// See LICENSE for license details. #include "processor.h" #include "extension.h" #include "common.h" #include "config.h" #include "sim.h" #include "htif.h" #include "disasm.h" #include "icache.h" #include #include #include #include #include #include #include #include #undef STATE #define STATE state processor_t::processor_t(sim_t* _sim, mmu_t* _mmu, uint32_t _id) : sim(_sim), mmu(_mmu), ext(NULL), disassembler(new disassembler_t), id(_id), run(false), debug(false), serialized(false) { reset(true); mmu->set_processor(this); #define DECLARE_INSN(name, match, mask) REGISTER_INSN(this, name, match, mask) #include "encoding.h" #undef DECLARE_INSN build_opcode_map(); } processor_t::~processor_t() { #ifdef RISCV_ENABLE_HISTOGRAM if (histogram_enabled) { fprintf(stderr, "PC Histogram size:%lu\n", pc_histogram.size()); for(auto iterator = pc_histogram.begin(); iterator != pc_histogram.end(); ++iterator) { fprintf(stderr, "%0lx %lu\n", (iterator->first << 2), iterator->second); } } #endif delete disassembler; } void state_t::reset() { // the ISA guarantees on boot that the PC is 0x2000 and the the processor // is in supervisor mode, and in 64-bit mode, if supported, with traps // and virtual memory disabled. sr = SR_S | SR_S64 | SR_U64; pc = 0x2000; // the following state is undefined upon boot-up, // but we zero it for determinism XPR.reset(); FPR.reset(); epc = 0; badvaddr = 0; evec = 0; ptbr = 0; pcr_k0 = 0; pcr_k1 = 0; cause = 0; tohost = 0; fromhost = 0; count = 0; compare = 0; fflags = 0; frm = 0; load_reservation = -1; } void processor_t::set_debug(bool value) { debug = value; if (ext) ext->set_debug(value); } void processor_t::set_histogram(bool value) { histogram_enabled = value; } void processor_t::reset(bool value) { if (run == !value) return; run = !value; state.reset(); // reset the core set_pcr(CSR_STATUS, state.sr); if (ext) ext->reset(); // reset the extension } struct serialize_t {}; void processor_t::serialize() { if (serialized) serialized = false; else serialized = true, throw serialize_t(); } void processor_t::take_interrupt() { int irqs = ((state.sr & SR_IP) >> SR_IP_SHIFT) & (state.sr >> SR_IM_SHIFT); if (likely(!irqs) || likely(!(state.sr & SR_EI))) return; for (int i = 0; ; i++) if ((irqs >> i) & 1) throw trap_t((1ULL << ((state.sr & SR_S64) ? 63 : 31)) + i); } static void commit_log(state_t* state, insn_t insn) { #ifdef RISCV_ENABLE_COMMITLOG if (state->sr & SR_EI) { if (state->log_reg_write.addr) { fprintf(stderr, "0x%016" PRIx64 " (0x%08" PRIx64 ") %c%2u 0x%016" PRIx64 "\n", state->pc, insn.bits(), state->log_reg_write.addr & 1 ? 'f' : 'x', state->log_reg_write.addr >> 1, state->log_reg_write.data); } else { fprintf(stderr, "0x%016" PRIx64 " (0x%08" PRIx64 ")\n", state->pc, insn.bits()); } } state->log_reg_write.addr = 0; #endif } inline void processor_t::update_histogram(size_t pc) { #ifdef RISCV_ENABLE_HISTOGRAM size_t idx = pc >> 2; pc_histogram[idx]++; #endif } static reg_t execute_insn(processor_t* p, reg_t pc, insn_fetch_t fetch) { reg_t npc = fetch.func(p, fetch.insn, pc); commit_log(p->get_state(), fetch.insn); p->update_histogram(pc); return npc; } static void update_timer(state_t* state, size_t instret) { uint64_t count0 = (uint64_t)(uint32_t)state->count; state->count += instret; uint64_t before = count0 - state->compare; if (int64_t(before ^ (before + instret)) < 0) state->sr |= (1 << (IRQ_TIMER + SR_IP_SHIFT)); } static size_t next_timer(state_t* state) { return state->compare - (uint32_t)state->count; } void processor_t::step(size_t n) { size_t instret = 0; reg_t pc = state.pc; mmu_t* _mmu = mmu; if (unlikely(!run || !n)) return; n = std::min(n, next_timer(&state) | 1U); try { take_interrupt(); if (unlikely(debug)) { while (instret++ < n) { insn_fetch_t fetch = mmu->load_insn(pc); disasm(fetch.insn); pc = execute_insn(this, pc, fetch); } } else while (instret < n) { size_t idx = _mmu->icache_index(pc); auto ic_entry = _mmu->access_icache(pc); #define ICACHE_ACCESS(idx) { \ insn_fetch_t fetch = ic_entry->data; \ ic_entry++; \ pc = execute_insn(this, pc, fetch); \ instret++; \ if (idx < ICACHE_SIZE-1 && unlikely(ic_entry->tag != pc)) break; \ } switch (idx) { ICACHE_SWITCH; // auto-generated into icache.h } } } catch(trap_t& t) { pc = take_trap(t, pc); } catch(serialize_t& s) {} state.pc = pc; update_timer(&state, instret); } reg_t processor_t::take_trap(trap_t& t, reg_t epc) { if (debug) fprintf(stderr, "core %3d: exception %s, epc 0x%016" PRIx64 "\n", id, t.name(), epc); // switch to supervisor, set previous supervisor bit, disable interrupts set_pcr(CSR_STATUS, (((state.sr & ~SR_EI) | SR_S) & ~SR_PS & ~SR_PEI) | ((state.sr & SR_S) ? SR_PS : 0) | ((state.sr & SR_EI) ? SR_PEI : 0)); yield_load_reservation(); state.cause = t.cause(); state.epc = epc; t.side_effects(&state); // might set badvaddr etc. return state.evec; } void processor_t::deliver_ipi() { if (run) set_pcr(CSR_CLEAR_IPI, 1); } void processor_t::disasm(insn_t insn) { uint64_t bits = insn.bits() & ((1ULL << (8 * insn_length(insn.bits()))) - 1); fprintf(stderr, "core %3d: 0x%016" PRIx64 " (0x%08" PRIx64 ") %s\n", id, state.pc, bits, disassembler->disassemble(insn).c_str()); } void processor_t::set_pcr(int which, reg_t val) { switch (which) { case CSR_FFLAGS: state.fflags = val & (FSR_AEXC >> FSR_AEXC_SHIFT); break; case CSR_FRM: state.frm = val & (FSR_RD >> FSR_RD_SHIFT); break; case CSR_FCSR: state.fflags = (val & FSR_AEXC) >> FSR_AEXC_SHIFT; state.frm = (val & FSR_RD) >> FSR_RD_SHIFT; break; case CSR_STATUS: state.sr = (val & ~SR_IP) | (state.sr & SR_IP); #ifndef RISCV_ENABLE_64BIT state.sr &= ~(SR_S64 | SR_U64); #endif #ifndef RISCV_ENABLE_FPU state.sr &= ~SR_EF; #endif if (!ext) state.sr &= ~SR_EA; state.sr &= ~SR_ZERO; rv64 = (state.sr & SR_S) ? (state.sr & SR_S64) : (state.sr & SR_U64); mmu->flush_tlb(); break; case CSR_EPC: state.epc = val; break; case CSR_EVEC: state.evec = val & ~3; break; case CSR_COUNT: state.count = val; break; case CSR_COUNTH: state.count = (val << 32) | (uint32_t)state.count; break; case CSR_COMPARE: serialize(); set_interrupt(IRQ_TIMER, false); state.compare = val; break; case CSR_PTBR: state.ptbr = val & ~(PGSIZE-1); break; case CSR_SEND_IPI: sim->send_ipi(val); break; case CSR_CLEAR_IPI: set_interrupt(IRQ_IPI, val & 1); break; case CSR_SUP0: state.pcr_k0 = val; break; case CSR_SUP1: state.pcr_k1 = val; break; case CSR_TOHOST: if (state.tohost == 0) state.tohost = val; break; case CSR_FROMHOST: set_fromhost(val); break; } } void processor_t::set_fromhost(reg_t val) { set_interrupt(IRQ_HOST, val != 0); state.fromhost = val; } reg_t processor_t::get_pcr(int which) { switch (which) { case CSR_FFLAGS: require_fp; return state.fflags; case CSR_FRM: require_fp; return state.frm; case CSR_FCSR: require_fp; return (state.fflags << FSR_AEXC_SHIFT) | (state.frm << FSR_RD_SHIFT); case CSR_STATUS: return state.sr; case CSR_EPC: return state.epc; case CSR_BADVADDR: return state.badvaddr; case CSR_EVEC: return state.evec; case CSR_CYCLE: case CSR_TIME: case CSR_INSTRET: case CSR_COUNT: serialize(); return state.count; case CSR_CYCLEH: case CSR_TIMEH: case CSR_INSTRETH: case CSR_COUNTH: if (rv64) break; serialize(); return state.count >> 32; case CSR_COMPARE: return state.compare; case CSR_CAUSE: return state.cause; case CSR_PTBR: return state.ptbr; case CSR_SEND_IPI: case CSR_CLEAR_IPI: return 0; case CSR_ASID: return 0; case CSR_FATC: mmu->flush_tlb(); return 0; case CSR_HARTID: return id; case CSR_IMPL: return 1; case CSR_SUP0: return state.pcr_k0; case CSR_SUP1: return state.pcr_k1; case CSR_TOHOST: sim->get_htif()->tick(); // not necessary, but faster return state.tohost; case CSR_FROMHOST: sim->get_htif()->tick(); // not necessary, but faster return state.fromhost; case CSR_UARCH0: case CSR_UARCH1: case CSR_UARCH2: case CSR_UARCH3: case CSR_UARCH4: case CSR_UARCH5: case CSR_UARCH6: case CSR_UARCH7: case CSR_UARCH8: case CSR_UARCH9: case CSR_UARCH10: case CSR_UARCH11: case CSR_UARCH12: case CSR_UARCH13: case CSR_UARCH14: case CSR_UARCH15: return 0; } throw trap_illegal_instruction(); } void processor_t::set_interrupt(int which, bool on) { uint32_t mask = (1 << (which + SR_IP_SHIFT)) & SR_IP; if (on) state.sr |= mask; else state.sr &= ~mask; } reg_t illegal_instruction(processor_t* p, insn_t insn, reg_t pc) { throw trap_illegal_instruction(); } insn_func_t processor_t::decode_insn(insn_t insn) { size_t mask = opcode_map.size()-1; insn_desc_t* desc = opcode_map[insn.bits() & mask]; while ((insn.bits() & desc->mask) != desc->match) desc++; return rv64 ? desc->rv64 : desc->rv32; } void processor_t::register_insn(insn_desc_t desc) { assert(desc.mask & 1); instructions.push_back(desc); } void processor_t::build_opcode_map() { size_t buckets = -1; for (auto& inst : instructions) while ((inst.mask & buckets) != buckets) buckets /= 2; buckets++; struct cmp { decltype(insn_desc_t::match) mask; cmp(decltype(mask) mask) : mask(mask) {} bool operator()(const insn_desc_t& lhs, const insn_desc_t& rhs) { if ((lhs.match & mask) != (rhs.match & mask)) return (lhs.match & mask) < (rhs.match & mask); return lhs.match < rhs.match; } }; std::sort(instructions.begin(), instructions.end(), cmp(buckets-1)); opcode_map.resize(buckets); opcode_store.resize(instructions.size() + 1); size_t j = 0; for (size_t b = 0, i = 0; b < buckets; b++) { opcode_map[b] = &opcode_store[j]; while (i < instructions.size() && b == (instructions[i].match & (buckets-1))) opcode_store[j++] = instructions[i++]; } assert(j == opcode_store.size()-1); opcode_store[j].match = opcode_store[j].mask = 0; opcode_store[j].rv32 = &illegal_instruction; opcode_store[j].rv64 = &illegal_instruction; } void processor_t::register_extension(extension_t* x) { for (auto insn : x->get_instructions()) register_insn(insn); build_opcode_map(); for (auto disasm_insn : x->get_disasms()) disassembler->add_insn(disasm_insn); if (ext != NULL) throw std::logic_error("only one extension may be registered"); ext = x; x->set_processor(this); }