aboutsummaryrefslogtreecommitdiff
path: root/gdb/dwarf2
AgeCommit message (Collapse)AuthorFilesLines
2022-04-04gdb: Add support for DW_LNS_set_prologue_end in line-tableLancelot SIX1-1/+13
Add support for DW_LNS_set_prologue_end when building line-tables. This attribute can be set by the compiler to indicate that an instruction is an adequate place to set a breakpoint just after the prologue of a function. The compiler might set multiple prologue_end, but considering how current skip_prologue_using_sal works, this commit modifies it to accept the first instruction with this marker (if any) to be the place where a breakpoint should be placed to be at the end of the prologue. The need for this support came from a problematic usecase generated by hipcc (i.e. clang). The problem is as follows: There's a function (lets call it foo) which covers PC from 0xa800 to 0xa950. The body of foo begins with a call to an inlined function, covering from 0xa800 to 0xa94c. The issue is that when placing a breakpoint at 'foo', GDB inserts the breakpoint at 0xa818. The 0x18 offset is what GDB thinks is foo's first address past the prologue. Later, when hitting the breakpoint, GDB reports the stop within the inlined function because the PC falls in its range while the user expects to stop in FOO. Looking at the line-table for this location, we have: INDEX LINE ADDRESS IS-STMT [...] 14 293 0x000000000000a66c Y 15 END 0x000000000000a6e0 Y 16 287 0x000000000000a800 Y 17 END 0x000000000000a818 Y 18 287 0x000000000000a824 Y [...] For comparison, let's look at llvm-dwarfdump's output for this CU: Address Line Column File ISA Discriminator Flags ------------------ ------ ------ ------ --- ------------- ------------- [...] 0x000000000000a66c 293 12 2 0 0 is_stmt 0x000000000000a6e0 96 43 82 0 0 is_stmt 0x000000000000a6f8 102 18 82 0 0 is_stmt 0x000000000000a70c 102 24 82 0 0 0x000000000000a710 102 18 82 0 0 0x000000000000a72c 101 16 82 0 0 is_stmt 0x000000000000a73c 2915 50 83 0 0 is_stmt 0x000000000000a74c 110 1 1 0 0 is_stmt 0x000000000000a750 110 1 1 0 0 is_stmt end_sequence 0x000000000000a800 107 0 1 0 0 is_stmt 0x000000000000a800 287 12 2 0 0 is_stmt prologue_end 0x000000000000a818 114 59 81 0 0 is_stmt 0x000000000000a824 287 12 2 0 0 is_stmt 0x000000000000a828 100 58 82 0 0 is_stmt [...] The main difference we are interested in here is that llvm-dwarfdump's output tells us that 0xa800 is an adequate place to place a breakpoint past a function prologue. Since we know that foo covers from 0xa800 to 0xa94c, 0xa800 is the address at which the breakpoint should be placed if the user wants to break in foo. This commit proposes to add support for the prologue_end flag in the line-program processing. The processing of this prologue_end flag is made in skip_prologue_sal, before it calls gdbarch_skip_prologue_noexcept. The intent is that if the compiler gave information on where the prologue ends, we should use this information and not try to rely on architecture dependent logic to guess it. The testsuite have been executed using this patch on GNU/Linux x86_64. Testcases have been compiled with both gcc/g++ (verison 9.4.0) and clang/clang++ (version 10.0.0) since at the time of writing GCC does not set the prologue_end marker. Tests done with GCC 11.2.0 (not over the entire testsuite) show that it does not emit this flag either. No regression have been observed with GCC or Clang. Note that when using Clang, this patch fixes a failure in gdb.opt/inline-small-func.exp. Change-Id: I720449a8a9b2e1fb45b54c6095d3b1e9da9152f8
2022-04-04gdb/buildsym: Line record use a record flagLancelot SIX1-15/+22
Currently when recording a line entry (with buildsym_compunit::record_line), a boolean argument argument is used to indicate that the is_stmt flag should be set for this particular record. As a later commit will add support for new flags, instead of adding a parameter to record_line for each possible flag, transform the current is_stmt parameter into a enum flag. This flags parameter will allow greater flexibility in future commits. This enum flags type is not propagated into the linetable_entry type as this would require a lot of changes across the codebase for no practical gain (it currently uses a bitfield where each interesting flag only occupy 1 bit in the structure). Tested on x86_64-linux, no regression observed. Change-Id: I5d061fa67bdb34918742505ff983d37453839d6a
2022-04-04gdb: rename start_symtab/end_symtab to start_compunit_symtab/end_compunit_symtabSimon Marchi3-14/+15
It's a bit confusing because we have both "compunit_symtab" and "symtab" types, and many methods and functions containing "start_symtab" or "end_symtab", which actually deal with compunit_symtabs. I believe this comes from the time before compunit_symtab was introduced, where symtab did the job of both. Rename everything I found containing start_symtab or end_symtab to use start_compunit_symtab or end_compunit_symtab. Change-Id: If3849b156f6433640173085ad479b6a0b085ade2
2022-04-03gdb: add support for Fortran's ASSUMED RANK arraysrupothar1-1/+18
This patch adds a new dynamic property DYN_PROP_RANK, this property is read from the DW_AT_rank attribute and stored within the type just like other dynamic properties. As arrays with dynamic ranks make use of a single DW_TAG_generic_subrange to represent all ranks of the array, support for this tag has been added to dwarf2/read.c. The final piece of this puzzle is to add support in gdbtypes.c so that we can resolve an array type with dynamic rank. To do this the existing resolve_dynamic_array_or_string function is split into two, there's a new resolve_dynamic_array_or_string_1 core that is responsible for resolving each rank of the array, while the now outer resolve_dynamic_array_or_string is responsible for figuring out the array rank (which might require resolving a dynamic property) and then calling the inner core. The resolve_dynamic_range function now takes a rank, which is passed on to the dwarf expression evaluator. This rank will only be used in the case where the array itself has dynamic rank, but we now pass the rank in all cases, this should be harmless if the rank is not needed. The only small nit is that resolve_dynamic_type_internal actually handles resolving dynamic ranges itself, which now obviously requires us to pass a rank value. But what rank value to use? In the end I just passed '1' through here as a sane default, my thinking is that if we are in resolve_dynamic_type_internal to resolve a range, then the range isn't part of an array with dynamic rank, and so the range should actually be using the rank value at all. An alternative approach would be to make the rank value a gdb::optional, however, this ends up adding a bunch of complexity to the code (e.g. having to conditionally build the array to pass to dwarf2_evaluate_property, and handling the 'rank - 1' in resolve_dynamic_array_or_string_1) so I haven't done that, but could, if people think that would be a better approach. Finally, support for assumed rank arrays was only fixed very recently in gcc, so you'll need the latest gcc in order to run the tests for this. Here's an example test program: PROGRAM arank REAL :: a1(10) CALL sub1(a1) CONTAINS SUBROUTINE sub1(a) REAL :: a(..) PRINT *, RANK(a) END SUBROUTINE sub1 END PROGRAM arank Compiler Version: gcc (GCC) 12.0.0 20211122 (experimental) Compilation command: gfortran assumedrank.f90 -gdwarf-5 -o assumedrank Without Patch: gdb -q assumedrank Reading symbols from assumedrank... (gdb) break sub1 Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10. (gdb) run Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank Breakpoint 1, arank::sub1 (a=<unknown type in /home/rupesh/STAGING-BUILD-2787 /bin/assumedrank, CU 0x0, DIE 0xd5>) at assumedrank.f90:10 10 PRINT *, RANK(a) (gdb) print RANK(a) 'a' has unknown type; cast it to its declared type With patch: gdb -q assumedrank Reading symbols from assumedrank... (gdb) break sub1 Breakpoint 1 at 0x4006ff: file assumedrank.f90, line 10. (gdb) run Starting program: /home/rupesh/STAGING-BUILD-2787/bin/assumedrank Breakpoint 1, arank::sub1 (a=...) at assumedrank.f90:10 10 PRINT *, RANK(a) (gdb) print RANK(a) $1 = 1 (gdb) ptype a type = real(kind=4) (10) (gdb) Co-Authored-By: Andrew Burgess <aburgess@redhat.com>
2022-04-03gdb/dwarf: pass an array of values to the dwarf evaluatorAndrew Burgess2-15/+14
When we need to evaluate a DWARF expression in order to resolve some dynamic property of a type we call the dwarf2_evaluate_property function, which is declared in gdb/dwarf/loc.h and defined in gdb/dwarf/loc.c. Currently, this function takes (amongst other things) an argument of type property_addr_info called addr_stack and a boolean called push_initial_value. When push_initial_value then the top value of addr_stack is pushed onto the dwarf expression evaluation stack before the expression is evaluated. So far this has worked fine, as the only two cases we needed to handle are the case the DWARF expression doesn't require the object address (what the top of addr_stack represents), and the case where the DWARF expression does require the address. In the next commit this is going to change. As we add support for Fortran assumed rank arrays, we need to start resolving the dynamic properties of arrays. To do this, we need to push the array rank onto the dwarf expression evaluation stack before the expression is evaluated. This commit is a refactoring commit aimed at making it easier to support Fortran assumed rank arrays. Instead of passing a boolean, and using this to decide if we should push the object address or not, we instead pass an array (view) of values that should be pushed to the dwarf expression evaluation stack. In the couple of places where we previously passed push_initial_value as true (mostly this was defaulting to false), we now have to pass the address from the addr_stack as an item in the array view. In the next commit, when we want to handle passing the array rank, this will easily be supported too. There should be no user visible changes after this commit.
2022-04-03gdb: small simplification in dwarf2_locexpr_baton_evalAndrew Burgess1-9/+9
While examining the dwarf expression evaluator, I noticed that in dwarf2_locexpr_baton_eval, whenever push_initial_value is true, the addr_stack will never be nullptr. This allows for a small cleanup, replacing an if/then/else with an assertion. There should be no user visible changes after this commit.
2022-03-29Unify gdb printf functionsTom Tromey5-232/+232
Now that filtered and unfiltered output can be treated identically, we can unify the printf family of functions. This is done under the name "gdb_printf". Most of this patch was written by script.
2022-03-29Unify gdb putc functionsTom Tromey1-4/+4
Now that filtered and unfiltered output can be treated identically, we can unify the putc family of functions. This is done under the name "gdb_putc". Most of this patch was written by script.
2022-03-29Unify gdb puts functionsTom Tromey2-4/+4
Now that filtered and unfiltered output can be treated identically, we can unify the puts family of functions. This is done under the name "gdb_puts". Most of this patch was written by script.
2022-03-28Handle multiple addresses in call_site_targetTom Tromey2-0/+47
A large customer program has a function that is partitioned into hot and cold parts. A variable in a callee of this function is described using DW_OP_GNU_entry_value, but gdb gets confused when trying to find the caller. I tracked this down to dwarf2_get_pc_bounds interpreting the function's changes so that the returned low PC is the "wrong" function. Intead, when processing DW_TAG_call_site, the low PC of each range in DW_AT_ranges should be preserved in the call_site_target. This fixes the variable lookup in the test case I have. I didn't write a standalone test for this as it seemed excessively complicated.
2022-03-28Change call_site_target to iterate over addressesTom Tromey1-50/+84
In order to handle the case where a call site target might refer to multiple addresses, we change the code to use a callback style. Any spot using call_site_target::address now passes in a callback function that may be called multiple times.
2022-03-28Change call_site_find_chain_1 to work recursivelyTom Tromey1-73/+63
call_site_find_chain_1 has a comment claiming that recursive calls would be too expensive. However, I doubt this is so expensive; and furthermore the explicit state management approach here is difficult both to understand and to modify. This patch changes this code to use explicit recursion, so that a subsequent patch can generalize this code without undue trauma. Additionally, I think this patch detects a latent bug in the recursion code. (It's hard for me to be completely certain.) The bug is that when a new target_call_site is entered, the code does: if (target_call_site) { if (addr_hash.insert (target_call_site->pc ()).second) { /* Successfully entered TARGET_CALL_SITE. */ chain.push_back (target_call_site); break; } } Here, if entering the target_call_site fails, then any tail_call_next elements in this call site are not visited. However, if this code does happen to enter a call site, then the tail_call_next elements will be visited during backtracking. This applies when doing the backtracking as well -- it will only continue through a given chain as long as each element in the chain can successfully be visited. I'd appreciate some review of this. If this behavior is intentional, it can be added to the new implementation.
2022-03-28Constify chain_candidateTom Tromey1-8/+8
While investigating this bug, I wasn't sure if chain_candidate might update 'chain'. I changed it to accept a const reference, making it clear that it cannot. This simplifies the code a tiny bit as well.
2022-03-28Make call_site_target members privateTom Tromey1-14/+12
This makes the data members of call_site_target 'private'. This lets us remove most of its public API. call_site_to_target_addr is changed to be a method of this type. This is a preparatory refactoring for the fix at the end of this series.
2022-03-28Change call_site_target to use custom type and enumTom Tromey1-3/+3
call_site_target reuses field_loc_kind and field_location. However, it has never used the full range of the field_loc_kind enum. In a subsequent patch, I plan to add a new 'kind' here, so it seemed best to avoid this reuse and instead introduce new types here.
2022-03-22Fix some stale header names from dwarf filesLuis Machado5-11/+11
Some of these references were not updated when they were moved to a separate directory.
2022-02-11gdb/fortran: support ptype and print commands for namelist variablesBhuvanendra Kumar N1-8/+39
Gfortran supports namelists (a Fortran feature); it emits DW_TAG_namelist and DW_TAG_namelist_item dies. But gdb does not process these dies and does not support 'print' or 'ptype' commands on namelist variables. An attempt to print namelist variables results in gdb bailing out with the error message as shown below. (gdb) print nml No symbol "nml" in current context. This commit is to make the print and ptype commands work for namelist variables and its items. Sample output of these commands is shared below, with fixed gdb. (gdb) ptype nml type = Type nml integer(kind=4) :: a integer(kind=4) :: b End Type nml (gdb) print nml $1 = ( a = 10, b = 20 )
2022-02-08gdb: remove tailing newlines from index_cache_debug callsAndrew Burgess1-10/+10
I noticed that most of the calls to index_cache_debug include a trailing newline. As the new debug mechanism already adds a newline, that means all of these debug calls result in a blank line being printed, which I think is a mistake. Remove all the trailing newlines. I also reformatted one of the index_cache_debug where a string will now fit onto a single line. Unless 'set debug index-cache on' is used, there should be no visible change in output after this commit.
2022-02-06gdb: remove SYMBOL_LINE macroSimon Marchi1-1/+1
Add a getter and a setter for a symbol's line. Remove the corresponding macro and adjust all callers. Change-Id: I229f2b8fcf938c07975f641361313a8761fad9a5
2022-02-06gdb: remove SYMBOL_TYPE macroSimon Marchi2-18/+18
Add a getter and a setter for a symbol's type. Remove the corresponding macro and adjust all callers. Change-Id: Ie1a137744c5bfe1df4d4f9ae5541c5299577c8de
2022-02-06gdb: remove SYMBOL_INLINED macroSimon Marchi1-1/+1
Add a getter and a setter for whether a symbol is inlined. Remove the corresponding macro and adjust all callers. Change-Id: I934468da3b5a32dd6b161a6f252a6b1b94737279
2022-02-06gdb: remove SYMBOL_IS_ARGUMENT macroSimon Marchi1-1/+1
Add a getter and a setter for whether a symbol is an argument. Remove the corresponding macro and adjust all callers. Change-Id: I71b4f0465f3dfd2ed8b9e140bd3f7d5eb8d9ee81
2022-02-06gdb: remove SYMBOL_DOMAIN macroSimon Marchi1-8/+8
Add a getter and a setter for a symbol's domain. Remove the corresponding macro and adjust all callers. Change-Id: I54465b50ac89739c663859a726aef8cdc6e4b8f3
2022-02-06gdb: remove SYMBOL_CLASS macro, add getterSimon Marchi1-4/+4
Change-Id: I83211d5a47efc0564386e5b5ea4a29c00b1fd46a
2022-02-06gdb: remove SYMBOL_ACLASS_INDEX macro, add getter/setterSimon Marchi1-25/+25
Add a getter and a setter for a symbol's aclass index. Remove the corresponding macro and adjust all callers. Change-Id: Ie8c8d732624cfadb714aba5ddafa3d29409b3d39
2022-02-06gdb: remove SYMTAB_LANGUAGE macro, add getter/setterSimon Marchi1-4/+4
Add a getter and a setter for a symtab's language. Remove the corresponding macro and adjust all callers. Change-Id: I9f4d840b11c19f80f39bac1bce020fdd1739e11f
2022-02-06gdb: remove COMPUNIT_EPILOGUE_UNWIND_VALID macro, add getter/setterSimon Marchi1-1/+1
Add a getter and a setter for a compunit_symtab's epilogue unwind valid flag. Remove the corresponding macro and adjust all callers. Change-Id: If3b68629d987767da9be7041a95d96dc34367a9a
2022-02-06gdb: remove COMPUNIT_LOCATIONS_VALID macro, add getter/setterSimon Marchi1-1/+1
Add a getter and a setter for a compunit_symtab's locations valid flag. Remove the corresponding macro and adjust all callers. Change-Id: I3e3cfba926ce62993d5b61814331bb3244afad01
2022-02-06gdb: remove COMPUNIT_BLOCK_LINE_SECTION macro, add getter/setterSimon Marchi1-1/+1
Add a getter and a setter for a compunit_symtab's block line section. Remove the corresponding macro and adjust all callers. Change-Id: I3eb1a323388ad55eae8bfa45f5bc4a08dc3df455
2022-02-06gdb: remove COMPUNIT_BLOCKVECTOR macro, add getter/setterSimon Marchi1-2/+2
Add a getter and a setter for a compunit_symtab's blockvector. Remove the corresponding macro and adjust all callers. Change-Id: I99484c6619dcbbea7c5d89c72aa660316ca62f64
2022-02-06gdb: remove COMPUNIT_DIRNAME macro, add getter/setterSimon Marchi1-2/+2
Add a getter and a setter for a compunit_symtab's dirname. Remove the corresponding macro and adjust all callers. Change-Id: If2f39b295fd26822586485e04a8b8b5aa5cc9b2e
2022-02-06gdb: remove COMPUNIT_PRODUCER macro, add getter/setterSimon Marchi1-1/+1
Add a getter and a setter for a compunit_symtab's producer. Remove the corresponding macro and adjust all callers. Change-Id: Ia1d6d8a0e247a08a21af23819d71e49b37d8931b
2022-02-06gdb: remove COMPUNIT_FILETABS macroSimon Marchi1-4/+4
I think that most remaining uses of COMPUNIT_FILETABS intend to get the primary filetab of the compunit_symtab specifically (and not to iterate over all filetabs, for example, those cases would use compunit_filetabs, which has been converted to compunit_symtab::filetabs), so replace mosts uses with compunit_symtab::primary_filetab. In jit.c, function finalize_symtab, we can save the symtab object returned by allocate_symtab and use it, it makes things simpler. Change-Id: I4e51d6d4b40759de8768b61292e5e13c8eae2e38
2022-02-06gdb: rename compunit_primary_filetab to compunit_symtab::primary_filetabSimon Marchi1-1/+1
Make compunit_primary_filetab a method of compunit_symtab. Change-Id: Iee3c4f7e36d579bf763c5bba146e5e10d6766768
2022-02-06gdb: remove COMPUNIT_OBJFILE macroSimon Marchi1-3/+3
Remove the macro, update all users to use the getter directly. Change-Id: I3f0fd6f4455d1c4ebd5da73b561eb18a979ef1f6
2022-01-27gdb: work around negative DW_AT_data_member_location GCC 11 bugSimon Marchi3-0/+16
g++ 11.1.0 has a bug where it will emit a negative DW_AT_data_member_location in some cases: $ cat test.cpp #include <memory> int main() { std::unique_ptr<int> ptr; } $ g++ -g test.cpp $ llvm-dwarfdump -F a.out ... 0x00000964: DW_TAG_member DW_AT_name [DW_FORM_strp] ("_M_head_impl") DW_AT_decl_file [DW_FORM_data1] ("/usr/include/c++/11.1.0/tuple") DW_AT_decl_line [DW_FORM_data1] (125) DW_AT_decl_column [DW_FORM_data1] (0x27) DW_AT_type [DW_FORM_ref4] (0x0000067a "default_delete<int>") DW_AT_data_member_location [DW_FORM_sdata] (-1) ... This leads to a GDB crash (when built with ASan, otherwise probably garbage results), since it tries to read just before (to the left, in ASan speak) of the value's buffer: ==888645==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x6020000c52af at pc 0x7f711b239f4b bp 0x7fff356bd470 sp 0x7fff356bcc18 READ of size 1 at 0x6020000c52af thread T0 #0 0x7f711b239f4a in __interceptor_memcpy /build/gcc/src/gcc/libsanitizer/sanitizer_common/sanitizer_common_interceptors.inc:827 #1 0x555c4977efa1 in value_contents_copy_raw /home/simark/src/binutils-gdb/gdb/value.c:1347 #2 0x555c497909cd in value_primitive_field(value*, long, int, type*) /home/simark/src/binutils-gdb/gdb/value.c:3126 #3 0x555c478f2eaa in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:333 #4 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #5 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #6 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #7 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #8 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #9 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #10 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #11 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #12 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #13 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 #14 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151 #15 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335 #16 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #17 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #18 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #19 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #20 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #21 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 #22 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151 #23 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335 #24 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #25 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #26 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #27 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 #28 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151 #29 0x555c4760f04c in c_value_print(value*, ui_file*, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:587 #30 0x555c483ff954 in language_defn::value_print(value*, ui_file*, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:614 #31 0x555c49759f61 in value_print(value*, ui_file*, value_print_options const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1189 #32 0x555c48950f70 in print_formatted /home/simark/src/binutils-gdb/gdb/printcmd.c:337 #33 0x555c48958eda in print_value(value*, value_print_options const&) /home/simark/src/binutils-gdb/gdb/printcmd.c:1258 #34 0x555c48959891 in print_command_1 /home/simark/src/binutils-gdb/gdb/printcmd.c:1367 #35 0x555c4895a3df in print_command /home/simark/src/binutils-gdb/gdb/printcmd.c:1458 #36 0x555c4767f974 in do_simple_func /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:97 #37 0x555c47692e25 in cmd_func(cmd_list_element*, char const*, int) /home/simark/src/binutils-gdb/gdb/cli/cli-decode.c:2475 #38 0x555c4936107e in execute_command(char const*, int) /home/simark/src/binutils-gdb/gdb/top.c:670 #39 0x555c485f1bff in catch_command_errors /home/simark/src/binutils-gdb/gdb/main.c:523 #40 0x555c485f249c in execute_cmdargs /home/simark/src/binutils-gdb/gdb/main.c:618 #41 0x555c485f6677 in captured_main_1 /home/simark/src/binutils-gdb/gdb/main.c:1317 #42 0x555c485f6c83 in captured_main /home/simark/src/binutils-gdb/gdb/main.c:1338 #43 0x555c485f6d65 in gdb_main(captured_main_args*) /home/simark/src/binutils-gdb/gdb/main.c:1363 #44 0x555c46e41ba8 in main /home/simark/src/binutils-gdb/gdb/gdb.c:32 #45 0x7f71198bcb24 in __libc_start_main (/usr/lib/libc.so.6+0x27b24) #46 0x555c46e4197d in _start (/home/simark/build/binutils-gdb-one-target/gdb/gdb+0x77f197d) 0x6020000c52af is located 1 bytes to the left of 8-byte region [0x6020000c52b0,0x6020000c52b8) allocated by thread T0 here: #0 0x7f711b2b7459 in __interceptor_calloc /build/gcc/src/gcc/libsanitizer/asan/asan_malloc_linux.cpp:154 #1 0x555c470acdc9 in xcalloc /home/simark/src/binutils-gdb/gdb/alloc.c:100 #2 0x555c49b775cd in xzalloc(unsigned long) /home/simark/src/binutils-gdb/gdbsupport/common-utils.cc:29 #3 0x555c4977bdeb in allocate_value_contents /home/simark/src/binutils-gdb/gdb/value.c:1029 #4 0x555c4977be25 in allocate_value(type*) /home/simark/src/binutils-gdb/gdb/value.c:1040 #5 0x555c4979030d in value_primitive_field(value*, long, int, type*) /home/simark/src/binutils-gdb/gdb/value.c:3092 #6 0x555c478f6280 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:501 #7 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #8 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #9 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #10 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #11 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #12 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #13 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #14 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #15 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 #16 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151 #17 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335 #18 0x555c478f63b2 in cp_print_value /home/simark/src/binutils-gdb/gdb/cp-valprint.c:513 #19 0x555c478f02ca in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:161 #20 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #21 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #22 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #23 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 #24 0x555c49759b17 in common_val_print(value*, ui_file*, int, value_print_options const*, language_defn const*) /home/simark/src/binutils-gdb/gdb/valprint.c:1151 #25 0x555c478f2fcb in cp_print_value_fields(value*, ui_file*, int, value_print_options const*, type**, int) /home/simark/src/binutils-gdb/gdb/cp-valprint.c:335 #26 0x555c4760d45f in c_value_print_struct /home/simark/src/binutils-gdb/gdb/c-valprint.c:383 #27 0x555c4760df4c in c_value_print_inner(value*, ui_file*, int, value_print_options const*) /home/simark/src/binutils-gdb/gdb/c-valprint.c:438 #28 0x555c483ff9a7 in language_defn::value_print_inner(value*, ui_file*, int, value_print_options const*) const /home/simark/src/binutils-gdb/gdb/language.c:632 #29 0x555c49758b68 in do_val_print /home/simark/src/binutils-gdb/gdb/valprint.c:1048 Since there are some binaries with this in the wild, I think it would be useful for GDB to work around this. I did the obvious simple thing, if the DW_AT_data_member_location's value is -1, replace it with 0. I added a producer check to only apply this fixup for GCC 11. The idea is that if some other compiler ever uses a DW_AT_data_member_location value of -1 by mistake, we don't know (before analyzing the bug at least) if they did mean 0 or some other value. So I wouldn't want to apply the fixup in that case. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=28063 Change-Id: Ieef3459b0b9bbce8bdad838ba83b4b64e7269d42
2022-01-20Avoid bad breakpoints with --gc-sectionsTom Tromey1-2/+7
We found a case where --gc-sections can cause gdb to set an invalid breakpoint. In the included test case, gdb will set a breakpoint with two locations, one of which is 0x0. The code in lnp_state_machine::check_line_address is intended to filter out this sort of problem, but in this case, the entire CU is empty, causing unrelocated_lowpc==0x0 -- which circumvents the check. It seems to me that if a CU is empty like this, then it is ok to simply ignore the line table, as there won't be any locations anyway.
2022-01-18Move gdb obstack code to gdbsupportTom Tromey1-1/+1
This moves the gdb-specific obstack code -- both extensions like obconcat and obstack_strdup, and things like auto_obstack -- to gdbsupport.
2022-01-05Use filtered output in ordinary commandsTom Tromey1-7/+7
Many otherwise ordinary commands choose to use unfiltered output rather than filtered. I don't think there's any reason for this, so this changes many such commands to use filtered output instead. Note that complete_command is not touched due to a comment there explaining why unfiltered output is believed to be used.
2022-01-01Automatic Copyright Year update after running gdb/copyright.pyJoel Brobecker40-40/+40
This commit brings all the changes made by running gdb/copyright.py as per GDB's Start of New Year Procedure. For the avoidance of doubt, all changes in this commits were performed by the script.
2021-12-29Use debug_prefixed_printf_cond_nofunc in index-cacheTom Tromey1-24/+19
This changes index-cache.c to use debug_prefixed_printf_cond_nofunc. As a side effect, logs are now written to gdb_stdlog. This is part of PR gdb/7233. Bug: https://sourceware.org/bugzilla/show_bug.cgi?id=7233
2021-12-20Remove print_spacesTom Tromey1-18/+14
This removes the print_spaces helper function, in favor of using the "*%s" idiom that's already used in many places in gdb. One spot (in symmisc.c) is changed to use print_spaces_filtered, because the rest of that function is using filtered output. (This highlights one way that the printf idiom is better -- this error is harder to make when using that.) Regression tested on x86-64 Fedora 34.
2021-12-08Fix error in file_and_directory patchTom Tromey1-1/+1
In my earlier C++-ization patch for file_and_directory, I introduced an error: - if (strcmp (fnd.name, "<unknown>") != 0) + if (fnd.is_unknown ()) This change inverted the sense of the test, which causes failures with .debug_names. This patch fixes the bug. Regression tested on x86-64 Fedora 34. I also tested it using the AdaCore internal test suite, with .debug_names -- this was failing before, and now it works.
2021-12-05Preserve artificial CU name in process_psymtab_comp_unit_readerTom Tromey2-7/+11
This fixes a use-after-free that Simon pointed out. process_psymtab_comp_unit_reader was allocating an artificial name for a CU, and then discarding it. However, this name was preserved in the cached file_and_directory. This patch arranges for the allocated name to be preserved there.
2021-12-04Cache the result of find_file_and_directoryTom Tromey2-8/+18
This changes the DWARF reader to cache the result of find_file_and_directory. This is not especially important now, but it will help the new DWARF indexer.
2021-12-04Move file_and_directory to new file and C++-izeTom Tromey2-45/+129
This moves file_and_directory to a new file, and then C++-izes it -- replacing direct assignments with methods, and arranging for it to own any string that must be computed. Finally, the CU's objfile will only be used on demand; this is an important property for the new DWARF indexer's parallel mode.
2021-12-04Remove Irix case from find_file_and_directoryTom Tromey1-9/+0
find_file_and_directory has a special case for the Irix 6.2 compiler. Since this is long obsolete, this patch removes it.
2021-12-03gdb: make extract_integer take an array_viewSimon Marchi1-5/+2
I think it would make sense for extract_integer, extract_signed_integer and extract_unsigned_integer to take an array_view. This way, when we extract an integer, we can validate that we don't overflow the buffer passed by the caller (e.g. ask to extract a 4-byte integer but pass a 2-byte buffer). - Change extract_integer to take an array_view - Add overloads of extract_signed_integer and extract_unsigned_integer that take array_views. Keep the existing versions so we don't need to change all callers, but make them call the array_view versions. This shortens some places like: result = extract_unsigned_integer (value_contents (result_val).data (), TYPE_LENGTH (value_type (result_val)), byte_order); into result = extract_unsigned_integer (value_contents (result_val), byte_order); value_contents returns an array view that is of length `TYPE_LENGTH (value_type (result_val))` already, so the length is implicitly communicated through the array view. Change-Id: Ic1c1f98c88d5c17a8486393af316f982604d6c95
2021-12-03gdbsupport: add array_view copy functionSimon Marchi1-2/+2
An assertion was recently added to array_view::operator[] to ensure we don't do out of bounds accesses. However, when the array_view is copied to or from using memcpy, it bypasses that safety. To address this, add a `copy` free function that copies data from an array view to another, ensuring that the destination and source array views have the same size. When copying to or from parts of an array_view, we are expected to use gdb::array_view::slice, which does its own bounds check. With all that, any copy operation that goes out of bounds should be caught by an assertion at runtime. copy is implemented using std::copy and std::copy_backward, which, at least on libstdc++, appears to pick memmove when copying trivial data. So in the end there shouldn't be much difference vs using a bare memcpy, as we do right now. When copying non-trivial data, std::copy and std::copy_backward assigns each element in a loop. To properly support overlapping ranges, we must use std::copy or std::copy_backward, depending on whether the destination is before the source or vice-versa. std::copy and std::copy_backward don't support copying exactly overlapping ranges (where the source range is equal to the destination range). But in this case, no copy is needed anyway, so we do nothing. The order of parameters of the new copy function is based on std::copy and std::copy_backward, where the source comes before the destination. Change a few randomly selected spots to use the new function, to show how it can be used. Add a test for the new function, testing both with arrays of a trivial type (int) and of a non-trivial type (foo). Test non-overlapping ranges as well as three kinds of overlapping ranges: source before dest, dest before source, and dest == source. Change-Id: Ibeaca04e0028410fd44ce82f72e60058d6230a03
2021-12-01gdb: use actual DWARF version in compunit's debugformat fieldSimon Marchi1-1/+12
The "info source" command, with a DWARF-compile program, always show that the debug info is "DWARF 2": (gdb) info source Current source file is test.c Compilation directory is /home/smarchi/build/binutils-gdb/gdb Located in /home/smarchi/build/binutils-gdb/gdb/test.c Contains 2 lines. Source language is c. Producer is GNU C17 9.3.0 -mtune=generic -march=x86-64 -g3 -gdwarf-5 -O0 -fasynchronous-unwind-tables -fstack-protector-strong -fstack-clash-protection -fcf-protection. Compiled with DWARF 2 debugging format. Includes preprocessor macro info. Change it to display the actual DWARF version: (gdb) info source Current source file is test.c Compilation directory is /home/smarchi/build/binutils-gdb/gdb Located in /home/smarchi/build/binutils-gdb/gdb/test.c Contains 2 lines. Source language is c. Producer is GNU C17 9.3.0 -mtune=generic -march=x86-64 -g3 -gdwarf-5 -O0 -fasynchronous-unwind-tables -fstack-protector-strong -fstack-clash-protection -fcf-protection. Compiled with DWARF 5 debugging format. Includes preprocessor macro info. The comp_unit_head::version field is guaranteed to be between 2 and 5, thanks to the check in read_comp_unit_head. So we can still use static strings to pass to record_debugformat, and keep it efficient. In the future, when somebody will update GDB to support DWARF 6, they'll hit this assert and have to update this code. Change-Id: I3270b7ebf5e9a17b4215405bd2e365662a4d6172