//************************************************************************** // Multi-threaded Matrix Multiply benchmark //-------------------------------------------------------------------------- // TA : Christopher Celio // Student: // // // This benchmark multiplies two 2-D arrays together and writes the results to // a third vector. The input data (and reference data) should be generated // using the matmul_gendata.pl perl script and dumped to a file named // dataset.h. // print out arrays, etc. //#define DEBUG //-------------------------------------------------------------------------- // Includes #include #include #include //-------------------------------------------------------------------------- // Input/Reference Data typedef float data_t; #include "dataset.h" //-------------------------------------------------------------------------- // Basic Utilities and Multi-thread Support __thread unsigned long coreid; unsigned long ncores; #include "util.h" #define stringify_1(s) #s #define stringify(s) stringify_1(s) #define stats(code) do { \ unsigned long _c = -rdcycle(), _i = -rdinstret(); \ code; \ _c += rdcycle(), _i += rdinstret(); \ if (coreid == 0) \ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \ } while(0) //-------------------------------------------------------------------------- // Helper functions void printArray( char name[], int n, data_t arr[] ) { int i; if (coreid != 0) return; printf( " %10s :", name ); for ( i = 0; i < n; i++ ) printf( " %3ld ", (long) arr[i] ); printf( "\n" ); } void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct) { if (coreid != 0) return; size_t i; for (i = 0; i < n; i++) { if (test[i] != correct[i]) { printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", i, (long)test[i], i, (long)correct[i]); exit(-1); } } return; } //-------------------------------------------------------------------------- // matmul function // single-thread, naive version void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) { for ( k = 0; k < lda; k++ ) { C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } } void __attribute__((noinline)) matmul_MI_transpose(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; data_t B_trans[32*32]; data_t acc_temp0, acc_temp1; data_t *A_j, *B_i; data_t *A_j_k, *B_i_k; int z; //for (i = 0; i < 32; i++) { // for (j = 0; j < 32; j++) { // B_trans[i*lda+j] = B[i+j*lda]; // } //} if (coreid == 0) { for (i = 0; i < 32; i++) { B_i = B_trans+i*32; for (z = 0; z < 32; z++) { *(B_i+z) = B[i+z*32]; } for (j = 0; j < 16; j+=2) { A_j = A+j*lda; acc_temp0 = 0; for (k = 0; k < 32; k+=8) { A_j_k = A_j+k; B_i_k = B_i+k; acc_temp0 += *(A_j_k) * *(B_i_k); acc_temp0 += *(A_j_k + 1) * *(B_i_k + 1); acc_temp0 += *(A_j_k + 2) * *(B_i_k + 2); acc_temp0 += *(A_j_k + 3) * *(B_i_k + 3); acc_temp0 += *(A_j_k + 4) * *(B_i_k + 4); acc_temp0 += *(A_j_k + 5) * *(B_i_k + 5); acc_temp0 += *(A_j_k + 6) * *(B_i_k + 6); acc_temp0 += *(A_j_k + 7) * *(B_i_k + 7); } A_j += 32; acc_temp1 = 0; for (k = 0; k < 32; k+=8) { acc_temp1 += *(A_j+k) * *(B_i+k); acc_temp1 += *(A_j+k + 1) * *(B_i+k + 1); acc_temp1 += *(A_j+k + 2) * *(B_i+k + 2); acc_temp1 += *(A_j+k + 3) * *(B_i+k + 3); acc_temp1 += *(A_j+k + 4) * *(B_i+k + 4); acc_temp1 += *(A_j+k + 5) * *(B_i+k + 5); acc_temp1 += *(A_j+k + 6) * *(B_i+k + 6); acc_temp1 += *(A_j+k + 7) * *(B_i+k + 7); } C[i + j*lda] = acc_temp0; C[i + (j+1)*lda] = acc_temp1; } } } else if (coreid == 1) { for (i = 0; i < 32; i++) { B_i = B_trans+i*32; for (z = 0; z < 32; z++) { *(B_i+z) = B[i+z*32]; } for (j = 16; j < 32; j+=2) { A_j = A+j*lda; acc_temp0 = 0; for (k = 0; k < 32; k+=8) { acc_temp0 += *(A_j+k) * *(B_i+k); acc_temp0 += *(A_j+k + 1) * *(B_i+k + 1); acc_temp0 += *(A_j+k + 2) * *(B_i+k + 2); acc_temp0 += *(A_j+k + 3) * *(B_i+k + 3); acc_temp0 += *(A_j+k + 4) * *(B_i+k + 4); acc_temp0 += *(A_j+k + 5) * *(B_i+k + 5); acc_temp0 += *(A_j+k + 6) * *(B_i+k + 6); acc_temp0 += *(A_j+k + 7) * *(B_i+k + 7); } A_j += 32; acc_temp1 = 0; for (k = 0; k < 32; k+=8) { acc_temp1 += *(A_j+k) * *(B_i+k); acc_temp1 += *(A_j+k + 1) * *(B_i+k + 1); acc_temp1 += *(A_j+k + 2) * *(B_i+k + 2); acc_temp1 += *(A_j+k + 3) * *(B_i+k + 3); acc_temp1 += *(A_j+k + 4) * *(B_i+k + 4); acc_temp1 += *(A_j+k + 5) * *(B_i+k + 5); acc_temp1 += *(A_j+k + 6) * *(B_i+k + 6); acc_temp1 += *(A_j+k + 7) * *(B_i+k + 7); } C[i + j*lda] = acc_temp0; C[i + (j+1)*lda] = acc_temp1; } } } } void __attribute__((noinline)) matmul_MI(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; data_t acc_temp; data_t *A_j, *B_i; int j_start = coreid*16; int j_end = (coreid*16)+16; if (coreid == 0) { for ( i = 0; i < 32; i++ ) { B_i = B + i; for ( j = j_start; j < j_end; j++ ) { acc_temp = 0; A_j = A + j*32; for ( k = 0; k < 32; k++ ) { acc_temp += *(A_j + k) * *(B_i + k*32); } C[i + j*32] = acc_temp; } } } else if (coreid == 1) { for ( i = 16; i < 32; i++ ) { B_i = B + i; for ( j = j_start; j < j_end; j++ ) { acc_temp = 0; A_j = A + j*32; for ( k = 0; k < 32; k+=4 ) { acc_temp += *(A_j + k) * *(B_i + k*32); acc_temp += *(A_j + k + 1) * *(B_i + (k+1)*32); acc_temp += *(A_j + k + 2) * *(B_i + (k+2)*32); acc_temp += *(A_j + k + 3) * *(B_i + (k+3)*32); } C[i + j*32] = acc_temp; } } for ( i = 0; i < 16; i++ ) { B_i = B + i; for ( j = j_start; j < j_end; j++ ) { acc_temp = 0; A_j = A + j*32; for ( k = 0; k < 32; k+=4 ) { acc_temp += *(A_j + k) * *(B_i + k*32); acc_temp += *(A_j + k + 1) * *(B_i + (k+1)*32); acc_temp += *(A_j + k + 2) * *(B_i + (k+2)*32); acc_temp += *(A_j + k + 3) * *(B_i + (k+3)*32); } C[i + j*32] = acc_temp; } } } } void __attribute__((noinline)) matmul_MSI(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; data_t acc_temp; data_t *A_j, *B_i; int j_start = coreid*16; int j_end = (coreid*16)+16; for ( i = 0; i < 32; i++ ) { B_i = B + i; for ( j = j_start; j < j_end; j++ ) { acc_temp = 0; A_j = A + j*32; for ( k = 0; k < 32; k++ ) { acc_temp += *(A_j + k) * *(B_i + k*32); } C[i + j*32] = acc_temp; } } } void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] ) { // ***************************** // // **** ADD YOUR CODE HERE ***** // // ***************************** // // // feel free to make a separate function for MI and MSI versions. // ENABLE_SHARING = false is MI // ENABLE_SHARING = true is MSI matmul_MI_transpose(lda, A, B, C); //matmul_MSI(lda, A, B, C); } //-------------------------------------------------------------------------- // Main // // all threads start executing thread_entry(). Use their "coreid" to // differentiate between threads (each thread is running on a separate core). void thread_entry(int cid, int nc) { coreid = cid; ncores = nc; // static allocates data in the binary, which is visible to both threads static data_t results_data[ARRAY_SIZE]; // // Execute the provided, naive matmul // barrier(); // //stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier()); // // // // verify // //verify(ARRAY_SIZE, results_data, verify_data); // // // clear results from the first trial // size_t i; // if (coreid == 0) // for (i=0; i < ARRAY_SIZE; i++) // results_data[i] = 0; // barrier(); // Execute your faster matmul barrier(); stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier()); #ifdef DEBUG printArray("results:", ARRAY_SIZE, results_data); printArray("verify :", ARRAY_SIZE, verify_data); #endif // verify verify(ARRAY_SIZE, results_data, verify_data); barrier(); exit(0); }