnet.ibm.com>
* ppc-linux-tdep.c (ppc_linux_vsxregset): New function.
(ppc32_linux_vsxregmap): New global.
(ppc32_linux_vsxregset): Initialize with ppc32_linux_vsxregmap,
regcache_supply_regset, and regcache_collect_regset.
* ppc-linux-tdep.h (ppc_linux_vsxregset): Declare.
* ppc-linux-nat.c (supply_vsxregset, fill_vsxregset): Remove.
(fetch_vsx_register, store_vsx_register): Remove.
(fetch_vsx_registers): Add regno parameter. Get regset using
ppc_linux_vsxregset. Use regset to supply registers.
(store_vsx_registers): Add regno parameter. Get regset using
ppc_linux_vsxregset. Use regset to collect registers.
(fetch_register): Call fetch_vsx_registers instead of
fetch_vsx_register.
(store_register): Call store_vsx_registers instead of
store_vsx_register.
(fetch_ppc_registers): Call fetch_vsx_registers with -1 for the
new regno parameter.
(store_ppc_registers): Call store_vsx_registers with -1 for the
new regno parameter.
* rs6000-tdep.c (ppc_vsx_support_p, ppc_supply_vsxreget)
(ppc_collect_vsxregset): Remove.
gdb/testsuite/ChangeLog:
2018-05-22 Pedro Franco de Carvalho <pedromfc@linux.vnet.ibm.com>
* gdb.arch/powerpc-vsx-gcore.exp: New file.
|
|
I was recently using ptype/o to look at the layout of some objects in
gdb. I noticed that trailing padding was not shown -- but I wanted to
be able to look at that, too.
This patch changes ptype/o to also print trailing holes.
Tested on x86-64 Fedora 26.
gdb/ChangeLog
2018-05-18 Tom Tromey <tom@tromey.com>
* c-typeprint.c (maybe_print_hole): New function.
(c_print_type_struct_field_offset): Update.
(c_type_print_base_struct_union): Call maybe_print_hole.
gdb/testsuite/ChangeLog
2018-05-18 Tom Tromey <tom@tromey.com>
* gdb.base/ptype-offsets.exp: Update.
|
|
This patch essentially causes GDB to treat inlined frames like "normal"
frames from the user's perspective. This means, for example, that when a
user sets a breakpoint in an inlined function, GDB will now actually stop
"in" that function.
Using the test case from breakpoints/17534,
3 static inline void NVIC_EnableIRQ(int IRQn)
4 {
5 volatile int y;
6 y = IRQn;
7 }
8
9 __attribute__( ( always_inline ) ) static inline void __WFI(void)
10 {
11 __asm volatile ("nop");
12 }
13
14 int main(void) {
15
16 x= 42;
17
18 if (x)
19 NVIC_EnableIRQ(16);
20 else
21 NVIC_EnableIRQ(18);
(gdb) b NVIC_EnableIRQ
Breakpoint 1 at 0x4003e4: NVIC_EnableIRQ. (2 locations)
(gdb) r
Starting program: 17534
Breakpoint 1, main () at 17534.c:19
19 NVIC_EnableIRQ(16);
Because skip_inline_frames currently skips every inlined frame, GDB "stops"
in the caller. This patch adds a new parameter to skip_inline_frames
that allows us to pass in a bpstat stop chain. The breakpoint locations
on the stop chain can be used to determine if we've stopped inside an inline
function (due to a user breakpoint). If we have, we do not elide the frame.
With this patch, GDB now reports that the inferior has stopped inside the
inlined function:
(gdb) r
Starting program: 17534
Breakpoint 1, NVIC_EnableIRQ (IRQn=16) at 17534.c:6
6 y = IRQn;
Many thanks to Jan and Pedro for guidance on this.
gdb/ChangeLog:
* breakpoint.c (build_bpstat_chain): New function, moved from
bpstat_stop_status.
(bpstat_stop_status): Add optional parameter, `stop_chain'.
If no stop chain is passed, call build_bpstat_chain to build it.
* breakpoint.h (build_bpstat_chain): Declare.
(bpstat_stop_status): Move documentation here from breakpoint.c.
* infrun.c (handle_signal_stop): Before eliding inlined frames,
build the stop chain and pass it to skip_inline_frames.
Pass this stop chain to bpstat_stop_status.
* inline-frame.c: Include breakpoint.h.
(stopped_by_user_bp_inline_frame): New function.
(skip_inline_frames): Add parameter `stop_chain'.
Move documention to inline-frame.h.
If non-NULL, use stopped_by_user_bp_inline_frame to determine
whether the frame should be elided.
* inline-frame.h (skip_inline_frames): Add parameter `stop_chain'.
Add moved documentation and update for new parameter.
gdb/testsuite/ChangeLog:
* gdb.ada/bp_inlined_func.exp: Update inlined frame locations
in expected breakpoint stop locations.
* gdb.dwarf2/implptr.exp (implptr_test_baz): Use up/down to
move to proper scope to test variable values.
* gdb.opt/inline-break.c (inline_func1, not_inline_func1)
(inline_func2, not_inline_func2, inline_func3, not_inline_func3):
New functions.
(main): Call not_inline_func3.
* gdb.opt/inline-break.exp: Start inferior and set breakpoints at
inline_func1, inline_func2, and inline_func3. Test that when each
breakpoint is hit, GDB properly reports both the stop location
and the backtrace. Repeat tests for temporary breakpoints.
|
|
Fix a commit f90183d7e31b ("Get GDBserver pid on remote target") bug and
correctly handle the case where the PID of `gdbserver' could not have
been retrieved. If that happens, $server_pid is unset causing:
FAIL: gdb.server/server-kill.exp: p server_pid
ERROR: tcl error sourcing .../gdb/testsuite/gdb.server/server-kill.exp.
ERROR: can't read "server_pid": no such variable
while executing
"if {$server_pid == "" } {
return -1
}"
(file ".../gdb/testsuite/gdb.server/server-kill.exp" line 49)
invoked from within
"source .../gdb/testsuite/gdb.server/server-kill.exp"
("uplevel" body line 1)
invoked from within
"uplevel #0 source .../gdb/testsuite/gdb.server/server-kill.exp"
invoked from within
"catch "uplevel #0 source $test_file_name""
Verify that the variable exists then rather than trying to access it.
gdb/testsuite/
* gdb.server/server-kill.exp: Verify whether `server_pid' exists
rather then trying to access it in determining whether the PID
of `gdbserver' could have been retrieved.
|
|
For GNU/Linux on x86-64, if the target is using the xsave format for
passing the floating-point information from the inferior then there
currently exists a bug relating to the x87 control registers, and the
mxcsr register.
The xsave format allows different floating-point features to be lazily
enabled, a bit in the xsave format tells GDB which floating-point
features have been enabled, and which have not.
Currently in GDB, when reading the floating point state, we check the
xsave bit flags, if the feature is enabled then we read the feature
from the xsave buffer, and if the feature is not enabled, then we
supply the default value from within GDB.
Within GDB, when writing the floating point state, we first fetch the
xsave state from the target and then, for any feature that is not yet
enabled, we write the default values into the xsave buffer. Next we
compare the regcache value with the value in the xsave buffer, and, if
the value has changed we update the value in the xsave buffer, and
mark the feature enabled in the xsave bit flags.
The problem then, is that the x87 control registers were not following
this pattern. We assumed that these registers were always written out
by the kernel, and we always wrote them out to the xsave buffer (but
didn't enabled the feature). The result of this is that if the kernel
had not yet enabled the x87 feature then within GDB we would see
random values for the x87 floating point control registers, and if the
user tried to modify one of these register, that modification would be
lost.
Finally, the mxcsr register was also broken in the same way as the x87
control registers. The added complexity with this case is that the
mxcsr register is part of both the avx and sse floating point feature
set. When reading or writing this register we need to check that at
least one of these features is enabled.
This bug was present in native GDB, and within gdbserver. Both are
fixed with this commit.
gdb/ChangeLog:
* common/x86-xstate.h (I387_FCTRL_INIT_VAL): New constant.
(I387_MXCSR_INIT_VAL): New constant.
* amd64-tdep.c (amd64_supply_xsave): Only read state from xsave
buffer if it was supplied by the inferior.
* i387-tdep.c (i387_supply_fsave): Use I387_MXCSR_INIT_VAL.
(i387_xsave_get_clear_bv): New function.
(i387_supply_xsave): Only read x87 control registers from the
xsave buffer if the feature is enabled, and the state will have
been written, otherwise, provide a suitable default.
(i387_collect_xsave): Pre-clear all registers in xsave buffer,
including x87 control registers. Update control registers if they
have changed from the default value, and mark features as enabled
as required.
* i387-tdep.h (i387_xsave_get_clear_bv): Declare.
gdb/gdbserver/ChangeLog:
* i387-fp.c (i387_cache_to_xsave): Only write x87 control
registers to the cache if their values have changed.
(i387_xsave_to_cache): Provide default values for x87 control
registers when these features are available, but disabled.
* regcache.c (supply_register_by_name_zeroed): New function.
* regcache.h (supply_register_by_name_zeroed): Declare new
function.
gdb/testsuite/ChangeLog:
* gdb.arch/amd64-init-x87-values.S: New file.
* gdb.arch/amd64-init-x87-values.exp: New file.
|
|
gdb/testsuite/ChangeLog
2018-05-08 Jan Kratochvil <jan.kratochvil@redhat.com>
* gdb.base/watchpoint-unaligned.exp: Use skip_hw_watchpoint_tests.
|
|
This changes the Python API so that gdb.execute can now handle
multi-line commands, like "commands" or "define".
ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR python/22730:
* NEWS: Mention gdb.execute change.
* gdbcmd.h (execute_control_command): Don't declare.
* python/python.c (execute_gdb_command): Use read_command_lines_1,
execute_control_commands, execute_control_commands_to_string.
* cli/cli-script.h (execute_control_commands)
(execute_control_commands_to_string): Declare.
(execute_control_command): Add from_tty parameter.
* cli/cli-script.c (execute_control_commands)
(execute_control_commands_to_string): New functions.
(execute_user_command): Use execute_control_commands.
(execute_control_command_1): Add "from_tty" parameter. Update.
(execute_control_command): Likewise.
testsuite/ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR python/22730:
* gdb.python/python.exp: Test multi-line execute.
|
|
This changes the Python API so that breakpoint commands can be set by
writing to the "commands" attribute.
ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR python/22731:
* NEWS: Mention that breakpoint commands are writable.
* python/py-breakpoint.c (bppy_set_commands): New function.
(breakpoint_object_getset) <"commands">: Use it.
doc/ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR python/22731:
* python.texi (Breakpoints In Python): Mention that "commands" is
writable.
testsuite/ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR python/22731:
* gdb.python/py-breakpoint.exp: Test setting breakpoint commands.
|
|
PR gdb/11750 concerns defining a command inside a user commnad, like:
define outer
define inner
echo hi\n
end
end
This patch adds this capability to gdb.
ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR gdb/11750:
* cli/cli-script.h (enum command_control_type) <define_control>:
New constant.
* cli/cli-script.c (multi_line_command_p): Handle define_control.
(build_command_line, execute_control_command_1)
(process_next_line): Likewise.
(do_define_command): New function, extracted from define_command.
(define_command): Use it.
testsuite/ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR gdb/11750:
* gdb.base/define.exp: Test defining a user command inside a user
command.
* gdb.base/commands.exp (define_if_without_arg_test): Test "define".
|
|
Some unaligned watchpoints were currently missed.
On old kernels as specified in
kernel RFE: aarch64: ptrace: BAS: Support any contiguous range (edit)
https://sourceware.org/bugzilla/show_bug.cgi?id=20207
after this patch some other unaligned watchpoints will get reported as false
positives.
With new kernels all the watchpoints should work exactly.
There may be a regresion that it now less merges watchpoints so that with
multiple overlapping watchpoints it may run out of the 4 hardware watchpoint
registers. But as discussed in the original thread GDB needs some generic
watchpoints merging framework to be used by all the target specific code.
Even current FSF GDB code does not merge it perfectly. Also with the more
precise watchpoints one can technically merge them less. And I do not think
it matters too much to improve mergeability only for old kernels.
Still even on new kernels some better merging logic would make sense.
There remains one issue:
kernel-4.15.14-300.fc27.armv7hl
FAIL: gdb.base/watchpoint-unaligned.exp: continue
FAIL: gdb.base/watchpoint-unaligned.exp: continue
(gdb) continue
Continuing.
Unexpected error setting watchpoint: Invalid argument.
(gdb) FAIL: gdb.base/watchpoint-unaligned.exp: continue
But that looks as a kernel bug to me.
(1) It is not a regression by this patch.
(2) It is unrelated to this patch.
gdb/ChangeLog
2018-05-04 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
PR breakpoints/19806 and support for PR external/20207.
* NEWS: Mention Aarch64 watchpoint improvements.
* aarch64-linux-nat.c (aarch64_linux_stopped_data_address): Fix missed
watchpoints and PR external/20207 watchpoints.
* nat/aarch64-linux-hw-point.c
(kernel_supports_any_contiguous_range): New.
(aarch64_watchpoint_offset): New.
(aarch64_watchpoint_length): Support PR external/20207 watchpoints.
(aarch64_point_encode_ctrl_reg): New parameter offset, new asserts.
(aarch64_point_is_aligned): Support PR external/20207 watchpoints.
(aarch64_align_watchpoint): New parameters aligned_offset_p and
next_addr_orig_p. Support PR external/20207 watchpoints.
(aarch64_downgrade_regs): New.
(aarch64_dr_state_insert_one_point): New parameters offset and
addr_orig.
(aarch64_dr_state_remove_one_point): Likewise.
(aarch64_handle_breakpoint): Update caller.
(aarch64_handle_aligned_watchpoint): Likewise.
(aarch64_handle_unaligned_watchpoint): Support addr_orig and
aligned_offset.
(aarch64_linux_set_debug_regs): Remove const from state. Call
aarch64_downgrade_regs.
(aarch64_show_debug_reg_state): Print also dr_addr_orig_wp.
* nat/aarch64-linux-hw-point.h (DR_CONTROL_LENGTH): Rename to ...
(DR_CONTROL_MASK): ... this.
(struct aarch64_debug_reg_state): New field dr_addr_orig_wp.
(unsigned int aarch64_watchpoint_offset): New prototype.
(aarch64_linux_set_debug_regs): Remove const from state.
* utils.c (align_up, align_down): Move to ...
* common/common-utils.c (align_up, align_down): ... here.
* utils.h (align_up, align_down): Move to ...
* common/common-utils.h (align_up, align_down): ... here.
gdb/gdbserver/ChangeLog
2018-05-04 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
* linux-aarch64-low.c (aarch64_stopped_data_address):
Likewise.
gdb/testsuite/ChangeLog
2018-05-04 Jan Kratochvil <jan.kratochvil@redhat.com>
Pedro Alves <palves@redhat.com>
PR breakpoints/19806 and support for PR external/20207.
* gdb.base/watchpoint-unaligned.c: New file.
* gdb.base/watchpoint-unaligned.exp: New file.
|
|
Add prefixes or suffixes to some test names to make them unique.
Replace a send_gdb/gdb_expect with a gdb_test, and make the test name
unique.
Remove test of 'help maint' as this is already covered by a later call
to test_prefix_command_help.
Removed test of 'help maint info' and add a new call to
test_prefix_command_help instead.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Make test names unique, use
test_prefix_command_help to test 'help maint info', and remove
repeated test of 'help maint'.
|
|
About the 'x' command, the manual says:
If you use <RET> to repeat the 'x' command, the repeat count N is
used again; the other arguments default as for successive uses of
'x'.
However, PR gdb/22619 points out that this does not work.
This patch fixes the problem.
ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR gdb/22619:
* printcmd.c (last_count): New global.
(x_command): Use saved count when repeating.
testsuite/ChangeLog
2018-05-04 Tom Tromey <tom@tromey.com>
PR gdb/22619:
* gdb.base/long_long.exp (gdb_test_long_long): Add test for repeat
behavior.
|
|
In gdb.base/maint.exp a test calls 'maint print registers'. If the
target has lots of registers this may overflow expect's buffers,
causing the test to fail.
After this commit we process the output line at a time until we get back
to the GDB prompt, this should prevent buffer overrun while still
testing that the command works as required.
gdb/testsuite/ChangeLog:
* gdb.base/maint.exp: Process output from 'maint print registers'
line at a time.
|
|
When $use_gdb_stub is true then, when we start an MI target there's a
regexp to match GDB's startup pattern. Unfortunately the pattern is
broken, and we're also missing a timeout case in the match list (which
would have helped point out that the regexp was broken).
The changes to the regexp are:
1. Remove '${run_match}' prefix, the issued command doesn't include
'${run_prefix}' so expecting '${run_match}' is wrong.
2. Replaced '\\n' with '\\\\n' in order to match literal '\n' in
GDBs output (that is, match a backslash followed by 'n', not a
newline character).
3. Replaced a '.' (matching any character) with '\.' to match a '.'
and moved the '\.' into the correct place in the regexp.
4. Replaced '\r\n' with '[\r\n]+' to match the end of a line. This
change isn't esential, but matches the other end of line patterns
within this regexp.
Here's an example of the output that the regexp should match taken
from a testfile log, the first line is the command sent to GDB, and
the remaining lines are the response from GDB:
jump *_start
&"jump *_start\n"
~"Continuing at 0x10074.\n"
^running
*running,thread-id="all"
(gdb)
gdb/testsuite/ChangeLog:
* lib/mi-support.exp (mi_run_cmd_full): Fix regexp and add a
timeout.
|
|
On riscv the cycle counter, and instructions retired counter CSRs are
read only, this causes problems in the gdb.base/callfuncs.exp test, as
the values in these CSRs change after an inferior call, the check that
no target registers have been modified then fails.
Luckily the test already has a mechanism in place for filtering out
registers that are modified (and can't be restored) by an inferior call,
so this commit adds the problem registers into this list for riscv.
In the future we may end up needing to filter out more CSRs, but right
now, for the targets I have access too, these are the only ones causing
problems.
gdb/testsuite/ChangeLog:
* gdb.base/callfuncs.exp (fetch_all_registers): Add riscv register
filter pattern.
|
|
I.e., use C++ virtual methods and inheritance instead of tables of
function pointers.
Unfortunately, there's no way to do a smooth transition. ALL native
targets in the tree must be converted at the same time. I've tested
all I could with cross compilers and with help from GCC compile farm,
but naturally I haven't been able to test many of the ports. Still, I
made a best effort to port everything over, and while I expect some
build problems due to typos and such, which should be trivial to fix,
I don't expect any design problems.
* Implementation notes:
- The flattened current_target is gone. References to current_target
or current_target.beneath are replaced with references to
target_stack (the top of the stack) directly.
- To keep "set debug target" working, this adds a new debug_stratum
layer that sits on top of the stack, prints the debug, and delegates
to the target beneath.
In addition, this makes the shortname and longname properties of
target_ops be virtual methods instead of data fields, and makes the
debug target defer those to the target beneath. This is so that
debug code sprinkled around that does "if (debugtarget) ..." can
transparently print the name of the target beneath.
A patch later in the series actually splits out the
shortname/longname methods to a separate structure, but I preferred
to keep that chance separate as it is associated with changing a bit
the design of how targets are registered and open.
- Since you can't check whether a C++ virtual method is overridden,
the old method of checking whether a target_ops implements a method
by comparing the function pointer must be replaced with something
else.
Some cases are fixed by adding a parallel "can_do_foo" target_ops
methods. E.g.,:
+ for (t = target_stack; t != NULL; t = t->beneath)
{
- if (t->to_create_inferior != NULL)
+ if (t->can_create_inferior ())
break;
}
Others are fixed by changing void return type to bool or int return
type, and have the default implementation return false or -1, to
indicate lack of support.
- make-target-delegates was adjusted to generate C++ classes and
methods.
It needed tweaks to grok "virtual" in front of the target method
name, and for the fact that methods are no longer function pointers.
(In particular, the current code parsing the return type was simple
because it could simply parse up until the '(' in '(*to_foo)'.
It now generates a couple C++ classes that inherit target_ops:
dummy_target and debug_target.
Since we need to generate the class declarations as well, i.e., we
need to emit methods twice, we now generate the code in two passes.
- The core_target global is renamed to avoid conflict with the
"core_target" class.
- ctf/tfile targets
init_tracefile_ops is replaced by a base class that is inherited by
both ctf and tfile.
- bsd-uthread
The bsd_uthread_ops_hack hack is gone. It's not needed because
nothing was extending a target created by bsd_uthread_target.
- remote/extended-remote targets
This is a first pass, just enough to C++ify target_ops.
A later pass will convert more free functions to methods, and make
remote_state be truly per remote instance, allowing multiple
simultaneous instances of remote targets.
- inf-child/"native" is converted to an actual base class
(inf_child_target), that is inherited by all native targets.
- GNU/Linux
The old weird double-target linux_ops mechanism in linux-nat.c, is
gone, replaced by adding a few virtual methods to linux-nat.h's
target_ops, called low_XXX, that the concrete linux-nat
implementations override. Sort of like gdbserver's
linux_target_ops, but simpler, for requiring only one
target_ops-like hierarchy, which spares implementing the same method
twice when we need to forward the method to a low implementation.
The low target simply reimplements the target_ops method directly in
that case.
There are a few remaining linux-nat.c hooks that would be better
converted to low_ methods like above too. E.g.:
linux_nat_set_new_thread (t, x86_linux_new_thread);
linux_nat_set_new_fork (t, x86_linux_new_fork);
linux_nat_set_forget_process
That'll be done in a follow up patch.
- We can no longer use functions like x86_use_watchpoints to install
custom methods on an arbitrary base target.
The patch replaces instances of such a pattern with template mixins.
For example memory_breakpoint_target defined in target.h, or
x86_nat_target in x86-nat.h.
- linux_trad_target, MIPS and Alpha GNU/Linux
The code in the new linux-nat-trad.h/c files which was split off of
inf-ptrace.h/c recently, is converted to a C++ base class, and used
by the MIPS and Alpha GNU/Linux ports.
- BSD targets
The
$architecture x NetBSD/OpenBSD/FreeBSD
support matrix complicates things a bit. There's common BSD target
code, and there's common architecture-specific code shared between
the different BSDs. Currently, all that is stiched together to form
a final target, via the i386bsd_target, x86bsd_target,
fbsd_nat_add_target functions etc.
This introduces new fbsd_nat_target, obsd_nat_target and
nbsd_nat_target classes that serve as base/prototype target for the
corresponding BSD variant.
And introduces generic i386/AMD64 BSD targets, to be used as
template mixin to build a final target. Similarly, a generic SPARC
target is added, used by both BSD and Linux ports.
- bsd_kvm_add_target, BSD libkvm target
I considered making bsd_kvm_supply_pcb a virtual method, and then
have each port inherit bsd_kvm_target and override that method, but
that was resulting in lots of unjustified churn, so I left the
function pointer mechanism alone.
gdb/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
John Baldwin <jhb@freebsd.org>
* target.h (enum strata) <debug_stratum>: New.
(struct target_ops) <all delegation methods>: Replace by C++
virtual methods, and drop "to_" prefix. All references updated
throughout.
<to_shortname, to_longname, to_doc, to_data,
to_have_steppable_watchpoint, to_have_continuable_watchpoint,
to_has_thread_control, to_attach_no_wait>: Delete, replaced by
virtual methods. All references updated throughout.
<can_attach, supports_terminal_ours, can_create_inferior,
get_thread_control_capabilities, attach_no_wait>: New
virtual methods.
<insert_breakpoint, remove_breakpoint>: Now
TARGET_DEFAULT_NORETURN methods.
<info_proc>: Now returns bool.
<to_magic>: Delete.
(OPS_MAGIC): Delete.
(current_target): Delete. All references replaced by references
to ...
(target_stack): ... this. New.
(target_shortname, target_longname): Adjust.
(target_can_run): Now a function declaration.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(memory_breakpoint_target): New template class.
(test_target_ops): Refactor as a C++ class with virtual methods.
* make-target-delegates (NAME_PART): Tighten.
(POINTER_PART, CP_SYMBOL): New.
(SIMPLE_RETURN_PART): Reimplement.
(VEC_RETURN_PART): Expect less.
(RETURN_PART, VIRTUAL_PART): New.
(METHOD): Adjust to C++ virtual methods.
(scan_target_h): Remove reference to C99.
(dname): Output "target_ops::" prefix.
(write_function_header): Adjust to output a C++ class method.
(write_declaration): New.
(write_delegator): Adjust to output a C++ class method.
(tdname): Output "dummy_target::" prefix.
(write_tdefault, write_debugmethod): Adjust to output a C++ class
method.
(tdefault_names, debug_names): Delete.
(return_types, tdefaults, styles, argtypes_array): New.
(top level): All methods are delegators.
(print_class): New.
(top level): Print dummy_target and debug_target classes.
* target-delegates.c: Regenerate.
* target-debug.h (target_debug_print_enum_info_proc_what)
(target_debug_print_thread_control_capabilities)
(target_debug_print_thread_info_p): New.
* target.c (dummy_target): Delete.
(the_dummy_target, the_debug_target): New.
(target_stack): Now extern.
(set_targetdebug): Push/unpush debug target.
(default_child_has_all_memory, default_child_has_memory)
(default_child_has_stack, default_child_has_registers)
(default_child_has_execution): Remove target_ops parameter.
(complete_target_initialization): Delete.
(add_target_with_completer): No longer call
complete_target_initialization.
(target_supports_terminal_ours): Use regular delegation.
(update_current_target): Delete.
(push_target): No longer check magic number. Don't call
update_current_target.
(unpush_target): Don't call update_current_target.
(target_is_pushed): No longer check magic number.
(target_require_runnable): Skip for all stratums over
process_stratum.
(target_ops::info_proc): New.
(target_info_proc): Use find_target_at and
find_default_run_target.
(target_supports_disable_randomization): Use regular delegation.
(target_get_osdata): Use find_target_at.
(target_ops::open, target_ops::close, target_ops::can_attach)
(target_ops::attach, target_ops::can_create_inferior)
(target_ops::create_inferior, target_ops::can_run)
(target_can_run): New.
(default_fileio_target): Use regular delegation.
(target_ops::fileio_open, target_ops::fileio_pwrite)
(target_ops::fileio_pread, target_ops::fileio_fstat)
(target_ops::fileio_close, target_ops::fileio_unlink)
(target_ops::fileio_readlink): New.
(target_fileio_open_1, target_fileio_unlink)
(target_fileio_readlink): Always call the target method. Handle
FILEIO_ENOSYS.
(return_zero, return_zero_has_execution): Delete.
(init_dummy_target): Delete.
(dummy_target::dummy_target, dummy_target::shortname)
(dummy_target::longname, dummy_target::doc)
(debug_target::debug_target, debug_target::shortname)
(debug_target::longname, debug_target::doc): New.
(target_supports_delete_record): Use regular delegation.
(setup_target_debug): Delete.
(maintenance_print_target_stack): Skip debug_stratum.
(initialize_targets): Instantiate the_dummy_target and
the_debug_target.
* auxv.c (target_auxv_parse): Remove 'ops' parameter. Adjust to
use target_stack.
(target_auxv_search, fprint_target_auxv): Adjust.
(info_auxv_command): Adjust to use target_stack.
* auxv.h (target_auxv_parse): Remove 'ops' parameter.
* exceptions.c (print_flush): Handle a NULL target_stack.
* regcache.c (target_ops_no_register): Refactor as class with
virtual methods.
* exec.c (exec_target): New class.
(exec_ops): Now an exec_target.
(exec_open, exec_close_1, exec_get_section_table)
(exec_xfer_partial, exec_files_info, exec_has_memory)
(exec_make_note_section): Refactor as exec_target methods.
(exec_file_clear, ignore, exec_remove_breakpoint, init_exec_ops):
Delete.
(exec_target::find_memory_regions): New.
(_initialize_exec): Don't call init_exec_ops.
* gdbcore.h (exec_file_clear): Delete.
* corefile.c (core_target): Delete.
(core_file_command): Adjust.
* corelow.c (core_target): New class.
(the_core_target): New.
(core_close): Remove target_ops parameter.
(core_close_cleanup): Adjust.
(core_target::close): New.
(core_open, core_detach, get_core_registers, core_files_info)
(core_xfer_partial, core_thread_alive, core_read_description)
(core_pid_to_str, core_thread_name, core_has_memory)
(core_has_stack, core_has_registers, core_info_proc): Rework as
core_target methods.
(ignore, core_remove_breakpoint, init_core_ops): Delete.
(_initialize_corelow): Initialize the_core_target.
* gdbcore.h (core_target): Delete.
(the_core_target): New.
* ctf.c: (ctf_target): New class.
(ctf_ops): Now a ctf_target.
(ctf_open, ctf_close, ctf_files_info, ctf_fetch_registers)
(ctf_xfer_partial, ctf_get_trace_state_variable_value)
(ctf_trace_find, ctf_traceframe_info): Refactor as ctf_target
methods.
(init_ctf_ops): Delete.
(_initialize_ctf): Don't call it.
* tracefile-tfile.c (tfile_target): New class.
(tfile_ops): Now a tfile_target.
(tfile_open, tfile_close, tfile_files_info)
(tfile_get_tracepoint_status, tfile_trace_find)
(tfile_fetch_registers, tfile_xfer_partial)
(tfile_get_trace_state_variable_value, tfile_traceframe_info):
Refactor as tfile_target methods.
(tfile_xfer_partial_features): Remove target_ops parameter.
(init_tfile_ops): Delete.
(_initialize_tracefile_tfile): Don't call it.
* tracefile.c (tracefile_has_all_memory, tracefile_has_memory)
(tracefile_has_stack, tracefile_has_registers)
(tracefile_thread_alive, tracefile_get_trace_status): Refactor as
tracefile_target methods.
(init_tracefile_ops): Delete.
(tracefile_target::tracefile_target): New.
* tracefile.h: Include "target.h".
(tracefile_target): New class.
(init_tracefile_ops): Delete.
* spu-multiarch.c (spu_multiarch_target): New class.
(spu_ops): Now a spu_multiarch_target.
(spu_thread_architecture, spu_region_ok_for_hw_watchpoint)
(spu_fetch_registers, spu_store_registers, spu_xfer_partial)
(spu_search_memory, spu_mourn_inferior): Refactor as
spu_multiarch_target methods.
(init_spu_ops): Delete.
(_initialize_spu_multiarch): Remove references to init_spu_ops,
complete_target_initialization.
* ravenscar-thread.c (ravenscar_thread_target): New class.
(ravenscar_ops): Now a ravenscar_thread_target.
(ravenscar_resume, ravenscar_wait, ravenscar_update_thread_list)
(ravenscar_thread_alive, ravenscar_pid_to_str)
(ravenscar_fetch_registers, ravenscar_store_registers)
(ravenscar_prepare_to_store, ravenscar_stopped_by_sw_breakpoint)
(ravenscar_stopped_by_hw_breakpoint)
(ravenscar_stopped_by_watchpoint, ravenscar_stopped_data_address)
(ravenscar_mourn_inferior, ravenscar_core_of_thread)
(ravenscar_get_ada_task_ptid): Refactor as ravenscar_thread_target
methods.
(init_ravenscar_thread_ops): Delete.
(_initialize_ravenscar): Remove references to
init_ravenscar_thread_ops and complete_target_initialization.
* bsd-uthread.c (bsd_uthread_ops_hack): Delete.
(bsd_uthread_target): New class.
(bsd_uthread_ops): Now a bsd_uthread_target.
(bsd_uthread_activate): Adjust to refer to bsd_uthread_ops.
(bsd_uthread_close, bsd_uthread_mourn_inferior)
(bsd_uthread_fetch_registers, bsd_uthread_store_registers)
(bsd_uthread_wait, bsd_uthread_resume, bsd_uthread_thread_alive)
(bsd_uthread_update_thread_list, bsd_uthread_extra_thread_info)
(bsd_uthread_pid_to_str): Refactor as bsd_uthread_target methods.
(bsd_uthread_target): Delete function.
(_initialize_bsd_uthread): Remove reference to
complete_target_initialization.
* bfd-target.c (target_bfd_data): Delete. Fields folded into ...
(target_bfd): ... this new class.
(target_bfd_xfer_partial, target_bfd_get_section_table)
(target_bfd_close): Refactor as target_bfd methods.
(target_bfd::~target_bfd): New.
(target_bfd_reopen): Adjust.
(target_bfd::close): New.
* record-btrace.c (record_btrace_target): New class.
(record_btrace_ops): Now a record_btrace_target.
(record_btrace_open, record_btrace_stop_recording)
(record_btrace_disconnect, record_btrace_close)
(record_btrace_async, record_btrace_info)
(record_btrace_insn_history, record_btrace_insn_history_range)
(record_btrace_insn_history_from, record_btrace_call_history)
(record_btrace_call_history_range)
(record_btrace_call_history_from, record_btrace_record_method)
(record_btrace_is_replaying, record_btrace_will_replay)
(record_btrace_xfer_partial, record_btrace_insert_breakpoint)
(record_btrace_remove_breakpoint, record_btrace_fetch_registers)
(record_btrace_store_registers, record_btrace_prepare_to_store)
(record_btrace_to_get_unwinder)
(record_btrace_to_get_tailcall_unwinder, record_btrace_resume)
(record_btrace_commit_resume, record_btrace_wait)
(record_btrace_stop, record_btrace_can_execute_reverse)
(record_btrace_stopped_by_sw_breakpoint)
(record_btrace_supports_stopped_by_sw_breakpoint)
(record_btrace_stopped_by_hw_breakpoint)
(record_btrace_supports_stopped_by_hw_breakpoint)
(record_btrace_update_thread_list, record_btrace_thread_alive)
(record_btrace_goto_begin, record_btrace_goto_end)
(record_btrace_goto, record_btrace_stop_replaying_all)
(record_btrace_execution_direction)
(record_btrace_prepare_to_generate_core)
(record_btrace_done_generating_core): Refactor as
record_btrace_target methods.
(init_record_btrace_ops): Delete.
(_initialize_record_btrace): Remove reference to
init_record_btrace_ops.
* record-full.c (RECORD_FULL_IS_REPLAY): Adjust to always refer to
the execution_direction global.
(record_full_base_target, record_full_target)
(record_full_core_target): New classes.
(record_full_ops): Now a record_full_target.
(record_full_core_ops): Now a record_full_core_target.
(record_full_target::detach, record_full_target::disconnect)
(record_full_core_target::disconnect)
(record_full_target::mourn_inferior, record_full_target::kill):
New.
(record_full_open, record_full_close, record_full_async): Refactor
as methods of the record_full_base_target class.
(record_full_resume, record_full_commit_resume): Refactor
as methods of the record_full_target class.
(record_full_wait, record_full_stopped_by_watchpoint)
(record_full_stopped_data_address)
(record_full_stopped_by_sw_breakpoint)
(record_full_supports_stopped_by_sw_breakpoint)
(record_full_stopped_by_hw_breakpoint)
(record_full_supports_stopped_by_hw_breakpoint): Refactor as
methods of the record_full_base_target class.
(record_full_store_registers, record_full_xfer_partial)
(record_full_insert_breakpoint, record_full_remove_breakpoint):
Refactor as methods of the record_full_target class.
(record_full_can_execute_reverse, record_full_get_bookmark)
(record_full_goto_bookmark, record_full_execution_direction)
(record_full_record_method, record_full_info, record_full_delete)
(record_full_is_replaying, record_full_will_replay)
(record_full_goto_begin, record_full_goto_end, record_full_goto)
(record_full_stop_replaying): Refactor as methods of the
record_full_base_target class.
(record_full_core_resume, record_full_core_kill)
(record_full_core_fetch_registers)
(record_full_core_prepare_to_store)
(record_full_core_store_registers, record_full_core_xfer_partial)
(record_full_core_insert_breakpoint)
(record_full_core_remove_breakpoint)
(record_full_core_has_execution): Refactor
as methods of the record_full_core_target class.
(record_full_base_target::supports_delete_record): New.
(init_record_full_ops): Delete.
(init_record_full_core_ops): Delete.
(record_full_save): Refactor as method of the
record_full_base_target class.
(_initialize_record_full): Remove references to
init_record_full_ops and init_record_full_core_ops.
* remote.c (remote_target, extended_remote_target): New classes.
(remote_ops): Now a remote_target.
(extended_remote_ops): Now an extended_remote_target.
(remote_insert_fork_catchpoint, remote_remove_fork_catchpoint)
(remote_insert_vfork_catchpoint, remote_remove_vfork_catchpoint)
(remote_insert_exec_catchpoint, remote_remove_exec_catchpoint)
(remote_pass_signals, remote_set_syscall_catchpoint)
(remote_program_signals, )
(remote_thread_always_alive): Remove target_ops parameter.
(remote_thread_alive, remote_thread_name)
(remote_update_thread_list, remote_threads_extra_info)
(remote_static_tracepoint_marker_at)
(remote_static_tracepoint_markers_by_strid)
(remote_get_ada_task_ptid, remote_close, remote_start_remote)
(remote_open): Refactor as methods of remote_target.
(extended_remote_open, extended_remote_detach)
(extended_remote_attach, extended_remote_post_attach):
(extended_remote_supports_disable_randomization)
(extended_remote_create_inferior): : Refactor as method of
extended_remote_target.
(remote_set_permissions, remote_open_1, remote_detach)
(remote_follow_fork, remote_follow_exec, remote_disconnect)
(remote_resume, remote_commit_resume, remote_stop)
(remote_interrupt, remote_pass_ctrlc, remote_terminal_inferior)
(remote_terminal_ours, remote_wait, remote_fetch_registers)
(remote_prepare_to_store, remote_store_registers)
(remote_flash_erase, remote_flash_done, remote_files_info)
(remote_kill, remote_mourn, remote_insert_breakpoint)
(remote_remove_breakpoint, remote_insert_watchpoint)
(remote_watchpoint_addr_within_range)
(remote_remove_watchpoint, remote_region_ok_for_hw_watchpoint)
(remote_check_watch_resources, remote_stopped_by_sw_breakpoint)
(remote_supports_stopped_by_sw_breakpoint)
(remote_stopped_by_hw_breakpoint)
(remote_supports_stopped_by_hw_breakpoint)
(remote_stopped_by_watchpoint, remote_stopped_data_address)
(remote_insert_hw_breakpoint, remote_remove_hw_breakpoint)
(remote_verify_memory): Refactor as methods of remote_target.
(remote_write_qxfer, remote_read_qxfer): Remove target_ops
parameter.
(remote_xfer_partial, remote_get_memory_xfer_limit)
(remote_search_memory, remote_rcmd, remote_memory_map)
(remote_pid_to_str, remote_get_thread_local_address)
(remote_get_tib_address, remote_read_description): Refactor as
methods of remote_target.
(remote_target::fileio_open, remote_target::fileio_pwrite)
(remote_target::fileio_pread, remote_target::fileio_close): New.
(remote_hostio_readlink, remote_hostio_fstat)
(remote_filesystem_is_local, remote_can_execute_reverse)
(remote_supports_non_stop, remote_supports_disable_randomization)
(remote_supports_multi_process, remote_supports_cond_breakpoints)
(remote_supports_enable_disable_tracepoint)
(remote_supports_string_tracing)
(remote_can_run_breakpoint_commands, remote_trace_init)
(remote_download_tracepoint, remote_can_download_tracepoint)
(remote_download_trace_state_variable, remote_enable_tracepoint)
(remote_disable_tracepoint, remote_trace_set_readonly_regions)
(remote_trace_start, remote_get_trace_status)
(remote_get_tracepoint_status, remote_trace_stop)
(remote_trace_find, remote_get_trace_state_variable_value)
(remote_save_trace_data, remote_get_raw_trace_data)
(remote_set_disconnected_tracing, remote_core_of_thread)
(remote_set_circular_trace_buffer, remote_traceframe_info)
(remote_get_min_fast_tracepoint_insn_len)
(remote_set_trace_buffer_size, remote_set_trace_notes)
(remote_use_agent, remote_can_use_agent, remote_enable_btrace)
(remote_disable_btrace, remote_teardown_btrace)
(remote_read_btrace, remote_btrace_conf)
(remote_augmented_libraries_svr4_read, remote_load)
(remote_pid_to_exec_file, remote_can_do_single_step)
(remote_execution_direction, remote_thread_handle_to_thread_info):
Refactor as methods of remote_target.
(init_remote_ops, init_extended_remote_ops): Delete.
(remote_can_async_p, remote_is_async_p, remote_async)
(remote_thread_events, remote_upload_tracepoints)
(remote_upload_trace_state_variables): Refactor as methods of
remote_target.
(_initialize_remote): Remove references to init_remote_ops and
init_extended_remote_ops.
* remote-sim.c (gdbsim_target): New class.
(gdbsim_fetch_register, gdbsim_store_register, gdbsim_kill)
(gdbsim_load, gdbsim_create_inferior, gdbsim_open, gdbsim_close)
(gdbsim_detach, gdbsim_resume, gdbsim_interrupt)
(gdbsim_wait, gdbsim_prepare_to_store, gdbsim_xfer_partial)
(gdbsim_files_info, gdbsim_mourn_inferior, gdbsim_thread_alive)
(gdbsim_pid_to_str, gdbsim_has_all_memory, gdbsim_has_memory):
Refactor as methods of gdbsim_target.
(gdbsim_ops): Now a gdbsim_target.
(init_gdbsim_ops): Delete.
(gdbsim_cntrl_c): Adjust.
(_initialize_remote_sim): Remove reference to init_gdbsim_ops.
* amd64-linux-nat.c (amd64_linux_nat_target): New class.
(the_amd64_linux_nat_target): New.
(amd64_linux_fetch_inferior_registers)
(amd64_linux_store_inferior_registers): Refactor as methods of
amd64_linux_nat_target.
(_initialize_amd64_linux_nat): Adjust. Set linux_target.
* i386-linux-nat.c: Don't include "linux-nat.h".
(i386_linux_nat_target): New class.
(the_i386_linux_nat_target): New.
(i386_linux_fetch_inferior_registers)
(i386_linux_store_inferior_registers, i386_linux_resume): Refactor
as methods of i386_linux_nat_target.
(_initialize_i386_linux_nat): Adjust. Set linux_target.
* inf-child.c (inf_child_ops): Delete.
(inf_child_fetch_inferior_registers)
(inf_child_store_inferior_registers): Delete.
(inf_child_post_attach, inf_child_prepare_to_store): Refactor as
methods of inf_child_target.
(inf_child_target::supports_terminal_ours)
(inf_child_target::terminal_init)
(inf_child_target::terminal_inferior)
(inf_child_target::terminal_ours_for_output)
(inf_child_target::terminal_ours, inf_child_target::interrupt)
(inf_child_target::pass_ctrlc, inf_child_target::terminal_info):
New.
(inf_child_open, inf_child_disconnect, inf_child_close)
(inf_child_mourn_inferior, inf_child_maybe_unpush_target)
(inf_child_post_startup_inferior, inf_child_can_run)
(inf_child_pid_to_exec_file): Refactor as methods of
inf_child_target.
(inf_child_follow_fork): Delete.
(inf_child_target::can_create_inferior)
(inf_child_target::can_attach): New.
(inf_child_target::has_all_memory, inf_child_target::has_memory)
(inf_child_target::has_stack, inf_child_target::has_registers)
(inf_child_target::has_execution): New.
(inf_child_fileio_open, inf_child_fileio_pwrite)
(inf_child_fileio_pread, inf_child_fileio_fstat)
(inf_child_fileio_close, inf_child_fileio_unlink)
(inf_child_fileio_readlink, inf_child_use_agent)
(inf_child_can_use_agent): Refactor as methods of
inf_child_target.
(return_zero, inf_child_target): Delete.
(inf_child_target::inf_child_target): New.
* inf-child.h: Include "target.h".
(inf_child_target): Delete function prototype.
(inf_child_target): New class.
(inf_child_open_target, inf_child_mourn_inferior)
(inf_child_maybe_unpush_target): Delete.
* inf-ptrace.c (inf_ptrace_target::~inf_ptrace_target): New.
(inf_ptrace_follow_fork, inf_ptrace_insert_fork_catchpoint)
(inf_ptrace_remove_fork_catchpoint, inf_ptrace_create_inferior)
(inf_ptrace_post_startup_inferior, inf_ptrace_mourn_inferior)
(inf_ptrace_attach, inf_ptrace_post_attach, inf_ptrace_detach)
(inf_ptrace_detach_success, inf_ptrace_kill, inf_ptrace_resume)
(inf_ptrace_wait, inf_ptrace_xfer_partial)
(inf_ptrace_thread_alive, inf_ptrace_files_info)
(inf_ptrace_pid_to_str, inf_ptrace_auxv_parse): Refactor as
methods of inf_ptrace_target.
(inf_ptrace_target): Delete function.
* inf-ptrace.h: Include "inf-child.h".
(inf_ptrace_target): Delete function declaration.
(inf_ptrace_target): New class.
(inf_ptrace_trad_target, inf_ptrace_detach_success): Delete.
* linux-nat.c (linux_target): New.
(linux_ops, linux_ops_saved, super_xfer_partial): Delete.
(linux_nat_target::~linux_nat_target): New.
(linux_child_post_attach, linux_child_post_startup_inferior)
(linux_child_follow_fork, linux_child_insert_fork_catchpoint)
(linux_child_remove_fork_catchpoint)
(linux_child_insert_vfork_catchpoint)
(linux_child_remove_vfork_catchpoint)
(linux_child_insert_exec_catchpoint)
(linux_child_remove_exec_catchpoint)
(linux_child_set_syscall_catchpoint, linux_nat_pass_signals)
(linux_nat_create_inferior, linux_nat_attach, linux_nat_detach)
(linux_nat_resume, linux_nat_stopped_by_watchpoint)
(linux_nat_stopped_data_address)
(linux_nat_stopped_by_sw_breakpoint)
(linux_nat_supports_stopped_by_sw_breakpoint)
(linux_nat_stopped_by_hw_breakpoint)
(linux_nat_supports_stopped_by_hw_breakpoint, linux_nat_wait)
(linux_nat_kill, linux_nat_mourn_inferior)
(linux_nat_xfer_partial, linux_nat_thread_alive)
(linux_nat_update_thread_list, linux_nat_pid_to_str)
(linux_nat_thread_name, linux_child_pid_to_exec_file)
(linux_child_static_tracepoint_markers_by_strid)
(linux_nat_is_async_p, linux_nat_can_async_p)
(linux_nat_supports_non_stop, linux_nat_always_non_stop_p)
(linux_nat_supports_multi_process)
(linux_nat_supports_disable_randomization, linux_nat_async)
(linux_nat_stop, linux_nat_close, linux_nat_thread_address_space)
(linux_nat_core_of_thread, linux_nat_filesystem_is_local)
(linux_nat_fileio_open, linux_nat_fileio_readlink)
(linux_nat_fileio_unlink, linux_nat_thread_events): Refactor as
methods of linux_nat_target.
(linux_nat_wait_1, linux_xfer_siginfo, linux_proc_xfer_partial)
(linux_proc_xfer_spu, linux_nat_xfer_osdata): Remove target_ops
parameter.
(check_stopped_by_watchpoint): Adjust.
(linux_xfer_partial): Delete.
(linux_target_install_ops, linux_target, linux_nat_add_target):
Delete.
(linux_nat_target::linux_nat_target): New.
* linux-nat.h: Include "inf-ptrace.h".
(linux_nat_target): New.
(linux_target, linux_target_install_ops, linux_nat_add_target):
Delete function declarations.
(linux_target): Declare global.
* linux-thread-db.c (thread_db_target): New.
(thread_db_target::thread_db_target): New.
(thread_db_ops): Delete.
(the_thread_db_target): New.
(thread_db_detach, thread_db_wait, thread_db_mourn_inferior)
(thread_db_update_thread_list, thread_db_pid_to_str)
(thread_db_extra_thread_info)
(thread_db_thread_handle_to_thread_info)
(thread_db_get_thread_local_address, thread_db_get_ada_task_ptid)
(thread_db_resume): Refactor as methods of thread_db_target.
(init_thread_db_ops): Delete.
(_initialize_thread_db): Remove reference to init_thread_db_ops.
* x86-linux-nat.c: Don't include "linux-nat.h".
(super_post_startup_inferior): Delete.
(x86_linux_nat_target::~x86_linux_nat_target): New.
(x86_linux_child_post_startup_inferior)
(x86_linux_read_description, x86_linux_enable_btrace)
(x86_linux_disable_btrace, x86_linux_teardown_btrace)
(x86_linux_read_btrace, x86_linux_btrace_conf): Refactor as
methods of x86_linux_nat_target.
(x86_linux_create_target): Delete. Bits folded ...
(x86_linux_add_target): ... here. Now takes a linux_nat_target
pointer.
* x86-linux-nat.h: Include "linux-nat.h" and "x86-nat.h".
(x86_linux_nat_target): New class.
(x86_linux_create_target): Delete.
(x86_linux_add_target): Now takes a linux_nat_target pointer.
* x86-nat.c (x86_insert_watchpoint, x86_remove_watchpoint)
(x86_region_ok_for_watchpoint, x86_stopped_data_address)
(x86_stopped_by_watchpoint, x86_insert_hw_breakpoint)
(x86_remove_hw_breakpoint, x86_can_use_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): Remove target_ops parameter and
make extern.
(x86_use_watchpoints): Delete.
* x86-nat.h: Include "breakpoint.h" and "target.h".
(x86_use_watchpoints): Delete.
(x86_can_use_hw_breakpoint, x86_region_ok_for_hw_watchpoint)
(x86_stopped_by_watchpoint, x86_stopped_data_address)
(x86_insert_watchpoint, x86_remove_watchpoint)
(x86_insert_hw_breakpoint, x86_remove_hw_breakpoint)
(x86_stopped_by_hw_breakpoint): New declarations.
(x86_nat_target): New template class.
* ppc-linux-nat.c (ppc_linux_nat_target): New class.
(the_ppc_linux_nat_target): New.
(ppc_linux_fetch_inferior_registers)
(ppc_linux_can_use_hw_breakpoint)
(ppc_linux_region_ok_for_hw_watchpoint)
(ppc_linux_ranged_break_num_registers)
(ppc_linux_insert_hw_breakpoint, ppc_linux_remove_hw_breakpoint)
(ppc_linux_insert_mask_watchpoint)
(ppc_linux_remove_mask_watchpoint)
(ppc_linux_can_accel_watchpoint_condition)
(ppc_linux_insert_watchpoint, ppc_linux_remove_watchpoint)
(ppc_linux_stopped_data_address, ppc_linux_stopped_by_watchpoint)
(ppc_linux_watchpoint_addr_within_range)
(ppc_linux_masked_watch_num_registers)
(ppc_linux_store_inferior_registers, ppc_linux_auxv_parse)
(ppc_linux_read_description): Refactor as methods of
ppc_linux_nat_target.
(_initialize_ppc_linux_nat): Adjust. Set linux_target.
* procfs.c (procfs_xfer_partial): Delete forward declaration.
(procfs_target): New class.
(the_procfs_target): New.
(procfs_target): Delete function.
(procfs_auxv_parse, procfs_attach, procfs_detach)
(procfs_fetch_registers, procfs_store_registers, procfs_wait)
(procfs_xfer_partial, procfs_resume, procfs_pass_signals)
(procfs_files_info, procfs_kill_inferior, procfs_mourn_inferior)
(procfs_create_inferior, procfs_update_thread_list)
(procfs_thread_alive, procfs_pid_to_str)
(procfs_can_use_hw_breakpoint, procfs_stopped_by_watchpoint)
(procfs_stopped_data_address, procfs_insert_watchpoint)
(procfs_remove_watchpoint, procfs_region_ok_for_hw_watchpoint)
(proc_find_memory_regions, procfs_info_proc)
(procfs_make_note_section): Refactor as methods of procfs_target.
(_initialize_procfs): Adjust.
* sol-thread.c (sol_thread_target): New class.
(sol_thread_ops): Now a sol_thread_target.
(sol_thread_detach, sol_thread_resume, sol_thread_wait)
(sol_thread_fetch_registers, sol_thread_store_registers)
(sol_thread_xfer_partial, sol_thread_mourn_inferior)
(sol_thread_alive, solaris_pid_to_str, sol_update_thread_list)
(sol_get_ada_task_ptid): Refactor as methods of sol_thread_target.
(init_sol_thread_ops): Delete.
(_initialize_sol_thread): Adjust. Remove references to
init_sol_thread_ops and complete_target_initialization.
* windows-nat.c (windows_nat_target): New class.
(windows_fetch_inferior_registers)
(windows_store_inferior_registers, windows_resume, windows_wait)
(windows_attach, windows_detach, windows_pid_to_exec_file)
(windows_files_info, windows_create_inferior)
(windows_mourn_inferior, windows_interrupt, windows_kill_inferior)
(windows_close, windows_pid_to_str, windows_xfer_partial)
(windows_get_tib_address, windows_get_ada_task_ptid)
(windows_thread_name, windows_thread_alive): Refactor as
windows_nat_target methods.
(do_initial_windows_stuff): Adjust.
(windows_target): Delete function.
(_initialize_windows_nat): Adjust.
* darwin-nat.c (darwin_resume, darwin_wait_to, darwin_interrupt)
(darwin_mourn_inferior, darwin_kill_inferior)
(darwin_create_inferior, darwin_attach, darwin_detach)
(darwin_pid_to_str, darwin_thread_alive, darwin_xfer_partial)
(darwin_pid_to_exec_file, darwin_get_ada_task_ptid)
(darwin_supports_multi_process): Refactor as darwin_nat_target
methods.
(darwin_resume_to, darwin_files_info): Delete.
(_initialize_darwin_inferior): Rename to ...
(_initialize_darwin_nat): ... this. Adjust to C++ification.
* darwin-nat.h: Include "inf-child.h".
(darwin_nat_target): New class.
(darwin_complete_target): Delete.
* i386-darwin-nat.c (i386_darwin_nat_target): New class.
(darwin_target): New.
(i386_darwin_fetch_inferior_registers)
(i386_darwin_store_inferior_registers): Refactor as methods of
darwin_nat_target.
(darwin_complete_target): Delete, with ...
(_initialize_i386_darwin_nat): ... bits factored out here.
* alpha-linux-nat.c (alpha_linux_nat_target): New class.
(the_alpha_linux_nat_target): New.
(alpha_linux_register_u_offset): Refactor as
alpha_linux_nat_target method.
(_initialize_alpha_linux_nat): Adjust.
* linux-nat-trad.c (inf_ptrace_register_u_offset): Delete.
(inf_ptrace_fetch_register, inf_ptrace_fetch_registers)
(inf_ptrace_store_register, inf_ptrace_store_registers): Refact as
methods of linux_nat_trad_target.
(linux_trad_target): Delete.
* linux-nat-trad.h (linux_trad_target): Delete function.
(linux_nat_trad_target): New class.
* mips-linux-nat.c (mips_linux_nat_target): New class.
(super_fetch_registers, super_store_registers, super_close):
Delete.
(the_mips_linux_nat_target): New.
(mips64_linux_regsets_fetch_registers)
(mips64_linux_regsets_store_registers)
(mips64_linux_fetch_registers, mips64_linux_store_registers)
(mips_linux_register_u_offset, mips_linux_read_description)
(mips_linux_can_use_hw_breakpoint)
(mips_linux_stopped_by_watchpoint)
(mips_linux_stopped_data_address)
(mips_linux_region_ok_for_hw_watchpoint)
(mips_linux_insert_watchpoint, mips_linux_remove_watchpoint)
(mips_linux_close): Refactor as methods of mips_linux_nat.
(_initialize_mips_linux_nat): Adjust to C++ification.
* aix-thread.c (aix_thread_target): New class.
(aix_thread_ops): Now an aix_thread_target.
(aix_thread_detach, aix_thread_resume, aix_thread_wait)
(aix_thread_fetch_registers, aix_thread_store_registers)
(aix_thread_xfer_partial, aix_thread_mourn_inferior)
(aix_thread_thread_alive, aix_thread_pid_to_str)
(aix_thread_extra_thread_info, aix_thread_get_ada_task_ptid):
Refactor as methods of aix_thread_target.
(init_aix_thread_ops): Delete.
(_initialize_aix_thread): Remove references to init_aix_thread_ops
and complete_target_initialization.
* rs6000-nat.c (rs6000_xfer_shared_libraries): Delete.
(rs6000_nat_target): New class.
(the_rs6000_nat_target): New.
(rs6000_fetch_inferior_registers, rs6000_store_inferior_registers)
(rs6000_xfer_partial, rs6000_wait, rs6000_create_inferior)
(rs6000_xfer_shared_libraries): Refactor as rs6000_nat_target methods.
(super_create_inferior): Delete.
(_initialize_rs6000_nat): Adjust to C++ification.
* arm-linux-nat.c (arm_linux_nat_target): New class.
(the_arm_linux_nat_target): New.
(arm_linux_fetch_inferior_registers)
(arm_linux_store_inferior_registers, arm_linux_read_description)
(arm_linux_can_use_hw_breakpoint, arm_linux_insert_hw_breakpoint)
(arm_linux_remove_hw_breakpoint)
(arm_linux_region_ok_for_hw_watchpoint)
(arm_linux_insert_watchpoint, arm_linux_remove_watchpoint)
(arm_linux_stopped_data_address, arm_linux_stopped_by_watchpoint)
(arm_linux_watchpoint_addr_within_range): Refactor as methods of
arm_linux_nat_target.
(_initialize_arm_linux_nat): Adjust to C++ification.
* aarch64-linux-nat.c (aarch64_linux_nat_target): New class.
(the_aarch64_linux_nat_target): New.
(aarch64_linux_fetch_inferior_registers)
(aarch64_linux_store_inferior_registers)
(aarch64_linux_child_post_startup_inferior)
(aarch64_linux_read_description)
(aarch64_linux_can_use_hw_breakpoint)
(aarch64_linux_insert_hw_breakpoint)
(aarch64_linux_remove_hw_breakpoint)
(aarch64_linux_insert_watchpoint, aarch64_linux_remove_watchpoint)
(aarch64_linux_region_ok_for_hw_watchpoint)
(aarch64_linux_stopped_data_address)
(aarch64_linux_stopped_by_watchpoint)
(aarch64_linux_watchpoint_addr_within_range)
(aarch64_linux_can_do_single_step): Refactor as methods of
aarch64_linux_nat_target.
(super_post_startup_inferior): Delete.
(_initialize_aarch64_linux_nat): Adjust to C++ification.
* hppa-linux-nat.c (hppa_linux_nat_target): New class.
(the_hppa_linux_nat_target): New.
(hppa_linux_fetch_inferior_registers)
(hppa_linux_store_inferior_registers): Refactor as methods of
hppa_linux_nat_target.
(_initialize_hppa_linux_nat): Adjust to C++ification.
* ia64-linux-nat.c (ia64_linux_nat_target): New class.
(the_ia64_linux_nat_target): New.
(ia64_linux_insert_watchpoint, ia64_linux_remove_watchpoint)
(ia64_linux_stopped_data_address)
(ia64_linux_stopped_by_watchpoint, ia64_linux_fetch_registers)
(ia64_linux_store_registers, ia64_linux_xfer_partial): Refactor as
ia64_linux_nat_target methods.
(super_xfer_partial): Delete.
(_initialize_ia64_linux_nat): Adjust to C++ification.
* m32r-linux-nat.c (m32r_linux_nat_target): New class.
(the_m32r_linux_nat_target): New.
(m32r_linux_fetch_inferior_registers)
(m32r_linux_store_inferior_registers): Refactor as
m32r_linux_nat_target methods.
(_initialize_m32r_linux_nat): Adjust to C++ification.
* m68k-linux-nat.c (m68k_linux_nat_target): New class.
(the_m68k_linux_nat_target): New.
(m68k_linux_fetch_inferior_registers)
(m68k_linux_store_inferior_registers): Refactor as
m68k_linux_nat_target methods.
(_initialize_m68k_linux_nat): Adjust to C++ification.
* s390-linux-nat.c (s390_linux_nat_target): New class.
(the_s390_linux_nat_target): New.
(s390_linux_fetch_inferior_registers)
(s390_linux_store_inferior_registers, s390_stopped_by_watchpoint)
(s390_insert_watchpoint, s390_remove_watchpoint)
(s390_can_use_hw_breakpoint, s390_insert_hw_breakpoint)
(s390_remove_hw_breakpoint, s390_region_ok_for_hw_watchpoint)
(s390_auxv_parse, s390_read_description): Refactor as methods of
s390_linux_nat_target.
(_initialize_s390_nat): Adjust to C++ification.
* sparc-linux-nat.c (sparc_linux_nat_target): New class.
(the_sparc_linux_nat_target): New.
(_initialize_sparc_linux_nat): Adjust to C++ification.
* sparc-nat.c (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers): Remove target_ops parameter.
* sparc64-linux-nat.c (sparc64_linux_nat_target): New class.
(the_sparc64_linux_nat_target): New.
(_initialize_sparc64_linux_nat): Adjust to C++ification.
* spu-linux-nat.c (spu_linux_nat_target): New class.
(the_spu_linux_nat_target): New.
(spu_child_post_startup_inferior, spu_child_post_attach)
(spu_child_wait, spu_fetch_inferior_registers)
(spu_store_inferior_registers, spu_xfer_partial)
(spu_can_use_hw_breakpoint): Refactor as spu_linux_nat_target
methods.
(_initialize_spu_nat): Adjust to C++ification.
* tilegx-linux-nat.c (tilegx_linux_nat_target): New class.
(the_tilegx_linux_nat_target): New.
(fetch_inferior_registers, store_inferior_registers):
Refactor as methods.
(_initialize_tile_linux_nat): Adjust to C++ification.
* xtensa-linux-nat.c (xtensa_linux_nat_target): New class.
(the_xtensa_linux_nat_target): New.
(xtensa_linux_fetch_inferior_registers)
(xtensa_linux_store_inferior_registers): Refactor as
xtensa_linux_nat_target methods.
(_initialize_xtensa_linux_nat): Adjust to C++ification.
* fbsd-nat.c (USE_SIGTRAP_SIGINFO): Delete.
(fbsd_pid_to_exec_file, fbsd_find_memory_regions)
(fbsd_find_memory_regions, fbsd_info_proc, fbsd_xfer_partial)
(fbsd_thread_alive, fbsd_pid_to_str, fbsd_thread_name)
(fbsd_update_thread_list, fbsd_resume, fbsd_wait)
(fbsd_stopped_by_sw_breakpoint)
(fbsd_supports_stopped_by_sw_breakpoint, fbsd_follow_fork)
(fbsd_insert_fork_catchpoint, fbsd_remove_fork_catchpoint)
(fbsd_insert_vfork_catchpoint, fbsd_remove_vfork_catchpoint)
(fbsd_post_startup_inferior, fbsd_post_attach)
(fbsd_insert_exec_catchpoint, fbsd_remove_exec_catchpoint)
(fbsd_set_syscall_catchpoint)
(super_xfer_partial, super_resume, super_wait)
(fbsd_supports_stopped_by_hw_breakpoint): Delete.
(fbsd_handle_debug_trap): Remove target_ops parameter.
(fbsd_nat_add_target): Delete.
* fbsd-nat.h: Include "inf-ptrace.h".
(fbsd_nat_add_target): Delete.
(USE_SIGTRAP_SIGINFO): Define.
(fbsd_nat_target): New class.
* amd64-bsd-nat.c (amd64bsd_fetch_inferior_registers)
(amd64bsd_store_inferior_registers): Remove target_ops parameter.
(amd64bsd_target): Delete.
* amd64-bsd-nat.h: New file.
* amd64-fbsd-nat.c: Include "amd64-bsd-nat.h" instead of
"x86-bsd-nat.h".
(amd64_fbsd_nat_target): New class.
(the_amd64_fbsd_nat_target): New.
(amd64fbsd_read_description): Refactor as method of
amd64_fbsd_nat_target.
(amd64_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_amd64fbsd_nat): Adjust to C++ification.
* amd64-nat.h (amd64bsd_target): Delete function declaration.
* i386-bsd-nat.c (i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Remove target_ops parameter.
(i386bsd_target): Delete.
* i386-bsd-nat.h (i386bsd_target): Delete function declaration.
(i386bsd_fetch_inferior_registers)
(i386bsd_store_inferior_registers): Declare.
(i386_bsd_nat_target): New class.
* i386-fbsd-nat.c (i386_fbsd_nat_target): New class.
(the_i386_fbsd_nat_target): New.
(i386fbsd_resume, i386fbsd_read_description): Refactor as
i386_fbsd_nat_target methods.
(i386_fbsd_nat_target::supports_stopped_by_hw_breakpoint): New.
(_initialize_i386fbsd_nat): Adjust to C++ification.
* x86-bsd-nat.c (super_mourn_inferior): Delete.
(x86bsd_mourn_inferior, x86bsd_target): Delete.
(_initialize_x86_bsd_nat): Adjust to C++ification.
* x86-bsd-nat.h: Include "x86-nat.h".
(x86bsd_target): Delete declaration.
(x86bsd_nat_target): New class.
* aarch64-fbsd-nat.c (aarch64_fbsd_nat_target): New class.
(the_aarch64_fbsd_nat_target): New.
(aarch64_fbsd_fetch_inferior_registers)
(aarch64_fbsd_store_inferior_registers): Refactor as methods of
aarch64_fbsd_nat_target.
(_initialize_aarch64_fbsd_nat): Adjust to C++ification.
* alpha-bsd-nat.c (alpha_bsd_nat_target): New class.
(the_alpha_bsd_nat_target): New.
(alphabsd_fetch_inferior_registers)
(alphabsd_store_inferior_registers): Refactor as
alpha_bsd_nat_target methods.
(_initialize_alphabsd_nat): Refactor as methods of
alpha_bsd_nat_target.
* amd64-nbsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_nbsd_nat_target): New.
(_initialize_amd64nbsd_nat): Adjust to C++ification.
* amd64-obsd-nat.c: Include "amd64-bsd-nat.h".
(the_amd64_obsd_nat_target): New.
(_initialize_amd64obsd_nat): Adjust to C++ification.
* arm-fbsd-nat.c (arm_fbsd_nat_target): New.
(the_arm_fbsd_nat_target): New.
(arm_fbsd_fetch_inferior_registers)
(arm_fbsd_store_inferior_registers, arm_fbsd_read_description):
(_initialize_arm_fbsd_nat): Refactor as methods of
arm_fbsd_nat_target.
(_initialize_arm_fbsd_nat): Adjust to C++ification.
* arm-nbsd-nat.c (arm_netbsd_nat_target): New class.
(the_arm_netbsd_nat_target): New.
(armnbsd_fetch_registers, armnbsd_store_registers): Refactor as
arm_netbsd_nat_target.
(_initialize_arm_netbsd_nat): Adjust to C++ification.
* hppa-nbsd-nat.c (hppa_nbsd_nat_target): New class.
(the_hppa_nbsd_nat_target): New.
(hppanbsd_fetch_registers, hppanbsd_store_registers): Refactor as
hppa_nbsd_nat_target methods.
(_initialize_hppanbsd_nat): Adjust to C++ification.
* hppa-obsd-nat.c (hppa_obsd_nat_target): New class.
(the_hppa_obsd_nat_target): New.
(hppaobsd_fetch_registers, hppaobsd_store_registers): Refactor as
methods of hppa_obsd_nat_target.
(_initialize_hppaobsd_nat): Adjust to C++ification. Use
add_target.
* i386-nbsd-nat.c (the_i386_nbsd_nat_target): New.
(_initialize_i386nbsd_nat): Adjust to C++ification. Use
add_target.
* i386-obsd-nat.c (the_i386_obsd_nat_target): New.
(_initialize_i386obsd_nat): Use add_target.
* m68k-bsd-nat.c (m68k_bsd_nat_target): New class.
(the_m68k_bsd_nat_target): New.
(m68kbsd_fetch_inferior_registers)
(m68kbsd_store_inferior_registers): Refactor as methods of
m68k_bsd_nat_target.
(_initialize_m68kbsd_nat): Adjust to C++ification.
* mips-fbsd-nat.c (mips_fbsd_nat_target): New class.
(the_mips_fbsd_nat_target): New.
(mips_fbsd_fetch_inferior_registers)
(mips_fbsd_store_inferior_registers): Refactor as methods of
mips_fbsd_nat_target.
(_initialize_mips_fbsd_nat): Adjust to C++ification. Use
add_target.
* mips-nbsd-nat.c (mips_nbsd_nat_target): New class.
(the_mips_nbsd_nat_target): New.
(mipsnbsd_fetch_inferior_registers)
(mipsnbsd_store_inferior_registers): Refactor as methods of
mips_nbsd_nat_target.
(_initialize_mipsnbsd_nat): Adjust to C++ification.
* mips64-obsd-nat.c (mips64_obsd_nat_target): New class.
(the_mips64_obsd_nat_target): New.
(mips64obsd_fetch_inferior_registers)
(mips64obsd_store_inferior_registers): Refactor as methods of
mips64_obsd_nat_target.
(_initialize_mips64obsd_nat): Adjust to C++ification. Use
add_target.
* nbsd-nat.c (nbsd_pid_to_exec_file): Refactor as method of
nbsd_nat_target.
* nbsd-nat.h: Include "inf-ptrace.h".
(nbsd_nat_target): New class.
* obsd-nat.c (obsd_pid_to_str, obsd_update_thread_list)
(obsd_wait): Refactor as methods of obsd_nat_target.
(obsd_add_target): Delete.
* obsd-nat.h: Include "inf-ptrace.h".
(obsd_nat_target): New class.
* ppc-fbsd-nat.c (ppc_fbsd_nat_target): New class.
(the_ppc_fbsd_nat_target): New.
(ppcfbsd_fetch_inferior_registers)
(ppcfbsd_store_inferior_registers): Refactor as methods of
ppc_fbsd_nat_target.
(_initialize_ppcfbsd_nat): Adjust to C++ification. Use
add_target.
* ppc-nbsd-nat.c (ppc_nbsd_nat_target): New class.
(the_ppc_nbsd_nat_target): New.
(ppcnbsd_fetch_inferior_registers)
(ppcnbsd_store_inferior_registers): Refactor as methods of
ppc_nbsd_nat_target.
(_initialize_ppcnbsd_nat): Adjust to C++ification.
* ppc-obsd-nat.c (ppc_obsd_nat_target): New class.
(the_ppc_obsd_nat_target): New.
(ppcobsd_fetch_registers, ppcobsd_store_registers): Refactor as
methods of ppc_obsd_nat_target.
(_initialize_ppcobsd_nat): Adjust to C++ification. Use
add_target.
* sh-nbsd-nat.c (sh_nbsd_nat_target): New class.
(the_sh_nbsd_nat_target): New.
(shnbsd_fetch_inferior_registers)
(shnbsd_store_inferior_registers): Refactor as methods of
sh_nbsd_nat_target.
(_initialize_shnbsd_nat): Adjust to C++ification.
* sparc-nat.c (sparc_xfer_wcookie): Make extern.
(inf_ptrace_xfer_partial): Delete.
(sparc_xfer_partial, sparc_target): Delete.
* sparc-nat.h (sparc_fetch_inferior_registers)
(sparc_store_inferior_registers, sparc_xfer_wcookie): Declare.
(sparc_target): Delete function declaration.
(sparc_target): New template class.
* sparc-nbsd-nat.c (the_sparc_nbsd_nat_target): New.
(_initialize_sparcnbsd_nat): Adjust to C++ification.
* sparc64-fbsd-nat.c (the_sparc64_fbsd_nat_target): New.
(_initialize_sparc64fbsd_nat): Adjust to C++ification. Use
add_target.
* sparc64-nbsd-nat.c (the_sparc64_nbsd_nat_target): New.
(_initialize_sparc64nbsd_nat): Adjust to C++ification.
* sparc64-obsd-nat.c (the_sparc64_obsd_nat_target): New.
(_initialize_sparc64obsd_nat): Adjust to C++ification. Use
add_target.
* vax-bsd-nat.c (vax_bsd_nat_target): New class.
(the_vax_bsd_nat_target): New.
(vaxbsd_fetch_inferior_registers)
(vaxbsd_store_inferior_registers): Refactor as vax_bsd_nat_target
methods.
(_initialize_vaxbsd_nat): Adjust to C++ification.
* bsd-kvm.c (bsd_kvm_target): New class.
(bsd_kvm_ops): Now a bsd_kvm_target.
(bsd_kvm_open, bsd_kvm_close, bsd_kvm_xfer_partial)
(bsd_kvm_files_info, bsd_kvm_fetch_registers)
(bsd_kvm_thread_alive, bsd_kvm_pid_to_str): Refactor as methods of
bsd_kvm_target.
(bsd_kvm_return_one): Delete.
(bsd_kvm_add_target): Adjust to C++ification.
* nto-procfs.c (nto_procfs_target, nto_procfs_target_native)
(nto_procfs_target_procfs): New classes.
(procfs_open_1, procfs_thread_alive, procfs_update_thread_list)
(procfs_files_info, procfs_pid_to_exec_file, procfs_attach)
(procfs_post_attach, procfs_wait, procfs_fetch_registers)
(procfs_xfer_partial, procfs_detach, procfs_insert_breakpoint)
(procfs_remove_breakpoint, procfs_insert_hw_breakpoint)
(procfs_remove_hw_breakpoint, procfs_resume)
(procfs_mourn_inferior, procfs_create_inferior, procfs_interrupt)
(procfs_kill_inferior, procfs_store_registers)
(procfs_pass_signals, procfs_pid_to_str, procfs_can_run): Refactor
as methods of nto_procfs_target.
(nto_procfs_ops): Now an nto_procfs_target_procfs.
(nto_native_ops): Delete.
(procfs_open, procfs_native_open): Delete.
(nto_native_ops): Now an nto_procfs_target_native.
(init_procfs_targets): Adjust to C++ification.
(procfs_can_use_hw_breakpoint, procfs_remove_hw_watchpoint)
(procfs_insert_hw_watchpoint, procfs_stopped_by_watchpoint):
Refactor as methods of nto_procfs_target.
* go32-nat.c (go32_nat_target): New class.
(the_go32_nat_target): New.
(go32_attach, go32_resume, go32_wait, go32_fetch_registers)
(go32_store_registers, go32_xfer_partial, go32_files_info)
(go32_kill_inferior, go32_create_inferior, go32_mourn_inferior)
(go32_terminal_init, go32_terminal_info, go32_terminal_inferior)
(go32_terminal_ours, go32_pass_ctrlc, go32_thread_alive)
(go32_pid_to_str): Refactor as methods of go32_nat_target.
(go32_target): Delete.
(_initialize_go32_nat): Adjust to C++ification.
* gnu-nat.c (gnu_wait, gnu_resume, gnu_kill_inferior)
(gnu_mourn_inferior, gnu_create_inferior, gnu_attach, gnu_detach)
(gnu_stop, gnu_thread_alive, gnu_xfer_partial)
(gnu_find_memory_regions, gnu_pid_to_str): Refactor as methods of
gnu_nat_target.
(gnu_target): Delete.
* gnu-nat.h (gnu_target): Delete.
(gnu_nat_target): New class.
* i386-gnu-nat.c (gnu_base_target): New.
(i386_gnu_nat_target): New class.
(the_i386_gnu_nat_target): New.
(_initialize_i386gnu_nat): Adjust to C++ification.
gdb/testsuite/ChangeLog:
2018-05-02 Pedro Alves <palves@redhat.com>
* gdb.base/breakpoint-in-ro-region.exp: Adjust to to_resume and
to_log_command renames.
* gdb.base/sss-bp-on-user-bp-2.exp: Likewise.
|
|
Pedro pointed out that a test in py-parameter.exp had an empty
message. This fixes it.
testsuite/ChangeLog
2018-05-02 Tom Tromey <tom@tromey.com>
* gdb.python/py-parameter.exp: Set test message.
|
|
PR python/20084 points out that the Python API doesn't handle the
var_zuinteger and var_zuinteger_unlimited parameter types.
This patch adds support for these types.
Regression tested on x86-64 Fedora 26.
ChangeLog
2018-05-02 Tom Tromey <tom@tromey.com>
PR python/20084:
* python/python.c (gdbpy_parameter_value): Handle var_zuinteger
and var_zuinteger_unlimited.
* python/py-param.c (struct parm_constant): Add PARAM_ZUINTEGER
and PARAM_ZUINTEGER_UNLIMITED.
(set_parameter_value): Handle var_zuinteger and
var_zuinteger_unlimited.
(add_setshow_generic): Likewise.
(parmpy_init): Likewise.
doc/ChangeLog
2018-05-02 Tom Tromey <tom@tromey.com>
PR python/20084:
* python.texi (Parameters In Python): Document PARAM_ZUINTEGER and
PARAM_ZUINTEGER_UNLIMITED.
testsuite/ChangeLog
2018-05-02 Tom Tromey <tom@tromey.com>
PR python/20084:
* gdb.python/py-parameter.exp: Add PARAM_ZUINTEGER and
PARAM_ZUINTEGER_UNLIMITED tests.
|
|
Fix a null dereference when casting a value to a unit type.
ChangeLog
2018-04-28 Dan Robertson <danlrobertson89@gmail.com>
PR rust/23124
* gdb/rust-exp.y (convert_params_to_types): Ensure that the params
pointer is not null before dereferencing it.
testsuite/ChangeLog
2018-04-28 Dan Robertson <danlrobertson89@gmail.com>
PR rust/23124
* gdb.rust/expr.exp: Test that the unit type is correctly parsed
when casting.
|
|
This adds an "alignof" attribute to gdb.Type in the Python API.
2018-04-30 Tom Tromey <tom@tromey.com>
* NEWS: Mention Type.align.
* python/py-type.c (typy_get_alignof): New function.
(type_object_getset): Add "alignof".
2018-04-30 Tom Tromey <tom@tromey.com>
* python.texi (Types In Python): Document Type.align.
2018-04-30 Tom Tromey <tom@tromey.com>
* gdb.python/py-type.exp: Check align attribute.
* gdb.python/py-type.c: New "aligncheck" global.
|
|
This adds alignof and _Alignof to the C/C++ expression parser, and
adds new tests to test the features. The tests are written to try to
ensure that gdb's knowledge of alignment rules stays in sync with the
compiler's.
2018-04-30 Tom Tromey <tom@tromey.com>
PR exp/17095:
* NEWS: Update.
* std-operator.def (UNOP_ALIGNOF): New operator.
* expprint.c (dump_subexp_body_standard) <case UNOP_ALIGNOF>:
New.
* eval.c (evaluate_subexp_standard) <case UNOP_ALIGNOF>: New.
* c-lang.c (c_op_print_tab): Add alignof.
* c-exp.y (ALIGNOF): New token.
(exp): Add "ALIGNOF" production.
(ident_tokens): Add _Alignof and alignof.
2018-04-30 Tom Tromey <tom@tromey.com>
PR exp/17095:
* gdb.dwarf2/dw2-align.exp: New file.
* gdb.cp/align.exp: New file.
* gdb.base/align.exp: New file.
* lib/gdb.exp (gdb_int128_helper): New proc.
(has_int128_c, has_int128_cxx): New caching procs.
|
|
This is version 2 of the patch to add inclusive range support for
Rust. I believe it addresses all review comments.
Rust recently stabilized the inclusive range feature:
https://github.com/rust-lang/rust/issues/28237
An inclusive range is an expression like "..= EXPR" or "EXPR ..=
EXPR". It is like an ordinary range, except the upper bound is
inclusive, not exclusive.
This patch adds support for this feature to gdb.
Regression tested on x86-64 Fedora 27.
2018-04-27 Tom Tromey <tom@tromey.com>
PR rust/22545:
* rust-lang.c (rust_inclusive_range_type_p): New function.
(rust_range): Handle inclusive ranges.
(rust_compute_range): Likewise.
* rust-exp.y (struct rust_op) <inclusive>: New field.
(DOTDOTEQ): New constant.
(range_expr): Add "..=" productions.
(operator_tokens): Add "..=" token.
(ast_range): Add "inclusive" parameter.
(convert_ast_to_expression) <case OP_RANGE>: Handle inclusive
ranges.
* parse.c (operator_length_standard) <case OP_RANGE>: Handle new
bounds values.
* expression.h (enum range_type) <NONE_BOUND_DEFAULT_EXCLUSIVE,
LOW_BOUND_DEFAULT_EXCLUSIVE>: New constants.
Update comments.
* expprint.c (print_subexp_standard): Handle new bounds values.
(dump_subexp_body_standard): Likewise.
2018-04-27 Tom Tromey <tom@tromey.com>
PR rust/22545:
* gdb.rust/simple.exp: Add inclusive range tests.
|
|
I noticed that if you set a breakpoint on an ifunc before the ifunc is
resolved, and then let the program call the ifunc, thus resolving it,
GDB end up with a location for that original breakpoint that is
pointing to the ifunc target, but it is left pointing to the first
address of the function, instead of after its prologue. After
prologue is what you get if you create a new breakpoint at that point.
1) With no debug info for the target function:
1.a) Set before resolving, and then program continued passed resolving:
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000400753 <final>
1.b) Breakpoint set after inferior resolved ifunc:
Num Type Disp Enb Address What
2 breakpoint keep y 0x0000000000400757 <final+4>
2) With debug info for the target function:
1.a) Set before resolving, and then program continued passed resolving:
Num Type Disp Enb Address What
1 breakpoint keep y 0x0000000000400753 in final at gdb/testsuite/gdb.base/gnu-ifunc-final.c:20
1.b) Breakpoint set after inferior resolved ifunc:
Num Type Disp Enb Address What
2 breakpoint keep y 0x000000000040075a in final at gdb/testsuite/gdb.base/gnu-ifunc-final.c:21
The problem is that elf_gnu_ifunc_resolver_return_stop (called by the
internal breakpoint that traps the resolver returning) does not agree
with linespec.c:minsym_found. It does not skip to the function's
start line (i.e., past the prologue). We can now use the
find_function_start_sal overload added by the previous commmit to fix
this.
New tests included, which fail before the patch, and pass afterwards.
gdb/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* elfread.c (elf_gnu_ifunc_resolver_return_stop): Use
find_function_start_sal instead of find_pc_line.
gdb/testsuite/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* gdb.base/gnu-ifunc.exp (set-break): Test that GDB resolves
ifunc breakpoint locations correctly of ifunc breakpoints set
while the program resolves the ifunc.
|
|
This patch extends/rewrites the gdb.base/gnu-ifunc.exp testcase to
cover the many different fixes in earlier patches. (This was actually
what encovered most of the problems.)
The current testcase uses an ifunc symbol with the same name as the
ifunc resolver symbol and makes sure to compile the ifunc resolver
without debug info. That does not model how ifuncs are implemented in
gcc/ifunc nowadays. Instead, what we have is that the glibc ifunc
resolvers nowadays are written in C and end up with debug info.
Also, in some cases the ifunc target is written in assembly, but in
other cases it's written in C. In the case of target function written
in C, if the target function has debug info, when we set a break on
the ifunc, we want to set it past the prologue of the target function.
Currently GDB gets that wrong.
To make sure we cover all the different scenarios, the testcase is
tweaked to cover all the different combinations of
- An ifunc resolver with the same name as the user-visible symbol vs
an ifunc resolver with a different name as the user-visible symbol.
- ifunc resolver compiled with and without debug info.
- ifunc target function compiled with and without debug info.
The testcase currently sets breakpoints on ifuncs, calls ifunc
functions, steps into ifunc functions, etc. After this series, this
all works and the testcase passes cleanly.
While working on this, I noticed that "b gnu_ifunc" before and after
the inferior resolved the ifunc would end up with a breakpoint with
different locations. That's now covered by new tests inside the new
"set-break" procedure.
It also tests other things like making sure we can't call an ifunc
without a return-type case if we don't know the type of the target.
And making sure that we pass enough arguments when we do know the
type.
gdb/testsuite/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* gdb.base/gnu-ifunc-final.c: New file.
* gdb.base/gnu-ifunc.c (final): Delete, moved to gnu-ifunc-final.c.
* gdb.base/gnu-ifunc.exp (executable): Delete.
(staticexecutable): Adjust.
(lib_opts, exec_opts): Delete.
(make_binsuffix, build, set-break): New procedures.
(misc_tests): New, with tests factored out from the top level.
(top level): Test different combinations of ifunc resolver name,
resolver with and with debug info, and ifunc target with and
without debug info. Wrap static tests with with_target_prefix.
|
|
After the previous patch, on Fedora 27 (glibc 2.26), if you try
calling strlen in the inferior, you now get:
(top-gdb) p strlen ("hello")
'__strlen_avx2' has unknown return type; cast the call to its declared return type
This is correct, because __strlen_avx2 is written in assembly.
We can improve on this though -- if the final ifunc resolved/target
function has no debug info, but the ifunc _resolver_ does have debug
info, we can try extracting the final function's type from the type
that the resolver returns. E.g.,:
typedef size_t (*strlen_t) (const char*);
size_t my_strlen (const char *) { /* some implementation */ }
strlen_t strlen_resolver (unsigned long hwcap) { return my_strlen; }
extern size_t strlen (const char *s);
__typeof (strlen) strlen __attribute__ ((ifunc ("strlen_resolver")));
In the strlen example above, the resolver returns strlen_t, which is a
typedef for pointer to a function that returns size_t. "strlen_t" is
the type of both the user-visible "strlen", and of the the target
function that implements it.
This patch teaches GDB to extract that type.
This is done for actual inferior function calls (in infcall.c), and
for ptype (in eval_call). By the time we get to either of these
places, we've already lost the original symbol/minsym, and only have
values and types to work with. Hence the changes to c-exp.y and
evaluate_var_msym_value, to ensure that we propagate the ifunc
minsymbol's info.
The change to make ifunc symbols have no/unknown return type exposes a
latent problem -- gdb.compile/compile-ifunc.exp calls a no-debug-info
function, but we did not warn about it. The test is fixed by this
commit too.
gdb/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* blockframe.c (find_gnu_ifunc_target_type): New function.
(find_function_type): New.
* eval.c (evaluate_var_msym_value): For GNU ifunc types, always
return a value with a memory address.
(eval_call): For calls to GNU ifunc functions, try to find the
type of the target function from the type that the resolver
returns.
* gdbtypes.c (objfile_type): Don't install a return type for ifunc
symbols.
* infcall.c (find_function_return_type): Delete.
(find_function_addr): Add 'function_type' parameter. For calls to
GNU ifunc functions, try to find the type of the target function
from the type that the resolver returns, and return it via
FUNCTION_TYPE.
(call_function_by_hand_dummy): Adjust to use the function type
returned by find_function_addr.
(find_function_addr): Add 'function_type' parameter and move
description here.
* symtab.h (find_function_type, find_gnu_ifunc_target_type): New
declarations.
gdb/testsuite/ChangeLog:
2018-04-26 Pedro Alves <palves@redhat.com>
* gdb.compile/compile-ifunc.exp: Also expect "function has unknown
return type" warnings.
|
|
Since f67c0c917150 ("Enable 'set print inferior-events' and improve
detach/fork/kill/exit messages"), when detaching a remote process, we
get, for detach against a remote target:
(gdb) detach
Detaching from program: ...., process 5388
Ending remote debugging.
[Inferior 1 (Thread 5388.5388) detached]
^^^^^^^^^^^^^^^^
That is incorrect, for it is printing a thread id as string while we
should be printing the process id instead. I.e., either one of:
[Inferior 1 (process 5388) detached]
[Inferior 1 (Remote target) detached]
depending on remote stub support for the multi-process extensions.
Similarly, after killing a process, we're printing thread ids while we
should be printing process ids. E.g., on native GNU/Linux:
(gdb) k
Kill the program being debugged? (y or n) y
[Inferior 1 (Thread 0x7ffff7faa8c0 (LWP 30721)) has been killed]
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
while it should have been:
Kill the program being debugged? (y or n) y
[Inferior 1 (process 30721) has been killed]
^^^^^^^^^^^^^
There's a wording inconsistency between detach and kill:
[Inferior 1 (process 30721) has been killed]
[Inferior 1 (process 30721) detached]
Given we were already saying "detached" instead of "has been
detached", and we used to say just "exited", and given that the "has
been" doesn't really add any information, this commit changes the
message to just "killed":
[Inferior 1 (process 30721) killed]
gdb/ChangeLog:
2018-04-25 Pedro Alves <palves@redhat.com>
* infcmd.c (kill_command): Print the pid as string, not the whole
thread's ptid. Add comment. s/has been killed/killed/ in output
message.
* remote.c (remote_detach_1): Print the pid as string, not the
whole thread's ptid.
gdb/testsuite/ChangeLog:
2018-04-25 Pedro Alves <palves@redhat.com>
* gdb.base/hook-stop.exp: Expect "killed" instead of "has been
killed".
* gdb.base/kill-after-signal.exp: Likewise.
* gdb.threads/kill.exp: Likewise.
|
|
This patch aims to turn 'set print inferior-events' always on, and do
some cleanup on the messages printed by GDB when various inferior
events happen (attach, detach, fork, kill, exit).
To make sure that the patch is correct, I've tested it with a handful
of combinations of 'set follow-fork-mode', 'set detach-on-fork' and
'set print inferior-events'. In the end, I decided to make my
hand-made test into an official testcase. More on that below.
Using the following program as an example:
#include <unistd.h>
int main ()
{
fork ();
return 0;
}
We see the following outputs from the patched GDB:
- With 'set print inferior-events on':
(gdb) r
Starting program: a.out
[Detaching after fork from child process 27749]
[Inferior 1 (process 27745) exited normally]
(gdb)
- With 'set print inferior-events off':
(gdb) r
Starting program: a.out
[Inferior 1 (process 27823) exited normally]
(gdb)
Comparing this against an unpatched GDB:
- With 'set print inferior-events off' and 'set follow-fork-mode
child':
(gdb) r
Starting program: a.out
[Inferior 2 (process 5993) exited normally]
(gdb)
Compare this against an unpatched GDB:
(unpatched-gdb) r
Starting program: a.out
[New process 5702]
[Inferior 2 (process 5702) exited normally]
(unpatched-gdb)
It is possible to notice that, in this scenario, the patched GDB
will lose the '[New process %d]' message.
- With 'set print inferior-events on', 'set follow-fork-mode child'
and 'set detach-on-fork on':
(gdb) r
Starting program: a.out
[Attaching after process 27905 fork to child process 27909]
[New inferior 2 (process 27909)]
[Detaching after fork from parent process 27905]
[Inferior 1 (process 27905) detached]
[Inferior 2 (process 27909) exited normally]
(gdb)
Compare this output with an unpatched GDB, using the same settings:
(unpatched-gdb) r
Starting program: a.out
[New inferior 28033]
[Inferior 28029 detached]
[New process 28033]
[Inferior 2 (process 28033) exited normally]
[Inferior 28033 exited]
(unpatched-gdb)
As can be seen above, I've also made a few modifications to messages
that are printed when 'set print inferior-events' is on. For example,
a few of the messages did not contain the '[' and ']' as
prefix/suffix, which led to a few inconsistencies like:
Attaching after process 22995 fork to child process 22999.
[New inferior 22999]
Detaching after fork from child process 22999.
[Inferior 22995 detached]
[Inferior 2 (process 22999) exited normally]
So I took the opportunity and included the square brackets where
applicable. I have also made the existing messages more uniform, by
always printing "Inferior %d (process %d)..." where applicable. This
makes it easier to identify the inferior number and the PID number
from the messages.
As suggested by Pedro, the "[Inferior %d exited]" message from
'exit_inferior' has been removed, because it got duplicated when
'inferior-events' is on. I'm also using the
'add_{thread,inferior}_silent' versions (instead of their verbose
counterparts) on some locations, also to avoid duplicated messages.
For example, a patched GDB with 'set print inferior-events on', 'set
detach-on-fork on' and 'set follow-fork-mode child', but using
'add_thread', would print:
(gdb) run
Starting program: a.out
[Attaching after process 25088 fork to child process 25092.]
[New inferior 25092] <--- duplicated
[Detaching after fork from child process 25092.]
[Inferior 25088 detached]
[New process 25092] <--- duplicated
[Inferior 2 (process 25092) exited normally]
But if we use 'add_thread_silent' (with the same configuration as
before):
(gdb) run
Starting program: a.out
[Attaching after process 31606 fork to child process 31610]
[New inferior 2 (process 31610)]
[Detaching after fork from parent process 31606]
[Inferior 1 (process 31606) detached]
[Inferior 2 (process 31610) exited normally]
As for the tests, the configuration options being exercised are:
- follow-fork-mode: child/parent
- detach-on-fork: on/off
- print inferior-events: on/off
It was also necessary to perform adjustments on several testcases,
because the expected messages changed considerably.
Built and regtested on BuildBot, without regressions.
gdb/ChangeLog:
2018-04-24 Jan Kratochvil <jan.kratochvil@redhat.com>
Sergio Durigan Junior <sergiodj@redhat.com>
Pedro Alves <palves@redhat.com>
* infcmd.c (kill_command): Print message when inferior has
been killed.
* inferior.c (print_inferior_events): Remove 'static'. Set as
'1'.
(add_inferior): Improve message printed when
'print_inferior_events' is on.
(exit_inferior): Remove message printed when
'print_inferior_events' is on.
(detach_inferior): Improve message printed when
'print_inferior_events' is on.
(initialize_inferiors): Use 'add_inferior_silent' to set
'current_inferior_'.
* inferior.h (print_inferior_events): Declare here as
'extern'.
* infrun.c (follow_fork_inferior): Print '[Attaching...]' or
'[Detaching...]' messages when 'print_inferior_events' is on.
Use 'add_thread_silent' instead of 'add_thread'. Add '[' and ']'
as prefix/suffix for messages. Remove periods. Fix erroneous
'Detaching after fork from child...', replace it by '... from
parent...'.
(handle_vfork_child_exec_or_exit): Add '[' and ']' as
prefix/suffix when printing 'Detaching...' messages. Print
them when 'print_inferior_events' is on.
* remote.c (remote_detach_1): Print message when detaching
from inferior and '!is_fork_parent'.
gdb/testsuite/ChangeLog:
2018-04-24 Jan Kratochvil <jan.kratochvil@redhat.com>
Sergio Durigan Junior <sergiodj@redhat.com>
Pedro Alves <palves@redhat.com>
* gdb.base/attach-non-pgrp-leader.exp: Adjust 'Detaching...'
regexps to expect for '[Inferior ... detached]' as well.
* gdb.base/attach.exp: Likewise.
* gdb.base/catch-syscall.exp (check_for_program_end): Adjust
"gdb_continue_to_end".
(test_catch_syscall_with_wrong_args): Likewise.
* gdb.base/foll-fork.exp: Adjust regexps to match '[' and
']'. Don't set 'verbose' on.
* gdb.base/foll-vfork.exp: Likewise.
* gdb.base/fork-print-inferior-events.c: New file.
* gdb.base/fork-print-inferior-events.exp: New file.
* gdb.base/hook-stop.exp: Adjust regexps to expect for new
'[Inferior ... has been killed]' message.
* gdb.base/kill-after-signal.exp: Likewise.
* gdb.base/solib-overlap.exp: Adjust regexps to expect for new
detach message.
* gdb.threads/kill.exp: Adjust regexps to expect for new kill
message.
* gdb.threads/clone-attach-detach.exp: Adjust 'Detaching...'
regexps to expect for '[Inferior ... detached]' as well.
* gdb.threads/process-dies-while-detaching.exp: Likewise.
|
|
As reported in PR 23104, -ldl doesn't work on FreeBSD. Replace it with
shlib_load, which adds the right flags for dynamic library loading based
on the current target platform.
The test still passes on Linux, and should now pass on FreeBSD, though I
did not test personally.
gdb/testsuite/ChangeLog:
PR gdb/23104
* gdb.base/info-shared.exp: Replace libs=-ldl with shlib_load.
|
|
Problems:
1. linking -dl lib on FreeBSD platform
2. backtrace from ld-elf shows r_debug_state() instead of _dl_debug_state()
Cause:
1. There is no dl library on FreeBSD platform test has to ignore linking "-ldl"
2. The stop due to a shared library event shows backtrace frame #0
function as r_debug_state()
gdb/ChangeLog:
PR gdb/23095
* gdb/testsuite/gdb.base/break-probes.exp: Pass shlib_load to
prepare_for_testing. Set normal_bp to r_debug_state if target
is bsd.
|
|
The hang occurs when GDB tries to call inferior functions on two
different threads with scheduler-locking turned on. The first call works
fine, with the call to infrun_async(1) causing the signal_handler to be
marked and the event to be handled, but then the event loop resets the
"ready" member to zero, while leaving infrun_is_async set to 1. As a
result, GDB hangs if the user switches to another thread and calls a
second function because calling infrun_async(1) a second time has no
effect, meaning the inferior call events are never handled.
The added test case provokes the above issue.
gdb/testsuite/ChangeLog:
* gdb.threads/multiple-successive-infcall.c: New test.
* gdb.threads/multiple-successive-infcall.exp: New file.
|