Age | Commit message (Collapse) | Author | Files | Lines |
|
Add support for DW_LNS_set_prologue_end when building line-tables. This
attribute can be set by the compiler to indicate that an instruction is
an adequate place to set a breakpoint just after the prologue of a
function.
The compiler might set multiple prologue_end, but considering how
current skip_prologue_using_sal works, this commit modifies it to accept
the first instruction with this marker (if any) to be the place where a
breakpoint should be placed to be at the end of the prologue.
The need for this support came from a problematic usecase generated by
hipcc (i.e. clang). The problem is as follows: There's a function
(lets call it foo) which covers PC from 0xa800 to 0xa950. The body of
foo begins with a call to an inlined function, covering from 0xa800 to
0xa94c. The issue is that when placing a breakpoint at 'foo', GDB
inserts the breakpoint at 0xa818. The 0x18 offset is what GDB thinks is
foo's first address past the prologue.
Later, when hitting the breakpoint, GDB reports the stop within the
inlined function because the PC falls in its range while the user
expects to stop in FOO.
Looking at the line-table for this location, we have:
INDEX LINE ADDRESS IS-STMT
[...]
14 293 0x000000000000a66c Y
15 END 0x000000000000a6e0 Y
16 287 0x000000000000a800 Y
17 END 0x000000000000a818 Y
18 287 0x000000000000a824 Y
[...]
For comparison, let's look at llvm-dwarfdump's output for this CU:
Address Line Column File ISA Discriminator Flags
------------------ ------ ------ ------ --- ------------- -------------
[...]
0x000000000000a66c 293 12 2 0 0 is_stmt
0x000000000000a6e0 96 43 82 0 0 is_stmt
0x000000000000a6f8 102 18 82 0 0 is_stmt
0x000000000000a70c 102 24 82 0 0
0x000000000000a710 102 18 82 0 0
0x000000000000a72c 101 16 82 0 0 is_stmt
0x000000000000a73c 2915 50 83 0 0 is_stmt
0x000000000000a74c 110 1 1 0 0 is_stmt
0x000000000000a750 110 1 1 0 0 is_stmt end_sequence
0x000000000000a800 107 0 1 0 0 is_stmt
0x000000000000a800 287 12 2 0 0 is_stmt prologue_end
0x000000000000a818 114 59 81 0 0 is_stmt
0x000000000000a824 287 12 2 0 0 is_stmt
0x000000000000a828 100 58 82 0 0 is_stmt
[...]
The main difference we are interested in here is that llvm-dwarfdump's
output tells us that 0xa800 is an adequate place to place a breakpoint
past a function prologue. Since we know that foo covers from 0xa800 to
0xa94c, 0xa800 is the address at which the breakpoint should be placed
if the user wants to break in foo.
This commit proposes to add support for the prologue_end flag in the
line-program processing.
The processing of this prologue_end flag is made in skip_prologue_sal,
before it calls gdbarch_skip_prologue_noexcept. The intent is that if
the compiler gave information on where the prologue ends, we should use
this information and not try to rely on architecture dependent logic to
guess it.
The testsuite have been executed using this patch on GNU/Linux x86_64.
Testcases have been compiled with both gcc/g++ (verison 9.4.0) and
clang/clang++ (version 10.0.0) since at the time of writing GCC does not
set the prologue_end marker. Tests done with GCC 11.2.0 (not over the
entire testsuite) show that it does not emit this flag either.
No regression have been observed with GCC or Clang. Note that when
using Clang, this patch fixes a failure in
gdb.opt/inline-small-func.exp.
Change-Id: I720449a8a9b2e1fb45b54c6095d3b1e9da9152f8
|
|
Currently when recording a line entry (with
buildsym_compunit::record_line), a boolean argument argument is used to
indicate that the is_stmt flag should be set for this particular record.
As a later commit will add support for new flags, instead of adding a
parameter to record_line for each possible flag, transform the current
is_stmt parameter into a enum flag. This flags parameter will allow
greater flexibility in future commits.
This enum flags type is not propagated into the linetable_entry type as
this would require a lot of changes across the codebase for no practical
gain (it currently uses a bitfield where each interesting flag only
occupy 1 bit in the structure).
Tested on x86_64-linux, no regression observed.
Change-Id: I5d061fa67bdb34918742505ff983d37453839d6a
|
|
It's a bit confusing because we have both "compunit_symtab" and "symtab"
types, and many methods and functions containing "start_symtab" or
"end_symtab", which actually deal with compunit_symtabs. I believe this
comes from the time before compunit_symtab was introduced, where
symtab did the job of both.
Rename everything I found containing start_symtab or end_symtab to use
start_compunit_symtab or end_compunit_symtab.
Change-Id: If3849b156f6433640173085ad479b6a0b085ade2
|
|
This patch adds a new dynamic property DYN_PROP_RANK, this property is
read from the DW_AT_rank attribute and stored within the type just
like other dynamic properties.
As arrays with dynamic ranks make use of a single
DW_TAG_generic_subrange to represent all ranks of the array, support
for this tag has been added to dwarf2/read.c.
The final piece of this puzzle is to add support in gdbtypes.c so that
we can resolve an array type with dynamic rank. To do this the
existing resolve_dynamic_array_or_string function is split into two,
there's a new resolve_dynamic_array_or_string_1 core that is
responsible for resolving each rank of the array, while the now outer
resolve_dynamic_array_or_string is responsible for figuring out the
array rank (which might require resolving a dynamic property) and then
calling the inner core.
The resolve_dynamic_range function now takes a rank, which is passed
on to the dwarf expression evaluator. This rank will only be used in
the case where the array itself has dynamic rank, but we now pass the
rank in all cases, this should be harmless if the rank is not needed.
The only small nit is that resolve_dynamic_type_internal actually
handles resolving dynamic ranges itself, which now obviously requires
us to pass a rank value. But what rank value to use? In the end I
just passed '1' through here as a sane default, my thinking is that if
we are in resolve_dynamic_type_internal to resolve a range, then the
range isn't part of an array with dynamic rank, and so the range
should actually be using the rank value at all.
An alternative approach would be to make the rank value a
gdb::optional, however, this ends up adding a bunch of complexity to
the code (e.g. having to conditionally build the array to pass to
dwarf2_evaluate_property, and handling the 'rank - 1' in
resolve_dynamic_array_or_string_1) so I haven't done that, but could,
if people think that would be a better approach.
Finally, support for assumed rank arrays was only fixed very recently
in gcc, so you'll need the latest gcc in order to run the tests for
this.
Here's an example test program:
PROGRAM arank
REAL :: a1(10)
CALL sub1(a1)
CONTAINS
SUBROUTINE sub1(a)
REAL :: a(..)
PRINT *, RANK(a)
END SUBROUTINE sub1
END PROGRAM arank
Compiler Version:
gcc (GCC) 12.0.0 20211122 (experimental)
Compilation command:
gfortran assumedrank.f90 -gdwarf-5 -o assumedrank
Without Patch:
gdb -q assumedrank
Reading symbols from assumedrank...
(gdb) break sub1
Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10.
(gdb) run
Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank
Breakpoint 1, arank::sub1 (a=<unknown type in /home/rupesh/STAGING-BUILD-2787
/bin/assumedrank, CU 0x0, DIE 0xd5>) at assumedrank.f90:10
10 PRINT *, RANK(a)
(gdb) print RANK(a)
'a' has unknown type; cast it to its declared type
With patch:
gdb -q assumedrank
Reading symbols from assumedrank...
(gdb) break sub1
Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10.
(gdb) run
Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank
Breakpoint 1, arank::sub1 (a=...) at assumedrank.f90:10
10 PRINT *, RANK(a)
(gdb) print RANK(a)
$1 = 1
(gdb) ptype a
type = real(kind=4) (10)
(gdb)
Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
|
|
When we need to evaluate a DWARF expression in order to resolve some
dynamic property of a type we call the dwarf2_evaluate_property
function, which is declared in gdb/dwarf/loc.h and defined in
gdb/dwarf/loc.c.
Currently, this function takes (amongst other things) an argument of
type property_addr_info called addr_stack and a boolean called
push_initial_value. When push_initial_value then the top value of
addr_stack is pushed onto the dwarf expression evaluation stack before
the expression is evaluated.
So far this has worked fine, as the only two cases we needed to handle
are the case the DWARF expression doesn't require the object
address (what the top of addr_stack represents), and the case where
the DWARF expression does require the address.
In the next commit this is going to change. As we add support for
Fortran assumed rank arrays, we need to start resolving the dynamic
properties of arrays. To do this, we need to push the array rank onto
the dwarf expression evaluation stack before the expression is
evaluated.
This commit is a refactoring commit aimed at making it easier to
support Fortran assumed rank arrays. Instead of passing a boolean,
and using this to decide if we should push the object address or not,
we instead pass an array (view) of values that should be pushed to the
dwarf expression evaluation stack.
In the couple of places where we previously passed push_initial_value
as true (mostly this was defaulting to false), we now have to pass the
address from the addr_stack as an item in the array view.
In the next commit, when we want to handle passing the array rank,
this will easily be supported too.
There should be no user visible changes after this commit.
|
|
While examining the dwarf expression evaluator, I noticed that in
dwarf2_locexpr_baton_eval, whenever push_initial_value is true, the
addr_stack will never be nullptr.
This allows for a small cleanup, replacing an if/then/else with an
assertion.
There should be no user visible changes after this commit.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the printf family of functions. This is done under the name
"gdb_printf". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the putc family of functions. This is done under the name
"gdb_putc". Most of this patch was written by script.
|
|
Now that filtered and unfiltered output can be treated identically, we
can unify the puts family of functions. This is done under the name
"gdb_puts". Most of this patch was written by script.
|
|
A large customer program has a function that is partitioned into hot
and cold parts. A variable in a callee of this function is described
using DW_OP_GNU_entry_value, but gdb gets confused when trying to find
the caller. I tracked this down to dwarf2_get_pc_bounds interpreting
the function's changes so that the returned low PC is the "wrong"
function.
Intead, when processing DW_TAG_call_site, the low PC of each range in
DW_AT_ranges should be preserved in the call_site_target. This fixes
the variable lookup in the test case I have.
I didn't write a standalone test for this as it seemed excessively
complicated.
|
|
In order to handle the case where a call site target might refer to
multiple addresses, we change the code to use a callback style. Any
spot using call_site_target::address now passes in a callback function
that may be called multiple times.
|
|
call_site_find_chain_1 has a comment claiming that recursive calls
would be too expensive. However, I doubt this is so expensive; and
furthermore the explicit state management approach here is difficult
both to understand and to modify. This patch changes this code to use
explicit recursion, so that a subsequent patch can generalize this
code without undue trauma.
Additionally, I think this patch detects a latent bug in the recursion
code. (It's hard for me to be completely certain.) The bug is that
when a new target_call_site is entered, the code does:
if (target_call_site)
{
if (addr_hash.insert (target_call_site->pc ()).second)
{
/* Successfully entered TARGET_CALL_SITE. */
chain.push_back (target_call_site);
break;
}
}
Here, if entering the target_call_site fails, then any tail_call_next
elements in this call site are not visited. However, if this code
does happen to enter a call site, then the tail_call_next elements
will be visited during backtracking. This applies when doing the
backtracking as well -- it will only continue through a given chain as
long as each element in the chain can successfully be visited.
I'd appreciate some review of this. If this behavior is intentional,
it can be added to the new implementation.
|
|
While investigating this bug, I wasn't sure if chain_candidate might
update 'chain'. I changed it to accept a const reference, making it
clear that it cannot. This simplifies the code a tiny bit as well.
|
|
This makes the data members of call_site_target 'private'. This lets
us remove most of its public API. call_site_to_target_addr is changed
to be a method of this type. This is a preparatory refactoring for
the fix at the end of this series.
|
|
call_site_target reuses field_loc_kind and field_location. However,
it has never used the full range of the field_loc_kind enum. In a
subsequent patch, I plan to add a new 'kind' here, so it seemed best
to avoid this reuse and instead introduce new types here.
|
|
Some of these references were not updated when they were moved to a separate
directory.
|
|
Gfortran supports namelists (a Fortran feature); it emits
DW_TAG_namelist and DW_TAG_namelist_item dies. But gdb does not
process these dies and does not support 'print' or 'ptype' commands on
namelist variables.
An attempt to print namelist variables results in gdb bailing out with
the error message as shown below.
(gdb) print nml
No symbol "nml" in current context.
This commit is to make the print and ptype commands work for namelist
variables and its items. Sample output of these commands is shared
below, with fixed gdb.
(gdb) ptype nml
type = Type nml
integer(kind=4) :: a
integer(kind=4) :: b
End Type nml
(gdb) print nml
$1 = ( a = 10, b = 20 )
|
|
I noticed that most of the calls to index_cache_debug include a
trailing newline. As the new debug mechanism already adds a newline,
that means all of these debug calls result in a blank line being
printed, which I think is a mistake.
Remove all the trailing newlines.
I also reformatted one of the index_cache_debug where a string will
now fit onto a single line.
Unless 'set debug index-cache on' is used, there should be no visible
change in output after this commit.
|
|
Add a getter and a setter for a symbol's line. Remove the corresponding macro
and adjust all callers.
Change-Id: I229f2b8fcf938c07975f641361313a8761fad9a5
|
|
Add a getter and a setter for a symbol's type. Remove the corresponding
macro and adjust all callers.
Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
|
|
Add a getter and a setter for whether a symbol is inlined. Remove the
corresponding macro and adjust all callers.
Change-Id: I934468da3b5a32dd6b161a6f252a6b1b94737279
|
|
Add a getter and a setter for whether a symbol is an argument. Remove
the corresponding macro and adjust all callers.
Change-Id: I71b4f0465f3dfd2ed8b9e140bd3f7d5eb8d9ee81
|
|
Add a getter and a setter for a symbol's domain. Remove the
corresponding macro and adjust all callers.
Change-Id: I54465b50ac89739c663859a726aef8cdc6e4b8f3
|
|
Change-Id: I83211d5a47efc0564386e5b5ea4a29c00b1fd46a
|
|
Add a getter and a setter for a symbol's aclass index. Remove the
corresponding macro and adjust all callers.
Change-Id: Ie8c8d732624cfadb714aba5ddafa3d29409b3d39
|
|
Add a getter and a setter for a symtab's language. Remove the
corresponding macro and adjust all callers.
Change-Id: I9f4d840b11c19f80f39bac1bce020fdd1739e11f
|
|
Add a getter and a setter for a compunit_symtab's epilogue unwind valid flag.
Remove the corresponding macro and adjust all callers.
Change-Id: If3b68629d987767da9be7041a95d96dc34367a9a
|
|
Add a getter and a setter for a compunit_symtab's locations valid flag.
Remove the corresponding macro and adjust all callers.
Change-Id: I3e3cfba926ce62993d5b61814331bb3244afad01
|
|
Add a getter and a setter for a compunit_symtab's block line section. Remove
the corresponding macro and adjust all callers.
Change-Id: I3eb1a323388ad55eae8bfa45f5bc4a08dc3df455
|
|
Add a getter and a setter for a compunit_symtab's blockvector. Remove
the corresponding macro and adjust all callers.
Change-Id: I99484c6619dcbbea7c5d89c72aa660316ca62f64
|
|
Add a getter and a setter for a compunit_symtab's dirname. Remove the
corresponding macro and adjust all callers.
Change-Id: If2f39b295fd26822586485e04a8b8b5aa5cc9b2e
|
|
Add a getter and a setter for a compunit_symtab's producer. Remove the
corresponding macro and adjust all callers.
Change-Id: Ia1d6d8a0e247a08a21af23819d71e49b37d8931b
|
|
I think that most remaining uses of COMPUNIT_FILETABS intend to get the
primary filetab of the compunit_symtab specifically (and not to iterate
over all filetabs, for example, those cases would use compunit_filetabs,
which has been converted to compunit_symtab::filetabs), so replace mosts
uses with compunit_symtab::primary_filetab.
In jit.c, function finalize_symtab, we can save the symtab object
returned by allocate_symtab and use it, it makes things simpler.
Change-Id: I4e51d6d4b40759de8768b61292e5e13c8eae2e38
|
|
Make compunit_primary_filetab a method of compunit_symtab.
Change-Id: Iee3c4f7e36d579bf763c5bba146e5e10d6766768
|
|
Remove the macro, update all users to use the getter directly.
Change-Id: I3f0fd6f4455d1c4ebd5da73b561eb18a979ef1f6
|
|
g++ 11.1.0 has a bug where it will emit a negative
DW_AT_data_member_location in some cases:
$ cat test.cpp
#include <memory>
int
main()
{
std::unique_ptr<int> ptr;
}
$ g++ -g test.cpp
$ llvm-dwarfdump -F a.out
...
0x00000964: DW_TAG_member
DW_AT_name [DW_FORM_strp] ("_M_head_impl")
DW_AT_decl_file [DW_FORM_data1] ("/usr/include/c++/11.1.0/tuple")
DW_AT_decl_line [DW_FORM_data1] (125)
DW_AT_decl_column [DW_FORM_data1] (0x27)
DW_AT_type [DW_FORM_ref4] (0x0000067a "default_delete<int>")
DW_AT_data_member_location [DW_FORM_sdata] (-1)
...
This leads to a GDB crash (when built with ASan, otherwise probably
garbage results), since it tries to read just before (to the left, in
ASan speak) of the value's buffer:
==888645==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000c52af at pc 0x7f711b239f4b bp 0x7fff356bd470 sp 0x7fff356bcc18
READ of size 1 at 0x6020000c52af thread T0
#0 0x7f711b239f4a in __interceptor_memcpy /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:827
#1 0x555c4977efa1 in value_contents_copy_raw /home/simark/src/binutils-gdb/gdb/value.c:1347
#2 0x555c497909cd in value_primitive_field(value*, long, int, type*) /home/simark/src/binutils-gdb/gdb/value.c:3126
#3 0x555c478f2eaa in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:333
#4 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#5 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#6 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#7 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#8 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#9 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#10 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#11 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#12 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#13 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
#14 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151
#15 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335
#16 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#17 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#18 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#19 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#20 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#21 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
#22 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151
#23 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335
#24 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#25 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#26 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#27 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
#28 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151
#29 0x555c4760f04c in c_value_print(value*, ui_file*, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:587
#30 0x555c483ff954 in language_defn::value_print(value*, ui_file*, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:614
#31 0x555c49759f61 in value_print(value*, ui_file*, value_print_options const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1189
#32 0x555c48950f70 in print_formatted /home/simark/src/binutils-gdb/gdb/printcmd.c:337
#33 0x555c48958eda in print_value(value*, value_print_options const&) /home/simark/src/binutils-gdb/gdb/printcmd.c:1258
#34 0x555c48959891 in print_command_1 /home/simark/src/binutils-gdb/gdb/printcmd.c:1367
#35 0x555c4895a3df in print_command /home/simark/src/binutils-gdb/gdb/printcmd.c:1458
#36 0x555c4767f974 in do_simple_func /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:97
#37 0x555c47692e25 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:2475
#38 0x555c4936107e in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:670
#39 0x555c485f1bff in catch_command_errors /home/simark/src/binutils-gdb/gdb/main.c:523
#40 0x555c485f249c in execute_cmdargs /home/simark/src/binutils-gdb/gdb/main.c:618
#41 0x555c485f6677 in captured_main_1 /home/simark/src/binutils-gdb/gdb/main.c:1317
#42 0x555c485f6c83 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1338
#43 0x555c485f6d65 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1363
#44 0x555c46e41ba8 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32
#45 0x7f71198bcb24 in __libc_start_main (/usr/lib/libc.so.6+0x27b24)
#46 0x555c46e4197d in _start (/home/simark/build/binutils-gdb-one-target/gdb/gdb+0x77f197d)
0x6020000c52af is located 1 bytes to the left of 8-byte region [0x6020000c52b0,0x6020000c52b8)
allocated by thread T0 here:
#0 0x7f711b2b7459 in __interceptor_calloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:154
#1 0x555c470acdc9 in xcalloc /home/simark/src/binutils-gdb/gdb/alloc.c:100
#2 0x555c49b775cd in xzalloc(unsigned long) /home/simark/src/binutils-gdb/gdbsupport/common-utils.cc:29
#3 0x555c4977bdeb in allocate_value_contents /home/simark/src/binutils-gdb/gdb/value.c:1029
#4 0x555c4977be25 in allocate_value(type*) /home/simark/src/binutils-gdb/gdb/value.c:1040
#5 0x555c4979030d in value_primitive_field(value*, long, int, type*) /home/simark/src/binutils-gdb/gdb/value.c:3092
#6 0x555c478f6280 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:501
#7 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#8 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#9 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#10 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#11 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#12 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#13 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#14 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#15 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
#16 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151
#17 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335
#18 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513
#19 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161
#20 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#21 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#22 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#23 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
#24 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151
#25 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335
#26 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383
#27 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438
#28 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632
#29 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048
Since there are some binaries with this in the wild, I think it would be
useful for GDB to work around this. I did the obvious simple thing, if
the DW_AT_data_member_location's value is -1, replace it with 0. I
added a producer check to only apply this fixup for GCC 11. The idea is
that if some other compiler ever uses a DW_AT_data_member_location value
of -1 by mistake, we don't know (before analyzing the bug at least) if
they did mean 0 or some other value. So I wouldn't want to apply the
fixup in that case.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28063
Change-Id: Ieef3459b0b9bbce8bdad838ba83b4b64e7269d42
|
|
We found a case where --gc-sections can cause gdb to set an invalid
breakpoint. In the included test case, gdb will set a breakpoint with
two locations, one of which is 0x0.
The code in lnp_state_machine::check_line_address is intended to
filter out this sort of problem, but in this case, the entire CU is
empty, causing unrelocated_lowpc==0x0 -- which circumvents the check.
It seems to me that if a CU is empty like this, then it is ok to
simply ignore the line table, as there won't be any locations anyway.
|
|
This moves the gdb-specific obstack code -- both extensions like
obconcat and obstack_strdup, and things like auto_obstack -- to
gdbsupport.
|
|
Many otherwise ordinary commands choose to use unfiltered output
rather than filtered. I don't think there's any reason for this, so
this changes many such commands to use filtered output instead.
Note that complete_command is not touched due to a comment there
explaining why unfiltered output is believed to be used.
|
|
This commit brings all the changes made by running gdb/copyright.py
as per GDB's Start of New Year Procedure.
For the avoidance of doubt, all changes in this commits were
performed by the script.
|
|
This changes index-cache.c to use debug_prefixed_printf_cond_nofunc.
As a side effect, logs are now written to gdb_stdlog. This is part of
PR gdb/7233.
Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7233
|
|
This removes the print_spaces helper function, in favor of using the
"*%s" idiom that's already used in many places in gdb. One spot (in
symmisc.c) is changed to use print_spaces_filtered, because the rest
of that function is using filtered output. (This highlights one way
that the printf idiom is better -- this error is harder to make when
using that.)
Regression tested on x86-64 Fedora 34.
|
|
In my earlier C++-ization patch for file_and_directory, I introduced
an error:
- if (strcmp (fnd.name, "<unknown>") != 0)
+ if (fnd.is_unknown ())
This change inverted the sense of the test, which causes failures with
.debug_names.
This patch fixes the bug. Regression tested on x86-64 Fedora 34. I
also tested it using the AdaCore internal test suite, with
.debug_names -- this was failing before, and now it works.
|
|
This fixes a use-after-free that Simon pointed out.
process_psymtab_comp_unit_reader was allocating an artificial name for
a CU, and then discarding it. However, this name was preserved in the
cached file_and_directory. This patch arranges for the allocated name
to be preserved there.
|
|
This changes the DWARF reader to cache the result of
find_file_and_directory. This is not especially important now, but it
will help the new DWARF indexer.
|
|
This moves file_and_directory to a new file, and then C++-izes it --
replacing direct assignments with methods, and arranging for it to own
any string that must be computed. Finally, the CU's objfile will only
be used on demand; this is an important property for the new DWARF
indexer's parallel mode.
|
|
find_file_and_directory has a special case for the Irix 6.2 compiler.
Since this is long obsolete, this patch removes it.
|
|
I think it would make sense for extract_integer, extract_signed_integer
and extract_unsigned_integer to take an array_view. This way, when we
extract an integer, we can validate that we don't overflow the buffer
passed by the caller (e.g. ask to extract a 4-byte integer but pass a
2-byte buffer).
- Change extract_integer to take an array_view
- Add overloads of extract_signed_integer and extract_unsigned_integer
that take array_views. Keep the existing versions so we don't
need to change all callers, but make them call the array_view
versions.
This shortens some places like:
result = extract_unsigned_integer (value_contents (result_val).data (),
TYPE_LENGTH (value_type (result_val)),
byte_order);
into
result = extract_unsigned_integer (value_contents (result_val), byte_order);
value_contents returns an array view that is of length
`TYPE_LENGTH (value_type (result_val))` already, so the length is
implicitly communicated through the array view.
Change-Id: Ic1c1f98c88d5c17a8486393af316f982604d6c95
|
|
An assertion was recently added to array_view::operator[] to ensure we
don't do out of bounds accesses. However, when the array_view is copied
to or from using memcpy, it bypasses that safety.
To address this, add a `copy` free function that copies data from an
array view to another, ensuring that the destination and source array
views have the same size. When copying to or from parts of an
array_view, we are expected to use gdb::array_view::slice, which does
its own bounds check. With all that, any copy operation that goes out
of bounds should be caught by an assertion at runtime.
copy is implemented using std::copy and std::copy_backward, which, at
least on libstdc++, appears to pick memmove when copying trivial data.
So in the end there shouldn't be much difference vs using a bare memcpy,
as we do right now. When copying non-trivial data, std::copy and
std::copy_backward assigns each element in a loop.
To properly support overlapping ranges, we must use std::copy or
std::copy_backward, depending on whether the destination is before the
source or vice-versa. std::copy and std::copy_backward don't support
copying exactly overlapping ranges (where the source range is equal to
the destination range). But in this case, no copy is needed anyway, so
we do nothing.
The order of parameters of the new copy function is based on std::copy
and std::copy_backward, where the source comes before the destination.
Change a few randomly selected spots to use the new function, to show
how it can be used.
Add a test for the new function, testing both with arrays of a trivial
type (int) and of a non-trivial type (foo). Test non-overlapping
ranges as well as three kinds of overlapping ranges: source before dest,
dest before source, and dest == source.
Change-Id: Ibeaca04e0028410fd44ce82f72e60058d6230a03
|
|
The "info source" command, with a DWARF-compile program, always show
that the debug info is "DWARF 2":
(gdb) info source
Current source file is test.c
Compilation directory is /home/smarchi/build/binutils-gdb/gdb
Located in /home/smarchi/build/binutils-gdb/gdb/test.c
Contains 2 lines.
Source language is c.
Producer is GNU C17 9.3.0 -mtune=generic -march=x86-64 -g3 -gdwarf-5 -O0 -fasynchronous-unwind-tables -fstack-protector-strong -fstack-clash-protection -fcf-protection.
Compiled with DWARF 2 debugging format.
Includes preprocessor macro info.
Change it to display the actual DWARF version:
(gdb) info source
Current source file is test.c
Compilation directory is /home/smarchi/build/binutils-gdb/gdb
Located in /home/smarchi/build/binutils-gdb/gdb/test.c
Contains 2 lines.
Source language is c.
Producer is GNU C17 9.3.0 -mtune=generic -march=x86-64 -g3 -gdwarf-5 -O0 -fasynchronous-unwind-tables -fstack-protector-strong -fstack-clash-protection -fcf-protection.
Compiled with DWARF 5 debugging format.
Includes preprocessor macro info.
The comp_unit_head::version field is guaranteed to be between 2 and 5,
thanks to the check in read_comp_unit_head. So we can still use static
strings to pass to record_debugformat, and keep it efficient.
In the future, when somebody will update GDB to support DWARF 6, they'll
hit this assert and have to update this code.
Change-Id: I3270b7ebf5e9a17b4215405bd2e365662a4d6172
|