//************************************************************************** // Multi-threaded Matrix Multiply benchmark //-------------------------------------------------------------------------- // TA : Christopher Celio // Student: // // // This benchmark multiplies two 2-D arrays together and writes the results to // a third vector. The input data (and reference data) should be generated // using the matmul_gendata.pl perl script and dumped to a file named // dataset.h. // print out arrays, etc. //#define DEBUG //-------------------------------------------------------------------------- // Includes #include #include #include //-------------------------------------------------------------------------- // Input/Reference Data typedef float data_t; #include "dataset.h" //-------------------------------------------------------------------------- // Basic Utilities and Multi-thread Support __thread unsigned long coreid; unsigned long ncores; #include "util.h" #define stringify_1(s) #s #define stringify(s) stringify_1(s) #define stats(code) do { \ unsigned long _c = -rdcycle(), _i = -rdinstret(); \ code; \ _c += rdcycle(), _i += rdinstret(); \ if (coreid == 0) \ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \ } while(0) //-------------------------------------------------------------------------- // Helper functions void printArrayMT( char name[], int n, data_t arr[] ) { int i; if (coreid != 0) return; printf( " %10s :", name ); for ( i = 0; i < n; i++ ) printf( " %3ld ", (long) arr[i] ); printf( "\n" ); } void __attribute__((noinline)) verifyMT(size_t n, const data_t* test, const data_t* correct) { if (coreid != 0) return; size_t i; for (i = 0; i < n; i++) { if (test[i] != correct[i]) { printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", i, (long)test[i], i, (long)correct[i]); exit(-1); } } return; } //-------------------------------------------------------------------------- // matmul function // single-thread, naive version void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] ) { ///* int i, j, k; if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) { for ( k = 0; k < lda; k++ ) { C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } //*/ /* int i, j, k, kk; if (coreid) { for ( i = 0; i < 16; i+=8 ) { for ( j = 0; j < 32; j++ ) { data_t temp0 = 0; data_t temp1 = 0; data_t temp2 = 0; data_t temp3 = 0; data_t temp4 = 0; data_t temp5 = 0; data_t temp6 = 0; data_t temp7 = 0; for ( kk = 0; kk < 32; kk+=8 ) for ( k = kk; k < kk+8; k++ ) // for ( k = 0; k < 32; k++ ) { data_t tempA = A[j*32+k]; temp0 += tempA * B[k*32 + i]; temp1 += tempA * B[k*32 + i+1]; temp2 += tempA * B[k*32 + i+2]; temp3 += tempA * B[k*32 + i+3]; temp4 += tempA * B[k*32 + i+4]; temp5 += tempA * B[k*32 + i+5]; temp6 += tempA * B[k*32 + i+6]; temp7 += tempA * B[k*32 + i+7]; } C[i+j*32] = temp0; C[i+j*32+1] = temp1; C[i+j*32+2] = temp2; C[i+j*32+3] = temp3; C[i+j*32+4] = temp4; C[i+j*32+5] = temp5; C[i+j*32+6] = temp6; C[i+j*32+7] = temp7; } } } else { for ( i = 16; i < 32; i+=8 ) { for ( j = 0; j < 32; j++ ) { data_t temp0 = 0; data_t temp1 = 0; data_t temp2 = 0; data_t temp3 = 0; data_t temp4 = 0; data_t temp5 = 0; data_t temp6 = 0; data_t temp7 = 0; for ( kk = 0; kk < 32; kk+=8 ) for ( k = kk; k < kk+8; k++ ) { data_t tempA = A[j*32+k]; temp0 += tempA * B[k*32 + i]; temp1 += tempA * B[k*32 + i+1]; temp2 += tempA * B[k*32 + i+2]; temp3 += tempA * B[k*32 + i+3]; temp4 += tempA * B[k*32 + i+4]; temp5 += tempA * B[k*32 + i+5]; temp6 += tempA * B[k*32 + i+6]; temp7 += tempA * B[k*32 + i+7]; } C[i+j*32] = temp0; C[i+j*32+1] = temp1; C[i+j*32+2] = temp2; C[i+j*32+3] = temp3; C[i+j*32+4] = temp4; C[i+j*32+5] = temp5; C[i+j*32+6] = temp6; C[i+j*32+7] = temp7; } } } */ } void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] ) { // ***************************** // // **** ADD YOUR CODE HERE ***** // // ***************************** // // // feel free to make a separate function for MI and MSI versions. int i, j, k, ii, jj, kk; if (coreid) { // for ( ii = 0; ii < 32; ii+=IC ) for ( kk = 0; kk < 32; kk+=16 ) for ( j = 0; j < 16; j++ ) // for ( j = 0; j < 16; j++ ) { for ( i = 0; i < 32; i+=8 ) // for ( i = ii; i < ii + IC && i < 32; i+=8 ) { data_t temp0 = C[i+j*32]; data_t temp1 = C[i+j*32+1]; data_t temp2 = C[i+j*32+2]; data_t temp3 = C[i+j*32+3]; data_t temp4 = C[i+j*32+4]; data_t temp5 = C[i+j*32+5]; data_t temp6 = C[i+j*32+6]; data_t temp7 = C[i+j*32+7]; for ( k = kk; k < kk+16 && k < 32; k++ ) // for ( k = 0; k < 32; k++ ) { data_t tempA = A[j*32+k]; temp0 += tempA * B[k*32 + i]; temp1 += tempA * B[k*32 + i+1]; temp2 += tempA * B[k*32 + i+2]; temp3 += tempA * B[k*32 + i+3]; temp4 += tempA * B[k*32 + i+4]; temp5 += tempA * B[k*32 + i+5]; temp6 += tempA * B[k*32 + i+6]; temp7 += tempA * B[k*32 + i+7]; } C[i+j*32] = temp0; C[i+j*32+1] = temp1; C[i+j*32+2] = temp2; C[i+j*32+3] = temp3; C[i+j*32+4] = temp4; C[i+j*32+5] = temp5; C[i+j*32+6] = temp6; C[i+j*32+7] = temp7; } } } else { // for ( ii = 0; ii < 32; ii+=IC ) for ( kk = 0; kk < 32; kk+=16 ) for ( j = 16; j < 32; j++ ) // for ( j = 16; j < 32; j++ ) { for ( i = 0; i < 32; i+=8 ) // for ( i = ii; i < ii + IC && i < 32; i+=8 ) { data_t temp0 = C[i+j*32]; data_t temp1 = C[i+j*32+1]; data_t temp2 = C[i+j*32+2]; data_t temp3 = C[i+j*32+3]; data_t temp4 = C[i+j*32+4]; data_t temp5 = C[i+j*32+5]; data_t temp6 = C[i+j*32+6]; data_t temp7 = C[i+j*32+7]; for ( k = kk; k < kk+16 && k < 32; k++ ) { data_t tempA = A[j*32+k]; temp0 += tempA * B[k*32 + i]; temp1 += tempA * B[k*32 + i+1]; temp2 += tempA * B[k*32 + i+2]; temp3 += tempA * B[k*32 + i+3]; temp4 += tempA * B[k*32 + i+4]; temp5 += tempA * B[k*32 + i+5]; temp6 += tempA * B[k*32 + i+6]; temp7 += tempA * B[k*32 + i+7]; } C[i+j*32] = temp0; C[i+j*32+1] = temp1; C[i+j*32+2] = temp2; C[i+j*32+3] = temp3; C[i+j*32+4] = temp4; C[i+j*32+5] = temp5; C[i+j*32+6] = temp6; C[i+j*32+7] = temp7; } } } } //-------------------------------------------------------------------------- // Main // // all threads start executing thread_entry(). Use their "coreid" to // differentiate between threads (each thread is running on a separate core). void thread_entry(int cid, int nc) { coreid = cid; ncores = nc; // static allocates data in the binary, which is visible to both threads static data_t results_data[ARRAY_SIZE]; // Execute the provided, naive matmul barrier(nc); stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc)); // verify verifyMT(ARRAY_SIZE, results_data, verify_data); // clear results from the first trial size_t i; if (coreid == 0) for (i=0; i < ARRAY_SIZE; i++) results_data[i] = 0; barrier(nc); // Execute your faster matmul barrier(nc); stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier(nc)); #ifdef DEBUG printArrayMT("results:", ARRAY_SIZE, results_data); printArrayMT("verify :", ARRAY_SIZE, verify_data); #endif // verify verifyMT(ARRAY_SIZE, results_data, verify_data); barrier(nc); exit(0); }