//************************************************************************** // Multi-threaded Matrix Multiply benchmark //-------------------------------------------------------------------------- // TA : Christopher Celio // Student: // // // This benchmark multiplies two 2-D arrays together and writes the results to // a third vector. The input data (and reference data) should be generated // using the matmul_gendata.pl perl script and dumped to a file named // dataset.h. // print out arrays, etc. //#define DEBUG //-------------------------------------------------------------------------- // Includes #include #include #include //-------------------------------------------------------------------------- // Input/Reference Data typedef float data_t; #include "dataset.h" //-------------------------------------------------------------------------- // Basic Utilities and Multi-thread Support __thread unsigned long coreid; unsigned long ncores; #include "util.h" #define stringify_1(s) #s #define stringify(s) stringify_1(s) #define stats(code) do { \ unsigned long _c = -rdcycle(), _i = -rdinstret(); \ code; \ _c += rdcycle(), _i += rdinstret(); \ if (coreid == 0) \ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \ } while(0) //-------------------------------------------------------------------------- // Helper functions void printArray( char name[], int n, data_t arr[] ) { int i; if (coreid != 0) return; printf( " %10s :", name ); for ( i = 0; i < n; i++ ) printf( " %3ld ", (long) arr[i] ); printf( "\n" ); } void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct) { if (coreid != 0) return; size_t i; for (i = 0; i < n; i++) { if (test[i] != correct[i]) { printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", i, (long)test[i], i, (long)correct[i]); exit(-1); } } return; } //-------------------------------------------------------------------------- // matmul function // single-thread, naive version void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) { for ( k = 0; k < lda; k++ ) { C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } } void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] ) { static __thread int i, j, k; static __thread data_t tempA0, tempA1, tempA2, tempA3, tempA4, tempA5, tempA6, tempA7; static __thread data_t tempC0, tempC1, tempC2, tempC3, tempC4, tempC5, tempC6, tempC7, tempC8, tempC9, tempC10, tempC11, tempC12, tempC13, tempC14, tempC15; static __thread int start, end, jStride, jToRow, jToCol; start = coreid << 9; end = (coreid+1) << 9; jStride = 8; for (j=start; j < end; j+=jStride) { jToRow = (j>>5)<<5; jToCol = j%32; tempC0 = 0; tempC1 = 0; tempC2 = 0; tempC3 = 0; tempC4 = 0; tempC5 = 0; tempC6 = 0; tempC7 = 0; for ( i=0; i < lda; i+=2 ) { tempA0 = A[i + jToRow]; tempA1 = A[i+1 + jToRow]; tempC0 += tempA0 * B[(jToCol ) + (i<<5)]; tempC1 += tempA0 * B[(jToCol+1 ) + (i<<5)]; tempC2 += tempA0 * B[(jToCol+2 ) + (i<<5)]; tempC3 += tempA0 * B[(jToCol+3 ) + (i<<5)]; tempC4 += tempA0 * B[(jToCol+4 ) + (i<<5)]; tempC5 += tempA0 * B[(jToCol+5 ) + (i<<5)]; tempC6 += tempA0 * B[(jToCol+6 ) + (i<<5)]; tempC7 += tempA0 * B[(jToCol+7 ) + (i<<5)]; tempC0 += tempA1 * B[(jToCol ) + ((i+1)<<5)]; tempC1 += tempA1 * B[(jToCol+1 ) + ((i+1)<<5)]; tempC2 += tempA1 * B[(jToCol+2 ) + ((i+1)<<5)]; tempC3 += tempA1 * B[(jToCol+3 ) + ((i+1)<<5)]; tempC4 += tempA1 * B[(jToCol+4 ) + ((i+1)<<5)]; tempC5 += tempA1 * B[(jToCol+5 ) + ((i+1)<<5)]; tempC6 += tempA1 * B[(jToCol+6 ) + ((i+1)<<5)]; tempC7 += tempA1 * B[(jToCol+7 ) + ((i+1)<<5)]; } C[j] =tempC0; C[j + 1 ]=tempC1; C[j + 2 ]=tempC2; C[j + 3 ]=tempC3; C[j + 4 ]=tempC4; C[j + 5 ]=tempC5; C[j + 6 ]=tempC6; C[j + 7 ]=tempC7; } } //-------------------------------------------------------------------------- // Main // // all threads start executing thread_entry(). Use their "coreid" to // differentiate between threads (each thread is running on a separate core). void thread_entry(int cid, int nc) { coreid = cid; ncores = nc; // static allocates data in the binary, which is visible to both threads static data_t results_data[ARRAY_SIZE]; //// Execute the provided, naive matmul //barrier(); //stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier()); // //// verify //verify(ARRAY_SIZE, results_data, verify_data); // //// clear results from the first trial //size_t i; //if (coreid == 0) // for (i=0; i < ARRAY_SIZE; i++) // results_data[i] = 0; //barrier(); // Execute your faster matmul barrier(); stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier()); #ifdef DEBUG printArray("results:", ARRAY_SIZE, results_data); printArray("verify :", ARRAY_SIZE, verify_data); #endif // verify verify(ARRAY_SIZE, results_data, verify_data); barrier(); exit(0); }