//************************************************************************** // Multi-threaded Matrix Multiply benchmark //-------------------------------------------------------------------------- // TA : Christopher Celio // Student: // // // This benchmark multiplies two 2-D arrays together and writes the results to // a third vector. The input data (and reference data) should be generated // using the matmul_gendata.pl perl script and dumped to a file named // dataset.h. // print out arrays, etc. //#define DEBUG //-------------------------------------------------------------------------- // Includes #include #include #include //-------------------------------------------------------------------------- // Input/Reference Data typedef float data_t; #include "dataset.h" //-------------------------------------------------------------------------- // Basic Utilities and Multi-thread Support __thread unsigned long coreid; unsigned long ncores; #include "util.h" #define stringify_1(s) #s #define stringify(s) stringify_1(s) #define stats(code) do { \ unsigned long _c = -rdcycle(), _i = -rdinstret(); \ code; \ _c += rdcycle(), _i += rdinstret(); \ if (coreid == 0) \ printf("%s: %ld cycles, %ld.%ld cycles/iter, %ld.%ld CPI\n", \ stringify(code), _c, _c/DIM_SIZE/DIM_SIZE/DIM_SIZE, 10*_c/DIM_SIZE/DIM_SIZE/DIM_SIZE%10, _c/_i, 10*_c/_i%10); \ } while(0) //-------------------------------------------------------------------------- // Helper functions void printArray( char name[], int n, data_t arr[] ) { int i; if (coreid != 0) return; printf( " %10s :", name ); for ( i = 0; i < n; i++ ) printf( " %3ld ", (long) arr[i] ); printf( "\n" ); } void __attribute__((noinline)) verify(size_t n, const data_t* test, const data_t* correct) { if (coreid != 0) return; size_t i; for (i = 0; i < n; i++) { if (test[i] != correct[i]) { printf("FAILED test[%d]= %3ld, correct[%d]= %3ld\n", i, (long)test[i], i, (long)correct[i]); exit(-1); } } return; } //-------------------------------------------------------------------------- // matmul function // single-thread, naive version void __attribute__((noinline)) matmul_naive(const int lda, const data_t A[], const data_t B[], data_t C[] ) { int i, j, k; if (coreid > 0) return; for ( i = 0; i < lda; i++ ) for ( j = 0; j < lda; j++ ) { for ( k = 0; k < lda; k++ ) { C[i + j*lda] += A[j*lda + k] * B[k*lda + i]; } } } void __attribute__((noinline)) matmul(const int lda, const data_t A[], const data_t B[], data_t C[] ) { // ***************************** // // **** ADD YOUR CODE HERE ***** // // ***************************** // // // feel free to make a separate function for MI and MSI versions. int i, j, k, ii, jj, bsize, start; bsize = 16; start = bsize*coreid; for ( jj = start; jj < lda; jj += bsize*ncores) { int first = 1; for ( ii = start; ii !=start || first; ii=(bsize+ii) % lda) { first = 0; for ( j = jj; j < lda && j < jj + bsize; j+=4) { for ( i = ii; i < lda && i < ii + bsize; i+=2) { data_t c1 = C[i + j*lda]; data_t c2 = C[i + j*lda + 1]; data_t c3 = C[i + (j+1)*lda]; data_t c4 = C[i + (j+1)*lda + 1]; data_t c5 = C[i + (j+2)*lda]; data_t c6 = C[i + (j+2)*lda + 1]; data_t c7 = C[i + (j+3)*lda]; data_t c8 = C[i + (j+3)*lda + 1]; for ( k = 0; k < lda; k+=8){ for (int x = 0; x < 8; x++) { data_t a = A[j*lda + k+x]; data_t a1 = A[(j+1)*lda +k+x]; data_t a2 = A[(j+2)*lda +k+x]; data_t a3 = A[(j+3)*lda +k+x]; data_t b1 = B[(k+x)*lda + i]; data_t b2 = B[(k+x)*lda + i + 1]; c1 += a * b1; c2 += a * b2; c3 += a1* b1; c4 += a1* b2; c5 += a2* b1; c6 += a2* b2; c7 += a3* b1; c8 += a3* b2; } } C[i + j*lda] = c1; C[i + j*lda + 1] = c2; C[i + (j+1)*lda] = c3; C[i + (j+1)*lda + 1] = c4; C[i + (j+2)*lda] = c5; C[i + (j+2)*lda + 1] = c6; C[i + (j+3)*lda] = c7; C[i + (j+3)*lda + 1] = c8; } } } } } //-------------------------------------------------------------------------- // Main // // all threads start executing thread_entry(). Use their "coreid" to // differentiate between threads (each thread is running on a separate core). void thread_entry(int cid, int nc) { coreid = cid; ncores = nc; // static allocates data in the binary, which is visible to both threads static data_t results_data[ARRAY_SIZE]; // Execute the provided, naive matmul barrier(); stats(matmul_naive(DIM_SIZE, input1_data, input2_data, results_data); barrier()); // verify verify(ARRAY_SIZE, results_data, verify_data); // clear results from the first trial size_t i; if (coreid == 0) for (i=0; i < ARRAY_SIZE; i++) results_data[i] = 0; barrier(); // Execute your faster matmul barrier(); stats(matmul(DIM_SIZE, input1_data, input2_data, results_data); barrier()); #ifdef DEBUG printArray("results:", ARRAY_SIZE, results_data); printArray("verify :", ARRAY_SIZE, verify_data); #endif // verify verify(ARRAY_SIZE, results_data, verify_data); barrier(); exit(0); }